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Abstract 
Abstract 

This research concentrates on two major engineering areas associated with biomedical 

instrumentation that have recently gained significant academic and industrial interest: the 

gradient coil design for Magnetic Resonance Imaging (MRI) and the high frequency full-

wave field simulations with the Method of Moments (MoM). 

A new computational approach to the design of gradient coils for magnetic 

resonance imaging is introduced.  The theoretical formulation involves a constrained cost 

function between the desired field in a particular region of interest in space and the 

current-carrying coil plane.  Based on Biot-Savart’s integral equation, an appropriate 

weight function is introduced in conjunction with linear approximation functions.  This 

permits the transformation of the problem formulation into a linear matrix equation whose 

solution yields discrete current elements in terms of magnitude and direction within a 

specified coil plane.  These current elements can be synthesized into practical wire 

configuration by suitably combining the individual wire loops.  Numerical predictions 

and measurements underscore the success of this approach in terms of achieving a highly 

linear field while maintaining low parasitic fields, low inductance and a sufficient degree 

of shielding.  Experimental results confirm the field predictions of the computational 

approach. 

Extending the numerical modeling efforts to dynamic phenomena, a novel MoM 

formulation permits the computation of electromagnetic fields in conductive surfaces and 

in three-dimensional biological bodies.  The excitation can be provided with current 

loops, voltage sources, or an incident electromagnetic wave.  This method enables us to 

solve a broad spectrum of problems arising in MRI: full-wave RF coil simulations, eddy 

currents predictions in the magnet bore, and induced currents in the biological body.  

Surfaces are represented as triangles and the three-dimensional bodies are subdivided into 

tetrahedra.  This numerical discretization methodology makes the approach very flexible 

to handle a wide range of practical coil geometries.  Specifically, in this thesis the MoM 

is employed to study the effect of switching gradient coils in the presence of a biological 

load. 
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Chapter 1 
Chapter 1   Introduction and Review 

Introduction and Review 
 
 
1.1   Introduction 

Nuclear Magnetic Resonance (NMR) is a method that exploits the resonance behavior 

that is exhibited by certain substances when placed into a strong magnetic field.  The 

phenomenon of NMR was discovered by E.K. Zavoysky in 1944 and independently by 

Felix Bloch and Edward Purcell in 1946.  These researchers discovered that 

electromagnetic waves at a certain frequency are attenuated dramatically when passing 

through a sample placed in a strong external magnetic field.  The resonant frequency was 

found to be proportional to the strength of the external magnetic field. 

More recently, Magnetic Resonance Imaging (MRI) as a medical imaging method 

is based on the exploitation of NMR for biological bodies.  MRI is a relatively new 

method used in soft tissue medical imaging that came into widespread use in the 1980s.  

In the United States alone there are presently over 7,000 MR systems in clinical use.  The 
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method utilizes several encoding techniques in order to obtain information about the 

inner structure of the biological sample under consideration.   

MRI is fundamentally different from another popular imaging method: Computed 

Tomography (CT).  In Computed Tomography the biological sample is exposed to X-ray 

projections from many directions.  The acquired information is then used to reconstruct 

the inner structure of the sample.  There are several key advantages of MRI over CT: 

• MRI relies on radio waves instead of harmful X-rays.  This allows the use of MRI 

for such patients as children and pregnant women.  In addition, there is no need to 

protect the medical personnel from potentially harmful radiation. 

• MRI is significantly more sensitive to the presence of hydrogen, one of the most 

abundant components in human organs. 

• Contrast in MRI depends not only on the hydrogen density, but also on the 

additional properties of the sample described by the T1 and T2 relaxation time 

constants (which will be discussed in Chapter 2).  These constants can be 

exploited to yield high quality images. 

• MRI is sensitive to the presence of chemical bonds in molecules.  For instance, 

the chemical frequency shift phenomenon allows one to determine the amount of 

fatty tissue. 

However, magnetic resonance imaging has also several disadvantages:  

• A strong and uniform magnetic field exceeding 1 T has to be created.  The 

required superconducting magnets increase the cost of operating the MRI 

scanners significantly.  From a patient’s safety point of view, there appears to be 

no evidence of any negative effects arising from the strong magnetic field.  
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Nonetheless, the Food and Drug Administration is presently restricting the field 

strength for human imaging to 3 T. 

• MRI cannot be used for claustrophobic patients (due to the presence of encircling 

magnets) and persons wearing metallic implants. 

The basic physical principle of NMR is as follows.  Certain substances, when 

placed in a strong magnetic field, selectively absorb radio waves at a frequency that is 

proportional to the strength of the applied static magnetic field.  Nuclei having magnetic 

moments attempt to align themselves in this external magnetic field.  The principles of 

quantum mechanics dictate that there exist several energy levels associated with the 

magnetic moments of these nuclei.  The respective distribution of the nuclei 

concentration between lower and upper energy levels depends on temperature and 

follows a Boltzmann distribution.  If the energy hfE =  of the RF pulse equals the 

difference between these energy levels, then we have a resonance at the frequency f  ( h  

is the Planck’s constant).  During such an RF pulse nuclei switch to a higher energy level.  

After the RF pulse is turned off, the nuclei return to their equilibrium state and emit the 

accumulated energy that can be registered by a receiver coil.  The pulse of magnetic 

energy radiated by the sample is referred to as echo signal. 

 

1.2   Qualitative Description of MRI Imaging Method 

As mentioned before, MRI uses the NMR phenomenon to create high-resolution images 

of the body.  If, in addition to the main magnetic field (usually directed along the z-axis), 

we apply an extra magnetic field having a linear gradient in the z-direction, then different 



 18

parts of the sample will experience a varying field depending on the location along the z-

coordinate.  Since the resonant frequency depends on the strength of the magnetic field, 

each slice of the body orthogonal to the z-axis will possess its own resonant frequency.  

Furthermore, if we apply an RF pulse at frequency f  to this sample, then only one slice 

having the resonant frequency f  will be excited, and others remaining unaffected.  

When the RF pulse is terminated, the amount of energy registered by the receiver coil 

will be proportional to the number of nuclei in the excited z-slice.  The technique of 

applying a gradient of the magnetic field along the z-direction is referred to as slice 

selection.  The application of a comparatively low gradient strength (0.1 − 1.0 G/cm) 

allows us to deposit the energy of the RF pulse only to a certain slice aligned with the z-

axis of the sample.  An RF pulse typically has a rectangular shape in the frequency 

domain to sharply define the slice boundaries.  The position of the z-slice depends on the 

center frequency of the RF pulse; the thickness of the z-slice depends on the spectral 

width of the RF pulse and on the corresponding gradient field strength.  As we can see, 

the application of the gradient of magnetic field helps us to determine the number of 

nuclei in the z-slice of interest.  This, however, is not sufficient to obtain full spatial 

information to create an image of the biological body, because different areas of this z-

slice contain different nuclei densities. 

To elicit more detailed spatial information, additional coil systems are needed.  

After the RF pulse and the z-gradient field are turned off, we apply a gradient field in x-

direction.  The excited z-slice can now be subdivided into x-strips, each having its own 

resonant frequency.  Under this condition, each x-strip will radiate the echo signal at its 

own resonant frequency.  The registered signal will contain all resonant frequencies from 
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the entire z-slice.  After performing the Fourier Transform of this signal, we are able to 

calculate the weight of each frequency in the echo signal.  Each weight is proportional to 

the number of nuclei in each x-strip.  The technique of applying the gradient of the 

magnetic field along the x-direction is referred to as frequency encoding.  Consequently, 

the x-axis is identified as the frequency encoding direction. 

To obtain information from the third remaining direction – along the y-axis – we 

need to apply a gradient field in the y-direction.  This is accomplished by a trick: the RF 

pulse excites a chosen z-slice several times in a row, each time increasing the value of the 

yG -gradient.  By doing this we record signals from each x-strip many times.  Each voxel 

(elementary volume) of this x-strip, however, produces an echo signal, the phase of which 

depends on the position of the voxel along the y-axis.  Again, the Fourier Transform 

enables us to determine the weight of each voxel in each x-strip.  Finally, taking all 

gradient steps in sequence, we are able to determine the individual signal response from 

each voxel of the sample. 

The MRI method gains additional versatility from the fact that the echo signal 

depends not only on the nuclei density, but also on other properties of the biological 

tissue.  The most important properties are the so-called spin-lattice relaxation constant 1T  

and the spin-spin relaxation constant 2T .  The physical meaning of these parameters as 

well as a more detailed description of the basics of MRI can be found in Chapter 2. 
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1.3   Importance of Gradient Coils and Design Considerations 

In an MR apparatus, the gradient fields are created by so-called gradient coils, which are 

labeled xG , yG , zG .  The purpose of these coils is to create a gradient of the z-

component of the magnetic field in all three (x, y, z) directions.  In the previous section 

we assumed that the gradient fields depend perfectly linearly on the corresponding 

coordinates and that those fields can be made as strong as needed.  However, 

technologically it is difficult to achieve both strong and highly linear magnetic fields.  A 

low magnetic field implies that the spatial resolution of an image is limited.  Poor 

uniformity of the magnetic fields implies that the image will appear distorted.  

Unfortunately, a strong gradient field often can be achieved only by sacrificing the 

gradient uniformity, and vice versa.  There exists a trade-off between gradient field 

strength and magnetic field gradient uniformity.  Depending on the application, more 

emphasis may be placed on either the strength of the gradient field or on good gradient 

uniformity.  This creates a need to design a range of gradient coils: from high strength 

magnetic fields to highly uniform magnetic fields.  Coils that are able to produce a strong 

magnetic field usually have low magnetic energy (low inductance). 

Switching magnetic fields induce electric currents in conducting media.  The 

induced currents, in turn, create a magnetic field that opposes the applied magnetic field.  

These induced currents, or eddy currents, take a considerable time (milliseconds) to 

decay; their presence normally has a negative effect on the resulting image quality.  Thus, 

the need arises to actively shield these gradient coils.  A shield in this context is an 

additional coil that is connected in series with the respective gradient coil and that 

minimizes the magnetic field leakage created by the gradient coil beyond its outer 
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dimensions.  By introducing the shield we decrease eddy currents at the expense of 

reducing the gradient strength and the magnetic field gradient uniformity. 

When a gradient coil is placed inside a strong static magnetic field, it will 

experience a significant net torque when the current is turned on.  Consequently, there is 

a need to cancel the net torque acting on the coil.  If the gradient coil is designed with 

built-in torque cancellation (self-balancing), then in most cases it will produce a weaker 

gradient field of less uniformity.  Moreover, if this coil is shielded, then the shielding 

effect will also decrease. 

Most of the gradient coils in today’s MRI scanners have cylindrical shape, and 

most of the research on gradient coils is done for cylindrical coils.  However, if for 

example a surgical intervention is required, there is a desire to design gradient coils of 

particular shapes: flat rectangular, crescent, etc.  Sometimes there may exist a need to 

have an opening in the coil to ease access to the sample.  Obviously, if we impose certain 

shape constraints, it will affect the performance of the gradient coil. 

Consequently, there is a trade-off between the gradient strength, the coil’s 

gradient uniformity, the shielding degree, the net torque cancellation and the geometry of 

the coil.  Improving anyone of these five characteristics can in most cases only be 

achieved at the expense of worsening the other four. 

As a result, researchers are seeking new methods of designing gradient coils of 

specific shapes and parameters capable of investigating the various trade-offs.  In 

particular, the methods should have the capability: 

• To be able to work with a wide variety of gradient coil shapes. 

• To parametrically control the magnetic energy (and gradient strength) of the coil. 
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• To have the possibility of designing a shielded gradient coil and to parametrically 

control the degree of shielding. 

• To have the option of designing a self-balanced gradient coil. 

An important characteristic of the gradient coil is the time constant RL=τ  ( L  is 

the total inductance, and R  is the total wire resistance).  If the time constant is short, we 

will be able to switch the gradient coil faster and, thereby, improve image quality as well 

as image acquisition time.  However, there exists a negative effect: rapidly changing 

magnetic fields induce electric fields.  These electric fields, if sufficiently high, induce 

currents in the biological sample and undesired nerve stimulation may occur.  The 

threshold for nerve stimulation at low frequencies is about 6.2 V/m.  Having designed the 

gradient coil, we have to ensure that this threshold is not exceeded.  To find the electric 

fields arising in the sample, we have employed the Method of Moments (MoM), which 

approximates the electric current inside the sample by a set of elementary currents.  The 

total electric field is then a superposition of the electric field created by the elementary 

currents and the field created by the gradient coil (excitation field).  The current elements 

interact with the excitation field and among themselves.  It is possible to establish a 

system of linear equations for values of the current elements.  Once the system of 

equations is solved, we are able to calculate and plot the electric field inside the sample.  

The details of the MoM derivation are presented in Chapter 5. 
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1.4   Literature Review 

Over the past twenty years a variety of theoretical design methods for the construction of 

gradient coils have been developed.  The paper by Bangert and Mansfield [1] was one of 

the earliest ones on the subject.  They formulated the problem of achieving high gradient 

field while providing low inductance.  They also mentioned some simple ideas of how 

the gradient coil can be built.  For example, four appropriately positioned infinite wires 

already constitute a gradient coil.  However, infinite wires can, of course, only crudely 

approximate a realistic coil and the approach is therefore only of academic interest.  To 

obtain a practical design, return paths have to be introduced. 

Several general methodologies are described in a review paper by R. Turner [2].  

His paper describes some common gradient coil designs as well as several theoretical 

approaches such as matrix inversion methods [3-6], stream function methods, and target 

field methods.  The target field methods have gained widespread interest due to their 

computational ease in determining a suitable wire pattern.  Specifically, Turner [7] sets a 

desired (or target) magnetic field on the cylindrical surface inside the cylindrical gradient 

coil.  After this he calculates a current distribution on the surface of the gradient coil to 

achieve such a magnetic field.  Also, in [8], Turner considers a cylindrical coil and 

represents its inductance in terms of the current distribution over the coil.  He then 

minimizes the inductance subject to the magnetic flux density subject to a desired field 

distribution in the region of interest (ROI).  Turner and Bowley [9] have additionally 

studied the effect of passive shielding of the gradient coils.  They showed that the 

introduction of passive shielding reduces the magnetic field in the ROI at high 

frequencies (when the skin depth is much less than the shield thickness).  Bowtell and 
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Mansfield [10] used a similar approach to design an actively shielded gradient coil.  They 

showed that the shield helped to minimize the magnetic field outside of the gradient coil 

by at least two orders of magnitude.  

Another successful application of the target field method related to the design of 

gradient coils was made by H. Liu [11].  He considered a bi-planar design and developed 

an expression for the magnetic energy of the coil, which is proportional to the total 

inductance.  After expanding the surface current in a Fourier series, he was able to 

determine optimal values for the series coefficients that minimize the magnetic energy 

subject to the magnetic field being equal to a desired distribution throughout the ROI.  

In yet another paper [12] D. Green et al. used a very similar approach to [11] in 

their design approach for uniplanar gradient coils.  Specifically, they minimized a 

weighted combination of power, inductance, and the squared difference between the 

actual and the desired field.  Again, representing the current as a Fourier series, they 

found optimal coefficients that minimize the cost function. 

Leggett et. al. [13] consider the multilayer transverse cylindrical gradient coils.  

They again expanded the current in a Fourier series.  They next devised a cost function as 

a weighted combination of inductance and power loss for the condition that the magnetic 

field equals certain values at specified points. 

The paper of Cho and Yi [14] was one of the first devoted to the explicit design of 

surface gradient coils.  The authors use simple symmetry ideas to design layouts for the 

three surface gradient coils ( xG , yG , zG ).  This work provides us with an idea of how 

the coils would appear and how the magnetic field is expected to behave.  However, these 

coil designs are far from optimal.  In his dissertation, Funan Shi [15] used a number of 
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optimization techniques to produce a better wire layout for all three coils.  He was able to 

show that the magnetic field gradient uniformity can be increased dramatically.  In an 

extension of their work, F. Shi and R. Ludwig [16] concentrated on the analysis of the 

three gradient coils designed by Cho. 

However, despite their apparent success, all these methods suffer from a common 

disadvantage: they are only applicable to particular coil geometries such as cylindrical 

planes, or single and bi-planar surfaces.  In this research, we describe a new approach for 

coil design that is largely independent of the shape of the source-carrying surface.  This is 

accomplished by discretizing the surface into triangular patches, and then defining within 

each element a current flow formulation.  We will demonstrate the success of this 

approach by going through the design process of several coil geometries.  In particular, 

we will show that torque-free shielded high performance gradient coils can be 

constructed in an easy and flexible way. 

A considerable amount of research has been carried out to efficiently formulate 

the Method of Moments (MoM) for a wide range of applications.  There are two types of 

structures that are most actively investigated: infinitely conductive metallic surfaces and 

3D bodies characterized by values of electric permittivity and conductance. 

The significant contribution by Rao et al. [17] has resulted in the introduction of 

Rao-Wilton-Glisson (RWG) basis functions that describe the current distribution on an 

infinitely conductive surface.  The surface is discretized into triangular patches and the 

RWG basis function is non-zero for two triangle patches sharing the common edge.  The 

authors showed that these basis functions yield superior field accuracy when using the 

MoM for scattering problems in the frequency domain. 
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The paper of Rao and Wilton [18] represents the time-domain version of the basic 

frequency formulation [17].  The authors can demonstrate good agreement of their results 

with other researchers.  Chen et al. [19] discuss the fact that RWG basis functions fail at 

very low frequencies.  They found a way to overcome this problem by using so-called 

loop-tree basis functions in conjunction with RWG.  In particular, the authors notice that 

the surface current can be divided into divergence-free and curl-free parts.  They 

demonstrate their success by showing that excellent agreement can be obtained with the 

classical Mie solution. 

D.H. Schaubert et al. [20] consider the scattering of a plane wave by a dielectric 

body of arbitrary shape.  The body is discretized into tetrahedra and each face is 

associated with a basis function.  These functions are in fact a 3D extension of the surface 

RWG functions introduced in [17].  An electric flux density vector D can then be 

approximated through the use of these 3D functions.  The authors were able to obtain 

results in agreement with other researchers.  In our opinion, this formulation suffers from 

a serious drawback: the vector D is divergence-free in the dielectric, while the volumetric 

basis functions have non-zero divergence. 

S. Antenor and L. Mendes [21], [22] describe a way to overcome this difficulty: a 

divergence-free basis functions can be introduced.  They use these functions in order to 

approximate the equivalent polarization current in the dielectric object. 

In this dissertation we develop a formulation that considers the highly conductive 

surface of a coil and the biological (conductive) 3D sample volume at the same time.  For 

the surfaces we use RWG current elements and for the 3D bodies the divergence-free 
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basis functions.  Several types of excitation are possible: excitation by loops of current, 

excitation by an incident electromagnetic wave, and excitation by a voltage source. 

 

1.5   Objectives and Methodology 

Central objective of this dissertation is a new design approach for the construction of 

gradient coils for magnetic resonance imaging.  The theoretical formulation involves a 

constraint cost function that relates the desired field in a particular region of interest in 

space to an almost arbitrarily defined surface which carries the current configuration.  

The approach is based on Biot-Savart’s integral equation.  An appropriate weight 

function in conjunction with linear approximation functions enables us to transform the 

problem formulation into a linear matrix equation whose solution yields discrete current 

elements in terms of magnitude and direction within a specified coil surface.  Numerical 

predictions for the xG , yG , zG  gradient coils are used to achieve a highly linear field, 

while maintaining good gradient uniformity and low inductance.  In particular, the 

following items are identified: 

• Development of a mathematical model that allows the effective simulation and 

design of a gradient coil over arbitrary surfaces. 

• Creation of a friendly Graphic User Interface (GUI) to set the model parameters. 

• Performance of simulations, construction and testing the gradient coil set in an 

MR system. 

• Development of a Method of Moments formulation that can perform a full wave 

analysis of a biological body in the region of interest. 
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The organization of this dissertation is as follows.  In Chapter 2 the basics of magnetic 

resonance imaging theory is presented.  Planar yG  gradient coil is described in Chapter 

3.  In Chapter 4 we provide a mathematical formulation for the shielded and unshielded 

coil design of arbitrary geometries.  A constructed prototype is then presented and its 

performance is compared with the model predictions.  In Chapter 5 we introduce a 

Method of Moments formulation for conductive surfaces and biological bodies.  Finally, 

Chapter 6 summarizes the accomplishments of this thesis research and points out future 

research directions. 
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Chapter 2 
Chapter 2   Basics of Magnetic Resonance Imaging 

Basics of Magnetic Resonance Imaging 
 
 
2.1   Spins in a Magnetic Field 

Most nuclei possess a property called spin angular momentum, which is the basis of 

nuclear magnetism1. Figure 2.1 depicts a nucleus spinning around its axis.  Since nuclei 

are charged, the spinning motion causes a magnetic moment, which is collinear with the 

direction of the spin axis. 

                               
   (a)      (b) 
Figure 2.1: (a) The magnetic dipole, (b) magnetic dipoles in the absence of an applied 

magnetic field. 
 

                                                 
1 The details of this chapter are in part a compilation of “Basic Principles of MR Imaging”, Paul J. Keller 
[26]. 
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To elucidate the basic magnetic resonance principle, let us consider a collection of 

protons as in Figure 2.1.  In the absence of the externally applied magnetic field, the 

individual magnetic moments have no preferred orientation.  However, if a static 

magnetic field is applied, the magnetic moments have a tendency to align with this 

external field.  According to quantum mechanics, the magnetic moments adopt one of two 

possible orientations: parallel or antiparallel to the magnetic field 0B .  Alignment parallel 

to the magnetic field has a lower energy state and, therefore, is preferred (Figure 2.2(a)).  

Since the energy difference between two states is very small, thermal energy causes the 

two states to be almost equally populated.  The population difference results in a net bulk 

magnetization. 

The spin associated with the magnetic moment causes the moment to precess 

around the axis of 0B .  Since more nuclear spins are aligned along the field, the 

magnetization is also directed along 0B .  The precessional frequency is given by the 

Larmor equation: 

fB =0γ , (2.1)
where f  is the precessional frequency, γ  is a constant which depends on the type of 

nucleus.  For a hydrogen nucleus γ  is equal to Hz/Gauss4257=Hγ .  Therefore, in a 

magnetic field of 2 T the precession frequency is 85.5 MHz. 

Figure 2.2 shows that since energy is proportional to frequency, E∆  may be 

defined in terms of the frequency of radiation, which is necessary to induce transitions of 

the spin states between the two energy levels. 
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   (a)       (b) 
Figure 2.2: (a): Energy diagram, (b) precession of magnetic moment around the applied 

field 0B . 
 
 

2.2   The Effect of Radiofrequency (RF) Pulses 

If we apply a pulse of RF magnetic field at the Larmor frequency, its energy will be 

absorbed by the nuclei.  During such a pulse the bulk magnetization M will precess 

around the 1B  axis.  If the RF excitation is turned on only for a short period of time, the 

net magnetization is rotated by a certain angle away from the longitudinal axis.  We call 

this angle a flip angle.  We can choose the length of the pulse so as to obtain, for example, 

90 and 180-degree flip angles. 

After a pulse duration that causes a 90-degree flip angle, the net magnetization lies 

in the transverse plane and it precesses around the 0B  axis at the Larmor frequency.  The 

magnetization induces an AC current in a receiver coil, as depicted in Figure 2.3. 
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  (a)       (b) 

Figure 2.3: (a): Magnetization decay, (b) free induction decay (FID). 
 
 

This current oscillates with Larmor frequency and it decays exponentially as ( )*
2exp Tt− . 

This is known as the free induction decay (FID).  The signal decay is due to a process 

known as a relaxation, whose time constant *
2T  is explained in Section 2.3. 

 

2.3   Relaxation 

At equilibrium, the net magnetization is aligned along the longitudinal axis ( 0B  axis).  It 

means that the equilibrium magnetization in the transverse plane is zero.  The relationship 

describing the decay is: 

*
20

transversetransverse
TteMM −= , (2.2)

where 0
transverseM  is the initial transverse magnetization. *

2T  characterizes the rate of 

decay.  There are several mechanisms contributing to the transverse decay: spin-spin 2T  

relaxation, 0B  field inhomogeneity inhomo,2T , susceptibility suscept,2T , and diffusion diff,2T , 

etc.: 

...11111

diff,2suscept,2inhomo,22
*

2

++++=
TTTTT

. (2.3)

For the longitudinal relaxation we have a different mechanism described by: 
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( )110
allongitudinallongitudin

TteMM −−= , (2.4)

where 1T  is a longitudinal relaxation constant. 

 
Figure 2.4: Qualitative transverse and longitudinal relaxation behavior after the 90º pulse 

is turned off. 
 
 

2.4   Magnetic Field Gradients 

The magnetic field can be modified through the application of spatially varying magnetic 

fields, so-called gradient fields.  Since 

fB =γ , (2.5)
the resonance frequencies of protons will vary along the gradient axis.  Since we can 

measure frequencies and we know the imposed spatial variation of magnetic field, the 

positions of resonating protons can be determined from their frequencies. 

( )rrGBf += 0γ , (2.6)

where r is the position along r-axis (x, y, or z) and rG  is the corresponding gradient field. 

 

2.5   Slice Selective Excitation 

The signal response in the third spatial dimension needs to be restricted.  This is 

accomplished by selectively exciting only spins in a well-defined slice of tissue within the 
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imaging volume.  This is achieved by imposing a gradient along an axis perpendicular to 

the chosen slice plane, which causes a linear variation of resonance frequencies along that 

axis.  As shown in Figure 2.5, a sinc-shaped RF pulse excites a band of frequencies of 

width τ1=∆f  around the center frequency 0f . 

 

 
Figure 2.5: Fourier transform correspondence of the sinc function. 

 
 

The thickness of the excited slice d  is related to the gradient amplitude G  and RF 

bandwidth f∆  as follows: 

dGf γ=∆ . (2.7)
This equation determines slice thickness to be excited.  The location of this slice can be 

found from the center frequency of the RF sinc-pulse via an offset location offsetz : 

d
fz

f offset ∆⋅
=∆ 0 . (2.8)

If the center frequency is equal to the resonance frequency of protons in the absence of 

gradient, then the excited slice is in the isocenter ( 0=z ) of the magnet system. 
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2.6   Frequency Encoding 

The next task is encoding the image information within the excited slice.  The image 

information source is actually the amplitude of the MR signal arising from the various 

locations in the slice.  Two distinct processes are used for encoding the two dimensions: 

frequency encoding and phase encoding.  Frequency encoding will be discussed first. 

Imposition of a gradient along one of the two principal axes of the plane during 

the period when the receiver coil is on, causes the signal received to be an interference 

pattern arising from various precessional frequencies of the spins along the gradient axis. 

A signal is acquired in the presence of the read-out (frequency-encoding) gradient.  

Another gradient pulse, termed a “dephaser”, is also implemented along the frequency 

encoding axis.  Area of the dephaser gradient pulse is one-half that of the read gradient.  

The field of view along the frequency axis ( fFOV ) can be found from: 

BWFOVG fx =γ , (2.9)

where xG  is the amplitude of the frequency-encoding gradient. 

 

2.7   Phase Encoding and Image Acquisition 

In order to produce a two-dimensional image of the slice, one can cause a systematic 

variation in phase, which would encode the spatial information along the one remaining 

principal axis of the image plane.  The sampling theorem needs to be used for phase 

encoding.  At positions between the two edges of field of view in the phase encoding 

dimension ( pFOV ) the phase should change by less than 180°.  Quantitatively, we can 

write: 
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πγ pppx NTFOVG = , (2.10)

where pT  is the length of the phase-encoding pulse, pN  is the number of phase-encoding 

pulses. 

The phase encoding is not on within the acquisition window; it cannot affect the 

detected frequencies.  The complete pulse sequence (Figure 2.6) is played out many times 

and the resulting signals are stored separately.   

 
Figure 2.6: Spin-echo pulse sequence. 

 
 

The only variation from one acquisition to the next is the amplitude of the phase encoding 

gradient, which is changed in a step-wise fashion.  Collection of MR data from the slice 

yields a set of spin echoes (views).  This dataset is also known as k-space (Figure 2.7(b)). 
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Figure 2.7: Schematic representation of image formation via the Fourier Transform (FT 
and IFT denote, respectively, the forward and inverse Fourier Transform). 

 
 
Separate Fourier transformation of each of these data sets (views) yields a set of 

projections onto the read axis (Figure 2.7(c)).  These projections are identical with respect 

to frequency, but not with respect to phase. 

A data set consisting of the first point from every projection is constructed and 

subjected to the Fourier transform.  Another data set is assembled from the second point 

of every projection, Fourier transformed and stored separately, and so on.  This gives rise 

to the data set shown in Figure 2.7(d). 

Fourier Transform of this data set produces a new data representation shown in 

Figure 2.7(e).  After being transposed this data set represents the image of the slice. 
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Chapter 3 
Chapter 3  Gy Surface Gradient Coil 

Gy Surface Gradient Coil 
 
 

3.1   Design Goal and Quality Assessment 

As previously discussed, linear and strong magnetic gradient fields are indispensable for 

high-resolution imaging of biological tissue.  Goal of this dissertation is to design an 

effective surface gradient coil configuration (Figure 3.1) in a pre-described plane.  

Effectiveness in this context is understood as the ability to provide a strong gradient field, 

while at the same time minimizing the parasitic gradients within the region of interest 

(ROI). 

 
 

Figure 3.1: Conceptual arrangement of three mono-planar surface gradient coils 
situated below the region of interest (ROI). 
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For the subsequent theoretical and practical coil considerations we need to define certain 

criteria that greatly facilitate the comparison of the various coil designs.  In particular, 

three criteria are needed: 

• Gradient strength.  Obviously the image resolution improves if the gradient coil is 

able to produce a higher field magnitude for the same amount of input current. 

• Field uniformity.  Distortions in the image are minimized if the magnetic field is 

highly linear in the ROI.  As discussed in Section 3.2, we can estimate the field 

uniformity visually from the magnetic field plots and from distortions of the 

image of the phantom that consists of several equidistant layers. 

• Parasitic gradient field distribution.  To assess the overall quality of the gradients 

(for example the yG  coil), a so-called coil quality factor Q  can be defined as: 

⎟⎟
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Q .  The coil, which has the highest Q , is preferred in the 

sense that it yields the lowest parasitic gradients. 

 

3.2   Prior Art 

One of the few mono-planar surface gradient coil designs was reported by Cho and Yi 

[14].  In their paper they describe a three-channel gradient set consisting of the xG -, yG - 

and zG  gradient coils.  In Figure 3.2 the yG  surface gradient coil is depicted. 
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Figure 3.2: yG  gradient coil design as originally proposed by Cho and Yi [14]. 

 
 

In Figure 3.3 we have computed the z-component of the magnetic flux density based on 

Biot-Savart’s law and for a normalized input current of Ai 1= . 

 

 
Figure 3.3: Magnetic flux density zB  in units of [T] for both the transversal and 

longitudinal direction throughout the ROI.  The ROI is located 4 cm above 
the coil plane and ranges from 4 to 8 cm in y direction and from –2.5 to +2.5 
cm in z and x directions, respectively. 
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We observe that the magnetic field exhibits parasitic gradients in x and z-directions.  This 

is more clearly seen in Figure 3.4 where we again show the axial and sagittal slices taken 

through the center of the ROI. 

 

   
Figure 3.4: Contours of magnetic flux density zB  in units of [T] in axial and sagittal 

cross-sections through the ROI. The spatial dimensions in x, y, z directions are 
given in [m]. 

 
 

Since nonlinear field distributions result in image distortions, it is important to visualize 

the exact extent of the magnetic field behavior.  As we see in Figure 3.4, points having 

the same value of the magnetic field are located on slightly curved contour lines 

(magnitude level of the magnetic field).  The underlying MRI Fourier space 

reconstruction approach treats points that have the same field level as belonging to the 

same y-coordinate. In fact, those points of constant magnetic field values in Figure 3.4 

would become straight, equidistant lines after Fourier space reconstruction.  In order to 

assess the degree of distortion, it is advantageous to plot the y-coordinate values within 

the ROI in a new ( z , x , zB ) coordinate representation.  In other words, we consider y as 

a function of x  and zB .  Thus, we can associate values of zB with a new coordinate y* 

(the y-coordinate after Fourier space reconstruction) such that: 
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y* depends linearly on zB . Indeed, we can now plot y in a (z, x, y*) coordinate 

representation.  Contours of constant y reveal the extent of how straight lines in the ROI 

are distorted after Fourier space reconstruction for a particular yG  coil design.  As an 

example, the yG  coil designed by Cho [14] yields a simulated reconstruction image as 

shown in Figure 3.5. 

       
Figure 3.5: Simulations of the reconstructed image produced by the yG  gradient coil 

designed by Cho [14] with levels of y in terms of (z, x, y*) coordinates. Here 
y* (or YSTAR) is the predicted y-coordinate after Fourier space 
reconstruction. All spatial dimensions are recorded in [m]. 

 
 
As we see from Figure 3.5, the space within the ROI closest to the coil appears to be 

significantly expanded and curved. 

In addition, as a single figure of merit we can also employ the coil quality factor 

Q to assess the overall yG  performance.  Calculating Q for the coil designed by Cho, we 

obtain Q=0.867.  This coil was built using a plastic former (of thickness 4mm) and wiring 

of AWG-20 (American Wire Gauge) copper wires.  The wire pattern was wound around 

a suitable arranged template of metal pegs mounted on a wooden plate, before 
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transferring it into the plastic former with milled grooves.  The wire pattern is spatially 

fixed within the grooves by using an epoxy resin.  A photograph of the finished yG  coil 

is seen in Figure 3.6. 

 
Figure 3.6: Fabrication of prior art yG  gradient coil [14]. 

 
 
This particular wire arrangement forms the baseline for subsequent comparisons against 

our new, improved coil designs.  This coil has an inductance and resistance of 

mH 315.0=L  and Ω=  54.0R , respectively.  The actual coil was benchtested using a 

specially designed nonmagnetic, plastic holder, as depicted in Figure 3.7(a).  Based on an 

applied DC current of 1A the magnetic field in the ROI was measured with a Hall sensor 

attached to a Gaussmeter (see Figure 3.7 (b)). 
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(a)      (b) 

Figure 3.7: (a) yG  coil [14] in a Plexiglas restrainer, (b) experimental setup for bench 
testing. 

 
 
The magnetic field of the coil in an axial, or xy, plane was measured and plotted in Figure 

3.8. 

 
Figure 3.8: Measured transversal magnetic flux density zB  in [G] recorded for the yG  

gradient coil as proposed in [14], and based on a drive current of 1A. Spatial 
dimensions are recorded in [cm]. 

 
 
The above yG  coil arrangement was tested in a GE CSI-II 2.0 T 45-cm imaging 

spectrometer operated at 85.56 MHz and residing within a commercial, self-shielded 
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gradient set.  The yG  coil was placed in the 5mm thick Plexiglas plastic tube and 

fastened with plastic screws as shown in Figure 3.9. 

    
(a)     (b) 

Figure 3.9: Original yG  coil: (a) on the bench, placed in a Plexiglas cylindrical tube of 
15cm diameter, (b) located inside the MR system. 

 
 

In addition to the yG  surface coil a custom-built 12-element low-pass RF bird-cage coil 

of 10 cm diameter was fastened on the coil plane. Inside the RF coil a Plexiglas phantom 

of 5.0 cm width (x-direction), 5.0 cm length (z-direction), 3.9 cm height was positioned, 

see Figure 3.10.  The phantom has six water filled compartments, each 3 mm in 

thickness.  The compartments are separated by 3 mm thick Plexiglas layers. Epoxy resin 

was used to provide reliable adhesion between different parts of the phantom. 
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(a)     (b)    (c) 

Figure 3.10: Picture and photographs of the phantom: (a) phantom schematics, (b), (c) 
different views of phantom. Each water compartment is 3mm in thickness. 

 
 

After inserting the coil within the main magnet, which was equipped with a three-channel 

GE gradient, the following steps were carried out: 

a) The gradient amplifier cable link leading to the GE yG  channel was 

disconnected and attached to the yG  surface gradient coil. 

b) The resistance (R=33.4 kΩ) and capacitance (C=3.17 nF) values within the 

feedback control loop at the output stage of the yG  gradient amplifier were 

adjusted so as to compensate for the induced eddy current influence.  The 

numerical values were selected such that an applied rectangular pulse sent to 

the yG  surface coil was reproduced with minimal under- and over-swings, as 

observed through an attached oscilloscope. 

c) A spin echo pulse sequence was selected with TR/TE = 2000/20 ms (where 

TR is the repetition time, and TE is the echo time). Here, the y-direction was 

used for frequency encoding.  For axial imaging we used the z-axis for slice 

selection and the x-axis for phase encoding.  For sagittal slices the selection 
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was changed as follows: the x-axis for slice selection and the z-axis for phase 

encoding. 

Figure 3.11 depicts the images obtained from the phantom in the axial and sagittal planes. 

  
   (a)       (b) 
Figure 3.11: Resulting images obtained from the Plexiglas phantom of Figure 3.10 with 

Cho’s yG  surface coil. The coil plane resides 4.3 cm below the first water 
contour: (a) axial plane, (b) sagittal plane. 

 
 
Clearly observable are the image distortions both in terms of undesirable curvature and 

non-uniform thickness layers.  These results form the basis of improving the designs by 

modifying the current flow so as to maximize the gradient uniformity.  To improve upon 

these images, the following sections outline the theoretical approach, the fabricated coils, 

and the resulting images. 

 

3.3   Theoretical Least Squares Formulation 

In order to significantly improve upon the existing surface gradient coil design, we 

devised a mathematical formulation that determines the optimal current distribution in a 

given coil plane based on a prescribed magnetic field and given ROI.  The subsequent 

sections outline the steps required to formulate this theoretical model and to arrive at an 

optimal current distribution. 



 48

We consider an excitation current density ( )x,zj  residing in the z-x plane.  The 

uniplanar coil region is restricted to the following spatial dimensions: 

[ ] [ ]m.,m.,m.,m.x,x,z,z maxminmaxmin 050  050  10  10      −−= . 

The overall size is dictated by the bore size of the main magnet.  We next 

consider a cubical ROI with the following dimensions: 

[ ]
[ ] ,m08.0  ,m04.0  ,m025.0  ,m025.0  ,m025.0  ,m025.0

  ,  ,  ,  ,  , maxminmaxminmaxmin

−−
=yyxxzz

    

which is sufficient for cranial imaging of small animals such as rats and other rodents. 

Our goal is to find the current density ( )xz,j  that yields a desired magnetic field 

distribution ( )ooodes,z y,x,zB  inside a predefined region of interest (ROI) as depicted in 

Figure 3.1.  Starting point is the Biot-Savart law in the form: 

( ) ∫
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r 3

0 '
4
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π

µ
, (3.1)

where so rrr −=  and r=r .  Vector or  points to the coordinates of the observation point 

residing inside the ROI, and sr  are the coordinates of the unknown excitation source.  

Since we are interested in the z-component of the B-field, we consider only the x-

component of the surface current density ( )x,zj .  Thus, (3.1) is re-written as: 
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where x̂  is a unit vector in x-direction and sS  is the surface of the source.  Explicitly, the 

flux density takes on the form: 
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Since the sum of the inflowing coil current has to equal the sum of the exiting current, a 

constraint condition can be imposed on ( )x,zjx , i.e., 

( )∫ =
max

min

z

z
x dzx,zj 0  (3.4)

for all values of x.  We next approximate this current density ( )x,zjx  by a generic set of 

basis functions ( )x,zfn , Nn ,...,1=  such that 

( ) ( )∑=
N

n
nnx x,zfIx,zj . (3.5)

Here nI  are constants to be determined.  Inserting (3.5) into (3.3) yields: 
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Written in more compact notation we see that 
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where Kn is given by: 
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We next establish a functional Φ that relates the computed field zB  to the desired field 

deszB , .  Specifically, 
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Here, ( )ooo y,x,zW  is an arbitrarily chosen weight function and λ  is a Lagrange 

multiplier.  As discussed below, by appropriately selecting this function we can affect 

gradient uniformity. 
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Our goal is to find ( )oooz y,x,zB  that minimizes the functional Φ .  This is 

accomplished by setting the derivative to zero with respect to the unknown currents, i.e., 

( ) ( ) ( ) ( )
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for Nn ...1' = .  For 
λ∂
Φ∂

=0  we have: 
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dzx,zfI0     for all x. (3.11)

Equations (3.10) and (3.11) can also be represented as a system of linear equations in 

compact notation: 

bAX = . (3.12)
Solving this system yields the solution vector X  that contains the discrete current 

elements nI , N,...,n 1= , and λ. 

We now consider a special choice of basis functions: function mnf  is zero 

everywhere except that it behaves like a δ-function, ( )mzz −δ , over the interval 

( ) ( )+− − nmnm x,zx,z , see Figure 3.12. 

 
Figure 3.12: Set of basis functions nmf  chosen for the proposed least squares method. 
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In this case the functional takes on the form: 
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The last term follows from the limitation that we imposed on surface current.  Due to the 

delta function representation for the basis function, (3.8) simplifies to: 
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The resulting system of equations (3.12) has the following coefficients for matrix A and 

column vector b: 
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Vector X is comprised of the elements: 

( ) 'n'm'm'nM IX =+−1  where M,...,'m 1= , N,...,'n 1= , 

'n'nMN xX λ∆=+  where N,...,'n 1= . 
(3.16)

 

Solving (3.12) either directly (Gauss elimination) or iteratively (conjugate gradient 

method) for the unknown currents mnI  yields the discrete current elements (magnitude 

and direction).  After scaling these currents into integer values we obtain the direction 

and discrete strength of each segment that should be placed into the grooves of the planar 

former.  Dictated by practical considerations, the discrete numbers of wires should not 

exceed 25 so as to maintain appropriate compactness. 
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3.4   Design of Gy Gradient Coils Based on the Least Squares 

Method 

In what follows, the above outlined mathematical design methodology is employed to 

construct two novel surface gradient coil wire patterns with superior field strength and 

field uniformity.  Although the approach was done for the construction of the yG  coil 

only, a completely analogous approach can be done for the xG  and zG  surface coils. 

(a) Gy gradient coil with m=5 and n=4 (labeled as 5×4 Gy gradient coil) 

At first we have chosen a configuration with m=5 and n=4, depicted in Figure 3.12.  

After solving Eq. (3.12) for the unknown currents, we arrive at the discrete current 

distributions within the generic layout pattern depicted in Figure 3.12.  The actual layout 

is displayed in Figure 3.13. 

 
Figure 3.13: New 5×4 yG  gradient coil design.  The discrete numbers denote the wires 

placed in each groove. 
 
 

In Figure 3.13, the integers denote the number of wire segments carrying current in the 

indicated directions.  The field produced by this coil is represented in Figure 3.14. 
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Figure 3.14: Magnetic flux density in [T] for the 5×4 yG  gradient coil. All spatial 

dimensions are given in [m]. 
 
 
Theoretically predicted image distortions of the phantom placed within the coil’s ROI are 

based on our earlier discussion and are shown in Figure 3.15.  We notice compression in 

the upper layers (due to non-linear flux distribution) and curvature (due to parasitic field 

distribution). 

     
Figure 3.15: Simulations of the reconstructed image produced by the 5×4 yG  gradient 

coil. All spatial dimensions are given in [m]. 
 
 

In terms of the coil’s figure of merit we obtain: Q =0.908, which represents a significant 

improvement over Q =0.867, the baseline coil developed by Cho [14]. 
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(b) Gy gradient coil with m=6 and n=4 (labeled as 6×4 Gy gradient coil) 

As a second example, a configuration with m=6, n=4 is considered.  Using the least 

squares method we obtain the wire distribution shown in Figure 3.16. 

 
Figure 3.16: A 6×4 yG  gradient coil wire pattern. 

 
 
Here again, the integers in Figure 3.16 denote the number of wire elements and the 

direction of current flow is depicted by arrows.  The corresponding field produced by this 

coil is represented in Figure 3.17. 

   
Figure 3.17: Magnetic flux density zB  in [T] of the 6×4 yG  gradient coil. All spatial 

dimensions are in [m]. 
 
 

Figure 3.18 provides numerical predictions of the anticipated axial and sagittal distortions 

within the ROI. 
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Figure 3.18: Simulations of the expected image reconstruction produced by the 6×4 yG  

gradient coil shown in Figure 3.16.  All spatial dimensions are in [m]. 
 
 

We will next compare the strength of the surface gradient coils in the center of the region 

of interest as well as their respective quality factor for all three coils described above.  

Table 1 reports the maximum field strength in the center of the ROI and the Q  factor as 

defined in Section 3.1. 

From Table 1 we notice that the 5×4 and 6×4 coils yield better magnetic field 

uniformity.  As a result, the obtained images of the phantom are significantly less 

distorted.  However, the gradient strengths produced by these coils are weaker than the 

gradient strength of the one reported in [14]. 

Table 1: Gradient strengths, resistances and quality factors of three mono-planar yG  
surface gradient coils. 

Design yG  [G/cm/100A] 
(recorded at height y=6 cm) 

R, [Ω] Q  

Cho et al. [14] 
(maximum 24 wires) 

15.50 0.54 0.867 

5×4 yG  gradient coil 8.14 0.52 0.908 

6×4 yG  gradient coil 8.26 0.61 0.915 
 

It is interesting to point out that the 5×4 and 6×4 coils feature current elements that are 

generally farther away from the ROI.  This allows the magnetic field to be made more 
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uniform at the expense of field strength.  However, as explained below, the trade-off 

between field strength and field uniformity can be mitigated somewhat. 

 

3.5   Additional Performance Improvements 

There are certain design constraints that are difficult to overcome by using the least 

squares method.  As noted, coils generated by this method do not yield high gradient 

strengths.  Increasing the number m and n results in higher field uniformities, but also 

lower gradient strengths.  Moreover, the practical coil fabrication becomes increasingly 

difficult for coils with high numbers of m  and n .  Consequently, it is desirable to 

develop an alternative, more effective approach for the surface coil design. 

Towards this end, we can introduce several basic restrictions to avoid making the 

design excessively cumbersome.  Specifically: 

(a) The coil should be simple to build, 

(b) The number of wires in each groove should not exceed a value of 25, 

(c) The current-carrying wires (grooves) should not intersect, 

(d) The neighboring grooves should not be closer than 1 cm from each other, and 

(e) The sharp angles at the coil nodes should be avoided. 

Obviously, these conditions are difficult, if not impossible, to implement in terms of a 

simple least squares design method.  However, the results obtained by this method along 

with previous designs can provide us with a hint as to how to place the wires in order to 

achieve a better gradient field.  Our first goal is to consider a template as shown in Figure 

3.19. 
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Figure 3.19: A yG  gradient coil prototype. 

 
 

This design considers two loops, each carrying 24 wires.  We immediately notice a 

significant amount of unused space inside each loop.  By placing additional wire 

configurations inside these loops, we will be able to (i) improve the field strength, and (ii) 

have more freedom to improve the field quality factor (i.e., lower the parasitic gradients).  

The nodal coordinates were optimized by a trial-and-error method, resulting in a design 

depicted in Figure 3.20.  We did not use any numerical optimization technique because it 

would be impossible to comply with all the restrictions listed above. 

 

 
Figure 3.20: Six-loop coil yG  gradient coil. 

 
 

The corresponding magnetic field simulations produced by this yG  coil are depicted in 

Figure 3.21. 
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Figure 3.21: Magnetic field zB  in [T] for the six-loop, yG  gradient coil.  All spatial 

dimensions are recorded in [m]. 
 
 

Examining the predicted distortions for a phantom placed within the ROI is shown in 

Figure 3.22 both for the axial and sagittal planes. 

            
Figure 3.22: Simulations of the reconstructed image produces by the six-loop yG  

gradient coil.  All dimensions are listed in [m]. 
 
 

This coil yields a quality factor of Q =0.880.  The system was constructed on a plastic 

former, as shown in Figure 3.23.  Specifically, the yG  coil was wound on a planar 11 by 

22 cm Garolite (G-10) former with machined grooves.  To pre-shape the wire pattern, 

enamel-coated copper wire of AWG-20 size was wound on a template, prior to placing 

the pattern into the grooved former.  An epoxy resin was used to fix the wire pattern 

within the former. 
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Figure 3.23: Six-loop yG  gradient coil. 

 
 

Measurement of the inductive and resistive circuit parameters yield mH 496.0=sL  and 

Ω=  1.1sR , respectively. 

This coil design was tested in a 4.7T Bruker MRI scanner with 40cm bore, shown 

in Figure 3.24.  The resulting images from a phantom are depicted in Figure 3.25. 

  
Figure 3.24: Photographs of the six-loop yG  coil placed in a 25 cm diameter Plexiglas 

tubular cylinder (left) and placed inside the 4.7T Bruker magnet with 
commercial gradient set (right). 
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(axial)     (sagittal) 

            
Figure 3.25: Resulting image of the phantom with the coil shown in Figure 3.23. 

 
 

There is a key reason why the lower portion of sagittal image in Figure 3.25 appears 

distorted: it is difficult to measure precisely the distance between the coil plane and the 

lower edge of the phantom.  The entire phantom in the experiment should have been 

positioned slightly closer to the coil than it was actually placed.  The superior 

performance parameters of the six-loop yG  gradient coil both in terms of Q  and field 

strength are summarized in Table 2. 

Table 2: Gradient strength and quality factor of six-loop yG  surface gradient coil. 
Design yG  [G/cm/100A] 

(recorded at height y=6 cm) 
R, [Ω] Q  

six-loop yG  gradient coil 
(maximum 24 wires) 

20.80 1.10 0.880 

 
 
Finally, Figure 3.26 depicts a comprehensive comparison of the various coil designs 

versus the Cho design [14] by displaying the strength of the magnetic field along the 

vertical axis passing through the center of the ROI: 
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Figure 3.26: zB -component of the magnetic flux density in [T] along the vertical line 

(x=0, z=0) passing through the ROI: Cho’s design [14], 5×4 design, 6×4 
design, and six-loop design.  Spatial dimension is recorded in [m]. 

 
 

A set of preliminary experiments with a marmoset brain was performed in an effort to 

assess the image quality of a commercial encircling yG  coil (30.5-cm inner diameter 

Magnex gradient set of 68 mT/m, 220 µsec rise time) versus the novel planar yG  coil.  

For the direct comparison, the six-loop coil was used without shim currents, and only 

minimal pre-emphasis current adjustment was applied to obtain the same rise time.  The 

applied drive current for the six-loop coil was adjusted to a maximum of 20A, although 

currents of 100A can be achieved.  Basic testing in the MR scanner confirmed the fact 

that shimming of the six-loop coil is not needed. 

The following MR parameters are used for the image acquisition: spin-echo pulse 

sequence, TR/TE = 500/30 ms, FOV = 40 mm by 40 mm, 256×256 matrix size, slice 

thickness = 1.0 mm.  Figures 3.27 – 3.28 display the transverse view of the cranial area.  

The slight asymmetry in the image observed with the six-loop coil is most likely due to 
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the fact the distance coil plane – center of ROI was larger than the targeted distance of 

6cm. 

 
Figure 3.27: Commercial yG  gradient coil (Bruker high-performance gradient set, 26mm 

inner diameter, 5 G/cm at 100 A drive current). Resulting image (FOV: 4cm 
by 4cm) of a marmoset brain acquired by a commercial gradient coil. 

 
 

 

 
Figure 3.28: Six-loop yG  gradient coil (coil plane size: 12 cm by 24 cm, 5 G/cm at 25 A 

drive current). Resulting image (FOV: 4cm by 4cm) of the six-loop yG  coil 
depicted in Figure 3.23. The surface coil was operated as phase encoding 
gradients. 

 
 



 63

The drive current setting of the six-loop coil had to be reduced by a factor of four to stay 

compatible with the remaining two commercial ( xG , zG ) gradient coils.  A remarkable 

experimental observation is that, due to the relatively large distance from the gradient 

plane to main magnet bore; no shimming or shielding is required to operate the six-loop 

coil technology.  Moreover, because of the open designs placed in close proximity to the 

sample, eddy current influences are negligible. 

 

3.6   Chapter Summary 

This chapter discussed the Least Squares Method for coil design.  The LS method permits 

the control of the field uniformity through numbers of discretization m and n (in z and x 

directions).  High numbers of m and n correspond to high gradient uniformity and low 

gradient strength.  The method allows us to control the coil inductance as well as 

shielding and balancing.  To address these issues, another method has to be developed.  

The new method presented in Chapter 4 deals with a wide variety of coil geometries and 

it is significantly more powerful. 
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Charter 4 
Chapter 4   Stream Function Method for Gradient Coil Design 

Stream Function Method for Gradient Coil 
Design 
 

A new design approach for the construction of gradient coils for magnetic resonance 

imaging is presented.  The theoretical formulation involves a constraint cost function 

between the desired field in a particular region of interest in space and an almost 

arbitrarily defined surface that carries the current configuration based on Biot-Savart’s 

integral equation.  An appropriate weight function in conjunction with linear 

approximation functions permits us to transform the problem formulation into a linear 

matrix equation whose solution yields discrete current elements in terms of magnitude 

and direction within a specified coil surface.  Numerical predictions for the xG , yG , zG  

gradient coils underscore the success of this approach in terms of achieving a highly 

linear field while maintaining low parasitic fields and low inductance. 
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4.1   Theory 

Generally speaking, the gradient coil system in an MR instrument requires three coils 

termed xG , yG , zG .  Each orientation consists of two subsets: primary and secondary 

coils.  Purpose of the primary coil is to create the gradient field, while the secondary coil 

is to suppress the magnetic field outside the gradient system.  Furthermore, each of these 

coils may be implemented by one or several current-carrying surfaces positioned in 

space.  This generic setup is illustrated in Figure 4.1. 

 
Figure 4.1: Conceptual arrangement of the gradient system. 

 
 

Let us consider the construction of the primary coil first.  We define a surface that 

establishes the gradient field with a surface current distribution ( )rJ  flowing in this 

plane.  In general, the coil plane may consist of several discrete surfaces that are not 

connected with each other.  An example of a structure consisting of two surfaces is the 

bi-planar gradient coil shown in Figure 4.2. 
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Figure 4.2: Geometric surface source configuration J(r) that constitutes a bi-planar 

gradient coil. 
 
 

Our goal is to find an optimal current distribution so as to achieve a desired magnetic 

field in the ROI as depicted in Figure 4.2.  Moreover, the magnetic energy of the coil has 

to be low to reduce the total inductance, and each part of the coil may be set to be torque-

free.  Also, since the primary interest is the gradient of the magnetic field, one has to 

optimize the offset magnetic field.  The reason for this is the following: for certain coil 

geometries we could achieve a better performance if the magnetic field is non-zero in the 

center of the ROI.  This so-called bias field optimization is particularly important in case 

of uniplanar yG  gradient coils, which typically possess a bias magnetic field.  

Furthermore, the magnetic flux through the secondary (shield) coil has to be minimal to 

reduce coupling with surrounding metallic structures.  According to these requirements, 

we introduce a cost function Φ that consists of four terms: 
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Here ( )rW  is a weight function, ( )rzdesB ,  is the z-component of the desired magnetic 

field, zoffB ,  is an offset (bias) magnetic field.  magnW  is the magnetic energy of the 

current (in both primary and secondary coils), α  is a magnetic energy weight coefficient, 

B  is the magnetic field, β  is a shielding weight coefficient, and sA  is the area of the 

shield.  Finally, Mpx, Mpy, Mpz are the components of the torque vector Mp, which is 

calculated with respect to a fixed point, the origin.  In Eq. (4.1) index K is the number of 

points in the ROI.  Index p labels all separate surfaces (from 1 to P) of the gradient coil.  

For example, for the bi-planar design, P=2.  Finally, pxλ , pyλ , pzλ  are Lagrange 

multipliers. 

As we see from Eq. (4.1), the cost function Φ is first of all a weighted sum of 

squared deviations from the desired field.  In addition, the magnetic energy term, 

shielding term, and Lagrange multipliers are introduced to ensure that the inductance is 

minimized, the magnetic flux through the shield is minimized, and that every part of the 

gradient coil is torque-free.  It is worth noting that the introduction of the Lagrange 

coefficients for the torque vector is optional.  This is because for certain coil geometries 

some (or all) components of M may equal zero.  In Eq. (4.1) the explicit expression for 

the magnetic energy is 

( ) ( )∫ ∫ ′
′−

′⋅=
′S S

magn SddSW
rr

rJrJ 1
8

0

π
µ . (4.2)

Furthermore, the expression for the torque M can be cast in the form: 

( ) ( )[ ]∫ ××=
S

dSrBrJrM 0 , (4.3)

where ( )rB0  is the external magnetic field.  Usually, ( )rB0  is directed along the z-axis, 

which simplifies (4.3) to 
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where x, y, z are components of the radial vector r.  Under steady state conditions, the 

current satisfies the conservation of charge equation 

( ) 0=⋅∇ rJ . (4.5)

It is our goal to develop an efficient computational method to determine the current 

distribution ( )rJ  that minimizes the cost function Φ. 

 

4.2   Methodology 

To fix ideas, let us consider an arbitrary surface discretized into triangular patches.  For 

simplicity, we consider a flat surface as shown in Figure 4.3.  This surface could, either 

completely or in part, accommodate the gradient coil arrangement.  We notice that this 

surface has an exterior and interior boundary.  

 
Figure 4.3: Triangulated surface with exterior and interior boundaries. 

 
 
We arbitrarily select one side of the surface to be “positive” and define a unit-length 

vector ( )rn  perpendicular to this surface.  We further define a stream function ( )rϕ  
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residing in this surface.  Consequently, the surface current density ( )rJ  is tangential to 

the normal ( )rn , or 

( ) ( ) ( )[ ]rnrrJ ϕ×∇= . (4.6)

We approximate the stream function ( )rϕ  by linear or hat (Chapeau) basis functions 

( )rnϕ .  The stream function is a combination of the basis functions with unknown 

coefficients nI : 

( ) ( )∑
=

≈
N

n
nnI

1
rr ϕϕ , (4.7)

where N  is the total number of nodes.  Substituting (4.7) into (4.6) results in 

( ) ( ) ( )[ ] ( )∑∑
==

=×∇≈
N

n
nn

N

n
nn II

11
rfrnrrJ ϕ . (4.8)

Functions ( )rfn  can be illustrated as follows: from all surface nodes we can pick two 

nodes (node 1 and node 2) as shown in Figure 4.4. 

 
Figure 4.4: Two nodes at which the current elements on the surface are evaluated. 

 
 

A current element includes all neighboring triangle patches of the chosen non-boundary 

node, see Figure 4.5(a). 
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(a)      (b) 

Figure 4.5: (a) Current element and basis function ( )rfn , (b) one of the triangles 
associated with the selected node. 

 
 

In general, an algorithm can be developed that ensures that all current elements have flow 

direction in the same way (clockwise or counterclockwise). 

In each neighboring triangle we introduce vectors e  (opposite edge) and d  

(minimum distance vector) perpendicular to e  (see Figure 4.5(b)).  Mathematically, the 

expression for the current basis function ( )rfn  is then 

( )
⎪⎩

⎪
⎨
⎧

∆= ni
nini

ni
n tobelongsif,1 r

de
erf ,        nNi ,...,1= , (4.9)

where nN  is the number of triangles in a particular current element and ni∆  denotes an 

ith triangle belonging to node n.  To simplify notation, we rewrite (4.9) as: 

( ) { ninin ∆= tobelongsif, rvrf ,        nNi ,...,1= , (4.10)

where ( )nininini deev = .  Clearly, the divergence of ( )rfn  is zero and the flux through 

the edges containing the selected node is unity. 
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4.3   System of Linear Equations 

Utilizing (4.8) we can approximate the magnetic vector potential as follows: 
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The magnetic flux density is then 
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If we consider only the z-component of the magnetic flux density, we see immediately 

that 
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Again, to simplify the notation we introduce: 
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and re-express (4.14) in a series expansion: 
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Next, we define the magnetic energy as follows: 
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The mutual inductance between the mth and nth elements can then be cast in the following 

inductance expression: 
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Because of symmetry, we have nmmn LL = .  Thus, 

∑∑
= =

≈
N

n

N

m
mnmnmagn LIIW

1 12
1 . (4.18)



 72

The normal component of the magnetic flux density with respect to the triangle ∆ of the 

shield is 
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We re-express (4.19) as 
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(4.21)

The components of the torque vector are: 
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Combining all the above expressions, the functional Φ assumes the final form 
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Here, sA  is the area of the shield, pn∈δ  equals one if the nth current element belongs to 

the pth surface part of the gradient coil, otherwise it is zero.  For convenience we denote 
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xx B λλ 0
~

= , yy B λλ 0
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= .  As a next step, we can now minimize the functional 

Φ: 
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Simplifying (4.26) results in: 
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Upon differentiating (4.25) with respect to the bias term zoffB , , we obtain: 
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Furthermore, differentiating (4.25) with respect to xλ~ , yλ~ , zλ~  yields: 
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where P is the number of surfaces composing the gradient coil.  We form a vector of 

unknowns such that 
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The resulting linear system of equations consists of the following terms: 
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These individual equations can be collected into a large global matrix equation: 

bZI = . (4.37)
When solving this system of equations we have to keep in mind that all nodes belonging 

to the same boundary give rise only to one unknown since the stream function is the same 

for each one of them.  Also, we have to prescribe a value of the stream function on one of 

the boundaries.  For example, in Figure 4.4 there are two boundaries (exterior and 

interior).  All exterior boundary nodes have the same value of the stream function, which 

we arbitrarily set to zero.  All inner boundary nodes also share the same value of the 

stream function (unknown yet). 
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4.4   Mutual Inductance Calculation 

The mutual inductances nnL ′  are given by (4.17).  Explicitly, we can state 
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where miA  is the area of the corresponding triangle patch.  The notation in (4.38) is best 

seen with reference to Figure 4.6. 

 
Figure 4.6: Interaction between the currents flowing in the triangles mi∆  and nj∆ . 

 
 
In case of njmi ∆=∆  the double integral can be calculated in a closed form [23] and is 

given in (4.39): 
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where ( ) ( )1313 rrrr −⋅−=a , ( ) ( )2313 rrrr −⋅−=b , ( ) ( )2323 rrrr −⋅−=c  and 1r , 2r , 3r  

are the vectors pointing to the three nodes of the triangle. 
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4.5   Examples of Coil Design 

To reduce the mathematical formulation to practice, we will consider several gradient 

coil configurations. 

(a) Crescent xG  Gradient Coil 

To demonstrate how the algorithm works, let us consider a coil consisting of two curved 

plates, each of which has a size of 20×10 cm.  These plates are curved with a radius of 

R =6.5 cm and positioned side by side.  The coil is discretized into a triangular mesh as 

shown in Figure 4.7.  In total, the coil consists of 1380 nodes and 2546 triangle patches. 

 
Figure 4.7: Surface discretization of the two plate crescent coil. 

 
 
Using the developed algorithm, we determine all the current elements composing this 

coil.  Again, the number of current elements is equal to the number of nodes in the coil. 
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The region of interest (ROI) is defined as a 6×6×6 cm cube located in the center 

of the coil.  Along each axis we choose 10 equidistant points.  Thus, there are 1000 points 

within the cube at which we can define the desired magnetic field.  Other parameters 

specified during the simulation include the gradient strength mT10 4−=G , the weighting 

parameter 710−=α , and a weight function 10001=kW  for all points k. 

The entries for inductance matrix L  are based on evaluation of (4.17); the matrix 

Z  entries as well as the vector b  components are filled according to equations (4.32) - 

(4.36).  Solving the resulting system (4.37) we obtain vector I  that represents the values 

of the stream function at the corresponding nodes.  Figure 4.8 depicts the distribution of 

the stream function on the surface of the coil. 

   
(a)       (b) 

Figure 4.8: Stream function ( )rϕ  distribution in [A]; (a) original bi-surface coil layout, 
(b) wire patterns projected onto two flat planes. 

 
 

The stream function ranges from A0.9231min −=ϕ  to A0.9231max =ϕ .  We next have 

to discretize the stream function range into a certain number of levels.  Each level gives 

rise to one or several grooves that must carry several wire loops.  A high number of levels 

would give us a discrete coil whose field is close to that of a continuous coil.  
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Unfortunately, but such a coil would be difficult to manufacture.  We choose to divide 

the interval into 6level =N  levels, each one having a size of A0.3077=∆ϕ .  For the 

value of the stream function in the middle of each level we use the notation levelϕ .  Thus 

we determine and plot loops corresponding to each of the levels levelϕ .  These loops 

represent paths needed to lay out the wire pattern.  Having found the wiring of the coil, 

we are able to plot the magnetic field within the ROI.  Figure 4.9 displays the wire 

pattern corresponding to six levels of the stream function.  It also shows the magnetic 

field inside the coil.  The gradient strength in the center of ROI is 27.96 G/cm for a drive 

current of 100A. 
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(a) 

 
(b)       (c) 

Figure 4.9: xG  crescent coil with 710−=α , (a) wire pattern and z-component of the 
magnetic flux density, (b) wire pattern and absolute value of magnetic flux 
density, (c) streamlines of the magnetic flux density. 
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The magnetic energy of the coil is J101.53919 -7⋅=magnW .  If wound with AWG-20 

copper wire, and assuming a total resistance of R =1.035 Ω, a total wire length of 31.07 

m is needed.  When placed into the former, this results in nine turns. 

When this coil is driven with 1 A current, the magnetic energy in this case 

becomes ( ) =⋅⋅= J101.5393077.09 -72
magnW  J101.317 -4⋅ .  In addition, the total 

inductance is ( ) H263A12 2 µ== magnWL .  We should keep in mind that this value 

corresponds to a continuous current distribution in the coil.  Actual values of inductance 

may differ from this value significantly. 

We can next examine the coil performance in terms of the quality factor xQ  

defined by 
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The value of xQ  indicates how strong the influence of the parasitic gradients ( yG  

and zG ) is.  The closer xQ  is to one, the lower the parasitic gradient influence is. The 

value of xU  on the other hand shows us how uniform the magnetic field in the ROI is.  

Low values of xU  indicate non-uniform magnetic field distribution.  For the above coil, 

we obtain the following results: 

Table 3: Performance of crescent coil depicted in Figure 4.9. 

 xQ  xU  
6×6×6 cm cube 0.943 0.366 
5×5×5 cm cube 0.978 0.573 
4×4×4 cm cube 0.994 0.766 
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In this model, the coil performance is affected by the choice of the points in the ROI and 

by parameter α .  When choosing a large value of α , we achieve a low inductance 

design at the expense of field uniformity.  Alternatively, when choosing a low α , we 

achieve a highly uniform magnetic field.  However, the coil wire pattern becomes very 

complicated, which makes it difficult to construct.  For this xG  gradient coil the value of 

710−=α  represents a good balance in terms of high field uniformity and low inductance. 

 

(b) Flat yG  Gradient Coil with Holes 

As a second example, we consider a flat 20×10 cm coil with six holes (diameter 2 cm) 

reserved for fastening.  The coil’s mesh consists of 1327 nodes and 2444 triangle patches 

(Figure 4.10). 

 
Figure 4.10: Flat coil surface discretization.  Spatial dimensions are given in [m]. 

 
 
The region of interest where we prescribe the magnetic field is defined as a 6×6×6 cm 

cube with the center at (0, 6, 0) cm, or 6 cm above the coil plane.  Also, we set the 

gradient strength to mT10 4−=G , the weighting parameter to 710−=α , and a weight 
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function to 10001=kW  for all k.  Having solved the system of equations, we obtain the 

stream function depicted in Figure 4.11. 

 
Figure 4.11: Stream function distribution in [A].  All spatial dimensions are given in [m]. 
 
 
The stream function ranges from A411.2min −=ϕ  to A411.2max =ϕ .  As before, we 

divide this interval into six levels.  From it we determine the wire pattern.  The wire 

distribution and the magnetic field created by this wire distribution are shown on Figure 

4.12. 
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Figure 4.12: Wire pattern of the flat gradient coil and the magnetic flux density in the 

ROI. 
 
 
If we use AWG-20 copper wire and assume a resistance of R =1Ω, then each groove 

contains sixteen turns.  A gradient strength of this coil is 17.13 G/cm/100A. The coil 

inductance is 474 µH. 

To examine the coil performance we choose 5×4×5 cm cube with its center at 

(0,6,0) cm.  Results are shown in the Table 4. 

Table 4: Performance of the flat coil shown in Figure 4.12. 

 xQ  xU  
5×4×5 cm cube 0.890 0.302 

 

We notice that the performance of the flat coil is much worse than that of the crescent 

coil.  This can be explained by geometrical reasons: it is much simpler to generate a 

necessary field distribution if there is a good access to the ROI from both sides. 
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4.6   Flat Coils 

In this section we design and numerically compare the performance of four types of flat 

gradient coils: (a) xG  gradient coil, (b) yG  gradient coil, (c) unbalanced zG  gradient 

coil, (d) balanced zG  gradient coil.  All four coils have the same mesh shown in Figure 

4.13. 

 
Figure 4.13: Mesh of the flat gradient coil.  All dimensions are given im [m]. 

 
 
We prescribe the magnetic field in the ROI of a 6×6×6 cm cube located 6 cm above the 

gradient coil.  We perform the simulation in the range of α  from 10-10 to 10-4. Figures 

4.14- 4.17 show the evolution of the stream function for xG , yG , zG  (unbalanced) and 

zG  (balanced) gradient coils. 

All the coils share a similar dependence on parameter α .  When α  is small 

(approximately 910− ), the gradient uniformity term in the cost function Φ  dominates.  

The distribution of the stream function ( )rϕ  is more complicated: high frequency spatial 

harmonics play a significant role.  In order to accurately find ( )rϕ , we need to use a very 

refined mesh.  Moreover, to approximate the stream function by a discrete wire pattern, 
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we would need to use higher values of levelN  (number of subdivisions in the interval 

[ minϕ , maxϕ ]).  As we move up to higher values of α  (approximately 410− ), high spatial 

frequencies of ( )rϕ  decrease and the stream function distribution becomes smoother.  As 

a consequence, we may use lower values of levelN  to determine the discrete wire pattern.  
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α = 3⋅10-10, L = 284 µH, 
Gx = 0.964 G/cm/100A, 

N=15, Qx = 0.75, Ux = 0.33 

α = 10-9, L = 268 µH, 
Gx = 1.37 G/cm/100A, 

N=14, Qx = 0.72, Ux = 0.29 

α = 3⋅10-9, L = 287 µH, 
Gx = 1.87 G/cm/100A, 

N=14, Qx = 0.68, Ux = 0.28 
 

 
α = 10-8, L = 359 µH, 
Gx = 2.86 G/cm/100A, 

N=15, Qx = 0.65, Ux= 0.26 

α = 3⋅10-8, L =331 µH, 
Gx = 3.93 G/cm/100A, 

N=14, Qx = 0.61, Ux = 0.19 

α = 10-7, L = 344 µH, 
Gx = 6.33 G/cm/100A, 

N=14, Qx = 0.55, Ux = 0.13 
 

 
α = 3⋅10-7, L = 398 µH, 
Gx = 10.1 G/cm/100A, 

N=15, Qx = 0.42, Ux = 0.097 

α =10-6, L = 448 µH, 
Gx = 13.8 G/cm/100A, 

N=16, Qx = 0.32, Ux = 0.069 

α = 3⋅10-6, L = 436 µH, 
Gx = 14.9 G/cm/100A, 

N=16, Qx = 0.28, Ux = 0.055 
 

 
α = 10-5, L = 428 µH, 
Gx = 15.3 G/cm/100A, 

N=16, Qx = 0.26, Ux = 0.048 

α = 3⋅10-5, L = 422 µH, 
Gx = 15.3 G/cm/100A, 

N=16, Qx = 0.25, Ux = 0.047 

α = 10-4, L = 420 µH, 
Gx = 15.4 G/cm/100A, 

N=16, Qx = 0.25, Ux = 0.046 
 
Figure 4.14: xG  gradient coil stream function pattern for different α  values. All spatial 

dimensions are given in [m]. 



 87

 
α = 3⋅10-10, L = 211 µH, 
Gy = 1.93 G/cm/100A, 

N=11, Qy = 0.89, Uy = 0.40 

α = 10-9, L = 255 µH, 
Gy = 3.46 G/cm/100A, 

N=12, Qy = 0.95, Uy = 0.61 

α = 3⋅10-9, L = 315 µH, 
Gy = 5.36 G/cm/100A, 

N=13, Qy = 0.90, Uy = 0.55 
 

 
α = 10-8, L = 323 µH, 
Gy = 7.78 G/cm/100A, 

N=13, Qy = 0.93, Uy = 0.49 

α = 3⋅10-8, L = 354 µH, 
Gy = 11.3 G/cm/100A, 

N=14, Qy = 0.91, Uy = 0.39 

α = 10-7, L = 500 µH, 
Gy = 17.4 G/cm/100A, 

N=17, Qy = 0.89, Uy = 0.30 
 

 
α = 3⋅10-7, L = 537 µH, 
Gy = 24.8 G/cm/100A, 

N=18, Qy = 0.86, Uy = 0.23 

α = 10-6, L = 576 µH, 
Gy = 33.9 G/cm/100A, 

N=20, Qy = 0.82, Uy = 0.19 

α = 3⋅10-6, L = 579 µH, 
Gy = 40.2 G/cm/100A, 

N=22, Qy = 0.79, Uy = 0.17 
 

 
α = 10-5, L = 591 µH, 
Gy = 46.0 G/cm/100A, 

N=23, Qy = 0.72, Uy = 0.13 

α = 3⋅10-5, L = 585 µH, 
Gy = 48.0 G/cm/100A, 

N=23, Qy = 0.66, Uy = 0.11 

α = 10-4, L = 581 µH, 
Gy = 48.7 G/cm/100A, 

N=23, Qy = 0.63, Uy = 0.11 
 
Figure 4.15: yG  gradient coil stream function pattern for different α  values. All spatial 

dimensions are given in [m]. 
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α = 3⋅10-10, L = 492 µH, 
Gz = 2.88 G/cm/100A, 

N=10, Qz = 0.027, Uz = 0.0087

α = 10-9, L = 486 µH, 
Gz = 4.07 G/cm/100A, 

N=10, Qz = 0.93, Uz = 0.61 

α = 3⋅10-9, L = 680 µH, 
Gz = 7.04 G/cm/100A, 

N=12, Qz = 0.95, Uz = 0.58 
 

 
α = 10-8, L = 669 µH, 
Gz = 8.17 G/cm/100A, 

N=12, Qz = 0.91, Uz = 0.48 

α = 3⋅10-8, L = 617 µH, 
Gz = 11.9 G/cm/100A, 

N=12, Qz = 0.90, Uz = 0.48 

α = 10-7, L = 618 µH, 
Gz = 15.2 G/cm/100A, 

N=13, Qz = 0.87, Uz = 0.35 
 

 
α = 3⋅10-7, L = 553 µH, 
Gz = 17.0 G/cm/100A, 

N=13, Qz = 0.80, Uz = 0.25 

α = 10-6, L = 706 µH, 
Gz = 26.7 G/cm/100A, 

N=15, Qz = 0.75, Uz = 0.20 

α = 3⋅10-6, L = 756 µH, 
Gz = 39.9 G/cm/100A, 

N=17, Qz = 0.59, Uz = 0.15 
 

 
α = 10-5, L = 733 µH, 
Gz = 44.9 G/cm/100A, 

N=20, Qz = 0.43, Uz = 0.096 

α = 3⋅10-5, L = 718 µH, 
Gz = 45.5 G/cm/100A, 

N=21, Qz = 0.36, Uz = 0.081 

α = 10-4, L = 688 µH, 
Gz = 44.7 G/cm/100A, 

N=21, Qz = 0.33, Uz = 0.075 
 
Figure 4.16: zG  unbalanced gradient coil stream function pattern for different α  values. 

All spatial dimensions are given in [m]. 
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α = 3⋅10-10, L = 250 µH, 
Gz = 2.26 G/cm/100A, 

N=10, Qz = 0.92, Uz = 0.32 

α = 10-9, L = 253 µH, 
Gz = 2.68 G/cm/100A, 

N=10, Qz = 0.89, Uz = 0.56 

α = 3⋅10-9, L = 375 µH, 
Gz = 4.61 G/cm/100A, 

N=12, Qz = 0.87, Uz = 0.50 
 

 
α = 10-8, L = 399 µH, 
Gz = 5.36 G/cm/100A, 

N=12, Qz = 0.79, Uz = 0.25 

α = 3⋅10-8, L = 388 µH, 
Gz = 8.55 G/cm/100A, 

N=12, Qz = 0.80, Uz = 0.31 

α = 10-7, L = 360 µH, 
Gz = 10.3 G/cm/100A, 

N=12, Qz = 0.76, Uz = 0.22 
 

 
α = 3⋅10-7, L = 411 µH, 
Gz = 15.3 G/cm/100A, 

N=13, Qz = 0.71, Uz = 0.18 

α = 10-6, L = 439 µH, 
Gz = 20.8 G/cm/100A, 

N=13, Qz = 0.66, Uz = 0.15 

α = 3⋅10-6, L = 453 µH, 
Gz = 29.6 G/cm/100A, 

N=14, Qz = 0.52, Uz = 0.10 
 

 
α = 10-5, L = 498 µH, 
Gz = 35.7 G/cm/100A, 

N=17, Qz = 0.38, Uz = 0.075 

α = 3⋅10-5, L = 508 µH, 
Gz = 36.2 G/cm/100A, 

N=18, Qz = 0.32, Uz = 0.060 

α = 10-4, L = 490 µH, 
Gz = 35.5 G/cm/100A, 

N=18, Qz = 0.29, Uz = 0.056 
 
Figure 4.17: zG  balanced gradient coil stream function pattern for different α  values. 

All spatial dimensions are given in [m]. 
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   (a)      (b) 

 
   (c)      (d) 
Figure 4.18: Dependence of the gradient coil characteristics on parameter α . (a) Gradient 

strength G  in units of ]A100/cm/G[ , (b) parasitic quality factor Q , (c) 
gradient uniformity U , (d) inductance L  in units of ]H[ µ . 

 
 
We recall that for all discrete wire patterns shown in Figures 4.14 – 4.17, we required 

Ω≈ 0.1R .  The following observations can be made based on these figures: 

• When decreasing the value of α  the wire paths tend to move away from the 

center of the coil.  Conversely, for high α  the wire paths are close to the center of 

the coil. 
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• This implies that for low α  we can expect low values of the field gradient G  and 

high gradient uniformity (high Q  and U ).  For high α , we can expect high field 

gradient and low gradient uniformity. 

Figure 4.18 confirms this prediction. Indeed, when α  increases from 910−  to 410− , the 

gradient strength increases approximately from A100/cm/G41−  to 

A100/cm/G4515− .  At the same time, the value of parasitic quality factor Q  drops 

from 95.070.0 −  to 65.025.0 − .  Value of field uniformity U  drops from 55.030.0 −  to 

10.005.0 − . 

As we observe from these results, yG  and the unbalanced zG  gradient coils 

provide higher gradients of the magnetic field with higher field uniformity when 

compared with the xG  and balanced zG  coils.  From this we conclude that the given 

shape is not effective for the xG  coil.  Furthermore, there is an apparent trade-off: after 

forcing the zG  coil to be balanced (torque-free), we lose in gradient strength and field 

uniformity. 

 

4.7   Comparison of the Least Squares Method and the Stream 

Function Method 

The Stream Function Method uses parameter α  to control the balance between gradient 

strength and gradient uniformity.  In Section 4.6, simulations are performed for the flat 

yG  gradient coil.  We can use these results to plot the dependence of the parasitic quality 
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factor on the gradient strength per unit resistance (see Figure 4.19).  This figure also 

contains results for the four yG  gradient coils considered in Chapter 3.   

 
Figure 4.19: Dependence of parasitic quality factor Q on gradient strength per unit 

resistance [G/cm/100A/Ω]. 
 

We observe that the coils designed in Chapter 3 remain close to the curve that is based on 

the designs obtained from the Stream Function Method.  It once again demonstrates the 

trade-off between gradient strength and gradient uniformity.  A symbol corresponding to 

the Cho’s gradient coil lies higher than the Stream Function curve.  A likely explanation 

of this effect is the following: the Stream Function Method attempts to minimize the 

magnetic energy (inductance) of the coil, while the Least Squares Method does not have 

any control over the coil’s inductance.  The inductance per unit resistance squared for the 

Stream Function Method (approx. 550 µH/Ω2) is better than the same value for the Cho’s 

coil (approx. 1080 µH/Ω2).  In general, coils designed by the Stream Function Method 

are characterized by lower values of inductance. 
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4.8   Shielding 

In this paragraph we introduce a secondary coil (shield) in the design.  Specifically, we 

consider the structure depicted in Figure 4.20.  The need for a shielded design is well 

documented as the eddy currents induced in the main bore of the magnet can significantly 

affect the gradient uniformity. 

 
Figure 4.20: Primary and secondary coils. 

 
 
The primary coil (crescent coil) is located inside the secondary coil (cylindrical coil) and 

is the same configuration as the coil shown in Figure 4.7.  It consists of two plates of size 

20×10 cm each and with radius cm5.6=R .  The secondary coil is a cylinder of 25 cm in 

length and 10 cm in radius. 

In our first simulation we use 710−=α  and 0=β .  The results of this simulation 

for the xG  coil are shown in Figure 4.21. 
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(a)   

 
(b)      (c) 

Figure 4.21: xG  coil with 710−=α  and 0=β . (a) Wire pattern and z-component of the 
magnetic flux density, (b) wire pattern and absolute value of magnetic flux 
density, (c) streamlines of the magnetic flux density. 

 
 
We see that these results differ from the results obtained with the primary coil only, see 

Figure 4.7.  The degree of shielding is controlled by parameter β .  The shielded coil has 

the following parameters: A100/cm/G12.41=xG , resistance equals 1.0 Ω (primary), 
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and 1.1 Ω (secondary), and the inductance is 485 µH.  There are nine AWG-20 wires in 

each groove of the primary coil, and three AWG-20 wires in each groove of the 

secondary coil.  The values for the field uniformity in a 6×6×6 cm ROI are 0.967=xQ  

and 471.0=xU .  In this example, the shielding is effectively “turned off” because 0=β .  

It is important to understand that simply putting β  to zero does not force the currents in 

the shield to become zero: the shield still participates in creating the prescribed magnetic 

field in the ROI.  Currents flowing in the secondary coil “help” to produce the required 

linear magnetic field. 

In our second example we use parameters 710−=α  and 1.0=β .  By using the 

non-zero value of β  we attempt to limit the magnetic flux through the surface of the 

secondary coil.  Results of these simulations are shown in Figure 4.22. 
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(a) 

 
(b)       (c)  

Figure 4.22: xG  coil with 710−=α  and 1.0=β . (a) Wire pattern and z-component of the 
magnetic flux density, (b) wire pattern and absolute value of magnetic flux 
density, (c) streamlines of the magnetic flux density. 

 
 
The coil has the following parameters: A100/cm/G91.23=xG , resistance equals 0.98 

Ω (primary), and 0.29 Ω (secondary), and the inductance is 227 µH.  There are nine 

AWG-20 wires in each groove of the primary coil, and one AWG-20 wire in each groove 
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of the secondary coil.  The values for the field uniformity in a 6×6×6 cm ROI are 

0.927=xQ  and 318.0=xU .  We observe that only a few magnetic field lines leave the 

secondary coil.  As an attempt to measure the shielding effect we compare the magnetic 

field outside the secondary coil, for example, at a point (0.15, 0, 0) cm.  The ratio of the 

absolute values of the magnetic field for the shielded coils with 1.0=β  and 0=β  is 

0.0061.  In other words, the magnetic field for the coil shown in Figure 4.22 is only 

0.61% of the magnetic field for coil shown in Figure 4.21.  Moreover, the ratio of the 

absolute values of the magnetic field for the shielded coil with 1.0=β  and a coil without 

a shield (see Figure 4.9) is 0.0177, i.e the shielding degree is 1.77 %.  That is the 

magnetic field for coil shown in Figure 4.22 is 1.77 % of the magnetic field for coil 

shown in Figure 4.9.  As we see, the introduction of a non-zero β  helps to retain the 

magnetic field inside the secondary coil.  As a disadvantage, the coil with 1.0=β  yields 

a lower gradient xG  and lower values of field uniformity xQ  and xU .  Also, we notice 

that the coil with 1.0=β  has a lower inductance, which makes it easier to switch. 

Table 5: Effects of the shield on the performance of the crescent gradient coil. 

Coil xG  
[G/cm/100A] 

R, [Ω], 
(primary + 
secondary) 

L, [µH] xQ  xU  

Crescent unshielded 
(Figure 4.9). 

27.96 1.035+0 263 0.943 0.366 

Crescent shielded with 
0=β  (Figure 4.21). 

Shielding effect is zero. 

41.12 1.014+1.098 484 0.967 0.471 

Crescent shielded with 
1.0=β  (Figure 4.22). 

23.91 0.980+0.293 227 0.927 0.318 

 

We observe that the shielding effect is achieved at the expense of lower gradient strength 

and lower gradient uniformity. 
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4.9   Graphic User Interface 

Originally, a console version of the code for the gradient coil design was developed.  As 

an output, it produces data files suitable for viewing in TECPLOT software.  TECPLOT 

is a scientific data visualization software from Amtec (www.amtec.com).  To make the 

code user-friendlier we decided to create a GUI for the coil designing software (Gradient 

Coil Designer).  

 
Figure 4.23: Gradient Coil Designer. 

 
 
As a first step, we create a new project document and give it a name, for example, 

“coil.grd”.  After this we proceed to menu “Geometry” and choose either to load an 

external a mesh file or to create one of five possible meshes: 
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(a)      (b) 

 

    
(c)      (d) 

 

 
      (e) 

Figure 4.24: Five typical gradient coil configuration templates. 
 
 
For instance, if we create a biplanar coil with 0.2 m in length, 0.1 m in width, 0.12 m 

separation between the plates, and with approximately 1000 triangle patches, option 

Figure 4.24(c) yields the mesh shown in Figure 4.25. 

 
Figure 4.25: Biplanar mesh based on template Figure 4.24(c). 
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After creating the mesh we can invoke menu “Parameters / Gradient”. In the dialog 

window we choose “Y-Gradient”.  We set the region of interest as minx =-0.03 m, 

maxx =0.03 m, miny =-0.03 m, maxy =0.03 m, minz =-0.03 m, maxz =0.03 m.  The number of 

points in x, y, z directions are by default set to 10=== zyx NNN .  We then go to 

“Parameters / Moment” and set 710−=α . As a result, we will be able to see the Region 

of Interest. 

     

  (a)         (b)    (c) 
Figure 4.26: (a) Gradient dialog window, (b) moment dialog window, (c) region of 

interest. 
 
 
After submitting all these settings, we can execute the program (menu “Solve / Run”) to 

obtain the distribution of the stream function shown in Figure 4.27. 
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Figure 4.27: Stream function distribution over the coil surface. 

 

After the stream function is established, we go to “Solve / Postprocessing”, enter AWG 

of 20, resistance of 1.0 Ω, and number of levels 6. 

 

Figure 4.28: Layout of the gradient coil. 
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In this example the current flow on the surface is approximated by six levels of the 

stream function.  We next go to “Solve / Magnetic Field” and enter the region where we 

desire to find the z-component of the magnetic field.  By default, it is the same as the 

Region of Interest. 

 

Figure 4.29: z-component of the magnetic flux density in the Region of Interest. 
 
 
On each face of the cube we observe the distribution of the magnetic field.  This helps us 

to judge the magnetic field uniformity.  Also, the program creates files “info1.dat”, 

“info2.dat” and “info3.dat”.  They contain the information about input and output 

parameters.  For example, for this coil, we obtain yG =24.58 G/cm/100A, R =1.034 Ω, 

L =249 µH, number of turns is nine, yQ =0.934, yU =0.362. 
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The Graphical User Interface simplifies the interaction with the program.  

However, it can be executed only under Windows platform, in contrary to the console 

version (both Windows and Unix).  Finally, the current GUI version does not provide us 

with the possibility of changing the weight function ( )kW r .  Also, this version does not 

have a shielding option.  Even though all these programming issues can be addressed at a 

later time, the development of GUI is not the main topic of our research. 

 

4.10  Coil Construction 

To test the presented ideas, a set of gradient coils has been constructed and tested in a 

commercial MRI scanner. 

(a) xG  coil 

For the xG  coil we have machined a G-10 cylindrical former with 6” OD (15.24 cm), 5” 

ID (12.7 cm), 1’ length (30.48 cm).  The grooves are milled in the outer surface of the 

former. The groove depth is chosen to be 6 mm and the width is 4 mm.  The copper 

wiring is approximately in the middle of the groove (3 mm from the outer surface). The 

radius of the copper wiring is therefore 15.24cm/2-0.3cm =7.32 cm.  Each plate has the 

size of 24×12cm.  For the coil simulations, the following parameters are used: ROI of 

8×8×8 cm in the center of the cylinder, parameter 710−=α , weight function 
cm
x

4
2

1+ , 

and wire gauge of AWG-20.  Six levels of the stream function are employed as seen in 

Figure 4.30. 
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(a)             (b) 

   
(c)              (d) 

Figure 4.30: xG  coil, (a) stream function distribution, (b) wiring and magnetic flux 
density zB [T], (c) magnetic flux density zB [T] in the axial plane, (d) 
magnetic flux density zB [T] in the coronal plane. All spatial dimensions are 
in [m]. 

 
 
Figure 4.31 displays the expected distortions introduced by this gradient coil.  The 

contour lines are equivalent to the equidistant layers of the phantom in Figure 3.10. 
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  (a)      (b) 
Figure 4.31: Distortions of the xG  coil, (a) axial plane, (b) coronal plane.  All dimensions 

are given in [m]. 
 
 
The simulations provide us with the following coil parameters: resistance of R=1.14 Ω , 

inductance of L=260 µH, eight AWG-20 wires are in each groove, and the gradient 

strength of G=21.4 G/cm/100A=2.14 mT/m/A.  The measured values of resistance and 

inductance are R=1.18 Ω  and L=268 µH.  The grooves were milled in the cylindrical G-

10 former as shown in Figure 4.32. 

          

    (a)    (b) 
Figure 4.32: (a) Former of the xG  coil, (b) wiring in the xG  coil former. 
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(b) yG  coil 

For the yG  coil we chose a cylindrical acrylic former with 7” OD (17.78 cm), 6.25” ID 

(15.88 cm), 1’ length (30.48 cm).  The grooves are again milled in the outer surface of 

the former.  The groove depth is chosen to be 4 mm, and the width is 3 mm.  The copper 

wiring is approximately 3 mm deep from the outer surface.  The radius of the copper 

wiring is therefore 17.78cm/2-0.3cm ≈ 8.60 cm.  For the coil simulations, the following 

parameters are used: ROI of 6×6×6 cm in the center of the cylinder, parameter α  is 

8103 −⋅ , weight function 
cm
z

3
1+ , and wire gauge is AWG-20.  Twelve levels of the 

stream function are employed, as depicted in Figure 4.33. 
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  (a)       (b) 

 
  (c)         (d) 
 
Figure 4.33: yG  coil, (a) stream function distribution, (b) wiring and magnetic flux 

density zB [T], (c) magnetic flux density zB [T] in the axial plane, (d) 
magnetic flux density zB [T] in the sagittal plane. All spatial dimensions are 
in [m]. 

 
 
Figure 4.34 shows the distortions introduced by the yG  gradient coil.  We observe that 

the distortions in the xy-plane are significant.  This arises from the fact that the yG  coil is 

intrinsically non-symmetrical. 
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     (a)      (b) 
Figure 4.34: Distortions of the yG  coil, (a) axial plane, (b) sagittal plane.  All dimensions 

are given in [m]. 
 
 

 
Figure 4.35: Wirings of yG  and zG  coils in the acrylic former. 

 
 
The simulations yield the following coil parameter results: resistance of R=1.14 Ω , 

inductance of L=318 µH, five AWG-20 wires in each groove, and the gradient strength of 

G=11.7 G/cm/100A=1.17 mT/m/A.  The measured values of resistance and inductance 
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are: R=1.20 Ω , L=327 µH.  The grooves were milled in the cylindrical acrylic former as 

shown in Figure 4.35. 

(c) zG  coil 

The zG  coil was placed on the same former as the yG  coil: 7” OD (17.78 cm), 6.25” ID 

(15.88 cm).  The grooves are again milled in the outer surface of the former.  The groove 

depth was chosen to be 4 mm and the width was 4 mm.  The copper wiring is 

approximately 3 mm deep from the outer surface.  The radius of the copper wiring is the 

same as for the yG  coil: 17.78cm/2-0.3cm ≈ 8.60 cm.  For the coil simulations, the 

following parameters are used: ROI of 6×6×6 cm is in the center of the cylinder, 

parameter 8103 −⋅=α , weight function is unity, and wire gauge is AWG-20.  Three levels 

of the stream function are used (see Figure 4.36). 
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  (a)       (b) 

 
  (c)      (d) 
Figure 4.36: zG  coil, (a) stream function distribution, (b) wiring and magnetic flux 

density zB [T], (c) magnetic flux density zB [T] in the xz-plane, (d) magnetic 
flux density zB [T] in the yz-plane. All spatial dimensions are in [m]. 

 
 
Figure 4.37 shows the distortions introduced by the zG  gradient coil in the xz and yz 

planes. 
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 (a)      (b) 
Figure 4.37: Distortions of the zG  coil, (a) coronal plane, (b) sagittal-plane. 

 
 
The simulations yield the following coil parameters: resistance of R=1.08 Ω , inductance 

of L=556 µH, ten AWG-20 wires are placed in each groove, and the gradient strength is 

G=10.6 G/cm/100A=1.06 mT/m/A.  The measured values of resistance and inductance 

are R=1.16 Ω  and L=575 µH.  The grooves are cut in the cylindrical acrylic former as 

shown in Figure 4.35. 

The performance characteristics of all three gradient coils are summarized in the 

Table 6 below: 

Table 6: Characteristics of the manufactured coils. 

 G , 
[G/cm/100A]

R , [Ω] L , [µH] Q  
(ROI 3×3×3 cm) 

U  
(ROI 3×3×3 cm)

xG  coil 21.4 1.18 268 0.981 0.632 

yG  coil 11.7 1.20 327 0.909 0.384 

zG  coil 10.6 1.16 575 0.970 0.707 
 
We observe that the xG  gradient coil has the strongest field.  This can be explained by 

the fact that this coil has a smaller radius, i.e. the wiring is closer to the ROI.  The yG  

coil has the lowest field uniformity because of its shape: this coil accesses the ROI only 

from one side. 
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4.11  Experimental Results 

The three individual gradient coils were combined into a single gradient set as shown in 

Figure 4.38. 

  
Figure 4.38: Photographs of the gradient set. 

 
 
This coil design was tested in a commercial 4.7T Bruker MRI scanner with 40cm bore, as 

shown in Figure 4.39. 
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Figure 4.39: Gradient coil set in the magnetic bore. 

 
 
The electric performance of the coils is tested by applying rectangular current pulses to 

the gradient coils as seen in Figure 4.40. 

 
(a)     (b) 

Figure 4.40: (a) Pulse applied to the yG  gradient coil, (b) pulse applied to the zG  
gradient coil. Current is measured in [A]. Time is given in [s]. 

 
 
Both coils demonstrate a rise time that compares well with their respective time constants 

RL=τ .  For the yG  gradient coil it is τ =280 µs, and for the zG  gradient coil it is 

τ =500 µs. 

The first set of experiments is performed with a phantom shown in Figure 4.41.  

A dual coil RF system (volume coil and surface coil) is used during the experiment.  The 

surface coil with the phantom is put in the volume coil and the entire setup is placed into 
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the gradient coil set as seen in Figure 4.39.  Phantom is a water-filled tube of length 4.5” 

and of diameter 1”. 

 

 
Figure 4.41: Phantom used in the experiment. 

 
 
The MR parameters for this set of experiments are: matrix size is 256×256, pulse 

sequence is spin echo, acquisition time is 1 min 4 sec, TR = 250 ms, Te = 15 ms, slice 

thickness is 2 mm, and one averaging is applied.  The RF surface coil is employed as a 

receiver coil. 

     
(a)      (b) 

Figure 4.42: Image of the phantom (Figure 4.41) with the surface coil as a receiver coil 
(a) axial plane (xy-plane), (b) sagittal plane (yz-plane). 

 
 



 115

In a second experiment the surface coil was disconnected and the RF volume coil was 

used as transmit/receive coil.  The image of the phantom is shown in Figure 4.43. 

      
(a)      (b) 

Figure 4.43: Image of the phantom (Figure 4.41) with the volume coil as the receiver coil 
(a) axial plane (xy-plane), (b) sagittal plane (yz-plane). 

 
 

It is interesting to compare the image shown in Figure 4.43(b) with the theoretically 

predicted figure of distortions shown in Figure 4.34(b).  For this purpose, we 

superimpose these two images as shown in Figure 4.44. 
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Figure 4.44: Superposition of the image of the phantom (Figure 4.41) with the figure of 
distortions in a sagittal plane (yz-plane). 

 
 

We notice that the curvature of the phantom compares well with the curvature of the 

constant field lines. 

In the third experiment we used a spin echo pulse sequence to image a rat brain 

(see Figure 4.45).  The parameters for this experiment are the same as the ones used for 

the phantom: matrix is 256×256, pulse sequence is spin echo sequence, acquisition time 

is 1 min 04 sec, TR = 250 ms, Te = 15 ms, slice thickness is 2 mm, and one averaging.  

The first image shows the axial plane, the second image shows the sagittal plane. 
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(a)      (b) 

Figure 4.45: Image of the rat with the surface coil as the receiver coil (a) axial plane (xy-
plane), (b) sagittal plane (yz-plane). 

 
 

The fourth experiment involves a fast spin echo sequence (see Figure 4.46).  Parameters 

for this experiment are: matrix size is 256×256, fast spin echo sequence, four echoes per 

excitation, acquisition time is 2 min 12 sec, RT = 2 s, eT  = 60 ms, slice thickness is 1.4 

mm. 
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Figure 4.46: Image of the rat with the surface coil as the receiver coil in the axial plane. 
 
 

 

4.12  Chapter Summary 

This chapter presents a new stream function method for the design of single- and multi-

surface gradient coils.  The method is formulated and implemented in such a form as to 

make it applicable to a wide variety of shapes and geometries.  As soon as the triangular 

mesh of the chosen structure is established, it can be fed into the design algorithm in 

order to find all possible rotational current elements.  Values of all these individual 

currents are optimized to minimize the cost function, which is the combination of the 

gradient uniformity term, the magnetic energy term, and a shielding term.  As an option, 

torque-free coils can be designed by considering corresponding Lagrange multipliers.  

The wire paths are laid out along the chosen levels of the stream function.  Given the size 
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of the wire and the desired resistance, the coil inductance and the magnetic field strength 

are automatically determined.  To demonstrate the success of the theoretical approach, 

two crescent (both shielded and unshielded) xG  gradient coils and flat gradient coils are 

designed. 

A console version of the general-purpose program for the gradient coil design is 

developed and successfully tested.  To ease the interaction with the program, a graphic 

user interface is developed.  Results from the program can be directly used for automatic 

machining of the coil. 

To verify this approach and reduce it to practice, three coils ( xG , yG , zG ) have 

been designed, manufactured and tested.  For each one of the three coils, the calculated 

values of resistance and inductance demonstrate good agreement with the measured ones. 
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Chapter 5 
Chapter 5  Formulation of Method of Moments for Arbitrary-

Shaped Surfaces and Inhomogeneous Biological Bodies 

Formulation of Method of Moments for Arbitrary-
Shaped Surfaces and Inhomogeneous Biological Bodies 
 

 
This chapter proposes a new frequency domain formulation for the Method of Moments 

that is capable of simultaneously incorporating highly conductive surfaces and biological 

entities.  Both surfaces and 3D bodies are discretized into triangular patches for the 

surfaces and tetrahedra for the volume.  To describe current flow over the surface we 

employ Rao-Wilton-Glisson basis functions as discussed in 5.2.2  . 

For the case of 3D biological bodies, solenoidal (divergence-free) basis functions 

are employed.  The numerical predictions obtained by this new formulation compare very 

well with a canonical analytic solution of an EM wave incident upon a dielectric sphere. 
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5.1   Theoretical Considerations 

In order to solve the set of Maxwell equations, scalar and vector potentials Φ and A are 

introduced to describe the electric field E and the magnetic flux density B: 

AE ωj−Φ−∇= ,  AB ×∇= . (5.1)

In free space, the solutions for the potentials under the Lorentz gauge assumption are 

readily found in the form 

( ) ( )
∫

′

′−−

′
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′
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4

0 , ( ) ( )
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In an effort to deal with 3D biological bodies, a new, but powerful vector field 

representation can be introduced by defining a special vector ( ) JEDJ +−= 0
~ εωj . This 

allows Ampere’s law to be re-written in the form: 

( ) JEJEDEH ~
000 +=+−+=×∇ ωεεωωε jjj , (5.3)

where vector J~  plays the role of an equivalent current density.  Based on the definition 

of this new vector J~  one concludes that the solution for potentials is given by: 
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From (5.1) we state that the electric field is given by: 

( ) ( ) ( ) ( ) ( )∫∫ ′′′−∇′⋅∇′=
′ '

0

0

,~
4

'',~
4

1

VV

VdjdV
j

rrrJrrrJrE ϕ
π

µ
ωϕ

ωπε
, (5.5)

where ( )
rr

rr
rr

′−
=′

′−− jke,ϕ  is the free-space Green’s function.  For the subsequent 

discussion, we are considering three types of objects: a current carrying ring excitation 

loop, a conductive surface, and a 3D biological body as generically depicted in Figure 

5.1.  The current loop is employed to act as a finite source that excites the system. 
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Figure 5.1: Generic problem configuration featuring conductive surface, a ring excitation 

(current loop), and a biological body. 
 
 

As explained in detail below, the excitation loop can be subdivided into line segments, 

the surface can be discretized into triangular patches, and the 3D body can be discretized 

into tetrahedra. 

 

5.2   Basis Functions 

5.2.1   Discretization of a thin wire 

All points and line intervals are uniquely enumerated and a 1D current element consists 

of one line interval.  In this formulation, the number of elements is the same as the 

number of intervals.  The convention is such that current flows from the left to the right 

point of the line interval as shown in Figure 5.2. 

 
 

 
 

Figure 5.2: 1D current element with current flow direction. 
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We associate a basis function ( )rf L
n  with each of the elements.  The function is defined 

as a unit vector directed from the left point to the right point.  Mathematically, this fact 

can be expressed by the expression: 

( )
l
lrf =L

n , (5.6)

where l  is the vector directed from left point to right point.  The basis function L
nf  is 

used to approximate the interval current.  The total current flow in the entire loop Ω  is 

therefore approximated as 

( )∑
=

=
N

n

L
n

L
n

L I
1

rfJ , (5.7)

where L
nI  is the net current (in [A]) through connected edges, LJ  is vector of current (in 

[A]), N  is the number of elements. 

 

5.2.2   Discretization of a perfectly conductive surface 

Here again, all points, edges and triangles are uniquely enumerated.  We next consider a 

generic RWG element n as consisting of two triangles, referred to as “left” +
nT  and 

“right” −
nT , and sharing a common edge.  In this formulation the number of elements is 

equal to the number of non-boundary edges.  Current flows from the left vertex point to 

the opposite edge of the triangle.  It then passes to the edge of right triangle and 

converges into right vertex point as illustrated in Figure 5.3. 
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Figure 5.3: RWG current element consisting of two triangles nT +  and nT −  and sharing a 
common edge. The vectors ±

nρ and ±c
nρ reside in the surfaces ±A  and refer to 

observation and centroid points, respectively. 
 
 

We now associate a basis function ( )rf S
n  with each of the surface elements.  For the left 

triangle nT +  it is defined as a vector field radially diverging from the left vertex point. On 

the right triangle nT −  it is a vector field radially converging into right vertex point.  

Mathematically, this fact can be expressed by the following expression 

( )
( )
( )

⎪
⎩

⎪
⎨

⎧

⋅
⋅

= −−−

+++

otherwise,0
in21
in21

nnn

nnn
S
n TA

TA
r
r

rf ρ
ρ

, (5.8)

where nA±  is the area of triangle nT ± .  It is noted that subscripts refer to elements, while 

superscripts refer to triangles.  The basis function S
nf  is used to approximately represent 

the surface current.  In other words, current is flowing from the left to the right triangle.  

The surface divergence of S
nf , which is proportional to the surface charge density 

associated with the basis element, is 
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The surface current density on S  may be approximated as 

( )∑
=

=
N

n

S
n

S
n

S I
1

rfJ , (5.10)

where S
nI  is the net current (in Amperes) through connected edges, SJ  is vector of the 

surface current (in [A/m]), N  is the number of elements. 

 

5.2.3   Discretization of a 3D body 

Here again we can discretize the body into tetrahedra and enumerate all the points, edges, 

and faces in a similar manner as before.  A solenoidal element consists of all tetrahedra 

sharing the same edge.  The basis function associated with the edge l  is only non-zero in 

each tetrahedron that neighbors with this edge as depicted in Figure 5.4. 

 

              
   (a)      (b) 
Figure 5.4: (a) An edge l residing within a particular volume and all neighboring 

tetrahedra i∆ (i=1,2,..,N), (b) the same edge l showing the connectivity to 
one of the tetrahedra. 
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As seen in Figure 5.4(b), the edge l  can be related to the tetrahedron via vectors e  and d.  

While vector e is opposite to edge l , indicating a counterclockwise rotation, and vector 

d  is the minimum distance from l  to e .  This convention permits the definition of a 

basis function ( )rf V  within the tetrahedron as follows: 

( )
V

V

3
erf = , (5.11)

where V  is the volume of the tetrahedron.  The direction of ( )rf V  is aligned with vector 

e . This basis function is divergence-free, i.e. ( ) 0=⋅∇ rf V .  The total flux of this function 

through the faces that share the edge l  is unity.  More generally, we define ( )rf V
n  as 

follows: 
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To better elucidate the rotational property of the vector field, Figure 5.5 depicts a top-

down view onto the elemental geometry shown in Figure 5.4(a).  Here vector l  is 

directed out of the plane. 
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Figure 5.5: Top-down view of the solenoidal element which depict the divergence-free 
property of ( )rf V . 

 
 
Furthermore, index N is the number of tetrahedra neighboring edge l , and 1∆ , 2∆ ,…, N∆  

is the global numbering scheme for these tetrahedra.  It is convenient to use these basis 

functions to describe a divergence-free vector C in the 3D body via 

( )∑
=

=
eN

n

V
n

V
nC

1
rfC , (5.13)

where V
nC  is the net flux of vector C through the faces included in the element; and eN is 

the total number of elements throughout the discretization domain.  The divergence-free 

vector C is introduced from the following equations: 

( ) ρ=Ddiv  (5.14)

and 

( ) ωρj−=Jdiv . (5.15)
By multiplying (5.14) by ωj  and adding (5.15) we obtain: 

( ) 0div =+ JDωj . (5.16)
We define vector C as: 
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JDC += ωj . (5.17)
Obviously, (5.17) satisfies: 

( ) 0div =C . (5.18)

Number of rotational basis functions obviously equals the total number of edges in the 

3D structure.  Not all the function are, however, linearly independent.  It can be shown 

that the number of linearly independent rotational basis functions equals total number of 

faces minus number of tetrahedra.  A specially designed algorithm helps us to identify the 

linearly independent basis functions.  In numerical simulations, only these functions are 

used. 

 

5.3   Total Electric Field 

The entire problem configuration consists of a loop coil, a perfectly conductive surface, a 

3D conductive body, and an incident EM wave. The total electric field can be cast as 

consisting of the following contributions: 
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Here, L  is the line integration over the coil, S  is the integration over perfectly 

conductive surface, and V  is the integration over the 3D body.  It is important to express 

vectors E  and J~  in terms of C : 

EEJDC σεωεω +=+= 0rjj , or ⇒  CrCE )(1
0

k
j r

=
+

=
σεωε

, (5.20)

and 
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where the definitions of ( )r1k  and ( )r2k  can be inferred from Eq. (5.20) and (5.21).  

Restating the electric field in terms of C  leads to the form: 
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Here ( )rEL , ( )rES , ( )rEV  are contributions from the thin wire, perfectly conductive 

surface, and the 3D body.  Expression (5.22) can be simplified as: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )CrrErErErErErErE 1kVSVSLinc −+=−+=−− . (5.23)
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(5.24)

where advantage is taken of the fact that ( ) 0=⋅∇ rC . 

 

5.4   Matrix Representation and Testing of the Formulation 

Our goal is now to convert (5.24) into a linear matrix equation by using the 

aforementioned basis functions as testing functions.  We intend to arrive at a matrix 

equation in the generic form 
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where the constituent terms will be defined further below.  As will be seen, superscripts 

L, S, V in the vector terms stand for line, surface, and volume integral contributions, 

whereas double superscripts indicate “self-terms” (SS and VV), and “cross-terms” (SV, 

VS, SL, VL).  Current vector LI  is considered known.  As a result, there is no need to 

test this equation for the electric field with the linear line functions ( )rf L
m  as defined in 

(5.6). 

5.4.1   Testing with surface current function ( )rf S
m  

Here we take the scalar product of E with ( )rf S
m  and carry out a surface integration, 

recognizing that for this case the 0tang =E  boundary condition must be enforced.  There 

are three terms, which can be integrated as follows: 
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5.4.2   Testing with volume function ( )rf V
m  

Here the scalar product of LE  with ( ) ( )rfr V
mk2  is carried out as follows: 
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In a similar way we write down expressions for the integrals ( ) ( ) ( )dVk
V

S
V
m∫ ⋅ rErfr2  and 

( ) ( ) ( )dVk
V

V
V
m∫ ⋅ rErfr2 : 
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5.5   Discretization 

The system of equations can now be cast in the form 
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where SI , VC  are unknown vectors quantifies and sub-matrices D  are defined in (5.25) - 

(5.30).  This system can be driven with current elements, a voltage source, an incident 

wave, or a combination of the three. In this formulation all linear elements have the same 

current.  Defining 
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one obtains 
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Solving these equations, the surface current SI  can be determined over the perfectly 

conductive surface as well as the values VC  in the volume domain.  The numerical 

evaluation of the integral contributions is found to be 
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Here, nmr ±  are distances from left/right triangles of the surface element to the linear 

element.  Furthermore, the SS
mnD  sub-matrix is 
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Here, ±± nmr  are distances from left/right triangles of the mth surface element to the 

left/right triangles of the nth surface element.  For the two-dimensional integration over 

the same triangle, (5.35) becomes singular since distances ±± nmr  are zero.  However, 

following a procedure outline in [23], we can obtain closed-form expressions for the 

integrals containing these singularities.  Sub-matrix SS
mnD  is given by 
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Here, Vδ  is the integration over the boundaries of the i∆ th tetrahedron, ( )±± ∆ inmr  are 

distances from left/right triangles of the mth surface element to the source/sink faces 

associated with the nth volume element and the i∆ th tetrahedron, respectively.  Also, nmr ±  

are distances from left/right triangles of the mth surface element to the center point of the 

i∆ th tetrahedron.  In addition, 
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Here, ni
r∆  are distances from the i∆ th tetrahedron to the nth linear current element.  

Moreover, 
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In (5.39) distances ( ) ±±∆ nm i
r  are lengths from source/sink faces associated with the mth 

volume element and the i∆ th tetrahedron to the left/right triangles of the nth surface 

element.  Moreover, ±∆ ni
r  are distances from the center of the i∆ th tetrahedron to the 

left/right triangles of the nth surface element.  Finally, 
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In (5.40) ( ) ( )±± ∆∆ ji nmr  are distances from the source/sink faces associated with the mth 

volume element and the i∆ th tetrahedron to the source/sink faces associated with the nth 

volume element and the j∆ th tetrahedron.  Moreover, 
ji

r ∆∆  are distances from the i∆ th 

tetrahedron to the j∆ th tetrahedron.  Again, we face the problem of two-dimensional 

integration over the same tetrahedron or over the same face.  The program 

implementation is such that if no analytic expressions for the double volume integral 

exist, they are evaluated numerically.  This can be efficiently done by breaking the 

tetrahedra into smaller ones and performing the summation.  Self-integrals over faces 

were calculated using expressions developed in [23].  Volume-volume self-integrals are 

evaluated numerically by subdividing each tetrahedron into smaller ones.  Testing the 

incident field with the volume basis function yields 
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5.6   Validation of the Formulation 

To test the presented method, we compared it with the scattering problem of an incident 

plane EM wave on a dielectric sphere.  This problem was fundamentally solved by Mie 

[24]-[25] by using separation of variables (see Appendix A).  For our simulations we 

consider a sphere containing 887 nodes and 4013 tetrahedra.  This results in 5285 edges 

and 4399 unknowns.  For our numerical analysis we choose the following parameters: 

radius of the sphere m02.0=a , frequency MHz200=f , relative dielectric constant 
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2=rε , and conductivity S/m0.0=σ .  For the plane wave traveling in the positive z-

direction it is assumed that electric field is in x-direction and mV0.10 =E . 

 
(a)     (b) 

Figure 5.6: Magnitude of normal component of the electric field E [V/m] over the surface 
of the sphere ( MHz200=f , 2=rε , S/m0.0=σ ). (a) exact Mie series 
solution, and (b) MoM prediction. 

 
 

 
  (a)    (b)    (c) 
Figure 5.7: Magnitude of the electric field E [V/m] on the surface of the sphere 

( MHz200=f , 2=rε , and S/m0.0=σ ). Comparison of exact (solid line) 
with MoM solutions (dashed line) along the a) x, b) y, and c) z – axes, 
respectively. All spatial dimensions are in [m]. 

 
 
As depicted in Figure 5.6(a), we observe that the absolute value of E is approximately 

0.75 V/m.  Discretization and numerical errors are responsible for small deviations of the 

MoM approach from the analytical series solution.  The numerical solution is well 

behaved and provides us with the values of electric field E that are close to the exact 

solution. 
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We next consider the case when we have a non-zero conductance.  All parameters 

remain the same, except that the conductivity is now S/m5.0=σ .  Figures 5.8 and 5.9 

depict the corresponding electric field over the sphere. 

 
     (a)      (b) 
Figure 5.8: Magnitude of the electric field E [V/m] on the surface of a sphere 

( MHz200=f , 2=rε , S/m5.0=σ ).  (a) exact Mie solution, (b) MoM 
prediction. 

 

 
  (a)    (b)    (c) 
Figure 5.9: Magnitude of the electric field E [V/m] on the surface of a sphere 

( MHz200=f , 2=rε , S/m5.0=σ ). Comparison of the exact Mie series 
solution (solid line) with MoM prediction (dashed line) along the a) x-, b) y-, 
and c) z- axes. All spatial dimensions are in [m]. 

 
 
It is seen that in the exact series solution the electric field of the plane wave attenuates 

when propagating inside the sphere (in positive z-direction).  Clearly, MoM is able to 

describe the attenuation effect accurately. 
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Next we consider a similar simulation with higher values of ε  and σ .  In 

particular, 80=rε , S/m0.1=σ .  Biological bodies such as brain tissue have similar 

values of the electric permittivity and conductance. 

 
   (a)     (b) 
Figure 5.10: Magnitude of the electric field E [V/m] on the surface of a sphere 

( MHz200=f , 80=rε , S/m0.1=σ ).  (a) exact Mie solution, (b) MoM 
prediction. 

 
 

 
  (a)    (b)    (c) 
Figure 5.11: Magnitude of the electric field E [V/m] on the surface of a sphere 

( MHz200=f , 80=rε , S/m0.1=σ ). Comparison of the exact Mie 
series solution (solid line) with MoM prediction (dashed line) along the a) 
x-, b) y-, and c) z- axes. All spatial dimensions are in [m]. 

 
 
Again we notice good agreement between the exact Mie solution and the MoM solution.  

As we observe, the electric field inside the body is attenuated rather significantly: its 

maximum is about 6% of the incident electric field. 
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These simulations generally demonstrate a good performance of our MoM 

formulation.  Approximately 309MB of double precision memory are necessary to 

perform these three simulations.  As soon as the matrix is symmetric, only 154MB of 

memory is required.  Solutions are typically computed within 25 minutes on a PC 

Pentium 4 computer with 1.5 GHz processor speed. 

 

5.7   Additional Examples 

(a) Gradient Coil inside the Magnet Bore 

This arrangement consists of a six-loop yG  gradient coil of Figure 3.20 and a metallic 

cylinder of 10 cm in radius (both systems are seen in Figure 5.12).  The cylinder mesh 

has 544 nodes and 1020 triangle patches. 

 
Figure 5.12: Gradient coil of Figure 3.20 inside a metallic cylinder. 
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We apply a current of 1A to the gradient coil at a frequency of 200 MHz.  The high 

frequency current induces eddy currents on the surface of the metallic cylinder.  The 

current distribution on the cylinder is shown in Figure 5.13. 

 
Figure 5.13: Distribution of surface current density J [A/m] induced in the magnet bore. 

 
 
In this figure, a color code represents the magnitude of the current induced on the 

cylinder wall.  The direction of current flow is denoted by current streamlines.  We 

observe that the induced currents approximately follow the same pattern as the current in 

the gradient coil. 

 

(b) Gradient Coil and a Load inside the Magnet Bore 

Here, we have a gradient coil and a biological load inside the magnet bore (see Figure 

5.14).  As in the previous example, the cylinder mesh has 544 nodes and 1020 triangle 

patches.  Load is a dielectric sphere with cm2=R , 2=rε , S/m0=σ .  The mesh for 

the sphere has 106 nodes and 302 tetrahedra. 
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Figure 5.14: Gradient coil and a biological load inside the metallic cylinder. 

 
 
Again, we execute our simulation at a frequency of 200 MHz.  The gradient coil excites 

currents in the magnetic bore and polarization currents in the dielectric sphere as seen in 

Figure 5.15. 

 
Figure 5.15: Surface current density J [A/m] induced in the metallic cylinder and 

distribution of the electric field E [V/m] on the sphere. 
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There are no conductance currents induced in the sphere because S/m0.0=σ .  

Polarization currents (as well as electric field) are mostly flowing back and forth along 

the x-axis.  This can be easily explained based on Maxwell’s equations.  The magnetic 

field from the yG  gradient coil is mostly directed along the z-axis and it has a gradient 

along the y-axis. Curl of the magnetic field is, therefore, directed along the x-axis.  

According to EEH ωεσ j+=×∇ , the electric field is collinear to the curl of magnetic 

field.  Therefore, E  is directed along the x-axis (see Figure 5.16). 

 
Figure 5.16: Electric field E [V/m] distribution inside the sphere. 

 
 
We also observe that we obtain a higher current in the lower part of the load.  This makes 

sense, as this part is closer to the gradient coil. 

 

(c) TEM resonator 

In MRI, TEM resonators are used to provide pulses of high frequency magnetic fields.  A 

TEM resonator [27] consists of multiple copper strips and an outer copper shield.  In this 

example the strips have a length of 0.1524 m and a width of 0.00635 m.  The shield has a 
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radius of 0.0527 m and height of 0.1524 m.  The mesh for the TEM resonator is shown in 

Figure 5.17.  This mesh has 4836 nodes and 680 triangles, which results in 10560 

unknowns. 

 
Figure 5.17: Mesh of TEM resonator. 

 
 
Furthermore, each strip is connected to the shield by two lumped capacitors.  There are, 

therefore, twenty-four capacitors in the resonator.  A voltage source of 1 V was applied in 

series with one of the capacitors to act as the excitation element.  Figure 5.18 

demonstrates how to introduce lumped elements and a voltage feed into the system of 

linear equations for the MoM. 
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Figure 5.18: Introducing lumped elements into the MoM formulation. 

 
 
Triangles +

nT  and −
nT  represent the left and right triangles of the nth surface current 

element.  As it follows from Eq. (5.26), the coefficient SS
nnD  represent an impedance of 

the mth element with a negative sign.  Therefore, in order to take into account the lumped 

impedance lumpedZ , we have to subtract lumpedZ  from the value of SS
nnD .  Furthermore, to 

introduce a feed voltage feedV  into the system, we have to subtract feedV  from the value 

of right-hand side vector nb . 

The resonator is tuned to 200 MHz.  Simulations were performed to find the 

resonant value of the capacitors: pF59.10=C .  Each simulation involves solving a 

10560×10560 matrix.  Filling in the matrix and solving it takes about 20 minutes on a 1.5 

GHz Pentium 4 computer.  The current distribution for the resonance is shown in Figure 

5.19. 
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Figure 5.19: Surface current density J [A/m] induced in the TEM resonator. 

 
 
We then determine the magnetic field inside the resonator.  Figure 5.20 shows the 

magnetic field in the xy-plane in the middle of the TEM resonator.  It is gratifying to 

observe that the magnetic field is highly uniform in the center of the resonator. 

 
Figure 5.20: Absolute value and streamlines of the magnetic field B [T] at a cross-section 

inside the volume coil. All spatial dimensions are given in [m]. 
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5.8   Effect of Gradient Coils on a Biological Insert 

We can now place a biological insert in the ROI for the gradient coil.  The insert is a 

sphere having a radius of 2 cm, 80=rε  and S/m1=σ .  These values of rε  and σ  are 

typical for animal brain tissue.  For our simulations, we use a frequency of kHz10=f , 

which is a typical operating frequency for gradient coils.  We investigate the xG  gradient 

coil first.  The electric field arising in the biological insert is shown in Figure 5.21.  The 

maximum value of the electric field in the body is found to be 0.0158 V/m. 

 
   (a)     (b) 
 

 
    (c)    (d)    (e) 

Figure 5.21: Electric field E [V/m] created by the xG  gradient coil: (a) biological body 
inside the coil, (b) three cross-sections of the body, (c) electric field along 
the x-axis, (d) electric field along the y-axis, (e) electric field along the z-
axis.  All dimensions spatial are given in [m]. 

 
 



 148

The electric field created in the body by the yG  gradient coil is shown in Figure 5.22.  

The maximum value of the electric field in the body is 0.0496 V/m, and it is significantly 

higher than for the yG  gradient coil. 

 
   (a)     (b) 

 
 (c)    (d)    (e) 

Figure 5.22: Electric field E [V/m] created by the yG  gradient coil: (a) biological body 
inside the coil, (b) three cross-sections of the body, (c) electric field along 
the x-axis, (d) electric field along the y-axis, (e) electric field along the z-
axis.  All dimensions spatial are given in [m]. 

 
 
Figure 5.23 demonstrates the body inside the zG  gradient coil.  As soon as the loops of 

this coil are placed far from the body, the maximum electric field, 0.0059 V/m, is 

relatively strong. 
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(a)     (b) 

 
        (c) 

Figure 5.23: Electric field E [V/m] created by the zG  gradient coil: (a) biological body 
inside the coil, (b) three cross-sections of the body, (c) electric field along 
the line passing through the center of the sphere and directed as along the 
(1,1,1) vector.  All dimensions spatial are given in [m]. 

 
 

5.9   Chapter Summary 

In this work we have shown that solenoidal basis functions can be successfully used to 

approximate the value of a new vector C , which is a linear combination of the 

displacement and current density vectors.  This special vector has the desirable property 

of being divergence-free, even if material properties in the solution domain are spatially 

dependent.  Based on this new vector quantity a MoM approach is formulated and 

implemented.  The resulting system of linear equations for the unknown current values 

can efficiently be computed for both the conductive surface and the edges associated with 

the 3D volumetric mesh. 
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An initial comparison with the exact Mie solution for an incident plane wave 

shows good agreement with the numerical solution.  However, more detailed simulations 

with complex geometries are required to investigate the accuracy and computational 

efficiency of this new formulation.  In addition, we tested the formulation with two 

examples involving a gradient coil inside a metallic cylinder (magnet bore) with and 

without a biological load.  It is seen that high-frequency current oscillations in the 

gradient coil cause currents in the magnet bore and currents (polarization currents and/or 

conductance currents) in the biological load.  Furthermore, the effect of the three 

designed and manufactured gradient coils on biological bodies is studied. 
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Chapter 6 
Chapter 6  Conclusions and Recommendations 
 
Conclusions and Recommendations 
 
6.1   Summary and Conclusions 

In this dissertation we embarked on developing a new computational approach to design 

and optimize gradient coils for MRI.  Specific accomplishments of the research include: 

1. A static least-squares method is devised to design flat (surface) gradient coils.  The 

formulation is based on prescribing the magnetic field a particular region of interest.  The 

approach limits its applicability to low numbers of elementary current loops.  Two yG  

gradient coils (5×4 and 6×4 loop configurations) were designed and their performance 

was compared to that of a yG  surface gradient coil reported in the literature.  It was 

shown that these coils generally provide better gradient uniformity, although the gradient 

strengths tend to be smaller.  As a result, a fundamental strength-uniformity trade-off has 

to be made. 

2. In an attempt to improve upon the least-squares method, we employed a “trial-and-

error” approach to design a so-called six-loop yG  gradient coil.  This coil was 
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constructed and its performance was tested in an MRI 4.7T system.  Images obtained 

with a phantom and a marmoset brain compare well with a commercial gradient coil. 

3. A novel stream function methodology is then formulated with the intent to generalize 

the current loop concept.  The surface current is approximated using numerical rotational 

current elements.  The current elements are obtained from the triangular mesh generated 

with a mesh generator.  The formulation is based on the minimization of a cost function 

that comprises terms involving gradient uniformity, magnetic energy, shielding, and 

zero-momentum constraints.  The simulations yield important coil characteristics such as 

resistance, inductance and gradient strength.  As examples, several gradient coils were 

designed: a two-plate curved (crescent) xG  gradient coil; a flat yG  gradient coil with 

holes; a set of flat rectangular coils ( xG  coil, yG  coil, zG  unbalanced coil, and zG  

balanced coil); and a two-plate curved (crescent) xG  shielded gradient coil.  It was 

shown that adjusting parameters for the magnetic energy and shielding enable an 

elaborate trade-off investigation between gradient uniformity, inductance, and gradient 

strength.  In case of flat rectangular coils, the effect of the adjustment parameter for the 

magnetic energy term and its impact on the coil layout can be studied. 

4. To ease the interaction with the program, a Graphic User Interface was developed.  A 

software package called “Gradient Coil Designer” was written in Visual C++.  All 

necessary components such as simple mesh generation, geometry file generation, matrix 

solver, postprocessing, magnetic field calculation are parts of this package as libraries.  

The results of the simulations can be saved to a project file and loaded from it.  However, 

the GUI in its current version does not include a shielding option. 
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Finally, three gradient coils (comprising a gradient set) were designed and 

manufactured around an existing microstrip RF coil.  The gradient coils were fitted inside 

a 4.7T MRI scanner and tested.  Images of a phantom and of a rat brain were obtained.  

The performance of the gradient set, even at a reduced current strength, can be regarded a 

success: the observed distortions was found to be in agreement with the numerical 

predictions. 

In an effort to quantify the dynamic interaction with the magnet bore and the RF 

coil, a novel Method of Moment formulation is finally developed.  It includes a system 

consisting of a line current source (only for excitation), a highly conductive surface, and 

a 3D biological body characterized by values of electric permittivity and conductance.  In 

addition, as excitation either a voltage source applied to the conductive surface or an 

incident electromagnetic wave can be employed.  The current for the conductive surface 

is approximated by using RWG current elements, and the electric field in the 3D body is 

approximated by edge-based rotational basis functions.  The formulation was tested with 

a so-called Mie series solution, which is an analytical solution of Maxwell’s equations 

for the problem of an electromagnetic wave illuminating a uniform, dielectric sphere.  

Additional problems solved by this MoM formulation include: a gradient coil residing in 

the magnet bore, a gradient coil with a biological load inside the magnet bore, and a 

biological load inside the xG , yG  and zG  gradient coils. 

In summary, this research developed a new design, and a way to build flat as well 

as curved gradient coils.  Moreover, using the Stream Function Method developed in this 

dissertation, we are able to completely design a gradient set consisting of all three 

gradient coils.  Tests in an MRI scanner confirmed the validity and accuracy of this 
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approach.  The presented Method of Moments formulation helps us to study the effect of 

rapidly changing magnetic fields, and their effect on a biological body placed inside the 

gradient coil set. 

6.2   Recommendations for Future Work 

Based on the practical measurements of the coils in the MRI scanner, it became apparent 

that a number of issues should be addressed as part of future research efforts. They 

include: 

• The stress distribution in the coil former should be considered.  Obviously, shape 

and material of the former has a major influence on the gradient coils’ structural 

integrity and acoustic noise level. 

• The power dissipation in the gradient coils should be considered more 

comprehensively.  A power dissipation term may be introduced into the cost 

function. 

• Based on the results of the power dissipation studies, a cooling mechanism should 

be designed. 

• Since the pulse sequences have temporal responses, a time domain version of the 

MoM should be explored.  It would allow the direct study of transient effect due 

to the switching of the gradient coils. 
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Appendix A   Mie Series Solution 
Appendix A   Mie Series Solution 
 
Mie Series Solution 

 

We consider a sphere of radius a  and a plane electromagnetic wave propagating along 

the z-axis with an electric field component in x-direction. 

 

Figure A.1: Spherical system of coordinates. 
 

First of all, unit vectors 1i , 2i , 3i  are defined for every point ( )zyx ,,  in the Cartesian 

system of coordinates. Thus, we determine 
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Since the basis is orthogonal, the third unit vector is given by 

213 iii ×=  (A.3)
The expansion of the incident field in spherical wave functions is 
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Here ( )ρnj  is a spherical Bessel function, ( )( )ρ2
nh  is a spherical Hankel function, and 

( )xPm
n  are associated Legendre functions. Reflected fields are given in the form 
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when aR > . 

The fields inside the sphere (transmitted fields) are 
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when aR < . 

Functions ( )3

1n
o
em  and ( )3
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o
en  are obtained by replacing ( )Rkjn 2  by ( )( )Rkhn 2

2  in (A.6) and 

(A.7).  The boundary conditions at aR =  are 
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where 21 Nkk = , ak2=ρ , ρNak =1 , This system is then solved: 
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The spherical Bessel functions are defined as: 
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where ( )zJn  and ( ) ( )zHn
2  are ordinary Bessel functions. 

To find the derivatives of the spherical Bessel functions present in (A.15) we use the 

expression 
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where ( )zfn  can be any function ( )zjn , ( )zyn , ( )( )zhn
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The associated Legendre functions can be found from the expression 
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Specifically, for 1=m  we obtain 
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The code for computing the Mie solution was implemented in MATLAB. We took 

advantage of MATLAB’s built-in Bessel functions and associated Legendre functions.  

The program listing is given below.  The program is written such that  it saves data in a 

Tecplot format.  Tecplot is a useful tool for visualizing the scientific data. 

 

Program listing 

%************************************************** 
% This program computes Mie solution for 
% diffraction of a plane wave on a sphere 
%************************************************** 
clear all 
% load mesh 
FileName=strcat('volume.n'); 
FID=fopen (FileName,'rt'); 
pp=fscanf(FID, '  %f'); 
NodesTotal=pp(1); 
TetraTotal=pp(2); 
p=zeros(3,NodesTotal); 
t=zeros(4,TetraTotal); 
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kkk=3; 
 
for s=1:NodesTotal 
        kkk=kkk+1; 
        p(1,s)=pp(kkk); kkk=kkk+1; 
        p(2,s)=pp(kkk); kkk=kkk+1; 
        p(3,s)=pp(kkk); kkk=kkk+1; 
end 
 
for s=1:TetraTotal 
        kkk=kkk+1; 
        t(1,s)=pp(kkk); kkk=kkk+1; 
        t(2,s)=pp(kkk); kkk=kkk+1; 
        t(3,s)=pp(kkk); kkk=kkk+1; 
        t(4,s)=pp(kkk); kkk=kkk+1; 
end 
fclose (FID); 
clear pp; 
for s=1:NodesTotal 
        tempy=p(2,s); 
        tempz=p(3,s); 
        p(2,s)= tempy*cos(0.01)+tempz*sin(0.01); 
        p(3,s)=-tempy*sin(0.01)+tempz*cos(0.01); 
end 
 
%************************************************** 
a=0.02;       % sphere radius 
f=2e8;        % frequency 
epsr=1;       % epsilon r 
sigma=0.0;    % conductance 
 
eps0=8.854e-12; 
c_light=3e8;            % speed of light 
mu=4*pi*1e-7;           % free space permeability 
omega=2*pi*f;           % circular frequency 
lambda=c_light/f;       % free space wavelength 
k=2*pi/lambda;          % wave number in a free space 
eps=2-j*(sigma/omega/eps0);  % epsilonr-j*(sigma/omega/eps0) 
k1=sqrt(eps)*k;         % wave number inside the sphere 
alpha=2*pi*a/lambda; 
m=sqrt(eps); 
N=15;   % number of terms in the Mie series 
 
for n=1:N 
    term1=spbesselh(n,2,alpha)*(alpha*spbesselj(n-1,alpha)-n*spbesselj(n,alpha)); 
    term2=spbesselj(n,alpha)*(alpha*spbesselh(n-1,2,alpha)-n*spbesselh(n,2,alpha)); 
    term3=spbesselh(n,2,alpha)*(m*alpha*spbesselj(n-1,m*alpha)-n*spbesselj(n,m*alpha)); 
    term4=spbesselj(n,m*alpha)*(alpha*spbesselh(n-1,2,alpha)-n*spbesselh(n,2,alpha)); 
    c(n)=(-term1+term2)/(-term3+term4); 
    d(n)=(-m*term2+m*term1)/(term3-m^2*term4); 
end 
 
E=(1+j)*zeros(NodesTotal,3); 
H=(1+j)*zeros(NodesTotal,3); 
for s=1:NodesTotal 
    % find unit vectors in each point 
    x=p(1,s); y=p(2,s); z=p(3,s); 
    r=norm([x y z]); 
    fi=angle(x+j*y); 
    ar=[x/r y/r z/r]; 
    atheta(1)=x*z; 
    atheta(2)=y*z; 
    atheta(3)=-(x^2+y^2); 
    temp=sqrt(atheta(1)^2+atheta(2)^2+atheta(3)^2); 
    atheta(1)=atheta(1)/temp; 
    atheta(2)=atheta(2)/temp; 
    atheta(3)=atheta(3)/temp; 
    afi=cross(ar,atheta); 
    theta=acos(ar(3)); 
    for n=1:N 
    clear p1; 
    p1=legendre(n,ar(3)); P1n=p1(2); 
    mn_atheta=1/sin(theta)*spbesselj(n,k1*r)*P1n; 
    mn_afi=-spbesselj(n,k1*r)*dP1ndtheta(n,theta); 
    nn_ar=n*(n+1)/(k1*r)*spbesselj(n,k1*r)*P1n; 
    nn_atheta=1/(k1*r)*((k1*r)*spbesselj(n-1,k1*r)-
n*spbesselj(n,k1*r))*dP1ndtheta(n,theta); 
    nn_afi=-1/(k1*r*sin(theta))*((k1*r)*spbesselj(n-1,k1*r)-n*spbesselj(n,k1*r))*P1n; 
    mn=mn_atheta*cos(fi)*atheta+mn_afi*sin(fi)*afi; 
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    nn=nn_ar*cos(fi)*ar+nn_atheta*cos(fi)*atheta+nn_afi*sin(fi)*afi; 
    E(s,:)=E(s,:)+(-j)^n*(2*n+1)/(n*(n+1))*(c(n)*mn+j*d(n)*nn ); 
    mn=mn_atheta*(-sin(fi))*atheta+mn_afi*cos(fi)*afi; 
    nn=nn_ar*sin(fi)*ar+nn_atheta*sin(fi)*atheta+nn_afi*(-cos(fi))*afi; 
    H(s,:)=H(s,:)+(-j)^n*(2*n+1)/(n*(n+1))*(d(n)*mn-j*c(n)*nn ); 
    end 
end 
H=-k1/(omega*mu)*H; 
 
% save date in Tecplot format 
FileName=strcat('sphere_field.dat'); 
FID=fopen (FileName,'w'); 
  fprintf(FID, '  %s\n','TITLE = "MESH"'); 
  fprintf(FID, '  %s','VARIABLES="X", "Y", "Z", "AbsE", "Emagn_x", "Ephase_x", "Emagn_y", 
"Ephase_y", "Emagn_z", "Ephase_z"'); 
  fprintf(FID, '  %s\n',',"AbsH", "Hmagn_x", "Hphase_x", "Hmagn_y", "Hphase_y", 
"Hmagn_z", "Hphase_z"'); 
  fprintf(FID, '  %s','ZONE T="mesh_surf"   I='); 
  fprintf(FID, '  %5.0f',NodesTotal); 
  fprintf(FID, '  %s\n','F=FEPOINT,  ET=TETRAHEDRON'); 
for s=1:NodesTotal 
  fprintf(FID, '  %g',p(1,s)); 
  fprintf(FID, '  %g',p(2,s)); 
  fprintf(FID, '  %g',p(3,s)); 
  fprintf(FID, '  %g',sqrt(abs(E(s,1))^2+abs(E(s,2))^2+abs(E(s,3))^2)); 
  fprintf(FID, '  %g',norm(E(s,1))); 
  fprintf(FID, '  %g',angle(E(s,1))); 
  fprintf(FID, '  %g',norm(E(s,2))); 
  fprintf(FID, '  %g',angle(E(s,2))); 
  fprintf(FID, '  %g',norm(E(s,3))); 
  fprintf(FID, '  %g',angle(E(s,3))); 
  fprintf(FID, '  %g',sqrt(abs(H(s,1))^2+abs(H(s,2))^2+abs(H(s,3))^2)); 
  fprintf(FID, '  %g',norm(H(s,1))); 
  fprintf(FID, '  %g',angle(H(s,1))); 
  fprintf(FID, '  %g',norm(H(s,2))); 
  fprintf(FID, '  %g',angle(H(s,2))); 
  fprintf(FID, '  %g',norm(H(s,3))); 
  fprintf(FID, '  %g\n',angle(H(s,3))); 
end 
for s=1:TetraTotal 
  fprintf(FID, '  %5.0f',t(1,s)); 
  fprintf(FID, '  %5.0f',t(2,s)); 
  fprintf(FID, '  %5.0f',t(3,s)); 
  fprintf(FID, '  %5.0f\n',t(4,s)); 
end 
fclose (FID); 
 
 
% Given values of n and x 
% this function computes Spherical Bessel Function jn(x) 
function B = spbesselj(n,x) 
B=sqrt(pi/(2*x))*besselj(n+0.5,x); 
 
 
% Given values of order, n and x 
% this function computes Spherical Bessel Function hn(x) 
function B = spbesselh(n,order,x) 
B=sqrt(pi/(2*x))*besselh(n+0.5,order,x); 
 
 
% Given values of n and theta 
% this function computes dP1n/dTheta derivative 
function B = dP1ndtheta(n,theta) 
ppp=legendre(n,cos(theta)); 
temp = cos(theta)/sin(theta)*ppp(2); 
if(n>=2) temp=temp+ppp(3); end 
B=temp; 
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