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Abstract

This project introduces an innovative model that transforms textual prompts into detailed

3D meshes. Utilizing advanced Neural Radiance Field (NeRF) techniques alongside a new

corner view image generation model, our project seamlessly converts verbal descriptions into

3D forms. This simplification of the modeling process enhances accessibility for everyone,

including individuals with disabilities.

At the heart of this innovation is the integration of speech input with our newly

developed text-to-3D model, facilitating a direct transition from textual descriptions to 3D

meshes. This breakthrough has immediate applications in educational settings, providing

visually impaired students with the means to physically interact with and understand com-

plex subjects through 3D printed models. Extending beyond educational applications, this

technology can significantly impact virtual reality and various forms of media design, areas

where 3D modeling is becoming increasingly essential. Moreover, this tool broadens the

inclusion of diverse groups in 3D design, pushing the boundaries of traditional 3D modeling.

Please find the code to our project at:

https://github.com/JHand11/Speech-Driven-3D-Modeling
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1 Introduction

The intersection of text-driven 3D modeling and Artificial Intelligence (AI) technology allows

for an impressive future in engineering and computer science. Recently, there has been a rapid

acceleration in research and development areas hoping to realize the vision of ”automatic”

3D generation from textual prompts. This increase in interest has attracted input from

numerous major companies, each trying to build the most advanced and efficient models in

this area.

The applications of 3D models cover many industries and fields, ranging from 3D

printing and video game design to architectural visualization and interactive reality experi-

ences. As technology continues to evolve, 3D modeling is becoming effective and important

in various sectors. In STEM (Science, Technology, Engineering, and Mathematics) curricu-

lums, 3D models are becoming increasingly popular.

In recent years, there has been an effort to integrate STEMmaterial into educational

programming at every level, from elementary schools to colleges. This act aims to enact

critical thinking, problem-solving skills, and creativity among students by involving them

in hands-on, experimental learning. 3D modeling plays a pivotal role in this educational

shift giving teachers and professors a powerful tool to visualize abstract concepts, explore

challenging content, and engage in live learning experiences.

In science education, 3D models can depict molecular structures, astronomical phe-

nomena, and biological organisms, allowing students to explore these concepts in depth and

better understand our world. In math, 3D models facilitate the visualization of geometric

shapes, spatial relationships, and math concepts, making abstract theories more tangible

and accessible to students. In engineering and technology education, 3D modeling allows

students to make prototypes, simulate real-world scenarios, and experiment with engineering

principles in a simulated environment.
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The array of immersive technologies, like augmented realities (AR) and virtual

reality (VR), enhances the educational potential of 3D modeling by providing immersive,

interactive learning experiences. With AR and VR, students can explore virtual environ-

ments, interact with 3D models in real-time, and collaborate with peers in collaborative

spaces, pushing the limits of traditional classroom settings.

The ability to interact with and visualize objects plays a crucial role in understand-

ing concepts. This can create a significant barrier for those with visual impairments. The

education system relies heavily on visual ability. Within the STEM fields, this is even more

essential. The challenge is allowing visually impaired individuals the ability to interact with

objects in a different way to gain understanding.

Recognizing this challenge, our initial idea was to explore innovative solutions that

could bridge the gap between visual and tactile learning experiences. Inspired by the concept

of electronic tactile pin arrays, familiar to many as toys that allow the creation of shapes

by pressing into a grid of needles, we envisioned a more advanced solution. We considered

the potential of creating shape-shifting objects but eventually focused on a more practical

approach: leveraging recent advancements in 2D image generation to produce 3D models.

The objective was to enable the creation of mesh files for 3D printing, thereby

providing visually impaired learners with a tangible way to explore and understand educa-

tional content without the need to directly create the 3D models themselves. For example,

a teacher when preparing their lesson plans could use this to quickly create and 3D print

models for demonstrations and learning aids as they saw fit. There is no precursor of needing

to deeply understand 3D modeling software and spend hours working on one model. Within

2-3 minutes they would have a model ready to be printed and used the next day in class.

In this paper we produce a model that can produce a 3D mesh file from a simple

text prompt. This model can generate from very diverse prompts without categorical defi-

nition. It is built upon a large-scale 2D image generation model in combination with a 3D
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reconstruction model (NeRF).

Figure 1: Model results from our model with prompts shown below

It is important to recognize the great impact such technology could have on access

within educational environments. By successfully connecting the gap between visual and

tactile learning, text-driven 3D modeling allows the potential to revolutionize accessibility

for young people with visual impairments. By being freed from limitations, these young

people would be able to independently explore and understand difficult STEM concepts in

a way that was previously inaccessible.

The benefits reach further beyond the visually impaired community. All young peo-

ple can benefit from the incorporation of text to 3D modeling into the educational curricu-

lum. By presenting problems in different ways teachers can better help students understand

complex issues. The use of text-3D modeling in the classroom can foster further interest

in STEM fields for all students as well, especially if there are objects that students only

have ever seen in a 2D space. By giving them the capability to view objects in different

dimensions the possibilities are endless for exploration. The implications of this technology

can extend to many other fields within the industry. Occupations such as design, gaming,

and architecture can leverage text-3D modeling to quicken the prototyping and visualiza-
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tion cycle, reducing the costs commonly associated with 3D design tools and enhancing the

innovation timeline. The integration of AI technology and an emphasis on accessibility has

sparked a shift towards a more flexible and inclusive educational environment. We have the

opportunity to reshape the landscape of learning with text-3D modeling, allowing people of

all ages and abilities to interact with and understand complex concepts in innovative ways.
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2 Background

2.1 Impact on Accessibility

This project was created and developed with accessibility in mind. The idea came from the

discussion on the great impact 3D objects can have on the education process for visually

impaired children. Here we share some background on this pursuit and the provide evidence

for the impacts it can have on different types of individuals.

2.1.1 Education with Visually Impaired Students

Visually Impaired Students suffer from multiple disadvantages in the education system.

The main one is the deprivation of a full scale of sensory data. Audial and Tactile data

can only provide so much in the current education system through tools like audiobooks

or braille. Yes, a subject or diagram can be described and interpreted, but what about

objects that may no longer exist physically or audial descriptions just simply don’t do them

justice. An article written by Dr Radhika Kapur discusses in depth the challenges faced

by visually impaired learners. They look into the large gap that is created when a student

cannot understand concepts such as figures or objects that typically largely rely on visual

ability to understand. They recommend the use of tactile materials such as braille images

or diagrams[2]. This idea that visual access can be made up for through physical or tactile

representations further supports the use case for our work. Creating objects as diverse as

the imagination of students and educators is possible with our model in combination with

3D printing, which offers a whole new level of sensory input for visually impaired students.
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2.1.2 Simplifying 3D Model Creation

The use of 3D modeling software has typically been closed off to most of the population

through a few barriers. Most of the existing software is quite expensive for the average

individual. A few examples of these prices are 3DS Max $1,505 per year, Revit $2,250 per

year[3]. There are examples of free software that can bypass this issue including Blender.

Having enough experience to use the software effectively remains another major barrier.

Working with this type of software at the production level requires a great deal of experience

and practice. These two major points prevent many from being able to realize the benefits

of 3D modeling. This is where our model can streamline the process for many. There is no

experience necessary for using our model and it is completely open source and free.

2.2 Review of Current Models

In computer-generated content, the introduction of artificial intelligence technology,

especially deep learning models, has led to a creative boom. A branch of artificial intelli-

gence called generative AI has taken a large step in the area of 3D modeling, offering new

possibilities for automated content production. Although it is still in its early phases, the

creation of models that can translate written specifications into complex three-dimensional

models is an incredible development.

The field of generative 3D modeling is changing quickly as scientists and engineers

look to produce models that improve on the previous. This field-wide innovation propels the

creation of great solutions. However, there are few models that can quickly, cheaply, and

effectively create 3D models from textual inputs, despite the advances.

In order to tackle this obstacle, our project began with a thorough investigation

of current models and approaches within the field of text-driven 3D modeling. Using infor-

mation from several carefully examined sources including well-known projects like Shap-E,
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Dreamfusion, and Instant 3D we carried out research to understand the capabilities of ex-

isting models.

Understanding the current models and strategies, we developed a strategy to ad-

dress some of the difficulties in this area of modeling. Our approach made use of advanced

deep-learning models as well as existing frameworks for a more complete final result.

Our project aims to advance text-driven 3D modeling by combining knowledge from

previous studies, utilizing AI technology, and taking an interdisciplinary and cooperative

approach. We hope that our work will open up new avenues for artistic expression, expedite

the process of creating material, and provide a wider audience with more equitable access

to 3D modeling tools.

2.2.1 Instant 3D

We leveraged the “Instant3D: Fast Text-to-3D with Sparse-View Generation and Large Re-

construction Model”[4] paper to support our project of creating a speech-to-3D model. The

Instant 3D paper was an important resource in aiding our project because it is one of the

few published papers examining the complexities of creating a true text-to-3D model. The

instant 3D paper shows a groundbreaking approach to converting textual information into

three-dimensional models. Its central idea is the incorporation of sparse-view generation and

a large-scale reconstruction model.

How these new techniques were presented was a major part of the Instant 3D

paper and the complicated text-to-3D conversion provides valuable solutions for researchers

to tackle new problems. Instant 3D emphasizes speed, accuracy, and scalability and by

successfully implementing these techniques it has cemented its place as an important work

in the realm of 3D model generation from textual data. The paper’s primary contribution

is its ability to generate 3D models rapidly while maintaining a high level of accuracy. The

integration of sparse-view generation lets the model optimize resources without compromising
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the quality of the output model.

The use of a very large database and reconstruction model ensures that the finer

details are captured, bettering the overall quality of the 3D-generated models. These key

methodologies have set a benchmark for future research in the field of 3D model generation,

with the potential to influence subsequent projects such as ours which seeks to harness the

power of textual information for 3D model creation. Our project hinged on the development

of a speech-to-3D model, and leveraged support in the principles and techniques used by

Instant 3D.

By using the details from the Instant 3D paper, we were able to enhance our text-3D

conversion. The similarities between the challenges addressed in the Instant 3D paper and

those encountered in our project reinforce the significance of using proven methodologies to

overcome challenges associated with projects in this area. With inspiration from Instant 3D,

our project incorporated similar ideas to speed up the conversion process and improve the

accuracy of the generated 3D models. Applying these similar approaches is key to further

understanding and development within these types of models.

The Instant-3D paper is a groundbreaking publication that has the opportunity to

inspire innovation for years to come.

2.2.2 Dreamfusion

In the pursuit of advancing 3D model generation from textual data, Dreamfusion[5] is a very

important factor. Dreamfusion is a latent diffusion model, that diffuses in a latent space

rather than the original image space. This literature review explores the innovative concepts

that are introduced by Instant 3D and considers the paper’s implementation of Dreamfusion

for 3D image generation. This literature review aims to discern the key ideas derived from

Instant 3D and examine how these concepts have been used with Dreamfusion.

Dreamfusion, with its aim to advance 3D model generation, uses the principles and
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techniques from the Instant 3D paper. Our project recognizes the significance of Instant

3D’s approach and its potential to address challenges associated with converting spoken and

textual information into 3D models. The similarities between the challenges addressed in

the Instant 3D paper and those encountered in Dreamfusion underscore the importance of

using tried methodologies to overcome challenges in diverse data conversion.

Instant 3D’s approach, which focuses on sparse-view generation and a large-scale

reconstruction model, finds resonance in Dreamfusion’s efforts to make the text-to-3D con-

version process easier. The Dreamfusion method can incorporate similar ideas to enhance

the efficiency and accuracy of the generated 3D models, and we used similar ideas to build

our very own model. By incorporating Instant 3D’s concepts into Dreamfusion, it not only

validates the efficacy of the former’s approach but also opens lanes for more exploration and

improvement in text-to-3D conversion.

Dreamfusion’s utilization of proven methods taken from Instant 3D emphasizes that

continuous research drives innovation. To conclude, Instant 3D has left an indelible mark

on the landscape of 3D model generation from text data. The Dreamfusion method derived

in part from Instant 3D shows the ongoing influence and relevance of the seminal work in

text to 3D generation. The collaboration between innovative projects like Dreamfusion and

Instant 3D leads the way for continued advancements in the ever-changing field of text-to-3D

conversion, inspiring future research and innovation for the foreseeable future.

2.2.3 Shap-E

Shape-E[6] is the latest frontier of conditional generative models for 3D assets. Shap-E

differentiates itself from newer work in 3D generative models by emphatically generating

parameters of implicit functions. Different from models that produce a single output rep-

resentation, Shap-E’s approach allows for the generation of textured meshes and neural

radiance fields. The training of Shap-E unfolds in two stages: first, an encoder is trained
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to determine the map of 3D assets needed to make the parameters of an implicit function.

Then the training of a conditional diffusion model on the outputs of the encoder.

The utilization of a large dataset featuring paired 3D and text data lets Shap-E

generate complicated and diverse 3D assets quickly. Open AI has two models in this area.

Shap-E and Point-E Shap-E has the ability to generate 3D meshes while Point-E generates

simple point clouds. They are both effective models and reference and strategy can be

inferred from both.

Shap-E’s direct contribution lies in its ability to directly generate implicit parame-

ters, enabling the rendering of textured meshes and neural radiance fields. This cutting-edge

approach adds a layer of versatility to 3D asset generation, allowing for different representa-

tions with efficiency. The two-stage training process, which involves an encoder and a condi-

tional diffusion model, reflects a strategy that contributes to Shap-E’s quick convergence and

noteworthy sample quality. Shap-E’s performance comparison with Point-E highlights its ca-

pability and effectiveness, showcasing the potential for improvements in multi-representative

output spaces. The rollout of model weights, inference code, and samples underscores Shap-

E’s mission of fostering collaboration and technical breakthroughs in the field giving resources

and practitioners valuable resources to advance model generation. In the malleable space of

3D models, Shap-E is now a notable player, challenging the boundaries of what is achievable

in terms of speed, quality, and diversity in 3D asset generation.
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3 Methodology

Our model adopts a comprehensive two-stage approach to address the intricate challenge of

changing textual prompts into 3D models. In figure 2 we have a graphic that shows the basic

flow of our methodology. To start, we use a complex image grid generation process, which

involves the arrangement of multiple images to show various perspectives of the intended

object. This first stage sets the foundation for the following 3D reconstruction stage.

Figure 2: Methodology: Speech Input-Text Prompt-2D Image Grid- Output 3D Model

After the image grid generation, we start on the refinement of a Neural Radiance

Field (NeRF) generator, a deep learning architecture known for its ability to reconstruct

detailed 3D scenes from little input data. In this phase, we mold the One-2-3-45[1] NeRF

model to our specific application, fine-tuning its parameters and architecture to optimize

performance.

By integrating these two stages, our strategy of a combination of image-processing

techniques and advanced neural network architectures. This approach enhances the accu-

racy of 3D model generation and ensures application across many textual inputs. Through

experimentation and refinement, we aim to push the bounds of text-driven 3D modeling and

pave the way for advancements in this ever-growing field.

3.1 Stage One: Image Grid Generation

The first stage was to take a text prompt and create an array of images taken from different

viewpoints around an object. The Instant3D paper[4] references the ability to finetune the
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SDXL[7] model with this capability.

The first step in finetuning the SDXL model for our purpose was to create the

training data. For this we needed to render images of objects within the objaverse dataset[8].

The Objaverse dataset was used as it was the largest available dataset with caption to model

pairs. We were able to manipulate code from the “Objaverse-rendering-main” repository on

github[9]. This code was designed to render objaverse objects in Blender and save pictures

around the objects. The script was run on the entire dataset in order to prepare all the data

for relevant filtering and training. This produced 4 512x512 image files at 90-degree angles

around each object from a viewing angle of 20 degrees looking down towards the center.

Figure 3: Ground truth versus inferred generation example. Left: True Front View, Middle:
True Right View, Right: Inferred Right Corner View

Our major change in this area was taking the images at 45-degree offsets instead of

the 4 azimuth angles. This provided more detail for the second stage of the model. Pictures

from the azimuth can leave much up to the creativity of the generation model because it will

largely only give information on one side of the object. This type of result can be seen in

figure 3 as the inferred view from the corner is much different than the truth on the other

side. The model will create its own ground truth when provided with little inference. When

pictures are taken at the “corners”, the 2 sides are now “understood” by the generation

model. This type of result can be seen in figure 4. The corner view leads to two more views

that are highly accurate to the ”truth”. This is so important because in order to produce a
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good quality mesh the images have to be both clear and highly similar in the different views

that overlap.

(a) Corner Generated View (b) Inferred Front View (c) Inferred Left View

Figure 4: Example of Corner View leading to consistent side views

The objaverse[8] dataset while extremely useful has the issue of containing noisy

data. There are many objects within the set that would harm the training we were trying to

perform. In order to classify images for better curation of training data we used ResNet50[10]

feature extraction. The details behind ResNet50 can be found in appendix ??. The product

of feature extraction was an array of features produced from the deep learning network tied

to each object id.

The next step comes from Instant 3D[4] procedure where we manually labeled 2000

random objects as good or bad for our classification training data. This was completed

through the use of a simple python script to display and allow labeling input stored into a

csv tying object identification to label. Good objects had a combination of both consistent

and complex geometry. There were also 3D files in the dataset that were very 2D-looking or

messy in their modeling. This classification also allowed us to filter out those objects.

An SVM was then ran on the 2000 labeled objects as training data. This trained

model was then applied to all of the objects using their extracted features as input. Scor-

ing was applied through the probability output of the model and we took the top 20,000
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probability scores for being “good” objects for SDXL[7] finetuning.

Once the 20,000 objects were selected for training the 4 images of each object were

appended into a single 1024x1024 grid image. This was done through a simple python script

on only the 20,000. Within this script the object labels (from the caption 3D objaverse

file[11]) were matched through object ids so the resulting grid images were named with the

object caption.

With the data prepared we used the built in Finetuning feature described through

the SDXL[7] github page. This training took 2 days on 2 NVIDIA RTX A5000 GPUs. The

output of this training was a model ckpt that could be used to generate image grids shown

in figure6. At this point there was now a functional model to go from text to 4 views around

an object that started to create a 3D understanding of the generated scene.

As seen some prompts and generations perform better than others. The important

part was that the model was able to generate 4 views around a mostly consistent object.

This would create the input for our second stage of the design.

3.2 Stage 2: 3D Mesh Reconstruction

In the second phase of our project, we began on the utilization of a cutting-edge Neural

Radiance Field (NeRF) model to make complex 3D models from a limited set of input

images. Delving into the area of existing models within this domain, we encountered the

”One-2-3-4-5 Project”[1] discussed further in Appendix B. This project characterized by

its innovative approach, revolves around elevating a single image into a comprehensive 3D

environment.

A common challenge encountered in the area of generating 3D models from re-

stricted input data is what is referred to as the Janus Problem. This issue discusses the

challenge of correctly reconstructing unseen regions of the model based only on input data.
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To illustrate, considering a picture of a person captured from the front might result in a

reconstructed model with a second, unanticipated face on the back of their head due to the

lack of information regarding the obscured regions. Our method avoids this challenge by

using an input consisting of four images uniformly captured from different angles around the

object. This mitigates the Janus Problem and improves the overall generation process by

providing a more complete set of visual data. A result of this 4 view input implementation

can be seen in figure 5. The single view input model infers certain views with extra or

missing parts of the model, where the 4 view input generally is much more accurate to the

”truth” of the object. It is generally in objects like humanoids, animals, and geometrically

complex objects, where our model is much more effective in consistency.

The NeRF model implementation starts with two stages of image generation. The

first stage uses a finetuned Zero123 model[12] to infer a new image of the object from the

initial four input images, rotating the object at 30-degree increments around both the x and y

axes. We use the pretrained Zero123 model checkpoint from the One-2-3-45[1] project. This

is trained through pairs of images with the camera transformation information. This idea

is similar to the SDXL finetuning principle where the 2D generation model has the ability

to generate views around one consistent object. This produces eight images, significantly

increasing the available information about the object’s appearance. Next, to enhance the

data set even more, the second stage generates an additional four images by shifting the

object picture by 15 degrees around the primary image. This new set of images is then

projected to onto the 3D plane, using estimations of the various camera poses. Finally, a

Convolutional Neural Network (CNN) is used to extract the intricate shape mesh from this

visual data, This is inspired by the original SparseNeus project[13].

In essence, our changed approach to text-driven 3D modeling not only addresses the

inherent challenges posed by limited input data but also accelerates the generation process

to new heights of accuracy and intricacy. Through the integration of updated neural network

architectures and careful data processing techniques, our project has unlocked the potential
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Figure 5: A comparison of the 8 Base images. One-2-3-45 Base model results on top. Our
Model Below.

to make detailed and realistic 3D models from textual descriptions, heralding a new era of

innovation in the field of computer-generated models.
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4 Results and Discussion

4.1 4 View Image Generation

Through the development of our project, we ran the SDXL[7] finetuning model 3 times, each

time improving certain aspects that we found were lacking in the previous version. The first

training produced good results however we did not curate input data and simply took the

first 10,000 objects from the dataset. We also did not remove backgrounds, so some of these

generations had full backgrounds or were undesirable colors for the next stage generation.

We found these results to be more cartoonish and have less consistency as the objaverse

dataset[8] contains many objects that are not desirable for this type of model. These can

be grouped as objects that are either too simple or not useful for the type of generation we

desire.

Some results from our initial training phase are shown in figure 6. These images

show four different views and offer insight into the initial capabilities of the model and high-

light areas for improvement in the different methods we used. It was clear that these images

still generally contained blurry background and were prone to mistakes in correctly generat-

ing all 4 of the azimuth views. Despite the limitations mentioned above, these results gave

a foundational understanding of the model’s performance and guided our changes moving

forward. In our other model training attempts, we recognized these issues and implemented

a stricter data validation process to ensure the quality of training images was at a higher

level. By fine-tuning our data set to include objects more conducive to our required image

generation outcomes, we tried to heighten the model’s ability to construct visually appealing

and contextually relevant images and models.

In the second stage of SDXL[7] finetuning we applied the changes as discussed in

Methodology Stage One. With this curated input dataset our output results were much
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Figure 6: Examples of Original First Stage Generation Results.

more clear and consistent.

The results shown in figure 7 were much more promising and were generally good

enough quality to be input to the One-2-3-45[1] 3D generation model. As seen in the fig-

ure background’s were consistently blank and the views were clearly showing in 90 degree

increments.

Figure 7: Examples of Adjusted First Stage Generation Results.
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4.2 3D Model Generation

In the original stage of the 3D reconstruction we just used the base One-2-3-45[1] model.

We would generate a model for each of the 4 views with some success. Some of these meshes

produced from the objects in figure 7 can be seen in figure 8. From these results it was clear

that one picture of an object can only provide so much detail for a regeneration model. The

model could predict and perform with simple objects but with the more complex the model

could not quite understand what it could not directly visualize.

Some examples of typical errors can be seen in figure 8. For the rubber duck model,

we see good generation on the side that was fed to the model, but the other side is flat and

lacks the correct geometry. On the chair, we see good shape and color in the model. However,

The arm that is opposite to the input image bows out and does not align correctly.

Figure 8: Examples of Original 3D Mesh generation results from first stage grids.

This is where we decided the 3D generation strategy needed to be adjusted. We

rewrote the One-2-3-45[1] code to take our 4 images as input and generate off of these to
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create the output mesh. With these 4 input images the model would have clear information

detailing all sides and angles of the object. The results of this new model can be seen in

figure 9.

Figure 9: Examples of Models produced from the 4 View input implementation.

This stage is where we were able to produce passable results from our original

requirements. We were still interested in upgrading the model for better quality and higher

consistency. This is where we implemented the Corner input generation as seen through the

grids seen in figure 10

The strategy of 2D 4 corner view generation combined with using all 4 of these

images as input to our newly innovated NeRF model is where the best results so far were

seen. We were solving some of the problems we set out to remedy in earlier devlopments.

4.3 Model Comparison

To augment the depth of our model evaluation, we conducted a comprehensive analysis of

the intricate nuances in the generated 3D models. These comparisons can be seen in figure

11. The first of which being against the base One-2-3-4-5 model [1]. This involved a micro-

scopic examination of various attributes such as the smoothness of the surface, geometric
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Figure 10: Examples of Grids Produced From the Corner View SDXL Checkpoint.

accuracy, and structural fidelity. By subjecting the models to rigorous examination across

these dimensions, we aim to gain a complete understanding of their perceptual quality and

functional efficacy.

Furthermore, to provide a more holistic perspective on the performance of our

model, we used feedback feedback from people within the educational community. Their

insights and help, informed by real-world experience, served to enrich our evaluation criteria

and shed light upon the real-world applicability of the generated 3D models in educational

contexts.

In addition to qualitative assessments, we used quantitative metrics to evaluate

the performance of our model objectively. Metrics such as Intersection over Union (IoU),

Mean Squared Error (MSE), and Structural Similarity Index (SSI) were used to assess the

geometric accuracy, semantic segmentation fidelity, and perceptual similarity of the generated

3D models compared to reference models.

By integrating both qualitative and quantitative evaluation methodologies, we tried

to offer a total and multi-faceted assessment of our text-driven 3D modeling approach. This
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evaluation framework not only provides a complex understanding of the capabilities and

limitations of our model but also facilitates targeted refinement and optimization efforts to

further improve its metrics and utility across diverse applications and domains.

Figure 11: Comparison of Models generated by our model vs the One-2-3-45 model

4.4 Challenges During Project Work

The development of this project went through many stages, and there were many obstacles

to overcome in order to produce a working model up to the pre-determined standards.

4.4.1 Multi-View Generation

The process of 2D image generation models being adapted to multi-view was detailed in

previous literature. When curating the input data for training we ran into multiple problems
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involving the rendering and capturing of 3D mesh files. We used a python script on the

remote Linux Machine in the VISLAB. When working thorugh a remote machine it requires

a certain setup to allow rendering in the headless environment. When we began running the

script we were failing in getting the blender application to load in each iteration because it

was not able to open headlessly. We originally tried to use screens which create a standalone

terminal session that lasts after the local machine disconnects from the remote. This allowed

continual running of our script but screens still do not provide the graphical interface needed

for the rendering task. Our solution was using an X server in combination with a terminal

screen. We used the Xvfb extension to run the rendering script. Xvfb is an X server

implentation that runs the graphical processes on virtual memory with no screen output.

With the script now rendering objects we had to balance speed and processing

capability. While trying to maximize GPU capability we would often run out of space on

the two GPUs we had access to on the machine. We settled on a final number of 6 workers

on each GPU and were able to successfully render the 4 desired views of each of the objects

in the Objaverse dataset[8].

4.4.2 3D Reconstruction

With the base model from the multi-view generation stage. We knew we needed a fast

reconstruction model that used a small number of views to generate a 3D mesh. We went

through experimentation with projects like pixelNeRF[14], however we were not able to

adapt the projects to our specific implementation. Many of these NeRF projects were Single

Image to 3D model and used various algorithms that did not allow for the adaptation of a

multi-view input.

We then discovered the One-2-3-45[1] project which through reading through their

paper and published code found evidence for the ability for adaptation and innovation. With

a project as complex as this our first barrier was fully understanding the code behind the

23



project. This took a lot of research and analysis work on their code base. We were able

to target a few areas for change involving the original processing of images. This is where

we made the discovery through failed generations, that if we began with 4 corner views we

believed the following images for input to the NeRF would be much more accurate.

4.4.3 Current Model Challenges

We created an end to end text to 3D model process as was our goal. We also were able to

generate very promising and successful results with this framework. With these successful

generations, we also have had many problem cases and failures. There are a few specific

areas where we do not see great success with our process.

When objects are majorly white in color, the model struggles to reconstruct any

type of accurate mesh. Many of these white areas are often left as empty space. This is

because the background of these images is white and the model understands this color as

the empty space when shaping the mesh. A result where we see a specific instance of this

can be seen in figure 12.

Figure 12: A Teddy Bear Model with a major defect in the white area of its chest

There are some instances with much more complex objects where the multiview

generation is inconsistent. Typically when we see this error there is one view that is repeated

24



twice. Some examples of this type of error can be seen in figure 13. This leads to poor

rendering as there is incorrect information being fed to the second stage that it cannot

directly fix. These types of generation models are never going to be perfect. However, it is

about training them to be as accurate as possible. To attempt to fix this problem we would

have to conduct a data review and look further into different training strategies to improve

consistency.

Figure 13: A Grid Result of a Watch and a Piano, both with one view repeated

Through our experimentation we have found that prompting is important for suc-

cessful generation. The 2D image generation model is trained on a highly diverse dataset,

and as such is extremely creative. We have found that being more specific in the desired

model is much more effective. For example, when running most of our prompts we found the

strategy of using the format ””Realistic” ”object description” ”3D Model””. When these two

terms are left out there can be generations that are slightly two-dimensional or cartoon-like.

This is something we would want to remedy in future work because in application it is not

desirable to have to use specific keywords when prompting the model.

One issue that we currently run into is that with our GPU capacity, we cannot use

a high-level mesh resolution. The framework of the reconstruction model is built to have

an adjustable resolution, but our hardware only allows us to go up to a resolution of about
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700. Simple objects can be represented accurately with this model, but objects with complex

geometries are more difficult to represent, so typically these surfaces are smoothed.

4.5 Future Work

This project was developed through the exploration of many different options in both of

the two stages of generation. In this section we discuss what we see as further areas for

improvement and innovation in relation to this area of work.

When developing our image grid generation model, we used the Objaverse 1.0

dataset [8]. When looking at areas to improve we discovered the Objaverse XL dataset [15].

The Objaverse XL dataset is over 10 times larger than the 1.0 set. Using our strategy to

curate the 1.0 data, we would also be able to filter the XL dataset down to its best objects.

We see this as having higher quality of data which would lead to increased accuracy and

ability in the image grid generation. Through our work and experiments with the model

when the second stage is fed clean data in the 4 corner images, it is highly successful at

constructing an accurate and consistent 3D mesh.

This work has brought up the topic if it is possible to directly model from text to

3D models. Currently, the projects in this area majorly use a 2 stage approach with the

first doing some form of image generation. Text straight to 3D would involve a model that

could map the textual information to planes and vertices in the 3-dimensional space. With

the expansion of Artificial Intelligence and Machine Learning, it is not out of the picture

for a model like this to be developed. The major missing piece right now is the available

data for a model like this. For example the SDXL model [7] was trained on over 100 million

text image pairs. The text to 3D dataset would need to be created and filtered in order to

attempt this type of model training.
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5 Conclusion

This project represents the power of technology in fostering inclusive education and advanc-

ing accessibility initiatives. Through the integration of Neural Radiance Fields (NeRF) and

corner view generation methods, we have not only pushed the boundaries of 3D modeling

but have also opened new avenues for educational innovation. The significance of our work

is not only in its technical ability but also in its potential to address longstanding shortcom-

ings in education. By using the capabilities of text-driven 3D modeling, we have provided

opportunities for enhancing learning experiences for all students.

One of the most interesting aspects of our approach is its potential to equalize

access to a full education. For visually impaired students, who face significant barriers to

traditional learning materials, our model represents an opportunity to interact with a world

of knowledge previously inaccessible. By providing tactile learning aids taken from textual

prompts, we empower these students to understand complex concepts in a meaningful and

immersive way. Our model has far-reaching implications beyond education. The ability to

make detailed 3D models from textual descriptions has the potential to change how we create

and interact with digital content.

Our project also shows the power of collaboration in pushing innovation. By bring-

ing together experts from fields as different as computer science, and education, we can create

a culture of creativity and collaboration that will lead to success for all. We will continue to

understand the potential applications of technology as it evolves. Research can contribute

to a future where technology is a force for positive change in people’s lives by pushing the

boundaries of what is possible.

To conclude, our project represents more than just a technical achievement. It is a

symbol of progress and possibility. We believe that through this type of technology education

can truly become accessible to all.
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Appendices

A ResNet50

ResNet50 is a type of model that allows complex understanding of images. This

specific model is made up of 50 different layers that each have separate extraction purposes

such as edges colors or shapes. The model is able to extract very quickly due to the use of

skip connections. These are basically shortcuts for the model that allow it to learn quicker.

It was used specifically to extract these features and these features were then input into an

SVM for a binary classification task for SDXL data curation. ResNet50 was derived from

ResNet34 which is comprised of 34 weighted layers. ResNet34 provides a way to add more

convolutional layers to a CNN, without hitting the vanishing gradient problem, using the

method of shortcut connections. Shortcut connections skip over some layers, converting a

regular network to a residual network. ResNet50 on the other hand has an architecture based

on a bottleneck for building blocks. A bottleneck residual block uses 1x1 convolutions, known

as a ”bottleneck”, which reduces the number of parameters and matrix multiplications. This

enables faster training of each layer as it uses a stack of three layers rather than two layers.

This comparison highlights the fact that innovation is ongoing in the space of computer

generation and ResNet50 is only a stepping stone for faster neural networks.

ResNet34 ResNet50
34 Layers 50 Layers
3x3 Filter 1x1 Convolutions

Table 1: ResNet34 vs ResNet50

Script for Extracting Image Features

1 import os

2 import pandas as pd

3 import torch

4 from torch.utils.data import DataLoader , Dataset
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5 import torchvision.models as models

6 import torchvision.transforms as transforms

7 from PIL import Image

8 from tqdm import tqdm

9

10 class ImageDataset(Dataset):

11 def __init__(self , root_dir , transform=None):

12 print("initialize dataset")

13 self.root_dir = root_dir

14 self.transform = transform

15 self.folders = [os.path.join(root_dir , f) for f in os.listdir(

root_dir)]

16 print("Done initializing")

17

18 def __len__(self):

19 return len(self.folders)

20

21 def __getitem__(self , idx):

22 folder = self.folders[idx]

23 images = os.listdir(folder)

24 if not images:

25 return None , None # No images in folder

26 image_path = os.path.join(folder , images [0]) # Load the first

image

27 image = Image.open(image_path).convert(’RGB’)

28 if self.transform:

29 image = self.transform(image)

30 return image , folder

31

32 # Define transformations

33 transform = transforms.Compose ([

34 transforms.Resize ((224 , 224)),

35 transforms.ToTensor (),
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36 transforms.Normalize(mean =[0.485 , 0.456 , 0.406] , std =[0.229 , 0.224 ,

0.225]) ,

37 ])

38

39 # Initialize dataset and dataloader

40 dataset = ImageDataset(root_dir=’views’, transform=transform)

41 dataloader = DataLoader(dataset , batch_size =32, shuffle=False , num_workers

=4)

42

43 # Load a pre -trained model

44 model = models.resnet50(pretrained=True)

45 model = model.to(’cuda’)

46 model.eval()

47

48 # Function to extract features

49 def extract_features(model , dataloader):

50 features = []

51 for inputs , paths in tqdm(dataloader , desc="Extracting Features"):

52 if inputs is None:

53 continue

54 inputs = inputs.to(’cuda’)

55 with torch.no_grad ():

56 outputs = model(inputs)

57 features.extend(zip(paths , outputs.cpu().numpy ()))

58 return features

59

60 # Extract features

61 features = extract_features(model , dataloader)

62

63 # Convert to DataFrame

64 df = pd.DataFrame(features , columns =[’path’, ’features ’])

65

66 # Save to CSV
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67 df.to_csv(’extracted_features.csv’, index=False)
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B One-2-3-45

One-2-3-45[1] is a project designed and published in 2023 that could produce 3D

models from a single input image. The project implements a 2D generation model which

can take input images and produce new images of the same object with shifted camera view.

Through this implementation combined with a NeRF model, the project is able to generate

accurate meshes from a single image in less than 60 seconds. The code for this project is

public on github, so it was easier for us to adapt it to our needs. The One-2-3-45 method as

shown in Figure 10 gives a good graphical representation of what they did to generate 3D

models. To start they implemented a Multi-view synthesis which uses a view conditioned

2D diffusion model, Zero123[12], to generate multi-view images in a two stage manner. The

input of the model includes a single image and a relative camera transformation, which

is parameterized by relative spherical coordinates. Second they used Pose Estimation to

estimate the elevation angle theta of the input image based on four nearby views. Then the

poses of the multi-view generation are obtained by combining the specific relative poses with

the estimated pose of the input view. Finally we complete 3D reconstruction. The model

feeds the multi-view posed images to an SDF-based generalized neural surface reconstruction

module for 360 mesh reconstruction. This method although a bit different from what we did

helped us understand different ways that text-3D model generation could be completed.

Figure 14: One-2-3-45 Method (Graphic taken from the One-2-3-45 Paper) [1]
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C SDXL Finetuning Details

We use SDXL[7] as the base for our first stage generation. We take most of the specifics of

this finetuning from the Instant 3D[4] implementation. We use a fixed learning rate of 10−5,

with a batch size of 6. We finetune the model on 2 NVIDIA RTX A5000 GPUs. We train

for 40,000 steps, and this took about 40 hours. Table 3 below shows the recommended and

possible image resolutions for training. As stated we were only able to access two GPU’s so

it was hard to get the best quality. However, with a multitude of resolutions available, we

were able to complete training.

Recommended Possible
1024 x 1024 512 x 512
1236 x 832 768 x 1344

Table 2: SDXL Generation Resolutions

33



D Full Script Code

1 #!/home/vislab -002/ anaconda3/envs/One2345/bin/python

2 import os

3 import subprocess

4 import argparse

5 from datetime import datetime

6 import paramiko

7 from scp import SCPClient

8 import shutil

9

10 def create_scp_client(host , port , username , password):

11 ssh = paramiko.SSHClient ()

12 ssh.load_system_host_keys ()

13 ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy ())

14 ssh.connect(host , port , username , password)

15 return SCPClient(ssh.get_transport ())

16

17 def transfer_directory_with_paramiko(source_path , destination_path , host ,

username , password):

18 scp = create_scp_client(host , 22, username , password)

19 try:

20 scp.put(source_path , recursive=True , remote_path=destination_path)

21 print("Directory successfully transferred.")

22 except Exception as e:

23 print(f"Failed to transfer directory: {e}")

24 finally:

25 scp.close()

26

27 def create_unique_directory(base_path):

28 """ Creates a unique directory based on the current timestamp."""

29 timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
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30 directory = os.path.join(base_path , f"run_{timestamp}")

31 os.makedirs(directory , exist_ok=True)

32 return directory

33

34

35 def get_recent_files(directory , pattern , count):

36 command = f’find "{ directory }" -maxdepth 1 -name "{ pattern }" -printf

"%T@ %p\\n" | sort -n | tail -n {count}’

37 process = subprocess.Popen(command , shell=True , stdout=subprocess.PIPE

, stderr=subprocess.PIPE)

38 stdout , stderr = process.communicate ()

39

40 if process.returncode != 0:

41 print("Error:", stderr.decode(’utf -8’))

42 return []

43

44 files = [line.split(’ ’, 1)[1]. strip () for line in stdout.decode(’utf

-8’).splitlines ()]

45 return files

46

47 def split_images_function(images , output_dir):

48 for image in images:

49 os.makedirs(output_dir , exist_ok=True)

50

51 split_command =(

52 f’cd ~/local/HandAntesMQP; ’

53 f’source Hand/bin/activate; ’

54 f’"/media/vislab -002/ SP2 4TB/OpenLRM/split_image.py" "{image }"

"{ output_dir }"’

55 )

56 process = subprocess.Popen(split_command , shell=True , stdout=

subprocess.PIPE , stderr=subprocess.PIPE)

57 stdout , stderr = process.communicate ()
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58

59 if process.returncode != 0:

60 print(f"Error splitting image: {image}", stderr.decode(’utf -8’

))

61 else:

62 print(f"Image split successfully: {image}")

63

64 def process_split_images(images , command_base_dir , resolution , unique_dir)

:

65 if len(images) != 4:

66 print("Error: Exactly four images are required.")

67 return

68 python_script_path = os.path.join(command_base_dir , ’run.py’)

69 python_executable = "/home/vislab -002/ anaconda3/envs/One2345/bin/

python"

70 command = (

71 f’{python_executable} "{ python_script_path }" ’

72 f’--img_path "{ images [0]}" ’

73 f’--supp_img1 "{ images [0]}" ’

74 f’--supp_img2 "{ images [1]}" ’

75 f’--supp_img3 "{ images [2]}" ’

76 f’--supp_img4 "{ images [3]}" ’

77 ’--half_precision ’

78 f’--mesh_resolution {resolution}’

79 )

80

81 process = subprocess.Popen(command , shell=True , cwd=command_base_dir ,

stdout=subprocess.PIPE , stderr=subprocess.PIPE)

82 stdout , stderr = process.communicate ()

83

84 if process.returncode != 0:

85 print("Error processing images:", stderr.decode(’utf -8’))

86 else:
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87 print("Images processed successfully.")

88 # Parse stdout for mesh file path

89 output = stdout.decode(’utf -8’)

90 mesh_file_path = None

91 for line in output.splitlines ():

92 if line.startswith("Mesh saved to:"):

93 mesh_file_path = line.split(":")[1]. strip()

94 break

95

96 if mesh_file_path:

97 print(f"Mesh file path: {mesh_file_path}")

98 # Copy the mesh file to the unique directory

99 shutil.copy(mesh_file_path , unique_dir)

100 print(f"Mesh file copied to {unique_dir}")

101

102 # Determine the directory of the mesh file and locate the

stage1_8 directory

103 mesh_dir_path = os.path.dirname(mesh_file_path)

104 stage1_8_dir = os.path.join(mesh_dir_path , "stage1_8")

105 if os.path.exists(stage1_8_dir):

106 for file in os.listdir(stage1_8_dir):

107 if file.endswith(".png"):

108 src_file_path = os.path.join(stage1_8_dir , file)

109 shutil.copy(src_file_path , unique_dir)

110 print(f"Copied {file} to {unique_dir}")

111 else:

112 print("stage1_8 directory does not exist.")

113 else:

114 print("Mesh file path not found in output.")

115

116 return output

117

118 def main(args):
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119

120 unique_dir = create_unique_directory(r’/media/vislab -002/ SP2 4TB/One

-2-3-45/ Uniques ’)

121 generate_image_command = (

122 f’cd ~/ local/HandAntesMQP; ’

123 f’source Hand/bin/activate; ’

124 f’cd kohya_ss; ’

125 f’python3 sdxl_gen_img.py ’

126 f’--ckpt "/home/vislab -002/ local/HandAntesMQP /32724 SDXL.ckpt" ’

127 f’--outdir "{ unique_dir }" ’

128 f’--xformers --bf16 --W 1024 --H 1024 --scale 12.5 --sampler

k_euler_a --steps 256 ’

129 f’--batch_size 8 --images_per_prompt 1 --prompt "{args.prompt }"’

130 )

131 subprocess.run(generate_image_command , shell=True , executable=’/bin/

bash’, check=True)

132

133 recent_images = get_recent_files(unique_dir , "*.png", 1)

134 print("Recent Image:", recent_images)

135

136 split_images_function(recent_images , unique_dir)

137

138 split_images = get_recent_files(unique_dir , "*.png", 4)

139

140 One2345dir = r’/media/vislab -002/ SP2 4TB/One -2-3-45’

141

142 output = process_split_images(split_images , One2345dir , args.

mesh_resolution , unique_dir)

143 print(output)

144 transfer_directory_with_paramiko(unique_dir , ’File Destination ’, ’IP

Address ’, ’UserName ’, ’Password ’)

145 return output

146
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147 if __name__ == "__main__":

148 parser = argparse.ArgumentParser(description=’Process images based on

a prompt.’)

149 parser.add_argument(’prompt ’, type=str , help=’A prompt for image

generation ’)

150 parser.add_argument(’mesh_resolution ’, type=int , help=’The resolution

of the exported mesh’) # Changed type to int

151 args = parser.parse_args ()

152

153 main(args)
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E Major Changes to One-2-3-45 Framework

Changes to the input arguments to the main loop.

1 if __name__ == "__main__":

2 parser = argparse.ArgumentParser(description=’Process some integers.’)

3 parser.add_argument(’--img_path ’, type=str , default="./demo/

demo_examples /01 _wild_hydrant.png", help=’Path to the input image ’)

4 parser.add_argument(’--gpu_idx ’, type=int , default=0, help=’GPU index’

)

5 parser.add_argument(’--half_precision ’, action=’store_true ’, help=’Use

half precision ’)

6 parser.add_argument(’--mesh_resolution ’, type=int , default =256, help=’

Mesh resolution ’)

7 parser.add_argument(’--output_format ’, type=str , default=".ply", help=

’Output format: .ply , .obj , .glb’)

8 parser.add_argument(’--supp_img1 ’, type=str , required=True , help=’Path

to the supplementary image 1’)

9 parser.add_argument(’--supp_img2 ’, type=str , required=True , help=’Path

to the supplementary image 2’)

10 parser.add_argument(’--supp_img3 ’, type=str , required=True , help=’Path

to the supplementary image 3’)

11 parser.add_argument(’--supp_img4 ’, type=str , required=True , help=’Path

to the supplementary image 4’)

Changes to structuring of file setup.

1 def stage1_run(model , device , exp_dir ,

2 input_im , supp_imgs , scale , ddim_steps):

3 # folder to save the stage 1 images

4 stage1_dir = os.path.join(exp_dir , "stage1_8")

5 os.makedirs(stage1_dir , exist_ok=True)

6

7 output_ims = []

40



8 output_ims_2 = []

9 for i, img in enumerate(supp_imgs):

10 # Check if img is a path or an already opened image

11 if isinstance(img , str): # img is a path

12 img = Image.open(img).convert("RGB")

13 elif not img.mode == "RGB": # img is an opened image but not in

RGB mode

14 img = img.convert("RGBA")

15 img = img.resize ((256 , 256), Image.Resampling.LANCZOS)

16 white_bg = Image.new(’RGBA’, img.size , (255 ,255 ,255 ,255))

17 white_bg.paste(img , mask=img)

18 white_bg = white_bg.convert(’RGB’)

19 # Assuming img is now an opened Image object in RGB mode

20 white_bg.save(os.path.join(stage1_dir , f"{i}.png"))

21 output_ims.append(white_bg)

1 def infer_shifted_images_for_folder(model , input_dir_path ,

save_path_stage2 , delta_x , delta_y , device , pic_start , ddim_steps =75,

scale =3.0):

2 # Assume input_dir_path contains Stage 1 images to process

3 # save_path_stage2 is where the shifted images will be saved

4

5 stage1_image_paths = [os.path.join(input_dir_path , f) for f in os.

listdir(input_dir_path) if f.endswith(’.png’)]

6 sampler = DDIMSampler(model)

7 image_counter = pic_start # Start naming images from number 4

8

9 for idx , stage1_image_path in enumerate(stage1_image_paths):

10 raw_im = Image.open(stage1_image_path)

11 input_im_init = np.asarray(raw_im , dtype=np.float32) / 255.0 #

Normalize the image

12 input_im = transforms.ToTensor ()(input_im_init).unsqueeze (0).to(

device)
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13 input_im = input_im * 2 - 1 # Scale to [-1, 1]

14

15 # Generate one new image with specified shift

16 x_samples_ddims_stage2 = sample_model_batch(model , sampler ,

input_im , [delta_x], [delta_y], n_samples=1, ddim_steps =150, scale=

scale)

17

18 # Save the generated image with naming from 4 onwards

19 x_sample_stage2 = 255.0 * rearrange(x_samples_ddims_stage2 [0]. cpu

().numpy (), ’c h w -> h w c’)

20 output_filename = f"{image_counter }.png" # Constructs filename as

"4.png", "5.png", etc.

21 Image.fromarray(x_sample_stage2.astype(np.uint8)).save(os.path.

join(save_path_stage2 , output_filename))

22

23 image_counter += 1 # Increment for next image ’s filename

24

25 del input_im , x_samples_ddims_stage2

26 torch.cuda.empty_cache ()
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