
Epsilon Optimal Path Planning for Active Vision for
Grasping

by

Galen Brown

M.S. Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Computer Science

by

November 2022

APPROVED:

Professor Berk Calli, Thesis Advisor

Professor Craig Shue, Reader

Professor Craig Shue, Department Head

Abstract

In this work I explore the use of active vision algorithms to improve robotic grasp-

ing. Robotic grasping algorithms aim to find a suitable grasp location on a given

target object using visual data, i.e. images taken from a camera. Their performance

depends on the camera viewpoint; some viewpoints are more suitable to detect a

good grasp location than others. The role of active vision is to alter the camera

viewpoint to help the robotic grasping algorithms. I provide an extensive overview

of active vision strategies to find ‘sufficiently good’ grasps with as little camera

movement as possible. I present several heuristic and data driven approaches to the

problem in a constrained, discretized scenario and compare their performance. In

addition, I demonstrate a method to find solutions in a more realistic, continuous

scenario that are within a known error bound of optimal solutions. I outline the

mathematical basis for this claim, and demonstrate its empirical characteristics in

a number of simulated experiments. Using this information, I am able to show the

limitations of current approaches and demonstrate that significant improvements in

performance can be made by working in the continuous space rather than constrain-

ing the problem to the discrete space. This work provides novel information about

the theoretical limits of active vision, which suggest directions for future research.

Acknowledgements

I would like to thank Sabhari Natarajan, my partner for the first year of research, for

his invaluable assistance preparing the environment and implementing the discrete

algorithms. The work presented in Chapter 4 was conducted together, the work

presented in Chapter 5 was conducted after he graduated.

I would like to thank Albi Marini, the 2022 MER lab intern, for his help proof-

reading and preparing graphics. I would also like to thank the other researchers in

the MER lab; Abhinav Gandhi, Avnish Gupta, and Sreejani Chatterjee, for their

advice and suggestions with the project.

I would like to thank Yunus Telliel for his advice and help with the broader

impacts section.

Lastly, I would like to thank my advisor, Berk Calli, for his extensive help revising

and editing the thesis. For as long as we have been working together, I have been

privileged to be able to depend on his support and direction.

i

Contents

1 Introduction 1

2 Related Work 6

2.1 Active Vision . 6

2.2 The Use of Optimal or Near Optimal Solutions 8

3 Broader Impacts 11

4 Discrete Active Vision 14

4.1 Problem Statement . 14

4.1.1 Research Goals . 17

4.2 Comparison Framework . 18

4.2.1 Optimal: BFS . 18

4.2.2 Pessimal: Random . 19

4.2.3 Typical: Brick . 19

4.3 Machine Learning Methods . 20

4.3.1 Data Collection . 20

4.3.2 Data Compression . 21

4.3.3 Self Supervised Learning . 21

4.3.4 Deep Q Learning . 24

ii

4.4 Heuristic Methods . 25

4.4.1 2D Heuristic . 26

4.4.2 3D Heuristic . 26

4.5 Discrete Testing . 28

4.5.1 Grasp Synthesis . 29

4.5.2 Discrete Results . 30

5 Epsilon-Optimal Path Planning 34

5.1 Problem Statement . 34

5.2 Proposed Algorithm . 36

5.2.1 Setup . 36

5.2.2 Optimal Path Finding . 38

5.2.3 Runtime Analysis . 40

5.2.4 Proof of Correctness . 41

5.3 Simulation Experiments . 43

5.3.1 Viewsphere Generation . 44

5.3.2 Visibility Determination . 45

5.3.3 Comparison of Continuous to Discrete Searches 46

5.3.4 Approximations of True Optimal Paths 47

5.3.5 Empirical Performance of Continuous Search 49

6 Conclusion and Future Work 53

iii

List of Figures

1.1 Goal Overview . 4

4.1 Discrete Viewsphere . 16

4.2 Feature vector . 22

4.3 Objects . 24

4.4 Machine Learning Architectures . 25

4.5 Simulation Testing Objects . 29

4.6 Discrete Results by Object . 31

4.7 Average Discrete Results . 33

5.1 Viewsphere Quality Curve . 44

5.2 Visibility Function . 45

5.3 6,000 Point Averages . 47

5.4 10,000 Point Averages . 48

5.5 Empirical Runtimes . 49

5.6 Easy Object Results . 51

5.7 Medium Object Results . 52

5.8 Hard Object Results . 52

iv

List of Tables

5.1 Empirical Ratios . 50

v

Chapter 1

Introduction

Robotic grasping is a vital capability for many tasks, particularly in service

robotics. Most grasping algorithms use data from a single viewpoint to synthe-

size a grasp [2]. This approach attempts to create a single, master algorithm that

is useful for all objects in all situations. Nevertheless, these algorithms tend to

suffer when the viewpoint of the vision sensor is different than the images used in

training [3]. Additionally, many graspable objects have observation angles that are

“singular” from which no grasp can be synthesized. For example, if an object has

only one graspable surface, which is self-occluded from the current viewpoint of the

camera, the grasp synthesis algorithm would either fail to find any grasps or would

need to rely on assumptions that might not always hold, and therefore lead to an

unsuccessful grasp attempt.

The issues of these single viewpoint approaches can be addressed via active vision

frameworks, i.e. by actively moving the camera and collecting more data about

the task. There are several established methods for doing this. At one end of this

This thesis is partially based on a paper published in Frontiers in Robotics and AI [1]. The
discrete work was presented in [1], the continuous work has not been published.

The author of this thesis is a trainee in Future of Robots in the Workplace – Research &
Development (FORW-RD) NRT Program.

1

spectrum are methods that collect data to obtain a complete 3D model of the object.

These approaches are slow, difficult to carry out in the real world, and vulnerable to

misalignment if conditions change during or after data collection [4]. On the other

end of the spectrum, there are algorithms designed to collect the minimal amount

of data possible to produce a grasp. It has been shown in the grasping literature

that even algorithms tailored for single viewpoints can see substantial performance

boosts by applying very simple data collection procedures [3].

This motivated my research on active vision, partly presented in [1]. In it, we

explored various heuristic and machine learning methods to find the shortest path

along a viewsphere (an imaginary sphere surrounding the object that the camera is

constrained to move along) that contained enough information to produce a grasp.

We restricted the camera to moving in fixed steps in one of eight directions, dis-

cretizing the problem. By doing this, we were able to exhaustively explore the

search space to find provably optimal solutions using Breadth First Search. This

in turn allowed us to provide meaningful comparisons of our techniques to the best

possible performance. That comparison is useful for two reasons: first, it shows

where there is room for improvement and where current methods are satisfactory.

A major conclusion of that work was that while the ratio of each method’s results to

one another was fairly consistent between objects, the ratio of those results to the

optimal results varied quiet significantly between objects. This leads to the second

use for optimal performance- to empirically determine how difficult the problem is

for different objects. This cannot be done using relative results, and so optimal

results allow qualitatively different research.

Given the utility of optimal results for the discrete problem, I then attempted

to extend our work into continuous space. This necessitated some compromises. An

exhaustive approach was impractical, but an approximation of true best performance

2

proved tractable. My reasoning for the approximation was as follows: each point of

the object is visible from a finite region of the viewsphere. Every potential grasp for

a two fingered gripper consists of two object points. If a path along the viewsphere

runs through the regions of visibility for both halves of a grasp, a camera following

that path will collect enough information to synthesize a grasp. By approximating

the region with a dense group of points, I can approximate the true distances between

each region and make the approximation arbitrarily close to the true distance by

increasing the density of the points. The path from the camera’s start position to

the points on the viewsphere can then be calculated, and the shortest combined

path will be an approximation of the true shortest path, as shown in Figure 1.1.

3

Figure 1.1: An example of the proposed method. The object in black has a pair of
points on its surface (highlighted in green and red) which can form a grasp. Each
point is visible from the region of the viewsphere shown in the corresponding color.
The green arrow shows a potential path for the camera to follow from a start position
which can view the red point to an end position which can view the green point.
Note that while the green arrow directly connects the points for visual clarity, the
camera is constrained to the viewsphere and all distances along it are measured by
great circle distance.

This work presents the following contributions:

1. A selection of Heuristic and Machine Learning approaches for discrete search

based on our work in [1]. As that work demonstrated, these represent ap-

proaches comparable to the state of the art for this problem.

2. Direct, empirical comparisons between the approaches and optimal, pessimal,

4

and naive approaches. We first presented these comparisons in [1], where we

noted that the combination of these three benchmarks allowed us to make

novel conclusions about the difficulty of the problem and the theoretical limits

of improvement.

3. An algorithm to find epsilon-optimal paths for camera motion for grasping in

continuous space, including runtime analysis and proof of correctness. This

approach is novel in the literature, and allows us to extend the claims made

about the discrete problem into the continuous space.

4. Extensive simulation testing of the epsilon-optimal algorithm to determine its

typical, rather than worst case properties.

5. Comparison between continuous and discrete optimal paths, demonstrating

and quantifying the trade offs between speed and accuracy both methods take,

and providing concrete suggestions for future work.

5

Chapter 2

Related Work

2.1 Active Vision

Adapting robotic manipulation algorithms to work in an imperfect and uncertain

world is a central concern of the robotics field, and an overview of modern approaches

is given by [5]. At the same time, much of the research on robotic grasping does

not attempt to move the vision sensor and focuses on single image grasp synthesis.

In [6] a method is presented for grasping objects in cluttered environments that ac-

knowledges the problem of accurately sensing a complex 3D environment. However,

rather than collecting more information, their approach attempts to overcome the

limitations of single viewpoints by storing prebuilt 3D models and using them to

better analyze a single stereovision image. In a similar vein, [7] approaches indus-

trial grasping by trying to more accurately map known features to objects instead

of by trying to collect more data to resolve ambiguities in the images. A typical

approach in literature is to train a neural network to produce grasps by annotating

individual images with grasp candidates. This is the method used by [8, 9], among

many others. Even in tasks peripheral to grasping, like shape and pose estima-

6

tion, considerable work has gone into more refined algorithms and machine learning

strategies for extracting information from single 2D images without attempting to

capture more images or optimize the viewpoint [10, 11]. Most work assumes that

the viewpoint is fixed or random, and so focuses on either processing the data (pose

estimation, object localization and segmentation, etc.) or synthesizing a grasp from

available data [12, 13].

Our research focuses on the problem of collecting new data to improve processing

outcomes. Active vision has been applied to many aspects of machine vision, but

often with the explicit goal of completely reconstructing the 3D model of an object

[14, 15], rather than our objective of viewing just enough of the object to perform

a grasp. Even in the narrower domain of active vision for grasp synthesis, not

all work relates to our concerns. For instance [16]’s study on industrial grasping

uses active vision to assist feature identification of known objects, but with the

explicit goal of maximizing grasp precision rather than minimizing the information

that needs to be collected to find a sufficiently good grasp. For the use of active

vision to address grasping using incomplete information, there has been research into

both algorithmic [17, 18] and data-driven methods [19, 3, 20, 21], with more recent

works tending to favor data-driven approaches [2]. In particular, the work in [3]

demonstrated that active vision algorithms have the potential to outperform state

of the art single-shot grasping algorithms. [17] proposed an algorithmic active vision

strategy for robotic grasping, extending 2D grasp stability metrics to 3D space. As

an extension of that work [20], the authors utilized local optimizers for systematic

viewpoint optimization using 2D images. [18] employs a probabilistic algorithm

whose core approach is the most similar to our heuristics presented in Section 4.4.

Our approaches differ in focus, since [18] selects viewpoints based on estimated

information gain as a proxy for finding successful grasps, while we prioritize grasp

7

success likelihood and minimizing distance traveled.

The data-driven approach presented in [3] avoided the problem of labeled data

by automating data labeling using state of the art single shot grasp synthesis algo-

rithms. They then used machine learning to estimate the direction of the nearest

grasp along a view-sphere and performed gradient descent along the vector field

of grasp directions. This has the advantage of being continuous and fast, but our

discrete testing framework cannot be used for continuous algorithms [3].

One of our data-driven active vision algorithms utilizes a reinforcement learn-

ing framework. A similar strategy for active vision is used by [19] to estimate an

information gain maximizing strategy for object recognition. We not only extend

Q-learning to grasping, but do away with the intermediary information gain heuris-

tic in reinforcement learning. Instead, we penalize our reinforcement approach for

each step it takes that does not find a grasp, incentivizing short, efficient paths.

This work draws significant inspiration and code from our previous work [1],

which was itself an extension of [22]. Here I have expanded the workspace of those

papers from the discrete to the continuous space and provided more theoretical

claims, but I have as much as possible retained their methods and settings to allow

for comparable results.

2.2 The Use of Optimal or Near Optimal Solu-

tions

[23], while focused on object classification rather than grasping, heavily influenced

our theoretical concerns and experimental design. Their paper argues that contem-

porary machine learning based active vision techniques outperform random searches

but that this is too low a bar to call them useful and demonstrates that none of the

8

methods they implemented could outperform the simple heuristic of choosing a di-

rection and moving along it in large steps. Virtually all active vision literature (e.g.

[24, 25]) compares active vision approaches to random approaches or single-shot

state of the art algorithms. While there has been research on optimality comparison

in machine vision [26], to the best of our knowledge, it has never been extended to

3D active vision, much less active vision for grasp synthesis. Our simulation bench-

marks are an attempt to not only extend their approach to grasping, but to quantify

how much improvement over the best performing algorithms remains possible.

The benefits of having a provable best solution extend beyond directing research.

Recent studies by [27] and [28] show that optimal or near-optimal initialization

allows Q-learning to produce near optimal results rapidly and for novel situations.

With these motivations in mind, there has been a great deal of work done on

shortest path problems. Prominent examples include [29] and broad overviews of

modern and historical techniques can be found in [30, 31]. Unfortunately, these

approaches are based on graph theory, and can only interface with the problem if it

can be reduced to a graph traversal; this is simple in the discrete case and difficult

in the continuous case.

Fortunately, the value of approximate solutions to otherwise intractable problems

has also been well established. Approximate solutions for NP-hard problems are

an area of sustained and exciting development. It is generally believed that NP-

hard problems are unsolvable in polynomial time, but a wide variety of problems

can be approximated to varying standards of accuracy in polynomial time [32].

These solutions allow for practical applications which depend on “sufficiently good”

approximations of optimality.

Even when exact solutions are possible, approximations may be preferable. Ran-

domized primality testing is a classic example. Even though randomized algorithms

9

can never prove a number is prime, they can produce an error bounded estimate

of whether it is prime very quickly, enabling enormous practical applications [33].

Of particular relevance to this work is the development of “Distance Oracles” [34],

algorithms that construct a data structure in preprocessing and then supply ex-

tremely fast distance approximations at runtime. In this work, I will present a

distance oracle for the otherwise intractable problem of shortest continuous active

vision paths.

10

Chapter 3

Broader Impacts

This work aims to directly address two academic problems: unguided research and

the inaccessibility of research to outsiders. Metrics for comparing active vision

algorithms will allow more focused research by eliminating unpromising or effectively

solved problems. More broadly, by making the software pipeline I have used to

perform this research freely available and well documented, I hope to lower the

barrier to entry into robotics research. It can be extremely difficult and frustrating

for prospective roboticists to find easy to use tools, which turns people away from

the field and prevents broader engagement with the public. The use of open source

tools in industry has documented economic benefits due to increased ease of use

and decreased maintenance needs [35]. Beyond the economic benefits of increasing

access to quality software, these factors disproportionately impact small institutions

or individuals. By streamlining the process in this area, we can introduce younger

and less experienced programmers to an interesting and ongoing area of interest in

robotics and empower them to make substantial contributions to it.

Industrial and domestic robotics will be impacted by this work. Active vision is

an important capacity for robots working in semi-controlled environments and will

11

make them more flexible and better able to perform tasks in those environments.

On a purely technical level, this will be a significant improvement and expand the

potential uses of automation into regions that have been historically inaccessible.

Nursing is of particular interest; it typically takes place in semi-controlled hospital

environments and faces both acute and chronic personal problems [36]. For robots

to work effectively in hospitals and care homes, they will need to be able to reliably

interact with novel objects by grasping them. A 2017 study of teleoperated nursing

robots identified fine motor control in general, and grasping in particular, as areas

that their prototype struggled with. On top of the hardware difficulties the robot

experienced, users reported difficulty adapting to the user interface to perform tasks

such as camera location and grasping. A major direction for future work the study

identified was increased low-level autonomy to assist the user in these tasks [37].

Until these abilities are developed, robotic nursing will be limited to extremely

unusual, highly controlled settings.

Improved flexibility will benefit industry, but there is widespread and reasonable

anxiety about the effects of increased automation on society. The evidence for this

is mixed. There is cause for both optimism and concern, but overall the picture is

less bleak than we might fear. A common and credible concern is that increased

automation will displace industrial workers, but there is reason for optimism that

this will not be the case. The clear trend in the United States since 1960 has been

of a large and successful industrial sector that has steadily shed blue collar jobs [38].

However, there are positive use cases which suggest that increased automation may

not strictly result in lowered employment. Modern spinning mills are nearly totally

automated. The last decade has seen explosive growth in yarn production, but no

change in employment [39]. This suggests that after a certain level of automation,

increases to productivity do not displace workers. Empirical data from Spain [40],

12

France [41], and the Netherlands [42] all suggest that overall automation can lead

to increased employment, though the specifics remain an open question. All three

2020 reports agree that overall employment may be increased, though the Spanish

investigation concluded that the field being automated saw depressed employment.

The studies in France and the Netherlands saw within field employment rise with

automation. Additional analysis of the French employment data suggested that

automation did not exacerbate gender based pay disparities, a promising sign [43].

The exact mechanics remain an open question, but it is reasonable to say that

increased industrial automation is a benefit to industry and appears to have positive

social externalities.

13

Chapter 4

Discrete Active Vision

I will now present the formal problem statement in the discrete case, explain the

goals and utility of our experiments, and outline the techniques investigated.

4.1 Problem Statement

Our goal in this work is to determine how to best move a camera on a robot arm

around an object to collect information about how to pick it up. Further narrowing

our focus, for this work we define “best” as the method that minimizes the distance

traveled by the camera to find a “sufficiently good” grasp.

Active vision contains many nested optimization problems, and so minimizing

distance traveled is not the only approach to take. One strategy is to minimize total

time taken, as Li et al.’s and Namiki et al.’s work does [44, 45]. This encourages

practical application of the work, but focuses research on the particulars of hardware

and software for a single system. Other researchers, such as Arruda et al. or Kroemer

et al., aim to maximize grasp quality or confidence without resorting to exhaustive

exploration [18, 46]. This approach is very similar to the approach we selected.

In all of these studies and our own work, quality and movement constraints are

14

imposed to prevent the algorithm from running forever or wasting time searching for

infinitesimally better grasps. The key difference is the focus of the optimization. We

attempt to end the search as quickly as possible with a sufficiently good solution,

while they attempt to return the highest quality solution possible that does not

exceed a length limit.

We minimize distance for two reasons. First, it is useful in the real world;

domestic and industrial robots that can find a sufficiently good grasp with minimal

movement are more practical than ones that crane around their targets, exhaustively

mapping them. Second, distance traveled is completely repeatable regardless of

computer hardware. Every experiment can be exactly replicated from its starting

position and random seed. Using system time as a metric would tie performance

to the very low level details of how our methods interact with the CPU’s caching.

We restrict the arm’s motion to a sphere surrounding the center of the object being

examined. This is an abstraction designed to isolate the visual search component

of the problem, and common in the literature. When the focus of the work is on

perception or search, e.g. [18, 47], a viewsphere is used. In this work, this is referred

to as the viewsphere V , an imaginary sphere of fixed radius r surrounding the

object. The camera moves by sliding along this sphere, always pointing directly at

the sphere’s center. In the continuous case (addressed in Chapter 5) the camera can

move from any point on V to any other point, but we will begin with the discrete

case i.e. in addition to only moving along the viewsphere, the camera only moves

in fixed intervals of 20o, and only in one of the eight cardinal directions from its

start position as shown in Figure 4.1. The alternative is a model where the camera

is connected to a manipulator and moves with it as the active vision progresses.

When the goal is to correct for sensor discrepancies as in Viereck et al.’s work, this

alternative method is used [3].

15

Figure 4.1: A demonstration of the discretized viewsphere. On the left the cam-
era (represented as the green sphere) is in the starting position- 1 meter from the
object’s center, 45 degrees from the pole of the viewsphere. The eight red spheres
surrounding it show the possible positions it can move to in its first step. On the
right the camera has been moved to the North. The green arrow shows its past
movement, the red spheres the possible next steps. The compass directions are al-
ways relative to the current position of the camera, not to any external reference
frame.

Because we are not attempting to maximize the grasp quality, we consider the

active vision successful if a “sufficiently good” grasp is found. The definitions of both

grasp quality and sufficiently good are arbitrary and can be defined by the user. For

simplicity, we use a force-closure grasping algorithm (see 4.5.1) to measure quality

and consider a score of 150 out of 180 (higher scores are better) to be a sufficiently

good grasp.

So, formally, the problem we are attempting to address is how to move a camera

along V surrounding an object in the shortest possible path to find a sufficiently

good grasp.

16

4.1.1 Research Goals

With this problem formulation, we had three main goals:

1. To provide a framework for objective comparisons of existing algorithms

2. To use that framework to understand the problem space being explored. Here,

that requires answering three questions, one for each baseline in Section 4.2:

(a) How much movement an optimal solution for each item requires. This

establishes a ceiling on the gains which are possible by proposing new

algorithms.

(b) How much movement a random solution for each item requires. Combined

with the optimal solution, this shows the potential for improvement

that is possible. If the random solution is much worse than the optimal

solution, significant progress can be made. If both are very close to one

another in quality, the problem is already well solved by random motion

and so further research is not warranted.

(c) How much movement a naive solution for each item requires. This ex-

tends the previous item, by showing how much of that potential for im-

provement can be realized with simple algorithms. Only in cases where

the optimal solution is significantly better than both the random and the

naive solutions can improved algorithms lead to significant performance

improvements.

3. To develop improved methods for solving the problem, as measured by the

new baselines. This required gaining insight into the shortcomings of current

approaches.

17

4.2 Comparison Framework

In literature, almost all active vision algorithms are compared to either random mo-

tion [18, 22], a static camera [48] or to other state of the art active vision strategies

[3, 7, 49]. The first two approaches do not provide good baselines; random cam-

era movement or no camera movement are such poor active vision strategies that

even very poor algorithms outperform them by wide margins. State of the art com-

parisons can provide relative performance measures, but they cannot objectively

measure performance. This means that if all current techniques share some under-

lying flaw, relative comparisons will never uncover it. To address these concerns,

I developed three baseline methods for comparison. I will now present how each

baseline approach attempts to solve the active vision problem.

4.2.1 Optimal: BFS

From a given start position, exhaustively explore all possible paths of 20o steps

using BFS. Continue until a “sufficiently good” grasp is visible or a depth threshold

(5 steps in this work) is reached. This is the optimal possible performance in the

discrete case. It is impossible for any other method to find a grasp in fewer steps,

though other methods may perform equally well. By including this baseline, I am

able to determine both the objective difficulty of the problem (i.e. how many steps

it takes to find a “sufficiently good” grasp) and how close each proposed solution

is to optimal performance, allowing us to compare algorithms absolutely instead of

just relatively.

18

4.2.2 Pessimal: Random

From the start position, randomly select a direction and move there. Continue

until a sufficiently good grasp is visible or the depth threshold is reached. Note

that absolutely no weighting or constraints are placed on the random motion. If

s is the camera’s starting position, and p1 is a valid position on the viewsphere to

move to from s in one step, s → p1 → s → p1 → s → p1 is a perfectly acceptable

length 5 path. This is a common standard in literature [18, 22], but it is very

close to the worst active vision strategy that is not deliberately designed to perform

poorly. Good active vision strategies tend to involve moving several consecutive

steps in a given direction, which random motion very rarely does. As I will show in

both empirical tests and by comparison to the final baseline, no algorithm should

consistently under perform random motion.

4.2.3 Typical: Brick

From the start position, move Northeast (marked NE in Figure 4.1). Continue until

a “sufficiently good” grasp is visible or the depth threshold is reached. Northeast

was selected because it worked well in manual testing, but I make no claim that it

is the best direction in most circumstances. This is a naive algorithm (named after

leaving a brick on the accelerator of a car) that any method should outperform to be

considered to have made a significant improvement over the baseline. Nonetheless,

as [23] suggested and our work has confirmed, this is a reasonably effective solution

which consistently outperforms the pessimal case and frequently equals or exceeds

the results of other algorithms.

Now that I have described the baselines other methods will be compared to, I

will describe those methods.

19

4.3 Machine Learning Methods

We began with two machine learning based approaches, since they are quick to

implement and do not require extensive domain specific insights. Both approaches

begin by collecting and compressing information from a simulated workspace, which

I will now describe.

4.3.1 Data Collection

All of our experiments take input from a depth camera in the form of point clouds.

For the discrete approaches, we needed to provide a representation of not just the

current camera view, but past camera views. This requires two post-collection steps:

calculating an unexplored point cloud, and merging the current point clouds with

historical data.

To calculate the unexplored point cloud, a cube surrounding the workspace center

is filled with evenly spaced points. Visibility is then estimated by projecting the

object onto the image plane according to Equation 4.1.

Xp = KX/z0 (4.1)

where, Xp is the projected pixel co-ordinates, X is the point in the cube with

coordinates

(
x0 y0 z0

)T

, and K is the camera intrinsic matrix described by Equation

4.2.

K =


fx 0 ppx

0 fy ppy

0 0 1

 (4.2)

The “depth value at Xp” and “z0” are compared and if z0 is greater than depth

at Xp, a point in the object point cloud blocks X, so the point X is marked as

20

occluded. These occluded points then form the unexplored point cloud.

Once both object and unexplored point clouds have been collected, they are

merged with all past data for the current run. This is done by taking the union of

object point clouds, and the difference of unexplored point clouds. These merged

point clouds, with the addition of the camera position, will represent all of the

information available to our active vision agent, and are ready to be interpreted.

4.3.2 Data Compression

In order to provide our machine learning models with a consistent input, we com-

pressed the data supplied by the camera to a fixed sized vector and appended the

camera position. The particular compression technique used was Height Accumu-

lated Features (HAF), developed by [50] and used in [22] and [1] (See Figure 4.2).

In HAF, an nxn grid is laid over the camera view, and each square of the grid

records the height of the tallest feature present in that grid. We tested 5x5 and 7x7

grids, found no appreciable difference between them, and so used 5x5 grids as they

are slightly faster to compute and process.

The final feature vector is [52x1], created by appending a [25x1] flattened object

HAF to a [25x1] flattened unexplored HAF to a [2x1] vector of camera polar and

azimuthal angles (camera radius is constant).

4.3.3 Self Supervised Learning

We began with self supervised learning to replicate and extend the results of [22].

Because of this, we began by using that works’ synthetic data generation technique.

In it, training runs were constructed by taking a trial object and exploring one

step in each legal direction. If a working path was found one step from the initial

pose, that path was recorded. If not, a random walk was begun in each of the eight

21

Figure 4.2: Demonstration of feature vector construction. Here a 6x6x6 cm cube is
converted into a feature representation. The blue region shows the area the object
HAF vector is based on and the yellow region shows the slightly larger area the
unexplored HAF vector is based on. Note the “shadow” of lower values at the top
of the unexplored region- these are the area directly across from the camera which
are currently occluded by the cube. This also shows why the unexplored region
is a necessary part of the feature vector. If the camera had completely observed
the object the object data portion of the vector would be unchanged. Only the
unexplored data region allows us and the algorithm to track what has already been
seen.

directions and explored four steps. This was repeated three times for each direction,

and the shortest working path out of the twenty four potential paths was recorded

as the correct one. Algorithm 1 was then repeated for 1,000 initial poses for every

object trained with. In our work, we collected these 1,000 training runs for the

10x8x4 cm and 20x6x5 cm prisms shown in Figure 4.3. More objects could have

been used, but data collection was time consuming and initial results using only two

training objects generalized very well to the test objects, so it was not pursued.

After the data had been collected, two self-supervised learning architectures were

trained. Both took a feature vector of the current state and output an integer value

[1→ 8] indicating the next direction to move (1=N, 2=NE, ..., 8=NW). Both begin

22

Algorithm 1 Data Generation Technique

Require: start← Initial viewpoint
Require: exploration queue← []
Require: shortest path← None
for all viewpoint ∈ next possible viewpoints do
current path← start+ viewpoint
if current path contains a grasp then
return current path

end if
append current path to exploration queue

end for
for all start direction ∈ exploration queue do
iteration← 0
while iteration < 3 do
depth← 0
current path← start direction
while depth < 4 do
current path← current path+ random direction
if current path contains a grasp then
depth← 4
if current path shorter than shortest path then
shortest path← current path

end if
end if
depth← depth+ 1

end while
iteration← iteration+ 1

end while
end for
return shortest path

23

Figure 4.3: The simulated objects used in the discrete research. Objects are to scale
with one another and the table. Back row, from left to right: 10x8x4 prism, handle,
cinder block. Front row, left to right: 6x6x6 prism, 20x6x5 prism, gasket

by compressing the [52x1] feature vector to a [26x1] vector using PCA. The methods

then diverge; one runs logistic regression on the compressed vector and the other

runs Latent Dirichlet Allocation (LDA) on the same input to produce the same

effect. The shared architecture of both methods can be seen in Figure 4.4 (a). Both

methods were implemented using the scikit-learn library [51].

4.3.4 Deep Q Learning

We constructed a deep Q Learning model. Reinforcement learning was chosen for

the second model because the problem lends itself well to interactive exploration.

Supervised learning was impractical because the optimal solutions were unknown,

unsupervised learning was impractical because of the size of the search space, but

reinforcement learning could find good strategies in that large search space. The

network was built using the Keras library [52]. It consists of four dense, fully con-

nected [128x1] layers connected by ReLu transitions. These feed into a [8x1] softmax

24

Figure 4.4: The machine learning architectures used. (a) shows the self-supervised
learning approach, (b) the deep Q learning approach

layer, which predicts the next direction the camera should move. During training,

an epsilon random gate was used to add noise. After each prediction, a random

value was generated, and if it exceeded a threshold that decreased towards 0 as the

training progressed a random value was substituted for the network’s prediction.

After a prediction was made, the camera was moved in the requested direction, and

a new feature vector was captured and sent to the network, as shown in Figure 4.4

(b). Each iteration of training continued until a sufficiently good grasp was found or

five unsuccessful steps had been taken, whichever happened first. The Q Learning

model was trained until convergence on the objects in Figure 4.3, taking roughly

1,300 iterations. Ideally, both methods would have received the same training set,

but the neural network required much more initial training than the dimensionality

reduction based approaches.

4.4 Heuristic Methods

After developing and testing the machine learning based approaches, we built and

tested two heuristic algorithms based on our observations of the machine learning’s

25

behaviors and existing methods in literature.

4.4.1 2D Heuristic

To begin, we built a simplified procedure designed for our specific problem statement

and arrived at Algorithm 2. It begins with the same feature vector as the machine

learning based approaches, and then estimates the potential useful information that

can be gained by moving in each direction. To consider the impact of moving a

direction, e.g. North, the algorithm takes the current known object and simulates

moving the camera 20o North of the current position. It projects the known object

and the unexplored region onto a plane perpendicular to the camera’s viewpoint.

In this projection, every overlapping pixel between the current unexplored region

and the potential exploration region represents information that moving the camera

North could reveal. Running this count for each direction, we arrive at an optimistic

estimate of how much information moving in this direction can reveal, under the

(often incorrect) assumption that no new object points will be revealed by moving

the camera. When new object points are revealed, they may occlude the unexplored

region, and so reduce the information gained. The direction in which the highest

best-case estimate lies is then selected. The resulting algorithm is simple, very fast,

and generally robust, though it is easily mislead by objects where the optimistic and

actual information gains are significantly different from each other.

4.4.2 3D Heuristic

Our main insight gained from observing the simulation testing up to this point

was that not all information is equally valuable. There are large regions of most

objects which cannot possibly contain a grasp, but in Algorithm 2 or a standard

information gain framework like the one found in [18] will be marked as having

26

Algorithm 2 2D Heuristic policy

Require: obj ← Object point cloud
Require: unexp← Unexplored point cloud
for all viewpoint ∈ next possible viewpoints do
if viewpoint within manipulator workspace then
obj trf ← Transform obj to viewpoint
obj proj ← Project obj trf onto image plane (B/W image) and dilate
unexp trf ← Transform unexp to viewpoint
unexp proj ← Project unexp trf onto image plane (B/W image) and dilate
non occ unexp proj ← unexp proj − obj proj

end if
Record the number of white pixels in non occ unexp proj

end for
Choose the direction with maximum white pixels

large amounts of potential information simply because they are unexplored. To

address these weaknesses, we developed Algorithm 3. It runs in much the same

way as Algorithm 2, but with two key differences. First, ray-tracing rather than

projection is used to estimate the potentially revealed area. This is much more

computationally expensive, but allows for a much more accurate determination of

potentially revealed space, since it measures the full area being revealed rather than

just its surface area. Second, the criteria outlined in 4.5.1 are applied to the known

points and the regions in which complimentary grasps could lie are overlaid onto

the unexplored region. Only the portions of the unexplored region which could form

a grasp with the explored region are then considered. The direction which has the

potential to reveal the largest number of grasp containing points is then selected.

This algorithm is significantly slower and more complicated than the 2D Heuristic,

but addresses many of its shortcomings.

27

Algorithm 3 3D Heuristic policy

Require: obj ← Object point cloud
Require: unexp← Unexplored point cloud
Require: points threshold ← Minimum number of non-occluded unexplored
points needed for a new viewpoint to be considered useful
useful unexp trf ← Unexplored points with potential for a successful grasp
for all viewpoint ∈ next possible viewpoints do
if viewpoint within manipulator workspace then
obj trf ← Transform obj to viewpoint
useful unexp trf ← Transform usefulunexp to viewpoint
non occ useful unexp ← Check occlusion for each useful unexp trf using
local surface reconstruction and ray-tracing.

end if
Record the number of points in non occ useful unexp

end for
max points← Maximum points seen across the possible viewpoints
if max points ≤ points threshold then
Run the previous for loop with twice the step-size

end if
max points← Maximum points seen across the possible viewpoints
Choose the direction which has max points

4.5 Discrete Testing

In order to compare the three baselines, two heuristics, and three machine learning

approaches, extensive simulation testing was needed. Our goal was to provide as

much diversity of objects and poses as possible, in order to locate any situations

which exposed algorithm specific weaknesses. First, we selected the objects in Figure

4.5 from the YCB dataset, ensuring that none of these objects had been included

in the training sets for any of the machine learning algorithms. Next, we ran each

approach on every object 100 times in different poses and recorded the results. The

camera always began at the same position in each test, and the object was rotated

around its z-axis to represent different starting orientations. Since testing of the

discrete algorithms was concerned with relative algorithmic performance, care was

taken to ensure that every algorithm had as close to identical conditions as possible.

28

To do this, the start positions for each run were seeded. We randomly generated 100

values from 0 to 359, and every test ran through each of those same 100 values in

order, ensuring that each algorithm had the same objects in the same configuration.

Figure 4.5: The objects used for simulation testing for both discrete and
continuous experiments. Each object has been labeled with its YCB ID, and

outlined according to its difficulty; red for hard, yellow for medium, and green for
easy.

4.5.1 Grasp Synthesis

These methods are largely agnostic to the specific method of grasp synthesis, so we

used a force-closure algorithm based on [22], since it is reliable and simple. In it,

grasp quality is defined by how closely the surface normals of two object points are

opposed to each other, formally:

GQ = 180− (min(̸ (−−→p1p2,−→n1), ̸ (
−−→p2p1,−→n1)) +min(̸ (−−→p1p2,−→n2), ̸ (

−−→p2p1,−→n2))) (4.3)

where, GQ is the grasp quality, p1 and p2 are the contact points, n1 and n2 are

the surface normal vectors at each contact point. Grasp quality cannot fall below

0 (if both surface normals are parallel to each other and perpendicular to the axis

29

between p1 and p2) or exceed 180 (if both surface normals are exactly opposed along

this axis). We defined a grasp as any point pair whose grasp quality, as evaluated

by Equation 4.3 exceeded 150. Additionally, we added three constraints for increase

realism

1. Curvature- to be graspable, neither point may exceed the mean object curva-

ture by a factor of more than 1.3 times.

2. Area- to be graspable, each point must be surrounded by at least 1.5cm of

relatively flat material. This is based on the Franka Emika’s gripper, and

calculated by projecting the surrounding object points onto a plane perpen-

dicular to each point’s surface normal and then measuring the radius of the

minimum inscribed circle on that plane.

3. Collisions- Once the final grasp has been found, the gripper model is loaded

into simulation and spun around the grasp axis. If no position can be found

which does not intersect with the object, the grasp is rejected.

More conditions could be added for increased realism, but in [1] these gave good

results and the choice of grasp algorithm is not of critical importance for this work,

so we limited ourselves to these for simplicity.

4.5.2 Discrete Results

After the simulation testing was complete, we were able to empirically compare

the various algorithms’ performance, as shown in Figure 4.6. Here the BFS policy

forms an absolute ceiling, which no other policy ever exceeds, and the Random policy

forms a floor which indicates a significant problem if another policy falls below it.

This does happen for several steps in some objects (e.g. step 1 of objects 013 and

30

055), but none of the algorithms tested underperformed Random after the full five

steps. For many objects, all methods performed very similarly. For example, for

object 025 (mug), only difference between algorithms occurs in step one. The BFS

immediately finds a working grasp 100% of the time, while the other algorithms

succeed only some of the time, with the “Brick” strategy performing most poorly

and only finding a grasp in 80% of the trials. By step 2, every algorithm has found

a working grasp, and so every one scores 100% for the remainder of the trial.

Figure 4.6: The results of applying each policy to each object in simulation. Units
are number of runs out of 100 which succeeded after N steps. If a method fails to
reach 100/100 by step 5, it never finds a successful grasp after 5 steps for some

initial poses.

31

Based on this, we were able to define a “difficulty score” based on the ratio

between the Random performance and the BFS performance. If, as in the case of

object 024, BFS and Random performance are equal, the object is very easy, since

any path is as good as any other. On the other hand, for objects like 072-a, BFS

performs quite well but Random does terribly, suggesting that good performance is

possible but difficult to arrive at by random motion, so the object is hard to plan

an active vision path for. Formally, we defined the difficulty of the object as the

ratio between the number of successes after two steps of Random motion and the

number of successes after two steps of BFS. For example, when analyzing object

055, after two steps 41 of the Random trials had succeeded, but 100 of the BFS

trials had succeeded. This gives 055 a difficulty of 0.41. We used the ratio after

two steps, rather than five, because it spreads the distribution out more, but note

that this ratio doesn’t capture the full complexity of what is happening in the trials.

However, it gives a good rule of thumb for what fraction of optimal performance to

expect as a baseline for each object.

We then somewhat arbitrarily split the difficulties into three groups- Easy ob-

jects, where the difficulty ratio is > 0.8, Medium objects where the difficulty ratio

falls between 0.4 and 0.8, and Hard objects where the ratio ≤ 0.4. Based on this,

the twelve objects tested can be classified as follows:

1. Easy: Tomato soup can (005), Bowl (024), Mug (025)

2. Medium: Apple (013), Bleach cleanser (021), Power drill (035), Baseball (055)

3. Hard: Cracker box (003), Mustard Bottle (006), Pudding box (008), Potted

meat can (010), Toy airplane (072-a)

The reason for these classifications can be seen in Figure 4.7. In it we can clearly

see how not all object results are comparable; in the first step almost all methods

32

Figure 4.7: Performance of each method (other than BFS) averaged over all
objects for step 1 (on the left) and step 3 (on the right). Performance represents
the fraction of optimal performance achieved and has been calculated by taking the
number of successes for each method and dividing by the number of BFS successes.

produce nearly optimal results for easy objects, and by step three every method but

the 2D Heuristic and Random is indistinguishable from optimal performance for easy

and medium objects. But that isn’t very impressive, since Random is also doing well

for those. It is only for the hard objects that significant improvements are possible,

and so only for the hard objects that meaningful conclusions can be drawn about

algorithm performance. And while there are variations in performance, only the 3D

Heuristic significantly outperforms the Brick baseline for hard objects. This suggests

that for most objects the active vision strategy is simply not very important, since

even the totally mindless strategy of picking a direction and traveling in a straight

line will get good results. However, there are some objects where the strategy is

significant and can provide useful improvement over this baseline.

33

Chapter 5

Epsilon-Optimal Path Planning

Having introduced the common strategies of active vision and demonstrated the

usefulness of an optimal solution in the discrete case, I will now formally define that

problem in the continuous case and show how an epsilon bounded approximation of

its optimal solution can be found.

5.1 Problem Statement

In the continuous case, I use the same goal as in the discrete case: how to move a

camera along the viewsphere surrounding an object in the shortest possible path to

find a sufficiently good grasp. To approach this in the continuous space, I densely

pre-populate the viewsphere with viewpoints using a Fibonacci Lattice [53] (see

Section 5.3.1 for details). This allows me to exhaustively search the viewsphere to

a known resolution. For clarity, I introduce the following terms:

• Let V be a viewsphere of radius r. Let vi be an arbitrary point generated

according to Section 5.3.1∈ V .

• Let xi be an arbitrary point of radius r /∈ V . Let X be the set of all xi.

34

• All distances along V and X are great-sphere distances.

• Let s be the point on the viewsphere V the camera begins at.

• Let d be the number of points on the viewsphere before s is added, and let m

be the maximum distance any point ∈ V and it’s nearest neighbor ∈ V before

s is added.

• Let C be a 3D point cloud representing the object being grasped, and let ci

be an arbitrary point ∈ C.

• Let G be an arbitrary two finger grasping algorithm G(c1, c2) which takes

two points and returns a True/False decision if they are suitable for grasping.

Two points c1, c2 are graspable iff G(c1, c2) == True. Our earlier concept of

a “sufficiently good” grasp is a specific case of G.

• Let L be an arbitrary visibility algorithm L(v1, c1) which takes two points and

returns a True/False decision if they have line of sight to one another. Two

points v1, c1 are visible iff L(v1, c1) == True.

• A valid grasp is a path from which two graspable points are visible, that is, ci

and cj ∈ C (i ̸= j) such that

1. G(ci, cj) == True, and

2. L(pa, ci) == True, L(pb, cj) == True where pa, pb ∈ P .

With these terms defined, the problem in the continuous case becomes the fol-

lowing: What is the shortest path P = {s, p1, ...pn} along the viewsphere V such

that it contains a valid grasp.

Further, in the continuous space I make the following assumptions

1. P exists

35

2. V is sufficiently dense that ∀ points ci ∈ C, xi /∈ V at radius r such that L(xi,

ci) == True =⇒ ∃vi ∈ V | L(vi, ci) == True within at most m of xi.

The first assumption is necessary for the problem to be defined at all (how to

determine if an object is impossible to grasp is not addressed here).

The second assumption is necessary to provide a guarantee of closeness to optimality-

if some points are viewable from r but not viewable from any point on V , they could

be part of a solution that is arbitrarily shorter than the one that can be found by

exclusively considering the points on V . However, V can be made as dense as

necessary, and as long as at least one point on V can view each visible point on the

object, I will show how a solution within a known error of the true optimal solution

can be found.

5.2 Proposed Algorithm

5.2.1 Setup

Setup consists of three stages: visibility checking, grasp pair checking, and distance

calculation. This constitutes the significant bulk of the computational load of the

problem, and can be reused for new calculations for the same object beginning at a

new start point. Thus, after the very expensive setup, any number of solutions can

be found in short order (see 5.2.3 for exact run time analysis).

Visibility

The first step of setup is to calculate all regions of visibility using Algorithm 4. For

each relevant object point, we calculate the region of the viewsphere which can view

it and store it in vis pairs. If a point is ineligible for grasping, it is irrelevant and

so marked as being totally occluded.

36

Algorithm 4 Check Visibility

Require: obj ← Object point cloud
Require: view sphere← Viewsphere point cloud
vis pairs← []
for all object point ∈ obj do
if not Eligible for grasping then
Add (object point, []) to vis pairs

else
region of visibility ← []
for all view point ∈ view sphere do
raytrace object point→ view point
if not raytrace occluded and view point satisfies angle criteria then
Add view point to region of visibility

end if
end for
Add (object point, region of visibility) to vis pairs

end if
end for

Grasp Pairs

The second step of setup is to identify which object pairs can form grasps using

Algorithm 5. Iterating over every visible pair of grasp points, I compare them to

the criteria described in 4.5.1. Points which satisfy all the criteria are marked as

being able to form grasps with one another.

Point Distances

Finally, the distances between viewpoints are calculated using Algorithm 6. For

each visible object point, every point in its region of visibility is compared to every

point in each complimentary object point’s region of visibility. The shortest distance

to a viewpoint which can view a complimentary point is then recorded. Once this is

finished, each viewpoint that can see a viable grasp point has been marked with the

shortest distance from itself to a viewpoint that can see one of the points needed

to complete that grasp. With this step done, we are ready to calculate the optimal

37

Algorithm 5 Find Grasp Pairs

Require: obj ← Object point cloud
Require: view sphere← Viewsphere point cloud
Require: vis pairs← List of (object point,[view point]) pairs
grasp pairs← []
for all object point ∈ obj do
if not vis pairs[object point] == [] then
for all later object point ∈ obj do
if later object point and object point form a grasp then
Add object point to grasp pairs[later object point]
Add later object point to grasp pairs[object point]

end if
end for

end if
end for

path from any start point on the viewsphere.

5.2.2 Optimal Path Finding

After Algorithms 4, 5, and 6, Algorithm 7 produces a triple consisting of

(Shortest Path Length, First point in path after s, Second point in path after s).

This is done with brute force search. Beginning at the camera’s start position,

the distance to each viewpoint which can see at least one valid grasp point in the

sphere is calculated. Then, the distance calculated in Algorithm 6 is added, to find

the shortest full path that connects the start to the first viewpoint to a second

viewpoint, with a valid grasp being visible along the path. This is repeated for each

point, and the shortest total distance and the two viewpoints defining that shortest

path are returned.

38

Algorithm 6 Find Point Distance

Require: obj ← Object point cloud
Require: vis pairs← List of (object point,[view point]) pairs
Require: grasp pairs← List of (object point, object grasp partner point) pairs
partner dist list← []
partner list← []
for all object point ∈ obj do
for all view point ∈ vis pairs[object point] do
best dist← infinity
current dist← infinity
partner ← -1
if not partner list[view point] == [] then
best dist← partner dist list[view point]
current dist← partner list[view point]

end if
for all partner object point ∈ grasp pairs[object point] do
for all partner view point ∈ vis pairs[partner object point] do
current dist ← spherical distance between view point and
partner view point
if current dist < best dist then
best dist← current dist
partner ← partner view point

end if
end for

end for
partner dist list[view point] ← best dist
partner list[view point] ← partner

end for
end for

39

Algorithm 7 Find Shortest Path From Start

Require: start point← Point at radius r that the camera begins at
Require: obj ← Object point cloud
Require: view sphere← Viewsphere point cloud
insert start point into view sphere
insert start point into the vis pairs of any object point it can view, using the
criteria in Algorithm 4
best dist← infinity
current dist← -1
partner ← -1
for all [view point,distance to partner] ∈ partner dist list do
current dist ← spherical distance between start point and view point +
distance to partner
if current dist < best dist then
best dist← current dist
partner ← view point

end if
end for
return [best dist, partner, partner list[partner]]

5.2.3 Runtime Analysis

Let d be the number of points in the viewsphere, and n be the number of points in

the object.

Algorithm 4 iterates over all points in the viewsphere for each point in the object,

and so runs in O(d ∗ n) time.

Algorithm 5 iterates over all later points in the object for each point in the region

of visibility for each point in the object, and so runs in O(n∗d∗n) = O(n2 ∗d) time

(though in practice the region of visibility is much smaller than d).

Algorithm 6 iterates over all viewpoints (O(d)) in the complimentary points’ (O(n))

region of visibility for each point in the region of visibility (O(d)) for each point in

the object (O(n)), and so runs in O(d ∗ n ∗ d ∗ n) = O(n2 ∗ d2) time (though again

this is an extreme worst case scenario).

Thus the setup for Algorithm 7 runs in O(n2∗d2) since none of the above algorithms

40

are called more than once or call each other. Algorithm 7 itself runs in O(max(n, d))

time, since testing the visibility of the start point takes O(n) time and comparing

the distances takes O(d) time. At useful levels of viewsphere density d >> n, so

Algorithm 7 runs in O(d) time.

5.2.4 Proof of Correctness

I claim:

Theorem 1. There exists a truly shortest path P=s→ x1 → x2 which views c1 and

c2, where x1 and x2 are viewpoints of distance r from the object center. x1 and x2

need not be present in V.

Remark. Please note that s, x1, and x2 do not need to be separate points- I have

empirically observed situations in which the camera’s start position can view both

grasp points immediately, so s = x1 = x2!

Proof of Theorem 1. Consider the sets of all points which can view c1 and c2 from

distance r, A and B respectively.

Now, consider each point ai ∈ A. Since we are operating in a great-circle distance

space, there is a shortest path from each ai to B. Take that path length and add

the distance xi → ai.

Repeat ∀ai ∈ A. One of these paths must be shortest or tied for shortest, so the

claim holds.

Theorem 2. Algorithm 7 produces a path containing a valid grasp, that is, P’=s→

v1 → v2 which views c1 and c2.

Proof of Theorem 2. Because all object points considered by Algorithm 7 satisfy G,

if the algorithm produces any path, that path will contain a valid grasp.

41

By assumption 2, if a point satisfies G, it will be visible from V.

By assumption 1, there are at least two points on V which can produce a working

path.

Since Algorithm 7 is exhaustive, every point on V will be considered.

Thus, Algorithm 7 will produce an output containing a valid grasp, and so the claim

holds.

Theorem 3. P’ is the shortest possible path that contains a valid grasp considering

only the points in V, satisfying the problem statement.

Proof of Theorem 3. Assume to the contrary that there exists a shorter path P”=s→

va → vb.

The shortest path connecting any three points on a sphere will consist of two great

circle distances, so P” must consist of two great circle distances whose sum is smaller

than the sum of P’s distances.

But Algorithm 7 is exhaustive and checks for this condition, so if P” existed, Algo-

rithm 7 would have selected it instead of P’, a contradiction.

Theorem 4. L(P’) ≥ L(P).

Proof of Theorem 4. Let A be the region of visibility for c1, B be the region of

visibility for c2.

Algorithm 4 cannot mark points outside of A or B as viewing c1 and c2, so v1 and

v2 must be elements of A and B respectively.

Since P is the shortest path between A and B,P ′ must be at least as long as it, so

the claim holds.

Theorem 5. L(P’) - 3*m ≤ L(P), where m is the maximum separation between a

point in V and it’s nearest neighbor in V.

42

Proof of Theorem 5. Consider the optimal path P connecting s, v1, and v2. By

definition of m, ∃ at least one point vi ∈ V within m distance of any other point

∈ V .

By assumption 2, there is guaranteed to be at least one point ∈ V which is also ∈ A.

So, for any points xa and xb, ∃va, vb ∈ V such that the distance from xa to va ≤ m.

Thus, within V, there must be a path P ′ = s → va → vb which satisfies Condition

1.

Now consider the subsections of that path, s→ va and va → vb.

If va and vb are displaced by m away from xa and xb in opposite directions of one

another, L(va → vb) = L(xa → xb) + 2m.

Likewise, if va is displaced from xa by m in the opposite direction of s, L(s→ va) =

L(s→ xa) +m. s cannot be displaced because it is an artificial point.

Both conditions can occur iff va, s, and vb are colinear with s between va and vb. In

this case, L(P ′) = L(P) + 3m.

In any other case, L(P ′) must be smaller, since otherwise you would need to increase

the length of at least one of the subsections of P ′. But each subsection is displaced

as far as possible- if va is more than m from xa, by assumption 2 there is another

point closer to xa which can view it, and so va would not be selected. Likewise for

vb.

Thus, P ′ can be at most 3m longer than P , and so the claim holds.

5.3 Simulation Experiments

I used YCB Dataset object models to empirically measure the performance of this

approach [54]. Each object was loaded as a point cloud from the provided .ply file

43

and then the shortest path was estimated using Algorithm 7 at varying point cloud

densities and by BFS taking 20o steps as in the discrete study.

Figure 5.1: Empirical measurement of m, the maximum separation between closest
viewpoints on a viewsphere of given density.

5.3.1 Viewsphere Generation

Generating evenly spaced points on a viewsphere is a subject of significant inter-

est, and true even spacing is an open question in mathematics. Fortunately, the

Fibonacci Lattice provides a good approximation [53], which will place points arbi-

trarily close to any point on the viewsphere as the density increases. Note, however,

that the distance between an arbitrary point and the closest point on the view-

sphere will decrease on average, but it will not decrease monotonically- in many

cases increasing the viewsphere density will move the closest point farther from it.

I can guarantee that this distance will not increase by more than 1/2 the maximum

empirical distance between two points on the viewsphere, which I have measured

44

for a sample of densities and present in Figure 5.1.

5.3.2 Visibility Determination

In this work, visibility is defined by ray-tracing- two points are visible from each

other if no other object point occupies a voxel in a straight line between the two of

them. I added the additional requirement that to count as being visible, the object’s

normal must be within 60o of the viewpoint as shown in Figure 5.2. This was done

to improve realism; without this constraint the camera can “view” objects that are

directly perpendicular to it.

Figure 5.2: Demonstration of the visibility constraints imposed in this project. Po-
tential viewpoints (in green) of the object point (shown by the large green sphere)
must lie within 60 degrees of the intersection of the object point’s normal with the
viewsphere.

45

5.3.3 Comparison of Continuous to Discrete Searches

I initially expected continuous searches to be strictly better than discrete searches,

but at very low viewsphere densities the discrete can produce shorter paths than the

continuous search. Even at very high densities, it is possible for the discrete path to

be coincidentally very close to the optimal path, and so outperform the continuous

search. However, in practice, at even very low densities the continuous search quickly

outperforms the discrete search in both the average and worse case scenarios. When

the viewsphere contains at least 2,000 points, the average result for continuous search

on all objects tested outperforms the discrete average by more than the pessimal

margin of error, showing that the continuous average shortest path must be shorter

than the discrete average shortest path. Distances are measured in degrees along

the viewsphere, according to great circle distance. Once the density is increased

to 6,000 points, the average improvement is at least 3.09o (a 7.73% decrease from

the continuous average) and ranges as high as 14.8o (a 19.55% decrease). Higher

densities lead to continued improvement.

Additionally, the runtime of the continuous search is dependent on the density

of the viewsphere and object, but totally independent of the length of the optimal

path. The discrete search on the other hand becomes exponentially more expensive

with the number of steps in the path, making finding either long paths of finely

detailed paths prohibitively expensive. Thus, for many cases, the continuous search

is not only higher fidelity but faster to run than the discrete case. As Figure 5.5

shows, continuous searches on viewspheres less than 2,000 points in size are faster

across all metrics than their discrete counterparts, but offer higher quality solutions

as shown in Figure 5.3.

46

Figure 5.3: Comparison between average solutions for each object at various view-
sphere densities and the pessimal possible solution at 6,000 points. That is, I as-
sumed that the 6,000 point average was off by as much as possible, then subtracted
it from all lower density solutions to find the maximum possible improvement. The
green “difference” class shows the absolute difference between epsilons for each den-
sity.

5.3.4 Approximations of True Optimal Paths

In addition to the ceiling on error Theorem 5 gives us, Theorem 4 also provides

an absolute floor on the difference between the true optimal path and the results

of Algorithm 7. From this, we can calculate the range of possible lengths of the

optimal path Pd for a viewsphere of density d as falling between

P ′
d ≥ Pd ≥ P ′

d − (3 ∗md) (5.1)

47

Figure 5.4: Comparison between average solutions for each object at various view-
sphere densities and the pessimal possible solution at 10,000 points. As you can
see, in both cases the typical performance improves much faster than the worst case
performance.

If we have data for multiple densities D = d1, d2, ...dn, PD is bounded by

maxd∈D(P
′
d) ≥ PD ≥ mind∈D(P

′
d − (3 ∗md)) (5.2)

This means that while the optimal value is always within (3 ∗md) of the returned

value, it is possible for even lower density results to further restrict this range. In the

best case in my testing, I was able to restrict the optimal value to a range of 2.84o by

combining data from 200 to 10,000 points, which only guarantees an optimal range

of 6.08o. More typical results are displayed in Figures 5.6, 5.7, and 5.8 for a sample

of objects identified as easy, medium, and hard to grasp in our previous work.

48

Figure 5.5: Comparison between observed runtimes for discrete searches and contin-
uous searches at different resolutions. All values were found by running 100 searches
and averaging the time taken over all of them.

5.3.5 Empirical Performance of Continuous Search

From Theorem 5 we know an absolute upper bound on the amount of error Algo-

rithm 7 can return for a given viewsphere density. But in practice, I expected the

error to be lower- on average the true optimal path point will be off by 1/2 m, not

the worst case of 1 m. Measuring this directly is complicated by the fact that we

never find the true optimal path, only the epsilon range around it. As a proxy,

we can measure the difference between returned distances at various point densities

and the returned distance at the highest density, assuming that the highest density’s

values are off by as much as possible. This assumption is clearly wrong, but useful

for visualizing the rate of approximation refinement. The results can be seen in

Figures 5.3 and 5.4. Empirically, the average path length returned is far lower than

the expected worst-case path length.

49

Object
Discrete

Difficulty
200 pts 600 pts 1000 pts 2000 pts 6000 pts Average

005 tomato soup can Easy 0.25 0.23 0.35 0.30 0.29 0.28

025 mug Easy 0.24 0.24 0.28 0.33 0.24 0.27

013 apple Medium 0.11 0.14 0.21 0.19 0.22 0.17

021 bleach cleanser Medium 0.20 0.21 0.25 0.20 0.20 0.21

035 power drill Medium 0.16 0.16 0.22 0.18 -0.07 0.13

055 baseball Medium 0.14 0.17 0.18 0.16 0.19 0.17

010 potted meat can Hard 0.41 0.42 0.41 0.41 0.18 0.36

008 pudding box Hard 0.29 0.20 0.22 0.18 -0.21 0.14

003 cracker box Hard 0.14 0.23 0.12 0.20 0.15 0.17

006 mustard bottle Hard 0.18 0.20 0.25 0.22 0.45 0.26

072-a toy airplane Hard 0.22 0.31 0.31 0.18 0.20 0.24

Average N/A 0.21 0.23 0.25 0.23 0.17 0.22

Table 5.1: Calculated ratios between the results achieved at each point density and
the pessimal expectation. Pessimal values are based on the 10,000 point results in
the same way Figures 5.3 and 5.4; the 10,000 point result is assumed to be off by
3m10,000 and the resulting value is the “true” optimum. Pessimal expectations are
calculated by adding 3md-3m10,000 to this result for each value of md at each point
cloud density. Negative ratios are possible, and indicate a better result was achieved
at the current point cloud density than the 10,000 point cloud.

Table 5.1 quantifies much better the average results are than the pessimal results.

This was calculated by taking the data from Figure 5.4 and expressing it as a

ratio, rather than a raw value. For example, the 200 point sample for object 005

has a ratio of 0.25, indicating that average distance achieved for that object using

only 200 points was 25% the length it would be expected to in the worst case

scenario. If every result were the worst case, every entry in the table would be a 1.

Entries above 1 would show sub-worst case performance, and should be impossible.

Interestingly, there is no clear connection between object difficulty and improvement

50

with increased density. The object with the worst empirical performance was the

potted meat can (010), a hard object, but the best empirical performance was found

for the power drill (035), a medium object.

We can observe from Table 5.1 that the average result returned is only 22% the

length of the worst case result that could be returned, confirming that the typical

behavior is much closer to the true values than the worst case suggests. In fact, it

is even closer than I expected- none of the samples exceed half the length of the

expected worst case. This suggests that while the algorithm can only guarantee a

path 3m longer than optimal, in practice it typically returns a path 0.7m longer

than optimal.

Figure 5.6: Calculated possible ranges of the optimal path length for an “Easy”
object. Three initial viewpoint angles were selected for demonstration. Here, and
in the following images, the range of possible optimal path lengths narrows as more
information is acquired with each run.

51

Figure 5.7: Calculated possible ranges of the optimal path length for a “Medium”
object. Three initial viewpoint angles were selected for demonstration.

Figure 5.8: Calculated possible ranges of the optimal path length for a “Hard”
object. Three initial viewpoint angles were selected for demonstration.

52

Chapter 6

Conclusion and Future Work

I have demonstrated a technique to approximate true optimal paths for active vision

along a continuous viewsphere, and proved that this method can be made arbitrarily

close to the true paths by increasing the viewsphere density. I have used simulations

to explore the typical, rather than worst case, behavior of this approach on a variety

of YCB objects. From this, we can conclude

1. There are significant gains to be had by moving in continuous rather than

discrete space for this active vision task.

2. Searching the continuous space to a known margin of error can be less com-

putationally expensive than searching the discrete space.

3. The estimates for optimal path length continuous searching produces are more

useful for classifying object difficulty than the discrete path estimates, since

they consistently fall closer to the theoretical optimum.

Epsilon-optimal continuous path planning has limitations. The setup step is

computationally expensive, and so the technique is most useful for repeated dis-

tance queries. More significantly, the setup requires complete foreknowledge of the

53

object, making it unhelpful for path planning “in the field”. Both of these lim-

itations are inherent to my problem approach, and cannot be solved by iterative

improvement. Fortunately, there are two promising use cases for the technique: as

a benchmark to compare algorithms, and as an expert demonstration for machine

learning techniques.

When we were restricted to the discrete case, we could not fairly benchmark

continuous algorithms because they could find shorter solutions than the best so-

lutions discrete approaches could produce. By using continuous optimal paths, we

can now directly compare any active vision algorithm for grasping by measuring

its deviation from the optimal length.This will allow for better benchmarking by

comparing absolute performance instead of relative performance, which will clarify

how much future improvement is possible. A follow up study should be performed

to compare typical active vision strategies and determine how much each one can

improve.

Furthermore, the technique for finding epsilon-optimal continuous paths is de-

liberately flexible and open to expansion. Other researchers will be able to add

constraints or alternate grasping standards to adapt the technique to their own

work. Adapting this approach to grippers with more than two fingers will require

more work; nonetheless, the same framework of dividing the viewsphere into regions

of visibility and finding paths between enough regions of visibility to construct a

grasp should be applicable.

Finally, the existence of epsilon-optimal paths for this active vision problem

enables new approaches. Because it is difficult for humans to produce good camera

paths, past machine learning approaches have needed to develop their policies from

naive starting policies. In the future, I plan to investigate using epsilon-optimal

paths as an expert demonstration for reinforcement learning.

54

Bibliography

[1] S. Natarajan, G. Brown, and B. Calli, “Aiding grasp synthesis for novel ob-
jects using heuristic-based and data-driven active vision methods,” Frontiers
in Robotics and AI, vol. 8, 2021.

[2] S. Caldera, A. Rassau, and D. Chai, “Review of deep learning methods in
robotic grasp detection,” Multimodal Technologies and Interaction, vol. 2, p. 57,
Sep 2018.

[3] U. Viereck, A. Pas, K. Saenko, and R. Platt, “Learning a visuomotor controller
for real world robotic grasping using simulated depth images,” in Proceedings
of the 1st Annual Conference on Robot Learning (S. Levine, V. Vanhoucke,
and K. Goldberg, eds.), vol. 78 of Proceedings of Machine Learning Research,
pp. 291–300, 2017.

[4] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable pre-
dictive uncertainty estimation using deep ensembles,” in Proceedings of the 31st
International Conference on Neural Information Processing Systems, NIPS’17,
p. 6405–6416, Curran Associates Inc., 2017.

[5] C. Wang, X. Zhang, X. Zang, Y. Liu, G. Ding, W. Yin, and J. Zhao, “Feature
sensing and robotic grasping of objects with uncertain information: A review,”
Sensors, vol. 20, p. 3707, Jul 2020.

[6] A. Saxena, L. Wong, M. Quigley, and A. Y. Ng, “A vision-based system for
grasping novel objects in cluttered environments,” Springer Tracts in Advanced
Robotics Robotics Research, p. 337–348, 2010.

[7] Z. Zheng, Y. Ma, H. Zheng, Y. Gu, and M. Lin, “Industrial part localization
and grasping using a robotic arm guided by 2d monocular vision,” Industrial
Robot: An International Journal, vol. 45, no. 6, p. 794–804, 2018.

[8] L. Pinto and A. Gupta, “Supersizing self-supervision: Learning to grasp from
50K tries and 700 robot hours,” in Proceedings - IEEE International Confer-
ence on Robotics and Automation, vol. 2016-June, pp. 3406–3413, Institute of
Electrical and Electronics Engineers Inc., jun 2016.

55

[9] F. J. Chu, R. Xu, and P. A. Vela, “Real-world multiobject, multigrasp de-
tection,” IEEE Robotics and Automation Letters, vol. 3, pp. 3355–3362, oct
2018.

[10] A. Kurenkov, J. Ji, A. Garg, V. Mehta, J. Gwak, C. Choy, and S. Savarese,
“DeformNet: Free-form deformation network for 3D shape reconstruction from
a single image,” in Proceedings - 2018 IEEE Winter Conference on Applications
of Computer Vision, WACV 2018, vol. 2018-January, pp. 858–866, Institute of
Electrical and Electronics Engineers Inc., may 2018.

[11] H. Zhang and Q. Cao, “Fast 6D object pose refinement in depth images,”
Applied Intelligence, vol. 49, pp. 2287–2300, jun 2019.

[12] G. Du, K. Wang, S. Lian, and K. Zhao, “Vision-based robotic grasping from
object localization, object pose estimation to grasp estimation for parallel grip-
pers: a review,” Artificial Intelligence Review, vol. 54, pp. 1677–1734, mar
2021.

[13] M. Salganicoff, L. H. Ungar, and R. Bajcsy, “Active learning for vision-based
robot grasping,” Machine Learning, vol. 23, no. 2-3, p. 251–278, 1996.

[14] S. Khalfaoui, R. Seulin, Y. Fougerolle, and D. Fofi, “View planning approach for
automatic 3D digitization of unknown objects,” in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 7585 LNCS, pp. 496–505, Springer Verlag, 2012.

[15] J. Daudelin and M. Campbell, “An Adaptable, Probabilistic, Next-Best View
Algorithm for Reconstruction of Unknown 3-D Objects,” IEEE Robotics and
Automation Letters, vol. 2, pp. 1540–1547, jul 2017.

[16] X. Fu, Y. Liu, and Z. Wang, “Active Learning-Based Grasp for Accurate In-
dustrial Manipulation,” IEEE Transactions on Automation Science and Engi-
neering, vol. 16, pp. 1610–1618, oct 2019.

[17] B. Calli, M. Wisse, and P. Jonker, “Grasping of unknown objects via curvature
maximization using active vision,” in 2011 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 995–1001, 2011.

[18] E. Arruda, J. Wyatt, and M. Kopicki, “Active vision for dexterous grasping
of novel objects,” in 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 2881–2888, 2016.

[19] L. Paletta and A. Pinz, “Active object recognition by view integration and
reinforcement learning,” Robotics and Autonomous Systems, vol. 31, pp. 71–86,
2000.

56

[20] B. Calli, W. Caarls, M. Wisse, and P. P. Jonker, “Active vision via extremum
seeking for robots in unstructured environments: Applications in object recog-
nition and manipulation,” IEEE Transactions on Automation Science and En-
gineering, vol. 15, no. 4, pp. 1810–1822, 2018.

[21] B. Rasolzadeh, M. Björkman, K. Huebner, and D. Kragic, “An active vision
system for detecting, fixating and manipulating objects in the real world,” The
International Journal of Robotics Research, vol. 29, pp. 133 – 154, 2010.

[22] B. Calli, W. Caarls, M. Wisse, and P. Jonker, “Viewpoint optimization for
aiding grasp synthesis algorithms using reinforcement learning,” Advanced
Robotics, vol. 32, no. 20, pp. 1077–1089, 2018.

[23] D. Gallos and F. Ferrie, “Active vision in the era of convolutional neural net-
works,” in 2019 16th Conference on Computer and Robot Vision (CRV), pp. 81–
88, 2019.

[24] G. de Croon, I. Sprinkhuizen-Kuyper, and E. Postma, “Comparing active vision
models,” Image and Vision Computing, vol. 27, no. 4, pp. 374–384, 2009.

[25] P. Ammirato, P. Poirson, E. Park, J. Košecká, and A. C. Berg, “A dataset
for developing and benchmarking active vision,” in 2017 IEEE International
Conference on Robotics and Automation (ICRA), pp. 1378–1385, 2017.

[26] V. Karasev, A. Chiuso, and S. Soatto, “Control recognition bounds for visual
learning and exploration,” in 2013 Information Theory and Applications Work-
shop (ITA), pp. 1–8, 2013.

[27] E. S. Low, P. Ong, and K. C. Cheah, “Solving the optimal path planning of a
mobile robot using improved Q-learning,” Robotics and Autonomous Systems,
vol. 115, pp. 143–161, may 2019.

[28] M. J. Bency, A. H. Qureshi, and M. C. Yip, “Neural Path Planning: Fixed
Time, Near-Optimal Path Generation via Oracle Imitation,” IEEE Interna-
tional Conference on Intelligent Robots and Systems, pp. 3965–3972, nov 2019.

[29] E. W. Dijkstra, “A Note on Two Problems in Connexion with Graphs,” Nu-
merische Mathematik, vol. 1, pp. 269–271, 1959.

[30] K. Magzhan and H. M. Jani, “A Review And Evaluations Of Shortest Path
Algorithms,” INTERNATIONAL JOURNAL OF SCIENTIFIC TECHNOL-
OGY RESEARCH, vol. 2, no. 6, pp. 99–104, 2013.

[31] S. E. Drayfus, “AN APPRAISAL OF SOME SHORTEST-PATH ALGO-
RITHMS,” 1963.

57

[32] V. Paschos, “An overview on polynomial approximation of np-hard problems,”
Yugoslav Journal of Operations Research, vol. 19, no. 1, 2016.

[33] R. Solovay and V. Strassen, “A fast monte-carlo test for primality,” SIAM
Journal on Computing, vol. 6, no. 1, pp. 84–85, 1977.

[34] M. Thorup and U. Zwick, “Approximate Distance Oracles,” Journal of the
ACM, vol. 52, no. 1, pp. 1–24, 2005.

[35] K. Blind, M. Böhm, P. Grzegorzewska, A. Katz, S. Muto, S. Pätsch, and
T. Schubert, “Study about the impact of open source software and hardware
on technological independence, competitiveness and innovation in the eu econ-
omy,” 2021.

[36] L. M. Haddad, P. Annamaraju, and T. J. Toney-Butler, “Nursing shortage,”
British Medical Journal, vol. 3, pp. 534–535, 2 2022.

[37] C. N. Agraz, M. Pfingsthorn, P. Gliesche, M. Eichelberg, and A. Hein, “A
survey of robotic systems for nursing care,” Frontiers in Robotics and AI, vol. 9,
4 2022.

[38] R. Z. Lawrence and L. Z. E. R. Lawrence, “Policy brief us employment deindus-
trialization: Insights from history and the international experience,” Peterson
Institute for International Economics, 2013.

[39] V. I. Postrel, Thread. Basic Books, 2021.

[40] E. Camiña, Ángel Dı́az-Chao, and J. Torrent-Sellens, “Automation technolo-
gies: Long-term effects for spanish industrial firms,” Technological Forecasting
and Social Change, vol. 151, p. 119828, 2 2020.

[41] P. Aghion and C. Antonin, “What are the labor and product market effects of
automation? new evidence from france,” CEPR Discussion, 2020.

[42] J. Bessen, M. Goos, A. Salomons, and W. van den Berge, “Firm-level automa-
tion: Evidence from the netherlands,” AEA Papers and Proceedings, vol. 110,
pp. 389–93, 5 2020.

[43] G. Domini, M. Grazzi, D. Moschella, and T. Treibich, “For whom the bell tolls:
The effects of automation on wage and gender inequality within firms,” SSRN
Electronic Journal, 10 2020.

[44] A. Namiki, Y. Nakabo, I. Ishii, and M. Ishikawa, “High speed grasping using
visual and force feedback,” Proceedings 1999 IEEE International Conference
on Robotics and Automation (Cat. No.99CH36288C), vol. 4, pp. 3195–3200.

[45] X. Li, X. Su, Y. Gao, and Y.-h. Liu, “Vision-Based Robotic Grasping and
Manipulation of USB Wires,” vol. 1, pp. 3482–3487, 2018.

58

[46] O. B. Kroemer, R. Detry, J. Piater, and J. Peters, “Combining active learning
and reactive control for robot grasping,” Robotics and Autonomous Systems,
vol. 58, no. 9, pp. 1105–1116, 2010.

[47] S. J. Dickinson, H. I. Christensen, J. K. Tsotsos, and G. Olofsson, “Active ob-
ject recognition integrating attention and viewpoint control,” Computer Vision
and Image Understanding, vol. 67, pp. 239–260, sep 1997.

[48] R. Cheng, A. Agarwal, and K. Fragkiadaki, “Reinforcement Learning of Active
Vision for Manipulating Objects under Occlusions,” nov 2018.

[49] D. Rakita, B. Mutlu, and M. Gleicher, “Remote Telemanipulation with Adapt-
ing Viewpoints in Visually Complex Environments,” in Proceedings of Robotics:
Science and Systems, 2019.

[50] D. Fischinger and M. Vincze, “Empty the basket - A shape based learning
approach for grasping piles of unknown objects,” in IEEE International Con-
ference on Intelligent Robots and Systems, pp. 2051–2057, 2012.

[51] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:
Machine learning in Python,” Journal of Machine Learning Research, vol. 12,
pp. 2825–2830, 2011.

[52] F. Chollet, “Keras.” https://github.com/fchollet/keras, 2015.

[53] M. Roberts, “How to evenly distribute points on a sphere more effectively than
the canonical fibonacci lattice — extreme learning,” 6 2020.

[54] B. Calli, A. Singh, J. Bruce, A. Walsman, K. Konolige, S. Srinivasa, P. Abbeel,
and A. M. Dollar, “Yale-cmu-berkeley dataset for robotic manipulation re-
search:,” http://dx.doi.org/10.1177/0278364917700714, vol. 36, pp. 261–268,
4 2017.

59

https://github.com/fchollet/keras

	Introduction
	Related Work
	Active Vision
	The Use of Optimal or Near Optimal Solutions

	Broader Impacts
	Discrete Active Vision
	Problem Statement
	Research Goals

	Comparison Framework
	Optimal: BFS
	Pessimal: Random
	Typical: Brick

	Machine Learning Methods
	Data Collection
	Data Compression
	Self Supervised Learning
	Deep Q Learning

	Heuristic Methods
	2D Heuristic
	3D Heuristic

	Discrete Testing
	Grasp Synthesis
	Discrete Results

	Epsilon-Optimal Path Planning
	Problem Statement
	Proposed Algorithm
	Setup
	Optimal Path Finding
	Runtime Analysis
	Proof of Correctness

	Simulation Experiments
	Viewsphere Generation
	Visibility Determination
	Comparison of Continuous to Discrete Searches
	Approximations of True Optimal Paths
	Empirical Performance of Continuous Search

	Conclusion and Future Work

