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Abstract

Data abstraction is the process of reducing a large datasebne of moderate size,
while maintaining dominant characteristics of the origa@aset. Data abstraction qual-
ity refers to the degree by which the abstraction represemgsnal data. Clearly, the
guality of an abstraction directly affects the confidenc@maalyst can have in results de-
rived from such abstracted views about the actual data. &\#aime initial measures to
guantify the quality of abstraction have been proposed; thierently can only be used
as an after thought. While an analyst can be made aware ofuiléygof the data he
works with, he cannot control the desired quality and theédraff between the size of the
abstraction and its quality. While some analysts requiesat a certain minimal level of
quality, others must be able to work with certain sized ausion due to resource limi-
tations. consider the quality of the data while generatimglastraction. To tackle these
problems, we propose a new data abstraction generationljuadled the QoS model,
that presents the performance quality trade-off to theyabahd considers that quality of
the data while generating an abstraction. As the next dtgenierates abstraction based
on the desired level of quality versus time as indicated byatialyst. The framework has
been integrated into XmdvTool, a freeware multi-variatewdésualization tool developed
at WPI. Our experimental results show that our approachiges\better quality with the

same resource usage compared to existing abstractioriqeelsn
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Chapter 1

Introduction

1.1 Multi-dimensional Visualizations

The amount of data generated due to technological advasiee®imous. Most data gen-
erated and collected is a valuable source of informationwéder, finding the information
from the huge amount of data is a difficult task. One approsith present the human an-
alyst the data in graphical form. This allows the analystply his perceptions to make
sense of the data and derive conclusions. This approached tdata visualization”.
Multivariate visualization is one subfield of data visuatipn that focusses on multi-
dimensional datasets. A multi-dimensional dataset carefieet as a set of data items
D, where the'" data itemd; consists of a vector with n variables;,{, z;2, ..., z;»). Each
variable may be independent of or interdependent with omeave of the other variables.
Variables may be discrete or continuous in nature, or tak&yarbolic (nominal) values.
Many multivariate visualization techniques and systenveleanerged during the last
three decades, such as glyph techniques [1, 2, 3, 4], dazatiedinates [5, 6], scatterplot
matrices [7], pixel-level visualization [8], and dimens#&d stacking [9]. Each method has

strengths and weaknesses in terms of the data characteastl analysis tasks for which



it is best suited.

Recently lots’ of attention has been focussed on visuatinalf large high-dimensional
datasets. Though there are various methods availabled$tnaaling the large datasets and
visualizing them. There is no way to validate or more impattiato control the quality

of abstraction that is generated.

1.2 Motivating Example

Data abstraction techniques are commonly used to faeilita¢ efficient detection of
patterns in large datasets and for analyzing a huge databtssut having to actually
explore the original data [10]. Thus, analysts typicalljemcharacteristics of large
databases by analyzing the abstracted dataset and raimetotbking at the full data.
Some abstraction techniques select a subset of the orgptedet as its abstraction, such
as sampling and filtering, while others construct a new abgsummary representation,
such as clustering and summarizing [10]. Tasks conducteeddoan abstracted data in-
clude pattern detection, cluster analysis, outlier angly@ibspace cluster analysis, fil-
tering and sample analysis [10]. Figure 1.1 presents an jgeaofi a dataset and its ab-
stractions. The visualization technique used, calledlighordinates [11], is a popular
multivariate visualization technique.

Since the analyst may rely on the abstraction visualizatiasterive conclusions, the
quality of the abstraction needs to be validated. A good dbstraction represents all the
main features of the original dataset. Since the abstraaié-igure 1.3 captures all the
clusters present in the original dataset (Figure 1.3(agjrabtion is considered to be of
high quality. Whereas the abstraction in the Figure 1.3 @edssit on a small cluster, thus
the abstraction can be considered to be of low quality. Lé&kowledge regarding qual-

ity of the data one works with can lead to inaccurate resaltpgrdizing the reliability
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Figure 1.1: Figure on the left displays the cars datasetiewhgures on the right repre-
sents sampling of the cars dataset and cluster centerssoflataset.

of conclusions gleaned from the abstraction. Validatirggghality of abstraction is made
difficult due to lack of data abstraction quality measureighdugh some initial measures
[12] have been recently proposed to measure the data aiwtrabose measures do not
scale well to higher number of dimensions. Furthermoreakabte data abstraction mea-
sure by itself does not solve the problem. The main probletinedack of consideration

about the desired quality by the abstraction generatiooga®before its commencement.
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Figure 1.2: Visualization of the original dataset cars.

To further complicate matters, we note that most systemstlamnsl users of these

systems assume that the raw data itself is always good. Hmwesal-world data is
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Figure 1.3: Abstraction of dataset cars Figure 1.4: Abstraction of dataset cars
capturing all clusters. missing out on a small cluster.

known to be imperfect, suffering from various forms of dé$esuch as sensor variability,
estimation errors, uncertainty, human errors in data eatgy gaps in data gatherinpata
quality refers to the quality of the underlying data used for theraloibn generation. If
the quality of the underlying data is not considered duribgti@ction generation, the

guality of an abstraction is endangered.
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Figure 1.5: Low quality data in the origi- Figure 1.6: Effect of low quality data on
nal dataset. abstraction visualization.

Consider the Figure 1.5, the cluster marked is of low qualiitthe data quality of the
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underlying data is ignored during the abstraction genamathe resulting clusters (Figure
1.6)) may have good abstraction quality. The quality of iz$ton also depends on the
underlying data quality of the raw data used for clusterifigus, data quality should be

considered during abstraction generation to calculatéashdbstraction quality.

1.3 Problem Definition

Figure 1.7: Process Flow Existing Data Abstraction Sotutio

Figure 3.1 sketches the process most commonly used by elfistrgeneration sys-

tems [13] [14]. Predicaments of such a process include:

e Quality measures, if available at all, are plugged in onlyaasafter-thought to

calculate the quality of a given abstraction.

e Data abstraction is a one way process. Thus, when an analystajes an abstrac-
tion, he in unaware of the abstraction quality until aftex &bstraction process has
been completed. In some sense he blindly completes theaatistr process and

hopes for the best that the quality abstraction will be ataddp.

e Furthermore, the analyst doesn’t know how much time theyshexpect to have
to wait for the completion of the abstraction process. Henoaechedule a process

based on the time or task at hand.



e Data quality is not taken into account. As discussed eaifihre data is imperfect
(or of low quality), the abstraction result should also rflhe underlying data

quality.

e Analyst cannot visualize the quality of abstraction.

1.4 Goals of the Thesis

In this thesis, we intend to explore a new approach to qualsed data abstraction gen-
eration and visualization. It allows the user to control thmlity of abstraction to be
generated, allowing him to interact with the system andrgggither performance or
guality value and QoS will generate the abstraction baseti®settings. Goals of QoS

are:

e to present the analyst with a quality-performance tradenalitating the different
values of quality measures achievable and time requirethéoprocess to generate
them. Using these computations, analyst can demand aylesiéti beforehand or
he can request a certain performance, knowing what quaityah expect and QoS

will generate the abstraction accordingly.

¢ to take into consideration both the data abstraction quatitl underlying data qual-

ity to calculate a complete data abstraction quality measur

e to provide a way to visualize the abstraction quality usindgrderRing display

1.5 Approach in a Nut Shell

To overcome the above identified problems, we propose to mbg&gaction generation

guality aware by adding a new layer of estimation. The apgr@an be divided into four



steps:

1. Density Estimation: In this step, we estimate the derddithe dataset by creating
a multi-dimensional histogram. The multi-dimensionatbigam keeps a track of

number of bins formed and data points falling into each bin.

2. Formation of look-up table: Using density-biased sangpiive calculate the data
abstraction measure for various sampling levels and tiopeired for the clustering

process to complete.

3. Abstraction Generation: Once the analyst selects acpéati quality value, ab-
straction is generated. Data quality of the clusters isutaled and total abstraction

quality is calculated for the clusters.

4. Cluster Visualization: Clusters formed are visualizethg the InterRing display.

1.6 Thesis Organization

Recent research regarding data abstraction for large datdsets, different forms quality,
cluster visualization and other quality aware systems aneeyed in Chapter 2. Chapter
3 presents details of the QoS approach. Chapter 4 desribascdiision of data qualit in
QoS. Visualizing and navigation through the clusteringilteis explained in Chapter 5.
Chapter 6 presents our implementation in the XmdvTool. Veeulis our ecperimental

evaluation in Chpater 7. Conclusions and open questiondiscassed in Chapter 8.



Chapter 2

Background

2.1 Data Abstraction for Large Scale Explorations

There are many approaches towards visualizing large-stalé-dimensional data sets,
such as pixel-oriented techniques (including spirals,[@&gursive patterns [8], and circle
segments [16]), multiresolution multidimensional wave[d 7], pixel bar charts [18], and
interactive hierarchical displays [19, 20, 21].

Hierarchical Parallel Coordinates [22] is one of the intéxe hierarchical displays
[21] developed for visualizing large multidimensional @aets in the context of our
XMDV project. Since displaying a large number of data itemb gutter the screen,
Hierarchical Parallel Coordinates group the data items anthierarchical cluster tree. A
set of clusters selected from a certain level of detail inhferarchical cluster tree is
visualized on the screen instead of all the data items in ditee skt. The clusters are visu-
alized by center lines and bands which respectively reptése mean points and extents
of the clusters. The same framework used to develop HiecaicRarallel Coordinates
has been also applied to Hierarchical Scatterplot Matridesrarchical Star Glyphs, and

Hierarchical Dimensional Stacking. Details of these cafolb@d in [20].



Hierarchical Parallel Coordinates uses clustering toinllee hierarchical cluster tree.
However, other abstraction techniques such as samplintustecing can also be used.

Sampling and clustering are well studied in literature.

2.1.1 Sampling

Sampling is a form of abstraction where the original datanfsoare used to create an

abstraction. Sampling has been extensively studied. @iftemethods of sampling are:

e Simple random sampling: Random sampling implies that estats point has equal
probability of being selected in the sample [23]. Randomdarg has an advan-
tage in terms of its simplicity and ease of implementatioowver, random sam-
pling has a disadvantage in terms of not including data pdnoim small cluster.
Olken et. al. [24] introduced a sampling operator into DBMBhvthe goal to
increase efficiency. By embedding the sampling within therguevaluation, one
can reduce the amount of data which must be retrieved in todarswer sampling
gueries. Sampling can be used in the DBMS to provide cheamagsts of the
answers of aggregate queries. Sampling may also be usetin@atesdatabase pa-
rameters used by the query optimizer to choose query evahyaiins. Olken et. al.
[24] then introduced the idea of weighted random samplingubh sampling from

B+ tree, hash files and spatial data structures (includitige®s and quadtrees)).

e Stratified random sampling: Stratification is the procesgrofiping members of
the population into relatively homogeneous subgroupstoats’ before sampling.
Strata should be mutually exclusive and collectively extiga [23]. Once strata
are formed, random sample is chosen from each strata. Theesare then com-
bined to form the overall samples. For the formation of sithe input data should

be discrete. It is not usefult when there are no homogenadgrsups and it can



be difficult to find and select relevent stratification valeshin presence of homo-

geneous subgroups.

e Density biased sampling: Density biased sampling is a tygeabability based
sampling where probability is assigned to a group of datd [Smppose that we
have N valuesr;, z,,... xn that are partitioned into g groups that have sizes
n1,M2,...,Ng. SUPPOSE We want to generate a sample with expected size Miatnw
the probability of pointz; being in the sample is dependent on the size of the group

containingz;. The density biased sample has the following propertiep [25
— Within a group, points are selected uniformly.
— The sample is density preserving.
— The sample is biased by group size.

Thus, density biased sampling preserves the density artdreapeven the small

clusters present in the dataset.

Random sampling vs. Density biased samplingfor the purpose of QoS, we need
to estimate the quality values before sampling. Every tpaklue is calculated for a

particular sampling rate. With random sampling, for a gattar sampling rate there can
be various quality values possible. Whereas with densétgdd sampling, a quality value

is associated with only one sampling rate.

2.1.2 Clustering Algorithm

There are two basic types of clustering algorithms [26, 24tiponing [28, 29] and hi-
erarchical algorithms [30, 31, 32]. Partitioning algonith divide all the data points into

a given number of clusters, while hierarchical algorithmaastruct a hierarchical clus-
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ter tree by recursively splitting the data set into smallasters until every leaf cluster
contains only one or a few data points.

The k-means algorithm is a popular partitioning algorithinpicks k cluster centroids
and assigns points to the clusters by picking the closestaidrio the point in question.
The centroids of the clusters may shift when new points ade@dnto clusters so the
process may need to be repeated. BFR [29] is an algorithnu lwask-Means algorithm.
It intends to cluster large data sets that cannot be loadethia main memory at one time
by identifying regions of the data that are compressiblgiores that must be maintained
in memory, and regions that are discardable. This algonitlomks best if the clusters are
normally distributed around some central points.

CURE [30] is a sampling-based hierarchical clustering iallgm for large data set.
Compared with k-means approaches, which work well only fosters that are neatly
expressed as Gaussian noise around a central point, CURBres nobust in that it is
able to identify clusters having non-spherical shapes ade wariances in size. CURE
achieves this by representing each cluster by a certain fiweaber of points that are
generated by selecting well scattered points from the etustd then shrinking them to-
ward the center of the cluster by a specified fraction. Hawioge than one representative
point per cluster allows CURE to adjust well to the geomefman-spherical shapes and
the shrinking helps to dampen the effects of outliers. Tadlafarge databases, CURE
employs a combination of random sampling and partitioniAgandom sample drawn
from the data set is first partitioned and each partition rsigdly clustered. The patrtial
clusters are then clustered in a second pass to yield theedesusters.

BIRCH [32] is another efficient clustering algorithm fordardata sets. In the BIRCH
algorithm, objects are read from the database sequerdiadlynserted into incrementally
evolving clusters that are represented by generalizedeclteatures (CFs). A new object

read from the database is inserted into the closest clastaperation which potentially

11



requires an examination of all existing CFs. Therefore BHRZganizes all clusters in an

in-memory index, a height-balanced tree called a CF-treealew object, the search for
an appropriate cluster now requires time logarithmic inrthenber of clusters as opposed
to a linear scan.

For high dimensional space, it is common that clusters oxilst @ some subspaces.
CLIQUE [33] is a clustering algorithm that is able to find diers embedded in sub-
spaces of high dimensional data. It identifies dense clistesubspaces of maximum
dimensionality. It generates cluster descriptions in trenfof DNF expressions that are
minimized for ease of comprehension.

Human interaction in the field of clustering was first introdd by K. Chen et. al.
[34] via the VISTA software. Using VISTA, the user is able &rficipate in the clustering
process by steering,monitoring or refining the clusterimagpss. VISTA allows the user
to improve the clustering process by introducing their dorkaowledge in the clustering
process. However, VISTA deals with small and moderate d&tas

In this thesis, we tend to use the existing abstraction fegchof clustering and make

them quality aware.

2.2 Forms of Qualities and Quality Measures

2.2.1 Abstraction Quality

Abstraction quality captures how well the abstracted ddt@&presents the original dataset.
It quantifies to what degree the abstraction is an appraprigatresentation of the original
dataset. As discussed earlier, if the abstraction missesrociusters present in the orig-
inal dataset, then the abstraction is said to be of low quaitecently some abstraction
measures are introduced in the field of information visaaian. Cui et. al. [12] proposed

a histogram based measure. Our measure is an extension to[ HI)iapturing the co-

12



relationships between the dimensions using a multi-dimoeas$ histogram. Details on

our quality measure MHDM are described in Chapter 3.

2.2.2 Data Quality

Data Quality [35] denotes the degree of uncertainty abautitita. High quality indicates
that data is of high certainty and reliability. The varidilof data quality has many
causes such as data accuracy, completeness, certairdigteogy, or any combination of
these. It can also include statistical variations or spreadrs and differences, minimum-
maximum range values, noise, or missing data [36]. Calicuiatf data quality is out of
scope of this thesis. More details about calculation of datdity can be found at [36].
In the Xmdv project, we employ scalar values to measure taiogy. The quality is

captured at three granularity namely individual data valaemplete records and specific

dimensions.

Aj:Value Vj: Value

i Ri: Record
n columns Quality 11 columns p

Quality

\AijAjz o A V11 Vi ... Vi R;/
A2 Az ... Ax Va1Var ... Vaon | Ra
mrows| ...... m+1 -
At Anz ... Amn O 1 Vi Vinz oo Vi | R
Dy Dlmenswor,D] D, ... D,

Quality
(a) Original Data (b) Quality Measures

Figure 2.1: Structure of data quality.

Figure 2.1 represents the data quality structure definedised in Xmdv. Quality at
individual data values is summarized at the record levelc&iclustering is performed
at the record level, we use the summarized record qualityevalstead of individual data
values and the specific dimensional values. Thus, we onlthiseecord quality values
and ignore the dimensional and individual data quality @allDimensional quality values
can be useful in dimensional clustering. The discussiontefjrating dimensional quality

values with dimensional clustering is out of the scope of thesis.
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2.2.3 Cluster Quality

Abstraction quality and cluster quality refers to the quyadif the hierarchical cluster tree.
Thus, we refer to abstraction quality and cluster qualitysaicture quality” depicting
the quality of the structure formed as a result of clusterif@ustering quality is the
evaluation of the results of clustering algorithm. One @ thiteria used to measure the
clustering quality is the compactness of the cluster. Catmggs can be defined as [14]
the closeness amongst the members of the cluster. Variandeecused as a measure of
caompactness. Due to its simplicity, we use variance aslastering quality measure.
Any other measure such seperation of the cluster [14] cankesused. We discuss our

clustering quality measure in greater detail in Chapter 3.

2.3 Cluster Visualization

Recent literature indicates that radial space-filling teghes work better in revealing hi-
erarchical structures than treemaps [37, 38], while alskimgeefficient use of the display
space. Sunburst [39] is an example of the radial spacegfitliararchy visualization tech-
nique. In Sunburst, deeper nodes of the hierarchy are drastimef from the center and
child nodes are drawn within the arc subtended by their pardime angle occupied by a
node is proportional to its size.

Radial space-filling techniques have some advantages tver tnee drawing strate-
gies. First, as one of the space-filling techniques, theynm®e implicit containment and
geometry characteristics to present a hierarchy than naeinlg algorithms. The later
utilize edges between nodes to indicate parent-child stre¢39]. Second, compared to
treemaps, radial space-filling techniques are better imeyong the hierarchical structure
[40, 41, 39]. However, radial space-filling techiniqguesdawdrwback, the small slices of

the clustering result are difficult to distinguish. This glsoming in overcome by using

14



context+focus [21].

2.4 Data Visualization vs. Quality Visualization

Visualization of data has been an important research tapigdars. Data visualization
implies visualizing the data for analysis. Various disglaych as Parallel Coordinates,
Scatterplot matrices etc. are used to visualize and an#tgzeéata. However, the validity
of the decisions made and information extracted by the eatoy data visualization
largely depends on the quality of the data. Quality of the degtre refers to the several
differen types of qualities as discussed earlier. Theegfoisualization of the quality
along with the data has been identified as a critical reseaguh in recent years. This
creates two types of navigation namely navigation throdghdata space and quality
space. Navigation in the quality space refers to queryiegjtrality of the data. However,
guality space and data space are interrelated in terms @jatan in one space provides
results in both the data and quality space.

In the recent literature[35], there are number of reseactiviies focussed on visu-
alization of quality attributes of the data. XmdvTool restagroup has come up with
visualizing the data quality in the multi variate data visetion. However, the work
is limited to visualizing the data quality. We plan to extahd work by conveying the

structure quality through visualization.

2.5 Other Quality Aware Systems

Widom et. al. proposed a data model called Trio system [42¢kvimcorporated lineage
and accuracy of the data. Trio project combines and digtidexisting DBMS to include

accuracy and lineage through an extension to SQL language pivides querying in
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three interrelated components namely, data, accuracyimeage. Accuracy of the data
implies the amount of confidence or uncertainty of the dateereas lineage of the data is
the accuracy of the derivation. Trio system maintains thedge of the data as it is derived
in the database allowing the queries to specify the expetatdquality and lineage. Trio
system allows querying in the data as well as quality spacavener, Trio system does
not deal with quality of abstracted data, nor with clustgrifirio system maintains the
quality of the data but there is no provision to improve orduee the quality that user

specifies.
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Chapter 3

QoS: Quality Driven Abstraction

3.1 QoS Framework

Figure 3.1: QoS Framework.

The system framework for QoS, depicted in Figure 3.1, comsigthe following main

phases:

1. Pre-processing phas&Ve introduce a pre-processing phase to compute the quality-
performance trade-off. The computation is done using airdirttensional his-
togram which calculates density information. Two main comgnts in this phase

are:
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1) A scalable data abstraction measure to quantify the destacation result is pro-
posed, called Multi-dimensional Histogram Difference gle@ (MHDM). Other
measures [12] could also be plugged in.

2) The estimator calculates the performance-quality tatimcluding confidence
intervals and time estimations for the process. This isah#art of QoS, presenting

the analyst with various trade-offs before the process sfrabtion commences.

2. Generation phaseThis process generates an abstraction based on qualitysvalu

set by the analyst.

3. Post-processing phasét combines the measure of the abstraction with quality of

the underlying dataset to determine the overall quality.

4. Interaction interface:This interface presents the performance quality traderaff a

the final abstraction quality to the analyst.

3.2 QoS for Cluster Analysis

Summarization techniques for data abstraction summaneelata by creating a small
number of representatives to represent the underlyingiamglume of data [10]. Clus-
tering is one such technigue where cluster representaigegsed to represent the data.
Since clustering is memory and computationally intensiWestering of large databases
typically employs sampling as an pre-processing step fosteling [32][30]. Sampling
reduces the number of points to be clustered, thus makirggeclag computationally

practical for large databases.
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3.2.1 Quality Measure: MHDM

We now propose a measure of the data abstraction qualityigbr dimensional data.
The measure can be calculated before the abstraction isllgagenerated. This multi-
dimensional data abstraction quality measure which captilne co-relationships present
in a high dimensional dataset. The proposed measure, ddlilgtitdimensional His-
togram Difference Measure (MHDM), is a histogram differemeethod. Histograms are
widely used for density and selectivity estimation [43].céticulates the difference be-
tween the multi-dimensional histogram of the original dataand that of the abstraction
generated from the data. For the measure we assume thatameult-dimensional his-
tograms (original and abstracted) have same number ofitisbin sizes corresponding
to the percentage of data falling into that bin. MHDM is thensniation of the difference
between the corresponding bins. MHDM ranges from 0.0 to 1l @implying the worst
case MHDM, and 1 indicating the best case.

One disadvantage of a multi-dimensional histogram is ibility to scale due its
high memory requirements [43]. Unfortunately we canndtagtijust 1-dimensional his-
tograms which are less costly, they fail to capture the tatice present in high dimen-
sional data. To overcome the space inefficiency of multietisional histograms [43],
we encode the multi-dimensional histogram structure byieiy associated the multi-
dimensional cell address with its cell content value. Famegle, Figure 3.2 represents
the formation of an encoded multi-dimensional histograor.ifstance, the cell with di-
mension 1 at bin 5 and dimesnion 2 at bin 2 and dimension 3 &t baving a value of 6
would be encoded explicitly by the pair "5*2*1 : 6”.

Building the encoded multi-dimensional histogram: Assume the input tuple with

d dimensions with data values,vs,..v,.

Step I: We partition each of thd dimensions into a number of distinct partitions. For
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simplicity, we’ll assume here that there are exastuch partitions for each dimen-
sion, though other more sophisticated strategies couldrijgoyed for bin sizing

in the future.

The partitioning of the dimensianis denoted as’, u}, ... u’, with n the number of
partitions. For each input tuplg,vs,..v4, we determine which bih of dimension
i its i*" valuew; falls into. Given that each tuple value is mapped to a pdeicu
partition, we havel partition numbers for a given input tuple. Let us denote blyis
uh ub,.udy, with i; the partition number for the dimensions. Thus, the numbgr of
dimensional partitions formed directly influence the numifemulti-dimensional

bins formed.

Step Il: We encode the multi-dimensional bin from partition numbelpgained from
each dimension by appending the bin numbers into one coge’..u, is the
multi-dimensional bin corresponding to the example inpie¢ above. Thus, if
most of the d-dimensional cells remain empty, our histogimmelatively small.
Most real datasets are very sparse in nature (confirmed bgxqarimental study

in Section 7). Thus this technique saves a lot of memory intfa

Dmd 4
L r 77 Dim 1: Bin 5
5 gl Dim 2: Bin 2
4 o | Dim 3: Bin 1
Diml 3 1] |
2 H | Encoded Multi dimensional Bin code: 5\2\1
AR
4

Figure 3.2: Formation of encoded multi-dimensional hisaog
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Encoded Multi-dimensional Histogram Properties:

1. Every encoded multi-dimensional bin is uniqéis implies that every point will

fall into only a single bin.
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2. Similar data will fall into the same encoded bin.

3. We do not encode empty bins as bins are formed only when ditdesencoded.
This is a major advantage of our multi-dimensional histograeasure in practice

as the real datasets are sparse, we do not waste memory hisiagproach.

MDHM can be expressed by the following equations:

where Po; is the percentage of data that falls into the i-th bin of thginal histogram,
Ps; is the percentage of data that fall into the i-th bin of theti@ased histogram, angtb;

corresponds to their bin difference.

N N
Ph=Y Pb=> |Po;— Ps| (3.2)
=1 =1
where Ph is the histogram difference, and N is the numbems. bi

Ph

MHDM =10 — ————
MAXpy,

(3.3)

whereM AX py, is the maximum histogram difference.
Noise Elimination: Real world data is often fraught with noise. Noise elimioais very
crucial for high quality abstractions. The multi-dimensabhistogram of the original data
is thus regulated to filter noise. Noise elimination phasesiis of eliminating all the
bins whose bin count is below a threshoid.(This thresholdy can either be empirically
determined (explained in the experimental section) or gé#td analyst. The bin count of

a multi-dimensional bin will be below a threshold if:

e The pointis a random noise generated by the source.
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e The point belongs to the edge of a cluster.
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Figure 3.3: Existence of noise in datasets.

Figure 3.3 displays a grid representing a 2-dimensionabgiam placed over the
data. Ignoring points from low bin counts may have the sidecefof ignoring points
from the edge of the clusters. However, since we are intnlast picking more points
from near the center of the cluster rather than its edgesyilgm points from the edges
effectively adds more weight to the points in the center.sTihiproves the abstraction
guality, as our experimental study confirms (see Sectioitt @)so decreases the number
of multi-dimensional bins to be maintained, increasingdtfieiency of the QoS estimator

(as further described in Section 3.2.2).

3.2.2 QoS Estimator

The QoS estimator computes the performance-quality tréiddy generating a look-up ta-
ble to indicate the relationship between quality and penforce values. This is achieved
by computing a relationship between MHDM, sampling leval &me required for clus-
tering. Fig 3.4 intuitively represents the look-up tablegeated by the QoS estimator.
The QoS estimator enables the analyst to set the desireidydaatl in terms of data ab-
straction quality measure and then to be able to infer timgaired for clustering. Since

sampling is the preliminary step for clustering, the alzdiom quality largely depends on
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the sampling. If the samples chosen for clustering do naessmt the original dataset
well, the abstraction quality of the clusters can be low. §ldata abstraction quality is
determined by sampling. Various sampling techniques diaeatkin the literature which

can be used in this framework. Palmer et. al devised theegiyaif density biased sam-
pling [25]. Density biased sampling is a probability baspdraach which enables us to

sample more from a dense region and less from a sparse region.

WHDM Sampling level (%0) | Time(sec)
.50 0.1 2.38
.60 0.5 4.99
30 1.2 7.56
.80 2.7 10.16
.50 3 12.33
1.0 3.8 15.3

Figure 3.4: Sample look-up table created by QoS estimator.

According to density biased sampling [25]: Suppose thataxem values:, z,, . ..
x,, that are partitioned into g groups that have sizgs:,,, n, and we want to generate a
sample with expected size M in which the probability of patpts dependent on size of
the group containing;.

To bias the sample size, the probability function is defired a

f(”z) = (3.4)

Sl

wheren; is the number of points in group i and e is a constant. Numbpoits selected
from group i:

n = f(n;)*n; (3.5)

We defines based on the sample size:

g
E(sample sizp= ) _ E(size of group) (3.6)

1=1
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M= nfn) =Y n (3.7)

b= 1= (3.8)

=114
Group formation: It is very important to form proper groups for density bidsampling
[25] to be effective.The group assignment is done by usiag@titoded multi-dimensional
histogram. The number of bins in the multi-dimensionaldgsam is equal to the number
of groups. Each bin is treated as group of points as defineebysity biased sampling.
Algorithm for estimation using density biased sampling:
Input: x= Initial sampling rate

a = Increment in the sampling rate.

Algorithm 1 Populating look-up table
[*Populating thelookup_table for performance quality trade off. Initialize by setting M
— X, calculatings from equation 5*/
1: while (MHDM < 1) do
. for eachbin € multi-dimensional histogrardo
Number of points selected from each group from Equation 7 ;
end for
Compute MHDM for M ;
Compute time and confidence interval,
Updatelookuptable with sampling rate and MHDM
M «— M+q, computes ;
9: returntol
10: end while

e B AN

Output: lookup table of performance quality trade off.

Look up table is generated after the multi-dimensionabgisam for the original data
is formed. Starting with sampling level, number of points falling in each bin are cal-
culated. This enables us to calculate MHDM for sampling llevelt is repeated until
MHDM reaches the maximum value of 1.0. The look up table (asvshin Fig.3.4)will
have a sampling level, minimum quality level followed foetsampling and the time re-

quired for the process to complete. Whenever an analystselso® quality value, value
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closest to it is returned. The granularity of quality-penfiance trade of is decided by

setting small values fat.

3.2.3 Interaction Interface

The interaction module presents the quality estimatiorib@estimator to the analyst. It
allows the analyst to attain information on the quality periance trade off and helps in
decision making. The analyst can set one of these threesvakmely, data abstraction
quality (MHDM) value, sampling rate and time for completiointhe clustering process.

Thus, three cases emerge:

e Analyst sets the desired data abstraction quality and ti&v@uld indicate implied

sampling rate and estimated time for the clustering promessmplete.

¢ If the analyst sets the sampling rate then the best possilaliyjmeasure achiev-
able would be indicated along with the expected time for thetering process to

complete.

¢ If the analyst sets the time for clustering, QoS indicatesesponding sampling

rate to be utilized and the achievable data abstractiontgudiring the allotted
time.

"¢ 0o Interaction 8=

Select Similairy Function: Ject Dimensions:

" Eucidean Distance sepal_length

& Cosine Funclion sepal_width

petal_length
(" Sine Function

L U

petal_width

Quality-Performance Trade off

3 U:l
o) s:l -
Start Clustering
034 j :

MHDM Sampling rate Tire fin sec |

Figure 3.5: QoS sampling interface.
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3.2.4 Abstraction Generator

Once the analyst decides the quality and other performasttiaghe desires, interaction
interface passes the sampling level to the abstractionrgtme Abstraction generator
samples the database using density biased sampling withgziag level set by the inter-
action interface. Abstraction generator then passes thergeed samples to a clustering

algorithm. We can use any existing clustering technique 32030] to cluster the data.
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Chapter 4

Inclusion of Data Quality

4.1 Total Data Abstraction Quality

Including the quality of the underlying data in the absti@ttresult is post processing
step. MHDM of the data clustered is identical to the valuelsethe analyst in the
pre-processing phase. However, we can also evaluate tf@mance of the clustering
algorithm using a quality measure [14]. One possible ctusjequality measure can be
average distance of every point from the cluster centels[@ce clusters are formed,
we can plug these clustering quality measures to find thetgudiclustering performed.
MHDM can be visualized as a global measure on the entire elatakere as clustering
guality measure gives quality value for each cluster formed

Every tuple can have quality attributes attached to it. Inearlier work [35], we
visualized data quality to have the configuration descriipeBig. 2.1. Where, every
attribute has quality to it. Record quality value describiegl quality of the entire tuple,
where as dimensional quality describes a quality valuelferentire dimension. We only
consider the record quality associated with the tuple.

Every cluster consists of data points of the original ddtasaus, to calculate total
abstraction quality, we first calculate data quality of eclcister. To calculate data quality

of a cluster, we calculate data quality of all its memberagisiome statistical function.
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Many alternative methods are possible, namely

e Arithmetic mean and standard deviation

Median values
e Geometric mean (assuming geometric distribution)
e Root mean square arithmetic mean

We assume the distribution of data quality values to be umifd herefore, we choose

to represent the data quality of clusters using the arittone¢an of the record qualities.

Z?:l RecordQuality

n

CDQ =

(4.1)
e CDQ: Cluster Data Quality

e Record Quality: Quality of the record.

e n: number of points in the cluster.

Thus, the total data abstraction quality can be calcula¢kdeaweighted average of cluster

data quality, cluster quality and abstraction quality:

axCQ+pP+«CDQ+ A« MHDM
3

TAQ = (4.2)

TAQ: Total data abstraction quality

CQ: Cluster quality

a: Weight associated with clustering quality

CDQ: Cluster data quality;

(. Weight associated with the data quality;
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e MHDM is the abstraction quality;
¢ ) is the weight associated with abstraction quality.

«, § and\ can be user set parameters or can be set to 1 to have arittanetage.
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Chapter 5

Cluster Hierarchy Visualization:
InterRing Display

5.1 Cluster Visualization

The purpose of cluster hierarchy visualization is to enalslers to visualize, interact
and navigate the cluster hierarchy in both data and qugtiége. As discussed earlier,
Radial Space Filling(RSF) display have several advantagesthe traditional node link

diagrams. Thus, we use InterRing display, which is adaptatf a visualization technique
called Sunburst by Stasko and Zhang [39] to visualize thstetthierarchy in the data

space as well as quality space. The InterRing display haf®llogving properties [21]:

e Deeper nodes of the hierarchy are drawn further from theecent

Child nodes are drawn within the arc subtended by their pgren

The sweep angle of a leaf node is proportional to the cluathius;

The sweep angle of a non leaf node is the aggregation of ahhildren;

Color is used to depict the hierarchical structure in thadaace and total abstrac-

tion quality in the quality space.
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e Provision of interactive brushing to analyst so that thay alect cluster and view
its properties such as total abstraction quality and matidyoperties such as name

of the cluster.

¢ Implementation of various other tools such as drill-dowh/up, zooming in/zooming

out operations for InterRing display.

Figure 5.1 shows our cluster hierarchy dialog. Various proes of the InterRing

display are depicted in the figure.

Circular edge Radial edge

Root node

Non-leaf node
Leaf node

Layer

Figure 5.1: InterRing display with labeled components.

5.1.1 Navigation Tools

We provide various navigation tools to allow an analyst teract and navigate through
the cluster hierarchy. These navigation tools can be useavigate through data as well
as quality space.

The navigation tools provided are as follows [21]:

e Distortion:Distortion is a process that results in enlangat selected parts of a
display while reducing the screen allocation of other pdtts helpful in helping
the users examine details of the display, and make otheracttee operations,

such as selection, easier to perform. There are severabagprs to distortion
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to provide focus + context in a radial space filling displa9][3In our InterRing
display we provide two types of distortion namely circuladaadial distortions.
These distortions are easy to use by the users and does notragy extra space

for the focus + context display.

— Circular distortion: The basic idea for circular distortiis:

x A distortion is limited to the angle range of the parent node;

x A node is increased or decreased in size by decreasing @asiag the

size of the siblings;

x When the sweep angle of a non-leaf node is increased or decteall
its children’s sweep angle is increased or decreased gropally so that

they are always in the angle range of of the parent node.

x A minimum angle in set for the hierarchy, which is inverselggortional

to number of leaf node contained in the hierarchy.

Circular distortion is helpful for the analyst to select atalar cluster by
clicking on a particular edge of the node and analyzing aqadar child. Fig-
ure 5.2 displays the circular distortion for the InterRingpdiay. In data space,
the circular distortion is helpful in studying the child resdof a particular
cluster and in the quality space it helps in understandiaditieage of quality

of a particular node and its children.

— Radial distortion: Similar to circular distortion, radidistortion enables an
analyst to select a radial edge and distort the display. Té&wamum radius
of the RSF does not changed by distortion. Analyst can pid&radge and
the thickness of the pinned layer is expanded or contractembbtracting or
expanding the thickness of the layers on the dragged edge Bigure 5.3

displays the radial distortion for analysis of higher nogtethe hierarchy. In
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74 Cluster Visualizati g@
Options  Reset X Zoom [100 % ‘ SR+ | ++]| Y Zoom 54 7.‘ -- R+ |+
Circular Distart  Radial Distort ‘ Rotate ‘ Roll Up/Drill Down ‘ Modify ‘ Select ‘ |

nhodef)

Figure 5.2: Circular distortion in the InterRing display.

data space, it helps in understanding the cluster at a pkatitevel in the
tree (studying siblings of a particular node) and in the iquabpace, helps in

comparing quality of siblings.

e Drill-down/Roll-up: Drilling-down/Rolling-up are usedtshow/hide all the de-
scendants of a cluster. It helps the user to prevent theajigglbranches that are
not of interest for the current analysis. Figure 5.4 displthe drill-down/roll-up
operation in the InterRing display. In data space, it hetpsdncentrating on a
sub-tree and in the quality space, it helps in understantii@gyuality lineage of a

particular sub-tree.

e Zooming and Panning: Zooming in/out allows analyst to gydahe canvas and

move around the details of the display.

¢ Rotation: In rotation mode, InterRing display rotates athe its center in clock
wise as well as anti-clockwise direction using a mouse clidkis operation helps

users rotate clusters of interest to particular angles aodis cluttering the labels
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7 Cluster Visualization =]
Options Reset | X Zoom (100 % SR+ 4| | Y Z00m |94 % SR+
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Figure 5.3: Radial distortion in InterRing display.

of the selected clusters. This operation is helpful in dmgnthe cluster tree to

enable the user to study a particular sub-tree.

e Selection: The purpose of selection is to isolate a node @t afsnodes in the
hierarchy. These nodes can be used for further quality aisaty renaming the

cluster name. Figure 5.5 displays the selection featureeofrtterRing display.

¢ Cluster naming feature: Analyst can select the cluster andme the cluster to
enable them to associate names with the cluster. For examplargest cluster,
most important cluster or cluster under current analysisbeanamed accordingly.

Figure 5.6 displays the cluster naming feature of the IritegRlisplay.

5.2 Cluster Quality Visualization

We convey the quality attribute present in the clustersgutie InterRing display. There
can be various approaches to convey the total abstractialityqaf the clusters, for ex-

ample using the brightness, hue, width(sweep angle) ofltrsters or colors. Width of
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7 Cluster Visualization |=]=]
Options Reset | XZoom (100 % SR+ 4| | Y Z00m |94 % SR+
Circular Distort | Radial Distort | Rotate | Roll Up Dl Dawn Modify | Select
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left orright cick to roll up/dill dowin

Figure 5.4: Roll up operation in InterRing display.

clusters can change the analytical property of the InteayRKor example, if the analyst
wants to know the total abstraction quality of the largegstdr in the hierarchy, mapping
the quality according to the width of the cluster might chaige visualization. Thus,

from brightness, hue and color, we choose color to repreakertbtal abstraction quality

of the cluster.

We define a mapping functidin which maps a particular quality value to the appro-
priate color. For examplemaps perfect quality to green color and worst quality to red
color. We use this mapping function to graphically map thestr using the following
function:

G(v, X, f) where:

¢ Vv: Visual variable used to draw the cluster

e X: Numerical value of the total abstraction quality
e f: Mapping function for color mapping

The color representation of the quality can be shown in EEgur
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Figure 5.5: Selection feature in Interring Display
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Figure 5.6: Cluster Naming feature in InterRing display
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Figure 5.7: Color denoting data quality in InterRing displa
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Chapter 6

Implementation

6.1 UML Components

6.1.1 Use Case Diagram:

The interaction of the user with the QoS framework can bealegiusing Figure 6.1.

xmdvTool

QoS Interaction

Cluster Data

%f

Analyst

= <<indude>>

\'\ Form InterRing Tree
Cluster Visualization N

<<indude>:,

Form Cluster Tree

Figure 6.1: Usecase for QoS framework.

User interacts with the QoS franework using the interactrgarface. User once
satisfied by the time and quality achievable starts the eturgj process. QoS then uses
the parameters set by the users for clustering the data.i®eltzstered in the XmdvTool

using adapted Birch algorithm. This algorithm createsteliisg tree and InterRing tree.
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Cluster tree is used to navigate in the structured space tisenstructure based brush in
heirarchical displays. InterRing tree is used to creatdritexRing visualization for data
clustering. The user can interact with the clustering tessiing the InterRing display.

Various navigation and interaction tools can be used asisis®al in chapter 5.

6.1.2 Class Diagram

The class diagram of the QoS framework along with the clusigrocess in the Xmdv-

Tool can be represented in Figure 6.2.

CClusterData

OnlineDimClustering onlineDataClustering
—
1

ClnterRingCluster

ClnterRingDimCluster ClnterRillgDatzCInster‘ |Cl||terRingDimCIustErTree
I

CInterRingDataDisplay

CInterRingDimDisplay

Figure 6.2: Class diagram for QoS framework.

Class OnlineClustering is reponsible for clustering ofadatd dimensions in Xmd-
vTool. This class is the parent class for classes OnlineDust€ring (used for dimen-
sional clustering) and OnlineDataClustering (used foadd#tistering). Class CCluster-
Data is a class that holds the clustering result. CClustari3aassociated with Cinter-
ringClusterTree which is used for displaying the resultthie InterRing visualizations.
CinterRingClusterTree is associated with CinterRing@us one-to-many mapping.

CinterRingClusterTree is the parent class for CinterRiagiClusterTree (used for data
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clustering) and CinterRingDimClusterTree (used for disienal clustering). Similarly,
ClinterRingCluster is a parent class for CinterRingData@uand CinterDimCluster.
Class CinterRingDisplay is the base class for displayimgltherRing tree. Cinter-
RingDatDisplay and CinterRingDimDisplay are the derivéaksses used to display the
dimensional and data InterRing respectively. Class CRis{d the base class for display-
ing the OkcData in Xmdv. CinterRingDisplay derives the Qilay class. Thus, we make

use of multi-level inheritance to cluster the data and digftlin the InterRing.

40



Chapter 7

Experimental Study

We have evaluated the framework using both real and syntdatasets. The frame-
work is integrated into XmdvTool, a public domain data vigzation tool [44] developed
at WPI. Experiments were conducted on Pentium 4 (1.66 GHaming on Microsoft
Windows XP with 1.0 GB RAM. We have conducted various experits for different

components of QoS.

7.1 Savings Using Encoding Approach for Multi-dimensional
Histogram

In this experiment, we formed encoded multi-dimensionatdgrams for various real
high dimensional datasets such as Iris, Out5d, Cars, Aaems@sincome and Supercos2
[44]. Figure 7.1 displays the comparisons of the number o$ laictually formed and the
maximum number of bins possible. As seen from Figure 7.inga\difference between
maximum possible bins and bins actually formed) increasesneously by using the
encoded bin approach. This proves the fact that the readekstare sparse in nature and

our encoding based approach indeed saves memory in practice
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Figure 7.1: Savings for real datasets.
7.2 Effects of Increasing Number of 1-dimensional Par-
titions

One of the important factors affecting the savings usingtieoded approach is the num-
ber of 1-dimensional partitions. The savings increasetlyréave form larger number
of partitions. However, as the number of 1-dimensionalipants increases the number
of multi-dimensional bins increases exponentially. Acling to Sturges’ Rule [23], the

number of bins can be based on number of data points. StuRgds’is:
Number of bins= 1 + log, Number of data points (7.1)

However, using the sturges rule to form 1-dimensional ppants leads to formation of
large number of multi-dimensional bins. Figure 7.2 repnéséhe effect of increasing the
number of partitions on number of multi-dimensional binsried and thus the MHDM.
From Figure 7.2, it can be seen that by increasing the nunfldedomensional partitions
the MHDM at a particular sampling rate decreases. Thus, logif@y more 1-dimensional
partitions better MHDM accuracy can be achieved. Howevds &dds the overhead

of maintaining a large number of bins and effects the peréoroe of QoS estimator.
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Therefore, we use an adapted Sturges’ Rule and form the gins a

Number of bins= 1 + log,(Number of data poinig3 (7.2)

12
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02 ——aaupbbin |_|
_.‘//., - aaup14bin
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50
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Figure 7.2: Effect of increasing number of 1-d partitionsA@aup dataset.

7.3 Conformance with Cluster Quality Measure

For this experiment, we used synthetic datasets generatie@\known number of clus-

ters. We compare the clustering result of the dataset witkempling and after applying
Qo0S. We used a K-means algorithm to find the RMS error [14] betvthe cluster centers
of the original datasets and those of the abstractions geteby QoS. RMS erroe) can

be defined as:

€ — \/E?l1<cf) — 02)2 (73)

With ¢:: original cluster center;’: cluster center of the abstraction; m: number of clus-

ters.

05 —e—10dim, 4 clusters
\ —B—10dim, 10 clusters

04 ——20dim, 4 custers | |

g L\\/‘A\ﬁ\’\ —<20dim, 10 clusters

03 S \ —4—50dim, 4 clusters |—|

02 "‘“N

01 == \

0 . . . N

09 092 0.9 96 098 1

4 0
MHDM

Figure 7.3: Decrease in RMS error with increase in MHDM.
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As seen from the Figure 7.3, with the increase in MHDM the eacyin finding the

cluster centers increases and RMS error decreases.

7.4 Need for Noise Elimination

For this experiment, we calculate the average distortidghe@ftlataset. Average distortion
is the average distance of a datapoint from its cluster celigure 7.4 represents the
average distortion with and without noise elimination gha$t can be noticed that in
absence of the noise elimination phase, with an increaseHDM (and thus, the chosen
sampling level) the average distortion increases. Thiebse of the introduction of
noise in sampling. Thus, we introduced a noise eliminatloase;y was set at 0.2 percent,
eliminating all the bins below the threshold. With the imtuation of the noise elimination

phase, the average distortion decreases linearly withnitrease in MHDM. Since, K-

means clustering algorithm was used, the number of cluktersed remains the same.

In short, noise elimination stage facilitates formatiordehse clusters.

=
-
e
-

Average Distortion

085 09 MHDM

Figure 7.4: Average distortion with and without noise ehation for various real
datasets.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

Data abstraction quality has implications in many areak agaénformation visualization,
data warehousing and so on. In this thesis, we have propo$ednawork to handle
guality associated with abstractions at all levels. Thetrdoutions of this thesis can be

summarized as:
e Multi-dimensional abstraction quality measure to quarttie abstraction quality.

e Density based sampling to empower users to set the abstrat#pending on the

time/quality requirement.
e Cluster visualization using InterRing display to visualdata and quality.

We have implemented the QoS framework in XmdvTool. Our expents confirm

the merits of our approach.
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8.2 Future Work

This work can be extended in the future in many directionshss
¢ Using dimensional quality to compute the total abtractiaalgy.
e Using other visual attributes such as brightness to mapltiséer quality.

e Enabling the user to re-cluster the dataset using only aeswolbthe cluster tree and

study the resulting quality of the new cluster tree.

¢ Allowing the user to select a clustering algorithm and twtekclustering criteria

based on domain knowledge.

e Creating sampling hierarchy (which is cheaper) insteadlw$tering hierarchy

which can be built on the fly and re-sample based on user prefes.
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