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Abstract

Data abstraction is the process of reducing a large dataset into one of moderate size,

while maintaining dominant characteristics of the original dataset. Data abstraction qual-

ity refers to the degree by which the abstraction representsoriginal data. Clearly, the

quality of an abstraction directly affects the confidence ananalyst can have in results de-

rived from such abstracted views about the actual data. While some initial measures to

quantify the quality of abstraction have been proposed, they currently can only be used

as an after thought. While an analyst can be made aware of the quality of the data he

works with, he cannot control the desired quality and the trade off between the size of the

abstraction and its quality. While some analysts require atleast a certain minimal level of

quality, others must be able to work with certain sized abstraction due to resource limi-

tations. consider the quality of the data while generating an abstraction. To tackle these

problems, we propose a new data abstraction generation model, called the QoS model,

that presents the performance quality trade-off to the analyst and considers that quality of

the data while generating an abstraction. As the next step, it generates abstraction based

on the desired level of quality versus time as indicated by the analyst. The framework has

been integrated into XmdvTool, a freeware multi-variate data visualization tool developed

at WPI. Our experimental results show that our approach provides better quality with the

same resource usage compared to existing abstraction techniques.
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Chapter 1

Introduction

1.1 Multi-dimensional Visualizations

The amount of data generated due to technological advances is enormous. Most data gen-

erated and collected is a valuable source of information. However, finding the information

from the huge amount of data is a difficult task. One approach is to present the human an-

alyst the data in graphical form. This allows the analyst to apply his perceptions to make

sense of the data and derive conclusions. This approach is called ”data visualization”.

Multivariate visualization is one subfield of data visualization that focusses on multi-

dimensional datasets. A multi-dimensional dataset can be defined as a set of data items

D, where theith data itemdi consists of a vector with n variables, (xi1, xi2, ...,xin). Each

variable may be independent of or interdependent with one ormore of the other variables.

Variables may be discrete or continuous in nature, or take onsymbolic (nominal) values.

Many multivariate visualization techniques and systems have emerged during the last

three decades, such as glyph techniques [1, 2, 3, 4], parallel coordinates [5, 6], scatterplot

matrices [7], pixel-level visualization [8], and dimensional stacking [9]. Each method has

strengths and weaknesses in terms of the data characteristics and analysis tasks for which
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it is best suited.

Recently lots’ of attention has been focussed on visualization of large high-dimensional

datasets. Though there are various methods available for abstracting the large datasets and

visualizing them. There is no way to validate or more importantly to control the quality

of abstraction that is generated.

1.2 Motivating Example

Data abstraction techniques are commonly used to facilitate the efficient detection of

patterns in large datasets and for analyzing a huge databasewithout having to actually

explore the original data [10]. Thus, analysts typically infer characteristics of large

databases by analyzing the abstracted dataset and rather than looking at the full data.

Some abstraction techniques select a subset of the originaldataset as its abstraction, such

as sampling and filtering, while others construct a new abstract/summary representation,

such as clustering and summarizing [10]. Tasks conducted based on abstracted data in-

clude pattern detection, cluster analysis, outlier analysis, subspace cluster analysis, fil-

tering and sample analysis [10]. Figure 1.1 presents an example of a dataset and its ab-

stractions. The visualization technique used, called parallel coordinates [11], is a popular

multivariate visualization technique.

Since the analyst may rely on the abstraction visualizationto derive conclusions, the

quality of the abstraction needs to be validated. A good dataabstraction represents all the

main features of the original dataset. Since the abstraction in Figure 1.3 captures all the

clusters present in the original dataset (Figure 1.3(a)) abstraction is considered to be of

high quality. Whereas the abstraction in the Figure 1.3 missed out on a small cluster, thus

the abstraction can be considered to be of low quality. Lack of knowledge regarding qual-

ity of the data one works with can lead to inaccurate results jeopardizing the reliability
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Figure 1.1: Figure on the left displays the cars dataset, while Figures on the right repre-
sents sampling of the cars dataset and cluster centers of cars dataset.

of conclusions gleaned from the abstraction. Validating the quality of abstraction is made

difficult due to lack of data abstraction quality measures. Although some initial measures

[12] have been recently proposed to measure the data abstraction, those measures do not

scale well to higher number of dimensions. Furthermore, a scalable data abstraction mea-

sure by itself does not solve the problem. The main problem isthe lack of consideration

about the desired quality by the abstraction generation process before its commencement.

Figure 1.2: Visualization of the original dataset cars.

To further complicate matters, we note that most systems andthus users of these

systems assume that the raw data itself is always good. However, real-world data is
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Figure 1.3: Abstraction of dataset cars
capturing all clusters.

Figure 1.4: Abstraction of dataset cars
missing out on a small cluster.

known to be imperfect, suffering from various forms of defects such as sensor variability,

estimation errors, uncertainty, human errors in data entry, and gaps in data gathering.Data

quality refers to the quality of the underlying data used for the abstraction generation. If

the quality of the underlying data is not considered during abstraction generation, the

quality of an abstraction is endangered.

Figure 1.5: Low quality data in the origi-
nal dataset.

Figure 1.6: Effect of low quality data on
abstraction visualization.

Consider the Figure 1.5, the cluster marked is of low quality. If the data quality of the
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underlying data is ignored during the abstraction generation, the resulting clusters (Figure

1.6)) may have good abstraction quality. The quality of abstraction also depends on the

underlying data quality of the raw data used for clustering.Thus, data quality should be

considered during abstraction generation to calculate a total abstraction quality.

1.3 Problem Definition

Figure 1.7: Process Flow Existing Data Abstraction Solution.

Figure 3.1 sketches the process most commonly used by abstraction generation sys-

tems [13] [14]. Predicaments of such a process include:

• Quality measures, if available at all, are plugged in only asan after-thought to

calculate the quality of a given abstraction.

• Data abstraction is a one way process. Thus, when an analyst generates an abstrac-

tion, he in unaware of the abstraction quality until after the abstraction process has

been completed. In some sense he blindly completes the abstraction process and

hopes for the best that the quality abstraction will be acceptable.

• Furthermore, the analyst doesn’t know how much time they should expect to have

to wait for the completion of the abstraction process. He cannot schedule a process

based on the time or task at hand.
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• Data quality is not taken into account. As discussed earlier, if the data is imperfect

(or of low quality), the abstraction result should also reflect the underlying data

quality.

• Analyst cannot visualize the quality of abstraction.

1.4 Goals of the Thesis

In this thesis, we intend to explore a new approach to qualitybased data abstraction gen-

eration and visualization. It allows the user to control thequality of abstraction to be

generated, allowing him to interact with the system and setting either performance or

quality value and QoS will generate the abstraction based onthe settings. Goals of QoS

are:

• to present the analyst with a quality-performance trade offindicating the different

values of quality measures achievable and time required forthe process to generate

them. Using these computations, analyst can demand a quality level beforehand or

he can request a certain performance, knowing what quality he can expect and QoS

will generate the abstraction accordingly.

• to take into consideration both the data abstraction quality and underlying data qual-

ity to calculate a complete data abstraction quality measure.

• to provide a way to visualize the abstraction quality using an InterRing display

1.5 Approach in a Nut Shell

To overcome the above identified problems, we propose to makeabstraction generation

quality aware by adding a new layer of estimation. The approach can be divided into four
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steps:

1. Density Estimation: In this step, we estimate the densityof the dataset by creating

a multi-dimensional histogram. The multi-dimensional histogram keeps a track of

number of bins formed and data points falling into each bin.

2. Formation of look-up table: Using density-biased sampling we calculate the data

abstraction measure for various sampling levels and time required for the clustering

process to complete.

3. Abstraction Generation: Once the analyst selects a particular quality value, ab-

straction is generated. Data quality of the clusters is calculated and total abstraction

quality is calculated for the clusters.

4. Cluster Visualization: Clusters formed are visualized using the InterRing display.

1.6 Thesis Organization

Recent research regarding data abstraction for large scaledatasets, different forms quality,

cluster visualization and other quality aware systems are surveyed in Chapter 2. Chapter

3 presents details of the QoS approach. Chapter 4 desribes the inclusion of data qualit in

QoS. Visualizing and navigation through the clustering result is explained in Chapter 5.

Chapter 6 presents our implementation in the XmdvTool. We discuss our ecperimental

evaluation in Chpater 7. Conclusions and open questions arediscussed in Chapter 8.
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Chapter 2

Background

2.1 Data Abstraction for Large Scale Explorations

There are many approaches towards visualizing large-scalemulti-dimensional data sets,

such as pixel-oriented techniques (including spirals [15], recursive patterns [8], and circle

segments [16]), multiresolution multidimensional wavelets [17], pixel bar charts [18], and

interactive hierarchical displays [19, 20, 21].

Hierarchical Parallel Coordinates [22] is one of the interactive hierarchical displays

[21] developed for visualizing large multidimensional data sets in the context of our

XMDV project. Since displaying a large number of data items will clutter the screen,

Hierarchical Parallel Coordinates group the data items into a hierarchical cluster tree. A

set of clusters selected from a certain level of detail in thehierarchical cluster tree is

visualized on the screen instead of all the data items in the data set. The clusters are visu-

alized by center lines and bands which respectively represent the mean points and extents

of the clusters. The same framework used to develop Hierarchical Parallel Coordinates

has been also applied to Hierarchical Scatterplot Matrices, Hierarchical Star Glyphs, and

Hierarchical Dimensional Stacking. Details of these can befound in [20].
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Hierarchical Parallel Coordinates uses clustering to obtain the hierarchical cluster tree.

However, other abstraction techniques such as sampling or clustering can also be used.

Sampling and clustering are well studied in literature.

2.1.1 Sampling

Sampling is a form of abstraction where the original data points are used to create an

abstraction. Sampling has been extensively studied. Different methods of sampling are:

• Simple random sampling: Random sampling implies that everydata point has equal

probability of being selected in the sample [23]. Random sampling has an advan-

tage in terms of its simplicity and ease of implementation. However, random sam-

pling has a disadvantage in terms of not including data points from small cluster.

Olken et. al. [24] introduced a sampling operator into DBMS with the goal to

increase efficiency. By embedding the sampling within the query evaluation, one

can reduce the amount of data which must be retrieved in orderto answer sampling

queries. Sampling can be used in the DBMS to provide cheap estimates of the

answers of aggregate queries. Sampling may also be used to estimate database pa-

rameters used by the query optimizer to choose query evaluation plans. Olken et. al.

[24] then introduced the idea of weighted random sampling through sampling from

B+ tree, hash files and spatial data structures (including R-trees and quadtrees)).

• Stratified random sampling: Stratification is the process ofgrouping members of

the population into relatively homogeneous subgroups or ”strata” before sampling.

Strata should be mutually exclusive and collectively exhaustive [23]. Once strata

are formed, random sample is chosen from each strata. The samples are then com-

bined to form the overall samples. For the formation of strata the input data should

be discrete. It is not usefult when there are no homogeneous subgroups and it can
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be difficult to find and select relevent stratification variables in presence of homo-

geneous subgroups.

• Density biased sampling: Density biased sampling is a type of probability based

sampling where probability is assigned to a group of data [25]. Suppose that we

have N valuesx1, x2,... ,xN that are partitioned into g groups that have sizes

n1,n2,...,ng. Suppose we want to generate a sample with expected size M in which

the probability of pointxi being in the sample is dependent on the size of the group

containingxi. The density biased sample has the following properties [25]:

– Within a group, points are selected uniformly.

– The sample is density preserving.

– The sample is biased by group size.

Thus, density biased sampling preserves the density and captures even the small

clusters present in the dataset.

Random sampling vs. Density biased sampling:For the purpose of QoS, we need

to estimate the quality values before sampling. Every quality value is calculated for a

particular sampling rate. With random sampling, for a particular sampling rate there can

be various quality values possible. Whereas with density biased sampling, a quality value

is associated with only one sampling rate.

2.1.2 Clustering Algorithm

There are two basic types of clustering algorithms [26, 27] partitioning [28, 29] and hi-

erarchical algorithms [30, 31, 32]. Partitioning algorithms divide all the data points into

a given number of clusters, while hierarchical algorithms construct a hierarchical clus-
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ter tree by recursively splitting the data set into smaller clusters until every leaf cluster

contains only one or a few data points.

The k-means algorithm is a popular partitioning algorithm.It picks k cluster centroids

and assigns points to the clusters by picking the closest centroid to the point in question.

The centroids of the clusters may shift when new points are added into clusters so the

process may need to be repeated. BFR [29] is an algorithm based on k-Means algorithm.

It intends to cluster large data sets that cannot be loaded into the main memory at one time

by identifying regions of the data that are compressible, regions that must be maintained

in memory, and regions that are discardable. This algorithmworks best if the clusters are

normally distributed around some central points.

CURE [30] is a sampling-based hierarchical clustering algorithm for large data set.

Compared with k-means approaches, which work well only for clusters that are neatly

expressed as Gaussian noise around a central point, CURE is more robust in that it is

able to identify clusters having non-spherical shapes and wide variances in size. CURE

achieves this by representing each cluster by a certain fixednumber of points that are

generated by selecting well scattered points from the cluster and then shrinking them to-

ward the center of the cluster by a specified fraction. Havingmore than one representative

point per cluster allows CURE to adjust well to the geometry of non-spherical shapes and

the shrinking helps to dampen the effects of outliers. To handle large databases, CURE

employs a combination of random sampling and partitioning.A random sample drawn

from the data set is first partitioned and each partition is partially clustered. The partial

clusters are then clustered in a second pass to yield the desired clusters.

BIRCH [32] is another efficient clustering algorithm for large data sets. In the BIRCH

algorithm, objects are read from the database sequentiallyand inserted into incrementally

evolving clusters that are represented by generalized cluster features (CFs). A new object

read from the database is inserted into the closest cluster,an operation which potentially
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requires an examination of all existing CFs. Therefore BIRCH organizes all clusters in an

in-memory index, a height-balanced tree called a CF-tree. For a new object, the search for

an appropriate cluster now requires time logarithmic in thenumber of clusters as opposed

to a linear scan.

For high dimensional space, it is common that clusters only exist in some subspaces.

CLIQUE [33] is a clustering algorithm that is able to find clusters embedded in sub-

spaces of high dimensional data. It identifies dense clusters in subspaces of maximum

dimensionality. It generates cluster descriptions in the form of DNF expressions that are

minimized for ease of comprehension.

Human interaction in the field of clustering was first introduced by K. Chen et. al.

[34] via the VISTA software. Using VISTA, the user is able to participate in the clustering

process by steering,monitoring or refining the clustering process. VISTA allows the user

to improve the clustering process by introducing their domain knowledge in the clustering

process. However, VISTA deals with small and moderate datasets.

In this thesis, we tend to use the existing abstraction techniqu of clustering and make

them quality aware.

2.2 Forms of Qualities and Quality Measures

2.2.1 Abstraction Quality

Abstraction quality captures how well the abstracted dataset represents the original dataset.

It quantifies to what degree the abstraction is an appropriate representation of the original

dataset. As discussed earlier, if the abstraction misses out on clusters present in the orig-

inal dataset, then the abstraction is said to be of low quality. Recently some abstraction

measures are introduced in the field of information visualization. Cui et. al. [12] proposed

a histogram based measure. Our measure is an extension to HDM[12] capturing the co-
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relationships between the dimensions using a multi-dimensional histogram. Details on

our quality measure MHDM are described in Chapter 3.

2.2.2 Data Quality

Data Quality [35] denotes the degree of uncertainty about the data. High quality indicates

that data is of high certainty and reliability. The variability of data quality has many

causes such as data accuracy, completeness, certainty, consistency, or any combination of

these. It can also include statistical variations or spread, errors and differences, minimum-

maximum range values, noise, or missing data [36]. Calculation of data quality is out of

scope of this thesis. More details about calculation of dataquality can be found at [36].

In the Xmdv project, we employ scalar values to measure uncertainty. The quality is

captured at three granularity namely individual data values, complete records and specific

dimensions.

m rows

n columns

A11 A12 … A1n

A21 A22 … A2n

… …

Am1 Am2 … Amn

(a) Original Data

V11 V12 … V1n

V21 V22 … V2n

… …

Vm1 Vm2 … Vmn

R1

R2

…

Rm

D1 D2 … Dn

m+1
rows

n+1 columns

(b) Quality Measures

V ij: Value 
Quality Ri: Record 

Quality

Dj: Dimension 
Quality

A ij:Value

Figure 2.1: Structure of data quality.

Figure 2.1 represents the data quality structure defined andused in Xmdv. Quality at

individual data values is summarized at the record level. Since, clustering is performed

at the record level, we use the summarized record quality value instead of individual data

values and the specific dimensional values. Thus, we only isethe record quality values

and ignore the dimensional and individual data quality values. Dimensional quality values

can be useful in dimensional clustering. The discussion of integrating dimensional quality

values with dimensional clustering is out of the scope of this thesis.
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2.2.3 Cluster Quality

Abstraction quality and cluster quality refers to the quality of the hierarchical cluster tree.

Thus, we refer to abstraction quality and cluster quality as”structure quality” depicting

the quality of the structure formed as a result of clustering. Clustering quality is the

evaluation of the results of clustering algorithm. One of the criteria used to measure the

clustering quality is the compactness of the cluster. Compactness can be defined as [14]

the closeness amongst the members of the cluster. Variance can be used as a measure of

caompactness. Due to its simplicity, we use variance as our clustering quality measure.

Any other measure such seperation of the cluster [14] can also be used. We discuss our

clustering quality measure in greater detail in Chapter 3.

2.3 Cluster Visualization

Recent literature indicates that radial space-filling techniques work better in revealing hi-

erarchical structures than treemaps [37, 38], while also making efficient use of the display

space. Sunburst [39] is an example of the radial space-filling hierarchy visualization tech-

nique. In Sunburst, deeper nodes of the hierarchy are drawn further from the center and

child nodes are drawn within the arc subtended by their parents. The angle occupied by a

node is proportional to its size.

Radial space-filling techniques have some advantages over other tree drawing strate-

gies. First, as one of the space-filling techniques, they usemore implicit containment and

geometry characteristics to present a hierarchy than tree drawing algorithms. The later

utilize edges between nodes to indicate parent-child structure [39]. Second, compared to

treemaps, radial space-filling techniques are better in conveying the hierarchical structure

[40, 41, 39]. However, radial space-filling techiniques have a drwback, the small slices of

the clustering result are difficult to distinguish. This shortcoming in overcome by using

14



context+focus [21].

2.4 Data Visualization vs. Quality Visualization

Visualization of data has been an important research topic for years. Data visualization

implies visualizing the data for analysis. Various displays such as Parallel Coordinates,

Scatterplot matrices etc. are used to visualize and analyzethe data. However, the validity

of the decisions made and information extracted by the exploratory data visualization

largely depends on the quality of the data. Quality of the data here refers to the several

differen types of qualities as discussed earlier. Therefore, visualization of the quality

along with the data has been identified as a critical researchtopic in recent years. This

creates two types of navigation namely navigation through the data space and quality

space. Navigation in the quality space refers to querying the quality of the data. However,

quality space and data space are interrelated in terms of navigation in one space provides

results in both the data and quality space.

In the recent literature[35], there are number of research activities focussed on visu-

alization of quality attributes of the data. XmdvTool research group has come up with

visualizing the data quality in the multi variate data visualization. However, the work

is limited to visualizing the data quality. We plan to extendthe work by conveying the

structure quality through visualization.

2.5 Other Quality Aware Systems

Widom et. al. proposed a data model called Trio system [42] which incorporated lineage

and accuracy of the data. Trio project combines and distillsthe existing DBMS to include

accuracy and lineage through an extension to SQL language. Trio provides querying in
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three interrelated components namely, data, accuracy and lineage. Accuracy of the data

implies the amount of confidence or uncertainty of the data, whereas lineage of the data is

the accuracy of the derivation. Trio system maintains the lineage of the data as it is derived

in the database allowing the queries to specify the expecteddata quality and lineage. Trio

system allows querying in the data as well as quality space. However, Trio system does

not deal with quality of abstracted data, nor with clustering. Trio system maintains the

quality of the data but there is no provision to improve or produce the quality that user

specifies.
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Chapter 3

QoS: Quality Driven Abstraction

3.1 QoS Framework

Figure 3.1: QoS Framework.

The system framework for QoS, depicted in Figure 3.1, consists of the following main

phases:

1. Pre-processing phase:We introduce a pre-processing phase to compute the quality-

performance trade-off. The computation is done using a multi-dimensional his-

togram which calculates density information. Two main components in this phase

are:
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1) A scalable data abstraction measure to quantify the data abstraction result is pro-

posed, called Multi-dimensional Histogram Difference Measure (MHDM). Other

measures [12] could also be plugged in.

2) The estimator calculates the performance-quality trade-off including confidence

intervals and time estimations for the process. This is at the heart of QoS, presenting

the analyst with various trade-offs before the process of abstraction commences.

2. Generation phase:This process generates an abstraction based on quality values

set by the analyst.

3. Post-processing phase:It combines the measure of the abstraction with quality of

the underlying dataset to determine the overall quality.

4. Interaction interface:This interface presents the performance quality trade off and

the final abstraction quality to the analyst.

3.2 QoS for Cluster Analysis

Summarization techniques for data abstraction summarize the data by creating a small

number of representatives to represent the underlying larger volume of data [10]. Clus-

tering is one such technique where cluster representativesare used to represent the data.

Since clustering is memory and computationally intensive,clustering of large databases

typically employs sampling as an pre-processing step for clustering [32][30]. Sampling

reduces the number of points to be clustered, thus making clustering computationally

practical for large databases.
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3.2.1 Quality Measure: MHDM

We now propose a measure of the data abstraction quality for high dimensional data.

The measure can be calculated before the abstraction is actually generated. This multi-

dimensional data abstraction quality measure which captures the co-relationships present

in a high dimensional dataset. The proposed measure, calledMulti-dimensional His-

togram Difference Measure (MHDM), is a histogram difference method. Histograms are

widely used for density and selectivity estimation [43]. Itcalculates the difference be-

tween the multi-dimensional histogram of the original dataset and that of the abstraction

generated from the data. For the measure we assume that the two multi-dimensional his-

tograms (original and abstracted) have same number of bins,with bin sizes corresponding

to the percentage of data falling into that bin. MHDM is the summation of the difference

between the corresponding bins. MHDM ranges from 0.0 to 1.0 with 0 implying the worst

case MHDM, and 1 indicating the best case.

One disadvantage of a multi-dimensional histogram is its inability to scale due its

high memory requirements [43]. Unfortunately we cannot utilize just 1-dimensional his-

tograms which are less costly, they fail to capture the correlation present in high dimen-

sional data. To overcome the space inefficiency of multi-dimensional histograms [43],

we encode the multi-dimensional histogram structure by explicitly associated the multi-

dimensional cell address with its cell content value. For example, Figure 3.2 represents

the formation of an encoded multi-dimensional histogram. For instance, the cell with di-

mension 1 at bin 5 and dimesnion 2 at bin 2 and dimension 3 at bin1 having a value of 6

would be encoded explicitly by the pair ”5*2*1 : 6”.

Building the encoded multi-dimensional histogram:Assume the input tuple with

d dimensions with data valuesv1,v2,..vd.

Step I: We partition each of thed dimensions into a number of distinct partitions. For
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simplicity, we’ll assume here that there are exactlyn such partitions for each dimen-

sion, though other more sophisticated strategies could be employed for bin sizing

in the future.

The partitioning of the dimensioni is denoted asui
1
, ui

2
, ... ui

n with n the number of

partitions. For each input tuplev1,v2,..vd, we determine which binb of dimension

i its ith valuevi falls into. Given that each tuple value is mapped to a particular

partition, we haved partition numbers for a given input tuple. Let us denote thisby

u1

i1,u
2

i2,..u
d
id, with ij the partition number for the dimensions. Thus, the number of1-

dimensional partitions formed directly influence the number of multi-dimensional

bins formed.

Step II: We encode the multi-dimensional bin from partition numbersobtained from

each dimension by appending the bin numbers into one code,u1

i1u
2

i2..u
d
id is the

multi-dimensional bin corresponding to the example input tuple above. Thus, if

most of the d-dimensional cells remain empty, our histogramis relatively small.

Most real datasets are very sparse in nature (confirmed by ourexperimental study

in Section 7). Thus this technique saves a lot of memory in practice.

Figure 3.2: Formation of encoded multi-dimensional histogram.

Encoded Multi-dimensional Histogram Properties:

1. Every encoded multi-dimensional bin is unique. This implies that every point will

fall into only a single bin.
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2. Similar data will fall into the same encoded bin.

3. We do not encode empty bins as bins are formed only when data isto be encoded.

This is a major advantage of our multi-dimensional histogram measure in practice

as the real datasets are sparse, we do not waste memory using this approach.

MDHM can be expressed by the following equations:

Pbi = |Poi − Psi| (3.1)

wherePoi is the percentage of data that falls into the i-th bin of the original histogram,

Psi is the percentage of data that fall into the i-th bin of the abstracted histogram, andPbi

corresponds to their bin difference.

Ph =
N

∑

i=1

Pbi =
N

∑

i=1

|Poi − Psi| (3.2)

where Ph is the histogram difference, and N is the number of bins.

MHDM = 1.0−
Ph

MAXPh

(3.3)

whereMAXPh is the maximum histogram difference.

Noise Elimination: Real world data is often fraught with noise. Noise elimination is very

crucial for high quality abstractions. The multi-dimensional histogram of the original data

is thus regulated to filter noise. Noise elimination phase consists of eliminating all the

bins whose bin count is below a threshold (γ). This thresholdγ can either be empirically

determined (explained in the experimental section) or set by the analyst. The bin count of

a multi-dimensional bin will be below a threshold if:

• The point is a random noise generated by the source.

21



• The point belongs to the edge of a cluster.

Figure 3.3: Existence of noise in datasets.

Figure 3.3 displays a grid representing a 2-dimensional histogram placed over the

data. Ignoring points from low bin counts may have the side effect of ignoring points

from the edge of the clusters. However, since we are interested in picking more points

from near the center of the cluster rather than its edges, ignoring points from the edges

effectively adds more weight to the points in the center. This improves the abstraction

quality, as our experimental study confirms (see Section 7).It also decreases the number

of multi-dimensional bins to be maintained, increasing theefficiency of the QoS estimator

(as further described in Section 3.2.2).

3.2.2 QoS Estimator

The QoS estimator computes the performance-quality trade off by generating a look-up ta-

ble to indicate the relationship between quality and performance values. This is achieved

by computing a relationship between MHDM, sampling level and time required for clus-

tering. Fig 3.4 intuitively represents the look-up table generated by the QoS estimator.

The QoS estimator enables the analyst to set the desired quality level in terms of data ab-

straction quality measure and then to be able to infer time required for clustering. Since

sampling is the preliminary step for clustering, the abstraction quality largely depends on
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the sampling. If the samples chosen for clustering do not represent the original dataset

well, the abstraction quality of the clusters can be low. Thus, data abstraction quality is

determined by sampling. Various sampling techniques are defined in the literature which

can be used in this framework. Palmer et. al devised the strategy of density biased sam-

pling [25]. Density biased sampling is a probability based approach which enables us to

sample more from a dense region and less from a sparse region.

Figure 3.4: Sample look-up table created by QoS estimator.

According to density biased sampling [25]: Suppose that we have n valuesx1, x2, . . .

xn that are partitioned into g groups that have sizesn1, n2,, ng and we want to generate a

sample with expected size M in which the probability of pointxi is dependent on size of

the group containingxi.

To bias the sample size, the probability function is defined as:

f(ni) =
β

ne
i

(3.4)

whereni is the number of points in group i and e is a constant. Number ofpoints selected

from group i:

n = f(ni) ∗ ni (3.5)

We defineβ based on the sample size:

E(sample size) =

g
∑

i=1

E(size of group i) (3.6)
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M =

g
∑

i=1

nif(ni) =

g
∑

i=1

ni

β

ne
i

(3.7)

β =
M

∑g

i=1
n1−e

i

(3.8)

Group formation : It is very important to form proper groups for density biased sampling

[25] to be effective.The group assignment is done by using the encoded multi-dimensional

histogram. The number of bins in the multi-dimensional histogram is equal to the number

of groups. Each bin is treated as group of points as defined by density biased sampling.

Algorithm for estimation using density biased sampling:

Input: x= Initial sampling rate

α = Increment in the sampling rate.

Algorithm 1 Populating look-up table
/*Populating thelookup table for performance quality trade off. Initialize by setting M
← x, calculatingβ from equation 5*/

1: while (MHDM ≤ 1) do
2: for eachbin ∈ multi-dimensional histogramdo
3: Number of points selected from each group from Equation 7 ;
4: end for
5: Compute MHDM for M ;
6: Compute time and confidence interval;
7: Updatelookup table with sampling rate and MHDM;
8: M←M+α, computeβ ;
9: return to 1

10: end while

Output: lookup table of performance quality trade off.

Look up table is generated after the multi-dimensional histogram for the original data

is formed. Starting with sampling levelα, number of points falling in each bin are cal-

culated. This enables us to calculate MHDM for sampling level α. It is repeated until

MHDM reaches the maximum value of 1.0. The look up table (as shown in Fig.3.4)will

have a sampling level, minimum quality level followed for the sampling and the time re-

quired for the process to complete. Whenever an analyst chooses a quality value, value
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closest to it is returned. The granularity of quality-performance trade of is decided by

setting small values forα.

3.2.3 Interaction Interface

The interaction module presents the quality estimations ofthe estimator to the analyst. It

allows the analyst to attain information on the quality performance trade off and helps in

decision making. The analyst can set one of these three values namely, data abstraction

quality (MHDM) value, sampling rate and time for completionof the clustering process.

Thus, three cases emerge:

• Analyst sets the desired data abstraction quality and the QoS would indicate implied

sampling rate and estimated time for the clustering processto complete.

• If the analyst sets the sampling rate then the best possible quality measure achiev-

able would be indicated along with the expected time for the clustering process to

complete.

• If the analyst sets the time for clustering, QoS indicates corresponding sampling

rate to be utilized and the achievable data abstraction quality during the allotted

time.

Figure 3.5: QoS sampling interface.
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3.2.4 Abstraction Generator

Once the analyst decides the quality and other performance setting he desires, interaction

interface passes the sampling level to the abstraction generator. Abstraction generator

samples the database using density biased sampling with a sampling level set by the inter-

action interface. Abstraction generator then passes the generated samples to a clustering

algorithm. We can use any existing clustering technique [10, 32, 30] to cluster the data.
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Chapter 4

Inclusion of Data Quality

4.1 Total Data Abstraction Quality

Including the quality of the underlying data in the abstraction result is post processing

step. MHDM of the data clustered is identical to the value setby the analyst in the

pre-processing phase. However, we can also evaluate the performance of the clustering

algorithm using a quality measure [14]. One possible clustering quality measure can be

average distance of every point from the cluster centers[14]. Once clusters are formed,

we can plug these clustering quality measures to find the quality of clustering performed.

MHDM can be visualized as a global measure on the entire dataset, where as clustering

quality measure gives quality value for each cluster formed.

Every tuple can have quality attributes attached to it. In our earlier work [35], we

visualized data quality to have the configuration describedin Fig. 2.1. Where, every

attribute has quality to it. Record quality value describedthe quality of the entire tuple,

where as dimensional quality describes a quality value for the entire dimension. We only

consider the record quality associated with the tuple.

Every cluster consists of data points of the original dataset. Thus, to calculate total

abstraction quality, we first calculate data quality of eachcluster. To calculate data quality

of a cluster, we calculate data quality of all its members using some statistical function.
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Many alternative methods are possible, namely

• Arithmetic mean and standard deviation

Median values

• Geometric mean (assuming geometric distribution)

• Root mean square arithmetic mean

We assume the distribution of data quality values to be uniform. Therefore, we choose

to represent the data quality of clusters using the arithmetic mean of the record qualities.

CDQ =

∑n

i=1
RecordQuality

n
(4.1)

• CDQ: Cluster Data Quality

• Record Quality: Quality of the record.

• n: number of points in the cluster.

Thus, the total data abstraction quality can be calculated as the weighted average of cluster

data quality, cluster quality and abstraction quality:

TAQ =
α ∗ CQ + β ∗ CDQ + λ ∗MHDM

3
(4.2)

• TAQ: Total data abstraction quality

• CQ: Cluster quality

• α: Weight associated with clustering quality

• CDQ: Cluster data quality;

• β: Weight associated with the data quality;
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• MHDM is the abstraction quality;

• λ is the weight associated with abstraction quality.

α, β andλ can be user set parameters or can be set to 1 to have arithmeticaverage.
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Chapter 5

Cluster Hierarchy Visualization:
InterRing Display

5.1 Cluster Visualization

The purpose of cluster hierarchy visualization is to enableusers to visualize, interact

and navigate the cluster hierarchy in both data and quality space. As discussed earlier,

Radial Space Filling(RSF) display have several advantagesover the traditional node link

diagrams. Thus, we use InterRing display, which is adaptation of a visualization technique

called Sunburst by Stasko and Zhang [39] to visualize the cluster hierarchy in the data

space as well as quality space. The InterRing display has thefollowing properties [21]:

• Deeper nodes of the hierarchy are drawn further from the center;

• Child nodes are drawn within the arc subtended by their parents;

• The sweep angle of a leaf node is proportional to the cluster radius;

• The sweep angle of a non leaf node is the aggregation of all itschildren;

• Color is used to depict the hierarchical structure in the data space and total abstrac-

tion quality in the quality space.
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• Provision of interactive brushing to analyst so that they can select cluster and view

its properties such as total abstraction quality and modifyit properties such as name

of the cluster.

• Implementation of various other tools such as drill-down/roll-up, zooming in/zooming

out operations for InterRing display.

Figure 5.1 shows our cluster hierarchy dialog. Various properties of the InterRing

display are depicted in the figure.

Figure 5.1: InterRing display with labeled components.

5.1.1 Navigation Tools

We provide various navigation tools to allow an analyst to interact and navigate through

the cluster hierarchy. These navigation tools can be used tonavigate through data as well

as quality space.

The navigation tools provided are as follows [21]:

• Distortion:Distortion is a process that results in enlargement selected parts of a

display while reducing the screen allocation of other parts. It is helpful in helping

the users examine details of the display, and make other interactive operations,

such as selection, easier to perform. There are several approaches to distortion

31



to provide focus + context in a radial space filling display [39]. In our InterRing

display we provide two types of distortion namely circular and radial distortions.

These distortions are easy to use by the users and does not require any extra space

for the focus + context display.

– Circular distortion: The basic idea for circular distortion is:

∗ A distortion is limited to the angle range of the parent node;

∗ A node is increased or decreased in size by decreasing or increasing the

size of the siblings;

∗ When the sweep angle of a non-leaf node is increased or decreased, all

its children’s sweep angle is increased or decreased proportionally so that

they are always in the angle range of of the parent node.

∗ A minimum angle in set for the hierarchy, which is inversely proportional

to number of leaf node contained in the hierarchy.

Circular distortion is helpful for the analyst to select a particular cluster by

clicking on a particular edge of the node and analyzing a particular child. Fig-

ure 5.2 displays the circular distortion for the InterRing display. In data space,

the circular distortion is helpful in studying the child nodes of a particular

cluster and in the quality space it helps in understanding the lineage of quality

of a particular node and its children.

– Radial distortion: Similar to circular distortion, radialdistortion enables an

analyst to select a radial edge and distort the display. The maximum radius

of the RSF does not changed by distortion. Analyst can pin a radial edge and

the thickness of the pinned layer is expanded or contracted by contracting or

expanding the thickness of the layers on the dragged edge side. Figure 5.3

displays the radial distortion for analysis of higher nodesin the hierarchy. In
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Figure 5.2: Circular distortion in the InterRing display.

data space, it helps in understanding the cluster at a particular level in the

tree (studying siblings of a particular node) and in the quality space, helps in

comparing quality of siblings.

• Drill-down/Roll-up: Drilling-down/Rolling-up are used to show/hide all the de-

scendants of a cluster. It helps the user to prevent the display of branches that are

not of interest for the current analysis. Figure 5.4 displays the drill-down/roll-up

operation in the InterRing display. In data space, it helps in concentrating on a

sub-tree and in the quality space, it helps in understandingthe quality lineage of a

particular sub-tree.

• Zooming and Panning: Zooming in/out allows analyst to enlarge the canvas and

move around the details of the display.

• Rotation: In rotation mode, InterRing display rotates around the its center in clock

wise as well as anti-clockwise direction using a mouse click. This operation helps

users rotate clusters of interest to particular angles and avoids cluttering the labels
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Figure 5.3: Radial distortion in InterRing display.

of the selected clusters. This operation is helpful in orienting the cluster tree to

enable the user to study a particular sub-tree.

• Selection: The purpose of selection is to isolate a node or a set of nodes in the

hierarchy. These nodes can be used for further quality analysis or renaming the

cluster name. Figure 5.5 displays the selection feature of the InterRing display.

• Cluster naming feature: Analyst can select the cluster and rename the cluster to

enable them to associate names with the cluster. For examplethe largest cluster,

most important cluster or cluster under current analysis can be named accordingly.

Figure 5.6 displays the cluster naming feature of the InterRing display.

5.2 Cluster Quality Visualization

We convey the quality attribute present in the clusters using the InterRing display. There

can be various approaches to convey the total abstraction quality of the clusters, for ex-

ample using the brightness, hue, width(sweep angle) of the clusters or colors. Width of
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Figure 5.4: Roll up operation in InterRing display.

clusters can change the analytical property of the InterRing. For example, if the analyst

wants to know the total abstraction quality of the largest cluster in the hierarchy, mapping

the quality according to the width of the cluster might change the visualization. Thus,

from brightness, hue and color, we choose color to representthe total abstraction quality

of the cluster.

We define a mapping functionf, which maps a particular quality value to the appro-

priate color. For examplef maps perfect quality to green color and worst quality to red

color. We use this mapping function to graphically map the cluster using the following

function:

G(v, x, f) where:

• v: Visual variable used to draw the cluster

• x: Numerical value of the total abstraction quality

• f: Mapping function for color mapping

The color representation of the quality can be shown in Figure 5.7
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Figure 5.5: Selection feature in Interring Display

Figure 5.6: Cluster Naming feature in InterRing display.
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Figure 5.7: Color denoting data quality in InterRing display.
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Chapter 6

Implementation

6.1 UML Components

6.1.1 Use Case Diagram:

The interaction of the user with the QoS framework can be depicted using Figure 6.1.

Figure 6.1: Usecase for QoS framework.

User interacts with the QoS franework using the interactioninterface. User once

satisfied by the time and quality achievable starts the clustering process. QoS then uses

the parameters set by the users for clustering the data. Datais clustered in the XmdvTool

using adapted Birch algorithm. This algorithm creates clustering tree and InterRing tree.
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Cluster tree is used to navigate in the structured space using the structure based brush in

heirarchical displays. InterRing tree is used to create theInterRing visualization for data

clustering. The user can interact with the clustering result using the InterRing display.

Various navigation and interaction tools can be used as discussed in chapter 5.

6.1.2 Class Diagram

The class diagram of the QoS framework along with the clustering process in the Xmdv-

Tool can be represented in Figure 6.2.

Figure 6.2: Class diagram for QoS framework.

Class OnlineClustering is reponsible for clustering of data and dimensions in Xmd-

vTool. This class is the parent class for classes OnlineDimClustering (used for dimen-

sional clustering) and OnlineDataClustering (used for data clustering). Class CCluster-

Data is a class that holds the clustering result. CClusterData is associated with CInter-

ringClusterTree which is used for displaying the results inthe InterRing visualizations.

CInterRingClusterTree is associated with CInterRingCluster in one-to-many mapping.

CInterRingClusterTree is the parent class for CInterRingDataClusterTree (used for data
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clustering) and CInterRingDimClusterTree (used for dimensional clustering). Similarly,

CInterRingCluster is a parent class for CInterRingDataCluster and CInterDimCluster.

Class CInterRingDisplay is the base class for displaying the InterRing tree. CInter-

RingDatDisplay and CInterRingDimDisplay are the derived classes used to display the

dimensional and data InterRing respectively. Class CDisplay is the base class for display-

ing the OkcData in Xmdv. CInterRingDisplay derives the CDisplay class. Thus, we make

use of multi-level inheritance to cluster the data and display it in the InterRing.
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Chapter 7

Experimental Study

We have evaluated the framework using both real and synthetic datasets. The frame-

work is integrated into XmdvTool, a public domain data visualization tool [44] developed

at WPI. Experiments were conducted on Pentium 4 (1.66 GHz) running on Microsoft

Windows XP with 1.0 GB RAM. We have conducted various experiments for different

components of QoS.

7.1 Savings Using Encoding Approach for Multi-dimensional

Histogram

In this experiment, we formed encoded multi-dimensional histograms for various real

high dimensional datasets such as Iris, Out5d, Cars, Aaup, Censusincome and Supercos2

[44]. Figure 7.1 displays the comparisons of the number of bins actually formed and the

maximum number of bins possible. As seen from Figure 7.1, savings (difference between

maximum possible bins and bins actually formed) increases enormously by using the

encoded bin approach. This proves the fact that the real datasets are sparse in nature and

our encoding based approach indeed saves memory in practice.
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Figure 7.1: Savings for real datasets.

7.2 Effects of Increasing Number of 1-dimensional Par-

titions

One of the important factors affecting the savings using theencoded approach is the num-

ber of 1-dimensional partitions. The savings increase greatly if we form larger number

of partitions. However, as the number of 1-dimensional partitions increases the number

of multi-dimensional bins increases exponentially. According to Sturges’ Rule [23], the

number of bins can be based on number of data points. Sturges’Rule is:

Number of bins= 1 + log
2

Number of data points (7.1)

However, using the sturges rule to form 1-dimensional partitions leads to formation of

large number of multi-dimensional bins. Figure 7.2 represents the effect of increasing the

number of partitions on number of multi-dimensional bins formed and thus the MHDM.

From Figure 7.2, it can be seen that by increasing the number of 1-dimensional partitions

the MHDM at a particular sampling rate decreases. Thus, by forming more 1-dimensional

partitions better MHDM accuracy can be achieved. However, this adds the overhead

of maintaining a large number of bins and effects the performance of QoS estimator.
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Therefore, we use an adapted Sturges’ Rule and form the bins as:

Number of bins= 1 + log
2
(Number of data points)/3 (7.2)

Figure 7.2: Effect of increasing number of 1-d partitions for Aaup dataset.

7.3 Conformance with Cluster Quality Measure

For this experiment, we used synthetic datasets generated with a known number of clus-

ters. We compare the clustering result of the dataset without sampling and after applying

QoS. We used a K-means algorithm to find the RMS error [14] between the cluster centers

of the original datasets and those of the abstractions generated by QoS. RMS error (ǫ) can

be defined as:

ǫ =

√

∑m

i=1
(ci

o − ci
s)

2

m
(7.3)

With ci
o: original cluster center;ci

s: cluster center of the abstraction; m: number of clus-

ters.

Figure 7.3: Decrease in RMS error with increase in MHDM.
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As seen from the Figure 7.3, with the increase in MHDM the accuracy in finding the

cluster centers increases and RMS error decreases.

7.4 Need for Noise Elimination

For this experiment, we calculate the average distortion ofthe dataset. Average distortion

is the average distance of a datapoint from its cluster center. Figure 7.4 represents the

average distortion with and without noise elimination phase. It can be noticed that in

absence of the noise elimination phase, with an increase in MHDM (and thus, the chosen

sampling level) the average distortion increases. This is because of the introduction of

noise in sampling. Thus, we introduced a noise elimination phase,γ was set at 0.2 percent,

eliminating all the bins below the threshold. With the introduction of the noise elimination

phase, the average distortion decreases linearly with the increase in MHDM. Since, K-

means clustering algorithm was used, the number of clustersformed remains the same.

In short, noise elimination stage facilitates formation ofdense clusters.

Figure 7.4: Average distortion with and without noise elimination for various real
datasets.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

Data abstraction quality has implications in many areas such as information visualization,

data warehousing and so on. In this thesis, we have proposed aframework to handle

quality associated with abstractions at all levels. The contributions of this thesis can be

summarized as:

• Multi-dimensional abstraction quality measure to quantify the abstraction quality.

• Density based sampling to empower users to set the abstraction depending on the

time/quality requirement.

• Cluster visualization using InterRing display to visualize data and quality.

We have implemented the QoS framework in XmdvTool. Our experiments confirm

the merits of our approach.
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8.2 Future Work

This work can be extended in the future in many directions, such as

• Using dimensional quality to compute the total abtraction quality.

• Using other visual attributes such as brightness to map the cluster quality.

• Enabling the user to re-cluster the dataset using only a subset of the cluster tree and

study the resulting quality of the new cluster tree.

• Allowing the user to select a clustering algorithm and tweakthe clustering criteria

based on domain knowledge.

• Creating sampling hierarchy (which is cheaper) instead of clustering hierarchy

which can be built on the fly and re-sample based on user preferences.
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