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Abstract

In this project, we study an asymptotic expansion method for solving stochastic

volatility European option pricing problems. We explain the backgrounds and de-

tails associated with the method. Specifically, we present in full detail the argu-

ments behind the derivation of the pricing PDEs and detailed calculation in deriving

asymptotic option pricing formulas using our own model specifications. Finally, we

discuss potential difficulties and problems in the implementation of the methods.
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Chapter 1

Introduction

In the traditional Black-Scholes-Merton model for European option pricing, the

volatility parameter is assumed to be constant. However, mounting evidence shows

that there is a significant discrepancy between Black-Scholes option prices and op-

tion prices observed from the market if options of different strikes and maturities on

the same stock are priced with the same constant volatility. In order to correct this

problem, stochastic volatility models had been proposed which give rise to a lot of

new problems in model specification, solving and testing.

In this project, we studied an asymptotic method for solving stochastic volatility

option pricing models. The method was first proposed by Fouque, et al. in [8]

to solve a stochastic volatility model in which the volatility driving process is an

Ornstein-Uhlenbeck (OU) process. Further developments of the method were made

to solve models in which volatility was driven by two stochastic processes. We illus-

trative with full detail how to use those methods to obtain asymptotic option price

formulas for given stochastic volatility models.
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Although asymptotic option pricing formulas were derived and theoretical error

bounds were established, there is little knowledge about how the resulting formulas

fit real data. In the comprehensive survey paper by Bakshi, et al. [1], the authors

proposed a framework for testing alternative option pricing models. They tested

models from three major perspectives: internal consistency of implied parameters

with relevant time-series data; out-of-sample pricing; and hedging. To explore the

first point, we illustrate with model specifications which can be potentilly used to

infer volatility and market risk of volatity parameters in the models.
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Chapter 2

Review of the

Black-Scholes-Merton Option

Pricing Theory

The theory of option pricing originated from the seminal works of Black and Scholes

[6] and Merton [15], in which they studied the problem of how to assign a fair price

to a European option in the sense of No Arbitrage. An arbitrage is defined to be

a trading strategy which begins with zero capital and at a later time has positive

capital with positive probability without having any risk of loss.

A European call option is a contract that gives its holder the right, but not the

obligation, to buy one unit of an underlying asset for a predetermined strike price

K on the maturity date T . If ST is the price of the underlying asset at maturity

time T , then value of the this contract at maturity, which is its payoff, equals

h(ST ) = (ST −K)+. (2.1)
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In the heart and sole of Black and Scholes’ theory is the idea of dynamic hedging:

the value of an option can be replicated by a dynamically adjusted portfolio consist-

ing the underlying asset and a position in a money market account. Based on the

No Arbitrage assumption, one must have the price of the option equal the price of

the replicating portfolio at any time before the maturity of the option. Black and

Scholes’ theory helped people to understand the nature of an option contract, gave

an satisfatory formula for finding the fair price of the option, and shed light on how

the writer of the option can hedge his short position.

Between 1979 and 1983, Harrison, Kreps, and Pliska used the general theory of

continuous-time stochastic processes to put the Black-Scholes option-pricing theo-

rey on a solid theoretical foundation. Those works include [10, Harrison and Kreps,

1979], [11, Harrison and Pliska, 1981], and [12, Harrison and Pliska, 1983]. Their

results enable people to price many other derivative securities and to build option

pricing models with considerable degrees of freedom.

In this chapter, we derive the Black-Scholes-Merton formula using the risk-neutral

method. The ideas and technical tools used here serve as the foundation of our

presentations in the following chapters. Our presentation follows [18] closely.

2.1 Replicating Portfolio

To facilitate our presentation, we first give the mathematical definition of Arbitrage.

Let (Ω,F ,P) be a probability space, Wt, t ≥ 0, be a Brownian motion, and Ft, t ≥ 0

be a filtration associated with the Brownian motion.
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Definition 1 (Arbitrage). An arbitrage is a portfolio value process Xt satisfying

X0 = 0 and also satisfying for some time T > 0,

P(XT ≥ 0) = 1,

P(XT > 0) > 0.

If there exists a money market account with interest rate r, then an arbitrage can

be equivalently defined as a portfolio value process Xt satisfying X0 = x0 and at a

later time T > 0

P(XT ≥ erTx0) = 1,

P(XT > erTx0) > 0.

Consider a European call option with maturity T and strike K written on a stock

whose price dynamics is modeled by the geometric Brownian motion

dSt = µStdt+ σStdWt, (2.2)

in which µ and σ are constant parameters called the drift and the volatility of the

geometric Brownian motion, respectively.

Black and Scholes argued that the value of this option can be replicated by a dy-

namically adjusted portfolio investing in a money market account with interest rate

r and the underlying stock S. Denote the value of this portfolio by Xt and the

shares of stocks held by ∆t. The rest of the money is invested in a money market
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account with interest rate r. (A negative value in the account meaning borrowing

at the rate of r.) The dynamics of the value of this porfolio is given by

dXt = ∆tdSt + r(Xt −∆tSt)dt

= rXtdt+ ∆t(µ− r)Stdt+ ∆tσStdWt.

(2.3)

And the dynamics of the dicounted portfolio value is given by

d(e−rtXt) = ∆t(µ− r)e−rtdSt + ∆tσe
−rtStdWt. (2.4)

Black and Scholes further argued that the value of the option, C, should be a

function of time t and the value of the underlying stock St. Thus the dynamics of

the value of the option can be written as

dC(t, St) = Ct(t, St)dt+ Cx(t, St)dSt +
1

2
Cxx(t, St)dStdSt

=

[
Ct(t, St) + µStCx(t, St) +

1

2
σ2S2

tCxx(t, St)

]
dt+ σStCx(t, St)dWt.

(2.5)

And the dynamics of the discounted option value is

d(e−rtC(t, St)) = e−rt
[
rC(t, St + Ct(t, St) + µStCx(t, St) +

1

2
σ2S2

tCxx(t, St))

]
dt

+ e−rtσStCx(t, St)dWt.

(2.6)
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By replication, we must have

d

(
e−rtXt

)
= d

(
e−rtC(t, St)

)
. (2.7)

So that we equate (2.4) and (2.6) and have

∆t(µ− r)dSt + ∆tσStdWt

=

[
rC(t, St + Ct(t, St) + µStCx(t, St) +

1

2
σ2S2

tCxx(t, St))

]
dt+ σStCx(t, St)dWt.

(2.8)

Equating the dWt terms on both sides of (2.8) gives

∆t = Cx(t, St). (2.9)

This equation is called delta-hedging. It means that at each time t prior to expiration,

the number of shares of stocks contained in the hegding portfolio should equal the

partial derivative with respect to the stock price of the option value function at that

time. The quantity Cx(t, St) is called the delta of the option. Then we equate the

dt terms in (2.9) and have

(µ− r)StCx(t, St)

= −rC(t, St) + Ct(t, St) + µStCx(t, St) +
1

2
σ2S2

tCxx(t, St)
(2.10)

for all t ∈ [0, T ).

Simpify (2.10) a little bit, we have
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Cx(t, x) + rxCx(t, x) +
1

2
σ2x2Cxx(t, x) = rC(t, x) (2.11)

for all t ∈ [0, T ) and x ≥ 0. This equation, together with the terminal condition

C(T, x) = (x−K)+, (2.12)

is called the Black-Scholes-Merton equation, whose solution gives the No-Arbitrage

price of the European call option.

2.2 No Arbitrage Pricing

Notice that in the above Black-Scholes model, interest rate and volatiliity are as-

sumed to be constant. The only source of randomness is the Brownian motion Wt.

It is because of this reason that the option can be hedged using the underlying stock

and the money market account. However, when we work with stochastic volatility

models in which new sources of randomness other than the one driving the stock

price are introduced, the above hegding strategy no longer work.

Although option pricing is fully justified when it is accomplished by a hedge for

a short position in the derivative security, we are maninly interested in finding a

fair price of the option in the sense of No Arbitrage. To this end, we derive the

Black-Scohles-Merton equation again using the risk-neutral pricing approach. The

risk-neutral approach explores the fact that there is a probability measure P̃, which

is equivalent to the probability measure P, under which the discounted stock price

process is a martingale. By equivalent we mean that the two probability measures
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P and P̃ agree which sets in F have probability zero.

Because of this, the discounted price of the option at time t can be written as the

expectation of the option’s payoff under the risk-neutral measure conditioned on the

current information available. It further explores the Markov property of the stock

price process, which enables us to write the conditional expectation as a function of

time t and the stock price at t. Using the Feynman-Kac formula, a partial differen-

tial equation can be obtained, whose solution gives the price function of the option

that will not lead to Arbitrage opportunities.

The existence of the equivalent probability measure P̃ is guaranteed by the following

Girsanov ’s theorm.

Theorem 1 (Girsanov). Let Wt, 0 ≤ t ≤ T , be a Brownian motion on a probability

space (Ω,F ,P), and let Ft, 0 ≤ t ≤ T , be a filtration for this Brownian motion. Let

Θt, 0 ≤ t ≤ T , ba an adapted process. Define

Zt = exp

{
−
∫ t

0

ΘudWu −
1

2

∫ t

0

Θ2
udu

}
, (2.13)

W̃t = Wt +

∫ t

0

Θudu, (2.14)

and assume that

E
∫ T

0

Θ2
uZ

2
udu <∞. (2.15)

Set Z = ZT . Then EZ = 1 and under the probability measure P̃ given by

P̃(A) =

∫
A

Z(ω)dP (ω), (2.16)
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for all A ∈ F , the process W̃t, 0 ≤ t ≤ T , is a Brownian motion.

Recall that our stock price process is modeled as a geometric Brownian motion under

P, whose dynamics is given by (2.2). It is well-known that the solution to (2.2) is

St = S0exp

{
(µ− 1

2
σ2)dt+ σdWt

}
, (2.17)

in which S0 is the initial value of the process St. Thus the discounted stock price

process can be written as

e−rtSt = S0exp

{
(µ− r − 1

2
σ2)dt+ σdWt

}
, (2.18)

and its differential is

d

(
e−rtSt

)
= (µ− r)e−rtStdt+ σe−rtStdWt. (2.19)

We rewrite (2.19) as

d

(
e−rtSt

)
= σe−rtSt

[
Θtdt+ dWt

]
, (2.20)

in which

Θt =
µ− r
σ

. (2.21)

Θt is called the market price of risk. It means the excess return over the risk free

rate one can expect if one is willing to take one more unit of risk.

Now we introduce the probability measure P̃ defined in Girsanov’s theorem, which

uses the market price of risk given by (2.21). In terms of Brownian motion W̃t of

that theorem, we may write
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d

(
e−rtSt

)
= σe−rtStdW̃t. (2.22)

We call P̃, the measure defined in Girsanov’s theorem, the risk-neutral measure be-

cause it is equivalent to the original measure P and it renders the discounted stock

price e−rtSt into a martingale.

The undiscounted stock price process St has mean rate of return equal to the interest

rate under P̃. This can be seen by replacing dWt = −Θtdt+ dW̃t into (2.22). With

this substitution, we have

dSt = rStdt+ σStdW̃t. (2.23)

More generally, we have the following definition for risk-neutral measure:

Definition 2 (Risk-neutral measure). A probability measure P̃ is said to be risk-

neutral if

(1)P̃ and P are equivalent, and

(2)under P̃, the discounted stock price e−rtSt is a martingale.

The following theorem, called the First Fundamental Theorem of Asset Pricing, tells

us how to check whether an option pricing model is Arbitrage-free:

Theorem 2 (First fundamental theorem of asset pricing). If a market model admits

a risk-neutral probability measure, then it does not admit arbitrage.

Now let Xt be a replicating portfolio of the European option we are pricing. By

replication we have

XT = (ST −K)+a.s. (2.24)
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Since Xt is always a linear combination of the underlying security and the money

market account and the discounted value process of both these two assets are mar-

tingales under P̃, we have that the discounted value of Xt is also a martingale under

P̃. So that

e−rtXt = Ẽ[e−rTXT |Ft] = Ẽ[e−rT (ST −K)+|Ft]. (2.25)

The value Xt of the replicating portfolio is actually the capital needed at time t in

order to construct a hedge of the short position in the derivative security. Hence,

we call Xt the price Ct of the derivative security at time t, and (2.25) becomes

e−rtCt = Ẽ[e−rT (ST −K)+|Ft], (2.26)

Note that (2.26) can also be written as

Ct = Ẽ[e−r(T−t)(ST −K)+|Ft], (2.27)

for 0 ≤ t ≤ T .

This is called the risk-neutral pricing formula for the derivative security.

Notice that we had assumed that there exists a portfolio Xt which replicates the

value of the derivative security. However, the exact replicating strategy was not

given. But we at least know that such priced derivative security will not lead to

Arbitrage opportunities. Thus it is a possible price for the derivative security. Th

issue of how to hedge a short position in such a contract may lead to another realm

of research. Here we focus on the problem of how to find a No Arbitrage price for

the contract.
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In cases where we can construct a hedge for a short position in the contract, we

say that we have a complete market model. Otherwise the model is incomplete. In

the Black-Scholes model, we have a complete market. But in the cases of stochastic

volatility models, we will have incomplete market.

The following Second Fundamental Theorem of Asset Pricing links model com-

pletemess with the uniqueness of risk-neutral measure:

Theorem 3 (Second fundamental theorem of asset pricing). Consider a model that

has a risk-neutral probability measure. The model is complete if and only if the

risk-neutral measure is unique.

In the Black-Scholes model, the risk-neutral formula (2.25) can be evaluated explic-

itly. But if we do not have an explicit formula, we could compute the expectation

numerically by beginning at Xt and simulating the paths of Xu for t ≤ u ≤ T . This

is the Monte-Carlo simulation method. However, this method could be computa-

tionally heavy and will only give the price of the derivative security at time T .

There is another approach to find the value of the conditional expectation. This

approach explores the fact that solutions to stochastic differential equations of the

form

dXt = α(t,Xt)dt+ β(t,Xt)dWt, (2.28)

which include geometric Brownian motions as special cases, are Markov processes.

And so are measurable functions of Markov processes. The exact definition of a

Markov process is given as following:

Definition 3 (Markov process). Let (Ω,F ,P) be a probability space, let T be a

13



fixed positive number, and let Ft, 0 ≤ t ≤ T , be a filtration of sub σ-algebras of

F . Consider an adapted stochastic process Xt, 0 ≤ t ≤ T . Assume that for all

0 ≤ s ≤ t ≤ T and for every nonnegative, Borel-measurable function f , there is

another Borel-measurable function g such that

E[f(Xt)|Fs] = g(Xs).

Then we say that X is a Markov process.

In the above definition, the function f and g are allowed to depend on time. So

that we may also write f = f(t, x) and g = g(t, x). Using this fact, and dentoe the

stock price at time t by s, we have that there exists a Borel-measurable function

C = C(t, x) such that

C(t, x) = E[e−r(T−t)(ST −K)+|Ft] , Et,x[e−r(T−t)(ST −K)+], (2.29)

in which x is the stock price at time t.

Our next important observation is that e−rtC(t, St) is a martingale under P̃. This

can be seen as following:

Let 0 ≤ u ≤ t ≤ T . Since we have

e−ruC(u, Su) = Ẽ[e−rT (ST −K)+|Fu],

e−rtC(t, St) = Ẽ[e−rT (ST −K)+|Ft]

from (2.29), we take conditional expectation of the second equation and have
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Ẽ[e−rtC(t, St)|Fu] = Ẽ[Ẽ[e−rt(St −K)+|Ft]|Fu]

= Ẽ[e−ru(Su −K)+|Fu]

= e−ruC(u, Su).

(2.30)

Since e−rtC(t, St) is a martingale, the dt term in the differential d(e−rtC(t, St)) must

be zero.

d(e−rtC(t, St)) = e−rt
[
−rCdt+ Ctdt+ CxdS +

1

2
CxxdSdS

]
= e−rt

[
−rC + Ct + rCx +

1

2
σ2Cxx

]
dt+ e−rtσCxdW̃t.

(2.31)

Setting the dt term equal to zero, we obtain

Ct + rCx +
1

2
σ2Cxx − rC = 0.

This equation, together with the terminal condition

C(T, x) = (x−K)+,

is exactly the Black-Scholes equation for Europrean call option.

The above arguments, which links the conditional expectation to a partial differential

equation, can be summarized by the following Feynman-Kac theorem:

Theorem 4 (Feynman-Kac). Consider the stochastic differential equation

dXu = β(u,Xu)du+ γ(u,Xu)dWu.
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Let h(y) be a Borel-measurable function. Fix T > 0, and let t ∈ [0, T ] be given.

Define the function

g(t, x) = Et,xh(XT ).

(Assume that Et,x|h(XT )| <∞.) Then g(t, x) satisfies the partial differential equa-

tion

gt(t, x) + β(t, x)gx(t, x) +
1

2
γ2(t, x)gxx(t, x) = 0

and the terminal condition

g(T, x) = h(x)

for all x.

2.3 Shortfalls of the Black-Scholes-Merton Model

An important concept in the practical use of the Black-Scholes-Merton formula is

implied volatility. The implied volatility of an option is the volatility value that will

equate the BSM formula to the observed option price. In the original BSM model,

volatility is assumed to be constant. If that is the case, then implied volatility should

also be constant However, during the years it has been observed that the volatility

surface of traded options’ implied volatilities in terms of time of time-to-maturity

and strike prices exhibit ’smile’-shaped curves, which is called volatility smile. This

implies that the constant volatility assumption is highly unrealistic.

One of the major efforts to correct this problem is stochastic volatility models. Major

works along this line include [14], [17], [19], [13], [2], and [16]. Most notably, Renault

and Touzi [16] showed that stochastic volatility models are able to recreat the smile
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curves in cases where the volatility and asset driving processes are uncorrelated and

the risk premium process is a function of the volatility driving process only. This

becomes one of the biggest assets of stochastic volatility models.
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Chapter 3

Common Volatility Driving

Processes and Their Properties

In this chapter we review two of the most important and widely used volatility driv-

ing processes, namely the Ornstein-Uhlenbeck (OU) process and the Cox-Ingersoll-

Ross (CIR) process. We give their basic properties and introduce some important

concepts associated with them, which will play key roles in the asymptotic expansion

methods introduced in chapter 4.

3.1 The Ornstein-Uhlenbeck Process

The Ornstein-Uhlenbeck process is defined as the solution to the stochastic differ-

ential equation

dYt = α(m− Yt)dt+ βdWt (3.1)

where Wt is a standard Brownian motion. The solution to this stochastic differential

equation can be written as
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Yt = m+ (y −m)e−αt + β

∫ t

0

e−α(t−s)dWs, (3.2)

assuming that the initial value of the process is y. From knowledge about stochatic

integrals we have that Yt is a Gaussian process. The contidional distrinution of

Yt given Y0 = y is normal with mean m + (y − m)e−αt and standard deviation

β2

2α
(1− e−2αt). When t→∞, the mean value and standard deviation of Yt converge

exponentially fast to m and β2

2α
, respectively. The limit distribution when t→∞ is

called the invariant distribution, or unconditional distribution, of Yt. More precisely,

the invariant distribution Y0 of a process Yt is an initial distribution such that for

any t > 0, Yt has the same distribution. It is called ’invariant’ because it does not

change in time. The invariant distribution Y0 can be found by solving the following

differential equation:

d

dt
E{g(Yt)} =

d

dt
E{E{g(Yt)|Y0}} = 0,

where g is arbitrary.

Since the OU process converges to invariant distribution as time goes on, it is called

an asymptotically stationary process, with a Gaussian stationary distribution.

The concept of invariant distribution is of key importance to the asymptotic expan-

sion method we will use to solve stochastic volatility option pricing models. Fan

[5] points out that the invariant distribution is also very important to statistical

inference of stochastic volatility models. If the initial distribution is taken from the

invariant density, then the process is stationary. And stationary plays an important

role in time series analysis and forecasting. The structual invariablity allows people
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to forecast the future based on the historical data.

Fouque [7] pointed out that the OU process is ergodic, meaning that the long-run

time average of a bounded function g of the process is close to the statistical average

with respect to its invariant distribution:

lim
t→∞

1

t

∫ t

0

g(Yu)du = 〈g〉,

in which 〈g〉 denotes the expectation of g under the invariant distribution.

An important concept associated with the process (3.1), or more generally, with

stochastic differential equations of the form of (2.28) is infinitesimal generator. Ac-

cording to [4], an infinitesimal generator can be defined as following:

Definition 4. Given a stochastic differential equation of the form of (2.28), the

partial differential operator L, referred to as the infinitesimal generator of X, is

defined, for any function h(x) with h ∈ C2(R), by

Lh(t, x) = α(t, x)
∂h

∂x
+

1

2
β2(t, x)

∂2h

∂x2
.

Fouque [7] also pointed out that the invariant distribuiton is unique for ergodic

processes and can be calculated using its infinitesimal generator by solving:

E{Lg(Y0)} = 0

for any smooth and bounded g.

One final important fact about the OU process has to do with the null space of its
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infinitesimal generator L, i.e. the solutions of

Lφ = β2φ′′ + α(m− y)φ′ = 0.

Fouque [7] showed that the solutions to this ordinary differential equation are of the

form:

φ(y) = c1

∫ y

−∞
eα(m−z)2/2β2

dz + c2

for constants c1 and c2. One shall be interested in solutions that are ’well-behaved’,

i.e. solutions that are not rapidly growing. For this reason, one may take c1 = 0.

So that the only admissible solutions are constant over state y. And this fact is true

for ergodic Markov processes, which include OU and CIR process as special cases.

3.2 The Cox-Ingersoll-Ross Process

The Cox-Ingersoll-Ross (CIR) process is another popular process for stochastic

volatility modeling which is mean-reverting. It was first proposed to model the

dynamics of interest rates but also fits the purpose of volatility modeling. A CIR

process is defined as the solution to the following stochastic differential equation:

dYt = κ(m′ − Yt)dt+ η
√
YtdWt (3.3)

in which Wt is a standard Brownian motion, κ is called the rate of mean reversion,

and m′ is the long-run mean level of Y . This equation does not have a closed-form

solution. But the CIR process has an advantage over the OU process: the CIR pro-

cess is always nonnegative. This can be intuitively seen from the defining equation

that when the process approaches zero, the term multiplying dWt vanishes and the
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postive drift term κm′dt drives the process back into positive territory.

Although one cannot derive a closed-form solution for (3.4), the conditional distri-

bution of Yt can be calculated. While the computation is too long to be presented

here, we only give the result: Yt is a non-central chi-square distribution and the

expectation and variance equal

e−κty +m′(1− e−κt)

and

η2

κ
y(e−κt − e−2κt) +

m′η2

2κ
(1− 2e−κt + e−2κt),

respectively, in which y is the initial value of the process. As t goes to infinity, we

have that the mean and variance of the process of its long-run distribution is m′

and m′η2

2κ
, respectively.

3.3 Scales in Mean-Reverting Stochatic Volatility

Through studying the S&P500 index return process, Fouque [7] found another char-

acteristic of volatility series which is called fast mean-reverting. They estimated that

the S&P500 volatility returns to its long-run average level on a characteristic time

of 1.5 day. Inspired by this phenomenon and observing that the covariance of the

OU process (3.1) under its long-run distribution is

E{(Yt −m)(Ys −m)} =
β2

2α
e−α|t−s|, (3.4)
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they assumed α to be a large constant which would cause the process Y to decorre-

late quickly, a mathematical description of fast mean-reverting. They further keep

ν2 = β2

2α
as fixed and write β = ν

√
2α. Since α is large, its reciprocal ε = 1

α
is small.

We will see in the next chapter that this small parameter ε plays the key role in

the asymptotic methods for solving PDEs resulting from option pricing models in

which the volatility driving process is fast mean-reverting.

For CIR process, the covariance function (3.4) becomes

E{(Yt −m′)(Ys −m′)} =
m′η2

2κ
e−κ|t−s|. (3.5)

Assume that ν2 = m′η2

2κ
being constant, we can write η =

√
2κν√
m′ . Denote ε = 1

κ
, we

can further write η =
√

2ν√
ε
√
m′ .
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Chapter 4

The Asymptotic Expansion

Method

4.1 Background and History

The asymptotic expansion method, also called the perturbation method, is used to

find an approximate solution to a mathematical problem which cannot be solved

exactly, by starting from the exact solution of a related problem. It leads to an

expression for the desired solution in terms of a formal power series in some small

parameter that quantifies the deviation from the exactly solvable problem. The

leading term in the power series is the solution of the exactly solvable problem,

while further terms describe the deviation in the solution, due to the deviation from

the initial problem.
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4.2 An Illustrative Example

We use the CIR stochastic volatility model to illustrate the asymptotic expansion

method.

4.2.1 Model setup

The model we use here for illustrative purpose is similar to the model used in Fouque

[7]. The difference is that we model the volatility process as a CIR process whereas

Fouque used an OU process as the driving process for volatility. This enables us to

get rid of the unspecified function f as that in Fouque’s model, which is an non-

negative function used because the OU process may take on negative values. Our

model under the real-world probability measure is as the following:

Let (Ω,F ,P) be a probability space, Wt be a Brownian motion, and Ft the filtration

associated with the Brownian motion.

dXt = µXtdt+ σtXtdWt,

σt =
√
Yt,

dYt =
1

ε
(m− Yt)dt+

ν
√

2√
ε
√
m

√
YtdZ

∗
t ,

Z∗t = ρWt +
√

1− ρ2Zt,

(4.1)

where Wt and Zt are independent standard Brownian motions. Note that dWtdZ
∗
t =

ρdt. The specification of the drift and diffusion of Yt follows the reasoning in section

3.3.
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4.2.2 Derivation of option pricing equation

We look for an equivalent probability measure under which the discounted process

e−rtXt is a martingale. To do this, we need the following multiple dimension version

of the Girsanov’s theorem:

Theorem 5 (Girsanov, multiple dimension). Let T be a fixed positive time, and let

Wt = (W
(1)
t , · · · ,W (d)

t ) be a d-dimensional Brownian motion on a probability space

(Ω,F ,P). Assiciated with this Brownian motion, we have a filtration Ft. Denote

F = FT . Let Θ = (Θ
(1)
t , · · · ,Θ(d)

t ) be a d-dimensional adapted process. Define

Zt = exp

{
−
∫ t

0

Θu · dWu −
1

2

∫ t

0

‖ Θu ‖2 du

}
,

W̃t = Wt +

∫ t

0

Θudu,

and assume

E
∫ T

0

‖ Θu ‖2 Z2
udu <∞.

Set Z = ZT . Then EZ = 1, and under the probability measure P̃ given by

P̃(A) =

∫
A

Z(ω)dP(ω)for allA ∈ F ,

the process W̃t is a d-dimensional Brownian motion.

In the above definition,

∫ t

0

Θu · dWu =

∫ t

0

d∑
j=1

Θ(j)
u dW (j)

u =
d∑
j=1

∫ t

0

Θ(j)
u dW (j)

u ,

‖ Θu ‖ denotes the Euclidean norm
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‖ Θu ‖=
( d∑
j=1

(Θ(j)
u )2

)1/2

,

and

W̃t = (W̃
(1)
t , · · · , W̃ (d)

t )

with

W̃
(j)
t = W

(j)
t +

∫ t

0

Θ(j)
u du, j = 1, · · · , d.

We introduce the probability measure P̃ using

Θ
(1)
t =

µ− r
σt

and

Θ
(2)
t = γt,

in which γt = γ(Yt) is an unknown function called market price of volatility risk.

The choice of γ is not unique, thus the stochastic volatility model gives rise to

an incomplete market in which the process (γt) parametrizes a space of equivalent

measures. For each choice of γ, we denote the corresponding equivalent martingale

measure by P̃(γ).

Under P̃(γ), model (4.1) becomes
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dXt = rXtdt+ σtXtdW̃t,

σt =
√
Yt,

dYt =

[
1

ε
(m− Yt)−

ν
√

2√
ε
√
m

√
Yt

(
ρ
µ− r
Yt

+
√

1− ρ2γ(Yt)

)]
dt+

ν
√

2√
ε
√
m

√
YtdZ̃

∗
t ,

Z̃∗t = ρW̃t +
√

1− ρ2Z̃t.

(4.2)

And the corresponding risk-neutral valuation formula is

C(t, x, y) = Ẽ(γ){e−r(T−t)(XT −K)+|Ft}. (4.3)

Through an application of the Feynman-Kac theorem, we have that the function

C(t, x, y) should satisfy the following partial differential equation:

Ct+
1

2
x2y2Cxx+r(xCx−C)+ρ

ν
√

2√
ε
√
m
xyCxy−

ν
√

2√
ε
√
m

Λ(y)Cy+
ν2

εm
yCyy+

1

ε
(m−y)Cy = 0

(4.4)

in which, Λ(y) =
√
y

(
ρµ−r

y
+
√

1− ρ2γ(y)

)
, and the terminal condition

C(T, x, y) = (x−K)+.

The partial differential equation (4.4) involves terms of order 1/ε, 1/
√
ε, and 1.

Introducing the following notations, we can write equation (4.4) more succinctly:
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L0 =
ν2

m
y
∂2

∂y2
+ (m− y)

∂

∂y
,

L1 =

√
2ρν√
m

xy
∂2

∂x∂y
−
√

2ν√
m

Λ(y)
∂

∂y
,

L2 =
∂

∂t
+

1

2
y2x2 ∂

2

∂x2
+ r(x

∂

∂x
− ·),

(4.5)

and

(
1

ε
L0 +

1√
ε
L1 + L2

)
C = 0, (4.6)

with terminal condition

C(T, x, y) = (x−K)+. (4.7)

4.2.3 Asymptotic expansion of option price function

The method introduced by Fouque is to expand the solution C in powers of
√
ε,

C = C0 +
√
εC1 + εC2 + ε

√
εC3 + ..., (4.8)

where C0,C1,...are functions of (t, x, y) to be determined such that C0(T, x, y) =

(x−K)+. And we only need the first two terms C0 and C1 to obtain a approximate

option pricing formula with error bound that can be proved. The terminal condition

for the second term is C1(T, x, y) = 0.

Substituting (4.8) into (4.6) leads to
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1

ε
L0C0 +

1√
ε
(L0C1 + L1C0)

+ (L0C2 + L1C1 + L2C0)

+
√
ε(L0C3 + L1C2 + L2C1)

+ · · ·

= 0.

(4.9)

Equating terms of order 1/ε, we must have

L0C0 = 0. (4.10)

Since the operator L1 only acts on y, we have that C0 does not depend on y, i.e.

C0 = C0(t, x), (4.11)

And then equating terms of 1/
√
ε, we must have

L0C1 + L1C0 = 0. (4.12)

The operator L1 takes derivatives with respect to y but C0 does not depend on y,

so that L1C0 = 0. And thus we have L0C1 = 0. Similar to C0 we have that C1 also

does not depend on y, so we have

C1 = C1(t, x). (4.13)

(4.11) and (4.13) are important in that they imply that the sum of the first two

terms C0 +
√
εC1 does not depend on the present volatility. The order-1 terms give
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L0C2 + L1C1 + L2C0 = 0. (4.14)

Again, since C1 does not involve y and L1 takes derivatives with respect to y, we

have L1C1 = 0. Thus the above equation reduces to

L0C2 + L2C0 = 0. (4.15)

The variable x being fixed, L2C0 is a function of y since L2 involves f(y). Focusing

on the y dependence only, equation (4.15) is of the form

L0χ+ g = 0. (4.16)

This equation is called a Poisson equation for χ(y) with respect to the operator

L0 in the variable y. It does not have solutions unless the function g(y) is cen-

tered with respect to the invariant distribution of the Markov process Y . Here

the centering condition implies 〈L2C0〉 = 0. And since C0 does not involve y, this

means 〈L2〉C0 = 0. Notice that 〈L2〉 is the Black-Scholes operator with volatility

parameter being the expectation of σt under its invariant expectation. Denoted by

σ̄, this expected value of σt is called the effective volatility. Therefore C0(t, x) is

the solution of the Black-Scholes equation LBS(σ̄)C0 = 0 with terminal condition

C0(T, x) = (x−K)+.

From (4.15) we also know that L0C2 = −L2C0. For the next step we will try to

simply the expression of C2 in order to obtain an expression for C1. Observe that

there is only one term in the operator L2 that involves y and C0 does not involve y.

So that L2C0 and 〈L2C0〉 would differ only for one term that involves y. Also notice

that we have 〈L2C0〉 = 0 from the centering condition, thus we can write L0C2 as
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L0C2 = −(L2C0 − 〈L2C0〉) = −1

2
(y2 − σ̄2)x2∂

2C0

∂x2
. (4.17)

So that the second correcting term C2 is given by

C2(t, x, y) = −1

2
L−1

0 (y2 − σ̄2)x2∂
2C0

∂x2
. (4.18)

For notational convenience, we introduce a function φ(x) which solve the equation

L0φ = y2 − σ̄2. (4.19)

This function φ can be defined up to a difference of a contant c(t, x) in terms of y.

With this function, we can write C2 as

C2(t, x, y) = −1

2
(φ(y) + c(t, x))x2∂

2C0

∂x2
. (4.20)

Now we can equate the term of order
√
ε to zero, which gives

L0C3 + L1C2 + L2C1 = 0. (4.21)

This is again a Poisson equation for C3 with respect to L0, whose solvability condi-

tion implies

〈L1C2 + L2C1〉 = 0. (4.22)

Using the fact that the function C1 does not involve y and notice that 〈L2〉 = LBS(σ̄),

and then plug in the the expression for C2 from (4.18),we can rewrite the above

equation as
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〈L2C1〉 = LBS(σ̄)C1

= −〈L1C2〉

=
1

2

〈
L1(φ(y) + c(t, x))x2∂

2C0

∂x2

〉
=

1

2

〈
L1φ(y)x2∂

2C0

∂x2

〉
=

1

2

〈(√
2ρν√
m

xy
∂2

∂x∂y
−
√

2ν√
m

Λ(y)
∂

∂y

)(
φ(y)x2∂

2C0

∂x2

)〉
=

1

2

〈√
2ρν√
m

xy
∂2

∂x∂y

(
φ(y)x2∂

2C0

∂x2

)
−
√

2ν√
m

Λ(y)
∂

∂y

(
φ(y)x2∂

2C0

∂x2

)〉
=

1

2

〈√
2ρν√
m

yφ′(y)x
∂

∂x

(
x2∂

2C0

∂x2

)
−
√

2ν√
m

Λ(y)φ′x2∂
2C0

∂x2
.

〉
=

√
2

2

ρν√
m
〈yφ′(y)〉x ∂

∂x

(
x2∂

2C0

∂x2

)
−
√

2

2

ν√
m
〈Λ(y)φ′〉x2∂

2C0

∂x2
.

(4.23)

To further our calculation, we need to calculate the derivatives of C0 with respect

to x explicit. Recall that C0 is the Black-Scholes formula with long-run averaged

volatility σ̄. It is explicitly given by

C0(t, x) = xN(d1)−Ke−r(T−t)N(d2), (4.24)

where K is the strike price, T is the experiation date, and

d1 =
ln(x/K) + (r + σ2

2
)(T − t)

σ
√
T − t

,

d2 =
ln(x/K) + (r − σ2

2
)(T − t)

σ
√
T − t

= d1 − σ
√
T − t,

where N denotes the distribution function of standard normal distribution.
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The first derivative of C0 with respect to x, which is known as the delta, is calculated

as

∂C0

∂x
= N(d1). (4.25)

The second derivative of C0 with respect to x, which is known as the gamma, is

calculated as

∂2C0

∂x2
=

φ(d1)

xσ
√
T − t

, (4.26)

in which φ denotes the density function of standard normal distribution.

And the third derivative of C0 with respect to x, which is known as the speed, is

calculated as

∂3C0

∂x3
= − φ(d1)

x2σ
√
T − t

(
d1

σ
√
T − t

+ 1

)
= −1

x

(
d1

σ
√
T − t

+ 1

)
∂2C0

∂x2
.

(4.27)

Now that we have

x2∂
2C0

∂x2
=

xφ(d1)

σ
√
T − t

,

and thus

x
∂

∂x

(
x2∂

2C0

∂x2

)
= x

(
φ(d1)

σ
√
T − t

− φ(d1)d1

σ2(T − t)

)
=

xφ(d1)

σ
√
T − t

− xφ(d1)d1

σ2(T − t)
.

(4.28)
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Observe that

x3∂
3C0

∂x3
= −x2

(
d1

σ
√
T − t

+ 1

)
∂2C0

∂x2

= −x2

(
d1

σ
√
T − t

+ 1

)
φ(d1)

xσ
√
T − t

= − xφ(d1)

σ
√
T − t

− xφ(d1)d1

σ2(T − t)
.

(4.29)

So that

x
∂

∂x

(
x2∂

2C0

∂x2

)
= x3∂

3C0

∂x3
+ 2

xφ(d1)

σ
√
T − t

= x3∂
3C0

∂x3
+ 2x2∂

2C0

∂x2
.

(4.30)

Substituting the second equation of (4.30) into (4.23), we have

〈L2C1〉 = LBS(σ̄)C1

=

√
2

2

ρν√
m
〈yφ′(y)〉x ∂

∂x

(
x2∂

2C0

∂x2

)
−
√

2

2

ν√
m
〈Λ(y)φ′(y)〉x2∂

2C0

∂x2

=

√
2

2

ρν√
m
〈yφ′(y)〉

(
x3∂

3C0

∂x3
+ 2x2∂

2C0

∂x2

)
−
√

2

2

ν√
m
〈Λ(y)φ′(y)〉x2∂

2C0

∂x2

=

√
2

2

ρν√
m
〈yφ′(y)〉x3∂

3C0

∂x3
+

(√
2
ρν√
m
〈yφ′(y)〉 −

√
2

2

ν√
m
〈Λ(y)φ′y〉

)
x2∂

2C0

∂x2
,

(4.31)

with terminal condition C1(T, x) = 0.

Now it is convenient to donote the first correction term
√
εC1(t, x) by C̃1(t, x) and

rewrite the RHS of the last equation in (4.31) in terms of H(t, x), V2, V3, which are
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given by

H(t, x) =

(
V2x

2∂
2C0

∂x2
+ V3x

3∂
3C0

∂x3

)
,

V2 =
ν√

2α
√
m

(2ρ〈yφ′(y)〉 − 〈Λ(y)φ′(y)〉),

V3 =
ρν√

2α
√
m
〈yφ′(y)〉.

(4.32)

Multiplying both sides of (4.31) by
√
ε = 1√

α
, we have

LBS(σ̄)C̃1 = −(T − t)H(t, x) = V2x
2∂

2C0

∂x2
+ V3x

3∂
3C0

∂x3
. (4.33)

Using the fact that the operator xm ∂m

∂xm commutes with the operator xn ∂n

∂xn , where

m and n are positive intergers, we have that the operator xm ∂m

∂xm commutes with

LBS(σ̄). This observation is important in that it enables us to write C̃1 explicitly as

C̃1(t, x) = −(T − t)
(
V2x

2∂
2C0

∂x2
+ V3x

3∂
3C0

∂x3

)
. (4.34)

To check this, we see that

LBS(σ̄)(−(T − t)H(t, x))

=

(
∂

∂t
+

1

2
x2y2 ∂

2

∂x2
+ r(x

∂

∂x
− ·)

)
(−(T − t)H(t, x))

= H(t, x)− (T − t)LBS(σ̄)

(
V2x

2∂
2C0

∂x2
+ V3x

3∂
3C0

∂x3

)
= H(t, x)− (T − t)

(
V2x

2 ∂
2

∂x2
(LBS(σ̄)C0) + V3x

3 ∂
3

∂x3
(LBS(σ̄)C0)

)
= H(t, x),

(4.35)

in which we use the fact that LBS(σ̄)C0 = 0.
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Now we can give first-order corrected pricing formula. Denoting the exact solution

to the equation (4.6) with terminal condition (4.7) by C̃BS, since it is not the Black-

Scholes price function but closely related to the Black-Scholes function, we have:

C̃BS ≈ C0 + C̃1 = C0 − (T − t)
(
V2x

2∂
2C0

∂x2
+ V3x

3∂
3C0

∂x3

)
, (4.36)

in which C0 is the Black-Scholes price with volatility parameter equals the long-run

averaged volatility, which is essentially the expected value of the process Yt given in

(4.1) with respect to its invariant distribution.

If substituting in the expressions of x2 ∂2C0

∂x2 and x3 ∂3C0

∂x3 , we can further write C̃1 as

C̃1 =
xφ(d1)

σ̄

[
(V3 − V2)

√
T − t+ V3

d1

σ̄

]
. (4.37)

Expression (4.37) will be useful when we show how the parameters V2 and V3 can

be calibrated from implied volatility data in the next section.

4.2.4 Implied volatility and calibration

The implied volatility, denoted by I, is initially defined as the value of volatility

parameter that will equate the Black-Scholes pricing formula to the option price

observed from the market. Mathematically, we write

CBS(t, x;K,T ; I) = Cobserved(t, x;K,T ). (4.38)

When dealing with generalized option pricing models, like the one we have here, the

definition of implied volatility should be modified as the value of volatility parameter
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which will equate the theoretical pricing formula to the option price observed from

the market. In our setting, we have

C̃BS(t, x;K,T ; I) = Cobserved(t, x;K,T ). (4.39)

To exploit the information contained in the implied volatility data, we first expand

the implied volatility I in powers of
√
ε around the long-run avaraged volatility σ̄:

I = σ̄ +
√
εI1 + εI2 + · · · . (4.40)

Then we take the Taylor expansion of the model theoretical option price function

C̃BS in its volatility parameter around the long-run averaged volatility σ̄:

C̃BS(t, x;K,T ; I) = C̃BS(t, x;K,T ; σ̄) + (I − σ̄)
∂C̃BS
∂σ

(t, x;K,T ; σ̄)

+ (I − σ̄)2∂
2C̃BS
∂σ2

(t, x;K,T ; σ̄) + · · · .
(4.41)

Substituting (4.40) into (4.41), we have

C̃BS(t, x;K,T ; I) = C̃BS(t, x;K,T ; σ̄) +
√
εI1

∂C̃BS
∂σ

(t, x;K,T ; σ̄)

+ ε

(
I2
∂C̃BS
∂σ

(t, x;K,T ; σ̄) + I2
1

∂2C̃BS
∂σ2

(t, x;K,T ; σ̄)

)
+ · · ·

= C̃BS(t, x;K,T ; σ̄) +
√
εI1

∂C̃BS
∂σ

(t, x;K,T ; σ̄) +O(ε).

(4.42)

On the other hand, we have

C̃BS = C0 +
√
εC1 + εC2 + ..., (4.43)
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and C0 = CBS(t, x;K,T ; σ̄). So that we can equate the order ε terms in (4.42) and

(4.43) and have

√
εI1

∂C̃BS
∂σ

(t, x;K,T ; σ̄) =
√
εC1. (4.44)

or

√
εI1 =

√
εC1

[
∂C̃BS
∂σ

(t, x;K,T ; σ̄)

]−1

. (4.45)

We will see that ∂C̃BS

∂σ
(t, x;K,T ; σ̄) contains information about V2 and V3, which are

the parameters needed for option pricing. So that calibrating the implied volatility

expansion to market data up to the accuracy of order
√
ε will be enough for option

pricing purpose.

Substituting (4.45) into (4.40) gives

I = σ̄ +
√
εC1

[
∂C̃BS
∂σ

(t, x;K,T ; σ̄)

]−1

+O(ε). (4.46)

The partial derivative of the Black-Scholes pricing function with respect to its volatil-

ity parameter, known as vegga, can be calculated explicitly as

∂CBS
∂σ

= xφ(d1)
√
T − t

=
xe−d

2
1/2
√
T − t√

2π
.

(4.47)

Substituting (4.47) together with the expression (4.37) for C̃1 =
√
εC1 into (4.46),

we have
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I = σ̄ +
xφ(d1)

σ̄

[
(V3 − V2)

√
T − t+ V3

d1

σ̄

]
1

xφ(d1)
√
T − t

+O(ε)

= σ̄ +
1

σ̄
√
T − t

[
(V3 − V2)

√
T − t+ V3

d1

σ̄

]
+O(ε)

= σ̄ +
V3d1

σ̄2
√
T − t

+
V3 − V2

σ̄
+O(ε)

= σ̄ +
V3

σ̄3

[
ln(x/K)

T − t

]
+
V3

σ̄3
(r +

σ̄2

2
) +

V3 − V2

σ̄
+O(ε)

= −V3

σ̄3

[
ln(K/x)

T − t

]
+σ̄ +

V3

σ̄3
(r +

3

2
σ̄2)− V2

σ̄
+O(ε).

(4.48)

This shows that the implied volatility function is an affine function of the log-

moneyness-to-maturity ratio (LMMR) up to order O(ε).

Denote

a = −V3

σ̄3
,

b = σ̄ +
V3

σ̄3
(r +

3

2
σ̄2)− V2

σ̄
,

(4.49)

we can express V2 and V3 as

V2 = σ̄((σ̄ − b)− a(r +
3

2
σ̄2)),

V3 = −aσ̄3.

(4.50)

Since a and b can be calibrated from implied volatility data, the corrected option

pricing formula (4.36) can be evaluated.
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4.3 Remarks

In [7, Fouque,2000], they use the model

dXt = µXtdt+ σtXtdWt,

σt = f(Yt),

dYt = α(m− Yt) + βdẐt,

Ẑt = ρWt +
√

1− ρ2Zt,

(4.51)

in which Wt and Zt are independent Brownian motions and f is an unknown non-

negative function. The corresponding option price formula is

C̃(t, x, y) = C0 − (T − t)
(
V2x

2∂
2C0

∂x2
− V3x

3∂
3C0

∂x3

)
. (4.52)

And the implied volatility expansion is the same as (4.48) with V2 and V3 given by

V2 =
ν

2α
(2ρ〈fφ′〉 − 〈Λφ′〉),

V3 =
ρν√
2α
〈fφ′〉,

(4.53)

where Λ(y) = ρµ−r
f(y)

+ γ
√

1− ρ2 and φ solves the equation

L0φ = f 2(y)− 〈f 2〉.

For the model (4.51), Fouque also showed for smooth and bounded terminal condi-

tions (which the European call option does not satisfy) that the difference between

the first order approximation and the exact solution of the problem is controlled by

a constant times ε, in which the constant is independent of ε but may depend on y,
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the current state of the volatility driving process.
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Chapter 5

Multiscale Expansion

In [9, Fouque,2003], a multisacle version of the asymptotic expansion method is

developed. The multiscale expansion method is able to deal with models in which

volatility is driven by two stochastic processes, both of whcih are fast mean-reverting.

And the two processes are allowed to run on different scales.

In this chapter, we propose a relatively simple model in which volatility is modeled

as a linear combination of two CIR processes. This model is motivated by the factor

model in portfolio optimization. We assume that asset volatility consists two parts:

market volatility and asset-specific volatility. In reality, the VIX index can serve

as the market volatility component and the remaining part can serve as the asset-

specific volatility component. Using the multiscale expansion method, we come up

with an implied volatility function with richer structure than that in the single-scale

case.
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5.1 A Volatility ’Factor Model’

We consider the following two-factor stochastic volatility model uder the real world

measure:

dXt = µXtdt+ σtXtdW
(0)
t ,

σt = β1Yt + β2Zt,

dYt =
1

ε
(m1 − Yt)dt+

ν1

√
2√

ε
√
m1

√
YtdW

(1)
t ,

dZt =
1

δ
(m2 − Zt)dt+

ν2

√
2√

δ
√
m2

√
ZtdW

(2)
t ,

(5.1)

where W
(0)
t , W

(1)
t and W

(2)
t are standard Brownian motions whose correlation struc-

tures are given by

d〈W (0)
t ,W

(1)
t 〉 = ρ1dt,

d〈W (0)
t ,W

(2)
t 〉 = ρ2dt,

d〈W (1)
t ,W

(2)
t 〉 = ρ12dt.

(5.2)

Through an application of Girsanov’s theorem, and assuming that the market price

of risk functions are zero, we obtain the model under the risk-neutral probability

measure:
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dXt = rXtdt+ σtXtdW̃
(0)
t ,

σt = β1Yt + β2Zt,

dYt =
1

ε
(m1 − Yt)dt+

ν1

√
2√

ε
√
m1

√
YtdW̃

(1)
t ,

dZt =
1

δ
(m2 − Zt)dt+

ν2

√
2√

δ
√
m2

√
ZtdW̃

(2)
t ,

(5.3)

where W̃
(0)
t , W̃

(1)
t and W̃

(2)
t having the same correlation structure as W

(0)
t , W

(1)
t and

W
(2)
t .

5.2 The Pricing PDE

By the No Arbitrage argument, we have the call option price under our model should

satisfy the following partial differential equation:

Lε,δCε,δ(t, x, y, z, q, u) = 0, t < T,

Cε,δ(T, x, y, z, q, u) = (x−K)+,

(5.4)

where the operator Lε,δis given by

Lε,δ ,
1

ε
L0 +

1√
ε
L1 + L2 +

1√
δ
M1 +

1

δ
M2 +

1√
εδ
M3,

in which
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L0 = (m1 − y)
∂

∂y
+
ν2

1

m1

y
∂2

∂y2
,

L1 =
ν1

√
2

√
m1

ρ1(β1y + β2z)yx
∂2

∂x∂y
,

L2 =
∂

∂t
+

1

2
(β1y + β2z)2x2 ∂

2

∂x2
+ r

(
x
∂

∂x
− ·
)
,

M1 =
ν2

√
2

√
m2

ρ2(β1y + β2z)zx
∂2

∂x∂z
,

M2 = (m2 − z)
∂

∂z
+
ν2

2

m2

z
∂2

∂z2
,

M3 =
4ν1ν2ρ12√
m1m2

√
yz

∂2

∂y∂z
.

(5.5)

Here, the operator L2 is the Black-Scholes operator with volatility parameter equal

β1y + β2z. L0 and M2 are the infinitesimal generators of the CIR processes Yt

and Zt, respectively. L1 and M3 contain the mixed partial derivative due to the

correlation between Brownian motions driving the stock price and volatility factors.

5.3 Asymptotic Expansion

We first consider an expansion of the price in the powers of
√
δ,

Cε,δ = Cε
0 +
√
δCε

1 + δCε
2 + · · · , (5.6)

According to [9], the leading order term Cε
0 is defined as the unique solution to the

following boundary value problem
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(
1

ε
L0 +

1√
ε
L1 + L2

)
Cε

0 = 0

Cε
0(T, x, y) = h(x).

(5.7)

and the term Cε
1 is defined as the unique solution to the boundary value problem

(
1

ε
L0 +

1√
ε
L1 + L2

)
Cε

1 = −
(
M1 +

1√
ε
M3

)
Cε

0

Cε
1(T, x, y) = 0.

(5.8)

Techniques available so far are only able to calculate the first correction Cε
1.

Next we will expand Cε
0 and Cε

1 in powers of
√
ε, the square root of the fast scale, to

obtain an approximation for the price Cε,δ. Specifically, we will consider expansions

Cε
k = C0,k +

√
εC1,k + εC2,k + · · · for allk ∈ N.

5.3.1 Expansion in ε

The expansion of the first term Cε
0 gives

Cε
0 = C0 +

√
εC1,0 + εC2,0 + ε3/2C3,0 + · · · (5.9)

Plug (5.9) into (5.8) we have

(
1

ε
L0 +

1√
ε
L1 + L2

)(
C0 +

√
εC1,0 + εC2,0 + ε3/2C3,0 + · · ·

)
= 0

which gives
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1

ε
L0C0 +

1√
ε

(
L0C1,0 + L1C0

)
+

(
L0C2,0 + LC1,0 + L2C0

)
+ · · · = 0

Find the equations associated with the first two leading terms are

L0C0 = 0 (5.10)

L0C1,0 + L0C0 = 0 (5.11)

These are two homogeneous partical differential equation in y and q and we therefore

take

C0 = C0(t, x, z, u)

and

C1,0 = C1,0(t, x, z, u).

Note that the order one terms give

L0C2,0 + L2C0 = 0 (5.12)

since L0C1,0 = 0. This is a Poisson equation in C2,0 w.r.t the variables y and q.

And there will be no solutions unless L2C0 is in the orthogonal complement of the

null space of L∗0, which is called the Fredholm alternative of L0. This is equivalent

to saying that L2C0 has mean zero w.r.t the invariant measure of the CIR processe

Yt, i.e. 〈L2C0〉 = 0. Here the bracket notation means integartion w.r.t the invariant

distribution of the CIR processe Y .Because C0 does not depend on y or q, we have
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〈L2C0〉 = 〈L2〉C0

where

〈L2〉 =
∂

∂t
+

(
1

2
β2

1〈y2〉+ β1β2〈y〉z +
1

2
β2

2z
2

)
x2 ∂

2

∂x2
+ r

(
x
∂

∂x
− ·
)
,

the Black-Scholes operator with volatility

〈σ2(y, z)〉 := σ̄2(z),

where σ̄(z) is introduced for notational convenience.

According to [9], the function C0 is defined as the solution to the following boundary

value problem

〈L2〉C0 = 0

C0(T, x, z, u) = h(x)

(5.13)

Thus we have

C0(t, x, z, u) = CBS

(
t, x; βσ̄2(z) + f̄(u), σ̄(z)

)
with CBS being the Black-Scholes pricing function.

Next we derive an expression for C1,0. From the Poisson equation (5.12) and the

associated centering condition we deduce that
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C2,0 = −L−1
0 (L2C0)

= −L−1
0 (L2 − 〈L2〉)C0

(5.14)

up to an additive function which does not depend on y and which will not play a

role in the problem that defines C1,0. The next order term in the ε expansion gives

the following Poisson equation in C3,0:

L0C3,0 + L1C2,0 + L2C1,0 = 0 (5.15)

The centering condition for this equation

〈L1C2,0 + L2C1,0〉 = 0

gives the following problem that defines C1,0:

〈L2〉C1,0 = −〈L1C2,0〉

= −〈L1(−L−1
0 (L2 − 〈L2〉)C0)〉

= 〈L1L−1
0 (L2 − 〈L2〉)〉C0

, AC0

C1,0(T, x, z, u) = 0

(5.16)

The function C1,0 can in fact be written as

C1,0 = −(T − t)AC0. (5.17)

To see this, we compute the opreators explicitly. To facilitate calculation, we intro-
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duce a function φ(y, z) which solves the following Poisson equation:

L0φ(y, z) = L2 − 〈L2〉

=

[
1

2
β2

1(y2 − 〈y2〉) + β1β2(y − 〈y〉)z
]
x2 ∂

2

∂x2

=

[
1

2
β2

1(y2 − ν2
1 −m1) + β1β2(y −m1)z

]
x2 ∂

2

∂x2
.

(5.18)

Note that φ is defined up to an additive function that depends only on the variables

z, which will not affect A. With these notions, we have

A = 〈L1L−1
0 (L2 − 〈L2〉)〉

= 〈L1φ(y, z)〉

=
ν1

√
2ρ1√
m1

(
β1〈y2∂φ

∂y
〉+ β2z〈y

∂φ

∂y
〉
)
x
∂

∂x

(
x2 ∂

2

∂x2

)
.

(5.19)

Using the fact that the operator xm ∂m

∂xm commutes with the operator xn ∂n

∂xn , which

implies that the operator xm ∂m

∂xm commutes with 〈L2〉, we can verify that the function

C1,0 ginven by (5.17) does solve problem (5.16):

〈L2〉C1,0 = 〈L2〉
(
−(T − t)AC0

)
= −

(
〈L2〉(T − t)

)
AC0 − (T − t)〈L2〉AC0

= AC0.

(5.20)

5.3.2 Expansion of Cε
1

We next carry out the expansion of Cε
1 in powers of

√
ε. We write
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Cε
1 = C0,1 +

√
εC1,1 + εC2,1 + ε3/2C3,1 + · · · (5.21)

and derive below an explicit expression for C0,1. Substituting the expansion of Cε
1

into (5.8), and equating the order 1/ε terms, we have

L0C0,1 = 0

As before, this implies that the function C0,1 does not depend on the variable y.

The next order terms give

L0C1,1 + L1C0,1 = −M3C0

Note that L1 takes derivatives w.r.t y and q whereas C0,1 does not involve y. So

that L1C0,1 = 0. For the same reason we have that M3C0 = 0. Consequently we

have

L0C1,1 = 0,

which implies that C1,1 = C1,1(t, x, z), the same as C1,0 and C0,1.

Evaluating the terms of order one, we have

L0C2,1 + L1C1,1 + L2C0,1 = −M1C0 −M3C1,0.

Using the facts that L1C1,1 = 0 and M3C1,0 = 0, we have

L0C2,1 + L2C0,1 = −M1C0.
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This is a Poisson equation in y for C2,1, and the associated solvability condition

gives the following defining equation for C0,1:

〈L2〉C0,1 = −〈M1〉C0

C0,1(T, x, z, u) = 0

(5.22)

Observe the fact that

〈M1〉 =

〈
ν2

√
2

√
m2

ρ2(β1y + β2z)zx
∂2

∂x∂z

〉
=

[
ν2

√
2

√
m2

ρ2(β1m1 + β2z)zx
∂

∂x

]
∂

∂z

, M1
∂

∂z
,

(5.23)

and that

∂C0

∂z
=
∂C0

∂σ

∂σ

∂z

= (T − t)σ̄(z)σ̄′(z)x2∂C0

∂x2
,

(5.24)

we have that C0,1 can be written as

C0,1 =
(T − t)

2
〈M1〉C0. (5.25)

To check this, we have
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〈L2〉C0,1 = 〈L2〉
[

(T − t)
2
〈M1C0〉

]
= 〈L2〉

[
(T − t)2

2
M1σ̄(z)σ̄′(z)x2∂C0

∂x2

]
=

(
〈L2〉

(T − t)2

2

)
M1σ̄(z)σ̄′(z)x2∂C0

∂x2
+

(T − t)2

2

(
〈L2〉M1σ̄(z)σ̄′(z)x2∂C0

∂x2

)
= −(T − t)M1σ̄(z)σ̄′(z)x2∂C0

∂x2
+

(T − t)2

2

(
M1σ̄(z)σ̄′(z)x2 ∂

∂x2
〈L2〉C0

)
= −M1C0.

(5.26)

5.3.3 Price approximation

From the expansion of Cε,δ,Cε
0 and Cε

1 in (5.6), (5.9) and (5.21), respectively,we

deduce that the call option price in our model can be approximated as

Cε,δ ≈ C̃ε,δ , C0 +
√
εP1,0 +

√
δP0,1

= C0 − (T − t)
(√

εA−
√
δ

2
〈M1〉

)
C0,

= C0 − (T − t)
(√

ε
ν1

√
2ρ1√
m1

(
β1〈y2∂φ

∂y
〉+ β2z〈y

∂φ

∂y
〉
)
x
∂

∂x

(
x2 ∂

2

∂x2

)
−
√
δ

2

ν2

√
2ρ2√
m2

(β1m1 + β2z)zx
∂2

∂x∂z

)
C0

= C0 −
(√

ε
ν1

√
2ρ1

σ̄
√
m1

(
β1〈y2∂φ

∂y
〉+ β2z〈y

∂φ

∂y
〉
)
x
∂

∂x

− (T − t)
√
δ

2

ν2

√
2ρ2√
m2

(β1m1 + β2z)zσ̄′(z)x
∂

∂x

)
∂C0

∂σ

(5.27)

in which we used the facts that
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∂C0

∂z
=
∂C0

∂σ
σ̄′(z) (5.28)

and

x2∂
2C0

∂x2
=

1

σ̄(T − t)
∂C0

∂σ
. (5.29)

Introducing notations

V ε =
√
ε
ν1

√
2ρ1

σ̄
√
m1

(
β1〈y2∂φ

∂y
〉+ β2z〈y

∂φ

∂y
〉
)

V δ =

√
δ

2

ν2

√
2ρ2√
m2

(β1m1 + β2z)zσ̄′(z),

(5.30)

we can write the approximating formula (5.27) as

C̃ε,δ = C0 −
(
V εx

∂

∂x
− (T − t)V δx

∂

∂x

)
∂C0

∂σ
. (5.31)

We will see in the next section that the parameters V ε and V δ can be obtained

by calibrating expanded implied volatility function to observed implied volatility

surface.

5.3.4 Implied volatility

Recall that the implied volatility I is defined as the volatility value which will equate

the Black-Scholed pricing function CBS to the corresponding option price observed

on the market:

CBS(t, x;T,K, I) = Cobserved(t, x;T,K).
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Since we also have

Cε,δ = Cobserved(t, x;T,K),

we have

CBS(t, x;T,K, I) = Cε,δ. (5.32)

On the one hand, we can expand the implied volatility as

I = I0 + Iε1 + Iδ1 + · · · , (5.33)

in which Iε1 and Iδ1 are proportional to
√
ε and

√
δ, respectively.

Next, we apply Taylor expansion to the Black-Scholes prcing function CBS(t, x;T,K, I)

w.r.t the implied volatility parameter around I0 and we have:

CBS(t, x;T,K, I) = CBS(I0) + (Iε1 + Iδ1)
∂CBS
∂σ

(I0) + · · · . (5.34)

On the other hand, we have deduced that

Cε,δ ≈ C0 −
(
V εx

∂

∂x
− (T − t)V δx

∂

∂x

)
∂C0

∂σ
. (5.35)

Matching terms of corresponding orders in (5.34) and (5.35) we have
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I0 = σ̄(z),

Iε1
∂CBS
∂σ

(I0) = −V εx
∂2C0

∂x∂σ
,

Iδ1
∂CBS
∂σ

(I0) = (T − t)V δx
∂2C0

∂x∂σ
.

(5.36)

Combined with the fact that

(
x
∂

∂x

)
∂CBS
∂σ

=

(
1− d1

σ
√
T − t

)
∂CBS
∂σ

, (5.37)

(5.36) implies that

Iε1 = −V ε

(
1− d1

σ
√
T − t

)
,

Iδ1 = (T − t)V δ

(
1− d1

σ
√
T − t

)
.

(5.38)

Substituting I0 = σ̄(z) and (5.38) into (5.33), we have that the implied volatility

function can be approximated as

I ≈ σ̄ − V ε

(
1− d1

σ
√
T − t

)
+(T − t)V δ

(
1− d1

σ
√
T − t

)
. (5.39)

Substituting in

d1 =
ln(x/K) + (r + σ2

2
)(T − t)

σ
√
T − t

,

we have
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I ≈ σ̄ +
V ε

σ̄

ln(x/K)

T − t
+ V ε (r + σ̄2

2
)

σ̄
+ V δ(T − t)

(
1−

r + σ̄2

2

σ̄

)
−V

δ

σ̄
ln(x/K)

= σ̄ + V ε

(
ln(x/K)

σ̄(T − t)
+

(r + σ̄2

2
)

σ̄

)
+V δ(T − t)

(
1−

r + σ̄2

2

σ̄

)
−V

δ

σ̄
ln(x/K).

(5.40)

This shows that the parameters V ε and V δ can be estimated by calibrating (5.40)

can be calibrated to implied volatility surfaces.
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Chapter 6

Discussion

The asymptotic expansion methods provide us with a relativly general tool for solv-

ing stochastic volatility option pricing models. It exploits the fact that asset returns

volatility processes sometimes are fast mean-reverting.

However, several problems with the methods need to be pointed out. First of all, the

methods depend heavily on the assumption that volatility is fast mean-reverting,

i.e. the rate of mean-reverting of the volatility driving process is large. However,

this point was only checked for a sample of high-frequency S&P500 index data.

Whether volatilities of different assets are fast mean-reverting in general have not

been tested. Thus, the general applicability of the methods may be questioned.

Also, high-frequency data are known to be influenced by the market micro-structure

phenomenon. So whether the fast mean-reverting is a characteristic of volatility pro-

cesses in general, or is it a characteristic of specific asset (e.g. caused by the liquidity

of the asset) also needs to be investigated. And most importantly, the convergence

of the asymptotic expansion methods depends wholly on the reciprocal of the rate

of mean-reverting. So that if the fast mean-reverting assumption is violated, then
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the valitility of the methods will be seriously flawed.

Secondly, as it pointed out by the authors in [7] as well as in our remarks in section

4.3, the asymptotic methods are model-insensitive, meaning that different models

will wind up with structurally identical pricing formulas. Notice that parameters

in the models can be further estimated after one calibrates V2 and V3. It would be

an interesting experiment to do if one can make further inference of the parameters

in the models using those V2 and V3 to see whether those common parameters, e.g.

rate of mean-reverting and volatility risk parameter, in different models will have

similar values.

Finally, although the asymptotic expansion methods result in implied volatility func-

tions with rich structures and thus fitting ability, the out-of-sample pricing power

of the resulting price formulas remains unknown. Actually most of the literature

associated with the asymptotic expansion method emphasize how well their model

implied volatility function fits observed implied volatility surface, whereas the pric-

ing performance of the resulting formula was almost untouched. One may notice

that as long as one incorporates more randomness into the model, one will get

richer structure for the model implied volatility function, which will surely fit ob-

served implied volatility surface better. One example that illustrates this point is

[3], in which the author built a model with five Brownian motions and wind up

with an implied volatility function that fits data almost perfectly, as alledged by

the author. But there is no guarantee that a model that fits implied volatility data

better will also fit option price better. Actually it had been showed that stochastic

volatility option pricing models do not have very good out-of-sample pricing ability

(see [1]). Since the asymptotic expansion methods is model-insensitive, it probably

inherits features of option pricing formulas of stochastic volatility models in general.
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The above points may be further investigated in order to make the asymptotic

expansion methods more convincing.

61



Bibliography

[1] G. Bakshi, C. Cao and Z. Chen, Empirical Performance of Alternative Option

Pricing Models, Journal of Finance 52, 2003-2049.

[2] C. Ball and A. Roma, Stochastic volatility option pricing, J. Financial and

Quantitative Analysis 29(4), 589-607.

[3] E. Bayraktar, Pricing Options on Defaultable Stocks, Applied Mathematical

Finance 15(3), 277-304.

[4] T. Bjork, Arbitrage Theory in Continuous Time (Second Edition), Oxford Uni-

versity Press, 1998.

[5] J. Fan, A Selective Overview of Nonparametric Methods in Financial Econo-

metrics, Statistical Science, 20, 317-357

[6] F. Black, M. Scholes, The Pricing of Options and Corporate Liabilities, J. Polit.

Econ. 81, 637-659.

[7] J.-P. Fouque, G. Papanicolaou and R. Sircar, Derivatives in Financial Markets

with Stochastic Volatility, Cambridge University Press, 2000.

[8] J.-P. Fouque, G. Papanicolaou and R. Sircar, Mean-Reverting Stochastic

Volatility, International Journal of Theoretical and Applied Finance Vol.3, No

1 (2000). 101-142.

62



[9] J.-P. Fouque, G. Papanicolaou, R. Sircar and K. Solna, Multiscale Stochastic

Volatility Asymptotics, SIAM Journal on Multiscale Modeling and Simulation

2(1), 2003 (22-42).

[10] J.M. Harrison and D.M. Kreps, Martingales and Arbitrage in Multiperiod Se-

curity Markets, J. Econ. Theory 20, 381-408.

[11] J.M. Harrison and S.R. Pliska, Martingales and Stochastic Integrals in the The-

ory of Continuous Trading, Stochastic Processes Appl. 11, 215-260.

[12] J.M. Harrison and S.R. Pliska, Martingales and Arbitrage in Multiperiod Secu-

rity Markets, Stochastic Processes Appl. 15, 313-316.

[13] S. Heston, A closed-form solution for options with stochastic volatility with

applications to bond and currency options, Review of Financial Studies 6(2),

327-43.

[14] J. Hull and A. White, The pricing of options on assets with stochastic volatili-

ties, J. Finance 42(2), 281-300.

[15] R.C. Merton, Theory of Rational Option Pricing, Bell J. Econ. Manage. Sci. 4,

141-183.

[16] E. Renault and N. Touzi, Option Hedging and Implied Volatilities in a Stochas-

tic Volatility Model, Mathematical Finance. 6(3), 279-302.

[17] L. Scott, Option pricing when the variance changes randomly: Theory, estima-

tion, and an application, J. Financial and Quantitative Analysis 22(4), 419-38.

[18] S. Shreve, Stochastic Calculus for Finance II, Springer.

[19] E. Stein and J. Stein, textitStock price distributions with stochastic volatility:

An analytic approach, Review of Financial Studies 4(4), 727-52.

63


