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Abstract 

Vestigo Ventures manually processes website traffic data to analyze the business performance of 
financial technology companies. By analyzing how people navigate through company websites, 
Vestigo aims to understand different customer activity patterns. Our team designed and 
implemented a tool that automatically processes clickstream data to visualize different customer 
activity within a website and compute statistics about user activity. This tool will provide 
Vestigo insight on the effectiveness of their clients’ website structures and help them make 
recommendations to their clients.  
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Executive Summary 

Introduction  
Vestigo Ventures, a venture capital firm investing in financial technology companies, aims to 
understand the different ways that people interact with their clients’ websites and how many 
visitors make a purchase. However, Vestigo’s clients have diverse website structures and varying 
definitions of what a purchase is, making it difficult for the firm to use a generalized 
visualization technique. Our goal was to create an easy-to-use tool that automatically processes 
internet traffic data to provide Vestigo, and similar companies interested in website performance 
analysis, insight into the effectiveness of a company website. We developed the Website Private 
Investigator (WPI), an Application Programming Interface (API) that builds an interactive graph 
illustrating how people navigate through a given website. Moreover, our tool calculates statistics 
about customer interaction, such as the percentage of visits that start or end at a certain page 
within the company’s website, allowing Vestigo analysts to understand customer activity 
patterns in depth.  
 
In the following subsections, we discuss our project management approach, highlight the 
architecture, features, and performance analysis of our tool. In addition, we provide 
recommendations and takeaways from our project experience. 
 
Methodology  
We organized our work in four sprints, each two weeks long. Each sprint comprised of multiple 
meetings within the team and with our faculty advisors. Moreover, we consulted our company 
sponsor, and other knowledgeable employees from Vestigo’s partnering company, Cogo Labs. 
Cogo is an incubator of internet companies and provided the internet traffic data we worked with 
to develop the WPI. We used the feedback from our meetings to guide our project work and to 
iteratively develop our tool in four phases:  

(1) understand the dataset and experiment with visualization techniques using Python 
libraries,  
(2) develop the API using Python and Github for version control,  
(3) document our API, and  
(4) deploy the API into production with a user interface (UI).  

 
At the conclusion of our project, we produced a command-line interface (API) version of the 
WPI, as well as a deployed version complete with a graphical UI. To better visualize the 
components of our tool, we present our work in its deployed form.  
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Website Private Investigator - Architecture and Features  

Phase 1: Gathering Data  

To use our tool, an analyst must first query Cogo’s internet traffic database with a company 
website and start date of interest. We provided a query template that Vestigo can follow to easily 
gather the data in the format that the WPI expects. After running the query, an analyst needs to 
download the results to a file, producing a dataset of Uniform Resource Locators (URLs) people 
visited while browsing a company website during an input date range. 
 
Phase 2: Building the Graph  

Starting a Job 
As illustrated in Figure 1, The Website Private 
Investigator expects an input data file, company 
website name, and a data range within the dataset 
for processing. The start date must be specified, 
however, the end date is optional; by default, WPI 
will process all of the data present in the data file 
from the start date. Clicking “Execute Now” starts 
a job to build an interactive graph.  
 
Processing the Data  

Cleaning the Data   
To remove user-specific information while 
retaining general activity patterns, we reduce each 
URL to only the company domain name and the website path. For example, if given the URL 
https://www.wpi.edu/admissions/graduate/how-to-apply?itemId=item-27, we simplified this to 
www.wpi.edu/admissions/graduate/how-to-apply.  
 
Building User Paths 
Our tool uses pandas to separate the dataset by unique visits to build user flow paths. A visit is 
defined by a unique combination of user ID and tabdate, and each flow path is a list of URLs. To 
better understand which pages people start and end their browsing activity, we group URLs into 
start pages, intermediate pages, and exit pages.  
 
Clustering Similar URLs and Computing Statistics  
To further summarize the different browsing information within the dataset, we use difflib to 
cluster start, intermediate, and exit URLs by string similarity. Finally, using Python packages 
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scipy and math, we calculate the percentage of visits that landed on each start, intermediate, and 
end page.  
 
Interacting with the Graph  

After several minutes, an interactive graph will load in the browser, as shown in Figure 2.  We 
developed the graph using Plotly 
(Python 3 and JavaScript) and 
NetworkX (Python 3), open-source 
graph visualization packages. Each 
cluster in the start, intermediate, and 
exit groups is a node in the graph, 
and edges connect nodes according 
to the paths built during the 
preprocessing step. Start web pages 
are colored green and placed at the 
top of the graph, exit web pages are 
red and placed at the bottom, and 
intermediate webpages are blue, 
placed between start and exit pages, to better visualize the different components of the different 
user flow paths.  
 
Hovering  
As illustrated in Figure 2, hovering over any node will show the webpages represented by the 
node, as well as the percentage of visits that pass through these webpages.  
 
Website Private Investigator Special Features 

Displaying the graph in Three Dimensions 
The two-dimensional graph often has many 
overlapping nodes. For an analyst to view the 
graph from different angles, we added a 3D toggle 
which visualizes the data in three dimensions, as 
illustrated in Figure 3.  
 
Highlighting Adjacent Nodes  
An analyst may want to see which pages a 
user went to immediately before or after  a 
particular page, especially if this is an exit page 
(such as a purchase page) or an entry page (such 
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as a login page). The highlighting features allows an analyst to click on a node of interest to see 
the nodes immediately connected to it. Figure 4 illustrates the possible pages of people went to 
immediately after checking their 
account pages on  Geico.com.  
 
Highlighting User Paths 
Moreover, it may be useful to see all 
pages that people viewed if they passed 
through a particular webpage. As with 
Highlighting Adjacent Nodes, an 
analyst can click on a node to highlight 
all potential pages on a path containing 
this page. This way, the analyst can 
identify possible entry, intermediate, 
and exit points that people could have 
traveled to before, for example, confirming a purchase.  
 
Keyword Search 
Clustering is not a precise technique, and a webpage of interest may be clustered together with 
less relevant pages. To isolate visit 
statistics for particular pages of interest, 
an analyst can use the WPI’s keyword 
search functionality to search for 
webpages containing a particular term, 
such as confirm. Figure 5 illustrates the 
keyword search functionality.  
  
Experimental Analysis  

To evaluate our clustering methods, as well as explore financial technology website statistics 
more in-depth, we used techniques from mathematics and industrial engineering.  
 
Clustering Evaluation  
There are many techniques for grouping text data, however, we focus our analysis on 
Agglomerative Clustering and Gestalt Pattern Matching. Table 1 details our approaches to these 
techniques.  
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Agglomerative Clustering  Gestalt Pattern Matching 

To capture local character-to-character differences 
between URLs, we compute the edit distances 
between each pair of URLs in a dataset. We used 
scikit-learn’s implementation of agglomerative 
clustering to group URLs.  

We use difflib to compute the Gestalt ratio 
between URL pairs and grouped together URLs 
above a threshold ratio. The Gestalt ratio ranges 
from 0 to 1, where 1.0 indicates a perfect match. 
We experimented with different ratios between 
0.6 and 1.0. The Gestalt ratio reflects 
sequence-level comparisons between URLs.  

Table 1: Clustering techniques 
 

To evaluate our methods, we manually labeled URLs collected from four websites, one of which 
is geico.com. We compared the outputs of the agglomerative clustering and gestalt pattern 
matching to our labels by computing Adjusted Rand Index (RI)  and V-measure, which are 
defined in Table 2. 

Adjusted Rand Index V-measure 

Rand Index (RI)  
a: same cluster, same label 
b: same cluster, different label 
c: different cluster, same label 
d: different cluster and label  

 
Adjusted Rand Index (ARI): 

 

 

h: homogeneity (a cluster should have only 
members of the same class) 
c: completeness (all class samples should be in 
the same clusters) 
β: beta, harmonic mean weight of h and c  

Table 2: Clustering evaluation metrics  
 

In general, Gestalt pattern matching with a 
threshold around 0.70 and 0.75 
outperforms agglomerative clustering for 
URL grouping in financial technology 
websites. We programmed the tool to use a 
threshold of 0.75 based on our 
experimental results. Figure 6 illustrates 
the ARI and V-measure of clustering 
URLs in Geico.com user traffic data. 
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Linear Regression  
Vestigo requested to find ways to calculate the customer conversion rate of a website, or the 
percentage of visits that end in a customer 
purchase. Although it is difficult to compute exact 
conversion rates, we used the WPI tool to 
approximate the statistics. Using the financial 
company Wells Fargo as an example, we created a 
multiple linear regression of the conversion rate. 
The data we used had been collected over a period 
of 50 week. The statistical information for each 
week was collected from the WPI along with an 
approximated conversion rate, which was the 
percentage of visits that traveled through a web 
page with the keyword ‘billpay.’ Plotted in 
Figure 7 is the multiple linear regression 
conversion rate compared to the approximated 
conversion. We can solve for Wells Fargo’s 
conversion rate using the following equation:

 

Conversion Rate = -0.06*(unique visits) + 0.09*(unique users) + 0.15*(percent return  
        users) - 0.66*(average pages in a visit) + 4.49 
 

The equation is not accurate, with an r squared value of only 0.12. However, the general trend of 
the week to week customer conversion rate is similar to that of the approximated conversion. 
 
Recommendations & Conclusions  
Our tool works best for small data sizes. We recommend that users of the tool use at most 50 MB 
of data to ensure graph creation under one hour. On average, WPI will process datasets of 
approximately 10,000 rows in under 60 seconds. Furthermore, having at least 500 rows of data 
will ensure a good quality of the graph. While this might limit collecting data for time series 
regression models, it will ensure that the graph has enough data to provide useful information. 
Overall, the project allowed the team to apply interdisciplinary knowledge gained from 
classroom study to real-world data. The team learned how to work win a business setting, with 
diverse groups of people, and how to create business focused applications which can be used by 
analysts now and in the future. 
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