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Abstract

Modern computer systems are complex. Even in the best of conditions, it can be difficult to

understand the behavior of the system and identify why certain actions are occurring. Existing

systems attempt to provide insight by reviewing the effects of actions on the system and estimating

their cause. As computer systems are strongly driven by actions of the user, we propose an

approach to identify processes which have interacted with the user and provide data to which

system behaviors were caused by the user. We implement three sensors within the graphical

user interface capable of extracting the necessary information to identify these processes. We

show our instrumentation is effective in characterizing applications with an on-screen presence,

and provide data towards the determination of user intentions. We prove that our method for

obtaining the information from the user interface can be done in an efficient manner with minimal

overheads.
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1 Introduction

Modern computer systems have advanced to the point where the cause of activity on a host is

not always clear. Existing security and audit systems leverage limited information in attempts

to describe and judge the legitimacy of system behavior without knowing if the observed actions

are intended by the user. These systems focus only on logged behavior in well defined spaces, for

example: process execution stats, network traffic, and file accesses. However, as computer systems

are driven by the user, these system should also consider the actions of the end-user. Our approach

instruments the graphical user interface (GUI) to determine which processes interact with the user

and to extract the context of the interaction towards an understanding of user-endorsed actions

on a system.

Existing approaches try to gain an understanding of actions occurring on a system by focusing on

the symptoms of the actions and attempt to work backward. These approaches have studied system

call data to determine the application’s intended purpose is. Other systems take this approach

further and attempt to determine if an application is acting maliciously through patterns of system

calls and heuristics of file accesses [1, 2].

These approaches have mixed success as they have no data on what the user’s actions were.

A similar approach attempts to incorporate the user somewhat indirectly by approving network

connections only within a certain time window after detecting activity on the keyboard [3]. Another

approach specifically looks for an open or save file dialog box prior to allowing a process to edit

files [4]. All these approaches fall short of understanding the user interaction with processes and

as such attempt to use just parts of the interaction to provide marginal benefits. Our approach

aims to record the full interaction between a user and system processes.

We place our focus on processes and how they interact with the user. With modern systems being

driven by user, the user will be the root of many actions occurring on a system. We aim to capture

the interactions of the user with the system by instrumenting the graphical user interface. All

processes wishing to communicate with the user must appear on the screen, and in order to receive

commands from the user they must be able to accept data from the keyboard and mouse. In

order to have a screen-presence processes must engage existing libraries and subsystems to convert

text and graphical commands into objects displayable on the shared resource of a screen. Further,

an application must also utilize system interfaces to be notified of incoming user input from the

keyboard and mouse. We take advantage of these requirements and place instrumentation within

the interfaces a process must interact with to achieve user interaction.

By collecting and storing data from the GUI we are able to provide data towards a number of

interesting applications. For example, our data collection could be employed for widely deployed

usability testing, similar to how applications such as Firefox collect data on how users interact with

their windows [5], our instrumentation could provide insights into how users navigate the entire

operating system. Our instrumentation could also be used towards the auditing of user activity

and which applications a user engages with. This could be particular useful for organizations

investigating reports of misuse, or simply for the gathering of application usage metrics to decide
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if it is worth renewing licenses for expensive programs. Additionally, our data could be leveraged

towards providing extra insight into a system’s operations when evaluating a security policy. In

particular, gathered user interaction data could be sent to a network controller when determining

if an application should be permitted to contact a server holding confidential data.

We implement our approach in the Ubuntu Linux distribution and as such frame our discussions

around the details of the Ubuntu platform [6]. Our decision to use the Linux-based platform was

due to the open-source model of the Linux kernel, the Ubuntu platform, and all of the libraries

included in the distribution’s packaged release. Additionally, building our approach within the

open-source platform would not be hindered by unavailable APIs or licensing restrictions. Despite

our decision, we do note that our general approach and data gathering is applicable to other

operating systems.

Figure 1: A high-level view of the information flow to and from the user. The three sensors, labeled
Kernel, X11, and GTK+, will be placed within these components handling the flow of information
allowing the extraction of data.

To extract the information necessary to make these distinctions, we created a three-sensor system

as visualized in Figure 1. Each of the three sensors is located within a key portion of Ubuntu’s

graphics processing stack. We place a sensor within the kernel (the “kernel sensor”), another built

into the X.Org implementation of the X Window System (the “X11 sensor”) [7], and the final

sensor within the untrusted user space graphics library GTK+ (the “GTK+ sensor”) [8]. These

three discrete sensors will hold differing levels of detail, all of which are required for our approach:

the kernel records the reading of input devices, the windowing system tracks which applications

appear on the screen and receive data; and the graphics toolkits render text on the screen. At each

stage in the procedure, to either display an object on the screen or deliver user input a process,

our sensors will log the extracted information and archive the data to disk. In all, we monitor user

keyboard and mouse input, observe which programs receive user input, note applications which

appear on the screen, and record contextual information for displayed processes. Furthermore, as
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the graphics toolkits reside fully under the end-user’s control, we will verify and correlate data

extracted across all three sensors to ensure consistency.

In addition to our own instrumentation, we also leverage the Linux Auditing Subsystem to record

the actions the kernel performed on behalf of running processes. The Linux Auditing Subsystem

is a set of functions within the kernel capable of tracking a number of different events typically

employed to meet audit compliance regulations [9]. For our purposes we request the Auditing

Subsystem to record the system calls invoked by each process that is not owned by root. With

the audit data in hand we aim to link high-level user actions to the low level results; for example,

when the user presses a button we observe the process perform some series of system calls in

response.

In summary, the contributions of this thesis are:

• High Performance Monitoring of the GUI: We create and evaluate three high perfor-

mance and low-overhead sensors capable of monitoring the entire graphical interface. Our

sensors do not cause noticeable delay in a system and are designed for deployment across an

organization.

• Identification of Processes Reading Input Devices: Through the creation of our own

kernel module, we monitor requests from processes to receive keyboard and mouse data. If

the request is approved, we record the amount of data each process receives from the user

input devices.

• Metrics for Process-User Interaction: Through small modifications to the X Windowing

System, we can detemine which processes have a screen presence, the quantity of information

transmitted to the display, the amount of user input a process receives, and even which

keyboard characters were received by the process.

• Application independent context extraction: Through instrumentation in the GIMP

Toolkit (GTK+) graphics library, we extract both text and widget hierarchy information

representing the graphical state of applications with a screen presence. By altering the

GTK+ library, we are able to provide this context without changes to applications while

efficiently extracting information with high accuracy.

• A method for verification of an untrusted sensor: By trusting the kernel and display

manager sensors, we will explore overlaps to verify the data recorded by the GTK+ sensor.

We enumerate both the indicators of valid recorded data and indicators of incorrect data.

• A characterization towards identifying user-initiated behavior: Based on our gath-

ered sensor data, combined with audit logs from the Linux Auditing Subsystem, we propose

characterizations for the identification of user-initiated process behavior.

We now introduce each sensor in greater detail and discuss the data each sensor is responsible for

extracting.

The Kernel Sensor is implemented as a kernel module and resides within kernel space. By inter-
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cepting the open, read, and close system calls we are able to monitor each processes’ use of the

input devices. For example, when a user moves the mouse or types on the keyboard, the kernel

will register data flowing in from the hardware and provide the information to any process which

has opened the input devices for reading. By tracking which applications have opened the devices,

and by logging the number of bytes read from each device, our kernel sensor is able to indicate

which processes are receiving the raw user input. We estimate that the most frequent consumer

of the raw data will be the windowing system.

The X11 Sensor is strategically placed within the code of the X Windowing System. Responsible for

multiplexing the screen, the X Windowing System’s Server (abbreviated “XServer”) communicates

with connected client processes (abbreviated “XClients”) to process display requests and deliver

events. The XServer handles the placement of on-screen windows, updating of displayable objects,

and dispatching input events to the appropriate XClients. We place instrumentation within the

XServer to log both the delivery of user-input events, and the application requests for displaying

information on the screen. Unfortunately, these display requests are usually already rendered

images and, as such, it is not possible to extract further information about what the process is

displaying.

The GTK+ Sensor is an untrusted sensor, since it is instrumented within the user-controlled

graphics library GTK+. This library, although is ultimately owned by root, is executed under the

end-user’s permissions. This raising the possibility of either data manipulation or outright lying

to trick our sensor into logging information which is irrelevant. Despite this possibility though,

we instrumented the graphical library to gain access to the rich contextual information available.

For example, when an application based upon GTK+ creates a new text object, we are able to

log the text to a file. Similarly, when a process creates a new button, we are able to log the

parent-child relationship and pull out the child’s text for further review. Once a process feeds

GTK+ the information it wants displayed, GTK+ rendered the graphical objects and presents an

image ready to be processed by the X Windowing System.

Using these sensors, we aim to study how data being reported from each sensor relates to one

another while recording actions from a process. In particular, how information from the X11 and

Kernel sensors relate to the data reported by the GTK+ sensor. For instance, when a user types

into an editable text box displayed on the screen, the pressed keys will be detected by the kernel

sensor, processed by the X11 sensor, and then the same text will often be logged as rendered on

the screen by the GTK+ sensor.

2 Background and Related Work

In this section we discuss both recent best practices in computing and work related to our approach.

We focus on work aimed at understanding actions on the system and work utilizing user interactions

to provide legitimacy to observed actions.
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2.1 Least User Privileges

Similar to the compartmentalization of confidential information, organizations often deploy user

workstations with a minimal set of allowed user permissions. By restricting users to the least

amount of access possible the overall integrity of the system can remain intact, even if a user account

is compromised. This approach to security is commonly referred to as “least user privileges” [10].

This is typically deployed so that users do not have administrative access to their own machines

and therefore cannot install new programs, alter the system configuration, or otherwise elevate

themselves to ‘root-level’ permissions. In doing so, the operating system can be protected against

malware infections and the occasional careless action by a user. Under the conditions of this model,

users also cannot circumvent any administratively-applied constraints or monitoring systems such

as our graphical interface sensors.

2.2 Detecting Abnormal Behavior

Work related to ours focuses on detecting anomalous behavior and attempting to determine if the

abnormal actions are malicious in nature. The Panorama system created by Yin et al. constructs

a virtualized testing host with system-wide sensitive data tainting to run suspect programs. If

sensitive data is handled inappropriately (e.g. a program attempts to send it out a network socket)

Panorama marks the program malicious [11]. Similarly, Siren runs suspect programs by emulating

an environment in which there is an active user performing routine tasks. Malware which attempts

to blend in with normal behavior can be detected by noticing deviations between test runs. Both

of these approaches rely on dedicated testing environments, our approach aims to be deployed on

an end-user system and perform dynamic identification of suspect behaviors [12].

Other previous work took a different approach, one which was more dynamic and run on the

end-host itself. The work by Hofmeyr et. al., was able to detect differences in system calls pat-

terns between benign programs and ones with malicious intent [2]. However, a newer research

paper, AccessMiner, claims that looking solely at patterns of system calls cannot reliably detect

malware. Instead, AccessMiner logged system calls from nearly a dozen lab systems and studied

read/write attempts to detect malicious programs operating outside of normal file access pat-

terns [1]. While quite successful with malware which perform file access, AccessMiner detection

capabilities is restricted to malware that attempts to alter files normally in other program’s system

files. Furthermore, both of these papers can only attempt to detect patterns without any idea of

what the intended end goal is; our approach will provide data towards attempting to infer the

user’s goal by how he/she interacts with on-screen applications.

Similarly, user-profiling approaches study user action as seen through the effects of their interaction

with a system. Approaches in this area have attempted to use features like event frequency, event

patterns, and the duration of interaction [1, 2, 13]. The creators of such approaches have studied

these user effects through a number of means, such as Markov Chains, Ná’ive Bayes classifiers,

and Support Vector Machines [14–19]. Instead of looking at the after-effects of user actions, our

approach studies the interaction directly as seen by the graphical user interface. We aim to provide
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the information gathered to the analytic models of the related works for more accurate models of

user activities.

2.3 Inferring User Intentions

In order to learn of the user’s intention while the user is working towards some goal, certain systems

have proposed that either the operating system, the GUI manager, or even both be redesigned to

support extra windows asking for a confirmation when dealing with sensitive operations. Perhaps

the most widely experienced occurrence of this approach are the security confirmations for modern

iOS or Android cell phone platforms when an application wishes to use certain components, such

as the location or camera subsystems [20,21]. A number of previous works describe how a similar

system could be created for end-host systems, either by some sort of dialog box [22], or by having

certain system-controlled user interface icons that allow access when activated by a user [23].

These approaches are beneficial, but require the cooperation of all user-facing applications and

are therefore difficult to implement on a large scale. Our approach is to perform system changes

without requiring any alterations to client applications.

Approaches most similar to ours are passive observation techniques which monitor the state of the

GUI and record input received from the user to aid in security decisions. Notably, the work by

Cui et al. receives raw mouse/keyboard events and uses this information to only allow outgoing

network connections from processes recently provided input by the user [3]. Shirely et al., takes

this approach a bit further and applies it to standard filesystem tasks as well; for example, if

the user interacts with a save-file dialog, allow the process to write to the file [4]. Another work

simply captured an image of the user’s screen and applied optical character recognition (OCR)

to determine the contents of the interface [24, 25]. Our approach aims to get even more detail by

extracting all displayed text from the GUI and correlate this data with system actions to infer the

user’s intent.

2.4 Detecting User-Interaction

A number of works have created systems varying in complexity to detect the interaction of a

user. Some approaches simply detect generic events within the kernel from the input devices (e.g.,

keyboard, mouse) and leverage the presence of such an event to validate high-level actions, such as

a network request [26]. Other approaches focus on specific programs, such as Firefox, and observe

user-interactions and subsequent actions [27,28]. Further approaches perform both kernel-level and

application-level logging to validate actions [29–31]. While these approaches many overlap with

small portions of our approach, we aim to provide more detail than these approaches combined

through our three-sensor instrumentation of the graphical interface.
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2.5 Correlation of Sensors at Separate Trust Levels

There have been many approaches to correlating, aggregating, and detecting abnormalities in

collected data in previous work. Some work needing only simple extraction from system call logs

relied on regular expressions [4], while other work used a n-gram approach to create buckets of

incoming system log data for further processing [1]. Work attempting to detect masquerading

have used Bayes classifiers [15,16] and also have applied Support Vector Machines (SVMs) [17,19].

Further work have used Markov models, or simply have customized their own solution to best fit

their data and approach [2, 3]. Our approach will indicate ares of overlap between our trusted

sensors and untrusted sensors to provide data for the application of these works to detect possible

misinformation.

3 Trust Model

Our approach will assume least user privileges, which means an end-user has no administrator or

root-level capabilities [10], and that neither the kernel nor root-level applications can be compro-

mised by an adversary. We will further assume that there are no successful privilege escalation

attacks by an unprivileged user to obtain root-level permissions. We will extend this to mean

that anything running in the kernel, or with root permissions is inherently trusted, while all other

applications are not. We assume that there are no resource exhaustion attacks launched, both in

terms of a network-based denial of service, and also host-based exhaustion attacks like filling the

hard drive with data. Finally, we also assume that the user is trustworthy, i.e. there are no insider

threats. We do allow for any code to be run under user permissions, whether it be run legitimately

by the user, or malware crafted by some adversary.

We explicitly place the kernel within our trusted computing base. With the kernel being the most

heavily protected part of the operating system, we believe this assumption of integrity reasonable.

This assumption is also made by anti-virus and similar modern security solutions. While other

approaches, such as virtual machine introspection [32] could aid in relaxing this assumption, we

leave such an approach to future work.

4 First Sensor: Kernel

The first of our sensors for identifying user interactions with processes is our kernel sensor. By

monitoring and extracting information from communications between processes and the kernel, we

can determine which processes have read input from any attached user-input device (e.g. mouse,

keyboard, tablet). We store all information to a log for processing in realtime or for later auditing.

Our sensor is implemented as a loadable kernel module, which has minimal overhead both in terms

of memory space and computational performance.
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4.1 Approach

Our first sensor is the kernel sensor. The kernel is the core part of the modern operating system.

It is responsible for creating the layer of abstraction between the raw hardware and applications

which wish to engage in its use. It handles the allocation and distribution of computer resources,

such as processing time and memory space, and creates a consistent API and environment for

processes each time they are started. The kernel is responsible for securing the system; therefore

we must explicitly trust the kernel in our approach. Any program wishing to interact with the

hardware must first engage the kernel; as such, our approach instruments the kernel to record the

requests to access the input devices.

When programming on modern operating systems, there are a set of “system calls”. These calls

are particular procedures invoked by applications, often dealing with protected or shared resources,

which will ‘call’ the system to execute kernel-level code to fulfill a request. These are required so

that the kernel can enforce security policies, ensure no two processes attempt to edit the same

resource at the same time, and provide a seamless layer of abstraction over vastly different hard-

ware. For example, if a process would like to open a file, it is required to invoke the open system

call which will validate the requesting process has permissions to access the file, ensure the file is

not already in use, and allocate resources for the correct hardware to interact with the file. Our

kernel sensor leverages these necessity of these system calls to track which processes have requested

information from the input-devices.

To be effective, our kernel sensor’s code needs to reside within the bounds of the kernel’s protected

space. To achieve this we wrote a loadable kernel module capable of performing the logging our

approach requires. While the same goal can be obtained through modification of the kernel code

itself, we decided on a kernel module for the ease of programming and to allow our approach to

easily used on any machine running a current version of the Linux kernel. Our module intercepts

three system calls vital to the use of the input devices: open, read, and close. Upon each

intercepted invocation of the open system call we review the parameters of the call for file paths

dealing with the input devices (e.g. /dev/input/), and log the request. For each interception

of the other two calls, we review a data structure we maintain to determine if the system call

is dealing with an already opened input device. This information can then indicate exactly how

much input was requested by processes and subsequently delivered by the kernel.

4.2 Implementation

To capture the applications which aim to capture input from an end-user, we identified the two

paths created by the kernel through which processes can access the input devices. These paths,

/dev/input and /dev/tty, are part of the peusdo-filesystem maintained by the kernel for providing

processes with a way to interact with the hardware abstraction powered by the kernel. In order

to actually obtain data from these paths though, the process must invoke the standard file access

system calls. As such, we are particularly interested in the open, read, and close system calls

when they are called on these paths. When a process performs such an action, it is a clear indicator
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that the process wishes to receive data from the input devices. In order to log this information,

our approach studied two possible routes: using the Linux Auditing Subsystem, or System Call

Interception.

Our first possible implementation route was through the Linux Auditing Subsystem. The auditing

system is a series of logging functions embedded within the code of the kernel capable of logging

a number of events being processed by the kernel: for example, it can log file opens, system calls,

user logins, activity on filesystem paths, etc. When developing our kernel instrumentation we

investigated the possibility of leveraging the auditing subsystem to record which processes open

the input devices for reading, but later came to the conclusion that the capabilities of the auditing

platform were not quite what we needed. Though the audit system has most of these features,

we needed lightweight instrumentation which would process a particular set of system calls, and

of those system calls, only process the calls which were dealing with the input devices. For these

reasons we decided to create a kernel module.

Our second implementation route, the creation of a kernel module, works by intercepting a process’

invocations of the system calls. Kernel modules are blocks of code injected into the kernel and

provide additional functionality to the core of the kernel. The purpose of our kernel module is to

replace the open, read, and close system calls and record applications which invoke those calls

on the particular file paths relating to the input devices. When our code is injected into the kernel

it performs three initialization tasks:

1. Searches for the existing system call definitions residing in the kernel.

2. Disables read-only memory and replaces the definitions for open, read, and close and inserts

copies of those definitions pointing to the implementations within our kernel module.

3. Re-enables read only memory and beings accepting invocations of our open, read, and close

copies.

Each of the copied system calls within our module are short functions, they simply record the

necessary information, and then invoke the kernel’s original copy. This allows us to maintain full

compatibility with every process running within the kernel, but also perform arbitrary logging. We

modified the /etc/modules file to ensure that our kernel module is automatically started during

the boot process.

4.2.1 Open, Read, Close

To extract the appropriate information from the system call invocations, we discuss each system

call in turn and data recorded.

The open system call has three parameters: the file path to be opened, if the file should be opened

for read or writing, and if a new file- the permissions the file should be created with. The system

call returns a unique-to-process “file descriptor” which can be used in future system calls to work

with the opened file. We compare the file path parameter to two file paths known for holding input
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devices: /dev/tty and /dev/input. If the parameter does not start with either of those two paths

we simply ignore the invocation and allow it to proceed as normal. If the path is for an input

device, then we record the full file path, the process’ unique identifier, the name of the executable,

and the returned file descriptor. Further, we maintain a small data structure, which we will refer

to as “openInputs”, to track which process and file descriptor are associated with an opened input

device. We output our logged data to the kernel log using the kernel’s printk function and let the

existing system infrastructure save it to disk.

The read system call has three parameters: the file descriptor (as provided by the return of the

open syscall), the location in application memory space where the read should save data, and the

maximum number of bytes the requesting application wishes to receive. In our approach, we only

process the syscall if there is an existing entry in our openInputs data structure which matches

the process and file descriptor provided in the read system call’s parameters. If there is a match,

we log the requesting process’ unique identifier, the associated file descriptor, and the number of

bytes read. In doing so, we are able to record exactly the number of bytes read by the application

from the input devices. As with the read system call, we perform our logging to disk via the

kernel’s printk infrastructure.

The third and final call we intercept is the close system call. It accepts just a single input

parameter: the file descriptor (as provided by the return of the open syscall) to close. Our

approach only logs a process’ invocation of this system call when there exists and entry in our

openInputs data structure which match the requesting process’ unique identifier and associated

file descriptor. When this happens, we simply log that the application has ended its read of the

input device and we remove the appropriate entry from our openInputs structure.

4.3 Evaluation

In order to evaluate our implementation of the kernel sensor, we inspect both the performance

overhead of the approach, and the efficacy of the logging. We perform a test with manual use

of the keyboard and mouse, and an inspection of the results to verify the expected processes are

captured.

4.3.1 Performance

Since our instrumentation is operating within the kernel, a heavily optimized and time-critical

portion of the system, our approach needs to log data quickly. This becomes especially important

as the particular system calls our module intercepts are very frequently used during the use of an

end-host. We performed two tests on a Ubuntu Desktop 14.04 virtual machine with four 2.6GHz

cores and 2GB of RAM to verify our performance is within acceptable bounds. First, we test how

long it takes for our instrumentation to execute when a process opens, reads, or closes a file path

dealing with an input device. We show these results in Table 1. Secondly, we test our performance

cost when we intercept a system call invocation which does not deal with an input device and
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Table 1: Overhead time in µs when processing an open, read, or close system call handling input
from user input-devices as seen through 28,265 data points. 18 zero entries, and 105 large data
points excluded.

Minimum Median Average 95th Percentile Maximum Standard Deviation
0.024 0.643 0.680 1.317 3.983 0.347

Table 2: Overhead time in µs to determine an invocation of an open, read, or close system call
is not dealing with user input as seen through 42,872,901 data points. We excluded 304,236 (0.7%
of total) ‘0’ entries and 15,875 entries for being greater than two times the median.

Minimum 1st Percentile Median Average 99th Percentile Maximum Std. Dev.
0.001 0.231 0.387 0.377 1.052 4.949 0.193

therefore does not require further processing. These results can be found in Table 2. To capture

the real, or wall-clock time, our code takes to complete, we use the kernel’s getnstimeofday before

and after our code executes, then log the calculated difference.

When displaying our performance results we remove data points which claimed to take no time

(“0”), and data points which were over two times the standard deviation greater than the mean.

We attribute the results which indicated a “0” overhead due to faults, or insufficient resolution, in

the kernel’s getnstimeofday as a “0” would indicate the unlikely result that the kernel completed

the entire task within three clock cycles. We attribute the large and comparatively very slow

results, to operating system scheduling quirks (e.g. another process executed which paused our

code) rather than delays in our kernel module.

We can see in Tables 1 and 2 that our approach has extremely small overhead when handling

events passing through our kernel module. When either deciding that a system call needs to be

logged or determining that it does not we are able to pass control back to the normal kernel process

within, on average, a few hundred nanoseconds. Even with system calls being invoked frequently,

our logging of the appropriate information to determine which processes are reading from the input

devices causes imperceptible delays for the user.

4.3.2 Efficacy of Monitoring

To determine if our method of instrumentation and selective data logging were effective in iden-

tifying the processes which read input devices, we performed two verification tests. Our first

test shows we are properly recording incoming input proportional to the input created. Our sec-

ond test verified that we were properly detecting applications which were reading from the input

devices.

We ran our first test by powering up a Linux Ubuntu Desktop 14.04 instance, letting it boot to

the login screen, and performing two simple sets of actions. First, we simply moved the mouse

around for an increasing amount of time. Second, we type arbitrary keys on the keyboard at the

rate of one key press every second. We capture results every twenty seconds over the course of a

minute and a half. We represent our results tabularly in Table 3.
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Table 3: Results of moving the mouse around and pressing a single keyboard key every second.
Results taken every twenty seconds over the course of nearly two minutes. Our kernel sensor
accurately reports the increase in bytes read over time.

Number of Bytes Read from Device
Device Start 20 Seconds 40 Seconds 60 seconds 80 seconds
Mouse 23 1734 3951 6388 8631

Keyboard 29 67 107 146 186

Our results indicate that we not only successfully capture the input data read from the input

devices, we also record results proportional to the amount of data received even across multiple

read system calls. In Table 3 we notice an approximately linear increase for the capture of mouse

movements for eighty seconds during which time we were constantly moving the mouse around

the screen. Despite this trend, we notice less events when moving the cursor slowly compared to

moving the cursor at a rapid pace. This leads us to believe that the mouse reports movements are

mainly reported at a set frequency, though the frequency can increase for rapid movement. We

note that all testing was done with an virtualized absolute pointing device powered by qemu [33],

and other mice might report movement differently. Similar to the mouse, our results also show

an approximately linear increase for the capture of keyboard events. As opposed to the mouse

however, a linear trend is expected for the keyboard. This due to how the keyboard state is

maintained: either a key is pressed, or it is not. By pressing a single key approximately every

second we record the information regarding the change of state to reflect the press of the key, then

another change when the key is release. Accordingly, we notice two events for each keystroke in a

linear trend following the number of keystrokes.

After rebooting the Ubuntu instance, we performed our second test focused on the effectiveness

of our ability to capture which processes read from the input devices. We waited for the Ubuntu

display manager (the login window) to start, then over an SSH connection we ran the command

‘sudo cat /dev/device/mice > /dev/null’. This command will open the mouse device, read

all input from the device, then discard the output (bytes written to /dev/null simply get dropped

by the kernel). Under these conditions we expect to see two applications receiving input from

the mouse: the X.Org Window System (powering the login window), and our own cat process.

We proceed to move the mouse around and click a few times before finishing the test. We then

repeated the process but used the following command to read input from the keyboard instead of

the mouse: ‘sudo cat /dev/device/input0 > /dev/null’. We pressed and released a number

of keys on the keyboard, then ended the test. We inspected our log file, noted the programs which

opened the input devices and calculated the sum of bytes each program read.

We first inspect which programs opened the input devices. Interestingly we observed a number

of programs opening and reading from /dev/tty. According to the Linux documentation, the

/dev/tty alternative tty device is the ‘current’ tty associated with the process running [34]. As

these are not connected to the user-input devices, we ignore the entries in our logs referring to

/dev/tty device. In in the abbreviated log entry below, we can see how our kernel sensor logged

the input devices being opened by processes:
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pid:3922 fd:3 exe:sh file:/dev/tty7

pid:3961 fd:7 exe:X file:/dev/tty7

pid:3961 fd:10 exe:X file:/dev/input/mice

pid:3961 fd:10 exe:X file:/dev/input/mice

pid:3961 fd:10 exe:X file:/dev/input/mice

pid:3956 fd:3 exe:sh file:/dev/tty7

pid:4971 fd:3 exe:cat file:/dev/input/mice

pid:4976 fd:3 exe:cat file:/dev/tty7

We then are able to inspect our logs for the amount of data each of these devices read. Below is

an except from our kernel log as an example for how we record process’ reads:

read pid:4971 fd:3 bytes:3

read pid:3961 fd:10 bytes:4

[ ... ]

pid:3961 fd:7 bytes:2

[ ... ]

pid:4976 fd:3 bytes:2

As can be seen in Table 4, not every application which opens our input devices actually read input.

We can see this in the two cases of the shell program sh opening, but never reading, the input

devices. On the other hand, we see that the program X read both from the keyboard and the

mouse. We also see that out experimental reads using the program cat appear in our results as

well. As an interesting side effect of our tests, we can see that our cat program received more

data than the program X. This a functionality of the /dev/tty7 device. It only allows for a single

program to read input from it at a time; before our test, X was receiving keyboard input, during

our test only our cat program received input, and at the end of our test X began receiving all the

input again.

Through the use of our kernel sensor we are able to extract and log which applications read from the

input devices. However, the data mainly indicates that there is a single large consumer of keyboard

and mouse data, the program X. On Linux systems, instead of each program receiving user-input

directly from the kernel, all the input data is sent to the X.Org’s X Window System [7]. As the

X.Org X Window System is responsible for creating the graphical user interface and managing

which processes appear on the screen, it consumes all of the user input and dispatches it to the

correct recipient makes sense. To detect which processes actually receive the user input, we place

instrumentation within the X Window System.

5 Second Sensor: X11

The second sensor of our approach is embedded in the code of X.Org’s X Window Server (X11),

a widely used windowing system for Linux platforms [7]. On mainstream Linux distributions X11

is installed and tasked with handling the display of windows, managing the mouse and keyboard,
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Table 4: Input-device data read by each process as recorded by the kernel sensor.
Program PID Mouse Reads Keyboard Reads Total Reads

sh 3922 0 0 0
X 3961 2464 86 2550
sh 3956 0 0 0
cat 4971 2170 0 2170
cat 4976 0 120 120

and working across many types of hardware. X11 is particularly useful for our approach because

it is in the middle of the interaction between an end-user and the applications displayed on the

screen. Additionally, since X11 is an open-source project, our approach is able to freely review

and instrument the appropriate code to make our sensor work.

On our chosen implementation platform, Ubuntu Desktop, X11 is owned and executed under root

permissions. As such, we place our X11 instrumentation within our trusted computing base when

we exclude root-level compromises. Despite this, our instrumentation does provide some quantita-

tive metrics (keyboard presses, mouse movements) which can be correlated with our kernel sensor

to enhance trust. Additionally, while our approach instruments X11 in a way which allows the

partial logging of remotely connected applications, we assume that all clients of the X windowing

server are applications running on localhost (e.g., we exclude X11 session tunneling).

Through our X11 sensor we are able to extract the processes that are connected to the X11

Server, and of those processes, which ones received input from the user. We do so by tracking

which on-screen windows each client application creates and then logging which window receives

an input event. Furthermore, we are able to detect if a process’ window is fully viewable on the

screen, partially viewable, or completely obscured when receiving an event. Associating which

window, fully visible or not, receives user input is critical for the accurate attribution of which

process received input. For example, a user can scroll up, down, and trigger mouse-over events on

background windows. Our sensor also keeps track of how frequently an application sends an update

to its on-screen windows: by using this information we are able to quantify the amount of output

a process shows to the user. In combining both of our quantitative metrics in describing both the

user input and process output, we can classify progress as either “input-heavy,” “output-heavy,”

or “balanced.”

5.1 Approach

Through the kernel sensor we are able to detect which processes open and read from the input

devices, but in default deployments the X Window Server is the only consumer of such input. In

order to continue following the chain from the user to the process, we instrument X11 to indicate

which processes are registered with, and listening for events from, X11. We now discuss the current

state of the graphics processing chain on our chosen environment, describe the purpose of X11,

and how our sensor works.
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The kernel provides a layer of abstraction between the display hardware and processes wishing

to utilize the display. In Linux, a framebuffer is the layer of abstraction for the screen. As with

any device abstracted by the Linux kernel, the framebuffer can be thought of as a file located at

/dev/fb0 and interacted with using the standard file system calls read, and write. In essence, it

is a region in memory where an application can write the color values of individual pixels and then

expect the kernel to perform the appropriate manipulations for the data to appear on the screen in

front of the user. It is worth noting though that the use of the kernel framebuffer is not required;

in fact, newer graphics hardware will expose their own framebuffer equivalent for applications to

interact with.

5.1.1 The X Server

While the framebuffer is nice abstraction by the kernel, the framebuffer gives any single application

access to the entirety of a display. This can be useful in cases when a process (or the kernel)

wishes to display “full-screen” applications (e.g., the system-owned virtual terminals). However,

this becomes problematic if you want to run multiple applications on the same screen. If two

processes open the framebuffer and attempt to write their own application window, corrupted

data will be printed to the screen as each process fights for the same space. To solve this issue

a third process is required. This third process must be capable of receiving graphical commands

from each application and multiplexing them correctly onto the framebuffer. This lead to the

development of X11.

The X Window Server created by the developers of X.Org is an open-source implementation of

the X Window Server specification. Commonly referred to as X11, it creates layer of abstraction

between the framebuffer provided by the Linux kernel and applications wishing to have a screen

presence. The X server simply creates a screen of resolution equal to that of the kernel framebuffer

and accepts requests for drawing to the screen from client processes. At a basic level, to render

application windows on screen, applications must interact with the X server or risk colliding on

writes to the framebuffer. Furthermore, any application wishing to write to the framebuffer must

have root-level permissions.

In order to facilitate any number of possible applications requiring the screen to be multiplexed,

X11 works under the Client-Server model. Th “XServer” component controls some number of

displays on the host in which it is running. The server is able to accept connections from clients

who implement the X11 protocol; typically (for security reasons) these connections are only allowed

from localhost over unix networking sockets. Any number of clients can connect to the XServer

using an Application Programming Interface (API) exposed by X11. This API, commonly referred

to as “Xlib,” contains the information and methods required to speak the X protocol with XServers.

Furthermore, this API contains abstractions such as a ‘window’ to simplify a process’ requirements

to draw to the screen instead of requiring them to manage the raw pixel information that would

accompany writing directly to the framebuffer. Applications wishing to display something on the

screen may use Xlib to create a connection to the XServer. Once the connection is formed we refer

to the client process as an XClient.
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5.1.2 Window Managers

X11 was designed under the mentality that a Windowing System should do no more than is

strictly necessary to provide just the windowing features. This lead to the design of X being

somewhat minimalistic, but with the support for an empowered XClient to dictate how it wanted

all windows to appear. For example, there is the standard desktop-emulating windowing approach

where individual windows can be overlapped partially or even fully, just like you could with papers

on a desk. Alternatively, X11 can also power a windowing approach where all windows are snapped

to specific locations and sizes without any overlap. These alternative windowing approaches are

preferred by some users for a more efficient work environment. As an example, Microsoft Windows

7 has a sense of this with it’s snap-window-to-edge feature “Snap” [35].

In order to support this wide range of windowing mentalities, X allows for a single XClient to

connect and request special window management features. These special permissions allow for

certain types of control over all windows being displayed. XClients which invoke these permissions

are referred to as Window Managers. Window Managers come in many different forms, but for our

approach with Ubuntu Linux, compiz is the default installed window manager [36]. On Ubuntu,

compiz is responsible for adding the standardized window decoration and provides control over the

relocation of windows across the display (typically by drag-dropping the title bar of the window).

The Window Managers are also able to reparent the root window, meaning they can place their

own window as the top-most window on the desktop and influence all other windows on the screen.

However, the main dispatching and handling of client actions are still routed through the core of

X11 and thus our approach does need not need to instrument the window manager as well.

5.1.3 Display Managers and Launching X

In addition to the Window Manager, most distributions will also come packaged with a Display

Manager. Launched right after the kernel boot process finishes, the Display Manager is responsible

for displaying a graphical user interface (GUI) for the end-user to authenticate with (typically

referred to as the login screen). This GUI replaces the standard text-based console login that

would otherwise be present. The display manager starts an XServer instance, and communicates

with it in order to display the login greeter and authenticate the user over the special X Display

Manager Control Protocol [37]. Once a user is authenticated, the display manager will start a

new XServer instance to handle the display of the user’s desktop and applications the user wishes

to run. On our chosen implementation platform, Ubuntu 14.04, the default display manager is

lightdm [38].

5.1.4 Placing Windows on the Screen

An application must go through a number of steps in order to display a window on the screen

through the XServer. To aid in understanding how the system works, we will discuss the method

used by an application to display a window on the screen and how such a process factors into our
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instrumentation approach. First an application includes the Xlib header file, which provides all

the functions to interact with the XServer. The application then opens a connection to the display

and prepares to create a drawable object. In the world of the X Window System, a drawable is

one of two objects: either a pixmap, or a window. Both are objects which can receive any of the

commands which create a displayable visual; for example, the application can instruct the XServer

to create a line on a specified drawable.

While both drawable objects, the main difference between a pixmap and a window is that only a

window is actually displayable on the screen. Typically, an application will create a pixmap for

off-screen generation of what it wishes to be displayed, then instruct the XServer to simply copy

the completed contents of a pixmap over to a window to be displayed on the screen. This provides

a number of benefits to the application; for example the application can hide any intermediary

alterations to the window and only provide a completed update when it is available. This use of

the pixmap is a common approach to reduce flickering or tearing in user-visible windows and often

referred to as ‘double-buffering.’

With a newly allocated window, the process next needs to listen for events on the newly allocated

window from the XServer. Usually this is done by the client requesting notifications for only the

events it cares about. These include an “Expose” event in which the process is told that the

window has become at least partially exposed to the user. When an XClient, and by extension the

window, registers to accept an Expose event, it can react to such an event by telling the XServer

to, for example, copy a portion of it’s off-screen pixmap into the now visible part of the on-screen

window. Finally, to place the allocated window on the display, the process indicates to the XServer

that the window should be mapped to a particular display. Once this final step is performed the

window will be viewable by the user.

In order to track and quantitatively reason about a process’ screen presence, our approach in-

struments the key portions of this process. In particular, we focus on the XServer’s processes for

handling the creations of windows and copying of drawables.

5.1.5 Listening for User Input

Similar to listening for Expose events, applications can also indicate to the XServer that they wish

to be notified of user input events. The X Window Server supports a wide range of input types,

ranging from the standard keyboard and mouse all the way to touch screens and tablets. For the

purposes of our approach, we restrict our focus simply to the keyboard and mouse. In order to

request input notifications, the client application must set an event mask on windows it has access

to. This informs the XServer that on that particular window the process has requested notification

of user input. This means a process which has registered to receive input from the keyboard and

mouse will only be passed the information if the particular keyboard press or mouse movement

occurs within the specific window the process has registered on.

Since an application can only receive input events on a window it has registered on, we are able to

track which applications receive input from the user by watching the flow of events. For instance,
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if we see that a particular XClient has received thirty-four keyboard press notifications, we know

that the process associated with that client connection has been notified of user input. On a larger

scale, by logging all delivered events relating to user input, we are able to indicate which processes

received which types of events, how frequently, and indicate the quantity of events each process

received.

To perform the instrumentation necessary to both quantitatively record an application’s display

output and user input, we target the XServer code responsible for handling the dispatching of

application requests, and the delivery of events.

5.2 Implementation

We explored the ability to instrument the X11 source code on the Ubuntu Linux distribution,

release 14.04. We chose this particular release of Ubuntu because it is on Ubuntu’s long term

support schedule. This means that the engineering we perform in determining the viability of

our X11 instrumentation will be usable for the duration of the support cycle (approximately five

years) [39]. Ubuntu’s 14.04 release comes packaged with a slightly altered X Windows Server based

off of version 1.15.1 as minor alterations are performed by Ubuntu developers to backport security

updates. In an attempt to use the same version packaged by Ubuntu, we downloaded the source

code which the maintainers of Ubuntu use when compiling the binary package shipped with the

release. However due to compilation errors and other miscellaneous issues, we instead opted to

download the latest source straight from the maintainers of the X.Org X Windowing System, the

X.Org foundation [7].

Our checkout of the latest X Windowing Server source code provided us with a stable, but

in-progress version based on the 1.17.1 release. To perform the automated checkout and

build process, we employed a shell script provided by the Xorg Foundation [40]. While

our version is two releases ahead of the version packaged with the Ubuntu 14.04 distribu-

tion, there were no issues compiling and running the software. After building the X Window

Server portion of the project, we installed the new binaries to a custom prefix to leave the

original Ubuntu-packaged installation untouched. We altered the lightdm configuration file,

/usr/share/lightdm/lightdm.conf.d/50-xserver-command.conf, to boot our custom com-

piled XServer instead of the original one. With this setup we were able to rapidly prototype

our alterations to the code and test them on a virtual machine.

5.2.1 Capturing Graphical Output

In order to track and quantitatively describe the graphical output of processes, we reviewed the

XServer codebase. As all XClients need to communicate the desired window alterations to the

XServer, we focused on instrumenting the code handling this client-server conversation. Within

the xserver/dix/dispatch.c source file we located and placed logging hooks within the function

appropriately named Dispatch. This XServer function is responsible for looping over all open

22



file descriptors and appropriately handling any incoming data. As requests come in from clients,

they are dispatched accordingly using a table of functions pointers. The table of function pointers

holds the mapping between the X protocol’s request numbers and the correct function to be

executed.

We identified a number of request handling functions potentially useful for our approach. The list is

as follows: CreateWindow, CopyArea, DestoryWindow, PolyFillArc, PolyFillRectangle, PolyLine,

PolyPoint, PolyRectangle, PolySegment, PolyText, PutImage. After some inspection, we decided

that it was not needed to embed instrumentation in all of those functions. Instead, we identified the

following three functions as frequently used and good enough to provide the data we needed:

• CreateWindow: Create a drawable Window of the specified dimensions and properties.

• CopyArea: Copies the contents of one drawable to another.

• PolyLine: Creates a single line from point ‘a’ to point ‘b’

We chose these particular requests because they covered a reasonable subset of the possible options

and would allow us to determine whether or not the thematically-related requests were used at

all. We determined after a quick informal test that, as expected, CreateWindow is used frequently.

There were many calls to CopyArea moving display data from pixmaps into windows and there

were no requests for PolyLine. We attribute the high use of CopyArea to the use of user-space

graphical libraries which take care of constructing and rendering the graphics to a pixmap on the

XServer. When the application is ready, it sends a request to the XServer indicating the drawn

frame should be copied from the pixmap to some on-screen window.

For those windows displayed on the screen, there will be some windows which are actually visible,

some windows which are covered, and others which are completely covered by other windows. In

our approach, we seek to separate these fully visible windows from those which are not. Even if a

process has some screen presence, if the screen presence is always covered by some other window,

then we want to be able to represent that. To do so, we leverage the window attributes maintained

by the XServer. For every window allocated by a client, the XServer creates a new Window struct.

This struct contains everything the server needs to know about a window. For our purposes we

are particularly interested in the visibility, drawable-width, and drawable-height fields.

By processing these three attributes about a window, our approach is empowered with the ability

to differentiate between processes which actually have a screen presence and those which simply

have sent a few commands to the XServer. The drawable-height and drawable-width fields record,

as an integer, the height and width of the window in pixels. The visibility field consists of four

possible values representing the current visibility state of the window.

1. The window is completely unobscured i.e. the window is fully shown to the user.

2. The window is partially obscured, perhaps just by a few pixels, or perhaps nearly all covered.

We leave the computation of exactly “how much” of a window is visible to future work. In

our approach we simply note if a window was visible at all.

3. The window is totally obscured and not visible to the user.
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4. The window is not viewable.

This last state is usually caused by a client creating a window but not completing the process to

“map” and cause a window to be a candidate for display on the screen.

When our X11 sensor is triggered from the three functions in which we embedded instrumentation,

we record the current state of the window in question, the window’s width and height, the window’s

unique identifier, and the unique identifier for the client connection. Through the aggregation of

these log entires, we are able to determine which processes sent data to the screen for display and

which processes did not.

5.2.2 Capturing User Input

On the reverse path, tracking user input to processes, our approach focused on a different source

file in the XServer code. As discussed previously, we know that processes are required to “register”

or set event masks in the windows they manage if they wish to accept events, such as user-input,

on those windows. Our approach was to track backward from the code within the XServer which

delivered the events to the window’s clients up to the point where it was computed which events

were desired by which clients. In other words, we located the portion of XServer code which

compared all generated events on a window to the list of event-masks and determined which events

were dropped (i.e. no one wished to receive the event) or which events were to be transmitted

down to the window’s clients. We note while the XServer code does indicate a window can have

multiple clients, we never saw this practice occur; for simplicity we assume that a window has only

a single client.

If an event is determined to be desired by a process, we aim to capture and log the events shown in

the list below. For some logically-equivalent event types, there are multiple versions of the event

(e.g., DeviceKeyPress and KeyPress). While both these events convey the same information, they

have different sources in the XServer code and therefore are named separately. In the list below

we show these events with a similar meaning as a single group.

• DeviceKeyPress, KeyPress: This event occurs when a keyboard indicates that a key has

been pressed down. We log the which key on the keyboard was pressed.

• DeviceKeyRelease, KeyRelease: This event occurs when a keyboard indicates that a

previously pressed key has been released. We log which key on the keyboard was released.

• ButtonPress: This event occurs when the mouse indicates that a button has been pressed.

The button could be the left, middle, or right mouse buttons.

• ButtonRelease: This event occurs when the mouse indicates that a previously pressed

button has been released.

• MotionNotify: This event occurs when the mouse indicates motion.

• GenericEvent: This event occurs when the event was generated by an X11 extension.
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Using these events generated and delivered by the XServer, we are able to quantitatively indicate

the amount of user input a particular window receives. By extension, we obtain the amount of input

a process receives. In particular, we log two events for each keyboard and mouse button inputs as

both KeyPress and ButtonPress events have their corresponding KeyRelease and ButtonRelease

events. Further, the MotionNotify event is triggered frequently and appears to be bounded by

time intervals, not by the rate or distance the mouse traveled. We log each event and determine

amount of mouse movement within a window by the number of MotionNotify events the window

receives.

We track the GenericEvent type due to a particular X11 extension which is sometimes involved

in handling the user input. The Xi extension is an attempt to increase the types of input devices

the XServer can handle [41]. For example, it provides support for the keyboard, mouse, trackpad,

touchscreen, tablet, and even multitouch devices. While we assume just the standard keyboard

and mouse are present, our approach made a concerted effort to capture the events from this

extension because it can occasionally be used to deliver keyboard and mouse events under certain

process conditions, such as when the user is at the login screen. In our implementation, we are

able to simply recognize the Xi input identifier, and then apply our existing code to determine if

the contained event is a KeyPress, KeyRelease, etc.

In all, we log the event type, the unique window identifier, whether or not the window is visible,

and the file descriptor for the client connection receive the input. If the event is for a KeyPress

or KeyRelease, we also log the particular key-code (name of the key) which was pressed/release

on the keyboard. Future approaches could leverage this data to track the movement of sensitive

keywords or even passwords and identify when such data traveled to programs which should not

have received it.

5.2.3 Correlating PIDs with Windows

A major portion of our instrumentation relies on the ability to take a Client struct, representing

an XClient to the XServer and output the associated process. Determining which process cor-

responds to which XClient is not a simple task and requires some extra engineering. The X11

client-server protocol was written under the assumption that the XServer and XClient may not

be on the same physical host, and as such, maintaining state on a processes’ unique-to-system

identifier (PID) holds no meaning. For example, there is no way to know the PID of the process

if the XClient is on a remote machine. However, since our approach assumes all XServers and

XClients are hosted on the same physical machine, knowing the PID of the XClient is not only

useful, it is vital to knowing which process is interacting with the user.

In a general move towards tracking the process identifier of connected XClients, X11 develop-

ers added in a new window property: NET WM PID. This property is a newer addition to the X

Window System and works in conjunction with WM CLIENT MACHINE. The general idea is that if

WM CLIENT MACHINE is set to the host’s own hostname, then the NET VM PID is the pid of the

process running on the host. If the hostname does not match the host’s own name, then the PID is
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representing the process identifier on some remote host, and is not helpful. Since in our approach

we assume all XClients and XServers are on the same host, we can always get useful meaning out

of the NET VM PID property. However, the property must be set by the XClient process itself. If

the process either does not support it, or decides to give a false PID value, the XServer will not be

able to tell the true value. Therefore our approach needed a different method to obtain the true

PID of the XClient.

To reliably detect which process is responsible for initiating an XClient session, we focus on the

mechanism of communication. When on the same host, the connection between the XServer

and XClient occur over UNIX sockets. Just like normal Internet-style sockets, the UNIX sockets

are simply a connection between two processes. Our approach is to retrieve the details of this

connection from the XServer and follow the connection back to the originating process. In order

to do so, we retrieve the file descriptor for the XServer’s side of the socket from the Client data

structure.

Gathering information regarding sockets and their connections requires assistance from the kernel.

To gain this information, we first retrieve the system-wide unique identifier for the UNIX socket

associated with the particular XServer-XClient communication channel we have targeted. To do

so, we simply perform a read link system call on the file path /proc/self/fd/##. This utilizes

the kernel’s pseudo-filesystem “proc”, to tell us information about the current process “self” (X11),

with respect to the file descriptor “##” (obtained from the Client struct). When reading this

pseudo-link we are returned the unique UNIX socket identifier. With this in hand, we can then use

the existing socket tool ss to query the kernel and extract the connection information relating to the

specific UNIX socket in hand [42]. With this data returned, our instrumentation will have reversed

the socket connection and learned of the true process responsible for the client connection.

Unfortunately, performing the computation to connect a client with its process takes enough time to

introduce noticeable slow downs in the user interface. To overcome this, we place instrumentation

in the key location to perform the computation a single time: immediately after the XServer

establishes the client connection. By placing the instrumentation within that block code we can

be sure that there will not be an event or request handled by the XServer without first ensuring

we know which process is connected as the XClient. Furthermore, we are able to detect when a

client disconnects from the server and appropriately log the recycling of file descriptor to retain

our log integrity.

5.2.4 Creation of the Logging Infrastructure

To augment the instrumentation of the XServer, we added a logging mechanism to the code of

the XServer. Our mechanism was designed to take all of the logging data we create and save it

to a single file on the disk for later processing. We designed our logging functions to be similar

to the printf function in that our functions are able to consume an arbitrary number of typed

parameters. After some processing of the logged data, such as adding a timestamp and performance

data, we leverage the existing vfprintf function to save the logged data to an open file descriptor.
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We implemented full pthread-based mutexes to protect our log file from race conditions which

could corrupt our saved data.

5.3 Results and Evaluation

We evaluate the effectiveness of our X11 sensor through two methods. First, we review the perfor-

mance cost of our instrumentation and discuss the effects, if any, such overhead has on the user’s

experience. Second, we determine how well the sensor is able to extract meaningful interaction

data from the Xserver. In particular, we show our instrumentation is sufficient to tell the difference

between processes with no user interaction and processes which had some interaction.

5.3.1 Performance

Since our X11 sensor is in the cornerstone of the user interface, our performance is critical to the

overall speed of the GUI. This can become problematic if, for example, our sensor causes any undue

delays while extracting the interaction information from the data flowing through the XServer as

it will be directly observable by the user. To aid in expediting our processing we leveraged a few

mechanisms for efficiency: stateless data extraction, buffered data logging to disk, and minimizing

duplicated work. In doing so, we push the majority of the analytic computation to either a separate

process reading our log in real-time, or to post-processing work. To measure our overhead when

extracting data from the XServer, we include a performance metric within each entry of information

we log. Utilizing programming libraries included with Ubuntu we invoke gettimeofday to obtain

a microsecond resolution timestamp immediately when our data extraction begins, and then again

immediately after the extraction has completed. We compute the difference in ‘wall-clock’ time and

then include this difference at the end of our log entry as it is buffered for output to disk.

We collected performance results by running a test in which we exercised a number of applications

while using our instrumented version of the XServer. After collecting the performance data, we

first removed 73 entries within our performance logs which indicated that our instrumentation took

no time; these ‘0’ entries we attribute to the system time libraries not having sufficient resolution

to accurate measure the elapsed time. Second, we removed any entries which were determined

to be over two times the standard deviation greater than the mean. These numbers we attribute

to operating system scheduling factors causing our instrumentation to wait while other processes

completed. In all, we only removed 2,515 entries, or 0.17% of the data points. After the removal

of these outliers a summary of our performance results can be seen in Table 5. Through our

performance analysis we conclude that, on average, our X11 instrumentation takes approximately

20 microseconds to complete. We believe such a low performance overhead will cause no delays or

other issues with rapidly processing user commands to update the interface.
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Table 5: Overhead time for each logged user-event and process-request in µs as seen through
1,516,861 data points. 73 zero entires and 2,442 entries excluded from the statistics for being two
times the standard deviation greater than the original mean.

Minimum 5th Percentile Median Average 95th Percentile Maximum Std. Dev.
1 3 7 19.46 33 988 57.16

5.3.2 Efficacy

We next tested how well our X11 sensor was able to detect the processes with which the user

interacted. In order to test this, we conducted a controlled experiment where we opened a set of

applications, used them for their intended purpose, then closed them. Based upon the intended

purpose, we would expect to see certain behaviors. For example, the text-editor gedit we expect

to accept a large amount of input from the user while typing or revising a document. On the

other hand, we would expect a video player such as vlc to have a high level of output to display

a video and little user-input as a user need only click play. By analyzing our X11 sensor’s log

data we obtained the results below; we indicate the name of the client process, the process’ unique

identifier, the quantity of display output, and the quantity of input delivered (separated by input

from the keyboard and input from the mouse). We abbreviate the list by specifying applications

with no more than 20 output events, and no input events should be ignored.

Client PID Output Keyboard Mouse

"chromium-browse" 12703 5769 0 1382

"vlc" 12127 231 0 0

"vlc" 12127 1034 0 0

"vlc" 12127 5780 0 0

"gedit" 12060 3892 4031 137

"nautilus" 11520 1050 4 477

"compiz" 11472 42568 0 1

"bamfdaemon" 10746 2 99 156

"unity-greeter" 10042 64 54 4

In the initial our of testing our prototype we began to see trends forming in the relationships

between categories of applications and the amount of user interface input/output they performed.

As with any such behavior-based categorization, our classification of processes into groups of

interaction types is heavily influenced by the user and their particular usage patterns. For example,

editing a document in the Google Documents suite will make chromium-browser appear with

relatively more input events compared to watching a series of YouTube videos. Despite this

possibility, we were able to take advantage of repeating trends to create the following classification.

We first group “no-interaction” processes by simply listing the processes running on a host and

identifying those processes not on the above list. Second, we group programs which are “output-

heavy” as processes which have a more than four times the number output events than input

events. Third, we group processes which are “balanced” as processes which have between one-

third and one-half the amount of input events as output events. Finally, we group processes
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which are “input-heavy” as those which have at least half of the number of input events as output

events.

Based upon our categorization we can reason about the results we received from the X11 sensor.

For example, we can make the statement that in our trial chromium-browser is considered an

output-heavy application with 24% of its output events being matched with input events, but

that it is close to being balanced. This makes sense given the general purpose of the web-browser

is to accept some amount of user-input, then display web-pages, videos, and images back to the

user. On the other hand we observe the gedit program, which received more input events than

outputs events, making it a clear input-heavy process. We can further extend our categorization to

processes which are built for handling the graphical interface itself. For example, unity-greeter

is a process for handling the display of the login-window to users. Intuitively, we reason that

the login-window is at least a “balanced” process given that it must display items on screen and

accept authentication credentials from the user. However, the login-window is relatively output

static and mainly just accepts many input characters (i.e., a password). This matches with the

“input-heavy” result we observe in our test results.

Through testing both the performance and efficacy of the X11 sensor, we have shown our imple-

mentation to be effective. Our extraction of data is efficient and quick, preventing the user from

even recognizing that the logging is taking place. We further show that our sensor is not only

able to accurately record user-interactions which processes, it also provides data allowing further

reasoning about how a user interacts with the process.

6 Third Sensor: GTK

With the kernel and X11 sensors, we are able to quantitatively track input stemming from the

input devices and also know to which process the events are delivered. However, these sensors

have no visibility into the process itself nor an understanding of what the user is seeing. As X11

mainly deals with rendered images, it is of no use to understand the context which caused the user

to enter an input, or the output which the application generated for the user to see. To gain this

insight, we look to the graphics libraries. Most contemporary applications are built upon graphical

libraries which are able to handle the details of generating objects, windows, and handling events

when creating a graphical user interface. Of the many libraries available, the most commonly used

one on the Ubuntu Linux distribution is the GIMP Toolkit, or GTK+ [8].

We focus on GTK+ and its ability to generate interfaces on the behalf of processes. When a

process utilizes GTK+’s public API to, for example, create a new window, the process can also in-

clude information like the window’s title or the window’s parent. We leverage this communication

between a process and GTK+ to capture text and relationship assignments. By placing instru-

mentation within the appropriate GTK+ API code we are able to extract contextual information

from an application by studying the object relationships and the text sent for display. With this

data in hand we are able to start reasoning about the actions a user performed within the graphical
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interface on an application and compare that to observed system actions.

In this section we review the GTK+ library and discuss our approach for instrumenting all of the

appropriate API calls to capture text and hierarchy information from processes. We show that we

are able to do so in an efficient way without any observable delays by the user.

6.1 Approach

Graphical user interfaces (GUIs) are designed specifically to be understood by the end user. Ap-

plications strive to create a graphical layout which will be intuitive, powerful, and used to quickly

complete tasks. We aim to leverage this design philosophy towards systematically extracting infor-

mation from displayed content and provide the data in a form possible for automated reasoning.

While the GUI usually employs many pictures and graphics to convey information, the interface is

still highly focused on text. Even applications which attempt to create an interface with a minimal

amount of visible text usually have tooltips or other explanations associated with their icons to

aid in a user’s understanding. In addition, applications typically employ common text phrases or

keywords to describe certain actions. In our approach, we take advantage of the GUI’s user-focused

design. We extract text and hierarchical information to provide context towards understand the

relationships between on-screen objects.

In Figure 2, we provide an example dialog modeled off of a common web browser’s print dialog.

When the user clicks on the print button, we can trigger a crawl over the elements on the dialog and

gain an understanding of the purpose of the dialog. We can inspect the text on the button itself,

review other buttons on the dialog, inspect the text on the dialog, and study how elements on the

dialog relate to each other. In doing so, we are able to create rich context describing the graphical

layout of the dialog. With rich context in hand, we are able to connect what a user interacted with

on the screen with behaviors of the system. In particular, we can compare logs of an application’s

system calls with the associated context that appeared on the screen. For example, if the context

shows a print dialog, we may expect a connection to a network printer.

Print
Total: 1 sheet of paper

Cancel Print

Destination Ricoh Printer
Change...

Pages All

Copies 1

Layout Portrait
Options Two-sided

More settings

Print using system dialog... 

Open PDF in Preview

+

+ -

Button

Activated

1422892756.014034

(2015-02-02 15:59:16)

Child Text: {Print}

Sibling Button Text: {Cancel, Change, +, -}

Parent Text: {Print}

Sibling Text: {Total:, 1, sheet of paper,

 Destination, Ricoh Printer,

 Pages, All, Copies, Layout,

 Portrait, Options, Two-sided,

 More settings,

 Print using system dialog...

 Open PDF in Preview}

Record Timestamp

Extract Context

Extract Process ID
2035

Temporarily Scrutinize Process
fork() new process 3824 0.000596s later

PID 3824 exec(/usr/bin/lpr) 0.000603s later

Possible Causal Link:

Clicking "Print" button may have

invoked "/usr/bin/lpr"

(lpr is used to submit print jobs)

Figure 2: We automatically extract contextual information surrounding user actions, such as
button clicks, and fuse it with low-level analysis to inform access control systems.
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To capture the text and context information we focus on instrumenting graphical libraries. Building

upon previous work [24,25] which attempted to process the rendered screen with optical character

recognition, we aim much earlier in the process. These graphic libraries create a layer of abstraction

between the gritty details of working with a windowing system (such as X) and the application

itself. An application can invoke the public application programming interface (API) of these

graphics libraries to quickly and simply create displayable and even user-controllable widgets such

as a window, button, or text box. As such, application developers have a strong incentive to utilize

these libraries: instead of focusing on the details of building a GUI from scratch, they can leave the

heavy lifting to a well prepared library. Our approach focuses on placing instrumentation within

key points of these graphical libraries in order to log requests from the application.

When testing the viability of our approach, we focus on the GTK+ graphics library running on

Ubuntu Linux. We chose GTK+ as it is one of the most popular graphics libraries available for

Linux and has support for Mac OS and Windows distributions as well [8]. While our future work

will delve into creating instrumentation for additional libraries, we note that our approach for

locating and logging the GTK+ public API invocations can be applied to all libraries, not just

GTK+.

Through the careful picking of which API calls we instrument, we can gain insight into the graphics

displayed on the screen with a minimal amount of overhead. For example, GTK+ has a number of

“set text”-style functions which are used to assign the text from a C-style array of characters to an

on-screen object. Additionally, GTK+ has API calls for setting an object’s parent and creating new

objects as children of other objects. As opposed to rendering functions, which need to be invoked

each time an object is moved, updated, or resized, these functions have a relatively low call rate.

The reasoning being, these “set text” and hierarchy calls are only required during the creation

of an object and afterwards only used if a text update is necessary. By placing instrumentation

within just these API calls, we are able to efficiently record both text and hierarchy information

without large overhead costs.

With instrumentation in place and extracted data in hand we are able to recreate the context of the

graphics displayed on the screen. By uniquely identifying objects through their recorded memory

address and timestamp, we can leverage the child-parent mappings to generate an object-relation

graph. Once the graph is created we are then able to use standard graph traversal methods such

as breadth-first search to further process the data and discover text and other objects sharing the

same parent. Combining these results with the process identification number (PID) we are able to

reconstruct which program the user interacted with and the context under which the interaction

took place. Leveraging the PID, we are then able to correlate interactions with other sensors and

even system calls the application perform to get a more complete picture of what the process was

doing.

We utilize the Linux Auditing Subsystem to record the system calls invoked by a particular process.

Using the auditing subsystem enables us to efficiently keep track of all actions an application

performs requiring greater permissions than is available just in user-space (such as connecting to

server or opening a file). The Linux Auditing Subsystem is a kernel feature originally developed
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for high-security compliance based activity audits [9]. It reports various types of events, including

the ability to report the list of systems calls an application uses. While our approach is based upon

reconstructing contextual information surrounding an event (like a button press), we will discuss

possible approaches to connecting our GUI logging infrastructure to the observed system behaviors.

This will foster an understanding of the user-based actions occurring on the system.

6.2 Implementation

To test the viability of our approach of instrumenting graphical libraries, we decided to use Ubuntu

Linux 12.10 platform running the default unity desktop environment. On the Ubuntu distribution,

there are two versions of GTK+ provided: GTK+2 and GTK+3. To provide maintain compati-

bility with existing applications and emulate an enterprise deployment we aimed to alter the same

versions of the libraries as was packaged with the system. Therefore we sought out and downloaded

the source code for GTK+ 2.24.16 and GTK+ 3.6.0 from the GTK website [8]. As a number of

long standing programs use the GTK+2 library, which runs an API incompatible with GTK+3, we

decided to instrument the basic functions in both GTK+2 and GTK+3 graphical libraries. How-

ever, to better support newer programs and fully test our approach, we further modified GTK+3

to capture more text flowing through the newer library. Once the instrumentation was in place, we

redirected all dynamically linked applications to use our custom compiled GTK+ libraries instead

of the system provided ones. Deployers could alter the /etc/ld.so.conf file to make this dynamic

linking change persistent across machine reboots.

When creating our instrumentation, we first focused on the GTK+ API functions which were

capable of manipulating text in widgets. To do so, we instrumented the sixteen highly used basic

functions listed below in both the GTK+2 and GTK+3 libraries.

gtk button set label

gtk cell view new with text

gtk clipboard set text

gtk editable insert text

gtk entry buffer set text

gtk entry set text

gtk label set text

gtk label set text with mnemonic

gtk menu item new with label

gtk menu item set label

gtk message dialog new

gtk message dialog new with markup

gtk real menu item set label

gtk text buffer insert

gtk text buffer insert interactive

gtk text buffer set text
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By launching various applications which relied on GTK+2 or GTK+3 we verified text extraction

was working as expected in both versions of the GTK+ library. While we observed that a significant

portion of on-screen text were recorded just by instrumenting these functions, we wanted to increase

our text coverage to all text passing through the library. To do so we developed a thorough and

systematic approach to identifying all of the API functions which manage text. We note that

while we only performed the extended instrumentation on GTK+3, the systematic approach we

developed would work equally well for completing the instrumentation on GTK+2 as well.

We began our systematic approach by reading over the GTK+3 documentation to identify traits

which all API functions manipulating text had in common. We noted that these functions would

accept either a standard C “char” or GTK typedef “gchar” as a parameter whenever the function

would be assigning text to a widget. Leveraging this pattern, we created a regular expression

capable of recognizing the text parameter and would automatically insert instrumentation code

for copying the text passing through the function call to our logging infrastructure. We executed

our regular expression based search over all of the GTK+3 header files with the understanding that

application developers would only be able to interact with the functions published in headers which

excluded static functions solely in the GTK+ source files from needing instrumentation.

Our search for text manipulation functions within the GTK+ header files returned 642 results. We

took this list and manually inspected each function returned, and if we reasoned that the discovered

function was indeed handling text and was reachable by a developed (i.e., not an internal function)

we uncommented the auto-inserted instrumentation. After this manual process, we concluded with

a total of 170 instrumented functions dealing with text. In a similar process, we also identified and

instrumented 61 functions dealing with the assignment of object relationships, a few examples of

these functions can be seen below.

gtk container add

gtk container add with properties

gtk widget set parent

gtk widget set parent window

gtk widget unparent

Between our discovery of the text manipulating functions and the relationship-altering functions,

we were able to fully instrument GTK+3 to report all text and hierarchy present in interfaces

created by client applications. Once completed, we took it one step further and instrumented the

single GTK+ function responsible for handling a button-click event in order to know when a user

interacted with buttons in the interface.

When an application creates or alters parts of their GTK+ powered interface, our instrumentation

activates to record the new state of the interface. The alteration of state could be the updating

of text assigned to an object, or a change in how current (or new) objects relate to one another.

Through the instrumentation of all the text assignment functions and hierarchy altering API func-

tions, we are confident in our ability to track the state of the application’s GUI. To keep persistent

records of this information, we write our logged data to disk using the GNU mkstemp function
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which will create a temporary file resident on the storage drive until one of our developed scripts

iterates over the folder and aggregates data into a permanent location. Each log entry we save con-

tains a nanosecond resolution timestamp recorded at the time of our instrumentation starting, the

GTK+ library function name responsible for causing the log entry, the text or hierarchy data to be

logged, and the memory address(es) of the objects being handled. Certain log entries also include

the calling application’s PID and path to the application’s executable on the filesystem.

Having the capability to extract not only the text, but also the hierarchy information along with

it leads to powerful contextual information. For example, simply knowing the text on the screen

can be useful, but it is even better to know if multiple blocks of text are in the same window or in

different windows. Further, it can be beneficial to indicate whether or not the text on the screen

is held within a display-only widget or if the recorded text is actually from an editable text box

and could have been entered by the user. Our instrumentation is capable of extracting sufficient

information from the interface to support making these statements.

6.3 Evaluation and Results

To determine the success of our instrumentation, we evaluate our approach both in terms of

performance, and in the efficacy of our text extraction. In terms of performance, we examine

the overheads of our instrumentation and discuss the possible impact on the user experience. For

determining if our instrumentation is effective in extracting text on the screen, we show results of

comparing screenshots of an application with the extraction logs.

6.3.1 Efficacy and Accuracy of Text Extraction

After performing our modifications to the GTK+ libraries, we test the instrumentation by execut-

ing a number of GTK+ applications. When selecting applications to test, we aimed to represent

a reasonable set which would cover normal day-to-day application use by a user.

• evolution, an email client

• epiphany, a web browser

• evince, a PDF viewer

• gedit, a text editor

• gnome-terminal, a terminal application

• gnome-calculator, a simple calculator

• pidgin, an instant messaging client

We spent time interacting with each of these applications and employing each for its intended

use-case. For example, we used evolution to read email, gedit to open and edit text files, evince to

read a PDF, and pidgin to hold an instant messaging conversation. We ensured that we navigated

the menu bars and opened up dialog boxes while in each application to fully expose the text in a

number of different windows and layouts.
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The results of our application tests can be seen in Table 6. When running the applications pidgin,

evolution, gedit and gnome-calculator, we were able to extract the majority, if not all, of the

text displayed on the screen. Most of the text we extracted from the GTK+ library was an

exact match to the information we observed on the screen; however, some of the text had an

extra underscore (“ ”) character present. These underscores, referred to as mnemonics by GTK+,

are used by application developers to indicate keyboard accelerators (shortcuts) which GTK+

handles [43]. After we removed these excess underscores, our text extraction reached perfect

accuracy.

Table 6: Efficacy and accuracy of text extraction across applications.
Words Appearing in String Matches

Application Screenshots Extraction Exact After ‘ ’ Stripped
evolution 127 113 94% 100%
epiphany 47 34 90% 100%
evince 470 37 62% 100%
gedit 57 57 82% 100%
gnome-terminal 83 58 86% 100%
gnome-calculator 32 32 100% 100%
pidgin 50 45 91% 100%

The remaining three applications: evince, epiphany, and gnome-terminal are good examples

of applications which depend on multiple graphical libraries. While our GTK+ instrumentation

worked as intended for these applications, hence some coverage of their interface, these applications

rely on additional graphics libraries to handle portions of their functionality. For example, while

browsing the web with epiphany our instrumentation was able to capture the window title, items

on the menu bar, and the URL; however, it was unable to read any of the text from within the

displayed web pages. This is because epiphany is built upon the WebKit rendering engine [44],

a library which we have not instrumented. However, it is worth noting if we were to instrument

WebKit, we would then be able to support all applications utilizing its rendering features as well

as GTK+.

Similarly, both evince and gnome-terminal use additional libraries to support their functionality.

The pdf viewer evince relies on the Poppler PDF rendering library [45] and gnome-terminal relies

on the Gnome Virtual Terminal Emulator [46] library to power the terminal display. Just as with

WebKit, if we were to instrument these libraries, we would have text extraction for all applications

which used them. Interestingly, despite these other libraries, when text is highlighted and copied

to the clipboard, we are able to extract the text through GTK+ as these applications utilize the

clipboard API of GTK+ instead of the other libraries. To capture all text, from all applications,

an organization deploying our approach would need to instrument all of the graphical libraries

utilized by applications within the organization. While this may seem like a large and onerous

task to undertake, there are significantly fewer graphical libraries than there are applications. As

we have shown, just instrumenting a single graphical library leads to successful text extraction

from many applications; by instrumenting just a few additional libraries, the number of supported

applications would increase dramatically.
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Diving a little deeper into the details, we review the effectiveness of our approach within the

pidgin instant messaging client. Not only was our approach able to successfully extracted text

such as “Options”, “Join a Chat?,” and “Mute Sounds” from the main window of the application,

we also were able to extract text from the conversation windows. We further explored this by

establishing an instant messaging conversation between two participant hosts (with one having

our GTK+ modifications) and created a new chat. We sent a few messages back and forth and

were able to observe a transcript of the chat in our extraction logs. We include an except from the

log below:

338534.758328743 32221 gtk_text_buffer_insert 0xb962f6c0 "(12:59:07 PM) "

338534.759455910 32221 gtk_text_buffer_insert 0xb962f6c0 "d:"

338534.760105082 32221 gtk_text_buffer_insert 0xb962f6c0 " "

338534.760726432 32221 gtk_text_buffer_insert 0xb962f6c0 "hello"

[ unrelated text from other apps omitted ]

338553.860663724 32221 gtk_text_buffer_insert 0xb962f6c0 "(12:59:16 PM) "

338553.872373970 32221 gtk_text_buffer_insert 0xb962f6c0 "CS:"

338553.873169254 32221 gtk_text_buffer_insert 0xb962f6c0 " "

338553.875125457 32221 gtk_text_buffer_insert 0xb962f6c0 "howdy"

As our approach creates a new log entry for each invocation of the GTK+ public API functions,

we are able to see the processing that pidgin is performing on incoming messages. First, we see

the pidgin prepended timestamp, then the author of the message (“d” and “CS”), followed by the

actual message. Additionally, we observed extracted text such as “CS has stopped typing” which

indicates we are successfully detecting even the typing notifications.

As another example, we also tested our extraction capabilities within the gedit text editor. While

using the application we observed the successful extraction of the text present on the main window,

buttons, menu-items, and even the user-editable text area. In the excerpt from our logging file

below, we can see gedit process the load of the file “file test2.” Quickly afterwards we extract the

full path of the file as gedit updates a status blurb in its main window followed by the insertion of

the file contents “Hello World!” into the editable text space. Additionally, we are able to observe

the location of the text cursor through the extraction of the current location indicator present in

the main gedit window.

340030.490457339 457 gtk_label_set_text 0x9f4d730 "file_test2"

340030.494264872 457 gtk_label_set_text 0x9f13b98 "Loading

file ’/home/cyber/file_test2’..."

340030.538422267 457 gtk_text_buffer_insert 0x9ef65c0 "Hello World\!"

340030.538854912 457 gtk_label_set_text 0x9f13d08 " Ln 2, Col 1"

When considering the deployment of our approach, a potential concern by an organization may be

the prospect of repeatedly instrumenting the graphical libraries as updates occur. Intuitively, we

would expect most if not all of the original instrumentation to be directly portable to updated code

as with large libraries code does not change drastically very frequently. To confirm this intuition
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we explored the viability of updating our GTK+ code to run on the latest release of Ubuntu:

version 14.04. In a similar effort as our original approach on 12.10, we aimed to use the exact

version of GTK+ packaged with the distribution; in the case of Ubuntu 14.04, the GTK+ versions

are 2.24.23 and 3.10.8. Since our original approach favored instrumentation in the GTK+3 version

of the library, we again focus on the newer library. We generated a list of all the locations where

we instrumented the original GTK+3 library, and then manually copied over the instrumentation

code from the 3.6.0 version (Ubuntu 12.10) to the 3.10.8 version (Ubuntu 14.04). After only a few

hours of work we had a fully operational and instrumented copy of GTK+3 working and extracting

text.

While two of our original instrumentation hooks were no longer necessary due to code refactoring,

the remaining code was equivalent. Because we simply migrated our existing instrumentation over

to the new version, it is possible that we miss text handled in newly introduced API functions.

To compensate for this, we could re-perform our systematic analysis of the code base to note any

differences between the analysis of the original 3.6.0 code base and our updated 3.10.8 version.

Alternatively, we could simply review the GTK+3 release notes for any newly introduced functions.

However, for a minimal amount of effort we already achieved extraction of a vast majority of the

text passing through the library. To make the process even quicker, organizations could simply

create a program which is able to automatically insert the instrumentation code in the correct

places and only consult a developer if a refactor in the codebase is detected.

6.3.2 Performance of Data Extraction

We assess the performance overhead of our approach by determining the amount of time our code

requires to extract the data required and save it to a file. We focus on this measurement as any

additional time taken to update the graphics on the screen can cause update lag which would

be noticable by a user. For our approach to be viable, we must have low enough overhead to

remain unnoticed by the user. To quantitatively measure the time we spend processing within

GTK+ we employ the clock gettime function to record nanosecond resolution at the beginning

our processing, and again after the log file is closed. We save the difference between the two

recorded times to a separate performance log file.

With the code for performance measurements in place, we exercised our GTK+ 3.10.8 implemen-

tation on a Ubuntu 14.04 virtual machine allocated with 2GB of RAM and four 2.6GHz cores. To

generate data, we ran a number of applications, expanded their menus, opened up dialog boxes,

and then quit the application. In all, we logged a total of 36,409 performance results. After some

analysis we removed 215 outliers from our statistical analysis as they were more than two stan-

dard deviations from the mean. We attribute the existence of these outliers to operating system

scheduling delays such as queued context switches. The statistics from our results can be seen in

Table 7.
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Table 7: Overhead time for our instrumentation to log a GTK+ API call in µs as seen through
36,409 data points. 215 points excluded from the statistics for being two times the standard
deviation greater than the mean.

Minimum Median Average 95th Percentile Maximum Standard Deviation
44.24 71.79 100.8 272.16 788.4 85.41

6.3.3 Using Data to Recreate the Operational Context

By combining our extracted text with our recorded hierachical information, or contexual awareness

becomes more powerful than the sum of the two pieces. For example, by leveraging the recorded

parent-child relationships we can construct a graph representative of the widgets created by an

application. By traversing this graph, we can learn more about the location of text than otherwise

would be possible. For example, in the excerpt of our log below we are able to trace the assignment

of text all the way up to the enclosing window by connecting objects keyed by their address in

memory. We represent the log entries below in logical order, from child to parent, instead of

temporary.

338524.036541612 32249 gtk_label_set_text 0x84b34d0 "Print"

338524.036960916 32249 0x84bacb8 0x84b34d0 gtk_widget_set_parent

338524.037202966 32249 0x84bb168 0x84bacb8 gtk_container_add

338524.033204254 32249 0x84625a0 0x84bb168 gtk_container_add

338563.405579625 32249 (nil) 0x84625a0 gtk_widget_set_parent_window

When our instrumentation records information relating to the parent-child relationships, we also

make note of the function we are receiving data from. In doing so we gain even more contextual

information about the objects being handled. For example, when an application requests that

GTK+ set the text of a drop-down menu it calls the gtk menu item set text API function. By

simply looking at the name of the function, we can reason that the object associated with that

API invocation is a GTK+ menu widget.

In Figure 3 we give an example of how our contextual information can be used to construct a

graph representing the user interface. Labeled nodes represent an object with the assigned text

show as the node label. Black nodes are one or more connected widgets without text assigned to

them. By inspecting the contents of the graph and the relative distance between the objects with

text, we are able to reason about the proximity of an object to another. This could be be used

as a quantitative metric of the relationship between textual objects on the screen and could lead

towards the development of security policies or other studies on the layout of applications. For

example, extracting the word “print” from the on-screen interface may in of itself be innocuous;

however, we could alert security systems if we see the word “print” associated with a button, and

detect known business-confidential information on the screen. A security system may then use our

information to decide any subsequent print attempt from that host should be denied.

Using the extracted data, we can also begin to make statements about the behavior of applications

as recorded by the Linux Auditing Subsystem. For example, as shown in the abbreviated log
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Figure 3: Graph depicting a subset of the relationship of text elements in the GTK+ container
hierarchy for the gedit application.

excerpt below, we observe the assignment of the text “Save” to a label which is then assigned to

a button.

1423590487.994 gtk_label_set_text_with_mnemonic 0x9cfc170 19244

"/usr/bin/gedit" "_Save"

1423590487.994 19244 0x9cfc0b8 0x9cfc170 gtk_widget_add_mnemonic_label

1423590492.490 19244 0x9cfc0b8 EVENT-ButtonPress

1423590492.742:2458703 type=PATH : item=0 inode=590808 mode=file,664

name=/home/test_user/test_document

1423590492.742:2458703 : cwd=/home/scapegoat

1423590492.742:2458703 type=SYSCALL : arch=i386 syscall=open success=yes

exit=11 pid=19244

At some point in the future, this button is activated by the user which causes a chain of system

events to occur. According to the Linux Auditing System, gedit opens, writes to, and then closes

the file “home/test user/test document.” Using our extracted text and generated context graph

we can provide background information indicating what the user observed on the screen, and then

most importantly, identify the cause of the system actions: a button press by the user.

7 Fusion of the Sensors

To evaluate the effectiveness of our sensors in describing user interaction on a system, we interacted

with our system to perform a series of tasks which an end user would normally do. In this section
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we will describe our testing methodology and the actions we performed while our sensors extracted

information from the interface. We then evaluate how well our approach performed by reviewing

the performance data of each sensor and how well our sensors are able to describe the user activity

which occurred on the system.

7.1 Testing Methodology

When creating our methodology, we aim to fully exercise all of our sensors and also record the ac-

tions all processes running under our testing user. We prepared our system by first creating a new

user, “demo,” under which the test would be run. To provide us with some files to interact with,

we placed a two minute long video clip of an open-source movie [47], and a text file named “hel-

loworld.txt” containing simply “HelloworldFile” as its contents. In order to monitor the activity of

processes running under the demo user, we use the Linux Auditing Subsystem to monitor system

call invocations. To configure the auditing subsystem towards our needs, we edited the configura-

tion file (/etc/audit/auditd.conf) to instruct the auditing system to perform high-performance

buffered logging. We then edited the auditing rules file (/etc/audit/audit.rules) and inserted

the following commands (indented lines are a continuation of the previous line).

-a exit,never -F arch=b32 -F euid=1001 -F dir=/home/doransmestad/ -S open

-S close -S fork -S execve -S clone -S socketcall

-a exit,never -F arch=b64 -F euid=1001 -F dir=/home/doransmestad/ -S open

-S close -S fork -S execve -S clone

-a exit,always -F arch=b32 -F euid=1001 -S open -S close -S fork -S execve

-S clone -S socketcall

-a exit,always -F arch=b64 -F euid=1001 -S open -S close -S fork -S execve

-S clone

At a high level, the commands indicate to the Linux Auditing Subsystem that we wish to log the

following system calls: open, close, fork, execve, clone, and socketcall. We selected this subset of

the system calls to keep the volume of the log low while giving us insight into file and network

operations processes are performing. Given the power of the auditing subsystem, we need to

be precise when indicating what we wish to log. As such, whenever auditing system calls, the

audit subsystem needs to know if we wish to instrument the 32 bit or 64 bit version of the calls.

To be thorough, we indicate the to system that we wish to log both. This requires two very

similar commands which we will refer to as a ‘pair’. The first pair of commands tells the auditing

subsystem to exclude the home directory where our sensors save their log data, no need to audit

our own logs. The second pair of commands indicate that we wish to record invocations of the

aforementioned system calls only when the user owning the process is our demo user (whose uid

is 1001). We note there is slight difference between these pairs as the 64 bit system calls have no

socketcall listing and therefore is not monitored for 64 bit processes.

With the foundation for our test laid, we test our implementation by performing the following tasks

on a Ubuntu Desktop 14.04 virtual machine with 2GB of RAM and four 2.6GHz CPU cores:
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1. Clear out our sensor’s logs

2. Reboot the virtual machine

3. Start wall-clock stopwatch

4. Using the graphical interface, authenticate as our demo user

5. Move the mouse cursor around the screen, dragging and clicking objects on the desktop

6. Launch gnome-terminal, list a few directories, then launch applications

7. Launch the default Ubuntu video player, totem, and watch our two minute video

8. Launch the Chromium Browser and read two web-based news articles

9. Launch the text-editor gedit

10. Using gedit, open our “Helloworld.txt” file and type a few paragraphs of text

11. Collect the log files

7.2 Evaluation

We evaluate the results of our test by reviewing the events recorded in our sensor’s logs then

by analyzing the performance overhead of our approach. We perform simple aggregation and

analysis with a few scripts we wrote to provide insight into the recorded data, and by extension,

the interactions occurring with the user interface.

7.2.1 Analysis of Sensor Data

We begin by studying the log data from our Kernel sensor to obtain the reported consumers of

input from the input devices. Our kernel sensor recorded 7,960 events related to the capture of

the user input devices. Interestingly the X Windowing System was not the only process which

attempted an open to of the devices. We saw evidence indicating that “systemd-logind”, “acpid”,

“plymouthd”, and two shell scripts also attempted to open the keyboard, but never subsequently

read any input. We discount them from further consideration. As expected, and can be viewed

in the log except below, our kernel sensor indicates that our X Windowing System, noted as “X,”

opened the input devices.

Open pid:1136 fd:7 exe:X file:/dev/tty7 perf:387

[ unrelated log entries hidden ]

Open pid:1136 fd:10 exe:X file:/dev/input/mice perf:1052

Open pid:1136 fd:10 exe:X file:/dev/input/mice perf:655

Open pid:1136 fd:10 exe:X file:/dev/input/mice perf:997

Upon further inspection of the logs in an aggregate form, we are able to note that the X Windowing

System invoked the read system call 7427 times to grab input from the keyboard and mouse. To
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further separate the out the details it can also be observed from the aggregate data that X consumed

3,574 bytes from file descriptor 7 (keyboard input) and 20,347 bytes from the file descriptor 10

(mice input). Based upon our measurements when evaluating the kernel sensor (Section 4.3.2),

we estimate there were approximately 1,800 keyboard presses and at least a few minutes of mouse

input.

To verify this claim, we move on to inspecting the results of the X11 sensor. During our tests the

X11 sensor logged 70,618 events. We aggregated these events and distilled them down to 622 entries

describing the processes which connects with the X Windowing System interface. Surprisingly,

there were a number of applications which established the connection to the X Windowing System,

but then never used the connection to display data. To further filter the aggregate data we remove

from consideration processes which we have: no more than twenty graphical outputs, zero mouse

inputs, and zero keyboard inputs. This simple filter removed 614 processes which only connect to

the XServer without actually causing user interaction beyond that.

With the non-interacting programs removed from consideration, we are left with the eight processes

below. Four of these processes are the applications we intended to launch, and the other four are

system processes responsible for powering the user interface. For brevity, we collapsed applications

with multiple process identifiers and instead represent the sum of their events.

Client PID Output Keyboard Mouse Output/Input Ratio

"nautilus" 3023 1054 10 412 40%

"bamfdaemon" 2101 2 57 616 336%

"compiz" 2902 47448 0 0 0%

"gnome-terminal" 3659 485 354 289 173%

"gedit" 9395 1502 2985 0 199%

"chromium-browse" 8891 4930 0 3743 76%

"totem" 3777 3351 16 400 12%

"unity-greeter" 1345 61 22 11 54%

We first notice that the summation of our X11’s captured keyboard events compared to the kernel

sensor’s is nearly correct: 1722 keystrokes (3444 X11 events, one for KeyPress, one for KeyRelease)

to the Kernel’s approximately 1800 keystrokes. The difference we attribute to a combination of

approximation error and the possibility of certain infrequent actions within X11 not being fully

logged. Despite the difference, our ability to verify that our X11 sensor is correctly capturing

nearly all, if not all, keystrokes reinforces the validity of the sensor in the X11 sensor.

Through the use of the X11 sensor data we are able to perform some reasoning concerning pro-

cesses and their user-interaction. To aid our understanding, we categorize the processes into

groupings based upon the way each process interacts with the user. Applications with high

user input, or “input-heavy,” are: bamfdaemon, gnome-terminal, gedit, unity-greeter, and

chromium-browser. The only application with moderate user-input, or “input-balanced,” is

nautilus. Finally, the applications which mainly send information to the user, or “output-heavy,”

are: compiz and totem.
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According to this categorization of processes, we are able to separate the applications which simply

appear on the screen from applications which may be actively engaged in completing user-driven

tasks. In doing so we are able to say with certainty that the user acknowledges the application and

drives actions the processes are performing. Unfortunately, our X11 sensor has no way of knowing

what the user is actually observing within each window of the applications they use. While we are

able to connect the user to the process, more information is needed in order to comprehend the

user’s intentions when interacting with a process’ on-screen representation.

To gain further insight into what may be occurring within these processes, we employ our GTK+

sensor. With our instrumentation, we extract the information upon which the interface the user

observes is constructed, and reconstruct it for automated reasoning. To best understand why a

user initiated a certain action, we study actions with a catalyst. While our GTK+ sensor logs

every bit of the user interface it processes, one way of reasoning about the data is to reconstruct

the contextual information of an interface immediately after the user presses a button. Our in-

strumentation received 12 button presses from 2 processes. We discuss just one recorded button

press: when a button was clicked within the gedit application leading to reading a file from the

disk.

When running through the steps in our evaluation, we proceeded to open gedit, use gedit’s open-

file window to browse to the text file we wished to edit, then open the file. By constructing a graph

with the connected components of the graphical user interface at the time immediately surrounding

the button press, we are able to inspect the state of the interface when the user decided to press the

button. We present a representation of the reconstructed relationships between displayed objects

in Table 8. The relationships indicates the button pressed, labeled “gtk-open”, was placed on a

“GtkFileChooserDialog.” Nearby elements were set with the labels “Open” and “ Open” leading

us to believe that the dialog the button press occurred was the save dialog.

Table 8: A flat depiction of the reconstructed GUI object graph as seen by the GTK+ sensor.
Distance from Function Name Text Parenting Function

Button
1 gtk buildable set name ”dialog-action area1” gtk widget set parent
2 gtk buildable set name ”dialog-vbox1” gtk dialog add button
1 gtk window set title ”Open” gtk dialog add button

gtk buildable set name ”GtkFileChooserDialog” gtk dialog add button
2 gtk button new with label ”gtk-cancel” gtk widget add mnemonic label
0 gtk dialog add button ”gtk-open”

gtk button new with label ”gtk-open”
gtk button set label ”gtk-open”

1 gtk widget create pango layout ”Open” gtk widget add mnemonic label
gtk label new with mnemonic ” Open” gtk widget add mnemonic label
gtk label set text with mnemonic ” Open” gtk widget add mnemonic label

1 gtk widget create pango layout ”home” gtk widget set parent
gtk label set text ”home” gtk widget set parent
gtk label new with mnemonic ”gtk-open” gtk widget set parent
gtk label set text with mnemonic ”gtk-open” gtk widget set parent
gtk label new ”gtk-open” gtk widget set parent

With this information in hand, we can then temporally match the detection of a file-open dialog

to system audit logs handling the opening and reading from a particular file. In doing so, we note
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the presence of the following log entry:

type=SYSCALL msg=audit(1429852855.731:379764): arch=c000003e syscall=2

success=yes exit=21 a0=1d6c7a0 a1=0 a2=0 a3=185aa80 items=1 ppid=3680

pid=9422 auid=4294967295 uid=1001 gid=1001 euid=1001 suid=1001

fsuid=1001 egid=1001 sgid=1001 fsgid=1001 tty=pts1 ses=4294967295

comm="pool" exe="/usr/bin/gedit" key=(null)

type=CWD msg=audit(1429852855.731:379764): cwd="/home/demo"

type=PATH msg=audit(1429852855.731:379764): item=0

name="/home/demo/Desktop/helloworld.txt" inode=2327447

dev=fc:00 mode=0100644 ouid=1001 ogid=1000 rdev=00:00 nametype=NORMAL

This audit log, though verbose, shows that the process with pid 9422 (gedit), opened the file

/home/demo/Desktop/helloworld.txt approximately a tenth of a second after the button click

was registered in gedit.

As our GTK+ sensor is run completely under the user’s privileges (outside of the rusted computing

base), we wish to verify that the actions GTK+ is report are actually occurring. A few possible

approaches in order to perform this correlation rely on determining the overlap of information, or

obvious contradictions in such data, in which we are able to ensure we receive matching information.

We suggest that a temporal relation between a GTK+ button press and the kernel and X11 sensors

indicating a keyboard or mouse input are present. Additionally, we suggest a comparison between

the quantitative amount information held by GTK+ be reconciled with X11’s categorization of

an applications input-type. That is, if GTK+ is reporting vast amount of context, but X11 never

handled a screen presence, we would believe GTK+ did indeed render an interface but it never

showed up on the screen.

Our system, by being able to provide the data able to connect the user all the way down to

the system actions which result, can aid in our understanding of actions on the system. Our

experimental validation of our system in this section shows that we are able to successfully identify

the XServer as the only process reading raw input device information. We then show which

processes have communicated with the XServer and have received copies of user-input as delivered

from the XServer. With the list of applications in hand, we are then able to study the context of

user actions as viewed by the user themselves through the automated extraction of text processed

by the GTK+ graphics library. Utilizing this data to identify and even attribute actions on the

system caused by the user become simpler. Instead of attempting to guess if a user caused an

action on the system, any tool can leverage our approach to track which processes have accepted

user input, and greatly reduce the pool of suspect processes during a security audit.

8 Discussion

Below we briefly discuss relevant aspects to the overall functionality of our approach, and some

potential applications for our instrumentation of the GUI.
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8.1 Disk Space

Running our three sensors at all times quickly requires a significant amount of disk space. For

example, over the 17 minute capturing of data on our machines resulted in nearly 4MB of GTK+

logs, 12MB of X11 logs, and 1MB of kernel logs. This will lead to an aggregate log size of

over 1.5GBs in just a 24-hour period. While our performance overheads are minimal, our disk

presence is quite significant. We propose that any potential deployers make efforts to keep their

disks from completely filling up. Alternative methods such as storing all log information on a

network server, database server, or automatically compressed partition would also be able to

provide benefits.

8.2 Application Domains

As our approach is a generic way to instrument the graphical user interface, our data can be used

to aid in a number of areas. We explore a few possibilities below.

8.2.1 Usability Studies

To test the effectiveness of graphical interface layouts to communicate their meaning to an end-

user, GUI designers usually run usability studies. There are three main types of usability studies:

empirical, formal, and informally [48]. The empirical studies bring in human subjects and ask

that they navigate through some designed interface while monitored. Formal and informal studies

are cheaper solutions needing only a single expert or automated system to judge the viability

of specific designs based upon prior experience [48]. While our approach could be leveraged in

automated studies to determine the link-distance of various GUI objects, we focus our discussion

on our instrumentation’s ability to record user actions.

One of the main reasons that empirical usability studies are avoided is because of their high cost

and challenges in recruiting a sufficiently diverse set of users to study. A few products, such as

Google Chrome and Firefox attempt to resolve this by packaging their own sets of instrumentation

and simply allowing the user to choose to self-report data. These forms of usability studies are

not as formally defined and users may take whichever path through the program they wish, at

any time. Nonetheless, they provide valuable feedback for the developers of web-browsers so that

they can continue improving their product. Using our already existing sensors, we can provide this

insight for the entire operating system, including individual programs which would otherwise not

have such instrumentation.

Furthermore, we can extend the idea of these usability studies to include organizational wide

metrics for application usage. For example, a business manager may wish to know if the costly

licensed software is actively being used by the organization’s employees or not. It may very well be

that employees are still using Microsoft PowerPoint to create diagrams instead of using Microsoft

Visio. Or, employees do use Visio, but only for simplistic drawings which could easily be powered
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by an open-source alternative. As another example, an organization would like to know how much

time their employees spend in their web browsers instead of accomplishing business tasks: through

our existing sensors we can quantitatively state the amount of user input to web browsers which

correlates to the time spent in the application.

8.2.2 Security

The identification of protection against malware and other system security threats depends upon

having actionable intelligence. Whether that is an anti-virus signature or an anomaly-based in-

trusion detection system, each requires data sets to process. Our sensors can be used directly

for these purposes. By tracking which processes are interacted with by the user, we can inform

security systems which applications have earned some level of ‘endorsement’ from the user. That

is, an application which goes through the work of creating a user-interface and interacting with the

user can be differentiated from a hidden process which performs actions without the user knowing.

While there are categorizes of malware, just as a trojan-horse, which would be passed over by this

naive approach, being able to provide the additional insight to a process’ actions can aid in the

detection of abnormal behaviors.

Our sensors could further be used within a network control paradigm. For example, if the host

is operating within a software defined network (SDN) which deploys access control nodes on each

end-host our data could become a valuable resource when writing policies. With our data a network

administrator could require that a process interact with the user prior to allowing the outbound

network traffic. While such a policy does require an end-host client for SDNs to communicate

the data up to the network controller, contemporary work by Douglas MacFarland is already

implementing such an approach [49]. A number of other security-focused applications are possible,

but our main contribution to the security space is our data available for analytic by existing security

solutions. More data allows for these system to produce better decisions, leading to an increase in

security.

8.3 Ethical and Legal Considerations

As is true with any monitoring and data-collection system, ethical and legal considerations must

be taken into account. Our sensors examine the information flow between various points in the

graphical user interface and in the case of GTK+ actively extract information from the screen. Due

to our presence in privileged areas, our sensors are able to intercept all user keystrokes and screen

content. As such, we are able to log any password the user types and also extract possibly sensitive

material from the screen such as a social security number, bank account information, or private

communications. However, any other security solution installed will also be able to retrieve this

sensitive information. In fact, commonly installed anti-virus solutions must open, read, process,

and potentially report upon all files residing upon the host system.

Existing organizations and enterprises already understand these potentially problematic privacy
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issues and respond by requiring all of their employees to explicitly acknowledge they may be

monitored while using organizational equipment. These warnings are usually presented upon login

through user agreements or through dissemination of agreements in which employees are required

to waive their privacy rights. Under these conditions, we believe that the use of our sensors is both

legal and ethical. However, as with any tool potentially able to breach privacy boundaries, it is up

to the deployer of our sensors to ensure their ethical use.

9 Future Work

Through the implementation and evaluation of our sensors we identified areas where our approach

can be improved and expanded upon in the future. We discuss these areas below.

9.1 Instrument Additional Graphics Libraries

To support the extraction of context from additionally applications instrumentation of more graph-

ics libraries is required. While our current GTK+ sensor works well in extracting context from

the processes which employ its services, additional applications such as the PDF viewer evince

use alternative libraries for the rending of the PDF contents. We specifically focus on the web

browsing libraries such as WebKit and Gecko as the best next step. As web browsing has become

ubiquitous over the past years, being able to see into the user’s browser will greatly increase our

coverage of common applications used by the end-user.

9.2 Refine the X11 Sensor

Below we discuss a few aspects in which improvements can be made to our X11 sensor.

9.2.1 Tracing the Event Data Flow

In creating the X11 Sensor, we place instrumentation the best place possible to capture both input

events and output requests as they passed through the system. In doing so, we were able to

capture nearly all of the events with perfect accuracy. However, there are occasional cases where

our instrumentation is not fully complete. For example, when a process requests a ‘grab,’ to claim

exclusive access to the keyboard and/or mouse our instrumentation is not fully able to log the flow

of events. In future work, we aim to fully trace the flow of events and locate the infrequent flows

which circumvent our instrumentation. Once identified, we aim to refactor our code to remain

efficient and expedient while ensuring all events are fully captured.
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9.2.2 Calculating Window Visibility

When determining whether or not a window is visible to the user we simply perform a few com-

parisons against the internal XServer data structures. If we are returned a value indicating that

the window is only partially visible, our current code treats the window as if it were fully exposed.

In the future, we want to handle this more carefully and calculate the actual window area exposed

based upon the XServer’s indication of the exposed portions. By doing so we will be able to fur-

ther refine our quantification of a process’ output, which will lead to a better and more accurate

characterization of the user-process interactions on a machine.

9.3 Determining the User’s Intention

With our three sensor system we are able to following user data from the kernel, to X11, and

up to the GTK+ library. Our future work will look into extending our understanding to the

users themselves. In particular, we want to study how users perceive an application on the screen

and indicate an intention. This could be intending to the close the application by clicking an exit

button, or indicating the desire to open a file by interacting with a file-open dialog. By establishing

the intention held by the user we can begin to reason about process behavior which deviates from

the expected actions to fulfill the intention. We believe such data would be highly useful towards

the security field.

10 Conclusion

Modern computer systems are complex. As such, it can be difficult to understand the behavior of

the system and why certain actions are occurring. In our approach, we proposed and implemented

sensors capable of extracting information from the graphical user interface in order to identify the

processes which interacted with the user. By knowing this information, we are able to enrich the

situational awareness of the events occurring within a system and therefore provide insights towards

the root cause of system events. We showed that our instrumentation was effective in characterizing

different types of applications with an on-screen presence, and further we provided data towards

the determination of user intentions. We also proved that obtaining the information from the user

interface can be done in an efficient manner with minimal overhead allowing our approach to be

deployed across an organization without causing any significant processing delays.
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