

MQP MBJ 1600:
AUTOMATED MAP GENERATION SYSTEM

An Major Qualifying Project Report

submitted to the Faculty
of the

WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the

Degree of Bachelor of Science
by

Eric Faust

John Guerra

April 28, 2016

Advisors:

Brian Moriarty, IMGD
Charles Rich, CS

Abstract

The Animated Module Map Generation system is a procedural generation system for

game maps that allows geographic modules to create significant variants of themselves, thereby

improving the automatic production of non-repetitive game content. The system can generate

modules both at runtime or offline for custom tweaking. A simple game featuring dynamically

curving paths was created to demonstrate and explore the system.

Acknowledgements

We would like to thank Dillon DeSimone for his art asset creation, Thomas Farro for his

work on UI development and text compartmentalization, Connor Clang for music composition,

and our advisors Brian Moriarty and Charles Rich, whose input helped shape this project.

Contents

1. Introduction ... 1

2. Procedural content generation ... 1

2.1. Map generation techniques .. 2

2.1.1. Grid and Voxel Based Generation ... 3

2.1.2. Modular Map Generation .. 5

2.1.3. Terrain heightmap generation ... 6

2.2. Animated Module Map Generation System .. 8

2.2.1. Using Morph Targets to Randomize Modules .. 9

2.2.2. Using Rigging to Randomize Modules ... 10

2.2.3. Collisions .. 11

2.2.4. Benefits over Splines .. 15

2.2.5. Implementing Modules ... 17

3. Procedural Generation and Our System .. 18

3.1. Common Topics ... 18

3.1.1. Evaluation Functions .. 19

3.1.2. Evolutionary Search Algorithms... 19

3.1.3. Fractal Terrain Generation .. 21

3.1.4. Analysis of AMMG .. 22

4. Gunsketeers Workflow and Design .. 25

4.1. Art Style ... 26

4.2. Writing ... 29

4.3. Contracting Work... 31

4.4. Image Classification... 33

4.5. Pathfinding ... 36

4.6. Difficulty working with the system ... 37

4.7. Unity’s Animation System ... 40

5. Conclusions ... 41

5.1. What Would Benefit Most ... 41

5.1.1. Large Games Focused on Replayability ... 41

5.1.2. Games with Surface Normal-Based Gravity... 43

5.1.3. Racing Games ... 45

5.1.4. Abstract Games ... 48

5.2. What Would Benefit Least... 50

5.2.1. Small Games by Small Studios ... 50

5.2.2. Environments That Are Both Indoors and Outdoors .. 51

1. Introduction

 The game industry needs easier ways to create content for new products. Development

costs are increasing as games get more complex, with player expectations rising as hardware

power increases at an exponential rate.(Moore) To respond to these challenges, many developers

are turning to procedural content generation (PCG).

 This MQP introduces a refinement to current PCG implementations. Our ‘Automated

Module Map Generation’ system aims to avoid boring, repetitive game maps by allowing map

pieces to automatically vary themselves, freeing developers to spend more time creating unique

and novel pieces instead of slight modifications.

2. Procedural content generation

Algorithms have been used to automatically create game content since the earliest days of

the industry, with examples found as far back as Beneath Apple Manor (1978).(Togelius, 172) While

early PCG was done to save space — it was easier to fit a level-making algorithm on a floppy

disc than many individual maps — currently it is most often used to increase a game’s longevity.

A player can play a procedurally generated game many times and still encounter fresh, exciting

scenarios.

Some games rely on procedural generation as part of the creative process, tweaking the

end result and adding content by hand afterwards, while others have their games wholly

generated on the player’s computer, stringing together assets with algorithms.

One of the most common uses of PCG is the creation of game maps for players to

explore. This is the focus of the technology developed for our MQP.

1

Above: Rogue (1980), a classic game deeply associated with PCG.

Digital image. DOS Games Archive. Web. <http://image.dosgamesarchive.com/screenshots/rogue2.gif>. 11 Apr.

2016

2.1. Map generation techniques

 There are a number of map generation techniques in wide use. Many rely on 2D grids or

3D voxels (volumetric pixels), treating maps as a structured combination of many smaller units.

These methods are among the oldest.

 “Roguelike” games - named after the seminal 1980 title Rogue - are largely defined by

their heavy use of PCG. Everything, from the items you find to the enemies you encounter, is

distributed by algorithms rather than being placed by hand. This is not to say that such games

aren’t heavily designed. Rather than specifying content explicitly, the craft lies in creating the

ruleset followed by the generator. Such games are infinitely replayable, even by the original

creators, as there are always new arrangements and challenges never seen before.

2

Above: Crypt of the Necrodancer (2015), a roguelike with grid-based level generation

Digital image. Gamespot. Web. <http://static1.gamespot.com/uploads/original/416/4161502/2853813-0001.jpg> 11

Apr. 2016

2.1.1. Grid and Voxel Based Generation

 Despite their apparent richness, such systems do have limits. Most roguelikes employ

grid-based geography, creating floors and walls from a pattern of repeating 2D tiles. Though

different in outward form, such terrain is functionally locked to patterns of right-angled rooms

and hallways.

3

Above: Voxlap (1994) demonstrates a voxel-based cavern.

Cave.exe. Digital image. Ken Silverman. Web. <http://advsys.net/ken/voxlap/cave.png> 11 Apr. 2016

Above: Minecraft’s (2011) blocky aesthetic results from its voxel-based architecture.

Minecraft. Digital image. Ralph Vandenberg. Web. <http://minecraft.rvdbrg.com/wp-

content/uploads/2011/09/2011-09-12_20.22.03.png>. 11 Apr. 2016

4

 A similar problem occurs in games that use voxels (volumetric pixels) for terrain

generation, including Voxlap (1994) (Silverman) and the more recent Minecraft (2011). Such

building-block architectures are easily implemented, but often produce rigid geographies that do

not feel organic.

Above: An example of Daggerfall (1996)’s modular level design.

Daggerfall Module System. Digital image. Tuts+, Web.

<https://cdn.tutsplus.com/gamedev/uploads/2014/01/animation-daggerfall-moduleshighlighting.gif>. 11 Apr. 2016

2.1.2. Modular Map Generation

 Other PCG map systems operate on handmade modules of relatively high complexity

(rooms, hallways, junctions, etc.), connected algorithmically into a seamless map. This technique

goes back at least as far as Daggerfall (1996). Such maps can exhibit any architecture for which

a module is provided, but can nevertheless begin to feel repetitive as players recognize new

instances of previously encountered modules.

5

Other games rely heavily on topological mathematics (such as fractals) to generate their

maps, especially for outdoor environments. This can produce reasonably organic-feeling terrain,

but may lack the personality of hand-designed geography.

Left: The heightmap used for a piece of terrain. The lighter parts of the image correspond to

higher parts of the terrain. Right: The terrain made from the heightmap, with procedurally

placed trees.

2.1.3. Terrain heightmap generation

 One last form of automated generation is through terrain heightmaps. Using a grayscale

bitmap in which brightness is mapped to altitude, a 2D plane can be vertically deformed to create

a detailed 3-dimensional surface. Other bitmaps can be used to “paint” the surface with various

terrain textures (mud, paved roads), while other algorithms populate the plane with details such

as trees and bushes. Large amounts of content can be created in very little time with such

techniques.

6

However, there are drawbacks to this system. First, terrain can’t fold over on itself,

meaning it can’t be used to create overhangs, caves, or anything of the sort. At most, it can create

extremely steep cliffs, which can, depending on the game’s mechanics, be unintentionally scaled

to let the player climb to places they shouldn’t be able to access. It’s also limited to a very

specific type of world creation. A gigantic seamless landscape doesn’t lend itself well to a

platformer.

Above: Oblivion (2006) used procedural generation to make its 22 sq. mile landscape.

Oblivion. Digital image. Keys.pk, Web. <http://www.keys.pk/wp-content/uploads/2015/08/elder-scrolls-oblivion-

game-pic-1.jpg> 11 Apr. 2016

Most important, this terrain system doesn’t actually make anything interesting for the

player. It’s a good place to start when creating a world — games like Oblivion (2006) created 22

square miles of terrain with this technique — but without further content placed over it, such

terrain is not very unique or interesting. Often a developer will create many assets to

procedurally place around the world. Roaming creatures may provide some combat, and hidden

artifacts may be a goal to search for, but games that rely wholly on procedural terrain generation

are often characterized by their wide open spaces, with assets that are modifications on things the

player may have already seen, or different combinations of a set of pre-designed parts.

7

Above: No Man’s Sky (2016) boasts 18 quintillion planets to explore

No Man’s Sky. Digital image. Hello Games, Web. <http://no-mans-

sky.com/press/no_man's_sky/images/NewEridu.png>. 11 Apr. 2016

2.2. Animated Module Map Generation System

None of the existing procedural generation systems quite did what we were looking for.

Terrain systems don’t lend themselves to interesting gameplay scenarios; grid- and voxel-based

levels lock the designer into a distinct and unavoidable style. Module-based systems have a

limited number of possible module combinations.

Our solution was to make an improved version of the modular system that would vary

things in each module, which we call an Animated Module Map Generation system (AMMG).

This technique allows each module to appear in effectively infinite variations, significantly

increasing the variety of levels the player can experience.

8

2.2.1. Using Morph Targets to Randomize Modules

 Our first plan was to give each module a few different morph targets. Morph targets (also

known as blend shapes or per-vertex animation) are a way of animating a 3D model by

interpolating its vertices between a few different poses. This is commonly used in facial

animation. For example, a character may have one blend shape where they smile, and another

where they frown, and the game engine can interpolate between the two to change expressions

smoothly. Our plan was to make a few different shapes for each room, and then interpolate

between them randomly to make new variations.

 There were a few snags with using morph targets. The first came up when we ran the

animation randomizer multiple times. Our first implementation accidentally saved all morph

target animations to the original model, which meant that we were permanently overwriting the

original over and over, causing the morphs to stack up. Over time, this would lead to horribly

distorted models, flipping inside out and twisting in all sorts of incorrect ways.

Above: Morph target effect being stacked multiple times on the same model.

9

The second issue was that, despite these models staying static and unmoving during

gameplay, they were still technically “animated” models, which require about 100 times more

memory than truly static models. This would be a problem if we wanted to have a large number

of modules.

Last, and most important, was the issue of morphing entrances and exits to modules. The

module system uses nodes to determine how to connect objects (which exist as points and

rotations in space) to be referenced by the module-placing engine. If the entrance to a room was

moved by morph targets, the node would be left behind, causing it to line up improperly. The

best solution was the following lengthy process:

1. Find the vertex that is closest to the node.

2. Find the mesh’s index value of that vertex, so we have a way to reference it in

the code.

3. Run the morph target animations.

4. Use the index value from before to find the vertex again.

5. Move the new module to the position of the vertex. (At this point, we have the

new room in the correct position, but not the correct rotation.)

6. Find the normal of the nearest face on the original module.

7. Rotate the new module (around the vertex’s position) to match the rotation of

the normal found above.

This is both a very lengthy thing to code and a lot to ask a computer to do quickly. We

wanted to be placing around 100-200 modules as fast as possible on startup, and this would take

far too long. At this point, we decided to look into alternative options to morph targets.

2.2.2. Using Rigging to Randomize Modules

 Rigging is the process of adding a “skeleton” to a model to allow it to be animated. By

rigging our map modules, we could employ traditional bone-based animation to animate them,

using a bone placed at the entrance/exits of a model as the connecting node.

10

Above: A rigged mine cart track. Highlighted on the right is one of the bones that will be used as

a node for module placement.

 This system was much simpler for most cases. The biggest problem was that, when

animating on multiple axes — for example, trying to turn the rail left/right and also slope it

up/down — the bones would be twisted, and ended up being rotated at angles that didn’t match

correctly. After a lot of testing, we decided the best way to handle this issue was to just not to let

it happen, and only blend between animations that move along one axis.

2.2.3. Collisions

Colliders are the part of the game object used in all physics simulations and interactions

with other objects. They can be very memory-intensive, so they need to optimized. A game

object can have an extremely high-detail mesh for rendering purposes — thousands, perhaps tens

of thousands of polygons — but for rapidly detecting collisions with other objects, the polygon

count must be orders of magnitude smaller. When possible, colliders shouldn’t use a unique

mesh at all, but rather be made up of a few primitives like cubes or cylinders.

11

Unfortunately, rigging the terrain meant that our colliders would be relatively complex.

There are methods for creating simplified collision meshes when importing a model, but we

needed our colliders to be calculated at runtime, after they’d been procedurally posed. Using a

full-resolution mesh wasn’t an option, as each would require thousands of polygons, and might

be placed hundreds of times.

Above: A collider based on the original mesh no longer aligns

after animations are baked in.

One option was to put a primitive collider on each bone. This would create a fairly close

estimation of the mesh’s bounds. We briefly considered implementing this, but decided against it

for a number of reasons. First, there would still be inaccuracies. In the picture below, there are

small gaps between the colliders at each corner, into which objects might fall or get caught.

Making them larger would have the opposite problem, making objects seem to “float” on

otherwise invisible platforms. Most important, adding colliders to every bone in every module

would require a large time investment.

12

Above: Primitive colliders bound to bones. Closer, but still imperfect.

 Our eventual solution was to make a highly simplified version of each mesh to use as a

collider, rig the new collider mesh, and pose it in the same position as the main. At first, this

seemed like overkill, but we soon realized that it would be easy to streamline the process.

 Making a simplified version of the original mesh was fairly simple. By deleting any small

details, removing edge loops, and occasionally running a decimate modifier to lower the polygon

count, we were able to quickly create a simpler mesh for collision purposes.

13

Above: An example of a simplified collision mesh.

It was important to us that we allow the system use the original mesh as the collider if it

was simple enough, as making a copy would be a waste of time and memory. Our solution was

to make the generation system check for a mesh named TrueCollider in any given module. If

TrueCollider (our simplified collision mesh) is found, the system uses it as the module’s collider.

If no TrueCollider is found, the system uses the module’s original mesh. This enabled us to pick

and choose which modules needed optimized colliders, which greatly improved performance.

14

2.2.4. Benefits over Splines

Above: An example of a spline.

Splines. Digital image. Scientific Gamer. Web. <https://upload.wikimedia.org/wikipedia/commons/thumb/1/18/B-

spline_curve.svg/400px-B-spline_curve.svg.png>. 11 Apr. 2016.

 Splines are a type of mathematical function that are often used in 3D modeling to create

curves. Making a model distort along a spline is an easy way to shape it- for example, defining

the path of a winding road, or the way a vine curls around a pillar. We considered using splines

instead of a skeleton, but decided not to for a few reasons.

 The primary concern with splines was how they actually deform meshes. In the

screenshot below, we show the same shape of module created through both bones and splines.

Looking closely at the tighter bends, one can observe the wooden boards on the spline are

bending into strange triangular wedge shapes. There’s no way to avoid this, as making the model

bend around the spline naturally makes sharp corners distort poorly. This is amplified more the

wider the model is; a sharp turn on a wide hallway can make the geometry fold in on itself,

which leads to all sorts of problems both visually and mechanically, such as colliders not

working properly due to being partially inside out.

15

Above: Splines can distort the edges of models poorly.

Splines also can’t be easily used for more complex designs, such as rooms with more than one

entrance. Multiple splines may work, but using multiple splines per module is no simpler than

just using a skeleton- the biggest advantage of using splines is that just one can bend many

modules, which saves time and resources. At the level of complexity we’re working with, splines

don’t seem to have an advantage over rigged modules.

16

Above: An example of a rigged module. The node bones on each end are highlighted.

2.2.5. Implementing Modules

 The final AMMG system was very complicated. The following is a list of the steps

involved in creating and importing a module to a scene.

In the 3D modeling program:

1. Create a mesh for the module.

2. Create an armature for the module. Add one “node” bone facing out at each

entrance/exit of the module, such as at either end of a hallway. Make sure the node bones

line up exactly with the edges of the module, or the system will create seams.

3. Pose the armature in several variations and save them all as individual animations.

4. (Optional) Make a highly simplified version of the mesh, and rig it to the same

armature as the module mesh. Name it TrueCollider. This will be used as the mesh for the

collider.

5. Export to the game engine.

17

In the game engine:

6. Import the module and all its animations. Make sure each pose is saved as a

different animation.

7. Create an animation controller for the module that blends between animations

according to the parameters it is fed. (These are randomly assigned later.)

8. Add the module in the scene, using the master modular world generator’s list of

which modules it can generate from. (Use the instance of the module in the scene, rather

than the original asset, to avoid the master generator pulling the module from disk every

time it is generated.)

9. Add a “node” script to every node in the skeleton, and tell each node what type of

node it is and what other nodes it can connect to (such as a hallway that can connect to

rooms and other hallways).

 At this point, the module has been successfully added to the generator. At runtime, the

generator will still need to place all the modules, animate them, bake the animations to save

memory, and bake the collider mesh into place, all in as little time as possible. This procedure is

explained below.

3. Procedural Generation and Our System

Once we decided to create our procedural content generation system, we needed to

determine how it could be used with existing techniques and concepts in content generation. The

major procedurally generated content of the game is the map system and, to a lesser degree, the

weapon system. Our goal was having maps that are not identifiable as a series of parts, which

would keep the game feeling fresh to a player.

3.1. Common Topics

In following sections, various approaches to procedural content generation are compared.

We explore both how PCG is commonly deployed in the industry, and how we might implement

it using our technique.

18

3.1.1. Evaluation Functions

When developing a program or game with procedural content generation, it is important

for the generator to be smart enough to determine when something is correct or “good.” This

would be particularly important for a project utilizing our AMMG system. Infinitely generated

maps are of no benefit if many of the maps generated are no fun to play. This is why it is vital

that a strong evaluation function is written, regardless of what approach is used.

Evaluation functions are generally run at the end of a procedural content generation

algorithm. If a result isn’t good enough, it simply runs again until it finds one of high enough

quality. Some designs, such as evolutionary search and genetic algorithms, use evaluation

functions during runtime, avoiding the need to re-run the entire algorithm. In these cases, the

evaluation is vital to ensure that bad content is detected and discarded as soon as possible.

Evaluation functions are generally unique to each project. The more tailored it is to the

needs of a particular game design, the faster it will detect poor content and finish generating. Our

system, being similar to module-based content generation, lends itself to evaluation functions

that count the number of modules, types of modules, number of connections and similar data.

Unlike grid- and voxel-based generators, which can simply measure areas and volumes to

estimate quality, our more flexible AMMG system poses a challenge. Each module can

potentially be bent, stretched, or squashed, meaning there is no way to calculate the area or shape

of a module until the content generation has completed. Accurate determinations of area require

many calculations.

As an alternative, it is simpler to follow the lead of traditional terrain generation

functions, and base evaluations on the shape of the navigable terrain. The general shape of a

generated map is easily calculated by the shape of the rigged module’s bones, and can be a useful

indicator on how the generated terrain will play out.

3.1.2. Evolutionary Search Algorithms

One method for creating procedurally generated worlds is search-based evolutionary

algorithms, a type of genetic algorithm. Evolutionary search algorithms look for a set of desired

qualities in map pieces or other geometry. By employing an evolutionary approach of tweaking a

piece of content’s attributes and iterating multiple times, it can find the optimum means for

19

achieving desired qualities. This technique can improve on simple random attribute changing in

cases when the chance of finding a good choice is low, such as when the search space is

large.(Shaker)

Evolutionary Algorithm. Digital image. Geatbx. Web.

<http://www.geatbx.com/docu/algindex-3.gif> Retrieved 11 Apr. 2016.

In practice, an evolutionary search algorithm works by generating a large set of content,

either by random selection, or by using data created from previous iterations of the algorithm.

Each example of content is passed to an evaluation function to determine its quality. Then the

content list is sorted based on quality. Some of the lowest-ranking content is removed, and new

content is generated in its place. This cycle continues numerous times, ensuring that the best

content stays around, and poor content is removed. The new content that replaces the poor

content can be generated randomly, improving the chance of a new approach that may work

better, or it can be a modification of existing data, which makes it more likely that the new

content will be of high quality, but potentially better or worse than before.

With our system, evolutionary search algorithms could be used to great effect. Each

module that is placed has data that can be modified, including the amount each one is stretched

or bent. There is also a large variety of different modules. Giving the content generator a way to

20

intelligently decide which module is placed (a corridor, room or junction) could be decided

based on an evolutionary search algorithm. The evaluation function would determine quality

based off of how much space the module leaves for the map to grow, the direction its exits are

aiming, and/or how much space it takes up. Once a good module is identified, it can further

improved by tweaking the bend and stretch to find the best value. This would ensure that later

modules would be of higher quality than purely random selection might produce.

A downside of using evolutionary search algorithms in our system is the runtime

investment. Because our system treats modules like characters that need time to change their

animation, the evaluation algorithm is less efficient than conventional content generators. Every

module being tested, together with each iteration of bending and squashing, requires an

animation update, resulting in hundreds or thousands of updates over the creation of a map.

Nevertheless, an evolutionary search algorithms provides an excellent way of ensuring

that high-quality content is regularly achieved. In some cases, information on what does and does

not produce quality content can be stored, effectively reducing the likelihood of poor generation,

and providing a stronger start for the evolutionary search. Unfortunately, such techniques are

often slow to execute (Abramson) even with such benefits, potentially resulting in long load times

that would annoy players.

3.1.3. Fractal Terrain Generation

Another important PCG technique is fractal terrain generation. While most of our system

is designed for use with custom models hand-made by an artist, there is room for adding terrain

generation in larger, more open maps. Ideally, this would enable seamless transitions between

indoor and outdoor environments, allowing players to experience environments not restricted to

enclosed caverns or pre-built structures.

In simple fractal terrain generation, a set of random values is generated for various points

on the map, with remaining values interpolated to create smooth, believable environments. This

strategy is not ideal, because it is not easily controlled to ensure optimum gameplay – it is, in

essence, random. One solution to this problem is agent-based landscape creation, in which

algorithms are run on generated terrain, modifying it as needed to more closely fit desired

qualities.

21

This methods might be used solely for background and non-gameplay content, like

outdoor locations, but this is not feasible with our module-based method. For example, if an

outdoor Mayan ruin level was generated, the player might find themselves placed on a high-

altitude location, such as the peak of a ziggurat, with nothing else to see.

Ideally we would like to merge terrain generation with our hand-crafted module system,

and do so on the fly. This would require a reliable algorithm for generating content without

forcing the player to wait too long. It would likely start with a database of information about an

area to be generated, including how much space is to be allotted, the number of items and

pickups available, how many enemies are in residence, etc. A genetic algorithm might be used to

place goals, items and creatures intelligently, and design the terrain around those objects, using

calculations to ensure that points of interest are accessible to each other. Creature spawn

locations can similarly be guaranteed to have attack access to the player. This ensures a balance

between believability and playability, offering a welcome change from confined maps created by

many PCG systems.

3.1.4. Analysis of AMMG

 The algorithm behind the Automated Module Map Generation system has a large number

of steps. Currently the generation of a map is controlled by having a large set of modules, each

one with a developer set chance of appearing. This could also be changed so that a more complex

system is used to determine which modules are placed, but that is heavily dependent on the game

that is being created using the system as well as the actual modules being used. Because the

system is so heavily dependent on its intended use, and the evaluation functions or methods of

choosing modules, this paper will explore the structure of the algorithm and general performance

that can be expected.

 The AMMG system is set up to place a specific start module into the map, and develop

outwards from that point. The total depth of the map, or how many modules can be linked off of

each other from that original module, it controlled by the number of iterations set by the

developer. In each iteration, the system attempts to place a new module on every open

connection found in the map. It does this in a batch, allowing all modules to be baked and

animated in the same frame rather than one by one. If a module cannot be placed on a

connection, due to collisions or other reasons, it is left unconnected for future iterations.

22

Optionally, multiple attempts can be made to place a module, potentially resulting in many more

attempts but a higher average depth.

 Regardless of exactly what modules or style of generation is used for a game, one thing

will heavily decide how long the map generation takes - module complexity. Module complexity

is a nebulous term we used to describe the likelihood of a module causing future collisions or

module placement attempts during the map generation. This is most heavily decided by how

many open connections a module creates, but other factors like shape can have an effect.

 Several tests were made on the effect of module complexity on runtime, and the number

of module placement attempts that were made to create a map. In these tests, we defined module

complexity as the average number of open connections that were left after a module was placed.

For example, a module cap - one that uses up a connection and has nowhere else to link future

modules, has a complexity of 0. A hallway has a complexity of 1, a ‘T’ shaped room has a

complexity of 2, and so on.

 We ran the module generation with an iteration depth of 10, with these likelihood of each

module varying with each test. The most important data collected was the average runtime,

number of modules in the final map, and the number of attempts made. Each test was made over

400 maps generated, which were averaged to get their data points.

23

As the above graphs show, there is a definite trend in the complexity of a set of modules

and the amount of work that is done to generate a map. Every module takes the same amount of

time to animate, but more complex modules create much more complex maps that are more

difficult to place new modules in. So, as complexity increases, the amount of time follows an

exponential trend in increased processing time. This extra processing time can be limited through

proper use of evaluation functions and module design, but is an important detail to pay attention

to when designing maps and the games that use them.

24

4. Gunsketeers Workflow and Design

After basic implementation of our AMMG system, we began developing a game to

explore the uses and limitations of the technology. Expanding on our previous focus on

procedural generation, we decided on a game requiring tight control of the generation system.

The gameplay would be inspired by modern roguelikes, with levels easily completed in a short

session, emphasizing replayability. A procedural weapon system was created to ensure that each

new weapon would be fun and unique.

 The game’s scope was continuously cut back over the course of the MQP. The game as it

was originally planned was always somewhat out of scope, but the biggest time loss was to the

AMMG system. Once we realized how much potential the system had, we focused on it much

more strongly, and the game fell behind a bit. Though we didn’t meet our original goals with the

game, we’re still very happy with how the work we put into it turned out, both regarding the

game as a standalone piece of work and especially regarding the AMMG system.

 Right from the start, we wanted Gunsketeers to be a goofier action game. This is hinted

right in the name- Gunsketeers is a combination of the words “gun” and “musketeers”, as though

musketeers don’t already have the word musket (a type of gun) right in their name. We wanted it

to come across as a witty, tongue-in-cheek game. That sense of humor was the biggest influence

on the game’s art style.

25

4.1. Art Style

 Despite being a shooter, we wanted to avoid Gunsketeers becoming another serious game

full of tan/brown color schemes and unnecessary realism. We wanted it to be fun. To avoid that,

we made everything, from the enemies the player faces to the level they’re running around on

itself, colorful and cartoonish.

26

Above: Some examples of enemies, from concept art to final model.

27

Above: Cartoonishly bright colors were important to Gunsketeers’ level design.

28

Above: Weapons and character proportions were blockier and more cartoonish

to convey the lighter tone.

4.2. Writing

 Conveying the sense of humor behind the game was critical to the whole atmosphere, and

unfortunately, the writing was by far the weakest link in conveying that. We had fully fleshed out

plans for character personalities and the overall story, but none of it ended up directly in the

game.

29

Above: Concept art for the hub world and dispatch character.

Above: Concept art for a character who was cut for time reasons.

 The dialogue wasn’t intended to be cut. We took on an extra group member just to

implement the dialogue system and general UI. Unfortunately, the extra member was delayed

thanks to other projects, and fell so far behind that we didn’t receive the dialogue system until

three months after it was originally due, which at that point was too late to implement.

30

Above: Concept art for the gun-shaped space station the Gunsketeers

were going to be stationed on.

4.3. Contracting Work

By the end of the first few months of the project, we were already behind schedule. Our

PCG was capable of creating a fully-enclosed map with logical enemy placement. But the

process took far longer than we had expected, and bugs were rampant. Gameplay coding and

asset creation was being neglected. To speed things up, we took on two additional team

members, a programmer and an artist.

The goal in adding people to a project is to obtain more effort towards completion.

However, it is not as simple as twice the hands equaling twice the work, particularly because we

were working with an experimental system. New members have to be introduced to systems and

workflow, connected to source control, and shown what they need to do. Examples of quick and

useful things to hand off to temporary help include:

31

● Concept art

● Sound effects and music

● Multipurpose textures, like bricks or wood, that can be reused for various

purposes

● Small detail objects, like mugs and tables

● New enemies that use the same personality scripts as existing ones

Unfortunately, one of the most important things we needed was not easily handed off to

temporary help: map modules. These had to be structured, edited and imported to function well

with our new system, all by hand. Specific requirements were not easy to describe or enforce, or

to fix when they went wrong. If new modules were needed to show off nice features, we couldn’t

just draw a picture of the shape and expect to get back a perfectly set-up module. With more time

to work on non-critical systems coding, some of this might have been automated and made

easier, but we didn’t have that luxury.

The remaining examples are almost all art-side. This is no coincidence. A game can still

functions with poor art, but with poor code, everything falls apart. Hiring a temporary coder to

help with major systems isn’t feasible, meaning that only relatively trivial things can be handed

off, regardless of the coder’s skill.

We did manage to obtain a few more greatly-needed assets, such as our user interface,

but progress did not increase as much as we hoped. We had made mistakes in assigning features

that were more critical, thinking that we should use the extra help on the most important things.

Unfortunately, our new team members had to take time to familiarize themselves with the

codebase and the specifics of how we needed things to be built, slowing them down. This left us

unable to progress on key features until critical assets could be delivered.

 The biggest takeaway for student projects, especially those under similar time constraints,

is that you should reduce the scope of your project before adding extra team members. If there

are any parts that aren’t required for the reduced-scope version, but are easily compartmentalized

and will not waste the time of core members, it may be okay to hand them off to new people.

32

4.4. Image Classification

 Another concept explored during this project was the idea of using image recognition and

machine learning as an aid, or potential alternative, to simple heuristic algorithms. Because the

shapes generated by our system were unpredictable, a heuristic algorithm capable of

understanding and rating the complex geometry might be difficult to write. Nevertheless, it was

relatively easy for a human eye to look at a generated map and judge if it was poor or well made.

We decided to investigate using an image classification algorithm to assess the quality of a

generated map, based solely on its visual appearance. This would allow us to cull poor maps

efficiently.

 Image classification (IC) is a means of automatically recognizing patterns in a given

image. They accomplish this by analyzing the image data in search of particular mathematical

properties, such as the prevalence of certain colors and/or shapes. Once data has been gathered,

the IC algorithm compares its findings to a library of information that has already been classified

and labeled. For example, an image classifier that determines whether an image is of an animal

might reference a library filled with animal photos and associated data. System operators can

then use machine learning techniques to “train” the algorithm against the library to produce

better predictions. In our case, we would need to teach the IC algorithm what a “fun” map looks

like. Using Microsoft’s InferNet library, we began working on an image classifier to accomplish

this task.

An important aspect of the classification process was detecting changes in altitude.

Because our system can morph terrain both vertically and horizontally, we needed to know if

there were significant height differences between adjacent modules.

33

34

A simple rainbow shader was created to color modules based on their height. This

allowed us to view modules from the top down, seeing the overall structure of the map without

losing information about changes in altitude. The background was kept a solid color, which

would allow the image classifier to distinguish between a module and empty space. From there,

it was a matter of feeding the view from a camera to the modified InferNet image classifier. By

collecting image data from multiple generation instances, we could teach the system over many

trials to obtain a “smart” classifier.

Above: The same map from the top down, as the classifier might see it.

Ultimately, we chose not to use this image classification system for its intended purpose.

It had difficulty “seeing” overlaps and corner cases. On top of an already time-intensive

generation system, the delay required to successfully analyze and improve each level might

prove unacceptable to players.

35

4.5. Pathfinding

 If our system was to support the majority of games — those with enemies or other

moving non-player characters — it needed a pathfinding system. The Unity game engine we

were using offered several options for pathfinding, but our case was complicated by the way

game levels were dynamically generated. With a standard module-based system, pathfinding

segments can be prebaked onto modules and fit together at runtime to allow seamless

pathfinding. With our system, we cannot know the final shape of the module, and therefore

cannot prebake any pathfinding.

AStar Pathfinding. Aron Granberg. Web.

<http://arongranberg.com/astar/resources/images/frontpage.png> 11 Apr. 2016

 Luckily, we identified a third-party Unity library (A* Pathfinding Project by Aron

Granberg) which provided the functionality we needed in the form of recast graphing, using

algorithms capable of recalculating specific sub-sections of a graph. Combined with our rigged

map system, it was it possible to have map segments move and morph while characters were

navigating them. Even decorative objects placed after the initial module morphing could be

included in the recast graphing. This ensured that we could decorate our map modules, making

them less recognizable as a module the player might have seen before, without losing accuracy in

enemy pathfinding AI.

36

Granberg’s library allowed us to quickly calculate pathfinding navmeshes our maps. In

initial testing, even very large maps were calculated in a fraction of a second.

4.6. Difficulty working with the system

 The AMMG we created is a new technology that has no external documentation or

support. Any problems we encountered had to be solved on our own.

 Treating map modules like rigged characters is not something Unity is designed to easily

handle. Throughout the project, engine-related problems slowed our progress, especially issues

related to collision checking. Early on, it was difficult to bake in the correct collision meshes.

We often found ourselves dealing with meshes that were inaccurate, or misplaced very slightly.

Modules would be “almost” lined up, with miniscule gaps. While this didn’t cause problems with

gameplay, it was quite noticeable visually, making maps look unfinished or broken. To prevent

this, we had to ensure that the steps of morphing and “freezing” each map module were

performed in a very specific order, with careful attention paid to the accuracy and placement of

collision meshes. If a call to check the mesh was made at the wrong time, the modules might not

line up, or could be completely incorrect.

37

Above: Railway map modules clipping through others, ignoring collision checks.

 Properly animating and aligning the modules was a major struggle, and likely took up

nearly 1/4th of the total time and research spent on the system. Only after the proper sequence of

calls and methods was developed could modules be reliably designed and imported.

Our animated map modules are far more complex than conventional PGC mapping

techniques. If any part needed is missing or slightly incorrect, the module as a whole is unlikely

to work. It is also difficult to pinpoint where an error has occurred, making it vital to implement

good error reporting and catching. But often we would only realize the need to error-check

something once we had seen the havoc it could cause.

38

 Above: Railway map modules clipping through others, ignoring collision checks.

For example, the above image shows an issue we faced late in the project. It shows a map

after generation, with sets of railways and circular cavern platforms. A recurring issue was that

modules would occasionally ignore collisions — Unity would report that two objects were not

colliding, even when they clearly were, visually. The colored cubes are where the objects think

the bounds of their colliders are, which in this case is obviously incorrect. Also, due to the way

module rigging and placement is handled, all of the white lines should be pointing from where

the object is visually to where the map generation began (at coordinates 0,0,0). All objects rely

on this arrangement for correct placement, but some of the above objects point to different

locations.

It should not even be possible for the generator to finish placing a map containing such

errors, as colliders are vital to proper module placement. Strange issues like this had to be dealt

with throughout the project, forcing us to be constantly fixing bugs — an expected and necessary

step of engineering a complex system — but it took a heavy toll on the quality of the game we

were trying to develop. The system remains promising, but developing it into an easily used

standalone system would take significantly more effort and polish.

39

4.7. Unity’s Animation System

Ideally, the AMMG system would generate every single module nearly simultaneously,

right at the start. The level loads up, the system activates, and it deals with everything as fast as

possible. Due to a specific quirk in Unity, though, this proved impossible.

 Unity deals with animation of an object at the end of a frame, after other functions have

already run. This is presumably so that an object can be spawned in, run whatever code

necessary, and then begin its animation uninterrupted by the end of the frame. This guarantees

the player never sees, for example, enemies spawning in their default poses. This otherwise

useful feature of Unity meant there there was no way to get a module to spawn, animate to a

pose, and lock into place within the same frame. We would have to spawn and animate each

module on one frame, and place them in the next.

 Our maps deal with at least 100 modules at a time, often going as high as 200 or 300.

Waiting for one frame per module would slow level generation to a crawl. Our solution was to

generate modules in batches. One layer of modules would spawn together, then be placed at all

available nodes. The next layer would then be placed during the next frame. Using this system,

we brought the frame count down from ~200 to ~14 frames for level generation.

40

5. Conclusions

 The AMMG system we developed for this MQP is powerful. The roguelike game we

made barely scratches the surface of its potential. As we worked with it, we realized there were

plenty of genres and art styles that would benefit significantly more from it than the game we

were making. That’s not to say it’s without its drawbacks; aspects of the system make it slower

and more unwieldy than conventional procedural generation in some ways, and since it’s an

original method, there is little in the way of documentation, though perhaps this report will help

change that.

5.1. What Would Benefit Most

 While we developed a roguelike game to demonstrate the Animated Module Map

Generation system, it could actually find use a wide variety of games. Roguelikes, like the one

we created, can obviously benefit due to their reliance on content that is generated at runtime.

Even games that do not generate at runtime could use the system as an automated development

aid. Games employing a surface-normal based gravity could use the system to twist and turn

without being limited to downward-oriented gravity. Detailed environments for racing games

could be created sacrificing the curving tracks of conventional maps.

5.1.1. Large Games Focused on Replayability

 Games such as Fallout 4 or Skyrim feature underground maps and interior structures.

These dungeons are hand-created out of many map sections, but often end up with repetitive

layouts unless many variations are created, using up valuable development time.

41

Above: An overview of one of Skyrim’s (2011) dungeons, clearly divisible into smaller modules

Skyrim dungeon map. Digital image. Blogspot. Web. <http://1.bp.blogspot.com/-

JnrFv09byGA/Tr7txr9OFPI/AAAAAAAABik/ScZ2cw85n2E/s1600/bleak%2Bfalls%2Bbarrow%2Bmap%2Bpng.p

ng>. 11 Apr. 2016

 Using the AMMG system, a developer could instead generate a random map using

roguelike modules. The map could be saved for further hand-tweaking and detail work.

Developers would have to create fewer variations by hand, and could instead focus on creating

unique structures or more maps.

42

5.1.2. Games with Surface Normal-Based Gravity

 A significant problem of the AMMG system is that blending between two animations that

operate in all three axes of movement can occasionally result in problematic poses. Blending

between an animation to make a hallway curve left and another to make it slope down would

lead to the hallway bending in an obtuse angle, and even if both original poses ended with both

entrances being flush with the ground, the combined one is tilted in a totally new direction. The

next module in the sequence will, depending on how the system is set up, do one of two things:

either it will start in this strange new position, and the entire map generation will begin to fold

over itself like a pretzel; or it will start with the original rotation, flush with the ground, in which

case the two modules don’t line up.

Above: Animation poses like this, where the end bone isn’t level with the start, are

problematic for most level generation purposes.

43

This was a hindrance for us. It limited which animations we could blend together,

slowing down the entire animation process. There were potential ways to make the system

consistently make modules end on a level surface, such as adding scripts that found the last few

bones in a chain and rotated them, but we decided that it was far less time-consuming for our

project’s purposes to just work around it.

Above: Super Mario Galaxy (2007)’s winding caterpillar-shaped level could be easily

randomly generated in infinite ways using our system
Mario Galaxy. Digital image. Destructoid. Web.<http://www.destructoid.com/elephant//ul/14087-550x-

Screenshot%20Super%20Mario%20Galaxy_10%20small.jpg>. 11 Apr. 2016.

 If we could somehow exploit this blending behavior to our advantage, it would really

harness the potential of the AMMG system. The ideal way to do this is to make a game where

gravity isn’t always down, but rather locks to the normal of the nearest piece of ground to the

player. Games like Super Mario Galaxy (2007) have used this mechanic in tandem with their

level design to create unique, fantastic worlds.

44

Above: The “Milkman Conspiracy” level in Psychonauts (2005) featured surface normal

based gravity.
Mario Galaxy. Digital image. <https://i.ytimg.com/vi/zLMtNIVTXk0/maxresdefault.jpg>. 11 Apr. 2016.

Animating modules is only really worth it if it produces dramatic and interesting changes

that affect gameplay. If the changes are small, then they may as well be cosmetic variations in a

non-animated module generation system. Letting the system go wild and build spiraling non-

Euclidean paths on all axes is a promising way to explore the full potential of the system.

5.1.3. Racing Games

 Though they can be deleted for optimization purposes, the AMMG system leaves behind

the bones of the animated modules. When not connected to an animator or a skinned mesh, bones

are very cheap memory-wise. They are essentially empty objects, containing only a basic

transform (position, location and scale). We used them as spawn locations for enemies, which

was convenient, but empty points can potentially be used in many other ways.

 Many racing games use a series of waypoints along the track to guide the AI along the

intended path. The bones left behind in the AMMG system could be used as such waypoints,

allowing a designer to easily create all sorts of unique racetracks.

45

Left: A series of points, connected in an order (such as the order of bones in a rigged module.)

Right: By automatically calculating waypoints between the main points, a smooth path is

created, which can be used as the guiding path for AI in a racing game.

It should be noted that this racing system would work exceptionally well with the surface

normal based gravity discussed earlier. Several racing games, including Mario Kart 8 (2014),

utilized a similar gravity system to create interesting and unique levels. The ability to

procedurally generate racetracks of this complexity could lead to really interesting games. In

fact, taking out the procedural generation and simply letting players design their own courses

using these animated modules would be a creative and original approach.

46

Above: The AMMG system being used to its fullest potential. Our team spent a

lot of time trying to avoid situations like this, but with a game built for it, it could have

fantastic results.

Above: The skeleton of the previous image

47

Above: Mario Kart 8 (2014) used surface normal based gravity as one of its core mechanics to

create new twists on classic kart racing gameplay.
Mario Kart 8. Digital image. Hardcore Gamer. N.p., n.d. Web. 11 Apr. 2016. <http://www.hardcoregamer.com/wp-

content/uploads/2014/11/mute-city-mario-kart-8-747x309.jpg>.

5.1.4. Abstract Games

 One of the slower parts of the AMMG system was ensuring that modules matched up

seamlessly. To avoid any seams, each module had to be properly weight painted properly.

Allowing the edge vertices be weighted by any bones aside from the nearest node bone would

make them shift slightly relative to the node, creating a visible seam between modules once

generated. It shouldn’t have been a big time loss, but it meant that even the simplest modules had

to be manually re-weighted in parts.

48

Above: Bastion (2011) crafted levels out of unstable floating island chunks. The seams between

terrain segments helped to enunciate the game’s hectic post-apocalyptic narrative.
Bastion. Digital image. Scientific Gamer. N.p., n.d. Web. 11 Apr. 2016. <http://www.scientificgamer.com/blog/wp-

content/uploads/2012/01/bastion41.jpg>.

 This could be averted by making a game that doesn’t risk having seams in the first place.

If each module was its own distinct entity — say, a floating island, or an abstract shape not

meant to line up with its adjacent objects — then there would be no need to waste time making

sure the modules were perfectly rigged.

49

Above: Bound (announced 2015) has intentional seams between its level elements to emphasize

its abstract modernist art style.
Bound. Digital image. Gamer Network. N.p., n.d. Web. 11 Apr. 2016. <http://cdn.gamer-

network.net/2015/usgamer/Bound-5.jpg>.

5.2. What Would Benefit Least

 Not every project would benefit from using the AMMG system. Obviously, the system is

already fairly specialized — it can only be possibly relevant to 3D games that require lots of

procedurally generated levels. Beyond this, however, there are games that could use the system

but probably shouldn’t.

5.2.1. Small Games by Small Studios

 The AMMG system takes a lot of effort to implement. Perhaps, in the future, there will

be easily referenced documentation and even convenient sample projects that can be used as a

base and modified, but right now, any developer interested in using it will have to make it mostly

from scratch. In a big company, a few people can be devoted to designing the basic elements of

the system while other people work on other aspects of the game. In a small one, most of the

team might be swallowed up trying to get the system going. It takes fairly complex coding

50

knowledge and also many technical art skills to be able to fully understand every part of the

system, and some teams may not have anyone with the required skills.

 Additionally, if a game is supposed to be a short experience, rather than a sprawling open

world RPG or something with lots of replay ability, then it’s probably not worth the time to build

the system. A sophisticated method of procedural generation is best implemented when it’s going

to be used many, many times.

5.2.2. Environments That Are Both Indoors and Outdoors

This is a problem that extends to most module-based systems, especially procedural ones.

Modules are often designed to only be seen from one angle, such as a cave from just the inside.

Making every module work visually from all angles greatly increases the amount of time and

effort required per module, as many easily-cut corners (hiding seams behind props, etc.) are

impossible when the player has wide freedom of perspective. Our team originally planned to

make a level that wove between cramped caves and wide open spaces, but quickly realized that

changing between the two environments would be highly inefficient.

Games like Skyrim (2011) put a loading screen between the overworld and each

individual dungeon. Aside from being an efficient way to load the game, this is used as a chance

to separate the dungeons from the heightmap-based terrain of the overworld. We recommend that

games with both indoor and outdoor sections segregate the two if either or both are procedurally

generated.

51

Works Cited

Frade, M., de Vega, F., Cotta, C. (2010): Evolution of artificial terrains for video games based

on accessibility. Applications of Evolutionary Computation pp. 90–99.

Abramson, D., and J. Abela. A Parallel Genetic Algorithm for Solving The School Timetabling

Problem CiteSeerX. Australian Computer Science Conference, n.d. Web. 2 Dec. 2015.

Carreker, Dan. The Game Developer's Dictionary: A Multidisciplinary Lexicon for Professionals

and Students. Boston, MA: Course Technology, 2012. Print. Pg 338

"Infer.NET." Infer.NET. N.p., n.d. Web. 11 Apr. 2016. <http://research.microsoft.com/en-

us/um/cambridge/projects/infernet/>.

Moore, Gordon E. "Progress in Digital Integrated Electronics." IEEE (1975). Web.

"50 Years of Moore's Law." Intel. Web. 11 Apr. 2016.

Ong, Teong Joo, Ryan Saunders, John Keyser, and John J. Leggett. "Terrain Generation Using

Genetic Algorithms." Proceedings of the 2005 Conference on Genetic and Evolutionary

Computation - GECCO '05 (2005). Web.

Togelius, Julian, Georgios N. Yannakakis, Kenneth O. Stanley, and Cameron Browne. "Search-

Based Procedural Content Generation: A Taxonomy and Survey." IEEE Trans. Comput. Intell.

AI Games IEEE Transactions on Computational Intelligence and AI in Games 3.3 (2011): 172-

86. Web.

Shaker, Noor, Togelius, Julian & Nelson, Mark J. (2015). Procedural Content Generation in

Games: A Textbook and an Overview of Current Research. Springer pp 20

Silverman, Ken. "Ken Silverman's Voxlap." Ken Silverman's Voxlap Page. Web. 11 Apr. 2016.

52

	Abstract
	Acknowledgements
	1. Introduction
	2. Procedural content generation
	2.1. Map generation techniques
	2.1.1. Grid and Voxel Based Generation
	2.1.2. Modular Map Generation
	2.1.3. Terrain heightmap generation
	2.2. Animated Module Map Generation System
	2.2.1. Using Morph Targets to Randomize Modules
	2.2.2. Using Rigging to Randomize Modules
	2.2.3. Collisions
	2.2.4. Benefits over Splines
	2.2.5. Implementing Modules

	3. Procedural Generation and Our System
	3.1. Common Topics
	3.1.1. Evaluation Functions
	3.1.2. Evolutionary Search Algorithms
	3.1.3. Fractal Terrain Generation
	3.1.4. Analysis of AMMG

	4. Gunsketeers Workflow and Design
	4.1. Art Style
	4.2. Writing
	4.3. Contracting Work
	4.4. Image Classification
	4.5. Pathfinding
	4.6. Difficulty working with the system
	4.7. Unity’s Animation System

	5. Conclusions
	5.1. What Would Benefit Most
	5.1.1. Large Games Focused on Replayability
	5.1.2. Games with Surface Normal-Based Gravity
	5.1.3. Racing Games
	5.1.4. Abstract Games
	5.2. What Would Benefit Least
	5.2.1. Small Games by Small Studios
	5.2.2. Environments That Are Both Indoors and Outdoors

