
AR MUSE: Designing and Implementing a Solution for Accessible

Augmented Reality Exhibition

by

Qianlin Duanmu

Tian Dai

Yingcheng Cai

Julian Herman

A Thesis Project

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Master of Science

in

Interactive Media and Game Development

April 2023

APPROVED:

Joshua Rosenstock, Project Advisor, WPI

Charles Roberts, Committee, WPI

Gillian Smith, Committee, WPI

1

Abstract

The following thesis report explores the development, design, and usefulness of MUSE, an

Android application that facilitates the integration of 3D models with QR codes to enable

augmented reality (AR) visualization. This study analyzes the current status of AR and its

applications in various fields and how our designed application could be best utilized. The paper

discusses the technical specifications and functionality of the MUSE application, including its

interconnected nature with the game engine Unity and the importation, exportation, and

visualization processes of 3D models. The study concludes by evaluating the potential versatility

of MUSE in different scenarios, such as education, marketing, and entertainment. The results

show that MUSE provides an accessible, user-friendly, and cost-effective solution for displaying

3D models in AR. Through this, we hope to make AR a more accessible and viable presentation

option for individuals who use 3D models the world over.

2

Acknowledgments

Our team would thank everyone that made this project possible.

We thank our advisors Joshua Rosenstock and Charles Roberts for being able to meet with our

team on a weekly basis and provide us suggestions and directions for the project. Individually,

we thank Joshua Rosenstock for explaining AR museum, and helping provide suggestions and

directions on the fundamentals of this project, and ideas on how to improve and simplify the

progress. We thank Charles Roberts for assisting us in project organization, and management,

and we also appreciate correcting our mistakes.

We thank the WPI Interactive Media and Game Development department for providing us server

space at the 2022 Alpha Fest to conduct a very early stage test, which strengthened our goal. We

also thank Max Chen for inspiring us in the form of an AR museum.

3

Authorship

All team members contributed to the creation of this project report.

4

Table of Contents

Abstract 1
Acknowledgments 2
Authorship 3
Table of Contents 4
1. Introduction 6

1.1. Context 7
1.2. Project Motivation 7
1.3. AR vs Traditional & Web Museum Exhibitions 8
1.4. Costs with Curation of an Augmented Reality Museum 8

2. Background and Related Work 10
2.1. Background 10

2.1.1. The State of AR Development Tools 11
2.2. Related Work 12

3. AR MUSE Design and Implementation 14
3.1. Systematic Design of AR MUSE 14

3.1.1. AR MUSE Project Design Goal 14
3.1.2. Design of AR MUSE 15

3.1.2.1. General Design 15
3.1.2.2. Creator Platform Design 17
3.1.2.3. Audience Platform Design 18
3.1.2.4. Server Platform Design 18
3.1.2.5. Connecting Creators and Exhibition Audiences 19

3.2. AR Muse Components Design 20
3.2.1. AR MUSE Curator App (Legacy) 20
3.2.2. AR MUSE Unity Toolkit 21
3.2.3. AR MUSE Viewer App 22

3.3. Interaction and Experience Design 24
3.3.1. Interacts with Space: QR Code 24
3.3.2. Interacts with Virtual Exhibit: Viewer App 25
3.3.3. Interacts with the Mobile Viewer App: Viewer App UI Design 27
3.3.4. Interacts with the Unity Toolkit: Unity Toolkit Design 29

3.4. AR MUSE Implementation 30
3.4.1. Unity Toolkit Implementation 31

5

3.4.2. Viewer App Implementation 33
4. Evaluation 36

4.1. Early Development Test 36
4.2. Evaluation Design 36

4.2.1. Pre-Test Survey 36
4.2.2. Toolkit Test 37
4.2.3. Viewer App Test 37
4.2.4. Post-Test Survey 37

4.2.4.1. Quantitative questions 37
4.2.4.2. Qualitative Questions 38

4.3. Evaluation Result 38
4.3.1. Quantitative Questions Result (System Usability Scale) 38
4.3.2. Qualitative Questions Result 40

4.4. Discussion 41
5. Post-mortem 42

5.1. Achievements and Lessons Learned 42
5.2. Future Work 45
5.3. Conclusion 45

Bibliography 46
Appendix: Playtesting Questionnaire 48

1. Background Survey 48
2. System Usability Scale 51
3. Interview Questions 56

Appendix: AR MUSE Unity Toolkit Test Task 62
Appendix: Detailed Information of AR MUSE 67

1. Curator App 67
2. Unity Toolkit 68
3. Viewer App 71

6

1. Introduction

With our app, AR MUSE, 3D artists now have the capability to exhibit their creative works to

visitors easier than ever before. By pointing your cell phone camera at a QR code, potential

viewers can see a person's 3D artwork in an intuitive and tangible manner akin to appreciating a

display piece in a museum. Having visitors take a look at and enjoy a piece of digital art without

having to navigate any distracting user interfaces will in turn, make the space between user and

viewer less complicated than ever.

Figure 1: MUSE AR Viewer App Presenting a 3D Model through a Phone Camera

7

1.1. Context

By its nature, the methodology for viewing and appreciating 3D design is inexorably tied to

viewing it through a screen. And through the pandemic, art appreciation is more important than

ever as a vital way to share one's creative endeavors with those far away. To view the majority of

virtual art, however, potential viewers have to navigate obtrusive digital interfaces. Concurrently,

digital artists who want to share their creative works with those unfamiliar with navigating these

interfaces often have difficulties compiling and exhibiting their work so that others can see it.

This barrier to access increases the bar with regards to digital art sharing and appreciation,

making it more difficult to organize and share one's digital work in a non-digital environment.

Our research lowers that barrier of entry for virtual art appreciation through the use of AR

technology. To standardize, personalize, and consolidate different aspects of digital art

presentation by giving potential viewers a tangible method of artistic admiration. And to give

users an easy way to organize and show their work to those viewers through an immersive and

customizable museum experience.

1.2. Project Motivation

In Kan's article he proposed the idea of ​​popping up an item model while scanning the item's

barcode in store[1]. Kan's paper gives us an idea of using QR codes as a more general medium for

AR artworks. First, the QR code represents a plane. The second is that the QR code itself has its

own directionality. Last but not least is the information storage property that comes with the QR

code itself [2].

We ended up with the solution: store the file in the cloud server and use the orientation property

of the QR code as the coordinate reference for generating the model. At the same time, the QR

code also stores the link to access the cloud with the information storage attribute. That will

make our app lightweight and highly generalizable.

8

1.3. AR vs Traditional & Web Museum Exhibitions

Traditional museum exhibits offer visitors a physical space with curated objects on display.

Visitors can view and learn about the objects in person, but the experience is largely passive.

Website exhibits however provide visitors with a virtual space to explore collections and learn

about objects. These exhibits often offer interactive features such as zooming in on images or

clicking on links for more information. However, the experience is still largely two-dimensional

and detached from the physical objects themselves.

AR museum exhibits offer a hybrid and tangible experience that combines the best of both

traditional and online exhibits. With mobile AR technology, visitors can view objects in a

physical space while also receiving additional information and interactive features through their

mobile devices. Ideally, this in turn creates a more immersive and engaging experience that can

enhance visitors' understanding and appreciation of the collections. AR museum exhibits also

have the advantage of being customizable and adaptable. Museums can update and change

exhibits more easily with AR, allowing them to showcase different collections or themes without

the need for extensive physical renovations or layout changes.

However, there are also potential drawbacks to AR museum exhibits. The key issue is that some

visitors may find the technology distracting or difficult to use, which could detract from the

overall experience and be fatal to an exhibit's sense of immersion.

1.4. Costs with Curation of an Augmented Reality Museum

Curating an Augmented Reality museum is inherently different from curating a traditional,

tangible museum, with different considerations and deliberations taking place. As such, the

process can be a costly endeavor for those looking into it, but once completed and fully realized,

the potential benefits can outweigh the initial investment hesitancy. One of the primary expenses

9

involved in curating an AR-based museum is the creation and implementation of AR content

specifically appropriate for the exhibition. This content can range from the development of 3D

models and spaces, animations, and interactive elements such as the user interface and user

experience that are overlaid onto the real-world environment. Each of these elements requires not

only the efforts put in by the artists but also purposeful curation and design to achieve the desired

immersive effect on the viewer. Another significant cost associated with curating an AR museum

is the technology required to deliver the experience. Augmented reality can only be viewed

through a digital screen, and as such, obtaining the necessary hardware can at times be costly.

Appropriate hardware, such as smartphones, tablets, or dedicated AR headsets, in addition to the

platform's software and development and curation tools would be necessary for viewing and

curating an augmented reality environment. The cost of these components can vary widely

depending on the chosen technology and the number of devices needed to deliver the experience,

with in 2022 the average price of a consumer tablet being around $178 [3]. Finally, the physical

space of the museum itself can also impact curation. In order to create an AR experience, the

physical space must be carefully mapped to ensure the AR content fits as seamlessly and

unobtrusively into the environment as possible. This can require additional retrofitting of the

museum layout, which can further add to the overall cost of the project. While the expenses may

seem exorbitant at first, the benefits of the additional control over the exhibit pieces and the

immersive interactivity, give AR museums an experience that cannot be found anywhere else and

is worth the cost.

The cost of curation of a digital museum can very easily balloon and inflate, with expensive

viewing technology on both the software and hardware front as well as trying to incorporate the

digital pieces into a tangible environment. The solutions to ameliorate both of these costs would

be to have a piece of AR viewing software readily available for free on any phone, and to have

easily generated and accessible digital markers (QR codes) that can be placed on any section or

on any surface of any given environment. With these advents, curation of an augmented reality

museum will be easier than ever with the task being much more available and affordable.

10

2. Background and Related Work
2.1. Background

Augmented reality (AR) is a technology that overlays digital information and images onto the

real world, creating a mixed reality experience. AR typically involves the use of a

camera-equipped device, such as a smartphone or tablet, which displays a live video feed of the

user's surroundings. Digital elements are then superimposed onto this live video, making it

appear as if the digital objects are part of the real-world.

AR is commonly used today in a variety of applications, including:

1) Gaming: AR has been used in a number of popular games, such as “Pokemon Go”[4] and

“Ingress”[5] , where players use their mobile devices to explore real-world environments

and interact with virtual objects and characters.

2) Advertising and marketing: AR can be used to create interactive product demonstrations

and advertising campaigns, such as Burberrys Olympia pop up ad campaign[6], allowing

consumers to engage with products and brands in a more immersive and attention

grabbing way.

3) Education and Training: AR can be used to create interactive educational experiences,

such as virtual field trips, anatomy lessons, and historical recreations. We already see AR

based teaching tools become more prominent in classroom spaces, such as the

educational astrology app "Skyview”[7] and the exploratory biology app “Froggipedia”[8].

4) Architecture and Design: AR can be used to create virtual models of buildings and other

structures, allowing architects and designers to visualize and manipulate their designs in

real-time. Morpholios “AR Sketchwalk”[9] is a tool that allows architects to see digital

layouts and floor plans in a real-world setting to give them a sense of size and space prior

to construction.

5) Retail: AR can be used to create virtual try-on experiences, allowing customers to see

how products such as clothing or makeup would look on them before making a purchase.

The furniture store IKEA has famously already used this technological prospect as the

https://pokemongolive.com/?hl=en
https://www.ingress.com/
https://www.space.com/skyview-review
https://apps.apple.com/us/app/id1348306157?ign-mpt=uo%3D4
https://morpholioapps.com/userguide/trace/?How-to-use-ar-sketchwalk

11

basis for their AR application “IKEA Place”[10] which allows users to see how a potential

product would fit in their living space.

2.1.1. The State of AR Development Tools

The following are several pre-existing pieces of computer software that support augmented

reality and are readily available on the market.

● “Vuforia”[11] is an AR software platform that allows developers to create AR applications

for mobile devices, tablets, and smart glasses. It offers robust customization features such

as image recognition and object tracking. A limited version is available for free, but the

paid edition with all the features starts at a steep $99 a month.

● “ARKit”[12] is a piece of software with a suite of features and an intuitive interface that

allows individuals to make their own augmented reality experiences for free. However,

the disadvantage is its limited availability, as it is only available on Apple smart devices,

limiting its availability through its exclusivity.

● “AR Foundation”[13] is a plugin for the popular game engine Unity which gives users

tools for designing compatible AR programs across a wide variety of platforms, which

can help to save time on integration and program porting. However despite the versatility

of the program, being intentionally designed for not one but many different platforms

leaves overall performance uneven across the board.

● “AR Studio”[14] is a web based AR application building platform available exclusively for

Mac that allows designers to create and build their own Augmented Reality programs to

be used in any available internet browser. However it is limited by requiring a monthly

subscription to access systems creation features.

Unity and Vuforia are both available on most platforms, but Vuforia's high barrier of entry makes

it an unfavorable choice. Unity, by comparison, is much more customizable and available, and

with an entire bevy of documentation behind it, Unity is a clear choice for augmented reality

design and usage when it comes to AR application and technologies. For this reason it was

appropriate to use Unity to create and design our own AR program to act as an easier , more

https://www.ikea.com/au/en/customer-service/mobile-apps/say-hej-to-ikea-place-pub1f8af050
https://www.ptc.com/en/products/vuforia
https://developer.apple.com/augmented-reality/
https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@5.0/manual/index.html
https://web-ar.studio/en/

12

accessible version of the higher budgeted higher affordance versions available on the current

market.

2.2. Related Work

There are already some successful AR Museum App examples, like ReBlink[15], created by

digital artist Alex Mayhew (figure 2), and Smartify[16], which was used for The National Gallery

in London 2021 (figure 3). ReBlink was using imaging tracking, which identifies a painting then

renders the animation of that painting upon that painting. Smartify used QR-code-like images on

the wall as a marker to show a specific painting.

Figure 2: An example of the Augmented Reality museum ReBlink

https://reblink.com/

13

Figure 3: An example of the Augmented Reality museum Smartify

In terms of successes and failures, ReBlink received widespread acclaim for its innovative

approach and use of facial recognition technology. However, its specific brand of digital art

remains a costly example both in terms of capital and artistic creation, having to integrate both

digital and real-world artifacts for all of its pieces. On the other hand, Smartify has been

successful in providing accessible and informative museum experiences, but it has faced

criticism for its reliance on smartphones and the potential distractions they create.

Despite the challenges and limitations, AR-based museum applications offer several benefits

over traditional exhibits. These applications can provide an interactive and immersive experience

for visitors, allowing them to engage with artworks in new and innovative ways. AR-based

applications can also provide detailed and contextual information, enhancing visitors'

understanding and appreciation of the artwork.

Both of these two Apps and most AR Apps today, have in common is that they require the user

to download all the model files to the local device in advance. We recognize this becomes one of

14

the hindrances that limits the dissemination of AR artworks. When viewers attend to enjoy these

museum works, they either use the equipment provided by the Museum that already has

preloaded everything or they need to download an additional App that contains all the model

files.

And our system tries to solve this problem of a steep/costly barrier of entry and a lack of user

customization and expression. Users do not need to download all the content at the beginning,

but download what they need during the process when they are browsing the museum.

3. AR MUSE Design and Implementation
3.1. Systematic Design of AR MUSE

3.1.1. AR MUSE Project Design Goal

After doing background research on AR applications and relating to our own AR-related

development experience, the team discovered that in order to present and share their models,

individuals must overcome several technical barriers, such as designing software and coding,

operating in Unity editor, and packing and publishing applications to mobile platforms.

Table 1: AR Application Background

Engine Plug-in

(AR Foundation)

Web AR

(AR studio)

AR Mobile App

(Reality Composer)

Technical Skill Software Engineer Entry Programmer None Required

Customized Model YES YES NO

Animation Support YES NO(Mostly) NO

Organize Exhibition YES NO NO

Open-source
YES NO NO

Shareable NO NO NO

15

While the current affordance may be acceptable for trained professionals, it still remains

inaccessible to general designers, artists, and educators. Therefore, the goal of the AR MUSE

project is to reduce, and ideally eliminate, the technical barriers associated with sharing,

presenting, and organizing AR exhibits, making an integrated solution that is more accessible to

everyone.

The system will have two separate sides: Creator side and Viewer side. For the creator side, we

originally designed two different Apps for users with different technical skill levels. The Curator

App is designed as an independent client that can package, adjust and send assets. The Curator

App is aimed towards general designers, artists, and educators who have little to no technical

skills in Unity, software design, or coding. In order to reduce the burden on these users, the

Curator App has a simple and basic user interface and is only capable of performing very basic

3D model adjustments. The AR MUSE Unity Toolkit is intended for artists and designers who

are already familiar with the Unity editor and want to use advanced editing and functions. It

operates within the Unity editor, so the experienced users can take advantage of the advanced

model-editing, animation, and state machine components in Unity editor while using our packing

scripts to deploy their work to the Viewer App. The Viewer App is a user client for mobile

platforms that allows users to download packages from either the Curator App or Unity Toolkit

and view them in an AR environment via QR codes. Its targeted users are exhibition audiences,

so the application needs to be clear and simple. Also, the Viewer App needs to be highly

maintainable because there is a lot of update work.

3.1.2. Design of AR MUSE
3.1.2.1. General Design

We chose to create AR MUSE solution by using Unity Engine because it offers powerful edit

platforms, and allows artists “what you see is what you get”. Also, to ensure maximum

compatibility on different devices, Unity’s official AR Foundation package is the most important

development tool we decide to use. We finalized these three Apps to develop:

● A Curator App: which is a desktop application designed for creators with very limited

knowledge of operating with Unity Engine. It provides a friendly and easy to understand

16

GUI to allow creators to modify and pack models, as well as a one-click upload function,

but also lacks powerful editing tools.

● A Unity Toolkit, which is a Unity package for creators to import and make customizations to

their models, this toolkit will also help artists to pack models into asset bundles, and

generate the config file without any coding.

● A Viewer App, which is an Android mobile application developed by Unity, allows

exhibition audiences to scan QR codes and inspect these models through their phone's

camera.

In order to make exhibition audiences (users of the Viewer App) able to fetch models remotely, a

QR code generator and a cloud server are the external parts of the system. A cloud server will be

a bucket to store these models and the config file, and the QR code generator is used to generate

some fascinating QR codes.

Figure 4: Workflow of AR MUSE solution

After introducing every part of this system, it is time to combine them together. The creator

needs external 3D modeling software like Blender, or 3D MAX to produce some Unity

Engine-ready models. They also need to import the AR MUSE Unity Toolkit into an empty

project, and drag these models into Unity. Then they need to use the Asset Bundle Packer to

build asset bundles for their model, and Config Generator to create a config file. The two tools

17

are included in the AR MUSE Unity Toolkit. After getting these asset bundles and a config file,

they have to upload them to an Object Storage Server (OSS) to store them, and generate entry

QR code, as well as QR codes for each single model based on the link of these files. Now, an AR

museum is ready for receiving exhibition audiences. They only need to download the Viewer

App before entering the museum, after they scan the entry QR code, all the other models are

accessible to them through their phone’s camera when they scan a single model’s binded QR

code.

Detailed steps of how this solution works will be explained in chapter 3.1.2.5.

3.1.2.2. Creator Platform Design

The whole project idea originated from our desire to find a solution to lower the barriers to

creating AR museums. AR museums still have commonality with traditional physical museums.

We initially only considered providing a unique QR code for each exhibit. But after our analysis

of museums, we concluded that in a museum, there can be multiple exhibition halls, and then

there can be multiple exhibits in one exhibition hall. We treat the two as a superior-subordinate

relationship. Therefore, in the finalized tool, users need to fill in two forms, one for exhibition

hall information and one list for all exhibits. After exporting, the user will get an entry QR code,

as well as the QR code of each exhibit.

Figure 5: Entry Code Figure 6: Individual Code

The entrance QR code is like the flier that tourists get at the entrance when they visit a real

museum, containing exhibition information such as the name and introduction of the exhibition

hall, and a list of exhibits. In addition to retaining the sense of ritual of entering the museum, the

18

existence of the QR code at the entrance is also to facilitate the management of exhibits. When

the number of exhibits reaches a certain level, it will be more clear to have a list than to manage

each exhibit individually.

Individual QR codes link to individual artwork. Each individual QR code is like a booth in the

museum, figure 1 perfectly shows this. There is only one model on each booth. After scanning

the QR code at the entrance and getting the list, visitors still need to visit each individual booth

to view the works in more detail.

3.1.2.3. Audience Platform Design

Users will need to scan the entry QR code before they enter the exhibition. It's like how visitors

grab a flier before they enter the real-world museum, so they can have a general idea of the

exhibition and see the exhibit list.

After scanning the entry QR code. Users can now scan any other exhibit QR code that belongs to

this exhibition. If they do not first scan the entry code, the viewer app won’t detect the exhibit in

the exhibition. They need to “enter” the exhibition first.

When users have enough with the current exhibition, users need to “exit“ the exhibition hall by

selecting the “exit” options in the upper left corner of the screen. So they can join another

exhibition.

3.1.2.4. Server Platform Design

Server plays an important role in AR MUSE solution, that it stores all the files, and significantly

affects user experience when they try to download. After considering all the server technologies,

we believe the Object Storage Server (OSS) is the best choice for several reasons:

● Simple to manage and operate: OSS services usually come with a GUI panel, and most of

them are user-friendly even for beginners.

● Enough choices: There are lots of companies offering OSS services, including Amazon,

Microsoft, and Alibaba.

● Low price: When comparing renting a fully functional server, renting an OSS is much

cheaper. Our team rented an OSS provided by Alibaba Cloud for playtesting, the monthly

fee is less than 10 USD per month.

19

● DDOS protection: DDOS occurs when multiple systems flood the bandwidth or resources

of a targeted system, usually one or more web servers. And most of the providers have a

basic DDOS protection, which prevents potential server down when there is a large

amount of audience trying to download models from the server.

3.1.2.5. Connecting Creators and Exhibition Audiences

After explaining each component of AR MUSE, in this section, we will briefly discuss how each

component is connected to others, and how this solution works.

1) This solution starts with models, as a curator of an exhibit, models need to be imported to

AR MUSE Unity Toolkit manually, theoretically any model file format Unity supports

could work on mobile devices, but when considering exhibition audiences need to

download models from server and relatively poor performance of mobile phones

compared with desktop computers, an obj file with reasonable triangles is highly

recommended[17].

2) After importing the models, the creator can make some customizations to the models, for

example, do some transform modifications, apply an animation clip, or add particle

effects. If necessary, the curator can bind additional scripts to models in order to achieve

some fascinating effects or make models interactable.

3) Once finished customizations, AR MUSE Unity Toolkit provides an Asset Bundle Packer

tool to help curator pack these models into asset bundles with simple drags and clicks.

4) The next step is to set museum information, along with all the models packed previously.

Creators can use the Config Generator offered by AR MUSE Unity Toolkit to set

museum and all the models’ information, for example, title, author, and description. Also,

the Load Config function provides curator ability to manage and update existing

exhibition’s config.

5) When a creator finishes all the steps above, he can upload these packed models and

config files to the server, and prepare some QR codes, which will be the identity of the

models. In detail, the entry QR code’s content must be the direct link to the config file

uploaded to the server, and for the packed models, their QR codes’ contents are the

filename written in the config file.

6) When in an actual exhibition, the exhibition audience will use our Viewer App to scan

20

these QR codes, which are linked to asset bundles previously, then they can load these

amazing models locally on their phones.

3.2. AR Muse Components Design
3.2.1. AR MUSE Curator App (Legacy)

Figure 7: General look of Curator App

In our initial plan, we had a separate curator app intended for users with limited technical skills.

It was designed to be an independent client that is very easy to use, with an easy-to-understand

UI and every basic feature. In exchange, the app can only make limited adjustments to the

model. In order to achieve this goal, the software also automatically adjusts the imported model

files to the appropriate size to fit in the QR code. And the toolkit, in the initial plan, only

included scripts we created during the entire development process, like packaging models, and

functions such as QRcode detection and model lifetime setting. We were hoping to share those

scripts with Unity experts who want to create their own art exhibit. Therefore, the toolkit does

not have any UI or interactive interface in its design, and we expect users of the toolkit to know

what they are doing and what they are using.

But in the early testing, we found out that there are some misunderstandings between us and

creators. We were thinking about how to simplify the system, but the result is that the simplified

model editing process is actually not necessary for those who are interested in creating and

sharing 3D arts. People don’t like the limited editing function. They want to have more freedom

so they can show their creativity. Especially the automatic resizing model, and the limited editing

21

features, many people have expressed dissatisfaction with these features that we think are

convenient for them. People don't want their creativity to be limited by a creative tool. What they

need is a simplified system to help with deploying their models and sharing with the audience.

As a result, we ended up combining the original Curator app with the original Toolkit, creating

the Toolkit that was ultimately shipped. We inherited the coordinate reference and upload

functions into the Toolkit, which now has a user interface.

3.2.2. AR MUSE Unity Toolkit

Unity Engine provides a powerful platform for artists to modify these models, from basic

transformation to binding additional scripts to add features, and it is great to have infinite

creativity and possibility for artists to innovate. So we decided to take advantage of this, and

combine the requirements of 3D model editing, packing and deploying, so we designed this AR

MUSE Unity Toolkit with two tools: Asset Bundle Packer and Config Generator.

Figure 8: Asset Bundle Packer Window

An asset bundle is an archive file that contains platform-specific non-code assets (such as

22

Models, Textures, Prefabs, Audio clips, and even entire Scenes) that Unity can load at run time.

In other words, an asset bundle is a combination of model assets, which allows creators to pack

whatever they want

Asset Bundle Packer provides functionality that enables users to configure and inspect packed

models. The Build function provides users a simple way to pack their models into asset bundles.

Figure 9: Config Generator Window

Config Generator is especially designed for the requirement of high maintainability, that by

re-uploading config files, the curator or owner of the AR museum can easily manage all the

exhibits on display, in other words, this config design implements hot-fix.

3.2.3. AR MUSE Viewer App

According to our research on existing AR museums, most of the museums use compatible or

specific apps for inspecting the models. Some of them store all the models offline, which is

reasonable, because when the museum is a big old building or in basements, the audience may

23

not have access to cellular data or wifi. But this approach sacrificed flexibility and

maintainability, that if a museum wants to update its exhibits on display, it may need to update its

application, and re-upload to Google Play Store or App Store after the updated application passes

examination. This approach strongly violates the design goal that we should provide a highly

maintainable workflow, and after balancing the advantages and shortcomings, we choose to use

QR code to make AR MUSE Viewer App an online application. With the utilization of the QR

code, our AR MUSE Viewer App can easily fetch models stored on the server, and users can

save a large amount of time when they try to download for the first time.

As we mentioned above, the most fundamental function of this viewer app is the QR code

scanner, so the open-source, multi-format 1D/2D barcode image processing library ZXing

(ZebraCrossing) is the best choice. This library offers a stable and accurate QR code recognizing

and tracking function that gives us a solid foundation and enables us to develop further (we will

discuss this in the Viewer App Function part).

Figure 10: When Viewer App Scans a QR Code

24

3.3. Interaction and Experience Design

The core of designing a complex interactive experience is isolating and understanding the types

of interactions. The AR MUSE system covers multiple types of interactions:

● How user interacts with space

● How user interacts with virtual exhibit

● How user interacts with the mobile Viewer App

● How user interacts with the AR MUSE Unity Toolkit

These types of interactions are drastically different, so it’s challenging for the team to recognize

and follow related design principles while balancing the complexity and customizability of the

system.

3.3.1. Interacts with Space: QR Code

The first step to setting up an AR museum is organizing the space. We choose QR codes as

references for virtual exhibits because they provide a reliable and consistent way to link digital

content with the physical world. QR codes are easy to scan with mobile devices, and they can

contain a significant amount of information in a small space. This makes them a practical and

convenient way to trigger AR experiences.

Figure 11: When Viewer App Scans a QR Code

25

Additionally, using a QR code significantly streamlined the workflow for setting up the

exhibition. A QR code is highly customizable and could contain context-specific information.

This advantage is the key to the design of the AR MUSE Unity toolkit. The QR code could serve

as a "tag" that links to the package uploaded to servers. Unlike when using image tracking, the

user has to pre-store the targeted image information. With a QR code, the user just needs to type

in the "tag" with any QR code generator.

Furthermore, using QR codes as a reference point for AR can also enable tracking and

localization. By scanning the QR code, the AR app can identify the user's location and

orientation to the QR code, which can help align the digital content with the physical

environment more accurately. This can enhance the realism and immersion of the AR

experience.

3.3.2. Interacts with Virtual Exhibit: Viewer App

The Viewer App helps the user interact with digital exhibits with the help of a camera and QR

code tracking. Beyond the basic function, the Viewer App also takes on the responsibility of

enhancing immersion, providing additional information, and enabling remote access.

The Viewer App design provides a more interactive and immersive experience by applying

animations to the exhibits and offering spatial interactions. The user could rotate the phone or the

QR code to see the exhibits from different perspectives.

One of the most important features of the Viewer App is providing additional information about

exhibits by overlaying text descriptions onto the user's camera view. The app could overlay the

information input from the AR MUSE Unity toolkit into the camera view through an interactive

menu. The user can click to see broad or detailed information while keeping the exhibits visible

for observations and interactions.

26

Figure 12: Text Description Overlay

The Viewer app can enable remote access to exhibits, allowing users to view them from

anywhere through the museum code. This can be useful for users who are unable to visit the

museum in person or for educational purposes.

27

Figure 13: Collection List Page for Remote Access

3.3.3. Interacts with the Mobile Viewer App: Viewer App UI Design

The UI design of the Viewer App follows the Human-Computer Interaction principles. There are

some notable keys: Usability, functions, accessibility, and performance.

The Viewer App’s user profile has a broad audience. As a result, the App should be easy and

intuitive to use and navigate, even for users who are unfamiliar with AR technology. This

requires simplifying and streamlining some aspects of the app, such as the navigation menu and

the process for accessing exhibits. Additionally, the App should also provide hints for the user,

which are important in first experience.

28

Figure 14: Viewer App Early Design

The main functions for the Viewer App are downloading assets from the server, presenting the

digital exhibits, and providing additional information. The downloading functions are all hidden

in the background in order to streamline the user experience. The presenting mode keeps the

camera on for all time to create an immersive and interactive experience. The information menu

is designed as a folded area. This design not only presents full information in a limited screen

area, but also creates interactions with the user.

29

The Viewer App should be accessible to a wide range of users, including those with disabilities.

The team went for a minimalist high contrast style with only black&white visual design. This

helps the users with color vision deficiency use our system with ease. Additionally, haptic

feedback is used in the QR code scan process to notify the user that the scan is successful. The

lightweight interactions from the View App helps the user use the system confidently.

In order to ensure the App performance on different mobile platforms, we minimized the Viewer

App function and UI animations. This design decision is consistent with the app’s visual design

while offering clarity and simplicity.

3.3.4. Interacts with the Unity Toolkit: Unity Toolkit Design

After we abandoned the Curator App, the user would have to access Unity Editor to use the

curator functions. Although the Unity editor creates a usability and technical barrier for general

users, the team tries to guide non-professional users by designing the Toolkit UI carefully.

For clarity and simplicity, the Toolkit is integrated with the Unity Editor on the top menu. The

functions are streamlined into two major steps and all the elements are organized in a logical

way. The buttons and menus are presented with clear and descriptive labels, with a clear

hierarchy of screens and sections.

Figure 15:Unity Toolkit Workflow

The UI design is also consistent across different screens and sections and follows the Unity

Editor design. This can help users to navigate the toolkit more easily and reduce confusion.

The Toolkit also provides feedback to users when they interact with detailed error messages. A

step-by-step readme file is also included for non-professional users.

30

Figure 16: Error messages

The balance between complexity and customizability is also a key point to consider. The team

decided to take advantage of the powerful 3D model edit and animation function in the Unity

Editor while keeping our AR MUSE Unity Toolkit simple and direct. As a result, the user can

use all the complex functions in the editor and save them to a prefab. The Toolkit then takes the

prefab to the server and sends it to the Viewer App.

3.4. AR MUSE Implementation

Before stepping into the implementation section, we need to have a brief introduction of this

solution. AR MUSE contains two parts: an AR MUSE Unity Toolkit to create and manage

exhibitions, and a Viewer App for exhibition audiences of the museum to inspect these models.

This solution also needs two external platforms: an Object Storage Server (OSS) for storing all

the packed models and config files, which is specifically designed for Viewer App to read and

31

download remotely, and a QR code generator, that user can generate QR codes with any pattern,

and then link QR codes to the models stored on server manually.

3.4.1. Unity Toolkit Implementation

AR MUSE Unity toolkit serves as a tool to help creators manage and create exhibition areas.

One of the functions includes the QR code coordinate reference tool we mentioned earlier. This

helps with the Creator to have a preview of how their work will look like related to the QR code

in real life.

The other main function is to pack all the exhibit Bundles, create and manage the config file of

the exhibition area.

Figure 17: Upload Structure

The user will need to have a config file first. This file includes the information of the Museum

and the information of each individual exhibit. The config generation tool in Toolkit has a simple

and clear UI. The user only needs to fill in the corresponding information and click the SAVE

32

button, and the config file will be generated.

Figure 18: Config file

After all the textual information has been entered into the config file, the user also needs to

package all the actual model files. A package tool is also included in our toolkit, users only need

to drag all model files into the window then press the BUILD button, the toolkit will complete

the packaging at one time.

Figure 19: AssetBundle Packer

33

3.4.2. Viewer App Implementation

The Viewer App is also developed in Unity Engine, and only supports Android platform. The

Viewer App starts with scanning the Entry code, the scan process is shown in figure 20.

Figure 20: Entry Code Scan Progress

When the Viewer App scans a code, it will automatically read its content, and if the content

passes detection that it is a valid link directed to a xml file, it will try to download that file. The

downloaded file will be analyzed next to get all the elements, and then Viewer App will start a

data persistence process to make data available when Viewer App enters other sessions. All the

data will be stored in the PlayerPrefs class, which is a class that stores Player preferences

between game sessions[18]. The data persisted will be used for individual QR code to get a full

link directed to each model.

34

Figure 21: Entry Code Scan

After successfully stored the data, user can entry the main session of the Viewer App, which

looks like this:

Figure 22: Main Session

35

The content of each individual QR code is just the filename of these models saved on the server,

for example the eyeball model shown before, the QR code's content is “eyeball.ab”. And we will

talk about how a filename connects to the models uploaded since we do not link them directly in

a config file. The model’s link is consists of four parts:

● Server-root-link: The Viewer App will get the server’s root link from persisted data,

which was saved in the PlayerPrefs class before, and transferred to the main session.

● Asset-bundle: This is the default string that will automatically append after the server

root link string.

● Platform: Because asset bundles are platform-specific, which means it is not allowed to

load a not compatible asset bundle. So, the Viewer App will detect the audience's cell

phone platform, if it is Android platform, it will append “android”, or if it is IOS

platform, “ios” instead.

● Model-file-name: This is where the Viewer App recognizes the QR code linked model.

There is a point that two files with the same filename will never exist in a directory. In

OSS, if a creator unintentionally uploads multiple files with the same filename, the

system will automatically rename them by appending additional string like “(1)”. This

operation makes each model have its unique filename, and naturally times out when an

audience scans a non-existent QR code.

Figure 23: Link String Append

36

4. Evaluation
4.1. Early Development Test

During the initial development stage, we brought our first version of the Viewer App to

Alphafest for testing and feedback. Based on our observations, interviews, and collected

questionnaires, we found that the overall design of the app was successful, but there were still

many details that needed improvement. For instance, first-time users had difficulty navigating

through the app and determining whether the model had been loaded. To address these issues, we

streamlined the components of the Viewer App and added more guidance, haptic feedback, and

hints to the app.

4.2. Evaluation Design

After confirming the target group of users and analyzing the needs of them. We designed an

usability test to confirm that our system has indeed lowered the threshold for creating AR

exhibition. And people who are interested in creating this AR project really feel that our system/

tool has made the work easier. The whole test has 4 phases:

1) Pre-Test Survey

2) Toolkit Test

3) Viewer App Test

4) Post-Test Survey

4.2.1. Pre-Test Survey

This part of the Survey is mainly a background investigation on the AR-related background and

Unity background of the testers. It helps teams better characterize testers and evaluate their

performance individually.

37

4.2.2. Toolkit Test

This part of the users was given a task, which was to use our toolkit to create an AR Exhibition.

The testees were provided with two .obj model files. They could pick one, or both, to create an

AR exhibition that included this work or both works. We provided a guidance document

[appendix] to let the test personnel learn how to use the system. We observed the whole process

to see if the testers followed our expected plan or encountered any difficulties we didn't expect.

The whole process, from the time when the tester started using the toolkit to when the project

was packaged, was timed.

4.2.3. Viewer App Test

After the tester finished creating their own AR Exhibition, they were told that they could use our

viewer app to observe the work they had just completed. Because everyone's model editing was

slightly different, even though they were all provided with the same model file, the final results

varied. This stage was mainly to test the usability of the Viewer app and whether it met user

expectations.

4.2.4. Post-Test Survey
4.2.4.1. Quantitative questions

We used the System Usability Scale[19] to do quantitative evaluations. The System Usability

Scale (SUS) is a standardized questionnaire that is widely used to evaluate the usability of a wide

range of products and services, including software, websites, mobile apps, and other interactive

systems. It was developed by John Brooke in 1986 and has become one of the most popular and

widely used tools for measuring the usability of interactive systems.

The SUS consists of a 10-item questionnaire that measures the user's perceptions of the usability

of the system. The questionnaire consists of five positive statements and five negative

statements, and users are asked to rate their level of agreement with each statement on a

five-point Likert scale, ranging from "strongly agree" to "strongly disagree." The scores are then

aggregated and converted into a usability score ranging from 0 to 100.

38

A SUS score of 68 is considered average, and scores above 68 are considered above average.

Scores below 68 indicate that there may be usability issues with the system that need to be

addressed.

Additionally, the team can analyze the scores for each individual item on the questionnaire. This

can help identify specific areas of the system that may be causing usability issues. We can also

compare the SUS scores with pre-questions to get a better image of our tester and how our

system performs in the hands of users with different Unity and computer science backgrounds.

4.2.4.2. Qualitative Questions

This part of the evaluation is in the form of linear scale and short answers. This part of the

evaluation helps us get more opinions from the testers regarding the highlights of our system.

4.3. Evaluation Result
4.3.1. Quantitative Questions Result (System Usability Scale)

39

Table 2: Background Survey and System Usability Scale Survey Result

Test

Time

(s) Unity

Skill

Self

Assess

ment

(out of

5)

I think that

I would

like to use

this

system

frequently.

I found

the

system

unnece

ssarily

comple

x.

I

thought

the

system

was

easy to

use.

I

thought

that I

would

need

the

support

of a

technic

al

person

to be

able to

use this

system.

I found

the

various

function

s in this

system

were

well

integrat

ed.

I

thought

there

was too

much

inconsi

stency

in this

system.

I would

imagine

that

most

people

would

learn to

use this

system

very

quickly.

I found

the

system

very

cumber

some

to use.

I felt

very

confide

nt using

the

system.

I

needed

to learn

a lot of

things

before I

could

get

going

with

this

system.

System

Usabilit

y Scale

Score

(out of

100)

5:37 3 3 3 4 2 3 1 4 3 2 2 62.5

9:02 2 3 1 5 3 4 1 4 2 4 3 75

8:09 3 5 2 4 3 4 2 5 1 3 2 77.5

9:03 3 3 3 3 4 2 2 3 2 2 3 47.5

7:20 4 2 1 5 2 5 1 4 2 4 1 82.5

9:00 4 2 1 5 4 4 1 4 1 4 2 75

9:00 2 4 2 4 3 4 2 4 2 5 2 75

10:53 2 2 1 4 4 4 2 5 3 5 4 65

4:35 3 3 1 4 3 4 2 4 1 2 1 72.5

4:46 3 3 2 4 2 4 1 4 1 5 2 80

STD

Mean
7:44

3 1.7 4.2 3 3.8 1.5 4.1 1.8 3.6 2.2 71.25
10.358

16908

Median 3 1.5 4 3 4 1.5 4 2 4 2

Mode 3 1 4 3 4 1 4 2 2 2

STD
0.9428090

416

0.8232

726023

0.6324

55532

0.8164

965809

0.7888

106377

0.5270

462767

0.5676

462122

0.7888

106377

1.2649

11064

0.9189

365835

Typically, a SUS score of 68 is considered average. The mean SUS score for our system across

10 test results is 71.25 and the standard deviation is 10.36, 14.5% of the mean value. However, a

score of 47.5 is considered an outlier. Overall, the SUS score shows our system usability is above

average.

40

Looking into each question and considering their positive and negative wording, there are three

questions show below average or scattered results: “I think that I would like to use this system

frequently”, “I thought that I would need the support of a technical person to be able to use this

system” and “I felt very confident using the system”. These results could be caused by different

backgrounds of the testers. It will be discussed in the discussion sections.

4.3.2. Qualitative Questions Result

See Appendix for interview questions and response record.

The following are highlights for the open questions：

1. The system is proven easy to use for people with different technical backgrounds

● “I overall had a very positive user experience even as someone who is not familiar

with Unity. I found the instructions a crucial and effective component of the

process which helped me design something and bring it to life. I thought the app

was very user friendly!”

● “It's very easy to use and I think with this toolkit I can create an AR project very

quickly.”

● “Nothing but praise, well done!”

2. Users rated the UI design & integrated workflow favorably.

● “It's very easy to use and the UI is very clean and good to understand.”

● “Having never developed AR technology, I was a little worried about complexity,

but the system made the process very intuitive through unity and the custom

editors.”

● “I like the UI~”

● “How easy it was to transfer the data from unity into a QR code was very

impressive.”

3. Subjects imagined diverse uses for AR MUSE

● “I think it could be really helpful in teaching environments for things like

understanding molecules and other models.”

● “Sharing a 3D modeling portfolio.”

● “Quick visualization for a combined 3D scene.”

41

● “I'd use it to view my 3D models from Zbrush/Maya if I got them into Unity.”

● “I would use this system if I was developing a piece of art (game assets or actual

art) to allow for those to seemingly come to life in AR could be valuable to

provide users with a unique experience.”

4.4. Discussion

Based on the evaluation results, we believe we have successfully achieved our design goal of

reducing the barriers to entry for creating AR projects. Most people find our system easy to use,

especially one of the testers who has experience in AR development and found the system very

helpful. We acknowledge that some testers may have underestimated our system to some extent

because they lacked experience in AR development, making it difficult for them to compare our

system to others in terms of making the development process easier. Nevertheless, even those

who had no experience in AR development were able to complete the tasks we assigned them

with a written guide in a very short time, with an average time of under 10 minutes, which is

great news.

Table 3: Test Time, Unity Skill Self Assessment and System Usability Scale Score

Test Time (s) Unity Skill

Self Assessment (out of 5)
System Usability Scale Score (out of 100)

5:37 3 62.5

9:02 2 75

8:09 3 77.5

9:03 3 47.5

7:20 4 82.5

9:00 4 75

9:00 2 75

10:53 2 65

4:35 3 72.5

4:46 3 80

It is interesting to note that the responses for the questions "I think that I would like to use this

system frequently," "I thought that I would need the support of a technical person to be able to

42

use this system," and "I felt very confident using the system" have a higher standard deviation.

After considering the positive and negative wording of the questions, we observed that although

there is some very positive feedback in each question, the mean scores were lower than expected.

In another word, although some tests have very positive feedback, testers in general have very

different opinions on these questions. We believe that the variation in scores could be due to the

subjective nature of the questions and the differing technical backgrounds of the users. We also

tried to see if the tester's familiarity with Unity would influence their ability to learn and use our

system. Because this is a toolkit based on Unity. However, we found that relying on the testers'

self-assessment of their Unity skill level was not very accurate. Some testers who completed the

task much faster than others did not consider themselves to be very skilled in Unity. This

indicates that simply asking about Unity skill level may be too broad and not provide an accurate

assessment of the testers' abilities. Therefore, trying to obtain an accurate assessment of the

testers' Unity level may not be necessary in this case.

Table 4: Notable System Usability Scale Questions Results

I think that I would like to use this

system frequently.

I thought that I would need the

support of a technical person to be

able to use this system.

I felt very confident using the system.

Mean 3 3 3.6

Median 3 3 4

Mode 3 3 2

STD 0.9428090416 0.8164965809 1.264911064

5. Post-mortem
5.1. Achievements and Lessons Learned

We also learned from the abandoned Curator App. As mentioned in the previous article, we

abandoned this app. The major reason why we canceled it it's because of an insurmountable

technical problem: Unity can’t save .ab files in the runtime. We didn’t realize it at first because

we managed to save a file and Unity also generates a .ab file successfully at runtime. But after

43

we upload the file to the server it just keeps failing to read. For a very long time we thought it

was a server issue and spent a lot of time trying to fix this “server problem”. Eventually we

found out it wasn't a server issue. The .ab file is actually fake. Unity can generate a .ab file at run

time, but there is nothing valid in it. Unity can store .txt, .png or even .obj files at runtime but it

can't pack .ab files. This is the underlying design of Unity. We can't do anything to fix it unless

we not keep using Unity.

One of the reasons to completely abandon this App is the lack of a valid reason to continue using

it. During the early stages, we informally tested the app and realized that we had underestimated

our users' capabilities. We mistakenly assumed that artists, especially traditional artists, may lack

technical skills, including model editing. However, through informal interviews with several

users, we learned that modern or electronic artists possess these technical skills, and some even

master them. Therefore, simplifying the model editing function is unnecessary and may even

limit their creativity, leaving some users feeling frustrated. Our original design was to provide

advanced editing through a toolkit, but we overlooked the fact that the original toolkit was too

complicated for them. We failed to consider what artists truly need and misanalysed their

requirements. In reality, artists need a simplified solution for binding art pieces with QR codes.

Thus they really care about the relationship between the QR code and the model, people like the

reference coordinate for the QR code so we kept and improved this idea to the toolkit. We know

that QR codes are directional, and we think that’s some kind of common sense, but people don’t

really think so. Thanks to the early test, we figured this question out and improved this by adding

an arrow in the coordinate.

Figure 24: Coordinate Reference in Toolkit

44

This system also has a limitation that cannot be bypassed. The entire system theoretically

requires users to have access to the network. The requirements for the creator will be higher. The

creator not only needs to have network access, but also needs to have access to a server to store

the works. (Note that the creators mentioned here can be individuals or organizations.) This

limitation comes from our original idea, hoping to get rid of storing a large number of files

locally on the mobile phone.

For most current common AR App, users need to download a large file package in one place

including all the data. In this case, users usually choose to download in a Wi-Fi environment, so

that they do not have to worry that their mobile data plan will run out. Our viewer App is

designed to be as lightweight as possible. Users download data from the server when they need

them. This may cause some data problems, a mobile phone needs to download from the server

every time it scans a QR code. However, in theory, the data contained in the QR code is an

address that points to where the model is stored, it is also feasible to use a local Wi-Fi network.

The internet speed will also affect the viewing experience of the user. Although usually a file

with a size of tens of MB can be displayed within 1 second. But in the worst situation the user's

own mobile network signal is not good or the network speed is very slow. The exhibitor is

suggested to provide Wi-Fi to ensure that the network is the best.

Another limitation is the scanning limit of QR codes. To see the work link to the QR code, user

need to first scan the QR code. After that, the user only needs to keep the QR code on the screen

after scanning, the viewer app can detect where the QR code is and will track the QR code to

correct the model position. Even if the QR code is lost, the phone will use the gyroscope to

identify the space, but it won't be very accurate. However, in order to accurately read the

information in the QR code, the user must face the QR code and keep an appropriate distance

from the mobile phone when scanning. If there are too many viewers for the same work, they

may have to queue up to scan the QR code.

45

5.2. Future Work

After considering the test results and observing the test process. It’s important to make the

system more accessible for users with little Unity or AR development background.

● A more detailed user manual for both Viewer App and AR MUSE Unity Toolkit

● Include more built-in hints in the Viewer App and AR MUSE Unity Toolkit

For a shippable product, we probably need a more detailed, step by step tutorial for how to use

this system. People also think the viewer app can be prettier. More animation effects in the

Viewer app is another stuff people mentioned in the test. The UI can still be improved.

Finally, this will be an open-source project. We have published our work on Github:

https://github.com/dmql98/AR-Muse-System.

5.3. Conclusion

When an artist wants to hold a personal exhibition, they usually need to cooperate with local

museums and pay venue fees, which is not economical for starter artists. However, our project,

AR MUSE solution, enables artists or museum curators to create an AR museum in a relatively

low budget, and more importantly, limited knowledge will no longer be the barrier. With Unity

Engine, they can modify their amazing models in the simulated environment, and use our team’s

toolkit to simplify the process of deploying these models to a remote server, which will be linked

by QR codes. Our team also developed a mobile app for inspecting these works by scanning QR

codes.

This solution achieves its design goal according to the test we conducted, that most of the

participants have limited knowledge of processing with models, and experience with AR

environment. We received lots of positive feedback from several perspectives, and most

significantly, the QR code mechanic, which is the foundation of our solution.

46

Bibliography

[1]Kan, Tai-Wei, et al. “Applying QR Code in Augmented Reality Applications.” Proceedings of

the 8th International Conference on Virtual Reality Continuum and Its Applications in

Industry, 2009, https://doi.org/10.1145/1670252.1670305.

[2]Tiwari, Sumit. “An Introduction to QR Code Technology.” 2016 International Conference on

Information Technology (ICIT), 2016, https://doi.org/10.1109/icit.2016.021.

[3]Laricchia, Federica. “U.S.: Tablets Average Price 2013-2027.” Statista, 28 Feb. 2023,

https://www.statista.com/statistics/619505/tablets-average-price-in-the-us/.

[4]“Pokémon GO.” Pokémon Go, https://pokemongolive.com/?hl=en.

[5]“Ingress Prime.” Ingress Prime, https://www.ingress.com/.

[6]“Burberry Invites Customers into the World of Olympia with Its Latest Augmented Reality

Experience.” Burberry Corporate Website,

https://www.burberryplc.com/en/news/brand/2021/burberry-invites-customers-into-the-w

orld-of-olympia-with-its-la.html.

[7]Britton, Alan. “Skyview Stargazing App Review: Locate Stars and Planets with Your

Smartphone.” Space.com, 22 Sept. 2022, https://www.space.com/skyview-review.

[8]“Froggipedia Review for Teachers.” Common Sense Education,

https://www.commonsense.org/education/reviews/froggipedia.

[9]Morpholio. “Ar Sketchwalk.” Collaboration Tools: AR SketchWalk - Morpholio Trace User

Guide, https://morpholioapps.com/userguide/trace/?How-to-use-ar-sketchwalk.

[10]“Ikea App Page.” IKEA,

https://www.ikea.com/au/en/customer-service/mobile-apps/say-hej-to-ikea-place-pub1f8a

f050.

[11]“Vuforia Enterprise Augmented Reality (AR) Software.” PTC, 27 Mar. 2023,

https://www.ptc.com/en/products/vuforia.

[12]Apple Inc. “Augmented Reality.” Apple Developer,

https://developer.apple.com/augmented-reality/.

47

[13]“Ar Foundation: Ar Foundation: 5.0.5.” AR Foundation | 5.0.5,

https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@5.0/manual/index.html.

[14]“Create Webar for Free - No-Code Online Platform for WebAR & AR.” Web,

https://web-ar.studio/en/.

[15]“Reblink.” Art Gallery of Ontario, https://ago.ca/exhibitions/reblink.

[16]“AOL Augmented Art Gallery.” YouTube, YouTube, 1 June 2021,

https://www.youtube.com/watch?v=ry1v2G1WoJo&t=1s.

[17]Lauren, Post author By. “.FBX VS .Obj - Vectorworks Export to Unity.” Scenic Mentor, 30

June 2021, http://scenicmentor.com/fbx-vs-obj/.

[18]Unity Technologies. “PlayerPrefs.” Unity,

https://docs.unity3d.com/ScriptReference/PlayerPrefs.html.

[19]Sus - a Quick and Dirty Usability Scale.

https://www.researchgate.net/profile/John-Brooke-6/publication/228593520_SUS_A_qui

ck_and_dirty_usability_scale/links/5f24381392851cd302cbaf25/SUS-A-quick-and-dirty-

usability-scale.pdf.

48

Appendix: Playtesting Questionnaire

1. Background Survey

49

50

51

2. System Usability Scale

52

53

54

55

56

3. Interview Questions

57

Which design

of the viewer

App stood out

to you the

most?

Any

thoughts

with the

Unity

toolkit?

Which

design of

the entire

system

stood out to

you the

most?

What would

you use this

system for, if

anything?

What do

you think

can be

improved in

this system,

if anything?

More

comments.

I liked the use

of the qr code

to create the

AR

experience,

however the

object

appeared to

be trapped on

the same

plane as the

qr code.

I don't have

extensive

Unity

experience,

but the

guide

seemed to

more than

make up for

the

knowledge

I lacked.

The use of

multiple qr

codes for

different

steps of the

exhibit

I think it

could be

really helpful

in teaching

environments

for things like

understandin

g molecules

and other

models.

Some

clarity and

streamlining

on the

process of

creating

objects.

A little

more

backgroun

d before

starting the

playtest

would

provide

clarity and

meaning to

the testers

actions.

58

I liked the

ability to hide

the UI

elements! I

thought it

made for a

much better

user

experience

when I was

not

attempting to

use the

buttons.

I personally

do not have

a ton of

unity

experiences

, however,

the

instructions

were very

helpful and

the pictures

within it

made for an

easy

process.

How easy it

was to

transfer the

data from

unity into a

qr code was

very

impressive.

I would use

this system if

I was

developing a

piece of art

(game assets

or actual art)

to allow for

those to

seemingly

come to life

in AR could

be valuable to

provide users

with a unique

experience.

I think that

the button

for

recalibratin

g should not

be an X

because it

was not

intuitive to

look at and

recognize

what the

function of

the button

was. I think

that perhaps

more

pictures in

the

instruction

could have

been

helpful, but

honestly i

did not need

too much

help.

I overall

had a very

positive

user

experience

even as

someone

who is not

familiar

with Unity.

I found the

instructions

a crucial

and

effective

component

of the

process

which

helped me

design

something

and bring it

to life. I

thought the

app was

very user

friendly!

59

Interface No UI To create AR

exhibits or

any other

objects

No idea

Using QR

code.

None QR code I don't know. It is good

now

None.

Automaticall

y loading the

models

through the qr

codes was

very fast and

easy

The editor

windows

simplify the

process for

setting up

the model a

lot.

The

cloud-based

model

storage

made it

easy to

view any

uploaded

models

Sharing a 3D

modeling

portfolio

Interactive

models

could be

very

interesting

Having

never

developed

AR

technology,

I was a

little

worried

about

complexity,

but the

system

made the

process

very

intuitive

through

unity and

the custom

editors.

60

It's very easy

to use and the

UI is very

clean and

good to

understand.

It's very

good to use

with the

short

description.

Users can

use this

toolkit

without any

AR

knowledge.

The process

to put

model into

empty

gameobject

is very

quick and

easy

If I create a

model and

want to share

with others I

will use this

Not much,

maybe add

some

descriptions

of

uploading

to cloud

platform

process

It's very

easy to use

and I think

with this

toolkit Ii

can create

AR

projects

very

quickly.

simple UI no synthesize

to cloud

exhibit

products

It would be

better to add

more

explanation

for a

user-friendl

y purpose.

I like the

UI~

Enable the

state machine

feature

You may

add more

"completed

" objects in

the test

objects so

that we can

import the

pre-defined

objects with

Deploymen

t to a light

device (i.e.

cellphone)

Quick

visualization

for a

combined 3D

scene

You may

improve the

perspective

view

directions

so that you

can rotate

the scene

intuitively

N/A

61

more

flexible

options.

It's pretty

simplistic

overall but

that's not

necessarily a

bad thing.

It was

pretty

simple and

the top of

the screen

is an

excellent

placement,

for ease of

access.

I was just

so

impressed

to see how

well it

moved in

"3D space"

when I

moved the

camera

across the

QR code.

I'd use it to

view my 3D

models from

Zbrush/Maya

if I got them

into Unity.

I wonder if

there could

be an easier

way to

generate the

QR code,

although I

suspect

replacing a

generator

would take

a lot of

work.

Nothing

but praise,

well done!

super simple

to use

convenient again yeah

super

simple and

convenient

i think it

would make

ar games a lot

easier to set

up

easier way

to set up

single

objects

62

Appendix: AR MUSE Unity Toolkit Test Task

In this test, you are going to use Unity Editor to generate some AR-ready models, and then

deploy them to a remote server in a few steps by using AR MUSE Unity Toolkit. In the end, you

can use a mobile phone with AR MUSE Viewer App to have a look at what you have created.

STEP 1. Edit Model in Unity Editor with QR code Reference
1. Open “Asset - Scene - CoordsScene”

2. Press “Ctrl + Shift + N” to create an empty GameObject, this empty GameObject will be the

container for your model. Then reset the “Transform” of the GameObject you have just created

3. Find “Assets - Test - Models for Test”. Select and drag one model to the empty GameObject created

(This operation will make this model a child of the empty GameObject). Then you are free to make

customizations to the models as you like (Position, Rotation, Scale…)

Notice: Any “Transform” changes made to the empty GameObject will be overwritten when using

Viewer App, so instead of transforming empty GameObject, you HAVE TO transform the models,

which is a child of the empty GameObject

Optional: If you are familiar with Unity, the “X Bot” model comes with an animation clip, that means

you can animate it by adding the “Animation” or “Animator” component

63

4. Select your model and make a new prefab by dragging it to “Assets – Test - Prefabs”, then select

“Original Prefab” to save your customized model as a prefab

STEP 2. Pack Asset
1. Select “MUSE” on the top menu bar, go to “MUSE - AR Toolkit - Asset Bundle Packer”

2. Drag your prefab to “Configure”

64

3. Select “Build”, and choose “Build Target” as “Android”, and we have set the output path for you

4. Click “Build” button to pack your assets

STEP 3. Generate XML Config File
1. Select “MUSE” on the top menu bar, go to “MUSE - AR Toolkit - Config Generator”

2. Select “Museum Info” to edit your AR museum/exhibition Info

65

3. Check if “Server Root Link” equals “https://armuse.oss-us-west-1.aliyuncs.com/”, if not paste it

into text field

4. Select “Exhibits List” to add new Exhibits info, you can add multiple exhibits into this list

Make sure you have input ALL the information

Make sure the “Filename” of each exhibit is the same as the packed asset name and ends with “.ab”.

For example: car.ab

66

5. Click “Save” button to save your config file

STEP 4. Upload To Server and Generate QR code
Let us do this for you :)

STEP 5. See it on Viewer App
1. Scan the Museum Entry Code

2. Scan the Exhibit Code and see your uploaded models

Optional: You can interact with any buttons you see on the screen, feel free to play with the Viewer

App. We will be happy if you find some bugs or problems ;)

67

Appendix: Detailed Information of AR MUSE

1. Curator App

Curator App has been designed to be a simple tool for

anyone without the related Unity still . Therefore, the

interface was very simple, with only three interfaces:

● Main page

It's just a welcome cover that doesn't contain

any real functionality.

● Editing page

Users can input their model file and make

simple edits to the model here. In the original

design, for maximum users’ convenience. The

input model will be auto adjusted to fit the size of QR code. For example if the

QR code size is 10x10. A 80x80x100 model will be scaled down to 8x8x10.

Specifically includes functions:

○ Translation based on XYZ axis

○ Rotation based on XYZ axis

○ Add a text pad in front of the model. User

can choose from 3 default positions: Low,

Mid and High

● Result page

After finishing editing. The user can click upload.

Based on the original design, this file will be

uploaded to the server and generate a QR code

that is bound to this uploaded model. Users can now save this QR code and share

with others.

68

2. Unity Toolkit

This AR MUSE Unity Toolkit is a package of Unity Engine. Users can set it up by

downloading from the official Asset Store, and then import to an empty project. This

toolkit is an alternative to selecting assets and setting their asset bundle manually in the

inspector, as well as hand-writing a xml config file. This toolkit can be dropped into any

Unity project with a version of 2020.x or greater. It would create a new menu in MUSE >

Unity Toolkit > Asset Bundle Packer and MUSE > Unity Toolkit > Config Generator.

Asset Bundle Packer is a powerful tool that provides a window, and enables the user to

view and edit the configuration of asset bundles for their Unity project. It will block

editing that would create invalid bundles, and inform the user of any issues with existing

bundles. It also provides basic build functionality. The bundle configuration, build

functionality, and build-bundle inspection are split into three tabs within the window.

● Configure: This window provides a Windows file explorer like interface to

managing and modifying asset bundles in a project. When first opened, the tool

will parse all bundle data in the background, slowly marking warnings or errors it

detects. It does what it can to stay in sync with the project, but cannot always be

aware of activity outside the tool. To force a quick pass at error detection, or to

update the tool with changes made externally, the Refresh button in the upper left

is designed to solve this. When a user drags assets into this window, this tool will

automatically detect the dependency of the asset.

Configure window is broken into four sections:

○ Bundle List, which is a left hand panel that holds a list used to browse

prefabs needed to be packed into asset bundles. If a bundle has any error,

warning, or info message, an icon will appear on the right side. Users can

mouse over the icon for more information. In particular, if a bundle has at

least one scene in it, making it a scene bundle, it will be marked as having

an error. This bundle will not build until all scenes are removed. Bundles

with duplicated assets will be marked with a warning, more information

on duplication is available in Asset List we are going to introduce below.

69

○ Bundle Details, which is a lower left panel indicating file size (a sum of

the on-disk size) of the currently selected bundle, and its dependency

(bundles that the current bundle depends on). Also, this panel gives user

warning, error, or info messages associated with the currently selected

bundle.

○ Asset List, which is an upper right panel providing a list contained in

whichever bundles are selected in the Bundle List. The search field above

this list will match with assets in any bundle. The Asset List will only

display matching assets, and the Bundle List mentioned above will only

display bundles that contain matching assets.

○ Asset Details is a non-interactive lower right panel. It is similar to Bundle

Details, but instead of showing details of the bundle, it only displays the

full path of the asset, the reason for implicit inclusion in bundles if it is

implicit, and the reason for error, or warning if any.

● Build: The Build tab provides basic build functionality to get you started using

asset bundles. In most professional scenarios, users will end up needing a more

advanced build setup, and thus need some coding and modifying, but when

considering this toolkit’s target user is the artist or the curator with limited

computer knowledge, we moved most of the cumbersome features into advanced

settings to minimize difficulty of using this toolkit, like compression type, append

hash, and strict mode. The basic build options contains:

○ Build Target: Platform the bundles will be built for. Due to Unity Engine’s

restriction, asset bundles can not work cross-platform, so the user needs to

select a platform before build.

○ Output Path: The file path for saving built bundles. By default this is

AssetBundles/. The user can edit the path manually, or by selecting

"Browse". Hit "Reset" can return to the default naming convention.

○ Clear Folders: When toggling this option, all data from the build path

folder will be wiped completely prior to building.

○ Copy to StreamingAssets: StreamingAssets is a persistent path that Unity

70

holds, when toggling this option, toolkit will automatically create the

StreamingAssets folder if it does not exist, and copy results to it. l

● Inspect: This tab enables the user to inspect the contents of bundles that have

already been built. Add file function enables the user to view a single asset

bundle, and Add Folder gives the user ability to inspect all asset bundles

belonging to that folder. When inspecting multiple asset bundles or adding a

folder, Inspect tab uses the tree view struct that is similar to Unity’s original

Hierarchy window. Also, this tool will send Console Warning or Error when the

user is trying to inspect an invalid or broken asset bundle, this could help them

find problems in early stages.

Config Generator is a tool that allows the user edit museum’s information, as well as each

model’s, all the information will be written into a xml file, which will be uploaded to the

server later manually. This tool will detect the validation of each information before

writing it into a xml file. It supports loading a previously generated config, which is

necessary when the curator or artist is trying to maintain and update an AR museum.

● Load Config: This function allows the user to read the config file generated

before. Only file with xml format is supported, and the program will

automatically check if this xml file’s format is the same as set by comparing its

hashset. Data will only be loaded and displayed after passing this detection.

● Museum Info: This tab is used to edit museum’s information. Museum

information contains:

○ Title, which is the name of this AR museum.

○ Subtitle, which can be a detailed title that explains this AR museum's title.

○ Author/curator, which is the owner, curator, or sponsor of this AR

museum.

○ Version, this is used for version control and hot update.

○ Description, which can be an explanation or background of this AR

museum.

○ Server root link directed to this museum, this is used for telling Viewer

App where to find these packed models when scanned a QR code.

71

● Exhibits List: This tab displays a list of the exhibits’ information. The usage of

Unity’s default list view is an easy and intuitive way to manage all the exhibits.

Exhibit’s information consists of:

○ Id, which is just an identifier for recognizing and managing, which means

Viewer App do not use this as the identity of each model.

○ Status, this parameter tells Viewer App whether this model is on display,

or not. It has only two sections: On or Off. Only models with On status

can be scanned and are available in the Collection List.

○ Title.

○ Subtitle.

○ Author.

○ Description.

○ Filename, Viewer App uses this to recognize each QR code, in other

words, this is the identity of each model. Filename must be the same as the

packed models’ name saved on the server, and ends with “.ab”.

● Save: This button is used for saving and writing all the information into a xml file.

However, this tool will do a hashset detection before saving, if there’s any

incompletion or any filename does not end with “.ab”, it will give an error

message.

3. Viewer App

The Viewer App is a mobile application used for exhibition audiences to scan QR codes

and then download pre-packed models to their phones, and then Viewer App will unzip

the packed models, and display them in the AR environment. In other words, this Viewer

App is a combination of QR scanner, reader, and also provides a platform to render these

models in an efficient way based on Unity’s AR Foundation package. As an app designed

for the AR museum, this app offers a scene that displays all the exhibits on showing. This

viewer app consists five scenes:

72

● Opening: This scene is the beginning of this app, exhibition audiences can hit the

enter button to start their journey.

● Entry: This scene is used for the exhibition audience to scan the entry QR code.

When first entering this scene, this app will automatically clear all cache, and

persistent data (playerprefs) saved before in order to overwrite the new scanned

config date. Since there is not much complicated scan and read work in this scene,

in order to make the scan progress less time-consuming (because most of the

museum’s entrance is crowded), we decided to use a simplified state machine

compared with the state machine used in the main scene, which will be discussed

next. This simplified state has five states:

○ Scanning: This is the root state, and only appears when this app keeps

scanning images from the camera.

○ Detected: When scanned a QR code, the current state will be switched to

detected. This will also activate a dialog that tells the user there is a QR

code detected, and try to read data from it. Simultaneously, this app will

start checking the QR code’s content validity, this app will start

downloading the config file from the server when it passes detection, or it

will return to scanning state.

○ Downloading: This state will only be triggered when this app scans a QR

code, and the content is not empty and ends with “xml”. We use

UnityWebRequest function to download from the server, if the

downloading process fails, the dialog will notify the exhibition audience.

Once downloading is finished, the state machine will move forward to the

next.

○ Analyzing: Contains a series of operations in this state. Like the hashset

detection mentioned in Config Generator part, firstly the downloaded data

will be transformed into a xml file, and check each element’s name and

innertext’s validity. If any part fails this test, the state machine will return

to the root state, and this app will give the exhibition audience a “Invalid

config file” error.

73

○ Done: After finishing analyzing the downloaded file, the app will write the

entire xml file into cache, and allow exhibition audiences to enter the

museum.

● MainScene: This is where exhibition audiences scan QR codes and play around

with models. This scene is divided into three sections:

○ Toolbar: Lies upper middle that has a menu button, which contains

entrances for About scene, Collection List scene, and an app exit, right

side of the toolbar is a button for hiding UI except itself, this could help

exhibition audiences better observing models and increase immersive

feelings.

○ Body Focus Frame: It is an indicator that tells the exhibition audience the

right size of the QR code. Additionally, in this part we will talk more

about the state machine used to control QR code tracking and scanning

progress. In order to get better performance and positioning accuracy, the

scanning state and detected state we used in simplified state machine is

broken into four steps:

■ Searching: Just like the simplified one, this is the root state of the

scanning state, as well as the entire state machine.

■ Stabilizing: When finding a QR code, this app will not try to read

content from that code until the tourist’s mobile phone is stable

enough. Only a tourist holding his phone longer than the

stabilizing time set by the curator can switch to the next state.

■ Registered: In this state, this app will try to download models from

the server like the operations we mentioned at simplified one,

validity check is necessary here. Also, once QR code passes the

check, this app instantiates an empty object at the position of that

QR code, this is used to be replaced by the models, and sends a

download request to fetch models from the server. The download

process is the same as the simplified one.

74

■ Refine: This is specifically designed for the phenomenon that in an

AR museum, after scanning a model, exhibition audiences will

usually walk around, take a look, and move their phones, which

will lead to inaccurate positioning. Refine step is a loop that keeps

updating QR code’s position in the real-world, and when it loses

track for some time, unregisters that QR code, and destroys

instantiated models, in the end, returning to root state.

Figure: QR Code Scan Process

○ Bottombar: When exhibition audiences first enter this scene or when there

is no model on display, the bottom bar shows the museum’s title and

subtitle. In normal cases, this bottom bar is folded to hide the detailed

description, only when the exhibition audiences hit the expand button, this

bottom bar will unfold to display all the information. Additionally, there is

a clear button to unregister the QR code manually, which will also destroy

the instantiated model as explained before.

75

● About: This is a simple scene that is used by the curator to write anything about

the museum, or it can be a tutorial for exhibition audiences.

● CollectionList: Here provides a list of currently on showing exhibits. Exhibition

audiences can click each single exhibit, and inspect that exhibit’s description. We

believe this could help exhibition audiences decide whether to have a look at that

model, especially when they are in a large scale museum.

