

WALL STREET: ENGINEERING

INVESTMENT PROFIT & LOSS

REPORTING PIPELINE

AUTHORS: JAKE AKI & DAVID DEISADZE
SPONSORED BY ANGELO, GORDON & COSPONSORED BY ANGELO, GORDON &

CO.

DECEMBER 16, 2017

A Major Qualifying Project Report

Submitted to the Faculty of

Worcester Polytechnic Institute

In partial fulfilment of the requirements for the

Degree of Bachelor of Science

Submitted to:

Professor Kevin Sweeney

Professor Michael J. Ciaraldi

Professor Reinhold Ludwig

PROJECT ID: KMS-ABGJ

i

ABSTRACT

We sought to improve an existing multi-language financial reporting tool by unifying the
pipeline into a single native Python environment and by providing a more intuitive user
interface and enhanced documentation. We had to reverse engineer the legacy
codebase and integrate a new dynamic engine for investor relations to reach our goal.
Project management practices such as Scrum and Kanban as well as adhering to a
well-maintained object oriented methodology were the core of our teamwork and
productivity. Ultimately, the final product was a professional graphical interface in
addition to the re-engineered pipeline, which unified the whole system.

ii

ACKNOWLEDGEMENTS

First and foremost, we would like to thank the whole Angelo Gordon team for hosting us
and welcoming us to their unique culture. Specifically, we would like to thank Scott
Burton for facilitating and guiding us through this project and the whole team for helping
us on countless occasions. This project would not have gone as smooth if it were not for
Mr. Burton’s and the whole risk team’s quick replies and determination to help. We
would also like to thank our advisors who made time to visit from Boston and Worcester
and gave us their valuable time and advice.

This project would not have been possible if it was not for all the open source forums
and tools on the web. We would like to thank the whole Stackoverflow community for
answering numerous questions and guiding us through bug resolution. We would like to
thank the OpenPyXL, PyQt, and the Python distribution team, whose technology and
API’s we heavily relied on. Without their awesome documentation and tutorials, we
would have had a much tougher time with our project.

We would also like to thank the WPI Interdisciplinary and Global Studies Division for
handling all the logistics for the project center. We had a tremendous time in Manhattan
and we gained valuable experiences through this MQP program.

Finally, there are countless other teams and individuals we could not list and we would
like to extend our deepest thanks for their contributions.

Thank You,

David Deisadze and Jake Aki

iii

EXECUTIVE SUMMARY

We worked with an alternative investment fund Angelo, Gordon, & Co for this project.
The term “alternative investment fund” means that the investments that Angelo, Gordon,
& Co specialize in are not directly correlated with typical market indicators like the S&P
500. This is because Angelo, Gordon, & Co deals with long term investments like
distressed assets, real estate, venture capital, and private equity (Angelo, Gordon, &
Co, 2018).

Investment funds use a variety of data analytics, reporting tools, and financial indicators
to track the success or failure of their financial strategies. One ubiquitous report is the
profit and loss (P&L) statement. Angelo, Gordon, & Co had software for generating P&L
reports, but the workflow could be convoluted, and the interface was unintuitive. This
MQP team was brought on board to simplify the workflow, improve the interface, and
provide documentation.

For the organizational aspects of the project, we used a combination of Scrum and
Kanban project management styles to stay on top of workflow efficiency. For the
technical aspects of the project, it was determined by the sponsor that Python should be
the native language for the project. Therefore, we relied heavily on the open source
community for a variety of modules and packages, like OpenPyXL and PyQt5, to
replicate some of the functionality that was originally done in C# in the legacy pipeline.

As development progressed, we found that we had time to develop a graphical user
interface layer on top of the report generation backend. So, the remaining time of the
project was spent developing this interface and adding different features at the request
of the sponsor, which culminated with the addition of an installer and executable version
of the GUI.

Ultimately, we left the sponsor with a unified Python pipeline, streamlined workflow, a
modern user interface, installer, documentation, and a design that should make
supporting new templates easier in the future.

iv

Table of Contents
ABSTRACT .. i

ACKNOWLEDGEMENTS ..ii

EXECUTIVE SUMMARY ... iii

Table of Figures ... vii

1 INTRODUCTION .. 1

1.1 Winners and losers report .. 1

1.1.1 Why it exists .. 1

1.1.2 Origin of the report ... 2

1.2 Drawbacks to the winners and losers report .. 2

1.2.1 Difficulty of use .. 2

1.2.2 Complexity of pipeline.. 3

1.2.3 Lack of extensibility ... 4

1.2.4 Problem summary ... 4

1.3 Our proposed solution .. 4

2 BACKGROUND .. 6

2.1 Different reporting needs .. 6

2.1.1 Closed funds .. 6

2.1.2 Open funds .. 7

2.2 Scripting languages and why Python ... 7

2.2.1 Other possible languages .. 7

2.2.2 Keeping a native Python pipeline .. 8

2.2.3 Strengths of Python ... 9

2.3 OpenPyXL .. 9

2.3.1 What it can do .. 9

2.3.2 What it cannot do ... 11

2.4 PyQt5 ... 12

2.4.1 Model, view, controller pattern ... 12

2.4.2 How the designer works .. 13

v

3 METHODOLOGY ... 15

3.1 Project management .. 15

3.1.1 Kanban .. 15

3.1.2 Scrum .. 16

3.1.3 Source control ... 16

3.2 Development .. 19

3.2.1 Object oriented analysis & design ... 19

3.2.2 Design patterns ... 19

3.3 Dynamic report generation ... 21

3.3.1 Open funds vs closed funds .. 21

3.3.2 Multiple templates .. 21

3.3.3 Dynamic Column Strategies .. 23

3.4 GUI development ... 25

3.5 Documentation ... 25

3.5.1 Writing the README ... 25

3.5.2 Different markup languages ... 26

3.5.3 Incorporating with the GUI ... 27

4 RESULTS ... 30

4.1 Testing ... 30

4.1.1 Unit testing ... 30

4.1.2 Regression testing ... 31

4.2 Product ... 32

4.2.1 Overview .. 32

4.2.2 OpenPyXL tools ... 33

4.2.3 Logging tools ... 34

4.3 GUI ... 35

4.3.1 GUI implementation ... 35

4.3.2 Generating executable for GUI .. 41

5 CONCLUSIONS ... 42

vi

5.1 What went wrong ... 42

5.1.1 Singleton design pattern .. 42

5.1.2 Hardcoded template references .. 43

5.1.3 Levels of encapsulation ... 43

5.1.4 PEP 8 code standard consistency ... 44

5.2 What went right .. 44

5.2.1 Strategy design pattern.. 45

5.2.2 Graphical front end .. 45

5.2.3 “Scrumban” .. 45

5.3 Takeaways ... 46

5.4 Recommendations ... 46

APPENDIX A: STRATEGY ENTRY .. 47

APPENDIX B: COLUMN STRATEGY ... 51

APPENDIX C: START MAIN REPORT ... 57

APPENDIX D: GRAPHICAL USER INTERFACE (GUI) .. 59

APPENDIX E: UNIT AND REGRESSION TESTING .. 67

Works Cited ... 74

vii

Table of Figures
Figure 1: Fund to strategy hierarchy.. 1

Figure 2 Legacy pipeline ... 3

Figure 3 Project Goals ... 5

Figure 4 OpenPyXL workflow .. 10

Figure 5 Qt Designer ... 13

Figure 6 Kanban board .. 15

Figure 7 GIT history as of Nov, 20th.. 18

Figure 8 Strategy design pattern ... 20

Figure 9 Closed vs open fund template ... 21

Figure 10 Closed fund template .. 22

Figure 11 Dynamic column mapping ... 23

Figure 12 Column strategy UML diagram .. 24

Figure 13 README in Markdown ... 26

Figure 14 Formatted Markdown .. 27

Figure 15 Pre-CSS README .. 28

Figure 16 Solarized README ... 29

Figure 17 Unit test structure .. 30

Figure 18 Regression testing workflow.. 31

Figure 19 Reporting tool overall structure ... 32

Figure 20 Insert rows workflow .. 33

Figure 21 Main GUI form view ... 35

Figure 22 Selecting an input file .. 36

Figure 23 Automatic file name parsing .. 37

Figure 24 Output directory link .. 38

Figure 25 Console log ... 38

Figure 26 Settings tab ... 39

Figure 27 Testing tab .. 40

Figure 28 Running the unit tests ... 41

1

1 INTRODUCTION

1.1 Winners and losers report

1.1.1 Why it exists

Before diving into technical details, it is important to understand the context of the
project. A large number of investment funds generate multiple financial reports, some of
which are circulated internally. However, other external reports, after heavy vetting, are
sent out to clients. These reports are not just internal diagnostic tools, but also external
marketing tools to show the fund’s success. A common kind of report that all
organizations publish is a profit and loss statement (or just P&L), which is typically a
quarterly report. Investopedia (2017) describes this concept as:

… a financial statement that summarizes the revenues, costs and expenses
incurred during a specific period … These records provide information about a
company’s ability – or lack thereof – to generate profit by increasing revenue,
reducing costs, or both.

 As a hedge fund, Angelo, Gordon, & Co maintains several large investments
called funds, which are composed of individual investments, which are lumped together
as strategies.

FIGURE 1: FUND TO STRATEGY HIERARCHY

2

 As you can see in the above figure, funds are comprised of multiple strategies,
but an individual strategy might belong to multiple funds. Furthermore, a strategy
represents a specific venture (venture refers to a position taken with an asset; this can
be loans, stocks, or assets) with an investment, but that investment might be involved in
multiple strategies. With this level of complexity, simple tools for evaluating a fund’s
success become increasingly valuable.

1.1.2 Origin of the report

Our sponsor, Scott Burton, developed an internal report for closed funds, which
became informally known as the Winners & Losers report and will be referred to in the
rest of this document as the W&L report. The W&L report is simply a specific kind of
P&L statement. It breaks down the highest gross profit strategies within a fund along
with the worst gross loss strategies. It was originally just an Excel spreadsheet with
some clever logic and VLOOKUPs, which was populated with data by hand. It gained
momentum as a valuable diagnostic tool on the success of a fund and began to be
distributed to investors.

1.2 Drawbacks to the winners and losers report

The problem that we were given in the beginning soon became a complex system which

needed further analysis to solve. Midway through, we as a team decided to add

additional features to solve the problem. These events will be thoroughly discussed in

the following sections.

1.2.1 Difficulty of use

As described in the previous section, this report is valuable. However, building

the report by hand was cumbersome and difficult. The fact that human beings were

involved in directly manipulating and formatting the data allowed multiple points of

failure to enter the system. Therefore, more controls and redundancies were needed to

catch any mistakes.

To replace the human element, a consultant was brought on to build a report

generation tool that would automate this formatting and data population step. This initial

codebase was written in C#, and it was soon realized that it was an error-prone process

that was difficult to use and broke frequently. Our sponsor desired a more streamlined

and robust process.

3

1.2.2 Complexity of pipeline

Another issue with the tool developed by the consultant was the complexity of the
pipeline. Prior to the construction of the new tool, there existed a calculation engine
written in Python, which took in accounting data and performed certain computations to
generate financial metadata like internal rate of return (IRR). Then, the old automated
tool was built on top of this Python engine, but that old automated tool was written in
C#. This led to an awkward interface involving batch calls to Python, which is shown in
the figure below.

FIGURE 2 LEGACY PIPELINE

 It is worth noting that C# was not a bad idea for this approach. There is an entire
suite of Microsoft Office tools for C# that allow for interoperability between C# and
Excel, which allows for a much more comfortable layer of abstraction between the data

4

wrangling and formatting and actually manipulating the Excel template. However,
Python has excellent support through Numpy (NumPy developers, 2017) and pandas
(NUMFocus, 2017) for the kind of data manipulation that our sponsor was doing, so the
decision was made that it would be better to transition the whole codebase to Python
instead of transitioning the file prep script to C#. This file prep script used some
accounting math to calculate metadata like internal rate of return. Because this file prep
was proprietary to Angelo, Gordon, and had less to do with the code and more to do
with their specific algorithms, we were told not to modify it. Python is also much better
for quickly getting projects up and running, so it was easier to try converting to Python
first and seeing if it was an adequate replacement.

1.2.3 Lack of extensibility

A further advantage of rebuilding the reporting tool is that it provided us with the

chance to build in a framework for extensibility. Our sponsor discussed the possibility of

replacing the old Python calculation engine with a new and improved script. Other ideas

for future extensions were different kinds of reports and differently formatted input files.

So, the codebase needed to be able to adapt and grow.

1.2.4 Problem summary

We were brought on board to replace the old report generation tool because of

three major flaws:

• Difficulty of use: the code broke often. It was difficult to debug and had no

meaningful interface.

• Complexity of pipeline: the use of two different languages aggravated the

debugging issue and contributed unnecessary overhead.

• Lack of extensibility: the tool was not aging well and needed to be able to

support new calculation tools, reports, and inputs.

1.3 Our proposed solution

Our project was very clearly defined. We were taking an old legacy codebase and
converting it to Python to maintain a single pipeline. However, the project quickly grew
from there, and it is important to understand how the goals of the project was divided
into two end-goals: a code port and improved functionality for our end user as they
achieve their goal. i.e., easy report generation. Fundamentally, this report generation
tool is used by our sponsor Mr. Burton on a relatively infrequent basis (monthly or
quarterly), but the accuracy of information is paramount. Hence, the process should be
as free from human influence as possible while being simple to use. In trying to focus in
on these ideas, automated and simple, we isolated some basic design goals.

5

FIGURE 3 PROJECT GOALS

• Simple: Mr. Burton only uses this software every few months, and it should not
be a hassle to relearn it each time. It should be obvious how it is run and how to
use it.

• Robust: We lean heavily on an Open Source library called OpenPyXL. As is
always the case with such libraries, there is no guarantee it will keep working the
same way. Some exposure is unavoidable, but we strived to maintain a layer of
abstraction sufficient to minimize churn if there were any changes.

• Workflow: The previous solution was effective, but because of the disjointed
workflow illustrated in Figure 2, as soon as something broke, it became a mess
to debug. The goal with this single Python workflow is to make debugging both in
finding errors in the code as well as wrong result data as painless as possible

• Flexible: Currently, Mr. Burton only supports one type of report for closed funds.
However, in the future other kinds of reporting might become valuable. Since
these reports have generally the same skeleton (e.g. Excel reports, data comes
from tables of strategies, totaling and summation are common operations), it
would be advantageous to make it as easy as possible to extend this software to
support new reports.

The goals of simplicity and robustness were aimed at resolving the issue of difficulty
to use. The workflow goal was intended to resolve the pipeline issues, and the flexibility
was meant to improve extensibility.

Simple

Robust

Workflow

Flexible

6

2 BACKGROUND

2.1 Different reporting needs

2.1.1 Closed funds

As mentioned in the introduction, a P&L report is an almost universally useful

performance analysis tool. However, different investment strategies/funds have different

metrics for success. The main example we used when trying to design our software to

support various investment strategies was the distinction between a closed and an open

fund.

Closed funds can be thought of as a long-term investment. Investors put their

money into a box and then as far as they are concerned, it remains there for an

extended period typically five to ten years or until the fund is closed. Now, the

investment fund can move that money around, change strategies, and reinvest it, but

the time horizon on the fund is longer, and thus it tends to be a safer and a larger return.

Short of a massive systemic riski, the money stays put until an agreed time frame

passes (Boyd, 2001).

Due to this feature, an excellent metric of success for a closed fund is basis

pointsii of gross profits to the total size of the fund. This gives you an idea of how much

profit a given strategy has generated relative to the initial investment.

i Kaufman in the Financial Markets journal provided an excellent definition for a systemic risk event. It is
described as a “Big shock [with] direct causation (chain reaction) contagion (direct linkage among banks
through interbank deposits, loans and clearings)” (Kaufman, 2000). The idea is that these chain reactions
propagate throughout the entire financial market, and cause havoc. The financial crisis of 2008 is an
example of such a system risk event.

ii Basis points are a frequently used measure for percentages in the investing. A basis point is equivalent
to 1/100th of a percent or .01%, or .0001. The origin of this language and the reason for its pervasiveness
is well-described on (Investopedia, 2017):

For example, if a financial instrument is priced at a 10% rate of interest and the rate experiences
a 10% increase, it could conceivably mean that it is now 0.10 x (1 + 0.10) = 11% OR it could also
mean 10% + 10% = 20%. The intent of the statement is unclear. Use of basis points in this case
makes the meaning obvious: if the instrument is priced at a 10% rate of interest and experiences
a 100 bp move up, it is now 11%. The 20% result would occur if there was instead a move of
1,000 bps.

7

2.1.2 Open funds

An open fund is a more fluid investment. Investors are not restricted on when they

can liquidate or reinvest more cash (Boyd, 2001). If a fund is doing well, investors might

want to add more money, and if a fund is doing poorly, or an investor simply needs

some more liquid assets, they can take money out. With an open fund, basis points

relative to the total size of the fund is meaningless. An open fund could perform

extremely poorly, but if a major investor pulls out, it might look like there were still

decent returns because the total fund size would have shrunk.

As described before, a fund is composed of multiple financial strategies. In an

open fund, the metric of success for an individual strategy is the strategy’s gross profit

relative to the total gross profit of the fund. Let us go through an example to clarify this.

Imagine you have an open fund called WPI Investments. That fund is composed of

three separate investments W, P, and I. These investments are the three different

financial strategies. If the fund makes $2 million in gross profit, but investment W only

made $3000, then its relative success in basis points is ($3000/$2000000)*100*100 or

15 basis points. If we add the relative successes of all the strategies together, it should

equal 10000 basis points or 100%.

2.2 Scripting languages and why Python

2.2.1 Other possible languages

The predecessor to this project was written partially in Python and C#. Our
original goal was simply to convert the C# to Python, but a colleague of our sponsor
asked the reasonable question of whether Python truly was the best language to
convert to. As we have touched on, for matters of simplicity Python is attractive as that
is already the language that the end user was working in. Logically, it made sense to
use Python to extend the environment. As we worked on the project, we examined and
discussed other possible languages that could have been used to achieve the same
outcome.

• C#: This is the language we started in. C# has the advantage of being a truly
object-oriented language, which makes maintaining SOLIDiii design principles

iii SOLID is a set of five principles for object oriented programming. We loosely followed them for
reference, but as Python is not a strictly object-oriented language, some of the criteria did not fit 100% of
the time. But, Solid is essentially this:

• Single responsibility: a class should only have one reason to change so as to minimize churn. In
other words, classes should only be responsible for one thing.

8

much easier. It is also supported by the .NET framework, which means it has
better support for working with other Microsoft products namely Excel.
Furthermore, when we started designing the GUI, C#’s Window Forms or
Windows Presenter Foundation are in most ways better tools than Qt Core
Designer or other Open Source tools.

• Java: Java has no relationship with the background for this project, but as a
powerful, well-supported object-oriented language it feels necessary to mention it
as an option. Java has an excellent Excel API and other numerical resources for
the kinds of calculations that were done in Python, but it is slower to get running.
Given that we had inherited code in C# and Python, it would not have been worth
migrating all of it over to Java.

• Python: This is the language we ended up deciding on. Python is flexible,
powerful, and easy to work with. The PyCharms environment used at Angelo,
Gordon is a well-developed integrated developer environment (IDE), and makes
installing modules, navigating and refactoring code a breeze. It also has fantastic
auto-completion and syntax help.

2.2.2 Keeping a native Python pipeline

Keeping the pipeline consistent was one of the primary objectives for this project.

Keeping the entire pipeline in Python was a major advantage since it simplifies the

connections of each step in the pipeline and retains the maintainability for future teams.

Prior to our arrival, the pipeline consisted of disparate codebases in C# and Python;

connecting the two required adapters and patches. Maintaining these patches was

difficult as well as adding new features. With the codebase being in one framework, it

solved the problem of having a disparate unit testing as well as passing data between

the frameworks. These separations created “hacky” clutter that was extremely difficult to

understand as well as extend.

• Open/Closed: classes should be easy to extend but not meant to be modified. i.e. you should be

able to change the behavior of the code without having to open it back up and recompile it.

• Liskov Substitution: If it walks like a duck, quacks like a duck, but needs batteries, it is probably
not a duck. Sub-types ought to be valid substitutes for their base type. When this logic is violated,
things get weird.

• Interface segregation: Less applicable to Python, which has no strict interfaces, but basically no
class should be contracted by an interface for methods that they do not use.

• Dependency inversion: instead of directly instantiating subclasses, you should pass in
abstractions of the class so that the subclass can change without breaking the hierarchy

9

2.2.3 Strengths of Python

One of the great strengths of Python is the sheer amount and diversity of open
source libraries available. This is what made it so attractive to our sponsor initially. Two
libraries were specifically used for the original file prep script: Numpy and Pandas.

Numpy is effectively a MATLAB package for Python. It provides an object for
storing N-dimensional data, linear algebra tools, Fourier transforms, and more (NumPy
developers, 2017). It is a simple but useful module with limited but powerful tools.

Pandas on the other hand has the lofty self-described goal of “…becoming the
most powerful and flexible open source data analysis / manipulation tool available in
any language” (NUMFocus, 2017). It is designed to work with “relational” data sets,
which immediately draws allusion to a SQL-type structure, which is not an entirely
unreasonable comparison. Pandas works with DataFrames, which are two dimensional
arrays of data and basically provides all the sort of matrix manipulations and
calculations that you might expect in a dedicated scripting language like MATLAB. It
also brings with it the speed of pre-compiled C code and the ease of Python.

Given this history of leaning on strong Python libraries, we, with our sponsor’s
support, looked into a variety of Python libraries for manipulating Excel files. One
contender was XlsxWriter, which is a very robust and extensive library, but was
discarded early on, because it only allows the creation of new Excel files; thus, it could
not read in settings from a template file. Another tool that we use a little but not for the
bulk of our report generation, is the win32com library, which provides a Component
Object Model (or COM) layer over a Microsoft API. This allows us to effectively launch
the Excel App from within our Python script. However, this is a very clunky way to do
the kind of formatting that this report required, and ultimately lacked the finesse
necessary.

So, we settled on a library called OpenPyXL, which is simply put a “…Python
library for reading and writing Excel 2010 xlsx/xlsm/xltx/xltm files” (Clark & Gazoni, A
Python library to read/write Excel 2010 xlsx/xlsm files, 2017)

2.3 OpenPyXL

2.3.1 What it can do

OpenPyXL fundamentally works by unzipping and reading the raw XML files that

all Excel XLSX (Excel XML based spreadsheet file format) files are composed of. It

10

parses all the information into what are more human-readable objects like cells, sheets,

and workbooks. Next, OpenPyXl manipulates that data, not the actual Excel file, in

memory until it is in a satisfactory state. OpenPyXL then reinterprets the data structures

back into the XML, zips it back up, and labels it as XLSX. Assuming the data structures

have not been given impossible or invalid values, the Excel document will open as

intended. There are several important caveats to this general workflow.

FIGURE 4 OPENPYXL WORKFLOW

 First, Python is already notoriously unreliable at keeping track of variable types. It

uses what is colloquially referred to as “duck-typing”, which is attributed to the phrase “if

it walks like a duck and quacks like a duck, then it is a duck”. This is just a clever way of

describing dynamic typing, which is to say that when given a variable the Python

interpreter will just treat it as whatever kind of data makes sense given the situation

unless that raises an exception. A common example of this kind of exception was that

occasionally the accounting data would provide the string “nan” in a numerical field like

gross profit. When Python tried to read that as a float, it would raise an exception.

 This issue is compounded in OpenPyXL because we are not directly

manipulating the Excel worksheet but instead we are manipulating OpenPyXL’s

abstraction of the worksheet. So, thanks to a combination of Python’s duck-typing and

OpenPyXL’s abstraction it is entirely possible to do an entire array of impossible things

Unzip .xlsx
file into

XML

Parse XML
into data

structures

Manipulate
data in
Python

Parse data
structures
into XML

Rezip XML
into .xlsx

11

to these data structures, which will create a corrupted XLSX file when it is eventually re-

zipped. OpenPyXL has made real efforts to provide significant checks on this. For

example, when writing a value to a cell, OpenPyXL will check if that could be a valid

input in a cell, e.g. a float, int, or a string.

 Second, when we manipulate formatting (formatting such as inserting or

removing rows or expanding or shrinking a table) it is possible to break the headers,

which will lead to corrupting the file.

 Thirdly, the code used to insert new rows uses a clever regular expressioniv

(regex) to dynamically update cell references. e.g. if a cell refers to I13, but we insert

two rows, it will properly refer to I15. However, this means that if we have a named cell,

which contains a string value that looks like capital letter plus a number, it will also auto

increment that number. For example, a cell named FUND_CAT50 would become

FUND_CAT53. This is best resolved by including underscores in any such names (e.g.

FUND_CAT_50 would remain FUND_CAT_50).

2.3.2 What it cannot do

OpenPyXL has a few glaring issues that required us to design our own solutions.

These issues all primarily arise from the fact the OpenPyXL aims to give very precise

and exact control over the Excel sheet. Many operations are best utilized on the cell

level as opposed to working an entire rows, columns, or tables.

First, OpenPyXL does not support inserting or deleting rows. This is initially

surprising given how important an operation that is for working with spreadsheets, but

makes sense historically within the module. OpenPyXL has gone through many

changes in how cell references are represented, and most implementations of row

iv Regular expressions or regex is almost an entire coding language unto itself. They’re used for very
concise pattern matching. From Master Python Regular Expressions they have five primary functions
(Lopez & Romero, 2014):

• Check if an input matches a pattern

• Look for the appearance of a pattern in a chunk of text

• Extract a specific pattern from a text

• Replace a specific pattern in text

• Split a large text into smaller pieces

Regex accomplishes this in Python by instantiating a pattern, which would be something like: look for any
three character combination of decimals and uppercase letter or check if there is any occurrence of the
pattern “b2C”. Then this pattern can be used for any of the uses cases above.

12

insertion relied on these unreliable internals (Clark & Dallas, Insert row into Excel

spreadsheet using openpyxl in Python, 2013).

Second, while it is possible to access named ranges in OpenPyXL, there are no

built-in functions or methods that allow you to apply formatting. All OpenPyXL provides

is the range of cells that the named range contains. This is further complicated by the

fact that while the named range knows what cells belong to it, each cell does not know

what named range it belongs to. This means as we insert cells above a named range,

the named range will not correctly shift down, but the value in the range will.

Third, tables have very little support in OpenPyXL. They exist as data structures

with all the correct values and options, but interacting with them can be very buggy and

is easy to cause corruption.

 Fourth, charts are completely unsupported. OpenPyXL cannot correctly parse

them from the XML.

2.4 PyQt5

2.4.1 Model, view, controller pattern

When it comes to designing a graphical user interface (or GUI), there are two

popular design patterns. There is model view controller and model view presenter. In

both patterns, the model is the data storage. It contains all the stored information and

any methods pertaining to accessing or changing that data. However, the way in which

the model interacts with the front end is different between the patterns (Qureshi & Sabir,

2013).

In model view controller (MVC), the view renders the model data and periodically

requests updates directly from the model. It also is responsible for registering user input

and sending that input to the controller to be handled. The controller gets to select the

specific view. This means that the controller handles all the backend calculation as well

as handling all the events raised in the view.

In model view presenter (MVP), the view handles no business logic and does not

directly interact with the model. Instead, the presenter is responsible both for handling

events from the view, but also for querying the model for information and sending that

information to the view to be rendered.

Ultimately, MVC is simpler to implement and better suited for a lightweight

application like ours, but if we had any intention of scaling the front end up into a larger

project, MVP might be a good alternative.

13

2.4.2 How the designer works

FIGURE 5 QT DESIGNER

 PyQt is another excellent open source software package, which acts as a Python

API for a popular graphical software called Qt. It includes a tool which allows you to take

Qt .ui files and convert them to the corresponding PyQt python files. This allowed us to

use the Qt Designer pictured in Figure 5. The designer is like many other graphical

software packages, and can be broken down into 4 significant regions. Region 1 is the

toolbox. These are all the different widgets that can be dragged into the form displayed

in Region 2. Region 2 shows a rough mock-up of how the GUI is going to look.

However, since our CSS (or QSS as they are called for Qt Style Sheets) is applied

programmatically, it is not an exact representation. Region 3 shows the hierarchy of

4 1

2

3

14

widgets in the form, and allows us to move widgets around to change inheritance.

Lastly, region 4 shows all the specific attributes of the focused widget.

15

3 METHODOLOGY

3.1 Project management

3.1.1 Kanban

FIGURE 6 KANBAN BOARD

 Working in a professional setting, we were given a complex problem which had

to be broken down to several goals. As a result, we decided to use the Kanban

methodology to break down each goal into actionable steps and reasonably complete

the steps. We set up a Kanban board in the cubicle and in the desks given as shown in

Figure 6. The Kanban board consisted of 3 columns for task organization: to-do, in-

progress, and done. The to-do column represented the tasks that needed to be

completed; these tasks could be either bugs, features, or improvements. The in-

16

progress column represented the task was in progress and finally the done column

marked the tasks done and ready to test. This method was extremely efficient since we

were able to work on one actionable task and finish it thoroughly before starting a new

task. Each member could work on a separate task as long as the two tasks were not

interdependent.

 Different swim lanes representing the tasks were also setup in the Kanban board.

Tasks with yellow colors meant normal tasks to be done. Blue marked the task as a new

feature and finally red marked the tasks as a bug. This way, our team was always

aware of the type of task they were working.

 Completing the tasks using the Kanban method improved our workflow as well as

making communication easier for when things crashed or did not go according to plan.

This organizational technique was a major factor in the success of this project. It also

allowed us to communicate goals and storylines to the Angelo Gordon management,

hence meeting all their requirements and fixes.

3.1.2 Scrum

Scrum is a popular buzz word that gets associated with Agile software

development all the time. True Scrum has three roles: a product owner, Scrum master,

and team. The product owner is responsible for the product’s vision and future. The

Scrum master keeps the team on track and facilitates Scrum principles. The team

should self-organize to achieve their goals. (James, 2017).

In our miniature implementation of Scrum, we would loosely think of Mr. Burton

as the product owner who kept our vision on track, and our project team was a blend of

Scrum Master and developers. The scrum master role was less important because of

the size of our team, but in terms of logistics, we split it up with one partner handling

meeting planning and coordination and the other keeping the focus on our goals.

3.1.3 Source control

A version control system (VCS) is at the core of most modern software

development. It helps on a myriad of fronts, which are well described on the GIT Tower

website (Tower, 2017):

• Collaboration: When working on a project simultaneously, we inevitably need an

answer to the question of “what happens when we edit the same thing at the

same time”. Some VCS such as subversion resolve this issue by “locking” the

repository such that only one coder can work on a section of code at one time.

17

However, this is not scalable. More sophisticated VCS like GIT rely on “merging”

which only comes into effect when two or more coders change the same piece of

code, in which case the coders sit down, review the changes, and accept which

one they want to use.

• Storing old versions: How do we keep track of changes and releases? How do

we name our older versions? How do we know how much or how little

information to keep track of? A good VCS allows us to decide these from the

beginning and forces us to stick to those conventions automatically.

• Restoring previous versions: What do we do when inevitably a code-breaking

change is pushed accidentally. Revert! Because VCS keeps track of all older

versions of code, we can go through line by line to see what changes caused the

break and revert the guilty code. It is a powerful debugging tool.

• Backup: These days everything lives in the cloud, and VCS assists with that.

This way if one programmer’s computer explodes, only so much work is lost.

Clearly, even for projects consisting of one or two programmers, a strong VCS is

vital to successful development. Angelo, Gordon & Co. uses the Microsoft branded

version of GIT, so that is the VCS we used for this project.

18

FIGURE 7 GIT HISTORY AS OF NOV. 20TH

As a rule of thumb, we followed these guidelines:

• Branch for every major development goal

o We branched for any new potentially breaking change, new feature, or

new project that could be done in parallel to the current project.

o We did several major code refactoring’s (cleaning up code and

reengineering code for less duplication) to enforce better code consistency

and brevity, which always has the risk of breaking code.

19

o GUI development was a new feature entirely so it got a branch.

o Regression testing could be done in parallel, so it was a branch.

• Every stable build was tagged as a release in case we ran out of time on a new

feature and needed a stable version to provide to our sponsor before leaving.

• When a new branch was well-tested it was merged back into the main

development branch, and then finally back into the master branch.

3.2 Development

3.2.1 Object oriented analysis & design

When it made sense, object oriented principles were applied to this project. One

good example of this is with regards to how we formatted the financial information in the

software. In terms of our pipeline, raw accounting data is read in first by the data

processing script provided by the sponsor (but still part of the pipeline) and then the

processed data is spat back out in a CSV (Comma Separate Value file format). It is this

CSV that is fed into the report formatter and generator. To store the data in the CSV a

list of “StrategyEntry” objects are used (see reference code in Appendix A).

This object is responsible for handling the information and methods of a single

financial strategy. It stores the raw CSV data in a dictionary and has methods for

accessing that dictionary, performing additional processing on the data, and adding new

data from SQL queries and similar.

3.2.2 Design patterns

Another example of object oriented design is in how the dynamic columns and

processing are done. These objects use a combination of the strategy design patternv

and the abstract factory design pattern.

According to an excellent definition on the Sourcemaking website, the strategy

design pattern “…defines a family of algorithms, encapsulates each one, and makes

them interchangeable. Strategy lets the algorithm vary independently from the clients

v Design patterns are a powerful and somewhat controversial idea in computer science. The idea is that
certain logical structures and patterns occur over and over in software design and that particularly
effective patterns ought to be reused both for ease of comprehension (as experienced software architects
will be familiar with common design patterns) and because of a sense of “why reinvent the wheel?” Critics
of design patterns suggest that using a design pattern blindly without respecting basic good coding
practices leads to bad code. They suggest that if a coder just follows good object oriented principles (see
the endnote on SOLID) these patterns will arise naturally if they’re required (Rodriguez, 2016).

20

that use it.” (Shvets, Frey, & Pavlova, Strategy Design Pattern, 2017). Fundamentally,

the idea here is that if we have a bunch of different operations that need to be

performed on some input and always produce the same kind of output, we can

encapsulate that logic as a “strategy” and then plug in whatever “strategy” we need.

FIGURE 8 STRATEGY DESIGN PATTERN

As shown in figure 7, for a given input, it does not matter what path is taken

(Strategy A, B, or C) we still arrive at the same type of output. Moreover, if the input

type is the same as the output type, these strategies can be chained together to perform

multiple operations on some data. When working on this project, a common confusion

that arose was between a financial strategy and the strategy design pattern. These are

completely unrelated ideas. A financial strategy is some investment plan that Angelo,

Gordon uses. As far as our code is concerned, a financial strategy is simply a data

point. These financial strategies are assigned a unique ID and when it comes time to

use the strategy, Angelo Gordon’s codebase can look-up and perform the business

logic based on that unique ID. The strategy design pattern is a way of designing our

algorithms, and each algorithm designed in this pattern is referred to as a strategy.

The abstract factory design pattern is also described on Sourcemaking: “[to]

Provide an interface for creating families of related or dependent objects without

specifying their concrete classes.” (Shvets, Frey, & Pavlova, Abstract factory design

pattern, 2017). The idea with an abstract factory is to have a class dedicated for

creating related objects, and there is a perfect application for this factory with the

strategy pattern, because strategies are all similar objects. So, the abstract factory

churns out all the required strategies, which are then used in series to process the data.

21

3.3 Dynamic report generation

3.3.1 Open funds vs closed funds

FIGURE 9 CLOSED VS OPEN FUND TEMPLATE

 The first report template we worked with was for a closed fund. Because of the

differences discussed in the background, a closed fund is primarily organized by a

system of basis points relative to the fund size. A logical conclusion from this is that the

fund size is also an important piece of information. Thus, the closed fund has a widget

for displaying the fund size, what dollar amounts correspond to what basis point

brackets, or buckets, and the parsed strategies should be sorted by their current basis

point profits in relation to the total gross profit. As can be seen in Figure 9, three basis

point brackets are used 0-50, 50-100, and 100+. All strategies in the lowest bucket are

concatenated into a lumped “All Other Positions” for brevity.

 The second report template was the open fund. This report gets to omit the fund

size, because it can change from week to week. Furthermore, because basis points

relative to fund size is not a useful measure, they are sorted by quartiles based on

quarter percentage intervals as shown in Figure 9.

3.3.2 Multiple templates

The best way to accomplish these distinctions between reports was by using

fundamentally different Excel report templates.

22

FIGURE 10 CLOSED FUND TEMPLATE

 Figure 10 shows the template used for the closed funds. Region 1 indicates

where the fund size is displayed (in millions of dollars). The cells labelled 0bps, 50bps,

and 100bps indicated the profit or loss required to be in that category. The large gray

boxers are the “winners” and “losers” respectively, and it is where strategies that either

generated a profit, for winners, or a loss, for losers, are displayed. For both categories

region 2 shows where the total number of strategies that ended up in the different

buckets are shown. It also splits them based on monetized or ongoingvi. Finally, region

vi Monetized versus on-going is a relatively trivial distinction with respect to this project but is an important
and simple financial idea. Monetization is defined in the Oxford Dictionary of Finance and Banking (Law,
2015) as “adapting an asset that currently generates no revenue, such as a popular web site or app, so
that it produces income (e.g. from advertising or commission)”. With respect to an investment fund, this
means that the fund has been liquidated and the return has been paid out to the investors. After all, even
when a fund is generating a gross profit technically the investors see none of the actual money until it has
been monetized.

1

2

3

23

3 is where all the totaling is done and provides a rough estimate of the total gross profits

and losses by basis point bucket.

 These reports could be done in any time frame (e.g. weekly, monthly, annually

etc.). However, they were typically generated quarterly. Part of the impetus behind

making these reports easier to generate was to allow them to be produced on a more

spontaneous basis perhaps monthly or even weekly in the case of a systemic risk

event.

3.3.3 Dynamic Column Strategies

To support the different templates programmatically, we developed a system

called dynamic columns. The system would have one entry point in the configuration

files where excel columns would be mapped to a specific strategy (work done on the

data) and a data attribute. The data attribute specified the portion of the data to be used

for that specific column. As you can see in Figure 11, for the winners and losers closed

fund report mapping, we specify the header row which is the row in Excel where the

column headers are located. This allows the code to load in the column names and

makes it easier to do the mapping.

FIGURE 11 DYNAMIC COLUMN MAPPING

The next argument is the column_mapping, which as mentioned before maps the

column name (or index of the column), the strategy, and the parameter name; if no

parameter name is needed, None is passed in. Finally, the last argument is the

24

preprocessing mapping. The preprocessing preps and manipulates the data with

methods such as sorting, bucketing, and database queries. Both the column mapping

and the preprocessing are highly dynamic and were built by us following the strategy

pattern discussed in the Design patterns section 3.2.2. This allows the user to create

custom strategies (for both columns and preprocessing) on the fly by extending the

main strategy class and correctly implementing correct logic. The UML diagram for the

column mapping is shown in Figure 12. For sample strategies see Appendix B.

FIGURE 12 COLUMN STRATEGY UML DIAGRAM

25

3.4 GUI development

The GUI was developed in the Qt’s Python version called PyQt version 5. We

chose this since it supported major user interface elements functionality as well as

providing a simple user interface designer which was easy to use. The code followed a

model view controller (MVC) paradigm which separates the design, business logic, and

the data into separate components. This way there is a maintainable codebase as well

as a stable functioning GUI which is enclosed in validators and exception handling.

The view was separated into two layers: application and widget views. The

application view is the main view that relays all inputs and processes to widgets and

popups. Widgets exists as elements on the application. For each widget, we created a

separate view class and controller that encapsulated the visual aspects and business

logic, respectively.

For application-wide data, we created a model which acted as a proxy between

configuration files as well as storing globally available data. Controllers and view

methods could subscribe to the model for changes, which allowed the widgets to “self-

update” depending on data update, insertions, or deletion.

For features such as report generation and unit test simulators, we developed a

threading layer which helped maintain usability in the GUI while allowing background

processing.

3.5 Documentation

3.5.1 Writing the README

Initially, the README was intended as just a place to keep track of different

dependencies that we had installed over the course of the project. However, we quickly

realized that using a requirements.txt file was an obviously superior solution. The

popular Python module installer pip supports a txt file, which lists all dependencies and

allows the user to install said dependencies with a single command:

pip install -r requirements.txt

 This allowed us to start using the README as a tool for leaving our sponsor with

something resembling a user guide. We drafted up a first version with instructions for

installing and running the program. With user feedback from Mr. Burton, we also added

sections to explain how to modify the code to support a new template, how to run tests,

and some potential runtime errors.

26

3.5.2 Different markup languages

Initially the file was written in raw text. However, Pycharms and GIT both provide

excellent Markdown support. Markdown is light-weight markup language that allows for

easy conversion to HTML. It was developed by John Gruber and Aaron Swartz in 2004

(Gruber, 2004). Over the years it has gained popularity and slightly different “flavors” of

Markdown have arisen. GIT has specific Markdown conventions, which is how we styled

our README, and it can be quite powerful. What we started with is shown below in

Figure 13.

FIGURE 13 README IN MARKDOWN

27

 This Markdown can be converted straight to HTML in Pycharms, which gives this

nicely formatted document.

FIGURE 14 FORMATTED MARKDOWN

 This then also integrates with GIT allowing you to view the README online.

3.5.3 Incorporating with the GUI

As we started developing the GUI for this project, we realized it could be useful to
include the README in the GUI. Initially we generated the HTML using a Markdown-to-
HTML converter and then fed that into a text browser widget, but that generated the
document in figure 14.

28

FIGURE 15 PRE-CSS README

 But, we were advised by Professor Ciaraldi to move to the solarized stylesheet to

both better match the rest of the front end, but also to be less harsh on the eyes, so we

settled on this final design with a dark solarized stylesheet.

29

FIGURE 16 SOLARIZED README

30

4 RESULTS

4.1 Testing

4.1.1 Unit testing

The goal behind unit testing is to methodically compare the output of a given

module with some kind of interface or blackbox specification. Usually a unit test is

structured somewhat recursively.

FIGURE 17 UNIT TEST STRUCTURE

 The idea is that a single test file is responsible for testing a single module, then

individual test cases will be defined per class (or if there are any floating staticvii

vii The idea of a static method in Python is a little trivial as it is entirely possible to define a function outside
of a class anyways, and Python is not strictly object oriented either. However, there exists a Pythonic way
of defining static methods if we wished to and it looks syntactically like this:
 class ClassA():

 @staticmethod

 def method_a(a):

 return a

Module

Static
Method A

Class A

Method A

Method B

Class B

Method C

31

methods, per method) and then within each test case an individual test is written for

each method.

 Using Python’s UnitTest module, this structure is easy to follow by inheriting the

TestCase object and implementing test methods that use methods like assertTrue. One

element that was particularly important to test with UnitTests was the behavior of

different comparison methods for OpenPyXL objects. As has been mentioned before,

there is no guarantee of OpenPyXL’s behavior, and these comparison methods need to

work for the sake of the regression testing explained below. Verifying that their their

functionality remains is paramount.

4.1.2 Regression testing

Regression testing is an important but oft underutilized tool for detecting problems

before they even happen. A regression test is different from unit test in that it is not used

to diagnose a part of the system. Instead, a regression test is run whenever new

functionality is added or old functionality is changed to make sure that the changes have

not accidentally broken anything that previously worked (Myers, Sandler, & Badgett,

2011).

FIGURE 18 REGRESSION TESTING WORKFLOW

The general model for our regression testing was simple. We started with a fixed

data set of real but older data. We would run the data on a fixed template and generate

a report, which would be verified via inspection. Then, in the future if we made changes

to the code, we would run the same data set with the same source template, and

compare the new report to the old verified report programmatically. If there were any

differences, the test was failed and the inconsistency was flagged. If the purpose of the

32

update was to change the code, the developer would need to remove the at fault unit

tests.

This means that the regression test will diagnose any changes in the

programmatic functionality, but will not work if the data set or template is changed. If

either of those are changed a new reference report will need to be generated.

4.2 Product

4.2.1 Overview

FIGURE 19 REPORTING TOOL OVERALL STRUCTURE

 This figure shows the final state of the project. The segments highlighted in

crimson are the portions that we developed or built from the ground up. The segments

in gray were either only slightly modified or left untouched entirely.

 Initially, the scope of the project was just to develop the report generation tool.

The goal was to convert that tool into Python, and so that necessitated also working

with OpenPyXL, which came with its own set of issues and problems that required

additional tools to be built. As those tools were brought online, different diagnostics

became useful and a logging infrastructure was developed to work in parallel with the

reporting tool. Finally, when the backend was finished, we took it upon themselves to

develop a GUI to encapsulate the data preparation, logging, and report generation. Of

course, all of these steps have some degree of a testing framework built with them.

33

4.2.2 OpenPyXL tools

As described in the background on OpenPyXL, the biggest weakness to

OpenPyXL is also its greatest strength, which is its cell-centric design. Fundamentally,

any attempt to manipulate the actual data in the workbook required work at the cell

level. So, a suite of tools was built out to support working at a row level and at a table

level. Furthermore, it was slowly realized that the ability to read and write from named

cells was valuable, and so support for that was added as well.

The major row level operation that was needed was the ability to insert a row of

new cells with matching formatting and some arbitrary point in the sheet. We borrowed

a stackoverflow solution for row insertion, but as time went on and bugs were found with

this solution modifications were made.

FIGURE 20 INSERT ROWS WORKFLOW

 The main bug found with this code was in step 2. This is described in the

Background section (section 2.0), but effectively, any cells with references to named

cells that are named in a similar fashion as a cell reference (i.e. uppercase letter

followed by numbers) that named cell would be incremented as well.

The next tool that was built was the ability to both find and move a named table.

Furthermore, an additional layer was needed to be built on top of the row insertion tool

in order to allow the insertion of a row into a table. The fundamental problem here was

that the Cell data structure’s internal reference does not match up to the Table data

structures list of Cell references. So, when a new row was inserted the individual Cells

were updated, but the table was not. If a row was inserted above the table or in the

table, it would break the table. However, if the row was inserted below the table,

everything was okay. So, tools were built to support that.

Copy old
cells

Update cell
references

Shift down
row

references

Copy back
cells

34

4.2.3 Logging tools

Python provides a powerful built in logging module, which is what we leaned on for

the logging support in this project. We configured two separate loggers. One was the

default logger, which logged everything into a file, which was stored with an ID unique to

the day of the log. We assumed we would not need specificity down to the minute as

this report is only run once a quarter. The second logger was the standard output logger

and just created a clean format for the log message before streaming the messages to

both sys.stdout and our GUI’s console.

35

4.3 GUI

4.3.1 GUI implementation

FIGURE 21 MAIN GUI FORM VIEW

 This figure shows the home page of the graphical user interface that was

developed to support the report generation tool. Region 1 is the main inputs to the

report. These must be selected to generate a report. There must be an input file, a

template type, and an output directory. Region 2 are optional settings for the report, and

they include changing the period end date and sending an email. Region 3 shows a

preview of all the options currently selected, and region 4 is the console, which shows

logging outputs. The two buttons are self-descriptive, but for completeness, the reset

1

2

3

4

36

button resets all settings and clears the console. The generate button kicks off the

report generation based on the settings selected.

FIGURE 22 SELECTING AN INPUT FILE

 Qt allows for a file explorer dialog input, which is what is used for selecting the

input file. This explorer remembers the previous folder location, so if multiple reports are

run back to back, it is easy to navigate to the same folder.

37

FIGURE 23 AUTOMATIC FILE NAME PARSING

 Another note about selecting the input file is that the file name is automatically

parsed by the GUI to extract the period end date and fund name. Furthermore, the input

preview automatically updates the absolute path to confirm that you have selected the

correct input file.

38

FIGURE 24 OUTPUT DIRECTORY LINK

 Choosing the output directory uses the same file explorer as the input file, and

when it is selected not only does the input preview update, it also provides a link

(highlighted in red), which will automatically open a file explorer in the output directory

so the user may easily check the result of the report generation.

FIGURE 25 CONSOLE LOG

39

 When the report is running, well formatted log messages are displayed to show

the progress. Error messages and warnings will also be directed here.

FIGURE 26 SETTINGS TAB

 There is also a settings tab, which can be opened with keyboard shortcuts (Ctrl +

S), or from the drop-down file menu. This allows for the configuration of other settings

such as recipient email addresses, database settings, and sender addresses.

40

FIGURE 27 TESTING TAB

 This testing tab is used to run diagnostics from within the GUI. It reads tests in

dynamically from a selected folder allowing the user to add or remove test cases in the

future without needing to manually update the GUI.

41

FIGURE 28 RUNNING THE UNIT TESTS

 The testing interface uses a typical scheme of green for success, red for failure,

and yellow for in progress. Furthermore, the error message can be double clicked to

show more details, and by right clicking an individual test can be run by itself.

4.3.2 Generating executable for GUI

To further streamline the process of running the GUI, we also built an .msi style

installer. This installer uses pyinstaller to build an executable version of the GUI, and

then Inno Script Compiler (Russel, 2018) to build a setup.exe to install this executable.

When correctly maintained, this provides a clean professional interface to install the

executable.

42

5 CONCLUSIONS

5.1 What went wrong

While developing this project, it was important not to lose sight of the fact that this
was a student project with the intention of learning and growing our skills as developers,
engineers, and professionals. A key factor in learning is reflection, which is perhaps the
most useful element of this report as it has given us the opportunity to look back, reflect,
and consider what approaches worked well and what did not. Many of the mistakes that
were made early on were fixed later in the lifespan of this project. Pycharm’s refactoring
tools were a godsend in the middle few weeks of project development allowing us to
drastically change our approaches in several areas. But, we wanted to focus on a few
specific errors, mistakes, and flaws and how we either resolved these issues or would
resolve these problems in the future.

5.1.1 Singleton design pattern

Early in the development of this project, we struggled with how to pass data

around. There was a question of how the OpenPyXL workbook object should be

handled. From a given run of the software, we only ever work with a single template,

and it is important that all references to a workbook are to the same workbook. This

seemed like an obvious application for another design pattern. This one is called the

Singleton design pattern, once again referring to our friends at Sourcemaking (Shvets,

Frey, & Pavlova, Singleton Design Pattern, 2017): “Ensure a class has only one

instance, and provide a global point of access to it… Encapsulated ‘just-in-time

initialization’ or ‘initialization on first use’”

The idea is that an instance of a class is only ever made once, and then any

references to that object in the future will simply return that object again. However, one

important drawback to this is that we can never re-initialize this object. So, when we

were simply running the report generation once, this was never an issue. However, in

the GUI, you could generate multiple reports sequentially. Furthermore, in unit testing,

we could not just set up and tear down the singleton, because once it was set up, it was

there for good.

Therefore, after the first two weeks, we switched away from the singleton

structure and simply passed around an instantiation of the workbook object itself. We

risk more exposure to internals of the OpenPyXL library with this strategy, and it makes

43

some of the arguments for our functions more verbose, but ultimately it is a more

flexible and logical approach.

5.1.2 Hardcoded template references

Ultimately, for this report generation to work based off a pre-existing Excel

template, there must exist some degree of incestuous knowledge between the template

and the report code. However, the project slowly evolved a more sophisticated method

of interpreting the template as time went on.

Initially, the project had a large config file that contained enumerationviii style

variables that had various cell references that were needed to know where different

values in the template were held. For example, it had references for the different fields

that needed to be populated, for the upper and lower corners of the gains and losses

tables, and for the locations of different totaling cells. All of these references were

hardcoded, which was a nightmare to update whenever the template changed and was

generally bad practice.

So, we found a better way. By building on some of the OpenPyXL functionality,

we were able to reference named ranges and tables. It was still necessary to hardcode

the name of a table or the name of a range, but it was much more readable and more

robust to changes in the template. This is the minimum level of knowledge that the

software must have of the template to function.

5.1.3 Levels of encapsulation

This issue was less of a problem that came up and was more of a philosophical

conversation that was ongoing during development. There are many definitions of

object oriented programming. One popular definition is provided by Matt Weisfeld who

described object oriented programming as adhering to four primary principles:

encapsulation, inheritance, polymorphism, and composition (Weisfeld, 2013).

viii An enum, or enumeration, is a type of variable support in many modern languages such as C, C#,
Java, and others. The idea behind an enum is to provide a typed structure for a list of related values. The
common example is a list of valid display colors, which might be red, blue, and yellow. In code, we might
represent red as 1, blue as 2, and yellow as 3. However, as far as most languages are concerned, that
means that 4, 5, or any other integer would be valid. But, we only want red, blue and yellow. An enum
restricts the valid values of that enum type to 1, 2, 3. i.e. it restricts it to a subset of valid ints. They also
provide readability as it allows you to have a constant name and force the developer to think about all
possible values for that enum (Bolton, 2017).

44

The main idea behind encapsulation is that a piece of code, specifically an

object, should not reveal any of the internal workings as to how it specifically

accomplishes a task. All an object ought to do is promise that certain methods will exist

and perform a task as specified in an interface. This allows you to easily modify the core

functionality later without breaking any code, which minimizes “churn”ix.

This is a great idea in principle, but in execution it can be both difficult and

occasionally counterproductive. Thoughtless encapsulation does nothing to minimize

churn while increasing complexity, so the thoughtful application of encapsulation was

something that we kept in mind during development.

5.1.4 PEP 8 code standard consistency

The PEP 8 style guide starts with a beautiful Ralph Waldo Emerson quote, which

says “a foolish consistency is the hobgoblin of little minds.” The style guide continues to

reinforce this point with the comment that “Consistency with this style guide is important.

Consistency within a project is more important.” (van Rossum, Warsaw, & Coghlan,

2013) The sentiment here is like with most principles and guidelines, a style guide is

only as valuable as the amount of thought that is applied when using it.

When we first wrote this codebase, we both used slightly different styles, and upon

review, we decided that PEP 8 made the most sense. It is a well-known Python style. It

was already built in to Pycharm as something to be highlighted, and it is simple to use.

However, there were certain places where conventions were consistently ignored. For

example, we stuck to a line length of 100 instead of 79 as that was well displayed on the

monitors used at Angelo, Gordon.

5.2 What went right

Despite the focus on this project as a learning opportunity, we still wanted to

create a product that they could be proud of and a unique opportunity presented by this

project and this sponsor was that the completed software would immediately become an

actual piece of the sponsor’s pipeline. This tool is and will continue to be actively used,

and being able to provide that contribution was exciting. So, we also wanted to examine

what was done right.

ix Churn is a popular software engineering term, which is basically, if I change this piece of code, how
much stuff breaks because of that? How easy is code to modify and extend? Typically, good software
practices attempt to minimize churn, but no churn at all is a pipedream.

45

5.2.1 Strategy design pattern

We used the strategy design pattern to great effect in two places in this project.

The first use was for the dynamic columns that we used to provide support for multiple

report templates. The second use was for the preprocessing pipeline that further

streamlined different kinds of reporting. We had examined other approaches, but

ultimately, this won out for the betterment of the project.

The process of selecting a design pattern was insightful as well. We leaned

heavily on an online resource Sourcemaking (Shvets, Frey, & Pavlova, Strategy Design

Pattern, 2017) for suggestions, and it was an invaluable development tool.

5.2.2 Graphical front end

The graphical user interface that we built out was not part of the original project

description. It was a combination of the alacrity with which we finished the backend for

the project and our enthusiasm to develop an interface that led to the GUI. Initially, we

had floated the idea of developing a web app interface but the sponsor decided that the

installable GUI was a more intuitive and useful interface.

Python is not the strongest language natively to develop a front end with.

However, Python’s strength is the breadth and power of the open source libraries

available, so it was easy to find a module with strong graphical support.

Even though this part of the project was the least planned for aspect, it ultimately

generated tremendous value. It was an exercise in demonstrating exactly what

functionality we had built over the course of our project and inherently forced us to think

visually about the workflow.

5.2.3 “Scrumban”

Part of what allowed us to develop this software so quickly was our application of

different project management strategies. Our hybrid method of management, which we

nicknamed “scrumban” was a combination of strategic and tactical planning. The

“scrum” portion was tactical. It was how we managed the day-to-day objectives of our

project. The “Kanban” portion was more strategic; it was how we delegated major goals

and scheduled more long-term development. At the highest level of strategy was

conversations with Mr. Burton, which helped us tie in the business goals and keep us

centered on our ultimate goal: a simple more extensible codebase.

46

5.3 Takeaways

Software development is about so much more than being the best coder in the

room. Good development sits at the confluence of so many factors: communication,

coordination, strategic decision making, tactical problem solving, operations

management, and design. If a team does not handle all these soft issues, there will

never be time to dive into technical details.

This project was a phenomenal experience because it gave us the opportunity to

not only see all these different aspects of development, but to also implement and run

them. We were never given a bulleted list of exactly what to do, and Mr. Burton was not

over our shoulders micro-managing every step. We were given a tremendous amount of

responsibility over this project, which was a learning opportunity we could not have

gotten anywhere else.

5.4 Recommendations

One of the major goals with this software was to make it extensible to future

reporting needs. So, we hope to see that it gets used and reused in future reporting

pipelines. To help support this goal, we recommend several things.

• OpenPyXL: This is a fantastic open source library but as we have noted in this

paper, it has no fixed development. It is built on a piecemeal basis by a group of

volunteer coders working on donations, but as new features are added they

could obsolete some of the code we have built or even break code. Keeping a

tag on OpenPyXL’s development could save future headaches.

• Template model: The codebase is designed to be as flexible as reasonable with

Excel reports that looked like an open or closed fund report. It is easy to tweak a

widget here or add a column there, and we encourage that kind of reporting.

Building an entire template from scratch would almost certainly be the least

efficient way of using this codebase, though it is possible.

47

APPENDIX A: STRATEGY ENTRY

"""

This is the class definition for the StrategyEntry class.

The StrategyEntry contains all of the data necessary for generating the report and

some useful methods. It takes in a list of all the values read from the .csv file

and populates the StrategyEntry.

"""

from datetime import datetime

import logging

class StrategyEntry:

 def __init__(self, data_entry, keys):

 self.logger = logging.getLogger()

 self.data = {}

 for ind, key in enumerate(keys):

 self.data[key] = data_entry[ind]

 # GIC Defaults

 self.data["Deal"] = None

 self.data["Deal Type"] = None

 self.data["Country of Primary Business Risk"] = None

 self.data["GIC Sector"] = None

 self.data["GIC Industry"] = None

 self.data["Analyst(s)"] = None

 self.data["Publicly-Traded Equity"] = None

 self.data["Involvement with Company"] = None

 self.data["whitelist"] = []

 def __str__(self):

 return str(self.data)

 def __lt__(self, other):

 print("self: ", self.gross_profit(), "other: ", other.gross_profit())

 return self.gross_profit() < other.gross_profit()

 def calculate_bps(self, fund_size):

 """

 Calculates the strategies basis point (100ths of a percent) relative to the

provided

 fund_size and adds it as a new data entry.

 :param fund_size: fund_size must be in the same units as gross profit (e.g. if

gross profit

 is in millions fund_size should be too)

 """

 self.data["bps"] = abs((self.gross_profit() / fund_size) * 1e4)

 # PRIVATE

 def execute_override(self, workbook, override):

 """

 Applies overrides for the given override

 :param workbook: used to retrieve the sheet for app_logging

 :param override: the override that is related to this strategy

 :return: the overriden strategy

48

 """

 ws = workbook["OverrideLog"]

 override_text = [self.strategy()]

 if override.get("Show") == "n":

 # if we don't show this strategy, don't bother with the rest of the

filtering

 override_text.append("Don't show")

 ws.append(override_text)

 return None

 elif override.get("Show") == "y":

 override_text.append("")

 if override.get("Begin Date") is not None:

 date = override.get("Begin Date")

 if isinstance(date, datetime):

 date = date.strftime("%m/%d/%Y")

 override_text.append("Begin Date overwritten from {0} "

 "to {1}".format(self.first_cashflow(), date))

 self.data["First Cashflow"] = date

 else:

 override_text.append("")

 if override.get("End Date") is not None:

 date = override.get("End Date")

 if isinstance(date, datetime):

 date = date.strftime("%m/%d/%Y")

 override_text.append("End Date overwritten from {0} "

 "to {1}".format(self.last_cashflow(), date))

 self.data["Last Cashflow"] = date

 else:

 override_text.append("")

 if override.get("Total Mkt Value") is not None: # Ask Scott about some of

these

 override_text.append("Total Mkt Value overwritten from {0} "

 "to {1}".format(self.remmv(),

 override.get("Total Mkt Value")))

 self.data["RemMV"] = override.get("Total Mkt Value")

 else:

 override_text.append("")

 if override.get("GrossIRR") is not None:

 override_text.append("GrossIRR overwritten from {0} "

 "to {1}".format(self.irr(),

override.get("GrossIRR")))

 self.data["Internal Rate of Return"] = override.get("GrossIRR")

 else:

 override_text.append("")

 ws.append(override_text)

 return self

 else:

 self.logger.error("This override has no condition 'Show'")

 raise KeyError("This override has no condition 'Show'")

 """

 All these getters are used to better support any changes to the input csv. In the

case of a

 renamed column or added/removed column, the getters can be changed on a more

modular basis.

 """

49

 def strategy(self):

 return self.data.get("Strategy")

 def total_purchases(self):

 return float(self.data.get("TotalCost")) # Same as total cost apparently in

the C# code

 def irr(self):

 return self.data.get("Internal Rate of Return")

 def remmv(self):

 return float(self.data.get("RemMV"))

 def gross_profit(self):

 return float(self.data.get("GrossProfit"))

 def moic(self):

 return float(self.data.get("MOIC"))

 def first_cashflow(self):

 return self.data.get("First Cashflow")

 def last_cashflow(self):

 return self.data.get("Last Cashflow")

 def bps(self):

 try:

 return float(self.data.get("bps"))

 except TypeError:

 self.logger.debug("bps was called before it was calculated")

 return None

 def monetized(self):

 return self.remmv() == 0

 def get_whitelist(self):

 return self.data.get("whitelist")

 def get_attr_from_string(self, attribute_name):

 def switch(x):

 return {

 'bps': self.bps(),

 'monetized': self.monetized(),

 'last_cashflow': self.last_cashflow(),

 'first_cashflow': self.first_cashflow(),

 'moic': self.moic(),

 'gross_profit': self.gross_profit(),

 'remmv': self.remmv(),

 'irr': self.irr(),

 'strategy': self.strategy(),

 'total_purchases': self.total_purchases()

 }[x]

 try:

 return switch(attribute_name)

50

 except:

 self.logger.debug("{0} had no predefined getter, fetching directly from "

 "dictionary".format(attribute_name))

 return self.data.get(attribute_name)

 __repr__ = __str__

51

APPENDIX B: COLUMN STRATEGY
"""

All column stratergy and dynamic column creation classes

"""

import logging

from src.misc.utils import get_gross_profit_sum_from_list, conv_to_millions

class ColumnStrategyCreator:

 """

 Retrieves all strategies given the strategy name

 """

 def get_column_strategy(self, strategy_name):

 """

 Returns the correct strategy class based on the strategy provided

 :param strategy_name: strategy name, all strategies are found on the bottom

 :return:

 """

 class_ = STRATEGY_MAPPING[strategy_name]

 return class_

class ColumnStrategyAbs:

 """

 Abstract class for column strategies

 """

 def __init__(self, data, attribute_name=None):

 """

 :param attribute_name: extra variable, or attribute name

 """

 self.strategy_name = None # this should be changed

 self.attribute_name = attribute_name

 self.data = data

 def calculate(self):

 """

 This method is where the actual calculations should be performed to the data

 :param data: the list of Strategy points, ie our data

 :return: the new data set

 """

 pass

class DefaultStrategy(ColumnStrategyAbs):

 """

 The default strategy takes in an attribute name and

 returns a dataset with just the attribute name from the object

 """

 def __init__(self, data, attribute_name=None):

 super(DefaultStrategy, self).__init__(data, attribute_name)

 self.strategy_name = "default"

52

 def calculate(self):

 """

 Grabs the attribute_name from the object and creates a new array

 :param data: the data set of StrategyEntry Objects

 :return:

 """

 new_data = []

 for data_point in self.data:

 attribute_obj = data_point

 new_data.append(attribute_obj.get_attr_from_string(self.attribute_name))

 return new_data

class FloatStrategy(ColumnStrategyAbs):

 """

 The default strategy takes in an attribute name and

 returns a dataset with just the attribute name from the object

 """

 def __init__(self, data, attribute_name=None):

 super(FloatStrategy, self).__init__(data, attribute_name)

 self.strategy_name = "float_default"

 def calculate(self):

 """

 Grabs the attribute_name from the object and creates a new array

 :param data: the data set of StrategyEntry Objects

 :return:

 """

 new_data = []

 logger = logging.getLogger()

 for data_point in self.data:

 attribute_obj = data_point

 val = attribute_obj.get_attr_from_string(self.attribute_name)

 try:

 val = float(val)

 except ValueError:

 logger.warning("Did not read a float. Read: {0} of type {1} "

 "instead".format(val, type(val)))

 new_data.append(val)

 return new_data

class PercentChangeStrategy(ColumnStrategyAbs):

 """

 Calculates the percent change

 """

 def __init__(self, data, attribute_name=None):

 super(PercentChangeStrategy, self).__init__(data, attribute_name)

 self.strategy_name = "percent_change"

 def calculate(self):

 """

 Grabs the attribute_name from the object and creates a new array

53

 :param data: the data set of StrategyEntry Objects

 :return:

 """

 new_data = []

 total_gross_profit_sum = get_gross_profit_sum_from_list(self.data)

 for data_point in self.data:

 gross_profit = data_point.gross_profit()

 percentage = abs(gross_profit / total_gross_profit_sum)

 new_data.append(percentage)

 return new_data

class BPPStrategyRegular(ColumnStrategyAbs):

 """

 This strategy determines what category the bpp is

 the attribute it takes in the category either cat1, cat2, or cat3

 """

 def __init__(self, data, attribute_name):

 super(BPPStrategyRegular, self).__init__(data, attribute_name)

 self.cat1 = 0

 self.cat2 = 50

 self.cat3 = 100

 self.strategy_name = "bpp"

 def check_what_category_bps_is(self, bps):

 """

 Checks what category the bps is

 :param bps: the bps

 :return:

 """

 category = None

 if self.cat1 <= bps < self.cat2:

 category = "cat1"

 elif self.cat2 <= bps < self.cat3:

 category = "cat2"

 elif bps > self.cat3:

 category = "cat3"

 return category

 def calculate(self):

 new_data = []

 for data_point in self.data:

 bps = data_point.bps()

 if self.check_what_category_bps_is(bps) == self.attribute_name:

 new_data.append(data_point.gross_profit())

 else:

 new_data.append(None)

 return new_data

class AttributeInMillions(ColumnStrategyAbs):

 """

 Strategy to convert an attribute to millions

 """

54

 def __init__(self, data, attribute_name):

 super(AttributeInMillions, self).__init__(data, attribute_name)

 self.strategy_name = "in_millions"

 def calculate(self):

 new_data = []

 for data_point in self.data:

 attribute_obj = data_point

 val = attribute_obj.get_attr_from_string(self.attribute_name)

 new_data.append(conv_to_millions(val))

 return new_data

class BPPStrategy(ColumnStrategyAbs):

 """

 This strategy determines what category the bpp is

 the attribute it takes in the category either cat1, cat2, or cat3

 """

 def __init__(self, data, attribute_name):

 super(BPPStrategy, self).__init__(data, attribute_name)

 self.cat1 = 0

 self.cat2 = 50

 self.cat3 = 100

 self.strategy_name = "bpp_in_mills"

 def check_what_category_bps_is(self, bps):

 """

 Checks what category the bps is

 :param bps: bps of the data object

 :return: category string

 """

 category = None

 if self.cat1 <= bps < self.cat2:

 category = "cat1"

 elif self.cat2 <= bps < self.cat3:

 category = "cat2"

 elif bps >= self.cat3:

 category = "cat3"

 return category

 def calculate(self):

 new_data = []

 for data_point in self.data:

 bps = data_point.bps()

 if self.check_what_category_bps_is(bps) == self.attribute_name:

 gross_profit = data_point.gross_profit()

 gross_profit_in_mills = conv_to_millions(gross_profit)

 new_data.append(gross_profit_in_mills)

 else:

 new_data.append(None)

 return new_data

class PercentageBucketingStrategy(ColumnStrategyAbs):

 """

55

 This strategy determines what category the bpp is

 the attribute it takes in the category either cat1, cat2, or cat3

 """

 def __init__(self, data, attribute_name):

 super(PercentageBucketingStrategy, self).__init__(data, attribute_name)

 self.cat1 = 25

 self.cat2 = 50

 self.cat3 = 75

 self.cat4 = 100

 self.strategy_name = "percentage_bucketing"

 def find_max_gross_profit(self):

 """

 Finds the max gross profit from the entire data object list

 :return: float

 """

 return max([abs(i.gross_profit()) for i in self.data])

 def check_what_category_percentage_is(self, percentage):

 """

 Check the percentage category for bucketing purposes

 :param percentage: percentage metric

 :return: bucketing string

 """

 category = None

 if 0 < percentage <= self.cat1:

 category = "cat1"

 elif self.cat1 < percentage <= self.cat2:

 category = "cat2"

 elif self.cat2 < percentage <= self.cat3:

 category = "cat3"

 elif percentage >= self.cat3:

 category = "cat4"

 return category

 def calculate(self):

 """

 Calculates the percentage bucketing

 :return:

 """

 new_data = []

 max_gross_profit = self.find_max_gross_profit()

 for data_point in self.data:

 gross_profit = data_point.gross_profit()

 percentage = abs(gross_profit / max_gross_profit) * 100

 if self.check_what_category_percentage_is(percentage) ==

self.attribute_name:

 new_data.append(conv_to_millions(gross_profit))

 else:

 new_data.append(None)

 return new_data

class MonetizedStrategy(ColumnStrategyAbs):

 """

56

 Stratergy to determine if the straergy is monetizeid or ongoing

 """

 def __init__(self, data, attribute_name=None):

 super(MonetizedStrategy, self).__init__(data, attribute_name)

 self.strategy_name = "monetized"

 def calculate(self):

 """

 Checks if the strategy is monetized or ongoing

 :return:

 """

 new_data = []

 for data_point in self.data:

 new_data.append("Monetized" if data_point.monetized() else "Ongoing")

 return new_data

class CountStrategy(ColumnStrategyAbs):

 """

 Counts the data set and returns a list of enumeration -> [1,2,3,4,5....n]

 """

 def __init__(self, data, attribute_name=None):

 super(CountStrategy, self).__init__(data, attribute_name)

 self.strategy_name = "count"

 def calculate(self):

 new_data = []

 for ind, data in enumerate(self.data):

 new_data.append(ind + 1)

 return new_data

STRATEGY_MAPPING = {

 "default": DefaultStrategy,

 "percent_change": PercentChangeStrategy,

 "bpp_in_mills": BPPStrategy,

 "monetized": MonetizedStrategy,

 "in_millions": AttributeInMillions,

 "count": CountStrategy,

 "percentage_bucketing": PercentageBucketingStrategy,

 "float_default": FloatStrategy,

}

57

APPENDIX C: START MAIN REPORT
def start_main_report(input_name, fund_name=None, verbose=False, save_path=None,

 report_type="closed", template_path=None, starting_date=None):

 """

 Kicks off the main report and handles a lot of the business logic as to how

various pieces of

 code should be called

 :param input_name: (string) the file name of the input .csv to be parsed. Can be

relative or

 absolute path

 :param fund_name: (string) the 4 diGIT codename for the fund. Supported funds are

in the config

 file in the FUND_AMTS dictionary. Default is parsed from filename

 :param verbose: (boolean) if True sends email to addresses specified in

config.EMAIL_TO_ADDRESS

 :param save_path: (string) the relative path name for the file to be saved. If

None, uses

 default format

 :param report_type: (string) the type of report to be generated.

 :param template_path: (string) the relative path to the excel template to be used.

Must match

 the type specified.

 :param starting_date: default is to parse from input file, if set by user expects

a datetime obj

 """

 file_logger = configure_file_logging()

 stdout_logger = get_stdout_logger()

 # Log warnings from opening workbook

 template_path_relative = os.path.join(config.BASE_PROJECT_DIR, template_path)

 with warnings.catch_warnings(record=True) as w:

 # initialize and read the workbook

 stdout_logger.info("Loading template {0}...".format(template_path_relative))

 workbook = OpenPyXL.load_workbook(template_path_relative)

 for warning in w:

 file_logger.warning(warning.message)

 stdout_logger.info("Done.")

 workbook.active = 0

 winners_sheet = workbook.active

 # Parse input filename

 input_name_file = os.path.basename(input_name)

 temp_fund, temp_date = parse_filename(input_name_file)

 if fund_name is None:

 fund_name = temp_fund

 if starting_date is None:

 starting_date = temp_date

 if save_path is None:

 save_path = config.TEMP_DIR_OUTPUT_PATH

 stdout_logger.info("Collecting information from {0} and reading overrides from "

 "template...".format(input_name))

 legal_name = LegalName(fund_name).perform_query_single()

 load_in_name_date(workbook, name=legal_name, date=starting_date)

 # Open and load in data from input file

 array_data = read_csv_file(input_name)

 # Build StrategyEntry's from the input data

 keys = array_data[0]

58

 strategies, strategy_codes = generate_data_points(array_data, keys)

 output_strategies, strategy_codes = generate_data_points(array_data, keys)

 overrides = generate_override_dictionary(workbook, fund_name)

 # This is all the extra information that the preprocessors *might* need

 extra_attributes = {"workbook": workbook,

 "overrides": overrides,

 "keys": keys,

 "codes": strategy_codes,

 "fund_size": get_fund_from_template(workbook, fund_name)}

 stdout_logger.info("Done.")

 stdout_logger.info("Processing data and populating worksheet...")

 populate_winners_losers_worksheet(workbook, extra_attributes, winners_sheet,

strategies, fund_name,

 report_type=report_type)

 populate_output_worksheet(workbook, extra_attributes, output_strategies)

 stdout_logger.info("Done.")

 # Only select main page

 workbook.active = 0

 # format save path

 save_path_excel = os.path.join(save_path, fund_name + "_Deal_Analysis_" \

 + starting_date.strftime("%Y%m%d") + ".xlsx")

 try:

 stdout_logger.info("Saving file to {0}...".format(save_path_excel))

 workbook.save(save_path_excel)

 except PermissionError:

 file_logger.error(save_path_excel + " is open already in another editor

(likely Excel)."

 " Please close this file and try again.")

 stdout_logger.error(save_path_excel + " is open already in another editor

(likely Excel)."

 " Please close this file and try

again.")

 workbook.close()

 return 0

 workbook.close()

 stdout_logger.info("Done.")

 # excel_file = os.path.abspath(save_path)

 stdout_logger.info("Converting file to .pdf...")

 pdf_file = convert_excel_to_pdf(save_path_excel, save_path)

 stdout_logger.info("Done.")

 if verbose:

 stdout_logger.info("Sending files to {0}...".format(config.EMAIL_TO_ADDRESS))

 send_winners_losers_report(fund_name=fund_name, files=[pdf_file,

save_path_excel],

 report_date=starting_date)

 stdout_logger.info("Done.")

 stdout_logger.info("Report generation done.")

59

APPENDIX D: GRAPHICAL USER INTERFACE (GUI)
"""

Main view to encapsulate and build the view

"""

import ctypes

import os

from PyQt5 import QtWidgets, QtCore, QtGui

import config

from gui.utils import GUI_DIR, open_file_location_dir

from gui.view.designer.ui_main_window import Ui_MainWindow

from gui.view.main_form_view import FormView

from gui.view.readme_view import ReadmeWidgetView

from gui.view.regression_view import RegressionWidgetView

from gui.view.settings_view import SettingsWidgetView

class MainView(QtWidgets.QMainWindow):

 """

 Main application view which initialzies all other views

 """

 def __init__(self, model, main_ctrl, app=None):

 self.model = model

 self.main_ctrl = main_ctrl

 self.app = app

 super(MainView, self).__init__(None, QtCore.Qt.FramelessWindowHint)

 # super(MainView, self).__init__(None)

 self.ui = Ui_MainWindow()

 self.ui.setupUi(self)

 self.setFixedSize(self.size())

 self.gui_properties()

 # mouse events set up

 self.oldPos = self.pos()

 # seperate view objects from the main view

 # define all views before show

 self.form_view = FormView(main_view=self, model=self.model)

 self.connect_menu_events()

 self.show()

 def gui_properties(self):

 myappid = u'angelogordon.risk.distressed.1.0' # arbitrary string

 ctypes.windll.shell32.SetCurrentProcessExplicitAppUserModelID(myappid)

 # icon for taskbar

 icon_path = os.path.join(GUI_DIR, "resources/resized_logo.png")

 self.setWindowIcon(QtGui.QIcon(icon_path))

 def mousePressEvent(self, event):

 self.oldPos = event.globalPos()

 def mouseMoveEvent(self, event):

 delta = QtCore.QPoint(event.globalPos() - self.oldPos)

 self.move(self.x() + delta.x(), self.y() + delta.y())

 self.oldPos = event.globalPos()

60

 def connect_menu_events(self):

 self.ui.actionReadme.triggered.connect(self.readme_action)

 self.ui.actionReadme.setShortcut("Ctrl+r")

 self.ui.actionSettings.triggered.connect(self.settings_action)

 self.ui.actionSettings.setShortcut("Ctrl+s")

 self.ui.actionLogs.triggered.connect(self.open_logging_dir_action)

 self.ui.actionLogs.setShortcut("Ctrl+l")

 self.ui.actionClose.triggered.connect(self.exit_action)

 self.ui.actionClose.setShortcut(QtGui.QKeySequence(QtCore.Qt.Key_Escape))

 self.ui.actionMinimize.triggered.connect(self.showMinimized)

 self.ui.actionMinimize.setShortcut("Ctrl+m")

 self.ui.actionRegression_Testing.triggered.connect(self.regression_action)

 self.ui.actionRegression_Testing.setShortcut("Ctrl+t")

 def exit_action(self):

 self.app.quit()

 def readme_action(self):

 readme_widget = ReadmeWidgetView(self)

 readme_widget.open_dialog()

 def settings_action(self):

 settings_widget = SettingsWidgetView(self)

 settings_widget.open_dialog()

 def regression_action(self):

 RegressionWidgetView(self).open_dialog()

 def open_logging_dir_action(self):

 log_dir = config.LOGGING_PATH

 open_file_location_dir(log_dir)

"""

This file will hold all application wide data.

Our "model"

"""

from src.misc.templates import get_template_based_on_input

import copy

class Model(object):

 """

 Taken from https://stackoverflow.com/questions/26698628/mvc-design-with-

qtdesigner-and-pyside

 This is our model throughout the application, which contains all application

settings.

 The data is held in the data variable

 After each change, the state is captured

 """

 def __init__(self):

61

 self._update_funcs = []

 self.states = []

 # variable placeholders

 self.data = {

 "geneva_file_name": "",

 "output_file_name": "",

 "template_type": "closed",

 "fund_name": "",

 "period_end_date": "",

 "send_email": True,

 }

 self.update_data_refs(self.data)

 self.add_state(self.data)

 def update_data_refs(self, data_to_update):

 """

 Updates any dependent data references

 :param data_to_update: the copy of the state to update

 :return: None

 """

 data_to_update["template_path"] =

get_template_based_on_input(data_to_update["template_type"])

 def add_state(self, data):

 """

 Inserts data into the first index

 :param data: the data to insert into state

 :return: None

 """

 self.states.insert(0, data)

 def get_state_head(self):

 """

 Gets the head

 :return: dict

 """

 return self.states[0]

 def get_state_tail(self):

 """

 Gets the tail

 :return: dict

 """

 length = len(self.states) - 1

 return self.states[length]

 def set_data(self, key, val):

 """

 Sets the data, updates state, and announces update to any

 of the callbacks

 :param key: the key of the dataset

 :param val: the value of the dataset

 :return: None

 """

 data_cp = copy.deepcopy(self.get_state_head())

62

 try:

 data_cp[key] = val

 except Exception as e:

 print(e)

 self.update_data_refs(data_cp)

 self.add_state(data_cp)

 self.announce_update()

 def get_most_recent_state_data_w_key(self, key):

 """

 Gets the most recent state

 :param key: key

 :return:

 """

 data = self.get_state_head()

 return data[key]

 def get_data(self):

 """

 Returns data object

 :return:

 """

 return self.data

 # subscribe a view method for updating

 def subscribe_update_func(self, func):

 """

 Subscribes a function to whenever data is updated

 :param func: call back function

 :return:

 """

 if func not in self._update_funcs:

 self._update_funcs.append(func)

 # unsubscribe a view method for updating

 def unsubscribe_update_func(self, func):

 """

 Unsubscribes function from announcement

 :param func: callback function

 :return:

 """

 if func in self._update_funcs:

 self._update_funcs.remove(func)

 # update registered view methods

 def announce_update(self):

 """

 Announces there is a data update to any functions

 :return:

 """

 for func in self._update_funcs:

 func()

 def reset(self):

 """

 Sets the most recent state to the default, and

63

 announces update

 :return:

 """

 self.add_state(self.get_state_tail())

 self.announce_update()

"""

Controller for the main form view

"""

import os

from PyQt5.QtCore import QThread

from PyQt5 import QtCore

import config

import logging

from gui.controller.main_text_logger import QTHandler

from src.kick_off_pipeline import parse_geneva_filename

from src.kick_off_pipeline import kick_off_pipeline_call

from src.app_logging.configure_logging import configure_stdout_logging

class GenerateReportThread(QThread):

 """

 Generate report thread encapsulation

 """

 signalStatus = QtCore.pyqtSignal(str)

 def __init__(self, geneva_input=None, template_type=None,

 verbose=False, output_dir=None, parent=None):

 """

 :param geneva_input: Geneva file input

 :param template_type: the template type to use

 :param verbose: send email

 :param output_dir: output directory of output files

 :param parent: parent thread

 """

 super(GenerateReportThread, self).__init__(parent)

 self.geneva_input = geneva_input

 self.template_type = template_type

 self.verbose = verbose

 self.output_dir = output_dir

 self.handler = QTHandler(self.signalStatus)

 formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s\n',

datefmt="%H:%M:%S")

 self.handler.setFormatter(formatter)

 self.logger = configure_stdout_logging()

 self.logger.addHandler(self.handler)

 @QtCore.pyqtSlot()

 def run(self):

 """

 The process which the thread encapsulates

 :return: None

 """

 kick_off_pipeline_call(geneva_input=self.geneva_input,

64

template_type=self.template_type,

 verbose=self.verbose, output_dir=self.output_dir)

class MainFormController(object):

 """

 Controller to handle the form view

 """

 def __init__(self, model, view):

 self.model = model

 self.view = view

 self.worker = GenerateReportThread()

 def get_template_type_mapping(self):

 """

 Returns template type mapping keys

 :return: keys

 """

 mapping = config.TEMPLATE_TYPES

 return list(mapping.keys()), mapping

 def generate_report(self):

 """

 Kicks off the report generation thread configured based on all the preset

values.

 It expects the call from the view to both handle any exceptions and do the

validation

 """

 geneva_input = self.get_geneva_file()

 template_type = self.get_template_type()

 verbose = self.get_send_email_status()

 output_dir = self.get_output_dir()

 self.worker.geneva_input = geneva_input

 self.worker.template_type = template_type

 self.worker.verbose = verbose

 self.worker.output_dir = output_dir

 self.worker.start()

 def parse_date_and_fund_name(self, filename):

 """

 Parses the filename for the data and fund name

 :param filename: filename of the

 :return: fund_name, month_end_str, period_end_date, knowledge_date

 """

 return parse_geneva_filename(filename=filename)

 def get_attr_from_model_html(self, attr):

 val = self.model.get_most_recent_state_data_w_key(attr)

 if not val or val == "":

 val = "none"

 html = "{0}".format(val)

 return html

 def get_preview_html(self):

 html = """

65

 <div>

 <p>Geneva File: {0}</p>

 <p>Output dir: {1}</p>

 <p>Template type: {2}</p>

 <p>Template File: {3}</p>

 <p>Fund Name: {4}</p>

 <p>Period End date: {5}</p>

 <p>Send email: {6}</p>

 </div>

 """.format(self.get_attr_from_model_html("geneva_file_name"),

self.get_attr_from_model_html("output_file_name"),

 self.get_attr_from_model_html("template_type"),

self.get_attr_from_model_html("template_path"),

 self.get_attr_from_model_html("fund_name"),

self.get_attr_from_model_html("period_end_date"),

 self.get_attr_from_model_html("send_email"))

 return html

 def reset_model_to_default(self):

 self.model.reset()

 def set_geneva_file(self, file_name):

 self.model.set_data("geneva_file_name", file_name)

 def set_output_save_file_location(self, file_name):

 self.model.set_data("output_file_name", file_name)

 def get_geneva_file(self):

 return self.model.get_most_recent_state_data_w_key("geneva_file_name")

 def get_output_dir(self):

 dirname =

os.path.abspath(self.model.get_most_recent_state_data_w_key("output_file_name"))

 return dirname

 def set_fund_name(self, fund_name):

 self.model.set_data("fund_name", fund_name)

 def get_fund_name(self):

 return self.model.get_most_recent_state_data_w_key("fund_name")

 def set_period_end_date(self, period_end_date):

 self.model.set_data("period_end_date", period_end_date)

 def get_period_end_date(self):

 return self.model.get_most_recent_state_data_w_key("period_end_date")

 def set_send_email_status(self, status):

 self.model.set_data("send_email", status)

 def get_send_email_status(self):

 return self.model.get_most_recent_state_data_w_key("send_email")

 def set_template_type(self, type):

 self.model.set_data("template_type", type)

66

 def get_template_type(self):

 return self.model.get_most_recent_state_data_w_key("template_type")

67

APPENDIX E: UNIT AND REGRESSION TESTING
import os

from unittest import TestCase

import OpenPyXL

import winners_losers_closed_fund

import config

from src.app_logging.configure_logging import configure_file_logging

from src.excel.comparison_tools import cmp_serialisable

configure_file_logging()

class TestRegression(TestCase):

 """

 Uses a pre-generated Winners & Losers report from a fixed data set to compare

against the

 output report from the current codebase and compares errors

 """

 def setUp(self):

 expected = os.path.join(config.TEST_DATA_PATH,

"CRP6_Deal_Analysis_20170930_expected.xlsx")

 print(expected)

 self.expected_closed_output = OpenPyXL.load_workbook(expected)

 self.input = os.path.join(config.TEST_DATA_PATH,

"NewWLTotals_CRP6_20170930.csv")

 self.actual_closed_output = os.path.join(config.TEMP_DIR_OUTPUT_PATH,

 "CRP6_Deal_Analysis_20170930.xlsx")

 def tearDown(self):

 self.expected_closed_output.close()

 self.expected_closed_output = None

 def check_cells(self, expected, actual):

 """

 Checks all the cells in the current worksheet by comparing all the style

objects as

 Serialisable objects.

 :param expected: the expected worksheet object

 :param actual: the actual worksheet object

 :return:

 """

 for ex_row, ac_row in zip(expected.iter_rows(), actual.iter_rows()):

 for ex_cell, ac_cell in zip(ex_row, ac_row):

 self.assertEqual(ex_cell.coordinate, ac_cell.coordinate)

 self.assertEqual(ex_cell.value, ac_cell.value)

 self.assertEqual(ex_cell.number_format, ac_cell.number_format)

 self.assertTrue(cmp_serialisable(ex_cell.font, ac_cell.font))

 self.assertTrue(cmp_serialisable(ex_cell.fill, ac_cell.fill))

 self.assertTrue(cmp_serialisable(ex_cell.border, ac_cell.border))

 self.assertTrue(cmp_serialisable(ex_cell.alignment,

 ac_cell.alignment))

 def check_ranges(self, expected, actual):

 """

 Checks the defined names as Serialisable objects

68

 :param expected: list of DefinedNames

 :param actual: list of DefinedNames

 :return:

 """

 for ex_defn, ac_defn in zip(expected, actual):

 self.assertTrue(cmp_serialisable(ex_defn, ac_defn))

 def check_images(self, expected, actual):

 """

 Currently just checks that the expected number of images are there, as

comparing images

 is beyond the scope of this test

 :param expected: list of expected images

 :param actual: list of actual images

 :return:

 """

 self.assertEqual(len(expected), len(actual))

 def check_tables(self, expected, actual):

 """

 Checks the tables as Serialisable objects

 :param expected: list of Tables

 :param actual: list of Tables

 :return:

 """

 for ex_table, ac_table in zip(expected, actual):

 self.assertTrue(cmp_serialisable(ex_table, ac_table))

 def check_sheets(self, expected, actual):

 """

 Checks all the sheets in the current workbook, failing if they don't match in

name, and

 calling check_cells, check_images, and check_tables to check all of those sub-

objects

 recursively.

 :param expected: the expected workbook object

 :param actual: the actual workbook object

 :return:

 """

 for ex_sheet, ac_sheet in zip(expected._sheets, actual._sheets):

 try:

 self.assertEqual(ac_sheet.title, ex_sheet.title)

 self.assertEqual(ac_sheet.max_row, ex_sheet.max_row)

 self.assertEqual(ac_sheet.min_row, ex_sheet.min_row)

 self.assertEqual(ac_sheet.max_column, ex_sheet.max_column)

 self.assertEqual(ac_sheet.min_column, ex_sheet.min_column)

 self.check_cells(ex_sheet, ac_sheet)

 self.check_images(ex_sheet._images, ac_sheet._images)

 self.check_tables(ex_sheet._tables, ac_sheet._tables)

 except AssertionError as e:

 print("ac_sheet: {0} ex_sheet: {1}".format(ac_sheet.title,

ex_sheet.title))

 raise e

 def test_closed_fund(self):

69

 winners_losers_closed_fund.main(self.input)

 actual = OpenPyXL.load_workbook(self.actual_closed_output)

 self.check_sheets(self.expected_closed_output, actual)

 self.check_ranges(self.expected_closed_output.defined_names.definedName,

 actual.defined_names.definedName)

 actual.close()

import os

import OpenPyXL

from OpenPyXL.worksheet.table import Table

from unittest import TestCase

from src.excel import table_tools

from src.app_logging.configure_logging import configure_file_logging

import config

configure_file_logging()

TEST_TEMPLATE_CLOSED_FUND = os.path.join(config.BASE_PROJECT_DIR,

"templates\winnerslosertemplate_closed_fund.xlsx")

class TestTableTools(TestCase):

 """

 Testing the Excel table manipulation tools

 """

 def setUp(self):

 self.workbook = OpenPyXL.load_workbook(TEST_TEMPLATE_CLOSED_FUND)

 self.save_name = "test_table_tools_workbook.xlsx"

 self.workbook.create_sheet("Test_Sheet")

 self.worksheet = self.workbook["Test_Sheet"]

 table = Table(displayName="Test_Table", ref="A1:E5")

 self.worksheet.add_table(table)

 self.workbook.save(self.save_name)

 self.workbook = OpenPyXL.load_workbook(self.save_name)

 def tearDown(self):

 self.workbook.close()

 self.workbook = None

 if os.path.exists(self.save_name):

 os.remove(self.save_name)

 def test_write_to_cell(self):

 val = "Artichoke"

 coord = "A5"

 table_tools.write_to_cell(self.workbook, coord, val,

sheet=self.workbook["Test_Sheet"])

 self.workbook.save(self.save_name)

 self.workbook = OpenPyXL.load_workbook(self.save_name)

 self.assertEqual(self.workbook["Test_Sheet"][coord].value, val)

 def test_get_table_row(self):

 self.assertEqual(table_tools.get_table_row(self.workbook, "Test_Table"), 1)

 def test_break_apart_range(self):

 simple_range = "A5:B11"

70

 spec_character_range = "A5:B11"

 long_range = "AAA21:ADB44"

 all_range = "AAA21:ADB44"

 self.assertEqual(table_tools.break_apart_range(simple_range), [["A", 5], ["B",

11]])

 self.assertEqual(table_tools.break_apart_range(spec_character_range), [["A",

5], ["B", 11]])

 self.assertEqual(table_tools.break_apart_range(long_range), [["AAA", 21],

["ADB", 44]])

 self.assertEqual(table_tools.break_apart_range(all_range), [["AAA", 21],

["ADB", 44]])

 def test_find_table(self):

 try:

 table_tools.find_table(self.workbook, "Test_Table")

 except KeyError:

 self.fail("Could not find test table")

 def get_named_range_coords(self, name):

 """

 Takes in a name and tries to find it. Fails if it can't locate the named_range

or if the

 named range is not a cell

 :param name: the name of the range

 :return: the coords and the worksheet

 """

 names = [defn.name for defn in self.workbook.defined_names.definedName]

 if name not in names:

 self.fail("Can't find {0}".format(name))

 defn = self.workbook.defined_names[name]

 count = 0

 for title, coord in defn.destinations:

 if count > 1:

 self.fail("This named range is more than one cell")

 worksheet = self.workbook[title]

 count += 1

 coord = coord.replace("$", "")

 return coord, worksheet

 def test_shift_named_cell(self):

 # Check that the named test cell exists

 test_name = "FUND_CELL"

 change = 10

 coord, worksheet = self.get_named_range_coords(test_name)

 base_col, base_row = table_tools.get_col_row(coord)

 table_tools.shift_named_cell(self.workbook, test_name, 0, change, worksheet)

 self.workbook.save(self.save_name)

 self.workbook = OpenPyXL.load_workbook(self.save_name)

 coord, worksheet = self.get_named_range_coords(test_name)

 new_col, new_row = table_tools.get_col_row(coord)

 if new_row != base_row + change:

 self.fail("Failed to add {0} to row".format(change))

 table_tools.shift_named_cell(self.workbook, test_name, change, 0, worksheet)

 self.workbook.save(self.save_name)

71

 self.workbook = OpenPyXL.load_workbook(self.save_name)

 coord, worksheet = self.get_named_range_coords(test_name)

 new_col, new_row = table_tools.get_col_row(coord)

 if table_tools.get_col_num(new_col) != table_tools.get_col_num(base_col) +

change:

 self.fail("Failed to add {0} to col".format(change))

 table_tools.shift_named_cell(self.workbook, test_name, 0, -change, worksheet)

 self.workbook.save(self.save_name)

 self.workbook = OpenPyXL.load_workbook(self.save_name)

 coord, worksheet = self.get_named_range_coords(test_name)

 new_col, new_row = table_tools.get_col_row(coord)

 if new_row != base_row:

 self.fail("Failed to remove {0} from row".format(change))

 table_tools.shift_named_cell(self.workbook, test_name, -change, 0, worksheet)

 self.workbook.save(self.save_name)

 self.workbook = OpenPyXL.load_workbook(self.save_name)

 coord, worksheet = self.get_named_range_coords(test_name)

 new_col, new_row = table_tools.get_col_row(coord)

 if new_col != base_col:

 self.fail("Failed to remove {0} from col".format(change))

 table_tools.shift_named_cell(self.workbook, test_name, change, change,

worksheet)

 self.workbook.save(self.save_name)

 self.workbook = OpenPyXL.load_workbook(self.save_name)

 coord, worksheet = self.get_named_range_coords(test_name)

 new_col, new_row = table_tools.get_col_row(coord)

 if table_tools.get_col_num(new_col) != table_tools.get_col_num(base_col) +

change \

 and new_row != base_row + change:

 self.fail("Failed to add to both col and row")

import os

from unittest import TestCase

from src.column.column_generate import Column

from src.excel.table_tools import get_table_row

from src.app_logging.configure_logging import configure_file_logging

from src.misc.utils import read_csv_file

import config

from winners_losers_main import generate_data_points

import OpenPyXL

TEST_TEMPLATE_CLOSED_FUND = os.path.join(config.BASE_PROJECT_DIR,

"templates\winnerslosertemplate_closed_fund.xlsx")

TEST_INPUT_FILE = os.path.join(config.TEST_DATA_PATH, "NewWLTotals_CRP6_20170930.csv")

configure_file_logging()

class TestColumn(TestCase):

 """

 Tests the Column class located in src/column/column_generate

 """

72

 @classmethod

 def setUp(cls):

 print(TEST_TEMPLATE_CLOSED_FUND)

 cls._workbook = OpenPyXL.load_workbook(TEST_TEMPLATE_CLOSED_FUND)

 cls._workbook.active = 0

 cls._winners_sheet = cls._workbook.active

 array_data = read_csv_file(TEST_INPUT_FILE)

 keys = array_data[0]

 cls._data_points = generate_data_points(array_data=array_data, keys=keys)[0]

 cls._starting_row = get_table_row(cls._workbook, "OutputTable")

 cls._column = Column(data_container=cls._data_points,

starting_row=cls._starting_row,

 attribute_name="GrossProfit",

 col_coord="A1", column_name="Gross Profit",

strategy_name="default",

 workbook=cls._workbook)

 def tearDown(self):

 self._workbook.close()

 def test_populate_data(self):

 """

 Test population of values in the excell sheet with gross profit

 :return: None

 """

 self._column.populate_data()

 max_row = self._winners_sheet.max_row

 cell_arr = self._winners_sheet[self._starting_row:max_row]

 cell_arr_col_1 = [i[0] for i in cell_arr]

 cell_arr_gp = [float(i.value) for i in cell_arr_col_1]

 correct_solution = [i.gross_profit() for i in self._data_points]

 self.assertEqual(cell_arr_gp, correct_solution)

 def test_populate_data_whitelist(self):

 """

 Test whitelist data, meaning exlcusion of certain data types

 :return:

 """

 # check whitelist data works

 # remove gross profit as whitelist, the return of populate data should be

empty

 new_data_container = []

 for i in self._data_points:

 i.data["whitelist"] = ["None"]

 new_data_container.append(i)

 column = Column(data_container=new_data_container,

starting_row=self._starting_row,

 attribute_name="GrossProfit",

 col_coord="A1", column_name="Gross Profit",

strategy_name="default", workbook=self._workbook)

 column.populate_data()

 max_row = self._winners_sheet.max_row

 cell_arr = self._winners_sheet[self._starting_row:max_row]

 cell_arr_col_1 = [i[0] for i in cell_arr]

 cell_arr_gp = [i.value for i in cell_arr_col_1]

73

 finalarr = []

 for i in cell_arr_gp:

 if not i:

 continue

 if i.isdiGIT():

 finalarr.append(i)

 self.assertEqual(finalarr, [])

 def test_get_row_position(self):

 self.test_populate_data()

 self.assertEqual(self._column.get_row_position(), len(self._data_points) +

self._starting_row)

74

Works Cited
Angelo, Gordon, & Co. (2018, January 2). The case for alternatives. Retrieved from

Angelo, Gordon, & Co: https://www.angelogordon.com/why_alternatives.aspx

Bolton, D. (2017, July 20). What is an enum? Retrieved from Thoughtco.com:

https://www.thoughtco.com/what-is-an-enum-958326

Boyd, B. (2001). Closed-end funds open some new possibility. Puget Sound Business

Journal, 41.

Clark, C., & Dallas. (2013, July). Insert row into Excel spreadsheet using openpyxl in

Python. Retrieved from Stackoverflow:

https://stackoverflow.com/questions/17299364/insert-row-into-excel-spreadsheet-

using-openpyxl-in-python

Clark, C., & Gazoni, E. (2017, November 29). A Python library to read/write Excel 2010

xlsx/xlsm files. Retrieved from Openpyxl:

https://openpyxl.readthedocs.io/en/default/

Gruber, J. (2004, December 17). Markdown. Retrieved from Daring Fireball:

https://daringfireball.net/projects/markdown/

Investopedia. (2017, December 4). Basis Point (BPS). Retrieved from

Investopedia.com: https://www.investopedia.com/terms/b/basispoint.asp

Investopedia. (2017, November 17). Profit and Loss Statement (P&L). Retrieved from

Investopedia.com: https://www.investopedia.com/terms/p/plstatement.asp

James, M. (2017, December 7). Learn Scrum. Retrieved from Scrum Methodolgy:

http://scrummethodology.com/

Kaufman, G. G. (2000). Banking and currency crises and systemic risk: A taxonomy and

review. Financial Markets, Institutions & Instruments, 76.

Law, J. (2015). A Dictionary of Finance and Banking. Oxford University Press.

Lopez, F., & Romero, V. (2014). Mastering Python Regular Expressions. Packt

Publishing Ltd.

Myers, G. J., Sandler, C., & Badgett, T. (2011). The Art of Software Testing. Hoboken:

John Wiley & Sons.

NUMFocus. (2017, November 29). pandas: powerful Python data analysis toolkit.

Retrieved from pandas.pydata.org: http://pandas.pydata.org/pandas-docs/stable/

75

NumPy developrs. (2017, November 29). NumPy. Retrieved from Numpy.org:

http://www.numpy.org/

Qureshi, R. J., & Sabir, F. (2013). A comparison of model view controller and model

view presenter. Science International-Lahore, 3.

Rodriguez, J. (2016, June 15). Don't get obsessed with design patterns. Retrieved from

Simpleprogrammer.com: https://simpleprogrammer.com/2016/06/15/dont-get-

obsessed-design-patterns/

Shvets, A., Frey, G., & Pavlova, M. (2017). Abstract factory design pattern. Retrieved

from Sourcemaking.com:

https://sourcemaking.com/design_patterns/abstract_factory

Shvets, A., Frey, G., & Pavlova, M. (2017, December 5). Singleton Design Pattern.

Retrieved from Sourcemaking.com:

https://sourcemaking.com/design_patterns/singleton

Shvets, A., Frey, G., & Pavlova, M. (2017). Strategy Design Pattern. Retrieved from

Sourcemaking.com: https://sourcemaking.com/design_patterns/strategy

Tower. (2017, December 5). Learn Version Control with Git. Retrieved from Git-

tower.com: https://www.git-tower.com/learn/git/ebook/en/desktop-gui/basics/why-

use-version-control

van Rossum, G., Warsaw, B., & Coghlan, N. (2013, August 1). PEP 8 -- Style Guide for

Python Code. Retrieved from Python.org: https://www.python.org/dev/peps/pep-

0008/#a-foolish-consistency-is-the-hobgoblin-of-little-minds

Weisfeld, M. (2013). The Object-Oriented Thought Process. Addison-Wesley.

