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Abstract

This research aims to emulate the dexterity and precision found in human grasping

capabilities, particularly when dealing with difficult-to-pick objects and challenging

manipulation scenarios. To solve these challenges, we leverage four dexterous picking

skills inspired by human manipulation techniques that include sliding, pushing to a

vertical surface, leveraging a horizontal surface, and flipping objects. The proposed

approach extends beyond traditional methods by incorporating a decision-making

process that assesses which, where, and how to apply specific manipulation skills for

objects within the scene. Utilizing deep neural networks, the system identifies the

most suitable manipulation skill for each object in the scene, assigns confidence scores

indicating the potential success of each pick, and predicts precise skill locations. The

adaptability of the proposed system is rigorously evaluated through a series of real-

world experiments, encompassing scenarios involving known, unknown, and occluded

objects. These experiments, comprising 45 trials with 150+ grasps, validate the

system’s reliability and robustness, particularly in cluttered settings. This research

helps bridge the gap between human and robotic grasping, showcasing promising

results in various practical scenarios.
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Chapter 1

Introduction

Humans possess an extraordinary ability to grasp objects with remarkable preci-

sion and adaptability, which is particularly evident in how we approach each object

uniquely. The intricate skill of grasping an object involves the combined effort of sen-

sory perception, motor control, and cognitive behaviors that enable us to tailor our

grasp to the specific characteristics of the target object. As a human, we employ a

range of grasp strategies, including power, intermediate, and precision grasps [15], [6],

each finely tuned for an object’s shape, size, texture, and material properties. This

adaptability allows us to interact with our environment seamlessly, manipulating ev-

erything from delicate items that require a gentle touch to robust objects needing a

firm grip.
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1.1 Motivation

Despite extensive efforts, there have been significant challenges in translating these

nuances of human grasping into robotic systems. A significant issue lies in dynami-

cally adjusting grasp strategies for a wide range of objects, especially within cluttered

or unstructured environments, where the unique characteristics of each object de-

mand a flexible and context-aware approach to grasping. These challenges underscore

the necessity for robots to interpret sensory data in real time, make informed de-

cisions that consider various manipulation possibilities, and execute these decisions

with a precision akin to the human hand.

The choice of the right skill for a target object is influenced not only by its shape

but also significantly by the context of its environment. This includes the relative po-

sitions of the surrounding objects and the specific configuration of the environment,

such as the presence and location of table edges and vertical surfaces. For instance,

consider the scenario of picking up a cylindrical object from a table. If the object is

situated away from other items, a simple picking technique might suffice. However,

if it is placed close to a wall, employing a more nuanced approach that leverages

the wall for support could enhance the grasp’s success and stability. This level of

adaptability extends to scenarios involving objects with complex shapes or place-

ment. For example, removing a flat plate from a table requires not just reaching for

the plate but also considering any potential obstructions that might complicate the

task, such as other objects resting on the plate or barriers between the plate and the

edge of the table. We, as humans, decide how to pick any object easily considering

all these factors. However, for a robot, it is challenging to navigate these obstacles,
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strategically determining the best strategy and point of contact for successful manip-

ulation. This intricate process of adapting manipulation strategies to the context of

the environment and the specific characteristics of objects underscores the essence of

my thesis work, which aims to bridge the gap between human dexterity and robotic

capability in grasping and object manipulation.

1.2 Proposed framework

Motivated by the dexterity of humans, this thesis proposes a manipulation pipeline

that utilizes four dexterous manipulation skills inspired by frequently employed hu-

man picking skills. These skills include sliding objects to the edge, pushing them to

a vertical surface, leveraging a horizontal surface to facilitate picking and flipping

them. The methodology of this system extends traditional approaches by combin-

ing the decision-making process on when and how to apply specific manipulation

skills for a particular cluttered scene. This research outlines a framework for robotic

manipulation that intelligently prioritizes tasks and manipulates objects based on

an analysis of the environment and the specific needs of the task, particularly in

cluttered scenes. The system efficiently organizes workspaces by identifying and

employing the optimal skill to clear cluttered scenes through an adaptive approach.

The pipeline begins by capturing an RGB-D image of a cluttered multi-object

scene. Following this, instance segmentation is carried out to determine the edges

of the object in the scene and identify the most suitable skill for each object along

with confidence scores for each skill. After identifying the appropriate skills, the
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system predicts accurate grasp locations on the objects using heatmap generation,

tailored to the specific skill to be applied. With the skills and grasp of locations

established, the final stage involves motion planning, which executes the necessary

movements to perform the skills on each object in the scene and effectively declutters

the workspace.

Figure 1.1: Overview of our Dexterous Picking pipeline.
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1.3 Contributions

• Skill Detection Module: The skill detection module accurately predicts the

most appropriate skills for objects within a multi-object scene. It takes an

RGB-D image as the input which is captured by a camera attached to the

end-effector of the manipulator. For each predicted skill, a confidence level

is assigned to identify the specific skill required for handling an object. It

determines the priority of objects for picking based on the confidence scores. It

utilizes a context-aware approach that takes into account not only the object’s

shape but also the positions of nearby objects and the overall environmental

configuration.

• Skill Location Module: The development of a Skill Location Module, an atten-

tion gate-based neural network allows for the precise identification of where on

the object the chosen skill should be applied. The model outputs a heatmap

that shows probable grasp locations on each object. The point with the highest

value (between 0 to 1 output) on the heatmap is selected as the co-ordinate

where the skill can be applied.

• Use of depth images: We successfully demonstrate our system’s performance

in real-world conditions, even with a substantial 70:30 ratio of simulation to

real-world training images. This adaptability is possible due to the use of

depth images, which remain consistent in simulation and when captured by

real-depth cameras. Depth images, by their nature, offer a third dimension of

information, which is vital for achieving a deeper spatial understanding of the
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robot’s environment.

• Real-World Demonstration: The culmination of this effort is a comprehensive

end-to-end pipeline designed for the task of clearing objects from tabletops.

This system has been put to the test in real-world conditions, undergoing

45 real-world tests that encompassed over 150 instances of object grasping.

This extensive validation underscores the system’s effectiveness and showcases

the practical application of the proposed neural networks in robotic object

manipulation.

1.4 Thesis structure

The remainder of this thesis has been organized into several chapters as follows:

1. Chapter 2 reviews related work, identifying the research gap this thesis ad-

dresses.

2. Chapter 3 discusses in detail the primitive skills necessary for robotic manip-

ulation such as Slide-to-Edge, Push-to-Vertical, Flip, Push-to-Horizontal, and

Simple-Pick.

3. Chapter 4 details the experimental setup, including the real-world and simu-

lation environments, and the object set used.

4. Chapter 5 introduces the system pipeline, describing the integration of com-

ponents and processes.
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5. Chapter 6 covers the development and evaluation of learning models, includ-

ing dataset, skill detection, and skill location modules.

6. Chapter 7 focuses on detailing the strategies for motion and skill planning,

outlining how skills are executed and how robot motion is planned.

7. Chapter 8 presents experiments, results, and discussions on known and un-

known object manipulations.

8. Chapter 9 concludes the thesis by summarizing the findings and reflecting on

the insights gained throughout the study. It also discusses the future work,

highlighting areas for further investigation.

7



Chapter 2

Related work

In this discussion, we focus on leveraging dexterous picking strategies that utilize

various human-inspired hand motions. Unlike many existing works that emphasize

“static” grasping strategies, we highlight the novelty of our approach in comparison

to other dexterous picking methods. We aim to create a system that not only rec-

ognizes different objects in multi-object scenarios but also intelligently selects and

executes the most suitable dexterous picking strategy. Our approach targets the

automatic identification of skills and their application in multi-object environments,

significantly advancing the adaptability and effectiveness of robotic handling in com-

plex and varied environments.

Various studies in the literature have concentrated on motion planning and execu-

tion of dexterous manipulation skills. For instance, [4] presents methods for specific

skills like slide-to-edge, push-to-vertical, and push-to-horizontal. This paper delves

into the concept of exploiting environmental constraints to enhance robotic grasping
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performance, drawing inspiration from human grasping strategies. Through a series

of experiments involving both human and robotic grasping, the study demonstrates

the effectiveness of leveraging environmental constraints for successful grasps. The

introduction of mechanically compliant and highly deformable hands designed to fa-

cilitate constraint exploitation further underscores the importance of this approach

in robotic manipulation tasks. By comparing different grasping strategies and em-

phasizing the significance of interactions between the hand, object, and environment,

the research sheds light on the crucial role of constraint exploitation in developing

competent robotic grasping systems. Additionally, insights from experiments on how

humans adapt their grasping strategies to leverage environmental constraints, par-

ticularly support surfaces, provide valuable guidance for enhancing robotic grasping

capabilities. Another study in [11] implements the flipping skill. Notably, these

works focus on single-object scenarios and lack mechanisms for automatically identi-

fying suitable skills for different objects. In contrast, the approach proposed in this

thesis targets the automatic identification of skills and their application in multi-

object environments. Moreover, the above-mentioned works have specific hardware

constraints limiting them to performing certain skills, however, with the use of the

three-fingered gripper, the proposed system becomes more generalizable. In addi-

tion, our approach also handles occlusion, for example, scenarios where objects are

placed on top of each other, and the robot is unable to see all the objects at once.

As described in the paper [15], anthropomorphic soft hands provide capabilities

for grasping that closely mimic human actions. This research leverages data from

human grasping demonstrations and uses a deep neural network to predict grasp con-
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figurations effectively. The deep neural network (DNN) architecture is fine-tuned us-

ing supervised and reinforcement learning. While these methods show promise, they

encounter difficulties in control, coordination, and adaptability to different robotic

hands or environments. This highlights the ongoing challenge of developing a com-

prehensive architecture for real-world adaptability, a challenge our work addresses by

focusing on the automatic identification of skills and their application in multi-object

environments.

Some existing studies, such as [2] that explores grasp strategies learned from

minimal examples, face limitations. These strategies often rely heavily on RGB

data, which can be ineffective in varying lighting conditions or with objects lacking

color contrast. They lack depth information, as they operate solely on 2D images,

hindering their feasibility in real-world applications. These strategies also don’t

utilize neural network models for class generation, instead relying on knowledge

graphs, which have limitations in generalizing to unseen data and are less flexible

when dealing with unstructured data, such as raw images and text. Moreover, their

experiments are often limited to small spaces and single objects, resulting in limited

system transferability. Our approach overcomes these challenges by utilizing depth

data along with RGB data and DNN-based models for skill detection.

Another line of work introduces vacuum-gripper systems [17] capable of handling

cluttered objects using a multi-affordance approach. The system considers multiple

grasp strategies based on object geometry and context, matches real-world images

with synthetic training data for robust object recognition and employs efficient mo-
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tion planning algorithms. These systems predict different grasping modes, from

suction to parallel-jaw grasps, without knowledge of the object’s shape or proper-

ties. However, despite their adaptability to various object shapes, these systems lack

the dexterity required for precise, human-like grasping and are entirely reliant on

object location.

Additionally, the role of synthetic data in training deep networks for shape recog-

nition, as proposed in the study [7], underscores the evolving landscape of grasp plan-

ning. This paper proposes a method for improving object grasping through shape

recognition using synthetic data and deep neural networks. It involves generating

synthetic data with diverse primitive shapes, training a deep shape recognition net-

work, and utilizing recognized shapes for grasp planning. While these approaches

improve object grasping through shape recognition, they often do not address vary-

ing grasping skills, indicating a gap our research seeks to fill by emphasizing the

synergy between shape recognition and adaptive grasping skills.

The grasp generation models like GraspNet [10] and DexNet 2.0 [8] represent

a significant advancement in robotic manipulation capabilities. GraspNet employs

convolutional neural networks to predict grasp quality directly from RGB-D im-

ages, enabling it to generate optimal grasp autonomously poses for a wide range of

objects and environments. On the other hand, Dex-Net combines geometric anal-

ysis, physics-based simulation, and deep learning to compute grasp quality metrics

and generate robust grasps. These models primarily output grasps suited for non-

dexterous two-fingered grippers, they lack context-specific gripping capabilities. In

11



contrast to these existing methods, our approach specifically predicts grasp location

based on the object geometry and context for particular dexterous picking skills.

While works such as Pinto et al. (2015) [12] propose generating robust grasp la-

bels through self-supervision, their approach yields rectangular grasp configurations,

limiting their applicability to parallel jaw grippers. Moreover, they offer generic

grasps for each object, which are independent of the grasping strategy or skill. Con-

sequently, employing a grasp generation model of this nature is not an optimal choice

for our system, which seeks to provide dexterity and skill-specific grasp locations.

To summarize, numerous existing methods primarily utilize a 2-finger gripper,

which lacks dexterity, or focus on improving grasp accuracy using RGB images, or

they are designed to handle a single object. Our approach overcomes these limitations

by introducing a system capable of executing dexterous picking skills on objects,

taking into account the surrounding factors. Our system is capable of grasping

objects of various shapes and sizes due to the dexterous 3-finger gripper used. We

propose a novel grasping pipeline that efficiently declutters multiple objects placed on

a tabletop, regardless of their position and orientation, by automatically identifying

the skills needed and the locations for grasping all objects using RGB-D images.

12



Chapter 3

Primitive skills

Our proposed approach is based on the hypothesis that commonly encountered house-

hold objects can be categorized into one or more primitive grasp skills. After a com-

prehensive analysis of several household object datasets [1], [3] we have identified five

essential skills that underpin the manipulation of most household items. These skills

are adept at utilizing the physical attributes of the environment, such as surfaces

and edges, to facilitate not just the grasping of objects but also the decluttering

of densely populated areas, thereby enhancing the overall efficiency of the robotic

system in real-world settings. These skills form the foundation of our grasp strategy

and enable our robotic system to handle a wide range of objects and scenarios with

finesse.

13



3.1 Slide-to-Edge

Developed based on the ideas presented in [4], the Slide-to-Edge technique is particu-

larly adept at handling objects with flat surfaces. It involves the robotic hand gliding

along the edge of items such as plates or books to secure a firm grip ( Fig. 3.1). By

utilizing a surface and an edge feature in the environment, robotic hands can effec-

tively grasp objects like plates or books. This method leverages both the flat surface

of the object and an edge, allowing the hand to snugly fit around any protruding

parts of the object by sliding it to the edge of the table.

Example objects: plates, books.

Figure 3.1: Items demonstrative of the Slide-to-edge and corresponding representa-
tion diagram.

3.2 Push-to-Vertical

As outlined in [4], the Push-to-Vertical method is crucial for managing items located

near or against vertical surfaces ( Fig. 3.2). The approach consists of gently nudging

objects into corners or against walls, bins, or other vertical structures. This action

14



uses the vertical surface as a helpful constraint, making it easier for the robot to

get a good grip on objects that are standing up or leaning against something. It’s a

skill that significantly aids in grasping objects in positions that might otherwise be

challenging to handle.

Example objects: bottle, banana.

Figure 3.2: Items demonstrative of the Push-to-vertical and corresponding represen-
tation diagram.

3.3 Flip

This skill, inspired by insights from [11], is used for picking up small objects. It

enables our system to manipulate and lift small items effectively, expanding its ver-

satility across a range of object sizes. This skill involves a maneuver where one finger

provides support on one side of the object, while another finger gently sweeps over

the surface ( Fig. 3.3). This coordinated action allows the robot to make contact

with the object, securely getting underneath it, and then lifting it into a graspable

position.

Example: lego brick, coin.

15



Figure 3.3: Items demonstrative of the Flip and corresponding representation dia-
gram.

3.4 Push-to-Horizontal

As detailed in [4], this skill is particularly beneficial for grasping mid-sized objects.

This technique likely involves manipulating objects against horizontal surfaces or

constraints to optimize the grasp configuration ( Fig. 3.4). The rationale behind

this approach is to mitigate the risk of misalignment; for instance, when attempting

to grasp a ball, premature contact by one finger could inadvertently displace the

object, leading to a failed grasp. By ensuring the fingers sweep the surface first,

they collectively guide themselves around the object under a uniform motion, thus

compensating for any potential discrepancies caused by measurement inaccuracies.

Example objects: ball, plum

16



Figure 3.4: Items demonstrative of the Push-to-horizontal and corresponding repre-
sentation diagram.

3.5 Simple-Pick

The Simple-Pick skill is characterized by its straightforward approach to grasping,

wherein the robotic gripper directly approaches along the principal access and secures

the object without necessitating complex adjustments or pre-manipulation strategies

( Fig. 3.5). This skill can be used to pick any object regardless of size, shape, and

texture. This is used as the default skill if any of the other skills are not possible.

Example objects: cup, small box.
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Figure 3.5: Items demonstrative of the Simple-pick and corresponding representation
diagram.
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Chapter 4

Setup

4.1 Physical Environment

4.1.1 System

The research conducted in this thesis utilizes the Franka Emika Panda arm, a state-

of-the-art 7-axis robotic manipulator known for its precision and versatility. With

a payload capacity of 3 kg and an extended reach of 850 mm, the Panda arm (Fig.

4.1) is used for a wide range of applications. It boasts an impressive repeatability of

0.1 mm, ensuring highly accurate operations. For our experiments, the Panda arm

used is mounted on a table of dimensions 91 x 61 cm.

Given the reach constraints of the Panda arm, our experimental setup is confined

to a workspace measuring 61 x 61 cm in dimensions. This arrangement ensures that

all tasks are within the robot’s operational capacity. A critical component of our

setup is a cardboard wall, strategically positioned on one side of the table. This
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Figure 4.1: Franka Panda Emika arm with the environment setup

wall is integral to our experiments, serving as an environmental feature for testing

certain manipulation skill that requires interaction with vertical surfaces. Addition-

ally, the table’s surface is covered with white card paper to maintain consistency in

the visual background, aiding in the robot’s perception and interaction with objects

placed within its workspace. This carefully designed setup provides a controlled en-

vironment that is conducive to examining the Panda arm’s capabilities in executing
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the specialized skills outlined in this work.

Our setup includes a ZED camera mounted on the end-effector through an at-

tachment mechanism (Fig. 4.2), positioned precisely 10 cm away as illustrated in the

accompanying figure. The ZED 2i camera features a 120mm baseline distance pro-

viding accurate depth information at greater distances and features an operational

range of 0.3m to 20m. The camera also offers an ultra-wide field of view, up to 110

degrees, enabling it to capture a broad area of the scene in front of it. Another key

reason for choosing the ZED 2i camera is that the ZED SDK provides a rich set of

software tools and APIs for depth sensing and easy integration with ROS.

Figure 4.2: ZED2i camera attached to the end effector

The alignment of the camera’s pixel frame with the robot’s frame was conducted

using the following parameters,

• Camera Intrinsics: Utilizing specifications provided by ZED, we used the cam-

era’s intrinsic parameters, which include focal length, optical center, and dis-

tortion coefficients.
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• Camera Extrinsics: The spatial relationship between the camera and the robot’s

coordinate system was determined using ROS’s TF2 package, establishing the

camera’s position and orientation relative to the robot.

We initially defined the transformation between the robot frame and the cam-

era frame using a tf publisher, which was developed based on measured real-world

dimensions. Once we obtain the rotation in the Euler angles format, we convert it

from Euler to quaternion representation. This quaternion rotation along with the

translation is used to transform 3D points from the camera frame to the robot frame.

This process ensured the precise definition of the spatial relationship between the

camera and the robotic arm. To confirm the accuracy of this transformation, we

employed Rviz, a 3D visualization tool for ROS. Through Rviz, we could visually

inspect the frames as seen in Fig. 4.3 and validate the rotation and translation

parameters specified by the tf publisher.
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Figure 4.3: Frames used for transformation

4.1.2 End-effector

To achieve the desired level of compliance in our robotic grasping system, we have

opted for the Yale open-hand Model-O [11] gripper design. This design employs

tendon-driven underactuated fingers, allowing our system to conform to object sur-

faces without the need for complex sensors or feedback systems. This three-fingered

gripper is powered by four Dynamixel actuators which provide the precision and

control necessary for a wide range of applications.

The underactuated mechanism of the Model O gripper is central to its design,

featuring a tendon-driven system that simplifies the control complexity. This system

allows for passive adaptation of the fingers to the shape of the object being grasped,

driven by a single actuator that controls the closing and opening of the gripper. The

23



tendons, made of durable material Nylon, are routed through the fingers in such a

way that the applied force is evenly distributed, enabling the fingers to wrap around

objects with varied geometries.

The choice of the Yale open-hand Model-O gripper, with its tendon-driven un-

deractuated fingers, is pivotal. This design allows the gripper to conform to the

surfaces of various objects passively, eliminating the need for complex sensors or

control systems. The underactuated mechanism ensures that the gripper can adapt

to the object’s shape, facilitating a more secure grasp by evenly distributing the force

applied by the tendons through the fingers. Compliance allows the system to be more

adaptable to the unpredictable nature of real-world environments. It enables the sys-

tem to accommodate uncertainties in object shape, size, and positioning, enhancing

the robot’s ability to perform tasks with a higher degree of finesse and reliability.

The Yale OpenHand Model O gripper is seamlessly integrated into robotic sys-

tems through a custom attachment mechanism ( Fig. 4.2), specifically designed and

3D printed for this purpose.
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Figure 4.4: Yale OpenHand gripper in closed (left) and open (right) positions

4.2 Software Environment

4.2.1 Real-world

In our system, we employ ROS Noetic in Ubuntu 20 alongside Python 3.7. For

gripper control, we integrate ’openhand’ libraries, detailed later in 7. The PyZED

library, a Python wrapper for the SDK provided by Stereolabs for their ZED camera,

is also used for camera support. Additionally, specialized libraries for neural network

models and motion planning, are used which are detailed in the subsequent sections.

The version control is performed through Git, and all the data is saved on a network

drive, to access later.
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4.2.2 Simulation

In our simulation setup ( Fig. 4.5), we have replicated the real-world configuration,

incorporating elements such as the camera, the robotic arm, and the table to create

an environment that closely resembles our physical experimental space. Given the

unavailability of direct ZED 2i camera integration within ROS, we have carefully

simulated its capabilities by matching key camera parameters, including baseline

distance, field of view (FOV), intrinsic parameters, and the depth range from mini-

mum to maximum. This ensures that our virtual setup accurately reflects the visual

processing capabilities present in our real-world experiments. Additionally, we have

employed 3D models from the YCB dataset, which provides us with high-fidelity rep-

resentations of various objects. The simulation environment, built within Gazebo, is

designed to be dynamic, allowing for the specification of the number of objects per

scene as well as the total number of scenes. Objects are introduced into the sim-

ulation through the use of the spawn model service, enabling us to systematically

evaluate our system’s performance across a broad spectrum of scenarios with varying

complexity and object arrangements.

4.3 Object set

Our experimental setup encompasses a collection of 20 objects, ranging from soft

and metallic to hard and transparent materials. The majority of these objects are

selected from the YCB dataset [1] ( Fig. 4.6), complemented by several common

household items that we found interesting in terms of shape, appearance, or texture.
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Figure 4.5: Simulation setup

This selection is intentionally varied in terms of shape and size to broaden the scope

of our experiments and challenge the capabilities of our system across a wide range

of manipulation scenarios ( Fig. 4.7). Table 4.1 provides the list of objects and the

expected skill that should be executed for that particular object. Further information

on the dataset and its utilization in model training is provided in Section 6.1.
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Figure 4.6: Known object set used for training models in real-world(left) and simu-
lation(right).

Figure 4.7: The five objects on the left are ”known” objects used in the model
training process. The other fifteen objects on the right are ”unknown” objects not
included in the dataset
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Object Expected Skill to be used Category
Pringles can Push-to-Vertical, Simple-pick Known
Cup Simple-pick Known
Small ball Push-to-horizontal Known
Lego brick Flip Known
Plate Slide-to-edge Known
Spray can Push-to-Vertical Unknown
Dasani transpar-
ent bottle

Push-to-Vertical, Simple-pick Unknown

Glove Simple-pick Unknown
Banana Push-to-Vertical, Simple-pick Unknown
Plum Push-to-horizontal Unknown
Orange Simple-pick Unknown
Paper plate Slide-to-edge Unknown
Umbrella Push-to-Vertical, Simple-pick Unknown
Tape Push-to-horizontal Unknown
White cup Simple-pick Unknown
Transparent
glasses

Simple-pick Unknown

Paper cup Simple-pick Unknown
Tablet bottle Push-to-horizontal Unknown
Blue box Slide-to-edge Unknown
Yellow lego brick Flip Unknown

Table 4.1: Object Set
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Chapter 5

System Pipeline

System Pipeline

1: Capture depth image using ZED camera’s neural mode to reduce noise and gather
scene depth information.

2: Both skill detection and grasp location models subscribe to and process the depth
image.

3: Grasp location model generates a heatmap, identifying potential grasp points
and selecting the point with the highest value.

4: Skill detection model segments the image into objects and associated skills, se-
lecting the object with the highest skill probability.

5: Verify that the selected grasp point is within the object’s mask and calculate the
gripper’s approach orientation.

6: The transformation module computes the 3D position and depth of the grasp
point relative to the camera’s and robot’s coordinate systems.

7: Integrate this data into the motion planning pipeline to execute the selected skill
action.

8: Iterate the process for all objects detected in the depth image.
9: For objects undetectable by the depth sensor (e.g., small or flat objects like

coins), run RGB-based models and repeat the process.

The pipeline begins with the Panda arm at a predefined home position, from
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which a depth image of the scene is captured by the ZED 2i camera attached. We use

the neural depth mode of the ZED 2i, which generates processed stereo-depth images.

This depth image is then published on a ROS topic and accessed by subscribing to

it by both the skill detection node and the skill location node.

The subsequent step involves detecting the skills required for precise manipulation

of each object present in the image. This task is performed by the skill detection

node, which outputs masks for each object along with the associated skill, assigns

a skill probability per object, and selects the skill with the highest probability. On

the other hand, the skill location node generates a heatmap from the depth image,

depicting potential grasp points on the objects. The grasp point with the highest

value on the heatmap is chosen and verified to ensure it lies within the mask generated

by the skill detection module. This 2D grasp point, originally in the image frame,

is transformed into a 3D point in the robot frame by the grasp transform node

by performing a homogeneous transformation, also considering the point’s depth

as given by the ZED camera. We utilize Rviz to visualize the raw depth images

obtained from the camera, the segmented images with skill labels provided by the

skill detection module, and the generated heatmap.

Once the 3D position and orientation of the grasp point are established, the next

step is skill execution, achieved by integrating this data with the motion primitive

node that generates a goal locations for the robot arm as per the detected skill. The

calculated 3D location and orientation are then utilized by MoveIt as the end effector

location of the robotic arm. The move group commander then executes the motion

and the robotic arm successfully places the object at the designated drop location.

31



Figure 5.1: ROS pipeline

We repeat this entire process for all objects until the tabletop is cleared.

Nevertheless, there can be objects that are too small and/or too flat to be detected

by the depth image (e.g. a lego brick). To address this, we utilize RGB-based models

for flat objects instead of depth-based models for both the skill detection and skill

location modules, continuing the process as before. Basically, once all the normal

sized objects are done, we switch to RGB based detection to check if there are any
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small and flat objects on the table and if there are, we just continue with the clearing

of the table.
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Chapter 6

Learning models

In this section, we detail the two deep learning models employed for skill detection

and identifying the skill location. We delve into the network architecture, train-

ing process, and performance evaluation of the models in depth. Additionally, we

touch upon the dataset used for training both models, including the data annotation

process.

6.1 Dataset

To train our skill detection and skill location models, we compiled a dataset of depth

images (top-down view) from 570 diverse multi-object scenes, with over 1,500 ob-

ject instances. These instances are manually labeled with the appropriate skill label

and skill location with all the labeling informed by the context of the scene. For

example, when a cylindrical object is flushed toward a vertical wall, it is labeled as

push-to-vertical, whereas, when the same object is away from the wall, it is labeled

34



as simple-pick. To ensure our model develops an understanding of skill applicability,

we intentionally included a slightly larger number of instances depicting straight-

forward contexts for each skill. This approach allows the model to assign higher

confidence scores to simpler scenarios during skill classification. For example, we

provided slightly more examples of flat objects being at the edge of the table, than

the examples when it is in the middle of clutter. This training strategy enables the

model to more confidently identify the ”slide-to-edge” skill when an object is near the

table’s edge. For every object within our dataset, we assigned labels indicating the

precise location for skill application. Specifically, for the slide-to-edge skill, it is the

exact point where the gripper should initiate contact to slide the object. Similarly,

for other skills such as push-to-vertical, push-to-horizontal, simple-pick, and flip, it is

the point where the gripper should approach to execute the skill successfully. These

detailed positional labels are integral to the training of our Skill Location Model,

ensuring it learns where to effectively apply each skill.

In our implementation, 70% of the images are from simulation. To bridge the gap

between the simulated and actual depth images, we applied techniques that include

functions to adjust the table area in images by isolating it through thresholding,

reducing image contrast while maintaining detail, and adding artificial smudges to

object edges to simulate realistic scenarios. Additionally, Gaussian blur is applied to

create a smudging effect, further processing images to include realistic noise patterns.

These measures aim to reduce the domain gap between simulated and real-world

scenarios, improving the models’ ability to adapt and generalize across different

settings.
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Figure 6.1: Roboflow annotation platform

However, depth data has its limitations, particularly in capturing very small

or flat objects due to their minimal depth profiles. Relying solely on depth-based

models would result in overlooking these objects with no significant depth signature.

To address this, we also compiled a smaller RGB dataset focused exclusively on these

left-out small and/or flat objects. This dataset, comprising 80 images, is specifically

labeled by concentrating on the slide-to-edge and flip skills (since these are the only

two skills suitable for such objects). In contrast, the depth image dataset includes

other skills (except flip) and a large variety of objects.

For skill detection model annotations, we utilized the Roboflow platform Fig. 6.1.

Roboflow is an end-to-end platform designed to streamline the process of preparing,

labeling, and managing computer vision datasets. Roboflow has an intelligent an-

notation tool with which we can just click on the object in the image and it auto-

matically creates segmentation ground truth labels for the same. The annotations
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were formatted in the COCO Segmentation style and utilized JSON files compatible

with Detectron2. The annotations for skill location were manually generated using a

custom-built tool (Fig. 6.2). This tool allowed for the creation of circular heatmaps

around selected points. The use of circular heatmaps is particularly advantageous

for skill location tasks as it provides a visual representation of the area of interest

with a gradient indicating the probability or confidence of the skill location.

Figure 6.2: Custom annotation tool for skill location

6.2 Skill detection module

For the task of categorizing objects into one of five skill categories, we explored

several methodologies, including Generative Adversarial Networks (GANs), Convo-

lutional Neural Networks (CNNs), and Reinforcement Learning (RL) approaches.
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GANs, while powerful for generative tasks, are not typically utilized for classifica-

tion problems due to their design for generating new, synthetic data samples rather

than classifying them. The goal was straightforward: to classify objects accurately

within five predefined skill categories. Given this objective, we concluded that using

convolutional neural network architecture was the most appropriate and effective

strategy.

CNNs are renowned for their performance in image recognition tasks, offering sim-

plicity in training and debugging, alongside robust generalization capabilities across

varied datasets. Conversely, RL methods, though potentially useful in adaptive and

interactive environments, tend to produce models that are highly specialized to the

specific conditions they were trained for. This specialization limits their applicabil-

ity and flexibility when faced with new or varied environments, making them less

suited for our project’s needs. After deciding on leveraging CNNs for our classifica-

tion problem, the next step involved selecting a specific model that would not only

achieve high accuracy but also integrate seamlessly into our workflow. We adopted

Detectron2 [16], a MaskRCNN implementation [5], which has a convolutional neural

network architecture designed for instance segmentation and enables the identifica-

tion and delineation of objects at a pixel level within images. It provides a solid

foundation with pre-trained baseline models, facilitating a quicker and more efficient

training process tailored to our specific classification needs. Our implementation in-

tegrates with ROS (Robot Operating System), facilitating real-time interaction. The

module subscribes to image topics from a camera, utilizing the cvBridge library to

convert ROS image messages into the format suitable for processing with Detectron2.
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Upon receiving an image, the system applies the trained convolutional neural net-

work model to detect and classify objects within the scene. The model’s predictions

are then used to determine the most suitable dexterous manipulation skill.

6.2.1 Network architecture

Mask R-CNN [5] evolves from Faster R-CNN by incorporating a parallel branch

for instance segmentation and employing a multi-task loss that includes losses for

classification, bounding box regression, and mask prediction. The architecture ( Fig.

6.3) encompasses essential elements, including a backbone network, Region Proposal

Network (RPN), ROI Alignment, multi-task learning with diverse loss functions, and

the ability to adapt to custom tasks through transfer learning.

Mask R-CNN enhances object detection with instance segmentation through a

two-step approach:

1. Feature Extraction and Region Proposal Mask R-CNN utilizes a backbone

CNN (like ResNet) to extract a comprehensive feature map from the input image.

Employs a Region Proposal Network (RPN) to identify potential object locations,

generating proposals with anchor boxes of various sizes and aspect ratios. It ap-

plies RoI Align to precisely extract fixed-size feature segments from each proposal,

avoiding the quantization errors of previous methods.

2. Detection and Segmentation For each proposal, it performs object classifi-

cation and bounding box regression to identify object types and adjust proposal

dimensions. In parallel, a segmentation branch generates pixel-level masks for each

object instance by applying a Fully Convolutional Network (FCN), allowing for pre-
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cise object outlines.

This architecture integrates object detection and segmentation, improving accu-

racy through end-to-end training with a multi-task loss that encompasses proposal

classification, bounding box refinement, and mask generation.

Figure 6.3: Mask R-CNN architecture diagram.
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6.2.2 Training process

For our model’s configuration, we selected the “mask rcnn R50 FPN 3x.yaml” from

the Detectron2 model zoo, chosen for its strong baseline in instance segmentation,

which we further tailored to meet our dataset’s specific needs. we set the number of

workers for the PyTorch dataloader to two, ensuring efficient data handling without

overloading the system. The images processed in each batch are limited to 2, main-

taining an optimal balance for batch processing. The model is configured to detect

five unique classes (model.roi.heads.numclasses = 5), which correspond to our 4 dex-

terous skills namely - Push-to-horizontal, Simple-pick, Push-to-vertical, Slide-to-edge

and with an additional class designated for instances requiring no skill. Additionally,

we have another model trained specifically for handling RGB images, with labels as

the Slide-to-edge and Flip skills.

The training process lasts for a maximum of 1000 iterations, a decision based

on experimental evaluations to ensure sufficient learning while avoiding overfitting.

The use of Detectron2’s default trainer class simplifies the initiation and execution of

training, offering built-in support for model optimization, checkpointing, and perfor-

mance assessments. The model requires approximately 30-35 minutes for training on

an Nvidia RTX 2080. For optimization, we employ the Stochastic Gradient Descent

(SGD) method, setting the learning rate at 0.00025, momentum at 0.9, and a weight

decay of 0.0001.

41



6.2.3 Performance evaluation

For assessing the accuracy of the skill detection model, our study employed a dataset

comprising 570 images for training and an additional 84 images designated for testing.

The evaluation metric for the skill detection model’s accuracy involved calculating

the Intersection over Union (IOU) with a threshold set at 0.5. Furthermore, the

average IOU metric was also presented to offer a comprehensive understanding of

the model’s performance.

To enhance our skill detection model’s evaluation, we used Average Precision

(AP) scores alongside accuracy metrics. We achieved a mean Average Precision

(mAP) score of 76.076 for segmentation and 68.041 for bounding box detection. AP

scores, integral for understanding model precision-recall balance, reflect the model’s

ability to correctly identify and localize objects. This metric is especially valuable

in scenarios where object detection accuracy across varying thresholds is critical.

The choice of Mask R-CNN was motivated by its superior generalization capa-

bilities, attributed to its architecture that effectively combines object detection with

pixel-wise mask prediction, ensuring detailed and accurate object segmentation cru-

cial for our application.

Fig. 6.4 shows the input and output image, with the segmentation masks over-

layed and associated confidence scores for each object.
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Figure 6.4: The left image is the input, and the right shows segmented objects with
confidence scores.

6.3 Skill location module

Due to the nature of the grasping skills employed, it becomes essential to pinpoint

precisely where each skill should be applied. Existing grasp generation models, such

as GGCNN [9], cannot provide accurate grasping locations adapted to our specific

skill set. For instance, GGCNN might suggest a center point for grasping a Pringles

can, whereas our “Push-to-Vertical“ skill necessitates an edge point grasp. Conse-

quently, developing a dedicated grasp generation model that accounts for our specific

skills becomes imperative.

To address this gap, we have developed a grasp location model using the U2Net

architecture [13], augmented with an attention-gate mechanism. This approach al-

lows for the precise identification of optimal grasp locations by leveraging the atten-

tion gate to enhance relevant features and suppress distractions within the encoder

and decoder feature maps. The synergy between the attention mechanism and the

U2Net architecture ensures a more concentrated feature map, significantly improv-

ing the model’s ability to generalize to unseen objects. This modified architecture is
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depicted in Fig. 6.5 and detailed in following section.

6.3.1 Network architecture

The U2-Net architecture employs a deep nested U-structure that integrates Residual

U-blocks (RSUs) to effectively capture features. The model includes convolutional

layers, batch normalization, and ReLU activation functions, along with specific down-

sampling and up-sampling layers to manage the flow of information across different

scales. The network’s depth and the specific combination of layers enable it to learn

detailed features from the input images, making it robust for detecting salient objects

with high precision, and generating heatmaps focusing on precise grasp locations

on the object. We incorporate an attention-gate mechanism in this architecture

to enhance the model’s focus on relevant features by fusing encoder and decoder

feature maps through the attention gate. It selectively emphasizes target regions

while diminishing less relevant information. This enriched feature representation,

combined with previous decoder outputs, improves the model’s ability to generalize to

unseen objects by providing a more detailed and focused feature map for subsequent

decoding stages.

6.3.2 Training process

The initial step in the training process of the U2-Net model for determining skill

location involves data preparation, where a manually labeled dataset is augmented

through a series of transformations to standardize the input data. It includes resizing

the image to a fixed size of 320 pixels along the shortest side, maintaining the aspect
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Figure 6.5: Attention gated U2Net architecture diagram

ratio and ensuring uniformity in input size for the network. We then randomly crop

a region of 288x288 pixels from the rescaled image to introduce variability in the

training data, helping the model to generalize better by learning from different parts

of the images.

The training was structured to span over 27 epochs, with a batch size of 16 for

training. The training took around 40-45 minutes to complete on the dataset de-
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scribed earlier on a Nvidia RTX 2080. We use the Adam optimizer with a learning

rate of 0.001, betas set to (0.9, 0.999), epsilon to 1e-08, and a weight decay of 0.0001.

These parameters were instrumental in ensuring a steady and effective optimization

of the model weights throughout the training process. The training process adopts

a combined loss function that integrates the inverse of the Structural Similarity In-

dex (SSIM), along with Intersection over Union (IoU) and Binary Cross Entropy

(BCE). This multifaceted loss function is designed to optimize the model’s perfor-

mance by simultaneously considering similarity in image structure, the accuracy of

object localization, and the precision of binary classification.

6.3.3 Performance evaluation

We employ the accuracy score metric to assess the performance of our skill detection

model, while the Mean Absolute Error (MAE) and Intersection over Union (IOU) are

utilized to evaluate the skill location. MAE measures the average magnitude of errors

in a set of predictions, without considering direction. It’s useful for understanding

how close the predicted values are to the actual values, on average. IOU, on the other

hand, assesses the overlap between predicted and actual object locations, providing

insight into the model’s localization accuracy. Specifically, the skill location model

demonstrates an MAE of 0.027, an accuracy of 92.85%, and an average IOU of 0.66.

The U2-Net model was chosen for its proficiency in salient object detection, closely

aligning with our heatmap generation needs. Its attention mechanism effectively

highlights key image areas, producing reliable heat maps for our application model.

Figure 6.6 presents the output image alongside heatmaps highlighting specific
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Figure 6.6: From left to right: Input image, model output, and selected highest-
probability grasp location from the heatmap.

regions of interest. From these areas, we identify and select the point with the highest

probability. This point is then designated as the coordinate for the skill location.

Subsequently, each identified point is correlated with the corresponding skills through

the utilization of segmentation masks obtained from the skill detection model.
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Chapter 7

Motion and skill planning

Skill execution within our system is an intertwined process that integrates program-

ming processes with the mechanical precision of the Panda arm and the adaptive

capabilities of the Yale Openhand gripper. Central to this pipeline is the integration

of the OpenHand python library, which is designed to manage the intricate move-

ments of servo motors in the gripper. We leverage the OpenHand library’s functions

such as open(), adduct(), moveMotor(), and power close() to modulate the hand’s

posture and the force exerted by its grip, thus accommodating objects of varying

shapes, sizes, and textures.

The execution sequence of a particular skill integrates an organized series of steps,

starting from the robot’s home position—a predefined, standard position that ensures

a consistent starting point for task execution. It then involves the robot methodically

progressing through a sequence of intermediate stages, each carefully calculated to

optimize the robot’s interaction with the object according to the specific skill being
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executed.

For instance, the execution of the “push-to-vertical” skill (Fig. 7.1) for manipu-

lating a Pringles box involves a strategic progression through four distinct stages:

1. The robot initiates from its home position, a standardized starting state that

guarantees the consistency and accuracy of the images captured for skill detec-

tion and location.

2. In the second stage, the robot moves to a position near the object. It approaches

with a specific orientation, aligning the gripper’s two fingers parallel to the table

surface and positioning them underneath the object. This careful approach is

designed to minimize disruption to the object while preparing for a secure

grasp.

3. The subsequent stage involves a deliberate motion where the gripper pushes

toward the object. This action allows the two-finger side of the gripper to push

the object vertically along the wall, while the third finger provides support

from the top. This technique ensures a strong, stable grip around the object.

4. Upon securing the object, the robot then transitions to the final stage. It

navigates to a position directly above the bin and releases the object.

Figure 7.1: Step-wise execution of push-to-vertical skill
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The execution of the “Slide-to-Edge” skill (Fig. 7.2) for manipulating a plate is

executed in the following 5 steps:

1. The robot initiates from its home position, a standardized starting state that

guarantees the consistency and accuracy of the images captured for skill detec-

tion and location.

2. The robot then advances to a position where the gripper’s third finger makes

contact with the plate’s designated grasp point from above, while the other two

fingers remain in an open position. This configuration is intentionally adopted

to stabilize the grasp, eventually positioning the two open fingers under the

plate to prepare for a secure lift.

3. With the initial grasp established, the next stage involves the robot sliding the

plate across the flat surface of the tabletop. This movement continues until the

plate approaches the predefined edge of the table which is a limit set based on

the workspace dimensions.

4. Upon arriving at the edge of the table, the robot repositions the end effector

by shifting it a small distance in the positive y direction. This adjustment

places the two-finger side of the gripper directly beneath the plate, a maneuver

pivotal for securing firm support from below before the gripper is engaged.

5. The final stage involves the robot lifting the plate upward along the positive

z-axis before securely transporting and releasing it into the bin.
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Figure 7.2: Step-wise execution of slide-to-edge skill

The execution of the “Push-to-Horizontal” skill (Fig. 7.3) for manipulating a

small object (peach) is executed in the following 4 steps:

1. The robot initiates from its home position, a standardized starting state that

guarantees the consistency and accuracy of the images captured for skill detec-

tion and location.

2. The robot progresses toward the designated grasp location on the object. Upon

arrival, it descends along the negative z-axis by a predetermined measure, en-

suring the fingers of the gripper make contact with the tabletop.

3. In the third stage, the robot gently pushes the fingers of the gripper underneath

the object. This action is performed with precision to slightly elevate the object

from the table surface. The lift is minimal yet significant enough to ensure that

all three fingers of the gripper can support the object from below.

4. With the object securely supported by all three fingers from the bottom side,

the robot then carefully lifts it off the table. Following the lift, the robot

transports the object to safely release it into the bin.
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Figure 7.3: Step-wise execution of push-to-horizontal skill

The execution of the “Flip” skill (Fig. 7.4)for manipulating a lego brick is exe-

cuted in the following 4 steps:

1. The robot starts from its home position and approaches the object, engaging in

a preliminary and standard grasp that positions the object between the fingers

of the gripper. This initial contact is on the fingertips of the gripper due to

the small thickness of the object thus making it unstable.

2. Subsequently, the robot adjusts the single finger of the gripper close further

which initiates the flip, carefully reorienting the object inside the gripper. This

controlled flip is essential for moving the object from a less secure fingertip

grasp to a more stable position within the gripper.

3. With the object securely repositioned and grasped, the robot then proceeds

to lift and transport it to the designated location. The careful handling and

reorientation through the flip skill mitigate the risk of dropping or improperly

handling the object, particularly important for small and flat items.
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Figure 7.4: Step-wise execution of flip skill

The execution of the “Simple Pick” skill (Fig. 7.5) for manipulating an object is

fairly simple and can be used for most of the objects. It is performed in the following

2 steps:

1. This skill performs the standard grasping technique where the robot starts

from the home position and achieves the grasp position provided by the skill

location module as well the orientation given by the skill detection module.

2. Once the desired position and orientation is achieved, the gripper simply per-

forms the close action and grasps the object. It then moves to its final location

above the bin and releases the object.

Figure 7.5: Step-wise execution of simple-pick skill

A pivotal aspect of our robotic system’s functionality is the adaptive nature of

the robotic hand, made possible through the power close function of the OpenHand
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library. This function is particularly significant as it allows the hand to adjust its grip

dynamically, conforming to the object’s shape and securing it firmly without exerting

excessive force that could lead to damage. Through rigorous trial and refinement,

the initial values for approaching objects and executing skills have been optimized,

ensuring each motion is performed with unparalleled precision and efficiency.

For the motion planning framework of our system, we selected MoveIt for its

robust support for planning operations, particularly with the Franka Panda robotic

arm. The flexible plugin architecture of MoveIt enables the use of RelaxedIk [14] as

the inverse kinematics solver to generate robust IK solutions, along with the Open

Motion Planning Library (OMPL) as the default planner, due to its proficiency in

handling complex and constrained environments. Integration with the Robot Operat-

ing System (ROS) facilitated communication between MoveIt and the robotic arm,

while MoveIt’s RViz interface was employed for visualizing and debugging motion

plans. A significant advantage of using MoveIt is its modularity and scalability sup-

port, which simplifies the addition of more sensors or end effectors into the system,

thereby accommodating the future incorporation of more dexterous manipulation

skills.

To achieve the complexity required for the dexterous manipulation skills, we

utilize pose goal planning as well as cartesian path planning. Pose goal planning

directs the robot to move to a specified pose, ensuring the arm reaches the desired

position and orientation. Cartesian path planning ensures control over the trajectory

of the end-effector, which calculates and executes a trajectory through a series of

waypoints, allowing for smoother and more controlled motion.
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The MotionPrimitive class encapsulates the logic for executing predefined tasks

such as picking, sliding, pushing, and flipping objects. This includes dynamic adjust-

ments to the robot’s grasp pose informed by real-time object coordinates from ROS

topics, enhanced by a service server for flexible execution of these tasks. The sys-

tem’s setup involves configuring default positions and establishing ROS subscribers,

publishers, and service servers for managing motion primitives based on dynamic

input. Critical motion parameters for tasks like slide-to-edge and push-to-vertical

are calculated, considering the direction of movement and distance needed, ensuring

precise execution. The direction is set opposite to relevant normal vectors (table edge

or wall), with distance D determined by the formula D = Dmax − dsub, where dsub is

the object’s distance from the workspace limit and Dmax is the maximum distance

the robot can move within the workspace, thus enabling smooth and collision-free

movements.
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Chapter 8

Experiments, results and

discussion

To assess our proposed architecture, we conducted a series of table-top object grasp-

ing experiments with 25 distinct scenarios, as detailed in the earlier section. These

experiments comprised approximately 100 grasping trials. Our evaluation encom-

passed a wide range of objects, including both known and unknown items. Our

real-world experiments were designed to rigorously assess the robustness and adapt-

ability of our algorithm in various scenarios. These experiments include:

• Known Objects Placed Randomly: In this experiment, we placed 4 known

objects randomly on the table, to evaluate the algorithm’s capability to handle

unpredictable object placements.

• Objects with Multiple Skills: Some of the objects were configured to possess

multiple graspable skills. This experiment aimed to assess the algorithm’s
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ability to discern and execute the appropriate skill with the highest probability

for each object.

• Handling More than 4 Objects: To challenge the algorithm’s capacity, we in-

troduced more than five objects into the environment, replicating cluttered

scenarios that often arise in real-world applications.

• Unknown Objects: We introduced over 15 completely unknown objects, absent

from the training dataset, to gauge the algorithm’s adaptability and general-

ization capabilities.

• Occluded Objects: Occlusion is a common occurrence in cluttered environ-

ments. We incorporated occluded objects to test the algorithm’s ability to

handle partially visible objects.

8.1 Category specific results

The table 8.1 presents the results of various experiments focused on grasping objects

under different conditions. Firstly, in the “Known” category, where objects were

familiar to the system, the success rate was remarkably high which is as expected,

with all trials resulting in successful grasps and complete clearance of the table, in-

dicating a robust performance in familiar environments. Moving on to the “Known

+ Unknown” scenario, which involved a mix of familiar and unfamiliar objects, the

success rate slightly decreased to 90.83%. Despite encountering unfamiliar objects,

the system still demonstrated a commendable performance, clearing the table in
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the majority of attempts. Similarly, in the “Unknown” category, where all objects

were unfamiliar, the success rate remained high at 93.9%. This suggests the sys-

tem’s adaptability and capability to handle novel objects efficiently. Additionally,

in the “Occluded” experiment, where objects were partially obscured, the success

rate remained high at 91.6%, indicating the system’s ability to cope with challenging

scenarios. For instance, when faced with scenarios like a ball placed atop a plate, our

algorithm intelligently prioritized grasping the ball first. This decision-making helped

prevent potential mishaps, such as dropping the ball, making the chosen sequence

logical. Overall, the results demonstrate the system’s robustness across various ex-

perimental conditions, showcasing its effectiveness in grasping objects reliably, even

in unfamiliar or partially obscured settings.

Table 8.1: Category-Specific Grasping Results

Category Successful Trials Average % of ta-

ble cleared

Known 5 / 5 100%

Known + Unknown 16 / 20 90.83%

Unknown 15 / 20 93.9%

Occluded 8 / 10 91.6%
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8.2 Table clearing

Table 8.2 provides an overview of the overall success rates in clearing the table

across different numbers of objects. The results demonstrate a generally high level

of success across varying object counts. For trials involving two objects, the success

rate stands at 80%, with an average of 1.6 objects grasped per trial. As the number of

objects increases, the success rates remain consistently high, indicating the system’s

ability to effectively handle more complex scenarios. Specifically, for trials with three

objects, the success rate is 86.67%, with an average of 2.86 objects grasped per trial.

Similarly, for trials with four objects, the success rate is 76.47%, with an average of

3.76 objects grasped. Even with five objects, the system achieves a success rate of

80%, grasping an average of 4.8 objects per trial. As the complexity further increases,

with six and seven objects, the system maintains a high success rate, albeit with fewer

trials conducted in these categories. These results underscore the system’s robust

performance across a range of scenarios, showcasing its ability to efficiently clear the

table even as the number of objects and the complexity of the task increase.
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Table 8.2: Overall table clearing success rates

Number of objects Successful Trials /

Total # of Trials

Average Grasped

Objects Count

2 4 / 5 1.6

3 13 / 15 2.86

4 13 / 17 3.76

5 4 / 5 4.8

6 1 / 2 5.5

7 1 / 1 7

8.3 Skill specific

The table 8.3 presents the success rates and the nature of failures associated with

various grasping skills employed by the system. Note that we allowed for one retry if

a skill fails for the first time and the object is still on the table. We did not do any-

thing special for this retry mechanism; since the pipeline works cyclically, it captures

a new image of the scene and runs the process again. The success rates reported in

Table 8.3 also reflect those retries. Among these skills, “Push-to-Vertical” demon-

strates a commendable success rate of 92%, albeit encountering occasional instances

of object slippage during grasping. These occurrences of object slippage are primarily

attributed to insufficient force applied during the grasping process, a challenge that

could potentially be addressed in the future by implementing force-feedback mech-

60



anisms for the robot’s fingers. In contrast, “Push-to-Horizontal” exhibits a slightly

lower success rate of 85.29%, primarily due to occasional misidentification of the ap-

propriate skill and instances of object slippage during grasping. The common reason

of mis-identification seems due to it being detected as Simple-pick and can be solved

by retraining the model by adding more data for appropriate skills. “Slide-to-Edge”

shows a success rate of 66.66%, with failures primarily attributed to challenges in

determining the optimal skill location and unachievable robot poses. We have also

observed that in some cases, even though the sliding action was successful, the robot

was unable to complete the pick due to the execution of the grasping motion. Specif-

ically for slide-to-edge, 10 out of 26 picks failed in the first attempt. However, in

6 of the 10 cases, the system was successful in the second attempt. “Simple-Pick”

achieves a high success rate of 92.5% but faces occasional failures caused by environ-

mental interference. Lastly, the “Flip” skill demonstrates a success rate of 71.88%,

with failures primarily stemming from difficulties in determining the optimal skill lo-

cation and encountering objects that are too small for the technique to be effective.

Given that objects targeted for flipping are typically small, even minor deviations in

the identified skill location can lead to unsuccessful attempts, necessitating retries.

Overall, these results provide valuable insights into the performance and limitations

of each grasping skill, highlighting areas for improvement to enhance the system’s

overall efficiency and reliability.
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Table 8.3: Overall Grasping Success Rates and Skill-Specific Breakdown

Skills Success

Rate

Algorithmic

failures

Mechanical Fail-

ures

Push-to-Vertical 92% - Object slipped

during grasping

Push-to-Horizontal 85.29% Wrong skill de-

tected

Object slipped

during grasping.

Slide-to-Edge 66.66% Optimal skill loca-

tion not found.

Unachievable

robot pose

Simple-Pick 92.5% - Environmental in-

terference.

Flip 71.88% Optimal skill loca-

tion not found.

Object too small

8.4 Discussing individual experiments

Experiment 41 ( Fig. 8.1) highlights our system’s capability to prioritize objects and

the order in which they are handled to achieve efficient decluttering. Initially, the

system opts to pick up the plum using the push-to-horizontal skill, then proceeds

to clear the white cup and the transparent glasses using the simple pick skill. This

strategy ensures that the table surface is clear and free of obstacles when executing
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the push-to-vertical maneuver for the spray can at the last. Another notable obser-

vation from this experiment is the robot’s decision-making process when faced with

two objects (the white cup and transparent glasses) for simple pick. It prioritizes

the white cup first, simplifying the subsequent pickup of the glasses by taking into

account the depth constraints of both items.

Figure 8.1: Step-wise execution of Experiment 41

In Experiment 45 ( Fig. 8.2), our system navigates a setup with a plate occluded

by red and white cups. It starts by removing the plum with a push-to-horizontal skill,
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essential for clearing the path for the slide-to-edge technique to retrieve the plate.

Subsequently, it removes the two cups using simple pick in an optimal sequence, then

applies the slide-to-edge technique for the plate. As seen, it also picks up the white

cup which is a taller object, hence not obstructing the pick for cup as well. The

system reserves the lego brick for last, which does not obstruct the plate, and clears

it using the flip skill, utilizing the RGB model for skill detection. This demonstrates

efficient clutter clearance and discerning obstacle prioritization based on their impact

on task execution.

Experiment 16 ( Fig. 8.3) primarily showcases the system’s ability for contextual

skill selection, i.e selecting skills based on the constraints and context of the envi-

ronment. Firstly, the system prioritizes unobstructed objects i.e. the white cup and

blue ball through simple pick and push-to-horizontal skills respectively. The decision

to use a simple pick for the pringles box, instead of push-to-vertical taking into ac-

count the the fartherness of a wall and the plate underneath. This variation in skill

selection, influenced by the object’s location, underscores the system’s capability to

adjust strategies based on context for enhanced efficiency. After clearing objects

using the depth image, the system lastly employs the RGB model to identify and

execute the flip skill on the lego brick, which the depth-based model could not detect

due to its small size and shape. This experiment also demonstrates the integration

of depth and RGB models and the ability to dynamically switch between them based

on the object parameters.

Experiment 42 ( Fig. 8.4) addresses a failure in our system where a lego brick

is placed inside a plate. Initially, the robot removes the blue ball using the push-
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Figure 8.2: Step-wise execution of Experiment 45

to-horizontal skill but then fails to clear the lego brick before directly attempting to

use the slide-to-edge skill on the plate. This oversight results in the lego brick being

inadvertently dragged along and eventually falling off the plate during the slide-to-

edge execution. Fortunately, in this case, the brick lands on the table surface and is
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Figure 8.3: Step-wise execution of Experiment 16

subsequently picked up by the robot using the flip skill. Although this experiment

highlighted a limitation, it is important for identifying specific scenarios that can

lead to unexpected system behaviors and the need of a unified model.

These experiments collectively underscore our system’s sophisticated manipula-

tion capabilities, from strategizing in occluded settings to adapting skill selections

based on contextual nuances. The system’s intelligent decision-making, coupled with
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Figure 8.4: Step-wise execution of Experiment 42

its adept skill execution, promises enhanced efficiency and broader applicability in

real-world scenarios.

8.5 Notable observations from detailed experiments

Analyzing the table from Appendix A reveals insights into the performance, adapt-

ability, and challenges faced by the system when executing various tasks across dif-

ferent scenarios. Here’s a summary of key observations and analysis derived from

the data:

• High Success Rate in Known and Unknown Scenes: The system demonstrates
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a strong ability to successfully manipulate objects in both known and unknown

environments. This suggests that the robot’s perception and motion planning

algorithms are robust, allowing it to generalize its manipulation skills across

different settings.

• Adaptation to Object Orientation Changes: We can see through the detailed

experiment setup, that the gripper changes orientation according to the ob-

ject. This adaptability ensures successful interaction with objects regardless of

their orientation, significantly enhancing the robot’s operational flexibility and

effectiveness

• Handling of Complex Object Arrangements: The successful manipulation of

objects in occluded scenarios, such as Experiment 12, indicates that the robot

can navigate and manipulate in cluttered environments.

• Successful simulation-to-real model inference: Despite being trained on simu-

lation data, the models demonstrate robust generalization capabilities, as ev-

idenced by successful real-world experiments. This indicates that training on

simulation data did not adversely affect the models’ effectiveness when deployed

in real-world scenarios.

8.6 Failure cases

In this section, we discuss some of the most common causes of failure in the system.

• Severe Occlusion: In scenarios where occlusion is extreme, the system might
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fail to detect occluded objects. For example, a pile-up of multiple objects could

lead to unseen failures in the system due to the inability to discern individual

items within the clutter.

• Static Trajectory for Slide-to-Edge: Our current implementation of the slide-

to-edge skill operates based on a predetermined edge of the table to which

an object is slid. However, there may be situations where an object is closer

to a different table edge, making it more efficient to slide the object towards

that edge. Instead, our system endeavors to first clear any objects in the path

towards the fixed edge before executing the slide-to-edge skill. This approach

is inefficient and prone to failures in specific scenarios.

• Dynamic Execution of Skills: Consider a scenario where a push-to-vertical

skill is being executed on an object, and a ball on the table rolls up near

the object during execution. This unexpected obstruction can cause system

failures. Integrating an online feedback mechanism during execution could

allow for real-time adjustments and on-the-fly decisions.

• Separate skill detection models: Currently, our system consists of 2 separate

models for skill detection: the depth model and the RGB model. Due to this,

failures like Exp 42 might occur where the objects later detected by the RGB

model get ignored while executing skills on the objects using the depth models.

Using a combined model is a possible solution for this.
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Chapter 9

Conclusion

In this thesis, we have designed and developed an efficient framework for the de-

cluttering of multi-object scenes, utilizing dexterous manipulation skills that mimic

human-like dexterity. We began by introducing the problem of dexterous manip-

ulation and its underlying motivation, followed by a discussion on the challenges

researchers face in imbuing robotic manipulators with human-like dexterity. A com-

prehensive literature review was presented, highlighting the latest advancements in

dexterous manipulation and the inspiration behind our work.

We proposed a context-aware approach to tackle the problem of dexterous manip-

ulation and detailed the deep neural network-based methods employed for detecting

appropriate skills and grasp locations. Both models were assessed through practical

experiments, successfully achieving skill detection and identifying skill locations for

various objects. Our skill execution pipeline and the motion planning framework

were elaborated upon, showcasing the methodology behind our approach. The thesis
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culminated in presenting detailed results from a series of real-world experiments that

demonstrate the capabilities of our system using an experimental dataset comprising

a variety of everyday objects, both known and unknown. Our experimentation pro-

cess, designed to be intuitive and replicable, can adapt to scenes with any number of

objects. Through these experiments and their in-depth analysis, we provided insights

into the generalizability of our system across different real-world conditions, under-

scoring the effectiveness and adaptability of our proposed framework in achieving

dexterous manipulation in robotic systems.

9.1 Limitations and Future work

This section outlines the future work for enhancing the system’s capabilities. It

addresses some limitations of the current system and focuses on ways to enhance

the current approach. The key areas addressed in this section include improving the

deep learning models, refining skill execution with error feedback, and expanding

the dataset. The aim is to make our current system better and more equipped for

handling complex real-world scenarios.

9.1.1 Integrated Model

The current approach, which employs separate models for processing RGB and depth

images, encounters challenges when small objects are in the path of other skills.

Because we use RGB model at the end, it can lead to these objects being overlooked

or incorrectly manipulated during specific actions, such as sliding to the edge of a
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table as explained in Fig. 8.4. This issue underscores the necessity for a unified

model that can provide a comprehensive solution. By combining RGB and depth

data processing, the unified model aims to ensure precise detection and handling of

all objects, irrespective of their size or shape, enhancing overall system performance.

9.1.2 Dataset Diversification

The system’s training specificity to certain environmental setups limits its applica-

bility across different real-world situations. To address this, expanding the training

dataset to include a variety of table configurations, object placements, and camera

perspectives is critical. Such diversification will enable the system to adapt more

effectively to diverse environments, improving its versatility. This expansion should

also focus on mitigating issues like object occlusion by exploring various camera

angles, ensuring a thorough understanding of the scene.

9.1.3 Skill Refinement and Expansion

Our observations also point to the necessity of refining our implementation of certain

skills. Despite selecting appropriate actions and target locations, the execution of

slide-to-edge or flip sometimes falls short of expectations. Hence, more sophisticated

control strategies, potentially leveraging closed-loop feedback mechanisms that draw

on tactile sensing to fine-tune actions in real-time can be explored. The system

currently has only five skills implemented, though in practical scenarios a broader

arrays of skills are needed. The structured nature of our pipeline facilitates the

integration of additional skills similar to current ones making the system more closer
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to human-like behaviour.

9.1.4 Error recovery

At present, our system lacks a mechanism for error feedback during object grasping

tasks, rendering it unable to confirm the successful execution of a grasp from start

to finish. In instances where an object is dropped mid-motion, our system currently

does not support error recovery processes. Integrating feedback mechanisms, such

as force or tactile sensors, to verify whether an object has been securely grasped or

securely released would significantly enhance the system’s reliability and robustness.
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Appendix A

Detailed experiments table

Exp
No

Success Scene Object No.
of
tries

Observation Skill

1 Yes Known + Unknown Plum 1 P2H
4 of 4 Advil 1 P2H

Cup 1 SP
Spray metal 1 P2V

2 Yes Unknown Glove 1 SP
3 of 3 Glasses 2 Slipped on the

first attempt
SP

Umbrella 1 SP
3 Yes Known + Unknown Pringles 1 P2V

4 of 4 Banana 1 SP
Tape 1 P2H
Ball 1 P2H

4 No Known + Unknown Pringles 1 SP
3 of 4 Banana 0/2 Gripper not clos-

ing enough
P2V

Plum 1 P2H
Paper plate 1 S2E
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Exp
No

Success Scene Object No.
of
tries

Observation Skill

5 Yes Known + Unknown Spray metal 1 No change in
orientation ob-
served

SP

6 of 6 Tape 1 Initial detec-
tion was SP;
however, a P2H
approach is
required.

SP

Glasses 1 SP
Paper plate 1 S2E
Umbrella 1 P2V

Cup 1 SP
6 Yes Unknown Umbrella 1 SP

4 of 4 Tape 1 P2H
Dasani 1 P2V

Spray metal 2 Slipped on the
first attempt

P2V

7 No Known + Unknown Plum 2 Grasp point was
off centre

P2H

2 of 3 Glove 1 SP
Plate 0/2 Pose was not

achievable by
the robot

S2E

8 Yes Unknown Dasani 1 SP
4 of 4 Glasses 1 SP

Paper plate 2 Slipped from
the fingers while
picking (after
sliding) in the
first attempt.
Successfully
grasped in the
second attempt.

S2E

Airdopes 2 Object slipped
on the first
attempt

P2H
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Exp
No

Success Scene Object No.
of
tries

Observation Skill

9 Yes Unknown Dasani 1 SP
3 of 3 Banana 1 SP

Spray metal 1 P2V
10 Yes Known + Unknown Pringles 1 SP

3 of 3 Cup 1 SP
Paper Cup 1 SP

11 Yes Known + Unknown Ball 1 P2H
3 of 3 Dasani Bottle 1 P2V

Cup 1 SP
12 Yes Occluded Paper plate 1 S2E

5 of 5 Spray metal 1 P2V
Paper Cup 1 SP

Plum 1 P2H
Mug 1 SP

13 No Known + Unknown Pringles 0/0 Wrong priority
list - hand will
collide with the
plate

P2V

0 of 2 Paper plate 0/0 S2E
14 Yes Known + Unknown Paper plate 1/2 Unachievable

pose in the first
attempt

S2E

4 of 4 Lego brick 1 F
Dasani bottle 1 P2V

Plum 1 P2H
15 No Known + Unknown Lego brick 1 F

3 of 4 Cardboard small 0/2 Kept slipping
between the
fingers

F

Spray metal 1 P2V
Paper plate 1 S2E

16 Yes Occluded Pringles 1 Grasp was un-
stable

SP

5 of 5 Paper plate 1 S2E
Paper Cup 1 SP

Ball 1 P2H
Lego brick 1 F
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Exp
No

Success Scene Object No.
of
tries

Observation Skill

17 No Unknown Lego brick 2 Slippage oc-
curred on the
first attempt.

F

4 of 5 Paper Cup 1 SP
Dasani Bottle 1 SP

Plum 1 P2H
Cardboard tray 0/2 Slipped from

the fingers while
picking (after
sliding)

S2E

18 Yes Known Pringles 1 P2V
3 of 3 Cup 1 SP

Ball 1 P2H
19 Yes Known + Unknown Paper Cup 1 SP

3 of 3 Orange 1 Struck the
object before
grasping

P2H

Dasani Bottle 1 P2V
20 Yes Known Pringles 1 P2V

3 of 3 Plate 1 Grip was unsta-
ble

S2E

Cup 1 SP
21 Yes Known Pringles 1 P2V

3 of 3 Ball 1 P2H
Cup 1 SP

22 Yes Known + Unknown Paper plate 2 Gripper pushes
the plate inside
while trying to
grasp in the first
attempt

S2E

4 of 4 Lego brick 1 Did not flip
properly

F

Lego brick 2 Slipped in the
first attempt

F

Paper Cup 1 SP
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23 Yes Known + Unknown Lego brick 1 F
3 of 3 Lego brick 1 F

Dasani Bottle 1 SP
24 Yes Occluded Lego - small 1 F

4 of 4 Tape 1 P2H
Paper Cup 1 SP
Paper plate 1 S2E

25 Yes Known + Unknown Dasani Bottle 1 SP
5 of 5 Paper plate 1 S2E

Cup 1 SP
Spray metal 1 Grasp was un-

stable
P2V

Lego brick 1 F
26 Yes Occluded Lego brick 1 F

5 of 5 Lego brick 1 F
Paper plate 1 S2E
Pringles 1 SP
Plum 1 P2H

27 No Unknown Paper plate 2 Pose was not
achievable on
the first at-
tempt.

S2E

3 of 4 Plum 1 P2H
Paper Cup 1 SP
Cardboard 0/2 Slipped between

the fingers
F

28 Yes Unknown Umbrella 1 Slipped during
grasp but didn’t
fall

SP

3 of 3 Paper plate 1 S2E
Glasses 2 Gripper wasn’t

completely
closed

SP

29 Yes Unknown Dasani Bottle 1 SP
3 of 3 Tape 1 P2H

Spray metal 1 P2V
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30 Yes Unknown Paper Cup 1 SP
4 of 4 Dasani Bottle 1 P2V

Plum 1 P2H
Tape 1 Wrong skill was

detected
SP

31 Yes Unknown Paper plate 2 Pose was not
achievable on
the first at-
tempt.

S2E

4 of 4 Dasani Bottle 1 P2V
Plum 1 P2H

Cardboard Cup Sleeves 1 Got two masks
around object

F

32 Yes Occluded Umbrella 1 SP
2 of 2 Paper plate 1 S2E

33 No Occluded Paper Cup 1 SP
2 of 3 Spray metal 1 SP

Paper plate 0/2 Pose was not
achievable by
the robot

S2E

34 Yes Unknown Paper plate 1 S2E
7 of 7 Paper Cup 1 SP

Banana 1 SP
Lego brick - small 1 F

Spray metal 1 P2V
Advil 1 P2H
Plum 1 P2H

35 Yes Known Cup 1 SP
4 of 4 Ball 1 P2H

Lego brick 1 F
Pringles 1 P2V

36 Yes Known Lego brick 1 F
2 of 2 Lego brick 1 F
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37 No Unknown Paper plate 1 S2E
3 of 4 Paper Cup 1 SP

Spray metal 2 Object slipped
on the first
attempt due to
slant position
and improper
depth

SP

Lego brick - small 0/0 Was pushed out
of the workspace
when sliding the
plate

F

38 Yes Unknown Cardboard Cup Sleeves 0/2 Object kept slip-
ping persistently

F

2 of 2 Gloves 1 SP
39 Yes Occluded Lego brick - small 1 F

2 of 2 Cardboard tray 1 S2E
40 No Unknown Tape 1 P2H

5 of 6 Paper Cup 2 Slipped due to
cup being at a
slant angle

SP

Glasses 1 SP
Advil 0/2 Fingers didn’t

close enough to
grasp

P2H

Lego brick - small 1 F
3D print - pink 1 Object was not

flipped properly
F

41 Yes Unknown Paper Cup 1 SP
4 of 4 Glasses 1 SP

Plum 1 P2H
Spray metal 1 P2V
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42 No Known
+ Un-
known

Cardboard Cup Sleeves 0/2 Kept slipping
between the
fingers

F

3 of 4 Lego brick - small 1 F
Ball 1 P2H

Paper plate 1 S2E
43 Yes Occluded Cup 1 SP

3 of 3 Pringles 1 SP
Paper Plate 1 S2E

44 Yes Occluded Banana 2 Object slipped
on the first
attempt due to
improper depth

SP

3 of 3 Dasani Bottle 1 SP
Advil 2 Wrong skill de-

tected
SP

45 Yes Occluded Paper plate 2 Unachieavable
pose

S2E

4 of 5 Paper Cup 1 SP
Cup 1 SP
Plum 1 P2H

Lego brick- small 1 F
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