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Abstract 

The electrical activity of skeletal muscle—the electromyogram (EMG)—is of value to many 

different application areas, including ergonomics, clinical biomechanics and prosthesis control. For many 

applications, the EMG is related to muscular tension, joint torque and/or applied forces.  In these cases, a 

goal is for an EMG-torque model to emulate the natural relationship between the central nervous system 

(as evidenced in the surface EMG) and peripheral joints and muscles. This thesis work concentrated on 

experimental investigations of EMG-torque modeling. My contributions include: 1) continuing to 

evaluate the advantage of advanced EMG amplitude estimators, 2) studying system identification 

techniques (regularizing the least squares fit and increasing training data duration) to improve EMG-

torque model performance, and 3) investigating the influence of joint angle on EMG-torque modeling. 

Results show that the advanced EMG amplitude estimator reduced the model error by 21%–71% 

compared to conventional estimators.  Use of the regularized least squares fit with 52 seconds of training 

data reduced the model error by 20% compared to the least squares fit without regulation when using 26 

seconds of training data. It is also demonstrated that the influence of joint angle can be modeled as a 

multiplicative factor in slowly force-varying and force-varying contractions at various, fixed angles. The 

performance of the models that account for the joint angle are not statistically different from a model that 

was trained at each angle separately and thus does not interpolate across angles. The EMG-torque models 

that account for joint angle and utilize advanced EMG amplitude estimation and system identification 

techniques achieved an error of 4.06±1.2% MVCF90 (i.e., error referenced to maximum voluntary 

contraction at 90° flexion), while models without using these advanced techniques and only accounting 

for a joint angle of 90º generated an error of 19.15±11.2% MVCF90. 

This thesis also summarizes other collaborative research contributions performed as part of this 

thesis.  (1) EMG-force modeling at the finger tips was studied with the purpose of assessing the ability to 

determine two or more independent, continuous degrees of freedom of control from the muscles of the 

forearm [with WPI and Sherbrooke University]. (2) Investigation of EMG bandwidth requirements for 

whitening for real-time applications of EMG whitening techniques [with WPI colleagues]. (3) 

Investigation of the ability of surface EMG to estimate joint torque at future times [with WPI colleagues]. 

(4) Decomposition of needle EMG data was performed as part of a study to characterize motor unit 

behavior in patients with amyotrophic lateral sclerosis (ALS) [with Spaulding Rehabilitation Hospital, 

Boston, MA].  
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CHAPTER 1—INTRODUCTION 

During my Ph.D. degree studies, I worked on electromyogram (EMG) signal processing and 

modeling. Most of my work concentrated on investigating the relationship between surface EMG and the 

torque/force produced by the associated muscles. I was also involved in a project that studied indwelling 

EMG decomposition. This chapter will first introduce the background and motivation of my work, and 

then highlight my contributions to the EMG-torque area. The details of the work are provided in the 

subsequent chapters, in the form of published and submitted manuscripts. 

When skeletal muscle fibers contract, they conduct electrical activity that can be measured and 

recorded by electrodes inserted into the muscle through skin or secured to the surface of the skin above 

the muscle. This electrical activity is referred to as the electromyogram (EMG). EMG signals can be 

divided into two types — indwelling EMG and surface EMG— according to what kind of electrodes are 

used to record signals.  Indwelling needle/wire electrodes are inserted into the muscles to be located close 

to motor units (small functional groups of muscle fibers, described in the next paragraph) and typically 

can view only a few motor units. Surface EMG electrodes have a relatively large pick-up area and 

typically can view many motor units. They usually cannot distinguish the electrical activity of individual 

motor units. 

A motor unit contains a motor nerve and all its innervated muscle fibers, shown in Fig. 1. When a 

motor unit is stimulated, its pulse can be recorded by electrodes and displayed as an electrical action 

potential, known as a motor unit action potential. An engineering model of the surface EMG signal 

models the EMG signal as the superposition (sum) of many individual motor unit action potentials 

DeLuca [1979]. Fig. 2 shows the schematic representation of this model for generation of the surface 

EMG signal. 
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Fig. 1: A motor unit [http://academic.wsc.edu/faculty/jatodd1/351/ch6outline.html] 

 

 

Fig. 2: Schematic representation of a model for generation of the surface EMG signal [DeLuca, 1979] 



–8– 
 

Surface EMG provides a non-invasive measure of muscle activation and therefore it has been used 

to relate EMG to muscle tension and joint torque for a long time [An et al., 1983; Clancy and Hogan, 

1997; Clancy et al., 2012; Doheny et al., 2008; Hasan and Enoka, 1985; Heckathorne and Childress, 1981; 

Hof and Van den Berg, 1981; Hogan and Mann, 1980b; Inman et al., 1952; Lawrence and DeLuca, 1983; 

Sanger, 2007; Shin et al., 2009; Solomonow et al., 1986; Staudenmann et al., 2009; Thelen et al., 1994; 

Vredenbregt and Rau, 1973; (see Staudenmann et al. (2010) for a recent review)]. This relation provides a 

non-invasive tool for applications in many different fields, such as myoelectric control of prosthesis 

[Parker et al., 2006], clinical biomechanics [Disselhorst-Klug et al., 2009; Doorenbosch and Harlaar, 

2003], EMG biofeedback for rehabilitation [Armagan et al., 2003; Holtermann et al., 2010], ergonomic 

analysis/ task analysis [Hagg et al., 2004; Kumar and Mital, 1996; Mathissen et al., 1995], biomechanical 

modeling [Karlsson et al., 1992], measurement in motion control studies [Fukuda et al., 2003], and so on. 

Surface EMG generally does not resolve the electrical activity of individual motor units, is dominated by 

the activity of superficial muscle fibers and recordings from one muscle can easily be contaminated by 

crosstalk arising from the adjacent muscles.  Nonetheless, total joint torque estimation based on surface 

EMG can more than offset these drawbacks and be very useful for the applications mentioned above. First, 

being non-invasive makes surface EMG  more widely accepted than indwelling EMG, as it is less painful 

to people, the procedure is much simpler and less expensive, and surface electrodes can be applied for a 

longer period. Second, the individual contributions of underlying muscles may not necessary for the 

estimation of total torque about a joint as the superficial muscle activity can be sufficient to identify total 

joint torque, due to the synergistic activation of relatively large muscle groups. Third, the surface EMG to 

total joint torque relation can automatically account for certain crosstalk contributions, even if crosstalk is 

hard to attribute to individual muscle activities [Clancy, 1991]. 

The aim of EMG-torque models is to emulate the natural relationship between the central nervous 

system (as evidenced in the surface EMG) and peripheral joints/muscles. A classic paradigm to relate the 

surface EMG signal to total torque about a joint is shown in Fig. 3. There are two main steps in this 

paradigm – EMG amplitude estimation ( Eŝ  and Fŝ ) and total joint torque estimation ( ExtT ). The goal is to 

optimize each of the two steps to achieve non-invasive advanced, high-fidelity EMG amplitude and 

torque estimation. My thesis work concentrated on optimization of the second step, relating EMG 

amplitude estimates to joint torque. 
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Fig. 3: A classic EMG-torque model 

 

Fig. 4: Raw EMG signal (in grey) and its EMG amplitude (in blue) 

The standard deviation of the electrical activity generated by a muscle is commonly referred to as 

the amplitude of the EMG, which measures the intensity of muscular activation level. Fig. 4 shows an 

example of raw EMG signal (in grey) and its EMG amplitude (in blue). The earliest continuous EMG 

amplitude estimator was established by Inman et al. [1952] as an analog full-wave rectifier followed by a 

simple RC low-pass filter. Although the earliest EMG amplitude estimator was not sophisticated, it led to 

the routine use of a non-linear detector (analog rectifier) and smoothing (lowpass filtering) of the raw 

EMG signal to form EMG amplitude estimates. In the following decades, significant contributors began 

to apply engineering and mathematic models to the EMG signal. Basmajian and DeLuca [1985] and 

Parker and Scott [1986] established models based on motor unit firings. Hogan and Mann [1980a and 

1980b] established a phenomenological model, which models the EMG signal as an amplitude-modulated, 
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Gaussian random process. With this model, EMG amplitude is defined as the time-varying standard 

deviation of the noise-free EMG signal. Then, stochastic estimation techniques can be used to improve 

EMG amplitude estimation from a sample of EMG. This EMG modeling method has led to progressive 

iterative improvement in EMG amplitude estimations over the past few decades. Here I will focus on 

presenting the “state of the art” in EMG amplitude estimation. Given the phenomenological model, EMG 

amplitude estimation becomes the problem of estimating the time-varying standard deviation of a 

modulated random process in the presence of additive noise. Hogan and Clancy derived an optimal 

closed-form analytic solution for achieving this goal [Hogan and Mann, 1980a, 1980b; Clancy, 1991]. 

They pointed out that techniques of whitening and multiple-channel combination can effectively improve 

EMG amplitude estimation. Fig. 5 shows the effect of whitening on the EMG amplitude estimation. The 

upper left plot shows a one second of raw EMG signal (total trial length is five seconds) during a 

constant-posture, constant-force contraction of elbow flexors at 75% MVC (maximum voluntary 

contraction). The upper right plot is the EMG amplitude estimate from the raw EMG. The lower left plot 

is the corresponding measured torque. The lower right plot is the EMG amplitude estimate from the 

whitened EMG. In this example, whitening improved the SNR by 71% [Clancy and Hogan, 1994]. Fig. 6 

shows the effect of whitening and multiple-channel combination on the EMG amplitude estimation. The 

upper left is the measured torque for constant-posture, constant-force contraction of elbow flexors at 25% 

MVC. The upper right is the EMG amplitude estimate from a single channel EMG without whitening. 

The lower left is the EMG amplitude estimate from a single channel whitened EMG. The lower right is 

the EMG amplitude estimate from eight channels, whitened EMG. In this example, whitening and 

multiple-channel combination improved the SNR by 170% [Clancy and Hogan, 1995]. 
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Fig. 5: Effect of whitening on EMG amplitude estimation. [Clancy and Hogan, 1994] 
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Fig. 6: Effect of whitening and multiple-channel combination on EMG amplitude estimation. [Clancy and Hogan, 1995] 

The second step to achieve a non-invasive advanced, high-fidelity EMG-torque model is to 

optimize torque estimation from EMG amplitude. Lots of research has been done to relate EMG to 

torque/force, most having ignored the effects of agonist muscle activity in their models to simplify the 

problem. This simplification is not accurate since antagonist muscle activity accompanies agonist 

contraction and actually generates considerable effort during the contraction [An et al., 1983; Solomonow 

et al., 1986]. Many of the earlier researchers used relatively simple linear models [Gottlieb and Agarwal, 

1971; Thelen et al., 1994] to study the EMG-torque/force relationship. In recent decades, researchers have 

begun to use various more complex system identification models to better estimate movement from 

surface EMG signals. Mountjoy et al. used Hill-based models to predict translational force at the wrist 

from flexion and extension torque at the elbow [2010]. Cheron et al. [1995] used artificial neural 

networks to relate EMG to arm trajectory during complex movement. Au and Kirsch predicted shoulder 
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and elbow kinematics (angles, angular velocities, angular accelerations) from EMG via a time-delayed 

artificial neural network [Au and Kirsch, 2000]. Therefore, more robust system identification that could 

apply to this field becomes more and more important because it can improve the performance of these 

models and lead to low-error EMG-torque estimation for use in various applications. In prosthesis control, 

it would provide more accurate emulation of the natural command relationship between the central 

nervous system and peripheral muscles/joints [Parker et al., 2006]. In clinical biomechanics and 

ergonomics, it would lead to better estimates of joint loading and muscle tension in studies of worker 

tasks and biomechanical evaluations [Kumar and Mital, 1996; Mathiassen et al., 1995; Hagg et al., 2004; 

Disselhorst-Klug et al., 2009; Doorenbosch and Harlaar, 2003]. It would also favor the investigation of 

motor control and control of powered exoskeletons [Kiguchi et al., 2004; Dollar and Herr, 2008; Lenzi et 

al., 2012]. 

Previous studies show that muscle fiber length and the associated joint angle have a significant 

impact on the maximum tension that a muscle can generate [Rack and Westbury, 1969; Zajac, 1989]. It 

has been found that altering joint angle affects neuromuscular activity during isometric contractions, such 

as the contractile response to motoneuron stimulation rate [Rack and Westbury, 1969] and motor unit 

recruitment thresholds [Miles et al., 1986]. Also, a study of biceps and triceps muscles [Solomonow et al., 

1986] indicated that the contributions of antagonist muscles vary considerably across angle. All these 

results suggest that the influence of joint angle is important to establish EMG-torque/force models that are 

more representative of human movement. However, limited investigations have been done to fully 

understand the role of joint angle in EMG-torque models. 

My research contributions are focused on experimental investigations of estimating torque/force 

from EMG amplitude for the human upper limb. My study conditions ranged from constant-posture, 

slowly force-varying (“static”) to constant-posture, force-varying (“dynamic”) contractions. The former 

condition is relatively simple and thus is good for initial methodological investigation. The latter one is 

more representative of the range of application tasks, so I used this condition to further investigate the 

methodologies I proposed. The posture-varying, force-varying condition would be the most complete case 

and represents unconstrained movement. Models incorporating this condition represent extensions of my 

own work and should benefit from the results of my work. Based on past research results, I studied 

various linear/non-linear polynomial models which account for the co-contraction of agonist and 

antagonist muscle pairs and also incorporated the advanced techniques of EMG amplitude whitening and 

multi-channel combinations into the EMG-torque modeling. Also, I evaluated the effects of regularization 
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of singular-value-decomposition-based least squares pseudo-inverse method and increasing the training 

data duration on the EMG-torque modeling. Especially, I emphasized the investigation of the influence of 

joint angle on EMG-torque modeling and established models that facilitate interpolation across angles 

with promising performance. An overview of each of these contributions, which has resulted in archival 

publications/submissions, is provided below. The introduction chapter overviews each of them, with 

relevant details provided in the publications/submissions which form the remaining chapters of this 

dissertation. 

Incorporation of Advanced EMG Amplitude Processing Techniques: EMG amplitude 

estimation is the first step of EMG-torque modeling and previous researchers showed that improved EMG 

amplitude estimates produce decreased EMG-torque error [Clancy et al., 2002; Clancy et al., 2006; 

Clancy and Farry, 2000; Clancy and Hogan, 1994; Clancy and Hogan, 1995; Clancy and Hogan, 1997; 

Hogan and Mann, 1980a; Hogan and Mann, 1980b; Potvin and Brown, 2004; Staudenmann et al., 2010].  

Therefore, advanced EMG amplitude processing techniques can improve the EMG amplitude estimates 

and thus improve the performance of EMG-torque modeling. Based on the previous work of Clancy et al. 

[1997, 2002 and 2006], I continued to study the advantage of advanced EMG amplitude processing 

techniques to a broader range of conditions. I compared standard EMG amplitude processing to advanced 

processors that include signal whitening and multiple channel combination on EMG-torque models during 

constant-posture, force-varying toque contractions at joint angle of 90° (Chapters 4 and 12). Then I 

extended this investigation to various joint angles during constant-posture, both slowly force-varying 

(Chapters 5 and 13) and force-varying torque contractions (Chapter 17). The results clearly demonstrated 

that multi-channel whitened EMG amplitude processing improved EMG-torque estimation. It is well 

established that these methods decrease the variability of the EMG amplitude estimation [Hogan and 

Mann, 1980b; Liu, Liu et al., 2013], hence increasing the SNR in the training and testing sets.  

System Identification: This topic is related to the second step of EMG-torque modeling.  Based 

on past research results [An et al., 1983; Brown and McGill, 2008; Mathiassen et al., 1995; Solomonow et 

al., 1986], we hypothesized that incorporating non-linear model structures into the EMG-torque problem 

would further reduce joint torque error. However, non-linear models typically require additional 

parameters, which can lead to over-fitting [Ljung, 1999]. There exists a complex interplay between the 

number of fit parameters in the model, training data duration, the SNR of the training data, and the system 

identification method [Ljung, 1999]. This section will first briefly introduce my investigation of linear vs. 
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non-linear EMG-torque models. Then, it will overview my contributions on providing more robust system 

identification to EMG-torque modeling, explicitly addressing model over-fitting problem.  

A collaborative work (Chapters 4 and 12) in which I participated, compares linear and non-linear 

polynomial EMG-torque models on constant posture, force-varying contractions at an elbow angle of 90°. 

Previously collected data were used for this study. The results showed that a linear model was statistically 

different (poorer) than non-linear models (polynomial degree D=2, 3, 4) when 52-second training 

durations were used. In the project investigating the influence of joint angle during constant-posture, 

slowly force-varying (Chapters 5 and 13), I modeled both the angle influence and the EMG-torque 

relation at one angle using linear/non-linear models. The best non-linear model (EMG polynomial degree 

D=2, angle polynomial degree A=2) was statistically different (better) than the linear model (D=1, A=1). 

For non-linear models, when both A and D were high (≥4), the error became extremely large, likely due to 

over-fitting. Some over-fitting also may have occurred when only one of the two polynomial degrees was 

high (e.g., D=5, A=3). Then I extended the investigation to constant-posture, force-varying contractions at 

multiple joint angles (Chapter 17). Again, the best non-linear models were statistically different (better) 

than the linear model. Based on these studies, we found that non-linear models provide better 

performance than the linear model, as long as the least squares (a common method used to solve the 

model parameters) is appropriately regularized (regularization of least squares will be discussed in the 

following paragraph). 

As the models become more complex and the model parameters increased, over-fitting become a 

bigger obstacle preventing the performance of the models from improving or even making it worse. 

Therefore, I investigated different methods to address this problem. I started from regularizing the 

singular-value-decomposition-based least squares pseudo-inverse method that is commonly used to solve 

the model parameters [Press et al., 1994] (Chapter 12). In this method, small singular values likely 

provide little information but contain considerable noise. The reciprocals of these small singular values 

need to be computed to obtain the least squares estimate of the fit parameters, which allows the noise to 

affect the training of the model parameters. In order to reduce this effect, I replaced the reciprocals of 

these small singular values with the value zero when training the model parameters. The tolerance for 

replacement was based on the ratio of each singular value in the “design matrix” [Press et al., 1994] to the 

maximum singular value, ranging over 40 values spanning 10
-16

 to 0.5 in logarithmic increments. This 

method is evaluated on linear (D=1) and non-linear (D=2-4) EMG-torque models during constant-posture, 

force-varying contractions at 90°. Results showed that tuning the tolerance value improved the model 
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performance (please refer to Chapter 12 for detailed results). Results also indicate that tolerance value 

tuning is more critical when the data are more susceptible to over-fitting, i.e., for short duration training 

sets, poorer EMG amplitude processing, high non-linear degree (i.e., more parameters), and high dynamic 

model order (i.e., more parameters).  

Increased training data duration is another possible way to address over-fitting, however it has 

seen limited evaluation. I evaluated the effect of training data duration on non-linear EMG-torque models 

during constant-posture, force-varying contractions at 90° (Chapters 4 and 12). The models were trained 

on 26 and 52 seconds of data. Results demonstrated that increasing the training data duration provided a 

clear improvement, with considerably lower test errors and reduced sensitivity to the number of model 

parameters. I then extended this method to EMG-torque models at various angles during constant-posture, 

force-varying contractions, which required even more model parameters (Chapter 17). The models were 

trained on 26, 52 and 78 seconds of data. Results again showed that increasing the training data duration 

improved the model performance and supported higher non-linear model degree (i.e., more parameters). 

Therefore, in order to overcome the over-fitting problem and provide more robust system 

identification, one can regularize the singular-value-decomposition-based least squares pseudo-inverse 

method and increase training data duration. 

Influence of Joint Angle on EMG-Torque Model: This topic covers the most substantial 

independent contributions of my Ph.D. work and it is a topic with more limited prior study. The EMG-

torque relationship changes with angle, at least due to the length-tension relationship [Rack and Westbury, 

1969; Zajac, 1989], changes in muscle moment arms [Messier et al., 1971] and the movement of 

electrodes with respect to underlying muscle tissue and the innervation zone [Martin and MacIsaac, 2006; 

Rainoldi et al., 2000]. Vredenbregt and Rau [1973] found evidence of a multiplicative influence of angle 

on EMG-torque, at least during constant-force contractions at various torque levels (more recently 

supported by the work of Doheny et al., [2008]).  That is, the EMG-torque curve has the same shape at 

each angle, but is scaled by a gain factor that is distinct for each angle. 

Motivated by the above observation, I hypothesized that we can model the relationship between  

EMG and torque at various joint angles by modeling the joint angle influence as a multiplicative factor 

(which is a function of angle) to the EMG-torque model at one particular angle (90° for example). I 

decided to model the joint angle influence itself using polynomials first not only because it is simple to 

investigate but also due to the quadratic shape of the classic length-tension curve. I designed and 
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conducted an experiment of 12 healthy subjects and collected surface EMG from their biceps/triceps 

muscle groups along with the elbow torque at seven joint angles (spanning 45° to 135°) during constant-

posture, slowly force-varying contractions. I proposed three non-linear EMG-torque model structures (all 

accounted for muscle co-contractions and utilized the advanced EMG amplitude techniques) and 

evaluated their performance on these experimental data (Chapters 5 and 13). One model structure (angle-

specific model) which was formed separately for each of the seven distinct joint angles and thus did not 

directly facilitate interpolation across angles, was used to generate the minimum “gold standard” error 

result, since it optimized the model coefficients at each particular joint angle. Both of the other two model 

structures captured the multiplicative angle factor. A “flex-extend multiplicative model” modeled the 

angle influences for flexion electrodes and extension electrodes with two respective polynomials, while 

the “single multiplicative model” used one overall polynomial. Each of the three model structures 

modeled the EMG-torque relationship at one angle using two polynomials of equal degree D (one for 

flexion EMG amplitude and one for extension EMG amplitude, respectively). The best overall 

performance of the angle-specific model (polynomial degree D=3) gave an error of 4.23±2.2% MVCF90 

(i.e., error relative to maximum voluntary contraction at 90° flexion), which was used as the “gold 

standard” to evaluate the other two multiplicative models. The best flex-extend model (EMG polynomial 

degree D=2, angle polynomial degree A=2) had an error of 4.17±1.7% MVCF90 and did not differ 

statistically from the best angle-specific model. The best performance of the single multiplicative model 

(D=2, A=2) was 5.65±1.9% MVCF90, which was statistically different (poorer) than the best angle-

specific model and the best (D=2, A=2) flex-extend model. The results showed that the joint angle 

influence can be model as a multiplicative factor, at least during slowly force-varying contractions at 

various torque levels, and the performance of the flex-extend multiplicative model was quite promising. 

Next, I conducted another experimental study in order to extend the experimental conditions to 

constant-posture, force-varying contractions conducted over a range of fixed joint angles (Chapter 17). 

This experiment was done on 25 healthy subjects (23 of them had usable data) at six joint angles spanning 

from 60° to 135°. (The joint angle of 45° was eliminated from this experiment because many subjects 

from the prior experimental trial found it awkward to orient their elbow to this joint angle and subjects 

related difficulty in producing torque at this angle with all 12 electrodes mounted on their biceps/triceps.) 

I specifically investigated the appropriateness of the multiplicative model vs. joint angle. Three dynamic 

non-linear polynomial model structures were proposed and evaluated on the experimental data. As with 

the constant posture, slowly force-varying project, the angle-specific model was used to generate the 

“gold standard” error result. The polynomial-gain model (denoted the flex-extend multiplicative model in 
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the last project) was also evaluated on the force-varying (dynamic) data. Since we hypothesized that the 

joint angle influence can be modeled as a multiplicative factor to the EMG-torque model at one particular 

angle, why not simplify this multiplicative factor (which is a function of angle) by utilizing distinct 

flexion and extension gains at each angle? Therefore, a new model, the piece-wise-gain model was 

proposed to do so. Note that the EMG dynamic model coefficients were fixed across angle. This model 

did not facilitate immediate gain interpolation across angle; however, gain vs. angle functions which 

preserve the exact gain values at the measured angles (e.g., spline functions) can be fit post hoc to provide 

interpolation across angle. Also, longer training data duration was used in this study (training data 

duration =26s, 52s or 78s) to further improve the model performance and support higher non-linear model 

degrees. The best performance of various models all happened when training data duration is 78s. The 

best overall performance of the angle-specific model (polynomial degree D=3) gave an error of 4.01±1.15% 

MVCF90, which was used as the “gold standard” to evaluate the other two models. The best polynomial-

gain model (EMG polynomial degree D=4, angle polynomial degree A=2) had an error of 4.16±1.18% 

MVCF90 and the best piece-wise-gain model (EMG polynomial degree D=3) had an error of 4.06±1.19% 

MVCF90. Both of these two models did not differ statistically from the best angle-specific model. The 

results demonstrated that the joint angle influence can be modeled as a multiplicative factor during force-

varying contractions with quite promising performance.  

The Influence of Co-Contraction on EMG-Torque Model: In EMG-torque models at various 

angles during constant-posture, slowly force-varying contractions, I also compared the EMG–torque 

relationship with and without consideration of muscle co-contraction (Chapter 13). As expected, models 

that do not account for co-contraction generate lower individual flexion and extension muscle tension 

estimates, likely underestimating true muscle tension. This error is substantial: for flexion, the models 

with co-contraction estimated ~29% more tension; for extension, the models with co-contraction 

estimated ~68% more tension. If joint impedance were to be volitionally increased by subjects, one would 

expect even larger errors. Purposeful co-contraction to increase impedance is common in many tasks 

wherein the endpoint limb segment must be stabilized [Rancourt and Hogan, 2001]. 

Various Applications: A primary application of EMG-torque/force modeling is for EMG control 

of powered upper-limb prostheses. Existing commercial EMG-controlled powered hand prostheses are 

limited to rudimentary control capabilities of either three discrete states (open, close, off) or one degree of 

freedom of proportional control [Parker et al., 2006]. In order to assess the ability to determine two or 

more degrees of freedom of control from the agonist-antagonist muscles of the forearm, we did a pilot 
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laboratory study that related forearm flexor and extensor EMG to flexion-extension force generated at the 

tips of the four fingers (index, middle, ring, pinky) during constant-posture, slowly force-varying 

contractions (Chapter 6, 10 and 11).  Although the sample size was small (N=3), the results showed 

evidence that surface EMG activity from the forearm encodes multiple degrees of freedom of proportional 

control information that may be sufficient for use in controlling prosthetic wrists, hands and/or fingers – 

at least when tested on intact subjects.  

I was involved in a study that investigated the surface EMG bandwidth requirement for whitening 

(Chapter 15). Previous studies utilizing contraction levels up to maximum voluntary contraction (MVC) 

show that whitening is useful over a frequency band extending to 1000–2000 Hz [Clancy and Farry, 2000; 

Prakash et al., 2005], however, EMG electrode systems, particularly in real-time applications, do not have 

such wide bandwidth. Also, MVC contraction levels are not common. In order to apply our whitening 

technique to real-time applications, we studied the relationship between the frequency band over which 

whitening was performed vs. the resulting performance. The low-level contractions (average torque level 

of 18.5% flexion MVC) which represent most daily tasks showed that performance utilizing frequencies 

out to 400–500 Hz was not statistically different than results out to the full available frequency (2000 Hz). 

For the medium-level (50% MVC) contractions, frequencies out to 800–900 Hz were statistically 

equivalent to the full bandwidth. These results suggest that conventional electrodes with a typical 

passband of ~500 Hz are appropriate for whitening data from contraction levels typically experienced in 

many applications. For strenuous activities, wider whitening bandwidths may be helpful. 

I was also involved in a study that investigated the ability of surface EMG to estimate joint torque 

at future times, up to 750ms (Chapter 16). It has been known that EMG activity from muscles precedes 

the associated mechanical activity by approximately 50–100 ms [Inman et al, 1952; Li and Baum, 2004; 

Howatson, 2010]. This property can be exploited to anticipate muscle mechanical activity and has various 

applications: optimizing controller delay in myoelectric prostheses, user control of exoskeleton suits and 

the actuation of rehabilitation devices from impaired limbs. “Anticipatory” EMG-torque estimation can 

benefit from the advanced EMG-torque modeling techniques mentioned in previous sections of this 

chapter. These techniques have been shown to reduce EMG-torque errors and influenced the realization of 

electromechanical delay within EMG-torque models. 

Decomposition of Needle EMG: My earliest work (Chapter 2) was collaborative with Spaulding 

Rehabilitation Hospital in Boston, MA and the Department of Physical Medicine and Rehabilitation, 

Harvard Medical School in Boston. The study aimed to characterize motor unit behavior in patients with 
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amyotrophic lateral sclerosis (ALS). ALS, also known as Lou Gehrig’s disease, is a neurodegenerative 

disease that affects both the lower (LMN) and upper (UMN) motor neurons. It is a progressive, fatal, 

neurodegenerative disease with most affected patients dying of respiratory compromise and pneumonia 

after two to three years [Kasi et al., 2009]. To date, the cause of ALS has not been determined thus 

making the search for a cure very difficult. In this study, needle EMG signals were collected from control 

subjects and patients with both LMN and UMN dominant forms of ALS. Needle EMG decomposition, the 

process of breaking down the complex EMG signal into individual motor unit trains that comprise the 

signal, was performed on the collected data. Mean motor unit firing rate differences, motor unit 

substitution, and increasing complexity in motor unit action potential (MUAP) waveforms were observed 

from ALS patients, compared with control subjects. My contribution to the work was decomposing parts 

of the needle EMG signal collected both from healthy control subjects and ALS patients. The 

decomposition was challenging in patient recordings because MUAP waveforms in patients were 

typically more complex than in healthy control subjects. In addition, changes over time in MUAP 

waveform shape in patient recordings were more dramatic than in control recordings, which made the data 

difficult to decompose. Therefore, I had to combine the use of automated decomposition software 

[Florestal et al., 2009] with editing tools [McGill et al., 2005], and also visually inspect/edit each 

recording to assure reliability of the results. The complexity of the EMG decomposition further increased 

when waveform superimpositions occurred. Data were analyzed using an algorithm designed to 

automatically resolve superimpositions [McGill, 2002]. Instances that were not resolved by the automated 

algorithm were resolved manually.  

To sum up, I focused on EMG-torque modeling during my Ph.D. studies. EMG-torque modeling 

is typically divided into two steps: EMG amplitude estimation from raw EMG signals and torque 

estimation from EMG amplitude estimates. My contributions are mostly related to the second step and are 

listed as follows: 

 Continued to evaluate the advantage of advanced EMG amplitude estimators, using a 

wider range of conditions because better EMG amplitude estimation improves the 

performance of the EMG-torque models. (Related to the first step of EMG-torque 

modeling.) 

 Continued to study the advantage of non-linear model structures, using a wider range of 

conditions. (Related to the second step of EMG-torque modeling.) 
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 Studied the system identification technique of regularizing the least squares fit (pseudo-

inverse approach) to improve the performance of EMG-torque modeling. (Related to the 

second step of EMG-torque modeling.) 

 Studied the system identification technique of increasing training data duration to improve 

the performance of EMG-torque modeling. (Related to the second step of EMG-torque 

modeling.) 

 Investigated the influence of joint angle on EMG-torque modeling and studied 

applicability of multiplicative factor models in slowly force-varying and force-varying 

contractions at various, fixed angles. (Related to the second step of EMG-torque modeling.) 

 Assessed the ability to determine two or more degrees of freedom of control from the 

agonist-antagonist muscles of the forearm through a pilot laboratory study (EMG-torque 

modeling applications). 

 Contributed to the investigation of EMG bandwidth requirement for whitening which 

showed that commercial electrode systems generally have adequate bandwidth for 

common motion activities.  Higher bandwidths are useful when higher contraction levels 

are utilized. (Related to the application of the first step of EMG-torque modeling.) 

 Contributed to the investigation of the ability of surface EMG to estimate joint torque at 

future times. (EMG-torque modeling applications.) 
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CHAPTER 17 

 

Copy of drafted journal paper: 

 

Pu Liu, Lukai Liu and Edward A. Clancy. “Influence of Joint Angle on EMG-Torque Model During 

Constant-Posture, Torque-Varying Contractions.” In preparation. 
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APPENDIX A 

Design and Construction of the Experimental Finger Restraint Apparatus 

Overview 

The experimental finger restraint was custom-built at WPI, based on a design developed by Francois 

Martel and Denis Rancourt (Sherbrooke University, Sherbrooke, Quebec, Canada).  Apparatus 

construction was based around the use of the modular aluminum framing system [10 Series Profiles, 

80/20 Inc., Columbia City, IN, U.S.A.].  These modular aluminum profiles allow for easy cutting to a 

specified length and then manual assembly using various hardware accessories (angle brackets, screws, 

plates, leveling pads, etc.).  Modular framing is a particularly strong choice when most/all of the structural 

pieces of the apparatus are attached at right angles.  Attachment for the force sensor was then assembled 

to the framing.  A back and side view of the completed experimental finger restraint apparatus is shown 

below. 
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Fig. 1: Back view with hand/arm secured into the experimental finger restraint apparatus. 
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Fig. 2: Side view with hand/arm secured into the experimental finger restraint apparatus. 



–140– 
 

Parts List 

 

Label Quantity 80/20 Inc. Aluminum Framing Systems Part Name [Part Number] 

A 2 Restraint Upright: T-slotted Profile (curved), length 8.25 inch [1012] 

B 1 Support Beam: T-slotted Profile (rectangle with aspect ratio of 2), length 6 inch 

[1020] 
C

*
 1 Support Beam: T-slotted Profile (rectangle with aspect ratio of 2), length 14 inch 

[1020] 
D 1 Cross Beam: T-slotted Profile (rectangle with aspect ratio of 2), length 8 inch 

[1020] 
E 1 Base: T-slotted Profile (rectangle with aspect ratio of 2), length 7 inch [1020] 

F 4 Base: T-slotted Profile (rectangle with aspect ratio of 3), length 7 inch [1030] 

G1
* 

1 Base: T-slotted Profile (rectangle with aspect ratio of 2), length 23 inch [1020] 

G2 1 Base: T-slotted Profile (square), length 17 inch [1010] 

   

 18 2 Hole 1/8” Inside Corner Bracket [4108] 

 1 4 Hole Inside Gusset Corner Bracket [4134] 

 4 2 Hole Joining Strip [4107] 

 1 Plain End Caps for 1010 [2015-PI] 

 2 Plain End Caps for 1012 [2022-PI] 

 ~6 Plain End Caps for 1020 [2025-PI] 

 ~8 Plain End Caps for 1030 [2026-PI] 

 ~22 1/4-20 x3/8 Flanged BHSCS Screw & Economy T-Nut [3386] 

 ~7 1/4-20 x1/2 BHSCS Screw & Economy T-Nut [3393] 

Table of 80/20 Inc. Aluminum Framing System Parts. Profile parts are cut from stock Series 10 

profiles. 

*
 The length of these parts is not critical. 

Label Quantity Omega Engineering, Inc. Load Cell and Amplifier [Part Number] 

H 1 Thin Beam Load Cell with 40 Pound Capacity [LCL-040] 

J 1 Strain Gage Amplifier with Voltage Output and 110 Vac Power [DMD-465WB] 
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Some Notes on Assembling Modular Aluminum Framing Systems 

 The primary method for securing parts together in a modular framing system involves screwing a 

bracket/plate/etc. (which is a part ordered with the framing system) to a nut that is placed within the 

embedded track of the protrusion framing part.  The nut must be placed into the framing from an open 

end of the part—it cannot be inserted throughout the length of the part.  If both ends of the part have 

already been obstructed (e.g., as the part is incorporated into the apparatus), then the nut cannot be 

inserted.  Instead, the apparatus must be partially de-constructed to insert the nut.  Therefore, it is 

advantageous to pre-place the nuts within the appropriate track for each such piece of the system.  In 

some cases, pre-placement of the nuts is not sufficient; rather, it is best to loosely secure one side of 

the attachment bracket/plate, etc. 

 It is best to install end caps only after the complete apparatus is assembled.  Once end caps are 

installed, nuts cannot be inserted using that end of the protrusion. 

 It is best to only secure nuts to a modest torque until the entire apparatus is completed.  Doing so may 

help the structure maintain its proper shape and is useful if portions of the structure need rework or 

access (e.g., to insert a nut). 

 

Assembly of the Primary Frame 

As shown in Fig. 3, the restraint contained a rectangular base (part “E”, part “F1”, parts “G1-2”), a 

cushioned elbow rest plate (parts “F2-3”), a restraint upright (parts “A1-2”), and beams to secure the load 

cell and amplifier (parts “B”, “C” and “D”). 



–142– 
 

 

Two-hole joining strips and the 1/4-20 x1/2 BHSCS screws & economy T-nuts are used to tie parts “A1” 

and “A2” together and secure the load cell (part “H”) to the support beam (part “B”). Two strips are used 

in total, as marked in Fig. 4. 

 

 

Fig. 3: Side view of the experimental apparatus labeling parts A - J of the assembly. 
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The support beam (part “B”) is secured to the cross beam (part “D”) using the 4 hole inside gusset corner 

bracket and 1/4-20 X 1/2 BHSCS screws & economy T-nuts. One corner bracket of this kind is used, as 

marked in Fig. 5. 

 

 

Fig. 4: Side view of the experimental apparatus labeling locations of the 2 Hole Joining strips and 1/4-

20 x1/2 BHSCS screws & Economy T-nuts used to tie parts “A1” and “A2” together and secure the 

load cell (part “H”) to the support beam (part “B”). 

. 
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Parts C, D, E, F1, G1, G2, and F2 are secured to each other using the 2 hole 1/8” inside corner brackets 

and 1/4-20 x3/8 flanged BHSCS screws & economy T-nuts. 18 corner bracket of this kind are used in 

total, as marked in Fig.6.  

 

 

Fig. 5: Side view of the experimental apparatus labeling locations of the 4 Hole Inside Gusset Corner 

bracket and 1/4-20 X 1/2 BHSCS screws & Economy T-nuts used to secure the support beam (part 

“B”) to the cross beam (part “D”). 

. 
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(a) 

 

(b) 

Fig. 6: Side view (a) and bottom view (b) of the experimental apparatus labeling locations of the 2 

Hole 1/8” Inside Corner brackets and 1/4-20 x3/8 Flanged BHSCS screws & Economy T-nuts used to 

secure the base (Parts C, D, E, F1-2, and G1-2).  

. 
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A custom piece (part “I”) is attached to the load cell (part “H”) used a regular screw, and the amplifier 

(part “J”) is secured to part “C” using a long regular screw and a 1/4-20 Economy T-Nut, as marked in 

Fig. 7. 

Part “F3” is not secured to the apparatus. It can be put on or taken away from part “F2” to adjust the 

height of the elbow. Part “F3” is made of two pieces of the same size of part “F1”or “F2”. Two 2-hole 

joining strips and 1/4-20 x3/8 flanged BHSCS screws & economy T-nuts are used to tie the two pieces 

together, as marked in Fig. 8. 

When appropriate, end caps are inserted into the end of each aluminum beam. 
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(a) 

 

(b) 

Fig. 7:  (a) Aerial view of the custom piece (part “I”) and load cell (part “H”) labeling locations of the 

regular screw.  (b) Aerial view of the amplifier (part “J”) labeling locations of the long regular screw 

and 1/4-20 Economy T-Nut.  

. 



–148– 
 

 

 

  

 

 

Fig. 8: Aerial view of part “F3” labeling locations of the 2 Hole Joining strips and 1/4-20 x3/8 

Flanged BHSCS screws & Economy T-nuts. 

. 
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APPENDIX B 

Design and Construction of the Experimental Wrist Restraint Apparatus 

Overview 

The experimental wrist restraint device was used for simultaneous measurement of constant-posture wrist 

flexion-extension, ulnar-radial deviation and pronation-supination. The wrist restraint device was custom-

built at WPI, based on a design developed by Francois Martel and Denis Rancourt (Sherbrooke University, 

Sherbrooke, Quebec, Canada).  Apparatus construction was based around the use of the modular 

aluminum framing system [10 Series Profiles, 80/20 Inc., Columbia City, IN, U.S.A.].  These modular 

aluminum profiles allow for easy cutting to a specified length and then manual assembly using various 

hardware accessories (angle brackets, screws, plates, leveling pads, etc.).  Modular framing is a 

particularly strong choice when most/all of the structural pieces of the apparatus are attached at right 

angles.  Attachment for the load cell was then assembled to the framing.  A back and a side view of the 

completed experimental wrist restraint apparatus is shown in Fig.1 and Fig.2. 
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Fig. 1: Back view with hand/arm secured into the experimental wrist restraint apparatus. 
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Fig. 2: Side view with hand/arm secured into the experimental wrist restraint apparatus. 
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Parts List 

 

Label Quantity 80/20 Inc. Aluminum Framing Systems Part Name [Part Number] 

A 1 Support Beam: T-slotted Profile (rectangle with aspect ratio of 2), length 5 inch 

[1020] 

B 1 Base: T-slotted Profile (rectangle with aspect ratio of 2), length 12 inch [1020] 

C 2 Base: T-slotted Profile (rectangle with aspect ratio of 3), length 7 inch [1030] 

D 1 Base: T-slotted Profile (square), length 14 inch [1010] 

E 1 Base: T-slotted Profile (rectangle with aspect ratio of 2), length 20 inch [1020] 

J 1 Base: T-slotted Profile (square), length 5 inch [1010] 

   
 8 2 Hole 1/8” Inside Corner Bracket [4108] 

 1 4 Hole Inside Gusset Corner Bracket [4134] 

 1 2 Hole Joining Strip [4107] 

 1 Plain End Caps for 1010 [2015-PI] 

 4 Plain End Caps for 1020 [2025-PI] 

 4 Plain End Caps for 1030 [2026-PI] 

 18 1/4-20 x3/8 Flanged BHSCS Screw & Economy T-Nut [3386] 

 4 1/4-20 x1/2 BHSCS Screw & Economy T-Nut [3393] 

Table of 80/20 Inc. Aluminum Framing System Parts. Profile parts are cut from stock Series 10 

profiles. 

Label Quantity AMTI Load Cell and Amplifier [Part Number] 

F 1 Multi-Component Force Transducer [MC3A-6-250] 

* 1 MiniAmp Strain Gauge Amplifier [MSA-6] 

 
* Shown in Fig. 4, it is attached to part “F”. 

Label Quantity Handle [McMaster-Carr Part Number] 

G 2 Phenolic Tapered Handles: Fluted, 1/4”-20 x 3/8” threaded stud, 1-1/8” diameter 

[62385K32]  
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Some Notes on Assembling Modular Aluminum Framing Systems 

 The primary method for securing parts together in a modular framing system involves screwing a 

bracket/plate/etc. (which is a part ordered with the framing system) to a nut that is placed within the 

embedded track of the protrusion framing part.  The nut must be placed into the framing from an open 

end of the part—it cannot be inserted throughout the length of the part.  If both ends of the part have 

already been obstructed (e.g., as the part is incorporated into the apparatus), then the nut cannot be 

inserted.  Instead, the apparatus must be partially de-constructed to insert the nut.  Therefore, it is 

advantageous to pre-place the nuts within the appropriate track for each such piece of the system.  In 

some cases, pre-placement of the nuts is not sufficient; rather, it is best to loosely secure one side of 

the attachment bracket/plate, etc. 

 It is best to install end caps only after the complete apparatus is assembled.  Once end caps are 

installed, nuts cannot be inserted using that end of the protrusion. 

 It is best to only secure nuts to a modest torque until the entire apparatus is completed.  Doing so may 

help the structure maintain its proper shape and is useful if portions of the structure need rework or 

access (e.g., to insert a nut). 

 

Assembly of the Primary Frame 

As shown in Fig. 3, the apparatus contained a rectangular base (parts “B”, “C1”, “D”, “E” and “J”), an 

elbow rest plate (part “C2”), and beam to secure the load cell and amplifier (part “A”). In the experiment, 

a cushion will be put on part “C2”, as shown in Fig. 2. 

Parts “G1-2” are used to restrain the wrist. They are secured to part “C1” using Economy T-Nut from 

80/20 Inc. Aluminum Framing Systems. The position of part “G2” can be adjusted for each individual 

subject.  
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(a) 

 

(b) 

Fig. 3: Side (a) and end (b) views of the experimental apparatus labeling parts A - J of the assembly. 
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Fig. 4: Top view of the experimental apparatus with strain gauge amplifier attached. 

. 

Strain Gauge 
Amplifier 
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Parts “A” and “B” are tied together using one 2-hole joining strip with the 1/4-20 x3/8 Flanged BHSCS 

screws & economy T-nuts and one 4-hole inside gusset corner bracket with 1/4-20 x1/2 BHSCS screws & 

economy T-nuts, as marked in Fig. 5. 

 

Parts B, C1-2, D, E and J are secured to each other using the 2-hole 1/8” inside corner brackets and 1/4-20 

x3/8 flanged BHSCS screws & economy T-nuts. Eight corner brackets of this kind are used in total, as 

marked in Fig. 6.  

 

Fig. 5: Front view of the experimental apparatus labeling locations of the 2 Hole Joining strip with  

1/4-20 x3/8 Flanged BHSCS screws & Economy T-nuts and the 4 Hole Inside Gusset Corner Bracket 

with 1/4-20 x1/2 BHSCS screws & Economy T-nuts used to tie part “A” and part “B” together. 
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The load cell (part “F”) is secured to support beam (part “A”) using two screws coming with the load cell. 

In Fig. 7(a), only the top screw is shown. The other screw is on the bottom. 

A custom-built epoxy grip (part “H”) is attached to a custom-built metal piece (part “I”) using two regular 

screws. In the left side of Fig. 7(b), only the top screw is shown. The other screw is on the bottom. 

Part “I” is secured to the load cell (part “F”) using two regular screws. In the right side of Fig. 7(b), only 

the top screw is shown. The other screw is on the bottom. 

A thin Velcro strap is tightly attached to the epoxy grip (part “H”) using screws not shown in Fig. 7. In 

the experiment, the Velcro strap should be tightly wrapped around the posterior of the hand, just proximal 

to the knuckles, to secure the hand to the epoxy grip. 

When appropriate, end caps are inserted into the end of each aluminum beam. 

 

Fig. 6: Bottom view of the experimental apparatus labeling locations of the 2 Hole 1/8” Inside Corner 

brackets and 1/4-20 x3/8 Flanged BHSCS screws & Economy T-nuts used to secure the base (Parts B, 

C1-2, D, E and J).  
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(a) 

 

(b) 

Fig. 7: (a) Top view of the custom pieces (part “I” and “H”) and load cell (part “F”) labeling locations 

of screws.  (b) Zoomed-in view of the dash-boxed part in (a). 


