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ABSTRACT 
 

We sought to improve an existing multi-language financial reporting tool by unifying the 
pipeline into a single native Python environment and by providing a more intuitive user 
interface and enhanced documentation. We had to reverse engineer the legacy 
codebase and integrate a new dynamic engine for investor relations to reach our goal. 
Project management practices such as Scrum and Kanban as well as adhering to a 
well-maintained object oriented methodology were the core of our teamwork and 
productivity. Ultimately, the final product was a professional graphical interface in 
addition to the re-engineered pipeline, which unified the whole system.  
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EXECUTIVE SUMMARY 
 

We worked with an alternative investment fund Angelo, Gordon, & Co for this project. 
The term “alternative investment fund” means that the investments that Angelo, Gordon, 
& Co specialize in are not directly correlated with typical market indicators like the S&P 
500. This is because Angelo, Gordon, & Co deals with long term investments like 
distressed assets, real estate, venture capital, and private equity (Angelo, Gordon, & 
Co, 2018). 

Investment funds use a variety of data analytics, reporting tools, and financial indicators 
to track the success or failure of their financial strategies. One ubiquitous report is the 
profit and loss (P&L) statement. Angelo, Gordon, & Co had software for generating P&L 
reports, but the workflow could be convoluted, and the interface was unintuitive. This 
MQP team was brought on board to simplify the workflow, improve the interface, and 
provide documentation.  

For the organizational aspects of the project, we used a combination of Scrum and 
Kanban project management styles to stay on top of workflow efficiency. For the 
technical aspects of the project, it was determined by the sponsor that Python should be 
the native language for the project. Therefore, we relied heavily on the open source 
community for a variety of modules and packages, like OpenPyXL and PyQt5, to 
replicate some of the functionality that was originally done in C# in the legacy pipeline.  

As development progressed, we found that we had time to develop a graphical user 
interface layer on top of the report generation backend. So, the remaining time of the 
project was spent developing this interface and adding different features at the request 
of the sponsor, which culminated with the addition of an installer and executable version 
of the GUI.  

Ultimately, we left the sponsor with a unified Python pipeline, streamlined workflow, a 
modern user interface, installer, documentation, and a design that should make 
supporting new templates easier in the future.  
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1 INTRODUCTION 
 

1.1 Winners and losers report 

1.1.1 Why it exists 

Before diving into technical details, it is important to understand the context of the 
project. A large number of investment funds generate multiple financial reports, some of 
which are circulated internally. However, other external reports, after heavy vetting, are 
sent out to clients. These reports are not just internal diagnostic tools, but also external 
marketing tools to show the fund’s success. A common kind of report that all 
organizations publish is a profit and loss statement (or just P&L), which is typically a 
quarterly report. Investopedia (2017) describes this concept as:  

… a financial statement that summarizes the revenues, costs and expenses 
incurred during a specific period … These records provide information about a 
company’s ability – or lack thereof – to generate profit by increasing revenue, 
reducing costs, or both. 

  As a hedge fund, Angelo, Gordon, & Co maintains several large investments 
called funds, which are composed of individual investments, which are lumped together 
as strategies.  

 

FIGURE 1: FUND TO STRATEGY HIERARCHY 
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 As you can see in the above figure, funds are comprised of multiple strategies, 
but an individual strategy might belong to multiple funds. Furthermore, a strategy 
represents a specific venture (venture refers to a position taken with an asset; this can 
be loans, stocks, or assets) with an investment, but that investment might be involved in 
multiple strategies. With this level of complexity, simple tools for evaluating a fund’s 
success become increasingly valuable.  

1.1.2 Origin of the report 

Our sponsor, Scott Burton, developed an internal report for closed funds, which 
became informally known as the Winners & Losers report and will be referred to in the 
rest of this document as the W&L report. The W&L report is simply a specific kind of 
P&L statement. It breaks down the highest gross profit strategies within a fund along 
with the worst gross loss strategies. It was originally just an Excel spreadsheet with 
some clever logic and VLOOKUPs, which was populated with data by hand. It gained 
momentum as a valuable diagnostic tool on the success of a fund and began to be 
distributed to investors.  

1.2 Drawbacks to the winners and losers report 

The problem that we were given in the beginning soon became a complex system which 

needed further analysis to solve. Midway through, we as a team decided to add 

additional features to solve the problem. These events will be thoroughly discussed in 

the following sections. 

1.2.1 Difficulty of use 

As described in the previous section, this report is valuable. However, building 

the report by hand was cumbersome and difficult. The fact that human beings were 

involved in directly manipulating and formatting the data allowed multiple points of 

failure to enter the system. Therefore, more controls and redundancies were needed to 

catch any mistakes. 

To replace the human element, a consultant was brought on to build a report 

generation tool that would automate this formatting and data population step. This initial 

codebase was written in C#, and it was soon realized that it was an error-prone process 

that was difficult to use and broke frequently. Our sponsor desired a more streamlined 

and robust process. 
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1.2.2 Complexity of pipeline 

Another issue with the tool developed by the consultant was the complexity of the 
pipeline. Prior to the construction of the new tool, there existed a calculation engine 
written in Python, which took in accounting data and performed certain computations to 
generate financial metadata like internal rate of return (IRR). Then, the old automated 
tool was built on top of this Python engine, but that old automated tool was written in 
C#. This led to an awkward interface involving batch calls to Python, which is shown in 
the figure below. 

 

 

FIGURE 2 LEGACY PIPELINE  

 It is worth noting that C# was not a bad idea for this approach. There is an entire 
suite of Microsoft Office tools for C# that allow for interoperability between C# and 
Excel, which allows for a much more comfortable layer of abstraction between the data 
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wrangling and formatting and actually manipulating the Excel template. However, 
Python has excellent support through Numpy (NumPy developers, 2017) and pandas 
(NUMFocus, 2017) for the kind of data manipulation that our sponsor was doing, so the 
decision was made that it would be better to transition the whole codebase to Python 
instead of transitioning the file prep script to C#. This file prep script used some 
accounting math to calculate metadata like internal rate of return. Because this file prep 
was proprietary to Angelo, Gordon, and had less to do with the code and more to do 
with their specific algorithms, we were told not to modify it. Python is also much better 
for quickly getting projects up and running, so it was easier to try converting to Python 
first and seeing if it was an adequate replacement. 

1.2.3 Lack of extensibility 

A further advantage of rebuilding the reporting tool is that it provided us with the 

chance to build in a framework for extensibility. Our sponsor discussed the possibility of 

replacing the old Python calculation engine with a new and improved script. Other ideas 

for future extensions were different kinds of reports and differently formatted input files. 

So, the codebase needed to be able to adapt and grow.  

1.2.4 Problem summary 

We were brought on board to replace the old report generation tool because of 

three major flaws: 

• Difficulty of use: the code broke often. It was difficult to debug and had no 

meaningful interface. 

• Complexity of pipeline: the use of two different languages aggravated the 

debugging issue and contributed unnecessary overhead. 

• Lack of extensibility: the tool was not aging well and needed to be able to 

support new calculation tools, reports, and inputs. 

1.3 Our proposed solution 

Our project was very clearly defined. We were taking an old legacy codebase and 
converting it to Python to maintain a single pipeline. However, the project quickly grew 
from there, and it is important to understand how the goals of the project was divided 
into two end-goals: a code port and improved functionality for our end user as they 
achieve their goal. i.e., easy report generation. Fundamentally, this report generation 
tool is used by our sponsor Mr. Burton on a relatively infrequent basis (monthly or 
quarterly), but the accuracy of information is paramount. Hence, the process should be 
as free from human influence as possible while being simple to use. In trying to focus in 
on these ideas, automated and simple, we isolated some basic design goals. 
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FIGURE 3 PROJECT GOALS 

• Simple: Mr. Burton only uses this software every few months, and it should not 
be a hassle to relearn it each time. It should be obvious how it is run and how to 
use it.  

• Robust: We lean heavily on an Open Source library called OpenPyXL. As is 
always the case with such libraries, there is no guarantee it will keep working the 
same way. Some exposure is unavoidable, but we strived to maintain a layer of 
abstraction sufficient to minimize churn if there were any changes.  

• Workflow: The previous solution was effective, but because of the disjointed 
workflow illustrated in Figure 2, as soon as something broke, it became a mess 
to debug. The goal with this single Python workflow is to make debugging both in 
finding errors in the code as well as wrong result data as painless as possible 

• Flexible: Currently, Mr. Burton only supports one type of report for closed funds. 
However, in the future other kinds of reporting might become valuable. Since 
these reports have generally the same skeleton (e.g. Excel reports, data comes 
from tables of strategies, totaling and summation are common operations), it 
would be advantageous to make it as easy as possible to extend this software to 
support new reports. 

The goals of simplicity and robustness were aimed at resolving the issue of difficulty 
to use. The workflow goal was intended to resolve the pipeline issues, and the flexibility 
was meant to improve extensibility.  

Simple

Robust

Workflow

Flexible
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2 BACKGROUND 
 

2.1 Different reporting needs 

2.1.1 Closed funds 

As mentioned in the introduction, a P&L report is an almost universally useful 

performance analysis tool. However, different investment strategies/funds have different 

metrics for success. The main example we used when trying to design our software to 

support various investment strategies was the distinction between a closed and an open 

fund.  

Closed funds can be thought of as a long-term investment. Investors put their 

money into a box and then as far as they are concerned, it remains there for an 

extended period typically five to ten years or until the fund is closed. Now, the 

investment fund can move that money around, change strategies, and reinvest it, but 

the time horizon on the fund is longer, and thus it tends to be a safer and a larger return. 

Short of a massive systemic riski, the money stays put until an agreed time frame 

passes (Boyd, 2001). 

Due to this feature, an excellent metric of success for a closed fund is basis 

pointsii of gross profits to the total size of the fund. This gives you an idea of how much 

profit a given strategy has generated relative to the initial investment.  

                                            
i Kaufman in the Financial Markets journal provided an excellent definition for a systemic risk event. It is 
described as a “Big shock [with] direct causation (chain reaction) contagion (direct linkage among banks 
through interbank deposits, loans and clearings)” (Kaufman, 2000). The idea is that these chain reactions 
propagate throughout the entire financial market, and cause havoc. The financial crisis of 2008 is an 
example of such a system risk event. 
 
ii Basis points are a frequently used measure for percentages in the investing. A basis point is equivalent 
to 1/100th of a percent or .01%, or .0001. The origin of this language and the reason for its pervasiveness 
is well-described on (Investopedia, 2017):  
  

For example, if a financial instrument is priced at a 10% rate of interest and the rate experiences 
a 10% increase, it could conceivably mean that it is now 0.10 x (1 + 0.10) = 11% OR it could also 
mean 10% + 10% = 20%. The intent of the statement is unclear. Use of basis points in this case 
makes the meaning obvious: if the instrument is priced at a 10% rate of interest and experiences 
a 100 bp move up, it is now 11%. The 20% result would occur if there was instead a move of 
1,000 bps. 
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2.1.2 Open funds 

An open fund is a more fluid investment. Investors are not restricted on when they 

can liquidate or reinvest more cash (Boyd, 2001). If a fund is doing well, investors might 

want to add more money, and if a fund is doing poorly, or an investor simply needs 

some more liquid assets, they can take money out. With an open fund, basis points 

relative to the total size of the fund is meaningless. An open fund could perform 

extremely poorly, but if a major investor pulls out, it might look like there were still 

decent returns because the total fund size would have shrunk.  

As described before, a fund is composed of multiple financial strategies. In an 

open fund, the metric of success for an individual strategy is the strategy’s gross profit 

relative to the total gross profit of the fund. Let us go through an example to clarify this. 

Imagine you have an open fund called WPI Investments. That fund is composed of 

three separate investments W, P, and I. These investments are the three different 

financial strategies. If the fund makes $2 million in gross profit, but investment W only 

made $3000, then its relative success in basis points is ($3000/$2000000)*100*100 or 

15 basis points. If we add the relative successes of all the strategies together, it should 

equal 10000 basis points or 100%.   

2.2 Scripting languages and why Python 

2.2.1 Other possible languages 

The predecessor to this project was written partially in Python and C#. Our 
original goal was simply to convert the C# to Python, but a colleague of our sponsor 
asked the reasonable question of whether Python truly was the best language to 
convert to. As we have touched on, for matters of simplicity Python is attractive as that 
is already the language that the end user was working in. Logically, it made sense to 
use Python to extend the environment. As we worked on the project, we examined and 
discussed other possible languages that could have been used to achieve the same 
outcome.  

• C#: This is the language we started in. C# has the advantage of being a truly 
object-oriented language, which makes maintaining SOLIDiii design principles 

                                            
iii SOLID is a set of five principles for object oriented programming. We loosely followed them for 
reference, but as Python is not a strictly object-oriented language, some of the criteria did not fit 100% of 
the time. But, Solid is essentially this: 

• Single responsibility: a class should only have one reason to change so as to minimize churn. In 
other words, classes should only be responsible for one thing. 
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much easier. It is also supported by the .NET framework, which means it has 
better support for working with other Microsoft products namely Excel. 
Furthermore, when we started designing the GUI, C#’s Window Forms or 
Windows Presenter Foundation are in most ways better tools than Qt Core 
Designer or other Open Source tools. 
 

• Java: Java has no relationship with the background for this project, but as a 
powerful, well-supported object-oriented language it feels necessary to mention it 
as an option. Java has an excellent Excel API and other numerical resources for 
the kinds of calculations that were done in Python, but it is slower to get running. 
Given that we had inherited code in C# and Python, it would not have been worth 
migrating all of it over to Java.  
 

• Python: This is the language we ended up deciding on. Python is flexible, 
powerful, and easy to work with. The PyCharms environment used at Angelo, 
Gordon is a well-developed integrated developer environment (IDE), and makes 
installing modules, navigating and refactoring code a breeze. It also has fantastic 
auto-completion and syntax help.  

2.2.2 Keeping a native Python pipeline 

Keeping the pipeline consistent was one of the primary objectives for this project. 

Keeping the entire pipeline in Python was a major advantage since it simplifies the 

connections of each step in the pipeline and retains the maintainability for future teams. 

Prior to our arrival, the pipeline consisted of disparate codebases in C# and Python; 

connecting the two required adapters and patches. Maintaining these patches was 

difficult as well as adding new features. With the codebase being in one framework, it 

solved the problem of having a disparate unit testing as well as passing data between 

the frameworks. These separations created “hacky” clutter that was extremely difficult to 

understand as well as extend. 

                                            
• Open/Closed: classes should be easy to extend but not meant to be modified. i.e. you should be 

able to change the behavior of the code without having to open it back up and recompile it. 

• Liskov Substitution: If it walks like a duck, quacks like a duck, but needs batteries, it is probably 
not a duck. Sub-types ought to be valid substitutes for their base type. When this logic is violated, 
things get weird. 

• Interface segregation: Less applicable to Python, which has no strict interfaces, but basically no 
class should be contracted by an interface for methods that they do not use. 

• Dependency inversion: instead of directly instantiating subclasses, you should pass in 
abstractions of the class so that the subclass can change without breaking the hierarchy 
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2.2.3 Strengths of Python 

One of the great strengths of Python is the sheer amount and diversity of open 
source libraries available. This is what made it so attractive to our sponsor initially. Two 
libraries were specifically used for the original file prep script: Numpy and Pandas. 

Numpy is effectively a MATLAB package for Python. It provides an object for 
storing N-dimensional data, linear algebra tools, Fourier transforms, and more (NumPy 
developers, 2017). It is a simple but useful module with limited but powerful tools. 

Pandas on the other hand has the lofty self-described goal of “…becoming the 
most powerful and flexible open source data analysis / manipulation tool available in 
any language” (NUMFocus, 2017). It is designed to work with “relational” data sets, 
which immediately draws allusion to a SQL-type structure, which is not an entirely 
unreasonable comparison. Pandas works with DataFrames, which are two dimensional 
arrays of data and basically provides all the sort of matrix manipulations and 
calculations that you might expect in a dedicated scripting language like MATLAB. It 
also brings with it the speed of pre-compiled C code and the ease of Python.  

Given this history of leaning on strong Python libraries, we, with our sponsor’s 
support, looked into a variety of Python libraries for manipulating Excel files. One 
contender was XlsxWriter, which is a very robust and extensive library, but was 
discarded early on, because it only allows the creation of new Excel files; thus, it could 
not read in settings from a template file. Another tool that we use a little but not for the 
bulk of our report generation, is the win32com library, which provides a Component 
Object Model (or COM) layer over a Microsoft API. This allows us to effectively launch 
the Excel App from within our Python script. However, this is a very clunky way to do 
the kind of formatting that this report required, and ultimately lacked the finesse 
necessary.  

So, we settled on a library called OpenPyXL, which is simply put a “…Python 
library for reading and writing Excel 2010 xlsx/xlsm/xltx/xltm files” (Clark & Gazoni, A 
Python library to read/write Excel 2010 xlsx/xlsm files, 2017) 

 

 

2.3 OpenPyXL 

2.3.1 What it can do 

OpenPyXL fundamentally works by unzipping and reading the raw XML files that 

all Excel XLSX (Excel XML based spreadsheet file format) files are composed of. It 
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parses all the information into what are more human-readable objects like cells, sheets, 

and workbooks. Next, OpenPyXl manipulates that data, not the actual Excel file, in 

memory until it is in a satisfactory state. OpenPyXL then reinterprets the data structures 

back into the XML, zips it back up, and labels it as XLSX. Assuming the data structures 

have not been given impossible or invalid values, the Excel document will open as 

intended. There are several important caveats to this general workflow. 

 

FIGURE 4 OPENPYXL WORKFLOW 

 First, Python is already notoriously unreliable at keeping track of variable types. It 

uses what is colloquially referred to as “duck-typing”, which is attributed to the phrase “if 

it walks like a duck and quacks like a duck, then it is a duck”. This is just a clever way of 

describing dynamic typing, which is to say that when given a variable the Python 

interpreter will just treat it as whatever kind of data makes sense given the situation 

unless that raises an exception. A common example of this kind of exception was that 

occasionally the accounting data would provide the string “nan” in a numerical field like 

gross profit. When Python tried to read that as a float, it would raise an exception. 

 This issue is compounded in OpenPyXL because we are not directly 

manipulating the Excel worksheet but instead we are manipulating OpenPyXL’s 

abstraction of the worksheet. So, thanks to a combination of Python’s duck-typing and 

OpenPyXL’s abstraction it is entirely possible to do an entire array of impossible things 

Unzip .xlsx 
file into 

XML

Parse XML 
into data 

structures

Manipulate 
data in 
Python

Parse data 
structures 
into XML

Rezip XML 
into .xlsx
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to these data structures, which will create a corrupted XLSX file when it is eventually re-

zipped. OpenPyXL has made real efforts to provide significant checks on this. For 

example, when writing a value to a cell, OpenPyXL will check if that could be a valid 

input in a cell, e.g. a float, int, or a string.  

 Second, when we manipulate formatting (formatting such as inserting or 

removing rows or expanding or shrinking a table) it is possible to break the headers, 

which will lead to corrupting the file. 

 Thirdly, the code used to insert new rows uses a clever regular expressioniv 

(regex) to dynamically update cell references. e.g. if a cell refers to I13, but we insert 

two rows, it will properly refer to I15. However, this means that if we have a named cell, 

which contains a string value that looks like capital letter plus a number, it will also auto 

increment that number. For example, a cell named FUND_CAT50 would become 

FUND_CAT53. This is best resolved by including underscores in any such names (e.g. 

FUND_CAT_50 would remain FUND_CAT_50). 

2.3.2 What it cannot do 

OpenPyXL has a few glaring issues that required us to design our own solutions. 

These issues all primarily arise from the fact the OpenPyXL aims to give very precise 

and exact control over the Excel sheet. Many operations are best utilized on the cell 

level as opposed to working an entire rows, columns, or tables.  

First, OpenPyXL does not support inserting or deleting rows. This is initially 

surprising given how important an operation that is for working with spreadsheets, but 

makes sense historically within the module. OpenPyXL has gone through many 

changes in how cell references are represented, and most implementations of row 

                                            
iv Regular expressions or regex is almost an entire coding language unto itself. They’re used for very 
concise pattern matching. From Master Python Regular Expressions they have five primary functions 
(Lopez & Romero, 2014): 

• Check if an input matches a pattern 

• Look for the appearance of a pattern in a chunk of text 

• Extract a specific pattern from a text 

• Replace a specific pattern in text 

• Split a large text into smaller pieces 
 
Regex accomplishes this in Python by instantiating a pattern, which would be something like: look for any 
three character combination of decimals and uppercase letter or check if there is any occurrence of the 
pattern “b2C”. Then this pattern can be used for any of the uses cases above.  
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insertion relied on these unreliable internals (Clark & Dallas, Insert row into Excel 

spreadsheet using openpyxl in Python, 2013). 

Second, while it is possible to access named ranges in OpenPyXL, there are no 

built-in functions or methods that allow you to apply formatting. All OpenPyXL provides 

is the range of cells that the named range contains. This is further complicated by the 

fact that while the named range knows what cells belong to it, each cell does not know 

what named range it belongs to. This means as we insert cells above a named range, 

the named range will not correctly shift down, but the value in the range will.  

Third, tables have very little support in OpenPyXL. They exist as data structures 

with all the correct values and options, but interacting with them can be very buggy and 

is easy to cause corruption. 

 Fourth, charts are completely unsupported. OpenPyXL cannot correctly parse 

them from the XML.  

2.4 PyQt5 

2.4.1 Model, view, controller pattern 

When it comes to designing a graphical user interface (or GUI), there are two 

popular design patterns. There is model view controller and model view presenter. In 

both patterns, the model is the data storage. It contains all the stored information and 

any methods pertaining to accessing or changing that data. However, the way in which 

the model interacts with the front end is different between the patterns (Qureshi & Sabir, 

2013). 

In model view controller (MVC), the view renders the model data and periodically 

requests updates directly from the model. It also is responsible for registering user input 

and sending that input to the controller to be handled. The controller gets to select the 

specific view. This means that the controller handles all the backend calculation as well 

as handling all the events raised in the view.  

In model view presenter (MVP), the view handles no business logic and does not 

directly interact with the model. Instead, the presenter is responsible both for handling 

events from the view, but also for querying the model for information and sending that 

information to the view to be rendered.  

Ultimately, MVC is simpler to implement and better suited for a lightweight 

application like ours, but if we had any intention of scaling the front end up into a larger 

project, MVP might be a good alternative. 
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2.4.2 How the designer works 

 

FIGURE 5 QT DESIGNER 

 PyQt is another excellent open source software package, which acts as a Python 

API for a popular graphical software called Qt. It includes a tool which allows you to take 

Qt .ui files and convert them to the corresponding PyQt python files. This allowed us to 

use the Qt Designer pictured in Figure 5. The designer is like many other graphical 

software packages, and can be broken down into 4 significant regions. Region 1 is the 

toolbox. These are all the different widgets that can be dragged into the form displayed 

in Region 2. Region 2 shows a rough mock-up of how the GUI is going to look. 

However, since our CSS (or QSS as they are called for Qt Style Sheets) is applied 

programmatically, it is not an exact representation. Region 3 shows the hierarchy of 

4 1 

2 

3 
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widgets in the form, and allows us to move widgets around to change inheritance. 

Lastly, region 4 shows all the specific attributes of the focused widget.  
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3 METHODOLOGY 
 

3.1 Project management 

3.1.1 Kanban 

 

FIGURE 6 KANBAN BOARD 

 Working in a professional setting, we were given a complex problem which had 

to be broken down to several goals. As a result, we decided to use the Kanban 

methodology to break down each goal into actionable steps and reasonably complete 

the steps. We set up a Kanban board in the cubicle and in the desks given as shown in 

Figure 6. The Kanban board consisted of 3 columns for task organization: to-do, in-

progress, and done. The to-do column represented the tasks that needed to be 

completed; these tasks could be either bugs, features, or improvements. The in-
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progress column represented the task was in progress and finally the done column 

marked the tasks done and ready to test. This method was extremely efficient since we 

were able to work on one actionable task and finish it thoroughly before starting a new 

task. Each member could work on a separate task as long as the two tasks were not 

interdependent.  

 Different swim lanes representing the tasks were also setup in the Kanban board. 

Tasks with yellow colors meant normal tasks to be done. Blue marked the task as a new 

feature and finally red marked the tasks as a bug. This way, our team was always 

aware of the type of task they were working. 

 Completing the tasks using the Kanban method improved our workflow as well as 

making communication easier for when things crashed or did not go according to plan. 

This organizational technique was a major factor in the success of this project. It also 

allowed us to communicate goals and storylines to the Angelo Gordon management, 

hence meeting all their requirements and fixes. 

3.1.2 Scrum 

Scrum is a popular buzz word that gets associated with Agile software 

development all the time. True Scrum has three roles: a product owner, Scrum master, 

and team. The product owner is responsible for the product’s vision and future. The 

Scrum master keeps the team on track and facilitates Scrum principles. The team 

should self-organize to achieve their goals. (James, 2017).  

In our miniature implementation of Scrum, we would loosely think of Mr. Burton 

as the product owner who kept our vision on track, and our project team was a blend of 

Scrum Master and developers. The scrum master role was less important because of 

the size of our team, but in terms of logistics, we split it up with one partner handling 

meeting planning and coordination and the other keeping the focus on our goals. 

3.1.3 Source control 

A version control system (VCS) is at the core of most modern software 

development. It helps on a myriad of fronts, which are well described on the GIT Tower 

website (Tower, 2017): 

• Collaboration: When working on a project simultaneously, we inevitably need an 

answer to the question of “what happens when we edit the same thing at the 

same time”. Some VCS such as subversion resolve this issue by “locking” the 

repository such that only one coder can work on a section of code at one time. 
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However, this is not scalable. More sophisticated VCS like GIT rely on “merging” 

which only comes into effect when two or more coders change the same piece of 

code, in which case the coders sit down, review the changes, and accept which 

one they want to use.  

• Storing old versions: How do we keep track of changes and releases? How do 

we name our older versions? How do we know how much or how little 

information to keep track of? A good VCS allows us to decide these from the 

beginning and forces us to stick to those conventions automatically. 

• Restoring previous versions: What do we do when inevitably a code-breaking 

change is pushed accidentally. Revert! Because VCS keeps track of all older 

versions of code, we can go through line by line to see what changes caused the 

break and revert the guilty code. It is a powerful debugging tool. 

• Backup: These days everything lives in the cloud, and VCS assists with that. 

This way if one programmer’s computer explodes, only so much work is lost.  

Clearly, even for projects consisting of one or two programmers, a strong VCS is 

vital to successful development. Angelo, Gordon & Co. uses the Microsoft branded 

version of GIT, so that is the VCS we used for this project.  
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FIGURE 7 GIT HISTORY AS OF NOV. 20TH 

As a rule of thumb, we followed these guidelines: 

• Branch for every major development goal 

o We branched for any new potentially breaking change, new feature, or 

new project that could be done in parallel to the current project. 

o We did several major code refactoring’s (cleaning up code and 

reengineering code for less duplication) to enforce better code consistency 

and brevity, which always has the risk of breaking code. 
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o GUI development was a new feature entirely so it got a branch. 

o Regression testing could be done in parallel, so it was a branch. 

• Every stable build was tagged as a release in case we ran out of time on a new 

feature and needed a stable version to provide to our sponsor before leaving. 

• When a new branch was well-tested it was merged back into the main 

development branch, and then finally back into the master branch. 

3.2 Development 

3.2.1 Object oriented analysis & design  

When it made sense, object oriented principles were applied to this project. One 

good example of this is with regards to how we formatted the financial information in the 

software. In terms of our pipeline, raw accounting data is read in first by the data 

processing script provided by the sponsor (but still part of the pipeline) and then the 

processed data is spat back out in a CSV (Comma Separate Value file format). It is this 

CSV that is fed into the report formatter and generator. To store the data in the CSV a 

list of “StrategyEntry” objects are used (see reference code in Appendix A).  

This object is responsible for handling the information and methods of a single 

financial strategy. It stores the raw CSV data in a dictionary and has methods for 

accessing that dictionary, performing additional processing on the data, and adding new 

data from SQL queries and similar. 

3.2.2 Design patterns 

Another example of object oriented design is in how the dynamic columns and 

processing are done. These objects use a combination of the strategy design patternv 

and the abstract factory design pattern. 

According to an excellent definition on the Sourcemaking website, the strategy 

design pattern “…defines a family of algorithms, encapsulates each one, and makes 

them interchangeable. Strategy lets the algorithm vary independently from the clients 

                                            
v Design patterns are a powerful and somewhat controversial idea in computer science. The idea is that 
certain logical structures and patterns occur over and over in software design and that particularly 
effective patterns ought to be reused both for ease of comprehension (as experienced software architects 
will be familiar with common design patterns) and because of a sense of “why reinvent the wheel?” Critics 
of design patterns suggest that using a design pattern blindly without respecting basic good coding 
practices leads to bad code. They suggest that if a coder just follows good object oriented principles (see 
the endnote on SOLID) these patterns will arise naturally if they’re required (Rodriguez, 2016). 
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that use it.” (Shvets, Frey, & Pavlova, Strategy Design Pattern, 2017). Fundamentally, 

the idea here is that if we have a bunch of different operations that need to be 

performed on some input and always produce the same kind of output, we can 

encapsulate that logic as a “strategy” and then plug in whatever “strategy” we need.  

 

FIGURE 8 STRATEGY DESIGN PATTERN 

As shown in figure 7, for a given input, it does not matter what path is taken 

(Strategy A, B, or C) we still arrive at the same type of output. Moreover, if the input 

type is the same as the output type, these strategies can be chained together to perform 

multiple operations on some data. When working on this project, a common confusion 

that arose was between a financial strategy and the strategy design pattern. These are 

completely unrelated ideas. A financial strategy is some investment plan that Angelo, 

Gordon uses. As far as our code is concerned, a financial strategy is simply a data 

point. These financial strategies are assigned a unique ID and when it comes time to 

use the strategy, Angelo Gordon’s codebase can look-up and perform the business 

logic based on that unique ID. The strategy design pattern is a way of designing our 

algorithms, and each algorithm designed in this pattern is referred to as a strategy.  

The abstract factory design pattern is also described on Sourcemaking: “[to] 

Provide an interface for creating families of related or dependent objects without 

specifying their concrete classes.” (Shvets, Frey, & Pavlova, Abstract factory design 

pattern, 2017). The idea with an abstract factory is to have a class dedicated for 

creating related objects, and there is a perfect application for this factory with the 

strategy pattern, because strategies are all similar objects. So, the abstract factory 

churns out all the required strategies, which are then used in series to process the data.  
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3.3 Dynamic report generation 

3.3.1 Open funds vs closed funds 

 

FIGURE 9 CLOSED VS OPEN FUND TEMPLATE 

 The first report template we worked with was for a closed fund. Because of the 

differences discussed in the background, a closed fund is primarily organized by a 

system of basis points relative to the fund size. A logical conclusion from this is that the 

fund size is also an important piece of information. Thus, the closed fund has a widget 

for displaying the fund size, what dollar amounts correspond to what basis point 

brackets, or buckets, and the parsed strategies should be sorted by their current basis 

point profits in relation to the total gross profit. As can be seen in Figure 9, three basis 

point brackets are used 0-50, 50-100, and 100+. All strategies in the lowest bucket are 

concatenated into a lumped “All Other Positions” for brevity.  

 The second report template was the open fund. This report gets to omit the fund 

size, because it can change from week to week. Furthermore, because basis points 

relative to fund size is not a useful measure, they are sorted by quartiles based on 

quarter percentage intervals as shown in Figure 9.   

3.3.2 Multiple templates 

The best way to accomplish these distinctions between reports was by using 

fundamentally different Excel report templates.  
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FIGURE 10 CLOSED FUND TEMPLATE 

 Figure 10 shows the template used for the closed funds. Region 1 indicates 

where the fund size is displayed (in millions of dollars). The cells labelled 0bps, 50bps, 

and 100bps indicated the profit or loss required to be in that category. The large gray 

boxers are the “winners” and “losers” respectively, and it is where strategies that either 

generated a profit, for winners, or a loss, for losers, are displayed. For both categories 

region 2 shows where the total number of strategies that ended up in the different 

buckets are shown. It also splits them based on monetized or ongoingvi. Finally, region 

                                            
vi Monetized versus on-going is a relatively trivial distinction with respect to this project but is an important 
and simple financial idea. Monetization is defined in the Oxford Dictionary of Finance and Banking (Law, 
2015) as “adapting an asset that currently generates no revenue, such as a popular web site or app, so 
that it produces income (e.g. from advertising or commission)”. With respect to an investment fund, this 
means that the fund has been liquidated and the return has been paid out to the investors. After all, even 
when a fund is generating a gross profit technically the investors see none of the actual money until it has 
been monetized. 
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3 is where all the totaling is done and provides a rough estimate of the total gross profits 

and losses by basis point bucket. 

 These reports could be done in any time frame (e.g. weekly, monthly, annually 

etc.). However, they were typically generated quarterly. Part of the impetus behind 

making these reports easier to generate was to allow them to be produced on a more 

spontaneous basis perhaps monthly or even weekly in the case of a systemic risk 

event.  

  

3.3.3 Dynamic Column Strategies 

To support the different templates programmatically, we developed a system 

called dynamic columns. The system would have one entry point in the configuration 

files where excel columns would be mapped to a specific strategy (work done on the 

data) and a data attribute. The data attribute specified the portion of the data to be used 

for that specific column. As you can see in Figure 11, for the winners and losers closed 

fund report mapping, we specify the header row which is the row in Excel where the 

column headers are located. This allows the code to load in the column names and 

makes it easier to do the mapping.  

 

FIGURE 11 DYNAMIC COLUMN MAPPING 

The next argument is the column_mapping, which as mentioned before maps the 

column name (or index of the column), the strategy, and the parameter name; if no 

parameter name is needed, None is passed in. Finally, the last argument is the 



   

24 
 

preprocessing mapping. The preprocessing preps and manipulates the data with 

methods such as sorting, bucketing, and database queries. Both the column mapping 

and the preprocessing are highly dynamic and were built by us following the strategy 

pattern discussed in the Design patterns section 3.2.2. This allows the user to create 

custom strategies (for both columns and preprocessing) on the fly by extending the 

main strategy class and correctly implementing correct logic. The UML diagram for the 

column mapping is shown in Figure 12. For sample strategies see Appendix B. 

 

 

FIGURE 12 COLUMN STRATEGY UML DIAGRAM 
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3.4 GUI development 

The GUI was developed in the Qt’s Python version called PyQt version 5. We 

chose this since it supported major user interface elements functionality as well as 

providing a simple user interface designer which was easy to use. The code followed a 

model view controller (MVC) paradigm which separates the design, business logic, and 

the data into separate components. This way there is a maintainable codebase as well 

as a stable functioning GUI which is enclosed in validators and exception handling.  

The view was separated into two layers: application and widget views. The 

application view is the main view that relays all inputs and processes to widgets and 

popups. Widgets exists as elements on the application. For each widget, we created a 

separate view class and controller that encapsulated the visual aspects and business 

logic, respectively.  

For application-wide data, we created a model which acted as a proxy between 

configuration files as well as storing globally available data. Controllers and view 

methods could subscribe to the model for changes, which allowed the widgets to “self-

update” depending on data update, insertions, or deletion.  

For features such as report generation and unit test simulators, we developed a 

threading layer which helped maintain usability in the GUI while allowing background 

processing. 

3.5 Documentation 

3.5.1 Writing the README 

Initially, the README was intended as just a place to keep track of different 

dependencies that we had installed over the course of the project. However, we quickly 

realized that using a requirements.txt file was an obviously superior solution. The 

popular Python module installer pip supports a txt file, which lists all dependencies and 

allows the user to install said dependencies with a single command: 

pip install -r requirements.txt 

 This allowed us to start using the README as a tool for leaving our sponsor with 

something resembling a user guide. We drafted up a first version with instructions for 

installing and running the program. With user feedback from Mr. Burton, we also added 

sections to explain how to modify the code to support a new template, how to run tests, 

and some potential runtime errors.  
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3.5.2 Different markup languages 

Initially the file was written in raw text. However, Pycharms and GIT both provide 

excellent Markdown support. Markdown is light-weight markup language that allows for 

easy conversion to HTML. It was developed by John Gruber and Aaron Swartz in 2004 

(Gruber, 2004). Over the years it has gained popularity and slightly different “flavors” of 

Markdown have arisen. GIT has specific Markdown conventions, which is how we styled 

our README, and it can be quite powerful. What we started with is shown below in 

Figure 13. 

 

FIGURE 13 README IN MARKDOWN 



   

27 
 

 This Markdown can be converted straight to HTML in Pycharms, which gives this 

nicely formatted document.  

 

FIGURE 14 FORMATTED MARKDOWN 

 This then also integrates with GIT allowing you to view the README online. 

3.5.3 Incorporating with the GUI 

As we started developing the GUI for this project, we realized it could be useful to 
include the README in the GUI. Initially we generated the HTML using a Markdown-to-
HTML converter and then fed that into a text browser widget, but that generated the 
document in figure 14.  
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FIGURE 15 PRE-CSS README 

 But, we were advised by Professor Ciaraldi to move to the solarized stylesheet to 

both better match the rest of the front end, but also to be less harsh on the eyes, so we 

settled on this final design with a dark solarized stylesheet.  
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FIGURE 16 SOLARIZED README 
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4 RESULTS 
 

4.1 Testing 

4.1.1 Unit testing 

The goal behind unit testing is to methodically compare the output of a given 

module with some kind of interface or blackbox specification. Usually a unit test is 

structured somewhat recursively.  

 

FIGURE 17 UNIT TEST STRUCTURE 

 The idea is that a single test file is responsible for testing a single module, then 

individual test cases will be defined per class (or if there are any floating staticvii 

                                            
vii The idea of a static method in Python is a little trivial as it is entirely possible to define a function outside 
of a class anyways, and Python is not strictly object oriented either. However, there exists a Pythonic way 
of defining static methods if we wished to and it looks syntactically like this: 
 class ClassA(): 

  @staticmethod 

  def method_a(a): 

    return a 
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methods, per method) and then within each test case an individual test is written for 

each method.  

 Using Python’s UnitTest module, this structure is easy to follow by inheriting the 

TestCase object and implementing test methods that use methods like assertTrue. One 

element that was particularly important to test with UnitTests was the behavior of 

different comparison methods for OpenPyXL objects. As has been mentioned before, 

there is no guarantee of OpenPyXL’s behavior, and these comparison methods need to 

work for the sake of the regression testing explained below. Verifying that their their 

functionality remains is paramount. 

4.1.2 Regression testing 

Regression testing is an important but oft underutilized tool for detecting problems 

before they even happen. A regression test is different from unit test in that it is not used 

to diagnose a part of the system. Instead, a regression test is run whenever new 

functionality is added or old functionality is changed to make sure that the changes have 

not accidentally broken anything that previously worked (Myers, Sandler, & Badgett, 

2011). 

 

FIGURE 18 REGRESSION TESTING WORKFLOW 

The general model for our regression testing was simple. We started with a fixed 

data set of real but older data. We would run the data on a fixed template and generate 

a report, which would be verified via inspection. Then, in the future if we made changes 

to the code, we would run the same data set with the same source template, and 

compare the new report to the old verified report programmatically. If there were any 

differences, the test was failed and the inconsistency was flagged. If the purpose of the 
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update was to change the code, the developer would need to remove the at fault unit 

tests. 

This means that the regression test will diagnose any changes in the 

programmatic functionality, but will not work if the data set or template is changed. If 

either of those are changed a new reference report will need to be generated. 

 

4.2 Product 

4.2.1 Overview 

 

FIGURE 19 REPORTING TOOL OVERALL STRUCTURE 

 This figure shows the final state of the project. The segments highlighted in 

crimson are the portions that we developed or built from the ground up. The segments 

in gray were either only slightly modified or left untouched entirely.  

 Initially, the scope of the project was just to develop the report generation tool. 

The goal was to convert that tool into Python, and so that necessitated also working 

with OpenPyXL, which came with its own set of issues and problems that required 

additional tools to be built. As those tools were brought online, different diagnostics 

became useful and a logging infrastructure was developed to work in parallel with the 

reporting tool. Finally, when the backend was finished, we took it upon themselves to 

develop a GUI to encapsulate the data preparation, logging, and report generation. Of 

course, all of these steps have some degree of a testing framework built with them. 
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4.2.2 OpenPyXL tools 

As described in the background on OpenPyXL, the biggest weakness to 

OpenPyXL is also its greatest strength, which is its cell-centric design. Fundamentally, 

any attempt to manipulate the actual data in the workbook required work at the cell 

level. So, a suite of tools was built out to support working at a row level and at a table 

level. Furthermore, it was slowly realized that the ability to read and write from named 

cells was valuable, and so support for that was added as well. 

The major row level operation that was needed was the ability to insert a row of 

new cells with matching formatting and some arbitrary point in the sheet. We borrowed 

a stackoverflow solution for row insertion, but as time went on and bugs were found with 

this solution modifications were made.  

 

FIGURE 20 INSERT ROWS WORKFLOW 

 The main bug found with this code was in step 2. This is described in the 

Background section (section 2.0), but effectively, any cells with references to named 

cells that are named in a similar fashion as a cell reference (i.e. uppercase letter 

followed by numbers) that named cell would be incremented as well.  

The next tool that was built was the ability to both find and move a named table. 

Furthermore, an additional layer was needed to be built on top of the row insertion tool 

in order to allow the insertion of a row into a table. The fundamental problem here was 

that the Cell data structure’s internal reference does not match up to the Table data 

structures list of Cell references. So, when a new row was inserted the individual Cells 

were updated, but the table was not. If a row was inserted above the table or in the 

table, it would break the table. However, if the row was inserted below the table, 

everything was okay. So, tools were built to support that.   
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4.2.3 Logging tools 

Python provides a powerful built in logging module, which is what we leaned on for 

the logging support in this project. We configured two separate loggers. One was the 

default logger, which logged everything into a file, which was stored with an ID unique to 

the day of the log. We assumed we would not need specificity down to the minute as 

this report is only run once a quarter. The second logger was the standard output logger 

and just created a clean format for the log message before streaming the messages to 

both sys.stdout and our GUI’s console.   
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4.3 GUI 

4.3.1 GUI implementation 

 

 

FIGURE 21 MAIN GUI FORM VIEW 

 This figure shows the home page of the graphical user interface that was 

developed to support the report generation tool. Region 1 is the main inputs to the 

report. These must be selected to generate a report. There must be an input file, a 

template type, and an output directory. Region 2 are optional settings for the report, and 

they include changing the period end date and sending an email. Region 3 shows a 

preview of all the options currently selected, and region 4 is the console, which shows 

logging outputs. The two buttons are self-descriptive, but for completeness, the reset 
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button resets all settings and clears the console. The generate button kicks off the 

report generation based on the settings selected.  

 

FIGURE 22 SELECTING AN INPUT FILE 

 Qt allows for a file explorer dialog input, which is what is used for selecting the 

input file. This explorer remembers the previous folder location, so if multiple reports are 

run back to back, it is easy to navigate to the same folder. 
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FIGURE 23 AUTOMATIC FILE NAME PARSING 

 Another note about selecting the input file is that the file name is automatically 

parsed by the GUI to extract the period end date and fund name. Furthermore, the input 

preview automatically updates the absolute path to confirm that you have selected the 

correct input file.  
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FIGURE 24 OUTPUT DIRECTORY LINK 

 Choosing the output directory uses the same file explorer as the input file, and 

when it is selected not only does the input preview update, it also provides a link 

(highlighted in red), which will automatically open a file explorer in the output directory 

so the user may easily check the result of the report generation.  

 

FIGURE 25 CONSOLE LOG 
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 When the report is running, well formatted log messages are displayed to show 

the progress. Error messages and warnings will also be directed here.  

 

 

FIGURE 26 SETTINGS TAB 

 There is also a settings tab, which can be opened with keyboard shortcuts (Ctrl + 

S), or from the drop-down file menu. This allows for the configuration of other settings 

such as recipient email addresses, database settings, and sender addresses.  
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FIGURE 27 TESTING TAB 

 This testing tab is used to run diagnostics from within the GUI. It reads tests in 

dynamically from a selected folder allowing the user to add or remove test cases in the 

future without needing to manually update the GUI.  
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FIGURE 28 RUNNING THE UNIT TESTS 

 The testing interface uses a typical scheme of green for success, red for failure, 

and yellow for in progress. Furthermore, the error message can be double clicked to 

show more details, and by right clicking an individual test can be run by itself.  

4.3.2 Generating executable for GUI 

To further streamline the process of running the GUI, we also built an .msi style 

installer. This installer uses pyinstaller to build an executable version of the GUI, and 

then Inno Script Compiler (Russel, 2018) to build a setup.exe to install this executable. 

When correctly maintained, this provides a clean professional interface to install the 

executable.   



   

42 
 

5 CONCLUSIONS 
 

5.1 What went wrong 

While developing this project, it was important not to lose sight of the fact that this 
was a student project with the intention of learning and growing our skills as developers, 
engineers, and professionals. A key factor in learning is reflection, which is perhaps the 
most useful element of this report as it has given us the opportunity to look back, reflect, 
and consider what approaches worked well and what did not. Many of the mistakes that 
were made early on were fixed later in the lifespan of this project. Pycharm’s refactoring 
tools were a godsend in the middle few weeks of project development allowing us to 
drastically change our approaches in several areas. But, we wanted to focus on a few 
specific errors, mistakes, and flaws and how we either resolved these issues or would 
resolve these problems in the future. 

5.1.1 Singleton design pattern 

Early in the development of this project, we struggled with how to pass data 

around. There was a question of how the OpenPyXL workbook object should be 

handled. From a given run of the software, we only ever work with a single template, 

and it is important that all references to a workbook are to the same workbook. This 

seemed like an obvious application for another design pattern. This one is called the 

Singleton design pattern, once again referring to our friends at Sourcemaking (Shvets, 

Frey, & Pavlova, Singleton Design Pattern, 2017): “Ensure a class has only one 

instance, and provide a global point of access to it… Encapsulated ‘just-in-time 

initialization’ or ‘initialization on first use’” 

The idea is that an instance of a class is only ever made once, and then any 

references to that object in the future will simply return that object again. However, one 

important drawback to this is that we can never re-initialize this object. So, when we 

were simply running the report generation once, this was never an issue. However, in 

the GUI, you could generate multiple reports sequentially. Furthermore, in unit testing, 

we could not just set up and tear down the singleton, because once it was set up, it was 

there for good.  

Therefore, after the first two weeks, we switched away from the singleton 

structure and simply passed around an instantiation of the workbook object itself. We 

risk more exposure to internals of the OpenPyXL library with this strategy, and it makes 
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some of the arguments for our functions more verbose, but ultimately it is a more 

flexible and logical approach. 

5.1.2 Hardcoded template references 

Ultimately, for this report generation to work based off a pre-existing Excel 

template, there must exist some degree of incestuous knowledge between the template 

and the report code. However, the project slowly evolved a more sophisticated method 

of interpreting the template as time went on. 

Initially, the project had a large config file that contained enumerationviii style 

variables that had various cell references that were needed to know where different 

values in the template were held. For example, it had references for the different fields 

that needed to be populated, for the upper and lower corners of the gains and losses 

tables, and for the locations of different totaling cells. All of these references were 

hardcoded, which was a nightmare to update whenever the template changed and was 

generally bad practice. 

So, we found a better way. By building on some of the OpenPyXL functionality, 

we were able to reference named ranges and tables. It was still necessary to hardcode 

the name of a table or the name of a range, but it was much more readable and more 

robust to changes in the template. This is the minimum level of knowledge that the 

software must have of the template to function.     

5.1.3 Levels of encapsulation 

This issue was less of a problem that came up and was more of a philosophical 

conversation that was ongoing during development. There are many definitions of 

object oriented programming. One popular definition is provided by Matt Weisfeld who 

described object oriented programming as adhering to four primary principles: 

encapsulation, inheritance, polymorphism, and composition (Weisfeld, 2013). 

                                            
viii An enum, or enumeration, is a type of variable support in many modern languages such as C, C#, 
Java, and others. The idea behind an enum is to provide a typed structure for a list of related values. The 
common example is a list of valid display colors, which might be red, blue, and yellow. In code, we might 
represent red as 1, blue as 2, and yellow as 3. However, as far as most languages are concerned, that 
means that 4, 5, or any other integer would be valid. But, we only want red, blue and yellow. An enum 
restricts the valid values of that enum type to 1, 2, 3. i.e. it restricts it to a subset of valid ints. They also 
provide readability as it allows you to have a constant name and force the developer to think about all 
possible values for that enum (Bolton, 2017). 
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The main idea behind encapsulation is that a piece of code, specifically an 

object, should not reveal any of the internal workings as to how it specifically 

accomplishes a task. All an object ought to do is promise that certain methods will exist 

and perform a task as specified in an interface. This allows you to easily modify the core 

functionality later without breaking any code, which minimizes “churn”ix. 

This is a great idea in principle, but in execution it can be both difficult and 

occasionally counterproductive. Thoughtless encapsulation does nothing to minimize 

churn while increasing complexity, so the thoughtful application of encapsulation was 

something that we kept in mind during development. 

5.1.4 PEP 8 code standard consistency 

The PEP 8 style guide starts with a beautiful Ralph Waldo Emerson quote, which 

says “a foolish consistency is the hobgoblin of little minds.” The style guide continues to 

reinforce this point with the comment that “Consistency with this style guide is important. 

Consistency within a project is more important.” (van Rossum, Warsaw, & Coghlan, 

2013) The sentiment here is like with most principles and guidelines, a style guide is 

only as valuable as the amount of thought that is applied when using it.  

When we first wrote this codebase, we both used slightly different styles, and upon 

review, we decided that PEP 8 made the most sense. It is a well-known Python style. It 

was already built in to Pycharm as something to be highlighted, and it is simple to use. 

However, there were certain places where conventions were consistently ignored. For 

example, we stuck to a line length of 100 instead of 79 as that was well displayed on the 

monitors used at Angelo, Gordon.  

5.2 What went right 

Despite the focus on this project as a learning opportunity, we still wanted to 

create a product that they could be proud of and a unique opportunity presented by this 

project and this sponsor was that the completed software would immediately become an 

actual piece of the sponsor’s pipeline. This tool is and will continue to be actively used, 

and being able to provide that contribution was exciting. So, we also wanted to examine 

what was done right. 

                                            
 
ix Churn is a popular software engineering term, which is basically, if I change this piece of code, how 
much stuff breaks because of that? How easy is code to modify and extend? Typically, good software 
practices attempt to minimize churn, but no churn at all is a pipedream.  
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5.2.1 Strategy design pattern 

We used the strategy design pattern to great effect in two places in this project. 

The first use was for the dynamic columns that we used to provide support for multiple 

report templates. The second use was for the preprocessing pipeline that further 

streamlined different kinds of reporting. We had examined other approaches, but 

ultimately, this won out for the betterment of the project. 

The process of selecting a design pattern was insightful as well. We leaned 

heavily on an online resource Sourcemaking (Shvets, Frey, & Pavlova, Strategy Design 

Pattern, 2017) for suggestions, and it was an invaluable development tool. 

5.2.2 Graphical front end 

The graphical user interface that we built out was not part of the original project 

description. It was a combination of the alacrity with which we finished the backend for 

the project and our enthusiasm to develop an interface that led to the GUI. Initially, we 

had floated the idea of developing a web app interface but the sponsor decided that the 

installable GUI was a more intuitive and useful interface. 

Python is not the strongest language natively to develop a front end with. 

However, Python’s strength is the breadth and power of the open source libraries 

available, so it was easy to find a module with strong graphical support.  

Even though this part of the project was the least planned for aspect, it ultimately 

generated tremendous value. It was an exercise in demonstrating exactly what 

functionality we had built over the course of our project and inherently forced us to think 

visually about the workflow.  

5.2.3 “Scrumban” 

Part of what allowed us to develop this software so quickly was our application of 

different project management strategies. Our hybrid method of management, which we 

nicknamed “scrumban” was a combination of strategic and tactical planning. The 

“scrum” portion was tactical. It was how we managed the day-to-day objectives of our 

project. The “Kanban” portion was more strategic; it was how we delegated major goals 

and scheduled more long-term development. At the highest level of strategy was 

conversations with Mr. Burton, which helped us tie in the business goals and keep us 

centered on our ultimate goal: a simple more extensible codebase.  
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5.3 Takeaways 

Software development is about so much more than being the best coder in the 

room. Good development sits at the confluence of so many factors: communication, 

coordination, strategic decision making, tactical problem solving, operations 

management, and design. If a team does not handle all these soft issues, there will 

never be time to dive into technical details. 

This project was a phenomenal experience because it gave us the opportunity to 

not only see all these different aspects of development, but to also implement and run 

them. We were never given a bulleted list of exactly what to do, and Mr. Burton was not 

over our shoulders micro-managing every step. We were given a tremendous amount of 

responsibility over this project, which was a learning opportunity we could not have 

gotten anywhere else. 

5.4 Recommendations 

One of the major goals with this software was to make it extensible to future 

reporting needs. So, we hope to see that it gets used and reused in future reporting 

pipelines. To help support this goal, we recommend several things. 

• OpenPyXL: This is a fantastic open source library but as we have noted in this 

paper, it has no fixed development. It is built on a piecemeal basis by a group of 

volunteer coders working on donations, but as new features are added they 

could obsolete some of the code we have built or even break code. Keeping a 

tag on OpenPyXL’s development could save future headaches. 

• Template model: The codebase is designed to be as flexible as reasonable with 

Excel reports that looked like an open or closed fund report. It is easy to tweak a 

widget here or add a column there, and we encourage that kind of reporting. 

Building an entire template from scratch would almost certainly be the least 

efficient way of using this codebase, though it is possible.   
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APPENDIX A: STRATEGY ENTRY 
 

""" 

This is the class definition for the StrategyEntry class. 

The StrategyEntry contains all of the data necessary for generating the report and 

some useful methods. It takes in a list of all the values read from the .csv file 

and populates the StrategyEntry. 

""" 

from datetime import datetime 

import logging 

 

 

class StrategyEntry: 

    def __init__(self, data_entry, keys): 

        self.logger = logging.getLogger() 

        self.data = {} 

        for ind, key in enumerate(keys): 

            self.data[key] = data_entry[ind] 

        # GIC Defaults 

        self.data["Deal"] = None 

        self.data["Deal Type"] = None 

        self.data["Country of Primary Business Risk"] = None 

        self.data["GIC Sector"] = None 

        self.data["GIC Industry"] = None 

        self.data["Analyst(s)"] = None 

        self.data["Publicly-Traded Equity"] = None 

        self.data["Involvement with Company"] = None 

        self.data["whitelist"] = [] 

 

    def __str__(self): 

        return str(self.data) 

 

    def __lt__(self, other): 

        print("self: ", self.gross_profit(), "other: ", other.gross_profit()) 

        return self.gross_profit() < other.gross_profit() 

 

    def calculate_bps(self, fund_size): 

        """ 

        Calculates the strategies basis point (100ths of a percent) relative to the 

provided 

        fund_size and adds it as a new data entry. 

        :param fund_size: fund_size must be in the same units as gross profit (e.g. if 

gross profit 

               is in millions fund_size should be too) 

        """ 

        self.data["bps"] = abs((self.gross_profit() / fund_size) * 1e4) 

 

    # PRIVATE 

    def execute_override(self, workbook, override): 

        """ 

        Applies overrides for the given override 

        :param workbook: used to retrieve the sheet for app_logging 

        :param override: the override that is related to this strategy 

        :return: the overriden strategy 
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        """ 

        ws = workbook["OverrideLog"] 

        override_text = [self.strategy()] 

        if override.get("Show") == "n": 

            # if we don't show this strategy, don't bother with the rest of the 

filtering 

            override_text.append("Don't show") 

            ws.append(override_text) 

            return None 

        elif override.get("Show") == "y": 

            override_text.append("") 

            if override.get("Begin Date") is not None: 

                date = override.get("Begin Date") 

                if isinstance(date, datetime): 

                    date = date.strftime("%m/%d/%Y") 

                override_text.append("Begin Date overwritten from {0} " 

                                     "to {1}".format(self.first_cashflow(), date)) 

                self.data["First Cashflow"] = date 

            else: 

                override_text.append("") 

            if override.get("End Date") is not None: 

                date = override.get("End Date") 

                if isinstance(date, datetime): 

                    date = date.strftime("%m/%d/%Y") 

                override_text.append("End Date overwritten from {0} " 

                                     "to {1}".format(self.last_cashflow(), date)) 

                self.data["Last Cashflow"] = date 

            else: 

                override_text.append("") 

            if override.get("Total Mkt Value") is not None:  # Ask Scott about some of 

these 

                override_text.append("Total Mkt Value overwritten from {0} " 

                                     "to {1}".format(self.remmv(), 

                                                     override.get("Total Mkt Value"))) 

                self.data["RemMV"] = override.get("Total Mkt Value") 

            else: 

                override_text.append("") 

            if override.get("GrossIRR") is not None: 

                override_text.append("GrossIRR overwritten from {0} " 

                                     "to {1}".format(self.irr(), 

override.get("GrossIRR"))) 

                self.data["Internal Rate of Return"] = override.get("GrossIRR") 

            else: 

                override_text.append("") 

            ws.append(override_text) 

            return self 

        else: 

            self.logger.error("This override has no condition 'Show'") 

            raise KeyError("This override has no condition 'Show'") 

 

    """ 

    All these getters are used to better support any changes to the input csv. In the 

case of a  

    renamed column or added/removed column, the getters can be changed on a more 

modular basis. 

    """ 
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    def strategy(self): 

        return self.data.get("Strategy") 

 

    def total_purchases(self): 

        return float(self.data.get("TotalCost"))  # Same as total cost apparently in 

the C# code 

 

    def irr(self): 

        return self.data.get("Internal Rate of Return") 

 

    def remmv(self): 

        return float(self.data.get("RemMV")) 

 

    def gross_profit(self): 

        return float(self.data.get("GrossProfit")) 

 

    def moic(self): 

        return float(self.data.get("MOIC")) 

 

    def first_cashflow(self): 

        return self.data.get("First Cashflow") 

 

    def last_cashflow(self): 

        return self.data.get("Last Cashflow") 

 

    def bps(self): 

        try: 

            return float(self.data.get("bps")) 

        except TypeError: 

            self.logger.debug("bps was called before it was calculated") 

            return None 

 

    def monetized(self): 

        return self.remmv() == 0 

 

    def get_whitelist(self): 

        return self.data.get("whitelist") 

 

    def get_attr_from_string(self, attribute_name): 

        def switch(x): 

            return { 

                'bps': self.bps(), 

                'monetized': self.monetized(), 

                'last_cashflow': self.last_cashflow(), 

                'first_cashflow': self.first_cashflow(), 

                'moic': self.moic(), 

                'gross_profit': self.gross_profit(), 

                'remmv': self.remmv(), 

                'irr': self.irr(), 

                'strategy': self.strategy(), 

                'total_purchases': self.total_purchases() 

            }[x] 

 

        try: 

            return switch(attribute_name) 
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        except: 

            self.logger.debug("{0} had no predefined getter, fetching directly from " 

                              "dictionary".format(attribute_name)) 

            return self.data.get(attribute_name) 

 

    __repr__ = __str__ 
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APPENDIX B: COLUMN STRATEGY 
""" 

All column stratergy and dynamic column creation classes 

""" 

import logging 

from src.misc.utils import get_gross_profit_sum_from_list, conv_to_millions 

 

 

class ColumnStrategyCreator: 

    """ 

    Retrieves all strategies given the strategy name 

    """ 

 

    def get_column_strategy(self, strategy_name): 

        """ 

        Returns the correct strategy class based on the strategy provided 

        :param strategy_name: strategy name, all strategies are found on the bottom 

        :return: 

        """ 

        class_ = STRATEGY_MAPPING[strategy_name] 

        return class_ 

 

 

class ColumnStrategyAbs: 

    """ 

    Abstract class for column strategies 

    """ 

 

    def __init__(self, data, attribute_name=None): 

        """ 

        :param attribute_name: extra variable, or attribute name 

        """ 

        self.strategy_name = None  # this should be changed 

        self.attribute_name = attribute_name 

        self.data = data 

 

    def calculate(self): 

        """ 

        This method is where the actual calculations should be performed to the data 

        :param data: the list of Strategy points, ie our data 

        :return: the new data set 

        """ 

        pass 

 

 

class DefaultStrategy(ColumnStrategyAbs): 

    """ 

    The default strategy takes in an attribute name and 

    returns a dataset with just the attribute name from the object 

    """ 

 

    def __init__(self, data, attribute_name=None): 

        super(DefaultStrategy, self).__init__(data, attribute_name) 

        self.strategy_name = "default" 
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    def calculate(self): 

        """ 

        Grabs the attribute_name from the object and creates a new array 

        :param data: the data set of StrategyEntry Objects 

        :return: 

        """ 

        new_data = [] 

 

        for data_point in self.data: 

            attribute_obj = data_point 

            new_data.append(attribute_obj.get_attr_from_string(self.attribute_name)) 

        return new_data 

 

 

class FloatStrategy(ColumnStrategyAbs): 

    """ 

    The default strategy takes in an attribute name and 

    returns a dataset with just the attribute name from the object 

    """ 

 

    def __init__(self, data, attribute_name=None): 

        super(FloatStrategy, self).__init__(data, attribute_name) 

        self.strategy_name = "float_default" 

 

    def calculate(self): 

        """ 

        Grabs the attribute_name from the object and creates a new array 

        :param data: the data set of StrategyEntry Objects 

        :return: 

        """ 

        new_data = [] 

        logger = logging.getLogger() 

        for data_point in self.data: 

            attribute_obj = data_point 

            val = attribute_obj.get_attr_from_string(self.attribute_name) 

            try: 

                val = float(val) 

            except ValueError: 

                logger.warning("Did not read a float. Read: {0} of type {1} " 

                               "instead".format(val, type(val))) 

            new_data.append(val) 

        return new_data 

 

 

class PercentChangeStrategy(ColumnStrategyAbs): 

    """ 

        Calculates the percent change 

    """ 

 

    def __init__(self, data, attribute_name=None): 

        super(PercentChangeStrategy, self).__init__(data, attribute_name) 

        self.strategy_name = "percent_change" 

 

    def calculate(self): 

        """ 

        Grabs the attribute_name from the object and creates a new array 
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        :param data: the data set of StrategyEntry Objects 

        :return: 

        """ 

        new_data = [] 

        total_gross_profit_sum = get_gross_profit_sum_from_list(self.data) 

        for data_point in self.data: 

            gross_profit = data_point.gross_profit() 

            percentage = abs(gross_profit / total_gross_profit_sum) 

            new_data.append(percentage) 

        return new_data 

 

 

class BPPStrategyRegular(ColumnStrategyAbs): 

    """ 

    This strategy determines what category the bpp is 

    the attribute it takes in the category either cat1, cat2, or cat3 

    """ 

 

    def __init__(self, data, attribute_name): 

        super(BPPStrategyRegular, self).__init__(data, attribute_name) 

        self.cat1 = 0 

        self.cat2 = 50 

        self.cat3 = 100 

        self.strategy_name = "bpp" 

 

    def check_what_category_bps_is(self, bps): 

        """ 

        Checks what category the bps is 

        :param bps: the bps 

        :return: 

        """ 

        category = None 

        if self.cat1 <= bps < self.cat2: 

            category = "cat1" 

        elif self.cat2 <= bps < self.cat3: 

            category = "cat2" 

        elif bps > self.cat3: 

            category = "cat3" 

        return category 

 

    def calculate(self): 

        new_data = [] 

        for data_point in self.data: 

            bps = data_point.bps() 

            if self.check_what_category_bps_is(bps) == self.attribute_name: 

                new_data.append(data_point.gross_profit()) 

            else: 

                new_data.append(None) 

        return new_data 

 

 

class AttributeInMillions(ColumnStrategyAbs): 

    """ 

    Strategy to convert an attribute to millions 

    """ 
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    def __init__(self, data, attribute_name): 

        super(AttributeInMillions, self).__init__(data, attribute_name) 

        self.strategy_name = "in_millions" 

 

    def calculate(self): 

        new_data = [] 

        for data_point in self.data: 

            attribute_obj = data_point 

            val = attribute_obj.get_attr_from_string(self.attribute_name) 

            new_data.append(conv_to_millions(val)) 

        return new_data 

 

 

class BPPStrategy(ColumnStrategyAbs): 

    """ 

    This strategy determines what category the bpp is 

    the attribute it takes in the category either cat1, cat2, or cat3 

    """ 

 

    def __init__(self, data, attribute_name): 

        super(BPPStrategy, self).__init__(data, attribute_name) 

        self.cat1 = 0 

        self.cat2 = 50 

        self.cat3 = 100 

        self.strategy_name = "bpp_in_mills" 

 

    def check_what_category_bps_is(self, bps): 

        """ 

        Checks what category the bps is 

        :param bps: bps of the data object 

        :return: category string 

        """ 

        category = None 

        if self.cat1 <= bps < self.cat2: 

            category = "cat1" 

        elif self.cat2 <= bps < self.cat3: 

            category = "cat2" 

        elif bps >= self.cat3: 

            category = "cat3" 

        return category 

 

    def calculate(self): 

        new_data = [] 

        for data_point in self.data: 

            bps = data_point.bps() 

            if self.check_what_category_bps_is(bps) == self.attribute_name: 

                gross_profit = data_point.gross_profit() 

                gross_profit_in_mills = conv_to_millions(gross_profit) 

                new_data.append(gross_profit_in_mills) 

            else: 

                new_data.append(None) 

        return new_data 

 

 

class PercentageBucketingStrategy(ColumnStrategyAbs): 

    """ 
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    This strategy determines what category the bpp is 

    the attribute it takes in the category either cat1, cat2, or cat3 

    """ 

 

    def __init__(self, data, attribute_name): 

        super(PercentageBucketingStrategy, self).__init__(data, attribute_name) 

        self.cat1 = 25 

        self.cat2 = 50 

        self.cat3 = 75 

        self.cat4 = 100 

        self.strategy_name = "percentage_bucketing" 

 

    def find_max_gross_profit(self): 

        """ 

        Finds the max gross profit from the entire data object list 

        :return: float 

        """ 

        return max([abs(i.gross_profit()) for i in self.data]) 

 

    def check_what_category_percentage_is(self, percentage): 

        """ 

        Check the percentage category for bucketing purposes 

        :param percentage: percentage metric 

        :return: bucketing string 

        """ 

        category = None 

        if 0 < percentage <= self.cat1: 

            category = "cat1" 

        elif self.cat1 < percentage <= self.cat2: 

            category = "cat2" 

        elif self.cat2 < percentage <= self.cat3: 

            category = "cat3" 

        elif percentage >= self.cat3: 

            category = "cat4" 

        return category 

 

    def calculate(self): 

        """ 

        Calculates the percentage bucketing 

        :return: 

        """ 

        new_data = [] 

        max_gross_profit = self.find_max_gross_profit() 

        for data_point in self.data: 

            gross_profit = data_point.gross_profit() 

            percentage = abs(gross_profit / max_gross_profit) * 100 

            if self.check_what_category_percentage_is(percentage) == 

self.attribute_name: 

                new_data.append(conv_to_millions(gross_profit)) 

            else: 

                new_data.append(None) 

        return new_data 

 

 

class MonetizedStrategy(ColumnStrategyAbs): 

    """ 
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    Stratergy to determine if the straergy is monetizeid or ongoing 

    """ 

 

    def __init__(self, data, attribute_name=None): 

        super(MonetizedStrategy, self).__init__(data, attribute_name) 

        self.strategy_name = "monetized" 

 

    def calculate(self): 

        """ 

        Checks if the strategy is monetized or ongoing 

        :return: 

        """ 

        new_data = [] 

        for data_point in self.data: 

            new_data.append("Monetized" if data_point.monetized() else "Ongoing") 

        return new_data 

 

 

class CountStrategy(ColumnStrategyAbs): 

    """ 

    Counts the data set and returns a list of enumeration -> [1,2,3,4,5....n] 

    """ 

 

    def __init__(self, data, attribute_name=None): 

        super(CountStrategy, self).__init__(data, attribute_name) 

        self.strategy_name = "count" 

 

    def calculate(self): 

        new_data = [] 

        for ind, data in enumerate(self.data): 

            new_data.append(ind + 1) 

        return new_data 

 

 

STRATEGY_MAPPING = { 

    "default": DefaultStrategy, 

    "percent_change": PercentChangeStrategy, 

    "bpp_in_mills": BPPStrategy, 

    "monetized": MonetizedStrategy, 

    "in_millions": AttributeInMillions, 

    "count": CountStrategy, 

    "percentage_bucketing": PercentageBucketingStrategy, 

    "float_default": FloatStrategy, 

} 
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APPENDIX C: START MAIN REPORT 
def start_main_report(input_name, fund_name=None, verbose=False, save_path=None, 

                      report_type="closed", template_path=None, starting_date=None): 

    """ 

    Kicks off the main report and handles a lot of the business logic as to how 

various pieces of 

    code should be called 

    :param input_name: (string) the file name of the input .csv to be parsed. Can be 

relative or 

           absolute path 

    :param fund_name: (string) the 4 diGIT codename for the fund. Supported funds are 

in the config 

           file in the FUND_AMTS dictionary. Default is parsed from filename 

    :param verbose: (boolean) if True sends email to addresses specified in 

config.EMAIL_TO_ADDRESS 

    :param save_path: (string) the relative path name for the file to be saved. If 

None, uses 

           default format 

    :param report_type: (string) the type of report to be generated. 

    :param template_path: (string) the relative path to the excel template to be used. 

Must match 

           the type specified. 

    :param starting_date: default is to parse from input file, if set by user expects 

a datetime obj 

    """ 

    file_logger = configure_file_logging() 

    stdout_logger = get_stdout_logger() 

    # Log warnings from opening workbook 

    template_path_relative = os.path.join(config.BASE_PROJECT_DIR, template_path) 

    with warnings.catch_warnings(record=True) as w: 

        # initialize and read the workbook 

        stdout_logger.info("Loading template {0}...".format(template_path_relative)) 

        workbook = OpenPyXL.load_workbook(template_path_relative) 

    for warning in w: 

        file_logger.warning(warning.message) 

    stdout_logger.info("Done.") 

    workbook.active = 0 

    winners_sheet = workbook.active 

    # Parse input filename 

    input_name_file = os.path.basename(input_name) 

    temp_fund, temp_date = parse_filename(input_name_file) 

    if fund_name is None: 

        fund_name = temp_fund 

    if starting_date is None: 

        starting_date = temp_date 

    if save_path is None: 

        save_path = config.TEMP_DIR_OUTPUT_PATH 

    stdout_logger.info("Collecting information from {0} and reading overrides from " 

                       "template...".format(input_name)) 

    legal_name = LegalName(fund_name).perform_query_single() 

    load_in_name_date(workbook, name=legal_name, date=starting_date) 

    # Open and load in data from input file 

    array_data = read_csv_file(input_name) 

    # Build StrategyEntry's from the input data 

    keys = array_data[0] 
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    strategies, strategy_codes = generate_data_points(array_data, keys) 

    output_strategies, strategy_codes = generate_data_points(array_data, keys) 

    overrides = generate_override_dictionary(workbook, fund_name) 

    # This is all the extra information that the preprocessors *might* need 

    extra_attributes = {"workbook": workbook, 

                        "overrides": overrides, 

                        "keys": keys, 

                        "codes": strategy_codes, 

                        "fund_size": get_fund_from_template(workbook, fund_name)} 

    stdout_logger.info("Done.") 

    stdout_logger.info("Processing data and populating worksheet...") 

    populate_winners_losers_worksheet(workbook, extra_attributes, winners_sheet, 

strategies, fund_name, 

                                      report_type=report_type) 

    populate_output_worksheet(workbook, extra_attributes, output_strategies) 

    stdout_logger.info("Done.") 

    # Only select main page 

    workbook.active = 0 

    # format save path 

    save_path_excel = os.path.join(save_path, fund_name + "_Deal_Analysis_" \ 

                                   + starting_date.strftime("%Y%m%d") + ".xlsx") 

    try: 

        stdout_logger.info("Saving file to {0}...".format(save_path_excel)) 

        workbook.save(save_path_excel) 

    except PermissionError: 

        file_logger.error(save_path_excel + " is open already in another editor 

(likely Excel)." 

                                            " Please close this file and try again.") 

        stdout_logger.error(save_path_excel + " is open already in another editor 

(likely Excel)." 

                                              " Please close this file and try 

again.") 

        workbook.close() 

        return 0 

    workbook.close() 

    stdout_logger.info("Done.") 

    # excel_file = os.path.abspath(save_path) 

    stdout_logger.info("Converting file to .pdf...") 

    pdf_file = convert_excel_to_pdf(save_path_excel, save_path) 

    stdout_logger.info("Done.") 

    if verbose: 

        stdout_logger.info("Sending files to {0}...".format(config.EMAIL_TO_ADDRESS)) 

        send_winners_losers_report(fund_name=fund_name, files=[pdf_file, 

save_path_excel], 

                                   report_date=starting_date) 

        stdout_logger.info("Done.") 

    stdout_logger.info("Report generation done.") 
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APPENDIX D: GRAPHICAL USER INTERFACE (GUI)  
""" 

Main view to encapsulate and build the view 

""" 

import ctypes 

import os 

 

from PyQt5 import QtWidgets, QtCore, QtGui 

 

import config 

from gui.utils import GUI_DIR, open_file_location_dir 

from gui.view.designer.ui_main_window import Ui_MainWindow 

from gui.view.main_form_view import FormView 

from gui.view.readme_view import ReadmeWidgetView 

from gui.view.regression_view import RegressionWidgetView 

from gui.view.settings_view import SettingsWidgetView 

 

 

class MainView(QtWidgets.QMainWindow): 

    """ 

    Main application view which initialzies all other views 

    """ 

    def __init__(self, model, main_ctrl, app=None): 

        self.model = model 

        self.main_ctrl = main_ctrl 

        self.app = app 

        super(MainView, self).__init__(None, QtCore.Qt.FramelessWindowHint) 

        # super(MainView, self).__init__(None) 

 

        self.ui = Ui_MainWindow() 

        self.ui.setupUi(self) 

        self.setFixedSize(self.size()) 

        self.gui_properties() 

        # mouse events set up 

        self.oldPos = self.pos() 

        # seperate view objects from the main view 

        # define all views before show 

        self.form_view = FormView(main_view=self, model=self.model) 

        self.connect_menu_events() 

        self.show() 

 

    def gui_properties(self): 

        myappid = u'angelogordon.risk.distressed.1.0'  # arbitrary string 

        ctypes.windll.shell32.SetCurrentProcessExplicitAppUserModelID(myappid) 

        # icon for taskbar 

        icon_path = os.path.join(GUI_DIR, "resources/resized_logo.png") 

        self.setWindowIcon(QtGui.QIcon(icon_path)) 

 

    def mousePressEvent(self, event): 

        self.oldPos = event.globalPos() 

 

    def mouseMoveEvent(self, event): 

        delta = QtCore.QPoint(event.globalPos() - self.oldPos) 

        self.move(self.x() + delta.x(), self.y() + delta.y()) 

        self.oldPos = event.globalPos() 
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    def connect_menu_events(self): 

        self.ui.actionReadme.triggered.connect(self.readme_action) 

        self.ui.actionReadme.setShortcut("Ctrl+r") 

        self.ui.actionSettings.triggered.connect(self.settings_action) 

        self.ui.actionSettings.setShortcut("Ctrl+s") 

        self.ui.actionLogs.triggered.connect(self.open_logging_dir_action) 

        self.ui.actionLogs.setShortcut("Ctrl+l") 

        self.ui.actionClose.triggered.connect(self.exit_action) 

        self.ui.actionClose.setShortcut(QtGui.QKeySequence(QtCore.Qt.Key_Escape)) 

        self.ui.actionMinimize.triggered.connect(self.showMinimized) 

        self.ui.actionMinimize.setShortcut("Ctrl+m") 

        self.ui.actionRegression_Testing.triggered.connect(self.regression_action) 

        self.ui.actionRegression_Testing.setShortcut("Ctrl+t") 

 

    def exit_action(self): 

        self.app.quit() 

 

    def readme_action(self): 

        readme_widget = ReadmeWidgetView(self) 

        readme_widget.open_dialog() 

 

    def settings_action(self): 

        settings_widget = SettingsWidgetView(self) 

        settings_widget.open_dialog() 

 

    def regression_action(self): 

        RegressionWidgetView(self).open_dialog() 

 

    def open_logging_dir_action(self): 

        log_dir = config.LOGGING_PATH 

        open_file_location_dir(log_dir) 

 

 

""" 

This file will hold all application wide data. 

Our "model" 

""" 

from src.misc.templates import get_template_based_on_input 

import copy 

 

class Model(object): 

    """ 

    Taken from https://stackoverflow.com/questions/26698628/mvc-design-with-

qtdesigner-and-pyside 

 

    This is our model throughout the application, which contains all application 

settings. 

 

    The data is held in the data variable 

    After each change, the state is captured 

    """ 

 

    def __init__(self): 
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        self._update_funcs = [] 

        self.states = [] 

 

        # variable placeholders 

        self.data = { 

            "geneva_file_name": "", 

            "output_file_name": "", 

            "template_type": "closed", 

            "fund_name": "", 

            "period_end_date": "", 

            "send_email": True, 

        } 

        self.update_data_refs(self.data) 

        self.add_state(self.data) 

 

    def update_data_refs(self, data_to_update): 

        """ 

        Updates any dependent data references 

        :param data_to_update: the copy of the state to update 

        :return: None 

        """ 

        data_to_update["template_path"] = 

get_template_based_on_input(data_to_update["template_type"]) 

 

    def add_state(self, data): 

        """ 

        Inserts data into the first index 

        :param data: the data to insert into state 

        :return: None 

        """ 

        self.states.insert(0, data) 

 

    def get_state_head(self): 

        """ 

        Gets the head 

        :return: dict 

        """ 

        return self.states[0] 

 

    def get_state_tail(self): 

        """ 

        Gets the tail 

        :return: dict 

        """ 

        length = len(self.states) - 1 

        return self.states[length] 

 

    def set_data(self, key, val): 

        """ 

        Sets the data, updates state, and announces update to any 

        of the callbacks 

        :param key: the key of the dataset 

        :param val: the value of the dataset 

        :return: None 

        """ 

        data_cp = copy.deepcopy(self.get_state_head()) 
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        try: 

            data_cp[key] = val 

        except Exception as e: 

            print(e) 

        self.update_data_refs(data_cp) 

        self.add_state(data_cp) 

        self.announce_update() 

 

    def get_most_recent_state_data_w_key(self, key): 

        """ 

        Gets the most recent state 

        :param key: key 

        :return: 

        """ 

        data = self.get_state_head() 

        return data[key] 

 

    def get_data(self): 

        """ 

        Returns data object 

        :return: 

        """ 

        return self.data 

 

    # subscribe a view method for updating 

    def subscribe_update_func(self, func): 

        """ 

        Subscribes a function to whenever data is updated 

        :param func: call back function 

        :return: 

        """ 

        if func not in self._update_funcs: 

            self._update_funcs.append(func) 

 

    # unsubscribe a view method for updating 

    def unsubscribe_update_func(self, func): 

        """ 

        Unsubscribes function from announcement 

        :param func: callback function 

        :return: 

        """ 

        if func in self._update_funcs: 

            self._update_funcs.remove(func) 

 

    # update registered view methods 

    def announce_update(self): 

        """ 

        Announces there is a data update to any functions 

        :return: 

        """ 

        for func in self._update_funcs: 

            func() 

 

    def reset(self): 

        """ 

        Sets the most recent state to the default, and 



   

63 
 

        announces update 

        :return: 

        """ 

        self.add_state(self.get_state_tail()) 

        self.announce_update() 

 

""" 

Controller for the main form view 

""" 

import os 

from PyQt5.QtCore import QThread 

from PyQt5 import QtCore 

import config 

import logging 

from gui.controller.main_text_logger import QTHandler 

from src.kick_off_pipeline import parse_geneva_filename 

from src.kick_off_pipeline import kick_off_pipeline_call 

from src.app_logging.configure_logging import configure_stdout_logging 

 

 

class GenerateReportThread(QThread): 

    """ 

    Generate report thread encapsulation 

    """ 

    signalStatus = QtCore.pyqtSignal(str) 

 

    def __init__(self, geneva_input=None, template_type=None, 

                 verbose=False, output_dir=None, parent=None): 

        """ 

 

        :param geneva_input: Geneva file input 

        :param template_type: the template type to use 

        :param verbose: send email 

        :param output_dir: output directory of output files 

        :param parent: parent thread 

        """ 

        super(GenerateReportThread, self).__init__(parent) 

        self.geneva_input = geneva_input 

        self.template_type = template_type 

        self.verbose = verbose 

        self.output_dir = output_dir 

        self.handler = QTHandler(self.signalStatus) 

        formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s\n', 

datefmt="%H:%M:%S") 

        self.handler.setFormatter(formatter) 

        self.logger = configure_stdout_logging() 

        self.logger.addHandler(self.handler) 

 

    @QtCore.pyqtSlot() 

    def run(self): 

        """ 

        The process which the thread encapsulates 

        :return: None 

        """ 

        kick_off_pipeline_call(geneva_input=self.geneva_input, 
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template_type=self.template_type, 

                               verbose=self.verbose, output_dir=self.output_dir) 

 

 

class MainFormController(object): 

    """ 

    Controller to handle the form view 

    """ 

    def __init__(self, model, view): 

        self.model = model 

        self.view = view 

        self.worker = GenerateReportThread() 

 

    def get_template_type_mapping(self): 

        """ 

        Returns template type mapping keys 

        :return: keys 

        """ 

        mapping = config.TEMPLATE_TYPES 

        return list(mapping.keys()), mapping 

 

    def generate_report(self): 

        """ 

        Kicks off the report generation thread configured based on all the preset 

values. 

        It expects the call from the view to both handle any exceptions and do the 

validation 

        """ 

        geneva_input = self.get_geneva_file() 

        template_type = self.get_template_type() 

        verbose = self.get_send_email_status() 

        output_dir = self.get_output_dir() 

        self.worker.geneva_input = geneva_input 

        self.worker.template_type = template_type 

        self.worker.verbose = verbose 

        self.worker.output_dir = output_dir 

 

        self.worker.start() 

 

    def parse_date_and_fund_name(self, filename): 

        """ 

        Parses the filename for the data and fund name 

        :param filename: filename of the 

        :return: fund_name, month_end_str, period_end_date, knowledge_date 

        """ 

        return parse_geneva_filename(filename=filename) 

 

    def get_attr_from_model_html(self, attr): 

        val = self.model.get_most_recent_state_data_w_key(attr) 

        if not val or val == "": 

            val = "none" 

        html = "<strong><span>{0}</span></strong>".format(val) 

        return html 

 

    def get_preview_html(self): 

        html = """ 
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        <div> 

        <p>Geneva File: {0}</p> 

        <p>Output dir: {1}</p> 

        <p>Template type: {2}</p> 

        <p>Template File: {3}</p> 

        <p>Fund Name: {4}</p> 

        <p>Period End date: {5}</p> 

        <p>Send email: {6}</p> 

        </div> 

        """.format(self.get_attr_from_model_html("geneva_file_name"), 

self.get_attr_from_model_html("output_file_name"), 

                   self.get_attr_from_model_html("template_type"), 

self.get_attr_from_model_html("template_path"), 

                   self.get_attr_from_model_html("fund_name"), 

self.get_attr_from_model_html("period_end_date"), 

                   self.get_attr_from_model_html("send_email")) 

 

        return html 

 

    def reset_model_to_default(self): 

        self.model.reset() 

 

    def set_geneva_file(self, file_name): 

        self.model.set_data("geneva_file_name", file_name) 

 

    def set_output_save_file_location(self, file_name): 

        self.model.set_data("output_file_name", file_name) 

 

    def get_geneva_file(self): 

        return self.model.get_most_recent_state_data_w_key("geneva_file_name") 

 

    def get_output_dir(self): 

        dirname = 

os.path.abspath(self.model.get_most_recent_state_data_w_key("output_file_name")) 

        return dirname 

 

    def set_fund_name(self, fund_name): 

        self.model.set_data("fund_name", fund_name) 

 

    def get_fund_name(self): 

        return self.model.get_most_recent_state_data_w_key("fund_name") 

 

    def set_period_end_date(self, period_end_date): 

        self.model.set_data("period_end_date", period_end_date) 

 

    def get_period_end_date(self): 

        return self.model.get_most_recent_state_data_w_key("period_end_date") 

 

    def set_send_email_status(self, status): 

        self.model.set_data("send_email", status) 

 

    def get_send_email_status(self): 

        return self.model.get_most_recent_state_data_w_key("send_email") 

 

    def set_template_type(self, type): 

        self.model.set_data("template_type", type) 
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    def get_template_type(self): 

        return self.model.get_most_recent_state_data_w_key("template_type") 
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APPENDIX E: UNIT AND REGRESSION TESTING 
import os 

from unittest import TestCase 

import OpenPyXL 

import winners_losers_closed_fund 

import config 

from src.app_logging.configure_logging import configure_file_logging 

from src.excel.comparison_tools import cmp_serialisable 

 

configure_file_logging() 

 

 

class TestRegression(TestCase): 

    """ 

    Uses a pre-generated Winners & Losers report from a fixed data set to compare 

against the 

    output report from the current codebase and compares errors 

    """ 

    def setUp(self): 

        expected = os.path.join(config.TEST_DATA_PATH, 

"CRP6_Deal_Analysis_20170930_expected.xlsx") 

        print(expected) 

        self.expected_closed_output = OpenPyXL.load_workbook(expected) 

        self.input = os.path.join(config.TEST_DATA_PATH, 

"NewWLTotals_CRP6_20170930.csv") 

        self.actual_closed_output = os.path.join(config.TEMP_DIR_OUTPUT_PATH, 

                                                 "CRP6_Deal_Analysis_20170930.xlsx") 

 

    def tearDown(self): 

        self.expected_closed_output.close() 

        self.expected_closed_output = None 

 

    def check_cells(self, expected, actual): 

        """ 

        Checks all the cells in the current worksheet by comparing all the style 

objects as 

        Serialisable objects. 

        :param expected: the expected worksheet object 

        :param actual: the actual worksheet object 

        :return: 

        """ 

        for ex_row, ac_row in zip(expected.iter_rows(), actual.iter_rows()): 

            for ex_cell, ac_cell in zip(ex_row, ac_row): 

                self.assertEqual(ex_cell.coordinate, ac_cell.coordinate) 

                self.assertEqual(ex_cell.value, ac_cell.value) 

                self.assertEqual(ex_cell.number_format, ac_cell.number_format) 

                self.assertTrue(cmp_serialisable(ex_cell.font, ac_cell.font)) 

                self.assertTrue(cmp_serialisable(ex_cell.fill, ac_cell.fill)) 

                self.assertTrue(cmp_serialisable(ex_cell.border, ac_cell.border)) 

                self.assertTrue(cmp_serialisable(ex_cell.alignment, 

                                                                  ac_cell.alignment)) 

 

    def check_ranges(self, expected, actual): 

        """ 

        Checks the defined names as Serialisable objects 
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        :param expected: list of DefinedNames 

        :param actual: list of DefinedNames 

        :return: 

        """ 

        for ex_defn, ac_defn in zip(expected, actual): 

            self.assertTrue(cmp_serialisable(ex_defn, ac_defn)) 

 

    def check_images(self, expected, actual): 

        """ 

        Currently just checks that the expected number of images are there, as 

comparing images 

        is beyond the scope of this test 

        :param expected: list of expected images 

        :param actual: list of actual images 

        :return: 

        """ 

        self.assertEqual(len(expected), len(actual)) 

 

    def check_tables(self, expected, actual): 

        """ 

        Checks the tables as Serialisable objects 

        :param expected: list of Tables 

        :param actual: list of Tables 

        :return: 

        """ 

        for ex_table, ac_table in zip(expected, actual): 

            self.assertTrue(cmp_serialisable(ex_table, ac_table)) 

 

    def check_sheets(self, expected, actual): 

        """ 

        Checks all the sheets in the current workbook, failing if they don't match in 

name, and 

        calling check_cells, check_images, and check_tables to check all of those sub-

objects 

        recursively. 

        :param expected: the expected workbook object 

        :param actual: the actual workbook object 

        :return: 

        """ 

 

        for ex_sheet, ac_sheet in zip(expected._sheets, actual._sheets): 

            try: 

                self.assertEqual(ac_sheet.title, ex_sheet.title) 

                self.assertEqual(ac_sheet.max_row, ex_sheet.max_row) 

                self.assertEqual(ac_sheet.min_row, ex_sheet.min_row) 

                self.assertEqual(ac_sheet.max_column, ex_sheet.max_column) 

                self.assertEqual(ac_sheet.min_column, ex_sheet.min_column) 

                self.check_cells(ex_sheet, ac_sheet) 

                self.check_images(ex_sheet._images, ac_sheet._images) 

                self.check_tables(ex_sheet._tables, ac_sheet._tables) 

            except AssertionError as e: 

                print("ac_sheet: {0} ex_sheet: {1}".format(ac_sheet.title, 

ex_sheet.title)) 

                raise e 

 

    def test_closed_fund(self): 
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        winners_losers_closed_fund.main(self.input) 

        actual = OpenPyXL.load_workbook(self.actual_closed_output) 

        self.check_sheets(self.expected_closed_output, actual) 

        self.check_ranges(self.expected_closed_output.defined_names.definedName, 

                          actual.defined_names.definedName) 

        actual.close() 

 

import os 

import OpenPyXL 

from OpenPyXL.worksheet.table import Table 

from unittest import TestCase 

from src.excel import table_tools 

from src.app_logging.configure_logging import configure_file_logging 

import config 

 

configure_file_logging() 

TEST_TEMPLATE_CLOSED_FUND = os.path.join(config.BASE_PROJECT_DIR, 

                                         

"templates\winnerslosertemplate_closed_fund.xlsx") 

 

class TestTableTools(TestCase): 

    """ 

    Testing the Excel table manipulation tools 

    """ 

 

    def setUp(self): 

        self.workbook = OpenPyXL.load_workbook(TEST_TEMPLATE_CLOSED_FUND) 

        self.save_name = "test_table_tools_workbook.xlsx" 

        self.workbook.create_sheet("Test_Sheet") 

        self.worksheet = self.workbook["Test_Sheet"] 

        table = Table(displayName="Test_Table", ref="A1:E5") 

        self.worksheet.add_table(table) 

        self.workbook.save(self.save_name) 

        self.workbook = OpenPyXL.load_workbook(self.save_name) 

 

    def tearDown(self): 

        self.workbook.close() 

        self.workbook = None 

        if os.path.exists(self.save_name): 

            os.remove(self.save_name) 

 

    def test_write_to_cell(self): 

        val = "Artichoke" 

        coord = "A5" 

        table_tools.write_to_cell(self.workbook, coord, val, 

sheet=self.workbook["Test_Sheet"]) 

        self.workbook.save(self.save_name) 

        self.workbook = OpenPyXL.load_workbook(self.save_name) 

        self.assertEqual(self.workbook["Test_Sheet"][coord].value, val) 

 

    def test_get_table_row(self): 

        self.assertEqual(table_tools.get_table_row(self.workbook, "Test_Table"), 1) 

 

    def test_break_apart_range(self): 

        simple_range = "A5:B11" 
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        spec_character_range = "$A$5:$B$11" 

        long_range = "AAA21:ADB44" 

        all_range = "$AAA$21:$ADB$44" 

 

        self.assertEqual(table_tools.break_apart_range(simple_range), [["A", 5], ["B", 

11]]) 

        self.assertEqual(table_tools.break_apart_range(spec_character_range), [["A", 

5], ["B", 11]]) 

        self.assertEqual(table_tools.break_apart_range(long_range), [["AAA", 21], 

["ADB", 44]]) 

        self.assertEqual(table_tools.break_apart_range(all_range), [["AAA", 21], 

["ADB", 44]]) 

 

    def test_find_table(self): 

        try: 

            table_tools.find_table(self.workbook, "Test_Table") 

        except KeyError: 

            self.fail("Could not find test table") 

 

    def get_named_range_coords(self, name): 

        """ 

        Takes in a name and tries to find it. Fails if it can't locate the named_range 

or if the 

        named range is not a cell 

        :param name: the name of the range 

        :return: the coords and the worksheet 

        """ 

        names = [defn.name for defn in self.workbook.defined_names.definedName] 

        if name not in names: 

            self.fail("Can't find {0}".format(name)) 

        defn = self.workbook.defined_names[name] 

        count = 0 

        for title, coord in defn.destinations: 

            if count > 1: 

                self.fail("This named range is more than one cell") 

            worksheet = self.workbook[title] 

            count += 1 

            coord = coord.replace("$", "") 

 

        return coord, worksheet 

 

    def test_shift_named_cell(self): 

        # Check that the named test cell exists 

        test_name = "FUND_CELL" 

        change = 10 

        coord, worksheet = self.get_named_range_coords(test_name) 

        base_col, base_row = table_tools.get_col_row(coord) 

        table_tools.shift_named_cell(self.workbook, test_name, 0, change, worksheet) 

        self.workbook.save(self.save_name) 

        self.workbook = OpenPyXL.load_workbook(self.save_name) 

        coord, worksheet = self.get_named_range_coords(test_name) 

        new_col, new_row = table_tools.get_col_row(coord) 

        if new_row != base_row + change: 

            self.fail("Failed to add {0} to row".format(change)) 

        table_tools.shift_named_cell(self.workbook, test_name, change, 0, worksheet) 

        self.workbook.save(self.save_name) 
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        self.workbook = OpenPyXL.load_workbook(self.save_name) 

        coord, worksheet = self.get_named_range_coords(test_name) 

        new_col, new_row = table_tools.get_col_row(coord) 

        if table_tools.get_col_num(new_col) != table_tools.get_col_num(base_col) + 

change: 

            self.fail("Failed to add {0} to col".format(change)) 

        table_tools.shift_named_cell(self.workbook, test_name, 0, -change, worksheet) 

        self.workbook.save(self.save_name) 

        self.workbook = OpenPyXL.load_workbook(self.save_name) 

        coord, worksheet = self.get_named_range_coords(test_name) 

        new_col, new_row = table_tools.get_col_row(coord) 

        if new_row != base_row: 

            self.fail("Failed to remove {0} from row".format(change)) 

        table_tools.shift_named_cell(self.workbook, test_name, -change, 0, worksheet) 

        self.workbook.save(self.save_name) 

        self.workbook = OpenPyXL.load_workbook(self.save_name) 

        coord, worksheet = self.get_named_range_coords(test_name) 

        new_col, new_row = table_tools.get_col_row(coord) 

        if new_col != base_col: 

            self.fail("Failed to remove {0} from col".format(change)) 

        table_tools.shift_named_cell(self.workbook, test_name, change, change, 

worksheet) 

        self.workbook.save(self.save_name) 

        self.workbook = OpenPyXL.load_workbook(self.save_name) 

        coord, worksheet = self.get_named_range_coords(test_name) 

        new_col, new_row = table_tools.get_col_row(coord) 

        if table_tools.get_col_num(new_col) != table_tools.get_col_num(base_col) + 

change \ 

                and new_row != base_row + change: 

            self.fail("Failed to add to both col and row") 

 

import os 

from unittest import TestCase 

 

from src.column.column_generate import Column 

from src.excel.table_tools import get_table_row 

from src.app_logging.configure_logging import configure_file_logging 

from src.misc.utils import read_csv_file 

import config 

from winners_losers_main import generate_data_points 

import OpenPyXL 

 

TEST_TEMPLATE_CLOSED_FUND = os.path.join(config.BASE_PROJECT_DIR, 

                                         

"templates\winnerslosertemplate_closed_fund.xlsx") 

TEST_INPUT_FILE = os.path.join(config.TEST_DATA_PATH, "NewWLTotals_CRP6_20170930.csv") 

 

configure_file_logging() 

 

 

class TestColumn(TestCase): 

    """ 

        Tests the Column class located in src/column/column_generate 

    """ 
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    @classmethod 

    def setUp(cls): 

        print(TEST_TEMPLATE_CLOSED_FUND) 

        cls._workbook = OpenPyXL.load_workbook(TEST_TEMPLATE_CLOSED_FUND) 

        cls._workbook.active = 0 

        cls._winners_sheet = cls._workbook.active 

        array_data = read_csv_file(TEST_INPUT_FILE) 

        keys = array_data[0] 

        cls._data_points = generate_data_points(array_data=array_data, keys=keys)[0] 

        cls._starting_row = get_table_row(cls._workbook, "OutputTable") 

        cls._column = Column(data_container=cls._data_points, 

starting_row=cls._starting_row, 

                             attribute_name="GrossProfit", 

                             col_coord="A1", column_name="Gross Profit", 

strategy_name="default", 

                             workbook=cls._workbook) 

 

    def tearDown(self): 

        self._workbook.close() 

 

    def test_populate_data(self): 

        """ 

        Test population of values in the excell sheet with gross profit 

        :return: None 

        """ 

        self._column.populate_data() 

        max_row = self._winners_sheet.max_row 

        cell_arr = self._winners_sheet[self._starting_row:max_row] 

        cell_arr_col_1 = [i[0] for i in cell_arr] 

        cell_arr_gp = [float(i.value) for i in cell_arr_col_1] 

        correct_solution = [i.gross_profit() for i in self._data_points] 

        self.assertEqual(cell_arr_gp, correct_solution) 

 

    def test_populate_data_whitelist(self): 

        """ 

        Test whitelist data, meaning exlcusion of certain data types 

        :return: 

        """ 

        # check whitelist data works 

        # remove gross profit as whitelist, the return of populate data should be 

empty 

        new_data_container = [] 

        for i in self._data_points: 

            i.data["whitelist"] = ["None"] 

            new_data_container.append(i) 

 

        column = Column(data_container=new_data_container, 

starting_row=self._starting_row, 

                        attribute_name="GrossProfit", 

                        col_coord="A1", column_name="Gross Profit", 

strategy_name="default", workbook=self._workbook) 

        column.populate_data() 

        max_row = self._winners_sheet.max_row 

        cell_arr = self._winners_sheet[self._starting_row:max_row] 

        cell_arr_col_1 = [i[0] for i in cell_arr] 

        cell_arr_gp = [i.value for i in cell_arr_col_1] 
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        finalarr = [] 

        for i in cell_arr_gp: 

            if not i: 

                continue 

 

            if i.isdiGIT(): 

                finalarr.append(i) 

 

        self.assertEqual(finalarr, []) 

 

    def test_get_row_position(self): 

        self.test_populate_data() 

        self.assertEqual(self._column.get_row_position(), len(self._data_points) + 

self._starting_row) 
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