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Abstract

Distracted driving behavior is a major concern that claims the lives of many every year.
To address the issue, Al City has presented the Track 3 Challenge, which aims to encourage
research and development towards solutions that recognize and localize when distracted driving
behavior occurs in time. We present a novel online, multi-view architecture that aggregates
temporal context and uniquely samples past and present events to label and pinpoint the start and
end temporal boundaries of distracted driving actions. Our algorithm is a two-stage Temporal
Action Localization (TAL) method, which does not require a boundary detection network or any
localization training. It consists of several stages to predict and refine temporal boundaries:
aggregation, prediction, consolidation, post-localization processing, and assessment.
Furthermore, our method achieves top results in the Al City 2023 Track 3 Challenge and
performs highly in run-time efficiency. Our code is available at
https://github.com/CarrotPeeler/WPI-Naturalistic-Driving-Action-Recognition-MQP.
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1. Introduction

Distracted driving claims a significant amount of lives each year, having killed over
3,100 people and leaving 424,000 injured in just 2019 alone [1]. Everyday tasks, such as texting,
calling, talking, or listening to music may appear to be harmless, but in reality, they are the most
common reasons for why vehicular accidents occur [1]. As a means to identify and label such
behaviors, the aim of this project is to develop a deep learning, video understanding based
system that classifies and temporally localizes different distracted driving behaviors—a
computer vision task known as Temporal Action Localization (TAL).

The foundation of this project is based on the Naturalistic Driving Action Recognition
challenge adapted from the Al City organization [2]. In accordance with the challenge
guidelines, the system developed needs to handle data in the form of video which captures a
series of distracted driving actions. The data provided, SynDD2 [3], is synthetic and is collected
from three different camera angles inside of a vehicle. The data is split into two datasets, A1 for
training and A2 for validation, which total to 180 videos (27 hours in length). Additionally, each
untrimmed video provided contains 16 unique actions according to their annotations, with a few
exceptions, such as duplicate action occurrences in some videos. One key aspect of the challenge
dataset is that action segments range anywhere from approximately 2 to 30 seconds in length,
which is much longer than clips in Kinetics [4] datasets. Some videos have the driver's face
blocked with a hat or sunglasses while others do not. Therefore, part of the problem involves
strategizing solutions for how to prepare and utilize the data to maximize the accuracy of the
system's recognition and localization capabilities.

In particular, this project pays specific attention to researching and exploring unorthodox
methods for developing TAL strategies for the challenge dataset. A common trend with previous
strategies is to heavily focus on post-processing techniques to improve localization and
classification. However, we have developed a more practical online solution, where incoming
video data is continuously processed to perform ongoing localization. Thus, we minimize
post-processing while still achieving top results. To do so, we explore and adapt existing
strategies from past challenge submissions to suit our new method and propose additional unique
concepts to design an overall architecture to achieve TAL.

1.2 Contributions

The main contributions of this paper are as follows:

» We propose a novel algorithm for Temporal Action Localization that offers online
localization capability, yields a fast run-time performance of 160.5 FPS on two GPUs and
158.8 FPS on a single GPU, and performs highly when ranked against other methods in
the Al City Challenge 2023 Track 3.



* Our algorithm involves a unique manner of aggregating and sampling temporal context
and, in parallel, utilizes single proposal generation to fuse prediction probabilities across
three different camera views representing temporal space and action events.

2. Literature Review

2.1 Video Recognition

Video recognition refers to a wide variety of computer vision tasks which involve
understanding videos and their content. Within video recognition are more specific tasks, such as
object detection, action recognition, and many more [5]. Action recognition is a computer vision
task that aims to classify sequences of human actions within videos. The subject is an important
field of study that improves and contributes to real-world applications related to health
monitoring, intelligent surveillance, virtual reality, human-computer interaction, and several
others [6].

When developing action recognition models, some of the most popular approaches have
been to apply Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs),
attention mechanisms, or a combination of the aforementioned concepts [7]. In recent years,
however, new research has proposed the idea of purely attention-based models for action
recognition—Vision Transformers—which omit the usage of CNNs and RNNs and even
outperform large-scale CNN-based architectures [5].

2.2 Vision Transformers

Purely attention-based Vision Transformers were first proposed in [7]. Attention
mechanisms increase the robustness and efficiency of model understanding by redirecting a
model's 'attention' towards only learning the most important parts of input data. By using
multiple attention mechanisms to form a multi-head self-attention layer, the representation of
input is better defined and is less computationally intensive. Therefore, Vision Transformers can
capture long-term human activities while ignoring redundant information in the process [5].

One particular implementation is Multiscale Vision Transformers, which scale the input
video resolution to different sizes and fuse feature analysis performed over each stage to capture
low and high-level visual details [8]. There currently exist two versions of Multiscale Vision
Transformers—with the second version, MViTv2 [9], performing significantly well on action
recognition tasks. MViTv2 has shown to outperform other impressive models designed for action
recognition tasks, such as SlowFast [10] and X3D-XL [11], on the Kinetics 400, 600, and 700
datasets.



2.3 Visual Prompting

Visual Prompting is a recent topic of study concerned with eliciting improved model
understanding by leveraging external information or visual cues applied over the input image or
video data. Several studies have proven Visual Prompting to be an efficient alternative to full
fine-tuning (where all parameters participate in training) by reducing the number of trainable
parameters necessary for a large-scale pre-trained model to learn from small datasets [12, 13,
14]. The aforementioned methods accomplish this by injecting additional learnable parameters
directly into the input space (images or videos), which enables the input to conform to a
representation that the model would best understand. Therefore, a large-scale model only needs
to update a small group of its parameters rather than all of them to learn from small datasets,
reducing the computational resources required for training.

2.4 Past Methods

To solve the problem posed by Al City's third track challenge, all past methods and
winners have developed Temporal Action Localization (TAL) systems. TAL is another field
under action recognition which not only deals with classifying different categories of actions but
extracting temporal information as well.

Current solutions for TAL consist of one-stage and two-stage methods. Two-stage
methods tend to be more complex and work by first generating candidate intervals (proposals)
where actions are likely to occur and then classifying these segments to refine temporal
boundaries. In contrast, one-stage approaches perform both steps, simultaneously, to localize
temporal boundaries and classify actions, forgoing the use of proposals. Recent one-stage
methods mainly consist of boundary detection networks [15, 16, 17].

Among past top performers [18, 19] in the Al City challenge, the only effective one-stage
method used has been ActionFormer [20], which uses a transformer to classify moments of an
untrimmed video and then regresses action boundaries in a single shot. While the 2023 7th place
challenge submission [18] uses ActionFormer to achieve top results, their method employs the
usage of three separate models (X3D and MViTv2 for classification fusion, and ActionFormer
for TAL), limiting the efficiency and scalability of the method when applied to other datasets.

Other one-stage solutions for TAL utilize aggregation of different contexts. For example,
DCAN [16] opts to aggregate boundary and proposal level contexts to generate high-quality
candidate intervals where actions might occur. Another method is DAPs [21], which aggregates
temporal context (video frames) across a sliding window to generate variable length proposals of
different temporal scales. However, top performers [22] have noted the downsides to one-stage
methods in general, such as lower accuracy compared to two-stage solutions and the low volume
of data provided by the challenge to effectively train boundary detection networks.

Overall, a large portion of the winners from past challenges [22, 23, 24, 25] opted to use
two-stage methods, which generate overlapping proposals every 16 frames with a temporal



resolution of approximately 2 seconds or 64 frames at 30 FPS. Using anchor (fixed) windows,
their solutions favored exploring ways to improve classification and post-processing techniques
rather than proposal generation. MViTv2 and X3D are commonly employed as the backbone for
classification.

Since previous works related to the challenge are concerned with achieving high
accuracy, they do not explore online methods that omit the use of future temporal context and
extensive post-processing to gain near real-time capability. Works, such as [26], adhere to online
TAL execution via applying anchor windows for proposal generation, while other architectures
[27] impose frame-by-frame processing to achieve real-time, frame-sensitive localization.

3. Methodology

3.1 Codebase

Our project utilizes PySlowFast, a light-weight codebase providing resources and tools to
achieve efficient, high-performance results and fast implementation for video understanding and
related novel research ideas. PySlowFast offers implementation for several state-of-the-art
classification model backbones, including SlowFast, MViT, X3D, as well as others, and also
supports a variety of different tasks, such as classification and detection [28]. Additionally,
PySlowFast contains a plethora of pre-trained checkpoints for datasets like Kinetics 400 and 600,
which enables training and research carried out on smaller datasets to be quick and efficient.
Most notably, the codebase supplies implementation for preprocessing and loading data. In terms
of video preprocessing, PySlowFast provides decoding for retrieving video frames and temporal
sampling for uniformly selecting subsets of frames. Furthermore, for data augmentation, random
spatial cropping and several other methods are offered as well. Overall, PySlowFast is easy to
use and ensures code reusability.

3.2 Classification

As part of the Al City challenge, they provide two datasets, A1 and A2, which total to
180 videos (27 hours in length). However, A2 must be used for validation, only, leaving A1 as
the only dataset usable for training. Thus, only 150 videos (22.5 hours in length) are available for
training, resulting in a rather small dataset which poses a concern for overfitting.

3.2.1 Model Selection and Preprocessing

Based on the success of past submissions for the challenge [18, 23, 29], we use
state-of-the-art MViTv2-B as the backbone model for classification. PySlowFast provides a
checkpoint for MViTv2-B pre-trained on Kinetics 400, and as mentioned previously, MViTv2



has shown to outperform other state-of-the-art models on Kinetics 400. For training, clips
containing action segments are parsed from untrimmed videos according to annotation files with
action start and end timestamps. Clips are then decoded and broken down into their individual
frames. After applying uniform temporal sampling using a rate of 4, each clip is reduced to 16
frames. Random spatial cropping is then applied to downscale frame resolutions to 224x224 and
minimize overfitting. Frames are lastly color normalized to reduce the effects of variable
environmental lighting on model understanding. The figure below displays the results of
preprocessing after applying the aforementioned techniques.
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Figure 1. Preprocessing. The left image shows how video clips appear before preprocessing,
while the right image displays the after results.

3.2.2 Minimizing Overfitting and Improving Generalization

Originally, we explored research related to Visual Prompting as an attempt to improve
model generalization and perhaps reduce overfitting. To do so, we focused on a specific area of
Visual Prompting, which involves the use of Adversarial Reprogramming [30] to benefit model
understanding by placing pixel perturbations in input images. Based on one study [12] which
designs pixel perturbations according to categorical classification loss, they conclude that pixel
padding patterns are the most effective for influencing model understanding. Therefore, we
designed several similar perturbation padding techniques to test for improvement in model
understanding. These designs were created via experimentation to test if different designs had
different efficacy on model generalization. Because we train the classification model on all of the
data available and do not create separate training splits according to camera view, our designs
focus on assisting the model in understanding action categories from different camera
perspectives. Below are several examples of prompt designs developed.



Figure 2. Multi-View Padding. We apply randomly initialized perturbations to input frames
representing action segments as a means of prompting. When perturbations are updated during
training, updates and changes in perturbation design vary according to the camera view the
action is recorded from. Thus, there are only three visual prompts applied across the entire
training dataset for this prompt design.

Figure 3. Multi-View Variable Padding. Similar to the last design, three prompts are applied
across the entire dataset, one prompt for each camera view. This design, however, uses different
padding sizes for each side of the image.



Figure 4. Multi-View Boundary Fixed-Patch. Instead of applying the same prompt over all
frames in an action segment, prompts entirely covered in pixel perturbations replace the first and
last frames in a 16 frame action sequence. The left image is the prompt replacing the first frame
while the right image replaces the last frame.

For training, both the visual prompts and the classification model were kept unfrozen at
the same time. By training prompt parameters simultaneously, the goal was to prevent the
classification model from memorizing patterns in the prompt perturbations. Conversely, to also
test if freezing prompt parameters would assist training, we applied a selective updating
technique to only update prompt perturbations when validation accuracy for classification
stopped improving. Ultimately, visual prompt designs produced inconclusive results concerning
the improvement of model understanding.

Moving on from visual prompting techniques, we shifted focus towards a few
state-of-the-art techniques that are well known for reducing overfitting and boosting
generalization—Mixup [31] and CutMix [32] which create new synthetic samples from existing
data via blending images and labels, or cutting and pasting image patches together. On top of the
aforementioned techniques, we also utilize other random data augmentation techniques provided
by PySlowFast. Some notable methods include Random Erasing [33], which randomly erases a
rectangular portion of an image and its pixels, and RandAugment [34], which performs random
image distortions automatically using a multitude of hyperparameters. By using these four data
augmentation techniques in conjunction, we generated a checkpoint after 200 epochs for
MViTv2-B, and for further testing, a 400 epoch checkpoint.

3.3 Temporal Action Localization

To accomplish TAL, we propose the following architecture which continuously updates
and refines temporal boundaries when localizing a single action instance. After performing
inference over a single, approximately 2 second clip at 30 FPS (64 frame sliding window),
localization can immediately begin without waiting for all action proposals within an untrimmed



video to be classified and processed. Thus, by relying on an incoming stream of 64 frame
preprocessed action proposals, our method achieves online localization capability.

3.3.1 Architecture Overview
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Figure 5. Proposed TAL Architecture. The diagram breaks down the sequence of events that
occur to produce action localization results.

First, each untrimmed video is segmented into 64 frame action proposals. Because the Al
City track challenge dataset includes three different camera views for each unique set of video
footage, the untrimmed videos are then organized such that batches of three are formed, where
each batch has three videos representing the same footage from three different angles. Thus, a
multi-view ensemble is produced.

The goal of TAL is to detect when changes in actions occur. Because actions can occur
within intervals as small as approximately 2 seconds, past and present solutions have used 2
second proposal segments as the base temporal resolution for analysis to help detect short
occurring actions. However, the Al City dataset also contains actions as long as 20 to 30 seconds,
which presents another challenge. By reducing the temporal length for analysis to roughly 2
seconds, the amount of context and motion provided by the driver is also reduced, limiting the
information available to the model for classification. To localize long actions using the
aforementioned method, a series of short 2 second action segments must be classified and then
further processed to identify the series as a single long action interval. However, as mentioned,
when single short action segments are classified without more context, the model is prone to
misclassification.

For example, eating and talking are often confused for one another. For both, context is
provided when the driver begins to move their mouth. Yet, to reliably distinguish eating from
talking, the model needs to see that the driver is reaching for or putting food in their mouth
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beforehand. When individually analyzing a series of 2 second clips, events are assumed to be
unrelated, preventing the carry over of context through sequential clips.

3.3.2 Aggregation

Our method opts to provide full context for action classification by leveraging
information from all past clips involving the same action in addition to the newest clip.
Therefore, until a new action differing from the previously classified action is detected, new
incoming proposal segments are assumed to contain the same action and, as such, are added to an
ongoing aggregation pool. If an action interval is a puzzle to be solved, the aggregation pool acts
as the puzzle board, where pieces (temporal clips) are placed in order to create the full picture.
By aggregating past and present clips containing the same action, temporal resolution increases,
providing the model with more action context to base its prediction probabilities from and
improving prediction reliability.

As opposed to popular TAL frameworks which strengthen the generalization of an action
instance over a specific temporal interval via the redundancy of overlapping proposals, our
method instead exploits information from past temporal clips to provide more context for newer
intervals being classified.

Below is a figure illustrating the frame sampling strategy employed for exploiting
information from past and present clips.

Clips 0 to n-1 Clipn
([n-1]*16 frames) (16 frames)
hd hd
Uniformly sample 8 frames Uniformly sample 8 frames
\ J
New Clip
(16 frames)

Figure 6. Aggregated Sampling Strategy. The top left image represents all frames from past clips
within the action interval, while the top right image displays frames from the newly added clip.
The fusion of frames results in the bottom image.



As described by the figure, all frames from past clips, each being 16 frames long, are
collected and uniformly sampled to select 8 frames that best represent the action occurring within
the ongoing localized interval. Similarly, 8 frames are also uniformly sampled from the newly
introduced proposal/clip, and then both sets of 8 frames are concatenated to produce a fused 16
frame clip. By equally sampling the same number of frames from past clips and the new clip, it
ensures the model will be confused and will generate low confidence predictions about the
previously classified action, indicating the new clip may contain a different action than the
previous clips. Otherwise, for highly confident predictions about the previously classified action,
it is assumed the new clip contains the same action.

3.3.3 Prediction

Because our method implements aspects of the sliding window technique for proposal
generation, it encompasses the same weakness of having localized actions be constrained to a
'window' of size equal to approximately 2 seconds or 64 frames at 30 FPS. Thus, the assumption
is that when an action is detected in this window of time, the action occurs throughout the entire
time span of the window, which is not always the truth. As mentioned previously, we uniformly
sample a combination of frames from both past and present. However, if this sampling strategy
results in a new action detected with a probability below a certain threshold, we opt to redesign
the aggregate clip such that the 8 frames from the new clip are not uniformly sampled but instead
chosen from among the last half of frames. Thus, if this resampled aggregate clip produces better
probabilities for the new action detected, the new assumption is that the action starts halfway into
the new clip's time interval. The aforementioned resampling step helps to further improve the
precision of localized endpoints (start and end times) for detected actions.

While aggregation has merit in strengthening classification confidence over medium to
long temporal intervals, the downside is the loss of sensitivity in detecting actions occurring in
small intervals (around 8s or less). Thus, in addition to sampling from an aggregated group of
past and present clips, a single clip representing the current 2 second temporal interval alone is
also input into the classification model to compensate for aggregation's weakness in detecting
brief changes in action. Below illustrates the combined process.
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Figure 7. TAL Prediction Step. A multi-view ensemble composed of clips from three different
camera views is used to produce two sets of inputs for classification. Clips used in the ensemble
are selected starting from the first temporal interval where the current localized action first
appears.

Aggregation combined with single proposal analysis smoothes prediction probabilities
across several intervals for localizing a single action—reducing noisy, false positive predictions
that might otherwise occur with overlapping proposals. Moreover, the increased reliability of
predictions resulting from aggregation allows for temporal intervals to be merged continuously
throughout localization rather than in post-processing. Therefore, very little post-processing is
required to finalize action interval results compared to overlapping proposal methods which
require extensive post-processing to eliminate noise and merge intervals.

3.3.4 Consolidation

Once the aggregated clips and single clip for each camera view are input into the
classification model to generate prediction probabilities, the aggregated and single clip
probabilities are processed separately by the consolidation step of TAL. Based on the 5th place
solution, Purdue's M2DAR [23], we consolidate and fuse prediction probabilities across different
camera views by applying weights to each matrix and then summing them to compute a
weighted average. The highest probability from the final computed matrix is taken as the
predicted class. The underlying reason for applying separate weights is due to some camera
views being stronger than others in clearly observing an action. For example, when the driver is
adjusting the control panel, it is more clearly observed from the right side window view of the
car than from the dashboard view.
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3.3.5 Assessment

Once final predictions are formed for both the aggregated group of clips and the single
clip, the last step is to determine whether both predictions agree or not on the type of action
occurring within the current temporal interval. If they agree, it is assumed the agreed upon action
is a true positive and the above steps repeat for the next 2 second interval; otherwise, if they
disagree, it is assumed the current action being localized has ended and a new action has started.
If so, the start time of the localized action is output as the start time of the first aggregated clip
while the end time is output as the start time of the current interval where predictions disagree.
The final step of localization is to calculate and output the Gaussian weighted mean of all
probabilities obtained throughout the localized interval. The recorded probability is used later in
the election step to perform the final filtering process before the submission of results to the
evaluation server.

3.3.6 Post-Localization Processing

While our method eliminates the excessive use of overlapping proposals, it still does
utilize them but on a much less frequent scale. Even when using aggregation alongside a single
proposal from the current interval, action classification can still produce small amounts of false
positives and misclassifications. The aforementioned problem only occurs within short intervals
(less than 8 seconds) due to low temporal resolution. To address the issue, post-localization
processing is immediately performed after localizing a single action interval less than 8 seconds
in length. Re-evaluation ensures predictions within small intervals are reliable, and if not,
corrects or rejects them.

By using the aggregated group of clips, past frames are sampled to generate overlapping
proposals. Specifically, a 16 frame proposal is produced every 4 frames. After the classification
model calculates prediction probabilities for each proposal, a Gaussian weighted average is
applied over all probability matrices. The assumption for using Gaussian distribution is that
proposals closer to the midway point of the interval are more likely to better represent the action
occurring throughout the entire interval than the interval endpoints. Furthermore, based on
observation, proposals closer to the start and end of the temporal interval may include actions
belonging to a different action sequence. After computing the final probability matrix using
Gaussian weights, and therefore deriving the final prediction for the interval re-evaluation, a
filtering threshold is applied. Each action class is thresholded differently, specifically due to the
bias in confidence of the classification process for each class. To obtain the threshold value for
an action class, we find the min prediction probability among true positive intervals and compare
it to the max prediction probability among false positives. Then, we determine a threshold based
on the max that prevents most false positive probabilities from passing through but is still below
the min for true positives. Lastly, compared to the prediction step of TAL, which utilizes an
MViTv2 trained for 200 epochs, the re-evaluation process uses a 400 epoch trained MViTv2 in
which the model is more confident in its incorrect predictions but overall has higher accuracy.

12



3.3.7 Post-Processing

The final step of TAL is to perform optional post-processing, which prepares an
organized submission file specific to the Al City challenge, containing all action interval
timestamps with their respective video ID. The two major reasons for the merge and elect steps
are to combine remaining unmerged action intervals and to filter out duplicate action instances.

Although aggregation serves to uniquely merge action segments continuously during
localization, cases exist where the driver pauses in the middle of a long action sequence, causing
the TAL algorithm to detect a different action. Action intervals broken up by this edge case
appear consecutively in the localization results but need another merge to help the evaluation
server identify these segments as one interval.

Following the final merge of intervals, the election algorithm, adapted from [23], selects
one localized interval per action class to remain for each untrimmed video. Although untrimmed
videos may have more than one instance of an action class, the annotators for the test dataset
have chosen to only annotate 16 of the most obvious and apparent action intervals that represent
each action class the best. We have repurposed the election algorithm to uniquely score intervals
not purely based on the Gaussian probability for the entire interval but on the duration of the
interval as well. In contrast, if the election algorithm is not used, true positive duplicate actions
will not be filtered out, allowing the TAL algorithm to be flexible and usable for different
purposes and problems.

4. Results and Discussion

4.1 Classification Results

To achieve the best classification performance, we experimented with different training
configurations for MViTv2. Our first approaches involved Visual Prompting in which we added
pixel perturbation padding to the input action segments for training. Among our developed
designs, only multi-view padding yielded meaningful results. The figure below represents how
multi-view padding compares with other prompted and unprompted methods.

13
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Figure 8. Comparison Between Prompted and Unprompted Methods. The leftmost two graphs
show validation accuracy results for unprompted training and normal padding without selective
updating. The other two figures display results for multi-view padding with selective updating
across different prompt learning rates (0.1 and 0.02). A moving average has been applied to all
graphs to better visualize results.

Overall, while the moving average may indicate a slight improvement in accuracy as
much as 0.5% with multi-view padding and selective updating techniques, there is not enough
consistent evidence nor significant increase in accuracy to conclude such methods will generally
improve classification training. However, this is not to say Visual Prompting of the adversarial
type will not improve generalization. Due to lack of time, our experiments are simply not
extensive enough to determine the effect of such methods. We hope that future works will
explore Visual Prompting as a means to improve model understanding of different actions
performed from different camera angles.

We shifted focus to well known, state-of-the-art methods for improving generalization,
instead, and found Mixup, CutMix, and other data augmentation techniques to improve the
fitting of MViTv2 over the challenge dataset. Applying the aforementioned techniques to the
training data, we obtained two checkpoints for MViTv2, one after 200 epochs and another after
400 epochs of training. For hyper parameters, we use a base learning rate of 5e-4 and cosine
scheduling that starts and ends at 1e-6. Using the AdamW optimizer [35], we perform drastic
weight decay of 0.05 and run warm-up for 35 epochs. Training is run in batch sizes of 8 with two
RTX A5000 GPUs. To compare the pros and cons of these two checkpoints against the 200
epoch checkpoint obtained without data augmentation, we measure several statistics, represented
in Table 1.
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Top-1 Val Mean Mean Number of

Accuracy (%)  (Incorrect) (Correct) incorrect = 0.9
200 epochs 80.91 0.851 0.977 56
(no augment)
200 epochs B3.48 0.647 (.859 f
{with augment)
400 epochs B7.97 0.690 0.564 10

{(with augment)

Table 1. Augment vs. No Augment Checkpoint Comparison. We measure statistics for each
checkpoint, such as top-1 validation accuracy, the mean probability among both correct and
incorrect predictions, and the number of incorrect prediction probabilities greater than or equal to
0.9.

Based on the above comparison, we evaluated the 200 epoch checkpoint with data
augmentation to be the best for classification. Because the classification model, MViTv2, will be
analyzing long untrimmed videos that contain only 16 annotated true positive actions throughout,
the model's confidence in making incorrect predictions should be relatively low compared to
correct predictions, which should be very high. The 200 epoch checkpoint with data
augmentation follows this criteria better than the other listed checkpoints, having the largest
difference in mean probability of 0.212 between correct and incorrect predictions. Thus, having a
larger correct-to-incorrect prediction probability ratio will improve the effectiveness of filtering
false positive predictions. Furthermore, we evaluate the checkpoint without augmentation to be
rather overconfident in all predictions due to a significant portion of incorrect prediction
probabilities being greater or equal to 0.9.

Aside from prediction probability analysis, top-1 validation accuracy also plays an
important role. While we elect the 200 epoch checkpoint with augmentation to be used primarily
for classification, we still utilize the 400 epoch augmentation checkpoint in post-localization
processing, where confidence is not as important as the identification of the correct class.

4.2 Temporal Action Localization Results

4.2.1 Evaluation Score

Our TAL implementation nets an evaluation score of 0.5711, which ranks 9th place on
the public leaderboards for the Al City third track challenge. Table 2 displays the top public
leaderboard rankings.
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Rank Team 1D Team Name Score

1 209 Meituan-loTCV 07416
2 60 INU boat 0.7041
3 283 UIT-HCM 14 0.6734
4 49 cte-Al 0.6723
3 118 Rw 0.6245
i} R Purdue Digital Twin Lab 0.5921
7 48 BUPT-MCPRL 0.5907
8 B3 DiveDeeper 0.5881
9 279 WPl _Envy 0.5711
10 217 INTELLI LAB 0.5426

Table 2. Top Teams on the Public Leaderboard as of August, 2023. Envy (our team) places 9th
overall.

To compute the final score, the submitted action segment annotations are compared
against the ground truth annotations to calculate the ratio of overlap between the two. Given a
ground truth action interval, it is matched to the closest, most similar predicted action interval.
An overlap score is then calculated as the time intersection and union of the two action classes:

max(min(ge, pe) — max(gs, ps), 0)
max(ge, pe) — min(gs, ps)

os(p, g) = (1)

g represents the ground truth activity while p represents the predicted activity. gs and ge are the
start and end times for the ground truth activity, and the same applies to ps and pe. Though, ps
and pe are given a tolerance in the range [gs — 10s, gs + 10s] and [ge — 10s, ge + 10s],
respectively. Once matching and overlap scores are computed, all remaining unmatched ground
truth and predicted intervals receive an overlap score of 0. The final score is then taken as the
average of all matched and unmatched overlap scores.

4.2.2 Ablation Studies

To understand how each component of our TAL method impacts the final evaluation
score, we performed an ablation study. During early development, we experimented with two
different systems for consolidating predictions from each camera view into a single prediction.
Our first implementation opts to analyze predictions from each camera view at face value,
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without any weights applied to different camera views. It simply checks if there is a common
predicted action class among the three camera views, and if so, takes that action class to be the
best representation of all three predictions. Then, the mean probability among common
predictions is computed and is compared against the threshold, 0.790. The threshold is based on
the mean correct prediction probability from Table 1 and is slightly lower to reduce harsh
filtering. If the probability does not pass the threshold or no common predictions exist, the action
interval is not used in final results. We also experiment with fixing the amount of clips that can
be aggregated and therefore sampled at once. In general, we find that weighted consolidation
outperforms its unweighted counterpart. To add, removing limits on aggregation capacity further
improves the evaluation score as well. The post-localization processing and election steps have
the largest impact on evaluation score, each contributing an approximately 6% increase when
applied to the TAL architecture.

RES POS-LOC  ELEC Score
0.3594
0.4082
0.4418

AGG AGG-T  CONS-U  CO !

4

X

X

X 0.4529
X

v

v

0.5137
0.5711

x X x € < <

INS-W
X
v
v
v
v
v

SN x x x
X X X X X
LSS S xx
LU X X X X

Table 3. Ablation Study on TAL Components. AGG is aggregation without thresholding,
whereas AGG-T is aggregation with thresholding. U refers to unweighted while W is for
weighted implementation for consolidation. RES is resampling, POS-LOC refers to
post-localization processing, and ELEC is election.

4.2.3 Past Methods

While the final score for our proposed TAL architecture is still well below the top two
winners' scores of 0.7416 and 0.7041, our method still achieves 9th place performance and offers
unique online temporal action localization as well. Furthermore, our method presents flexibility
in terms of how it can be applied. When working with datasets that do not involve duplicate
action segments within an untrimmed video, such as the Al City challenge, our method offers a
post-processing election stage to remove such duplicates. Otherwise, for datasets where multiple
instances of action classes occur per video, post-processing steps like election can be removed to
enable full online processing.

Because our TAL method focuses on utilizing multi-view data and is therefore not
compatible with common datasets for online and real-time benchmarking, we opt to provide a
cross-comparison in runtime-efficiency to draw conclusions against other methods. Since the
frame rate of the captured video data largely impacts the inference speed, we choose to only
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compare our work against others that perform benchmark tests using datasets with 25-30 FPS

videos.
Method Dataset Avg. ‘»’idqn Video FPS  Inference FPS
Length {mins)

D. Zhang et al. [36]*°  UCF101-24 [3¥] - 25 K

R. Hou et al. [37]*°  THUMOS'14 [39] 3 30 40
KORSAL [27]* UCF101-24 - 25 41.8
Y.H. Kim et al. [26]° THUMOS'14 3 30 T0.5
DAPs [21] % THUMOS'14 3 30 134.1
Ours (1 GPU)® SynDD2 (A2) [3] §.415 30 158.8
Owurs (2 GPUs)® SynDD2 (AZ2) B.415 30 lod.5

2 Online * Real-time T Offline - Not available

Table 4. Run-time Comparison.

Compared to other real-time methods which have kindly provided run-time
measurements, our TAL implementation outperforms them, achieving a high 160.5 FPS with two
GPUs and 158.8 FPS with a single GPU. Thus, for a more efficient, less resource intensive
approach, our method offers a single GPU option. Similarly, our method also outperforms other
works that impose temporal context aggregation as well but are not real-time, such as DAPs. The
underlying reason is mainly due to our method being a training-free algorithm rather than a
neural network. As mentioned previously, the low volume of training samples in the Al City
dataset results in boundary detector networks being unreliable.

While our method provides an inference speed advantage against other online
frameworks, the max latency is still not low enough to impact real-time applications.

4.3 Future Improvements

The largest bottleneck of our method is the classification model rather than the manner of
localization. By comparing our final localized submission results against the top two winner's
results, we found our classification model frequently failed to detect true positive intervals where
class 1 and 13 occurred. Similarly, mistaking class 12 (talking to passenger, backseat) for 11
(talking to passenger, right) was also common. Correcting these mistakes would increase our
final score by a significant percentage. As non-matched ground truth actions contribute a score
of 0 to the final averaged score, including intervals for classes 1 and 13 where they are missing
would prevent such drops in score.

Most notably, the top two methods eliminate these issues by utilizing other models such
as VideoMAE [40] and X3D for classification. While X3D and MViTv2 are standard approaches
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used for classification on the challenge dataset, VideoMAE is a new solution which is especially
interesting due its first place performance [24] in the 2023 AI City challenge. Aside from
implementing VideoMAE, another improvement to consider is converting the current TAL
algorithm into a boundary detection network. Already mentioned works, such as DAPS, have
shown that LSTMs are beneficial for aggregating and compactly storing temporal context
(frames) as feature vectors. This opens up the possibility for improving the efficiency of the
aggregation step in our proposed method. However, G. Chen ef al. suggest that 1D convolutions
applied over the temporal dimension of videos produce better performance than LSTMs [16].
Furthermore, the aforementioned authors' research on DCAN shows that self-attention
mechanisms ignore order and distance and only pay attention to the correlation between two
action segment positions [16]. Thus, attention mechanisms are not reliable for boundary
detection.

Granted more time, we would also further experiment with Visual Prompting to mitigate
misclassifications between similar classes (11 and 12) and strengthen learning over datasets
which include actions performed from various camera perspectives. Lastly, enabling the method
to process in real-time via removing the sliding window technique would also increase the
efficiency of the architecture, as it would eliminate the two second max latency introduced by the
window. To conclude, future improvements to our method would include usage of VideoMAE
for classification, involving 1D convolutions for aggregating long-range temporal context, and
incorporation of Visual Prompting and real-time processing to improve robustness.

5. Conclusion

Taking advantage of the unique multi-view aspect of the Track 3 Challenge from Al City,
we propose a new TAL architecture for generating online localization results. Our method
aggregates and predicts over past and present temporal context to boost temporal resolution and
classification reliability. In parallel, single proposal generation is used to solely analyze present
temporal context to strengthen prediction results over the present and compare them with the
past. We then fuse predictions across a multi-view ensemble for each temporal interval via a
consolidation step, check for changes in action via an assessment step, and finally correct or
reject short action segments using post-localization processing. To prepare challenge specific
results, localization results are merged and further filtered in optional post-processing. We
conclude that our method achieves top results and run-time performance among other
contemporary frameworks but still has potential for improvement in certain areas, especially
with regards to the classification model. We hope this paper provides insight into the
development towards online and real-time solutions for recognizing and localizing distracted
driving behavior, and encourages more research into this area in the future.
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