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Abstract

The electrical activity of skeletal muscle—the electromyogram (EMG)—is of value to many
different application areas, including ergonomics, clinical biomechanics and prosthesis control. For many
applications, the EMG is related to muscular tension, joint torque and/or applied forces. In these cases, a
goal is for an EMG-torque model to emulate the natural relationship between the central nervous system
(as evidenced in the surface EMG) and peripheral joints and muscles. This thesis work concentrated on
experimental investigations of EMG-torque modeling. My contributions include: 1) continuing to
evaluate the advantage of advanced EMG amplitude estimators, 2) studying system identification
techniques (regularizing the least squares fit and increasing training data duration) to improve EMG-
torque model performance, and 3) investigating the influence of joint angle on EMG-torque modeling.
Results show that the advanced EMG amplitude estimator reduced the model error by 21%-71%
compared to conventional estimators. Use of the regularized least squares fit with 52 seconds of training
data reduced the model error by 20% compared to the least squares fit without regulation when using 26
seconds of training data. It is also demonstrated that the influence of joint angle can be modeled as a
multiplicative factor in slowly force-varying and force-varying contractions at various, fixed angles. The
performance of the models that account for the joint angle are not statistically different from a model that
was trained at each angle separately and thus does not interpolate across angles. The EMG-torque models
that account for joint angle and utilize advanced EMG amplitude estimation and system identification
techniques achieved an error of 4.0641.2% MV Ceqy (i.€., error referenced to maximum voluntary
contraction at 90 °flexion), while models without using these advanced techniques and only accounting
for a joint angle of 90yenerated an error of 19.15411.2% MV Crgo.

This thesis also summarizes other collaborative research contributions performed as part of this
thesis. (1) EMG-force modeling at the finger tips was studied with the purpose of assessing the ability to
determine two or more independent, continuous degrees of freedom of control from the muscles of the
forearm [with WPI and Sherbrooke University]. (2) Investigation of EMG bandwidth requirements for
whitening for real-time applications of EMG whitening techniques [with WPI colleagues]. (3)
Investigation of the ability of surface EMG to estimate joint torque at future times [with WPI colleagues].
(4) Decomposition of needle EMG data was performed as part of a study to characterize motor unit
behavior in patients with amyotrophic lateral sclerosis (ALS) [with Spaulding Rehabilitation Hospital,

Boston, MA].
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CHAPTER 1—INTRODUCTION

During my Ph.D. degree studies, | worked on electromyogram (EMG) signal processing and
modeling. Most of my work concentrated on investigating the relationship between surface EMG and the
torque/force produced by the associated muscles. | was also involved in a project that studied indwelling
EMG decomposition. This chapter will first introduce the background and motivation of my work, and
then highlight my contributions to the EMG-torque area. The details of the work are provided in the

subsequent chapters, in the form of published and submitted manuscripts.

When skeletal muscle fibers contract, they conduct electrical activity that can be measured and
recorded by electrodes inserted into the muscle through skin or secured to the surface of the skin above
the muscle. This electrical activity is referred to as the electromyogram (EMG). EMG signals can be
divided into two types — indwelling EMG and surface EMG— according to what kind of electrodes are
used to record signals. Indwelling needle/wire electrodes are inserted into the muscles to be located close
to motor units (small functional groups of muscle fibers, described in the next paragraph) and typically
can view only a few motor units. Surface EMG electrodes have a relatively large pick-up area and
typically can view many motor units. They usually cannot distinguish the electrical activity of individual

motor units.

A motor unit contains a motor nerve and all its innervated muscle fibers, shown in Fig. 1. When a
motor unit is stimulated, its pulse can be recorded by electrodes and displayed as an electrical action
potential, known as a motor unit action potential. An engineering model of the surface EMG signal
models the EMG signal as the superposition (sum) of many individual motor unit action potentials
DelLuca [1979]. Fig. 2 shows the schematic representation of this model for generation of the surface
EMG signal.
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Fig. 1: A motor unit [http://academic.wsc.edu/faculty/jatodd1/351/ch6outline.html]
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Fig. 2: Schematic representation of a model for generation of the surface EMG signal [DeLuca, 1979]
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Surface EMG provides a non-invasive measure of muscle activation and therefore it has been used
to relate EMG to muscle tension and joint torque for a long time [An et al., 1983; Clancy and Hogan,
1997; Clancy et al., 2012; Doheny et al., 2008; Hasan and Enoka, 1985; Heckathorne and Childress, 1981,
Hof and Van den Berg, 1981; Hogan and Mann, 1980b; Inman et al., 1952; Lawrence and DelLuca, 1983;
Sanger, 2007; Shin et al., 2009; Solomonow et al., 1986; Staudenmann et al., 2009; Thelen et al., 1994;
Vredenbregt and Rau, 1973; (see Staudenmann et al. (2010) for a recent review)]. This relation provides a
non-invasive tool for applications in many different fields, such as myoelectric control of prosthesis
[Parker et al., 2006], clinical biomechanics [Disselhorst-Klug et al., 2009; Doorenbosch and Harlaar,
2003], EMG biofeedback for rehabilitation [Armagan et al., 2003; Holtermann et al., 2010], ergonomic
analysis/ task analysis [Hagg et al., 2004; Kumar and Mital, 1996; Mathissen et al., 1995], biomechanical
modeling [Karlsson et al., 1992], measurement in motion control studies [Fukuda et al., 2003], and so on.
Surface EMG generally does not resolve the electrical activity of individual motor units, is dominated by
the activity of superficial muscle fibers and recordings from one muscle can easily be contaminated by
crosstalk arising from the adjacent muscles. Nonetheless, total joint torque estimation based on surface
EMG can more than offset these drawbacks and be very useful for the applications mentioned above. First,
being non-invasive makes surface EMG more widely accepted than indwelling EMG, as it is less painful
to people, the procedure is much simpler and less expensive, and surface electrodes can be applied for a
longer period. Second, the individual contributions of underlying muscles may not necessary for the
estimation of total torque about a joint as the superficial muscle activity can be sufficient to identify total
joint torque, due to the synergistic activation of relatively large muscle groups. Third, the surface EMG to
total joint torque relation can automatically account for certain crosstalk contributions, even if crosstalk is

hard to attribute to individual muscle activities [Clancy, 1991].

The aim of EMG-torque models is to emulate the natural relationship between the central nervous
system (as evidenced in the surface EMG) and peripheral joints/muscles. A classic paradigm to relate the

surface EMG signal to total torque about a joint is shown in Fig. 3. There are two main steps in this
paradigm — EMG amplitude estimation (S andS; ) and total joint torque estimation (T, ). The goal is to
optimize each of the two steps to achieve non-invasive advanced, high-fidelity EMG amplitude and

torque estimation. My thesis work concentrated on optimization of the second step, relating EMG

amplitude estimates to joint torque.
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Fig. 4: Raw EMG signal (in grey) and its EMG amplitude (in blue)

The standard deviation of the electrical activity generated by a muscle is commonly referred to as
the amplitude of the EMG, which measures the intensity of muscular activation level. Fig. 4 shows an
example of raw EMG signal (in grey) and its EMG amplitude (in blue). The earliest continuous EMG
amplitude estimator was established by Inman et al. [1952] as an analog full-wave rectifier followed by a
simple RC low-pass filter. Although the earliest EMG amplitude estimator was not sophisticated, it led to
the routine use of a non-linear detector (analog rectifier) and smoothing (lowpass filtering) of the raw
EMG signal to form EMG amplitude estimates. In the following decades, significant contributors began
to apply engineering and mathematic models to the EMG signal. Basmajian and DeLuca [1985] and
Parker and Scott [1986] established models based on motor unit firings. Hogan and Mann [1980a and
1980b] established a phenomenological model, which models the EMG signal as an amplitude-modulated,
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Gaussian random process. With this model, EMG amplitude is defined as the time-varying standard
deviation of the noise-free EMG signal. Then, stochastic estimation techniques can be used to improve
EMG amplitude estimation from a sample of EMG. This EMG modeling method has led to progressive
iterative improvement in EMG amplitude estimations over the past few decades. Here | will focus on
presenting the “state of the art” in EMG amplitude estimation. Given the phenomenological model, EMG
amplitude estimation becomes the problem of estimating the time-varying standard deviation of a
modulated random process in the presence of additive noise. Hogan and Clancy derived an optimal
closed-form analytic solution for achieving this goal [Hogan and Mann, 1980a, 1980b; Clancy, 1991].
They pointed out that techniques of whitening and multiple-channel combination can effectively improve
EMG amplitude estimation. Fig. 5 shows the effect of whitening on the EMG amplitude estimation. The
upper left plot shows a one second of raw EMG signal (total trial length is five seconds) during a
constant-posture, constant-force contraction of elbow flexors at 75% MVC (maximum voluntary
contraction). The upper right plot is the EMG amplitude estimate from the raw EMG. The lower left plot
is the corresponding measured torque. The lower right plot is the EMG amplitude estimate from the
whitened EMG. In this example, whitening improved the SNR by 71% [Clancy and Hogan, 1994]. Fig. 6
shows the effect of whitening and multiple-channel combination on the EMG amplitude estimation. The
upper left is the measured torque for constant-posture, constant-force contraction of elbow flexors at 25%
MVC. The upper right is the EMG amplitude estimate from a single channel EMG without whitening.
The lower left is the EMG amplitude estimate from a single channel whitened EMG. The lower right is
the EMG amplitude estimate from eight channels, whitened EMG. In this example, whitening and
multiple-channel combination improved the SNR by 170% [Clancy and Hogan, 1995].
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The second step to achieve a non-invasive advanced, high-fidelity EMG-torque model is to
optimize torque estimation from EMG amplitude. Lots of research has been done to relate EMG to
torque/force, most having ignored the effects of agonist muscle activity in their models to simplify the
problem. This simplification is not accurate since antagonist muscle activity accompanies agonist
contraction and actually generates considerable effort during the contraction [An et al., 1983; Solomonow
et al., 1986]. Many of the earlier researchers used relatively simple linear models [Gottlieb and Agarwal,
1971; Thelen et al., 1994] to study the EMG-torque/force relationship. In recent decades, researchers have
begun to use various more complex system identification models to better estimate movement from
surface EMG signals. Mountjoy et al. used Hill-based models to predict translational force at the wrist
from flexion and extension torque at the elbow [2010]. Cheron et al. [1995] used artificial neural

networks to relate EMG to arm trajectory during complex movement. Au and Kirsch predicted shoulder
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and elbow kinematics (angles, angular velocities, angular accelerations) from EMG via a time-delayed
artificial neural network [Au and Kirsch, 2000]. Therefore, more robust system identification that could
apply to this field becomes more and more important because it can improve the performance of these
models and lead to low-error EMG-torque estimation for use in various applications. In prosthesis control,
it would provide more accurate emulation of the natural command relationship between the central
nervous system and peripheral muscles/joints [Parker et al., 2006]. In clinical biomechanics and
ergonomics, it would lead to better estimates of joint loading and muscle tension in studies of worker
tasks and biomechanical evaluations [Kumar and Mital, 1996; Mathiassen et al., 1995; Hagg et al., 2004;
Disselhorst-Klug et al., 2009; Doorenbosch and Harlaar, 2003]. It would also favor the investigation of
motor control and control of powered exoskeletons [Kiguchi et al., 2004; Dollar and Herr, 2008; Lenzi et
al., 2012].

Previous studies show that muscle fiber length and the associated joint angle have a significant
impact on the maximum tension that a muscle can generate [Rack and Westbury, 1969; Zajac, 1989]. It
has been found that altering joint angle affects neuromuscular activity during isometric contractions, such
as the contractile response to motoneuron stimulation rate [Rack and Westbury, 1969] and motor unit
recruitment thresholds [Miles et al., 1986]. Also, a study of biceps and triceps muscles [Solomonow et al.,
1986] indicated that the contributions of antagonist muscles vary considerably across angle. All these
results suggest that the influence of joint angle is important to establish EMG-torque/force models that are
more representative of human movement. However, limited investigations have been done to fully

understand the role of joint angle in EMG-torque models.

My research contributions are focused on experimental investigations of estimating torque/force
from EMG amplitude for the human upper limb. My study conditions ranged from constant-posture,
slowly force-varying (“static”) to constant-posture, force-varying (“dynamic”) contractions. The former
condition is relatively simple and thus is good for initial methodological investigation. The latter one is
more representative of the range of application tasks, so I used this condition to further investigate the
methodologies | proposed. The posture-varying, force-varying condition would be the most complete case
and represents unconstrained movement. Models incorporating this condition represent extensions of my
own work and should benefit from the results of my work. Based on past research results, | studied
various linear/non-linear polynomial models which account for the co-contraction of agonist and
antagonist muscle pairs and also incorporated the advanced techniques of EMG amplitude whitening and

multi-channel combinations into the EMG-torque modeling. Also, | evaluated the effects of regularization
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of singular-value-decomposition-based least squares pseudo-inverse method and increasing the training
data duration on the EMG-torque modeling. Especially, | emphasized the investigation of the influence of
joint angle on EMG-torque modeling and established models that facilitate interpolation across angles
with promising performance. An overview of each of these contributions, which has resulted in archival
publications/submissions, is provided below. The introduction chapter overviews each of them, with
relevant details provided in the publications/submissions which form the remaining chapters of this

dissertation.

Incorporation of Advanced EMG Amplitude Processing Technigues: EMG amplitude

estimation is the first step of EMG-torque modeling and previous researchers showed that improved EMG
amplitude estimates produce decreased EMG-torque error [Clancy et al., 2002; Clancy et al., 2006;
Clancy and Farry, 2000; Clancy and Hogan, 1994; Clancy and Hogan, 1995; Clancy and Hogan, 1997;
Hogan and Mann, 1980a; Hogan and Mann, 1980b; Potvin and Brown, 2004; Staudenmann et al., 2010].
Therefore, advanced EMG amplitude processing techniques can improve the EMG amplitude estimates
and thus improve the performance of EMG-torque modeling. Based on the previous work of Clancy et al.
[1997, 2002 and 2006], I continued to study the advantage of advanced EMG amplitude processing
techniques to a broader range of conditions. | compared standard EMG amplitude processing to advanced
processors that include signal whitening and multiple channel combination on EMG-torque models during
constant-posture, force-varying toque contractions at joint angle of 90=(Chapters 4 and 12). Then |
extended this investigation to various joint angles during constant-posture, both slowly force-varying
(Chapters 5 and 13) and force-varying torque contractions (Chapter 17). The results clearly demonstrated
that multi-channel whitened EMG amplitude processing improved EMG-torque estimation. It is well
established that these methods decrease the variability of the EMG amplitude estimation [Hogan and

Mann, 1980b; Liu, Liu et al., 2013], hence increasing the SNR in the training and testing sets.

System Identification: This topic is related to the second step of EMG-torque modeling. Based

on past research results [An et al., 1983; Brown and McGill, 2008; Mathiassen et al., 1995; Solomonow et
al., 1986], we hypothesized that incorporating non-linear model structures into the EMG-torque problem
would further reduce joint torque error. However, non-linear models typically require additional
parameters, which can lead to over-fitting [Ljung, 1999]. There exists a complex interplay between the
number of fit parameters in the model, training data duration, the SNR of the training data, and the system

identification method [Ljung, 1999]. This section will first briefly introduce my investigation of linear vs.
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non-linear EMG-torque models. Then, it will overview my contributions on providing more robust system

identification to EMG-torque modeling, explicitly addressing model over-fitting problem.

A collaborative work (Chapters 4 and 12) in which | participated, compares linear and non-linear
polynomial EMG-torque models on constant posture, force-varying contractions at an elbow angle of 90<
Previously collected data were used for this study. The results showed that a linear model was statistically
different (poorer) than non-linear models (polynomial degree D=2, 3, 4) when 52-second training
durations were used. In the project investigating the influence of joint angle during constant-posture,
slowly force-varying (Chapters 5 and 13), | modeled both the angle influence and the EMG-torque
relation at one angle using linear/non-linear models. The best non-linear model (EMG polynomial degree
D=2, angle polynomial degree A=2) was statistically different (better) than the linear model (D=1, A=1).
For non-linear models, when both A and D were high (>4), the error became extremely large, likely due to
over-fitting. Some over-fitting also may have occurred when only one of the two polynomial degrees was
high (e.g., D=5, A=3). Then | extended the investigation to constant-posture, force-varying contractions at
multiple joint angles (Chapter 17). Again, the best non-linear models were statistically different (better)
than the linear model. Based on these studies, we found that non-linear models provide better
performance than the linear model, as long as the least squares (a common method used to solve the
model parameters) is appropriately regularized (regularization of least squares will be discussed in the

following paragraph).

As the models become more complex and the model parameters increased, over-fitting become a
bigger obstacle preventing the performance of the models from improving or even making it worse.
Therefore, | investigated different methods to address this problem. | started from regularizing the
singular-value-decomposition-based least squares pseudo-inverse method that is commonly used to solve
the model parameters [Press et al., 1994] (Chapter 12). In this method, small singular values likely
provide little information but contain considerable noise. The reciprocals of these small singular values
need to be computed to obtain the least squares estimate of the fit parameters, which allows the noise to
affect the training of the model parameters. In order to reduce this effect, | replaced the reciprocals of
these small singular values with the value zero when training the model parameters. The tolerance for
replacement was based on the ratio of each singular value in the “design matrix” [Press et al., 1994] to the
maximum singular value, ranging over 40 values spanning 10™° to 0.5 in logarithmic increments. This
method is evaluated on linear (D=1) and non-linear (D=2-4) EMG-torque models during constant-posture,

force-varying contractions at 90< Results showed that tuning the tolerance value improved the model
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performance (please refer to Chapter 12 for detailed results). Results also indicate that tolerance value
tuning is more critical when the data are more susceptible to over-fitting, i.e., for short duration training
sets, poorer EMG amplitude processing, high non-linear degree (i.e., more parameters), and high dynamic

model order (i.e., more parameters).

Increased training data duration is another possible way to address over-fitting, however it has
seen limited evaluation. | evaluated the effect of training data duration on non-linear EMG-torque models
during constant-posture, force-varying contractions at 90 (Chapters 4 and 12). The models were trained
on 26 and 52 seconds of data. Results demonstrated that increasing the training data duration provided a
clear improvement, with considerably lower test errors and reduced sensitivity to the number of model
parameters. | then extended this method to EMG-torque models at various angles during constant-posture,
force-varying contractions, which required even more model parameters (Chapter 17). The models were
trained on 26, 52 and 78 seconds of data. Results again showed that increasing the training data duration

improved the model performance and supported higher non-linear model degree (i.e., more parameters).

Therefore, in order to overcome the over-fitting problem and provide more robust system
identification, one can regularize the singular-value-decomposition-based least squares pseudo-inverse

method and increase training data duration.

Influence of Joint Angle on EMG-Torgue Model: This topic covers the most substantial

independent contributions of my Ph.D. work and it is a topic with more limited prior study. The EMG-
torque relationship changes with angle, at least due to the length-tension relationship [Rack and Westbury,
1969; Zajac, 1989], changes in muscle moment arms [Messier et al., 1971] and the movement of
electrodes with respect to underlying muscle tissue and the innervation zone [Martin and Maclsaac, 2006;
Rainoldi et al., 2000]. Vredenbregt and Rau [1973] found evidence of a multiplicative influence of angle
on EMG-torque, at least during constant-force contractions at various torque levels (more recently
supported by the work of Doheny et al., [2008]). That is, the EMG-torque curve has the same shape at

each angle, but is scaled by a gain factor that is distinct for each angle.

Motivated by the above observation, | hypothesized that we can model the relationship between
EMG and torque at various joint angles by modeling the joint angle influence as a multiplicative factor
(which is a function of angle) to the EMG-torque model at one particular angle (90 for example). |
decided to model the joint angle influence itself using polynomials first not only because it is simple to

investigate but also due to the quadratic shape of the classic length-tension curve. | designed and
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conducted an experiment of 12 healthy subjects and collected surface EMG from their biceps/triceps
muscle groups along with the elbow torque at seven joint angles (spanning 45<to 135 during constant-
posture, slowly force-varying contractions. | proposed three non-linear EMG-torque model structures (all
accounted for muscle co-contractions and utilized the advanced EMG amplitude techniques) and
evaluated their performance on these experimental data (Chapters 5 and 13). One model structure (angle-
specific model) which was formed separately for each of the seven distinct joint angles and thus did not
directly facilitate interpolation across angles, was used to generate the minimum “gold standard” error
result, since it optimized the model coefficients at each particular joint angle. Both of the other two model
structures captured the multiplicative angle factor. A “flex-extend multiplicative model” modeled the
angle influences for flexion electrodes and extension electrodes with two respective polynomials, while
the “single multiplicative model” used one overall polynomial. Each of the three model structures
modeled the EMG-torque relationship at one angle using two polynomials of equal degree D (one for
flexion EMG amplitude and one for extension EMG amplitude, respectively). The best overall
performance of the angle-specific model (polynomial degree D=3) gave an error of 4.2332.2% MV Crg
(i.e., error relative to maximum voluntary contraction at 90 °flexion), which was used as the “gold
standard” to evaluate the other two multiplicative models. The best flex-extend model (EMG polynomial
degree D=2, angle polynomial degree A=2) had an error of 4.1721.7% MV Crg and did not differ
statistically from the best angle-specific model. The best performance of the single multiplicative model
(D=2, A=2) was 5.65+1.9% MVCF90, which was statistically different (poorer) than the best angle-
specific model and the best (D=2, A=2) flex-extend model. The results showed that the joint angle
influence can be model as a multiplicative factor, at least during slowly force-varying contractions at

various torque levels, and the performance of the flex-extend multiplicative model was quite promising.

Next, | conducted another experimental study in order to extend the experimental conditions to
constant-posture, force-varying contractions conducted over a range of fixed joint angles (Chapter 17).
This experiment was done on 25 healthy subjects (23 of them had usable data) at six joint angles spanning
from 60°to 135< (The joint angle of 45°was eliminated from this experiment because many subjects
from the prior experimental trial found it awkward to orient their elbow to this joint angle and subjects
related difficulty in producing torque at this angle with all 12 electrodes mounted on their biceps/triceps.)
I specifically investigated the appropriateness of the multiplicative model vs. joint angle. Three dynamic
non-linear polynomial model structures were proposed and evaluated on the experimental data. As with
the constant posture, slowly force-varying project, the angle-specific model was used to generate the
“gold standard” error result. The polynomial-gain model (denoted the flex-extend multiplicative model in
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the last project) was also evaluated on the force-varying (dynamic) data. Since we hypothesized that the
joint angle influence can be modeled as a multiplicative factor to the EMG-torque model at one particular
angle, why not simplify this multiplicative factor (which is a function of angle) by utilizing distinct
flexion and extension gains at each angle? Therefore, a new model, the piece-wise-gain model was
proposed to do so. Note that the EMG dynamic model coefficients were fixed across angle. This model
did not facilitate immediate gain interpolation across angle; however, gain vs. angle functions which
preserve the exact gain values at the measured angles (e.g., spline functions) can be fit post hoc to provide
interpolation across angle. Also, longer training data duration was used in this study (training data
duration =26s, 52s or 78s) to further improve the model performance and support higher non-linear model
degrees. The best performance of various models all happened when training data duration is 78s. The
best overall performance of the angle-specific model (polynomial degree D=3) gave an error of 4.01+1.15%
MV Crgo, which was used as the “gold standard” to evaluate the other two models. The best polynomial-
gain model (EMG polynomial degree D=4, angle polynomial degree A=2) had an error of 4.16+1.18%
MV Crgo and the best piece-wise-gain model (EMG polynomial degree D=3) had an error of 4.0641.19%
MV Crgo. Both of these two models did not differ statistically from the best angle-specific model. The
results demonstrated that the joint angle influence can be modeled as a multiplicative factor during force-

varying contractions with quite promising performance.

The Influence of Co-Contraction on EMG-Torgue Model: In EMG-torque models at various

angles during constant-posture, slowly force-varying contractions, | also compared the EMG-torque
relationship with and without consideration of muscle co-contraction (Chapter 13). As expected, models
that do not account for co-contraction generate lower individual flexion and extension muscle tension
estimates, likely underestimating true muscle tension. This error is substantial: for flexion, the models
with co-contraction estimated ~29% more tension; for extension, the models with co-contraction
estimated ~68% more tension. If joint impedance were to be volitionally increased by subjects, one would
expect even larger errors. Purposeful co-contraction to increase impedance is common in many tasks

wherein the endpoint limb segment must be stabilized [Rancourt and Hogan, 2001].

Various Applications: A primary application of EMG-torque/force modeling is for EMG control

of powered upper-limb prostheses. Existing commercial EMG-controlled powered hand prostheses are
limited to rudimentary control capabilities of either three discrete states (open, close, off) or one degree of
freedom of proportional control [Parker et al., 2006]. In order to assess the ability to determine two or

more degrees of freedom of control from the agonist-antagonist muscles of the forearm, we did a pilot
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laboratory study that related forearm flexor and extensor EMG to flexion-extension force generated at the
tips of the four fingers (index, middle, ring, pinky) during constant-posture, slowly force-varying
contractions (Chapter 6, 10 and 11). Although the sample size was small (N=3), the results showed
evidence that surface EMG activity from the forearm encodes multiple degrees of freedom of proportional
control information that may be sufficient for use in controlling prosthetic wrists, hands and/or fingers —

at least when tested on intact subjects.

| was involved in a study that investigated the surface EMG bandwidth requirement for whitening
(Chapter 15). Previous studies utilizing contraction levels up to maximum voluntary contraction (MVC)
show that whitening is useful over a frequency band extending to 1000-2000 Hz [Clancy and Farry, 2000;
Prakash et al., 2005], however, EMG electrode systems, particularly in real-time applications, do not have
such wide bandwidth. Also, MVC contraction levels are not common. In order to apply our whitening
technique to real-time applications, we studied the relationship between the frequency band over which
whitening was performed vs. the resulting performance. The low-level contractions (average torque level
of 18.5% flexion MVC) which represent most daily tasks showed that performance utilizing frequencies
out to 400-500 Hz was not statistically different than results out to the full available frequency (2000 Hz).
For the medium-level (50% MVC) contractions, frequencies out to 800—900 Hz were statistically
equivalent to the full bandwidth. These results suggest that conventional electrodes with a typical
passband of ~500 Hz are appropriate for whitening data from contraction levels typically experienced in

many applications. For strenuous activities, wider whitening bandwidths may be helpful.

| was also involved in a study that investigated the ability of surface EMG to estimate joint torque
at future times, up to 750ms (Chapter 16). It has been known that EMG activity from muscles precedes
the associated mechanical activity by approximately 50-100 ms [Inman et al, 1952; Li and Baum, 2004;
Howatson, 2010]. This property can be exploited to anticipate muscle mechanical activity and has various
applications: optimizing controller delay in myoelectric prostheses, user control of exoskeleton suits and
the actuation of rehabilitation devices from impaired limbs. “Anticipatory” EMG-torque estimation can
benefit from the advanced EMG-torque modeling techniques mentioned in previous sections of this
chapter. These techniques have been shown to reduce EMG-torque errors and influenced the realization of
electromechanical delay within EMG-torque models.

Decomposition of Needle EMG: My earliest work (Chapter 2) was collaborative with Spaulding

Rehabilitation Hospital in Boston, MA and the Department of Physical Medicine and Rehabilitation,
Harvard Medical School in Boston. The study aimed to characterize motor unit behavior in patients with
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amyotrophic lateral sclerosis (ALS). ALS, also known as Lou Gehrig’s disease, is a neurodegenerative
disease that affects both the lower (LMN) and upper (UMN) motor neurons. It is a progressive, fatal,
neurodegenerative disease with most affected patients dying of respiratory compromise and pneumonia
after two to three years [Kasi et al., 2009]. To date, the cause of ALS has not been determined thus
making the search for a cure very difficult. In this study, needle EMG signals were collected from control
subjects and patients with both LMN and UMN dominant forms of ALS. Needle EMG decomposition, the
process of breaking down the complex EMG signal into individual motor unit trains that comprise the
signal, was performed on the collected data. Mean motor unit firing rate differences, motor unit
substitution, and increasing complexity in motor unit action potential (MUAP) waveforms were observed
from ALS patients, compared with control subjects. My contribution to the work was decomposing parts
of the needle EMG signal collected both from healthy control subjects and ALS patients. The
decomposition was challenging in patient recordings because MUAP waveforms in patients were
typically more complex than in healthy control subjects. In addition, changes over time in MUAP
waveform shape in patient recordings were more dramatic than in control recordings, which made the data
difficult to decompose. Therefore, | had to combine the use of automated decomposition software
[Florestal et al., 2009] with editing tools [McGill et al., 2005], and also visually inspect/edit each
recording to assure reliability of the results. The complexity of the EMG decomposition further increased
when waveform superimpositions occurred. Data were analyzed using an algorithm designed to
automatically resolve superimpositions [McGill, 2002]. Instances that were not resolved by the automated

algorithm were resolved manually.

To sum up, | focused on EMG-torque modeling during my Ph.D. studies. EMG-torque modeling
is typically divided into two steps: EMG amplitude estimation from raw EMG signals and torque
estimation from EMG amplitude estimates. My contributions are mostly related to the second step and are

listed as follows:

e Continued to evaluate the advantage of advanced EMG amplitude estimators, using a
wider range of conditions because better EMG amplitude estimation improves the
performance of the EMG-torque models. (Related to the first step of EMG-torque
modeling.)

e Continued to study the advantage of non-linear model structures, using a wider range of

conditions. (Related to the second step of EMG-torque modeling.)
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Studied the system identification technique of regularizing the least squares fit (pseudo-
inverse approach) to improve the performance of EMG-torque modeling. (Related to the
second step of EMG-torque modeling.)

Studied the system identification technique of increasing training data duration to improve
the performance of EMG-torque modeling. (Related to the second step of EMG-torque
modeling.)

Investigated the influence of joint angle on EMG-torque modeling and studied
applicability of multiplicative factor models in slowly force-varying and force-varying
contractions at various, fixed angles. (Related to the second step of EMG-torque modeling.)
Assessed the ability to determine two or more degrees of freedom of control from the
agonist-antagonist muscles of the forearm through a pilot laboratory study (EMG-torque
modeling applications).

Contributed to the investigation of EMG bandwidth requirement for whitening which
showed that commercial electrode systems generally have adequate bandwidth for
common motion activities. Higher bandwidths are useful when higher contraction levels
are utilized. (Related to the application of the first step of EMG-torque modeling.)
Contributed to the investigation of the ability of surface EMG to estimate joint torque at
future times. (EMG-torque modeling applications.)
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Abstract— In this study, we investigated the behavior of active
motor units identified via analysis of electromyographic (EMG)
signals recorded from the first dorsal interosseous (FDI) muscle
using a quadrifilar needle electrode. Data was collected from
control subjects and patients with both lower (LMN) and upper
(UMN) motor neuron dominant forms of amyotrophic lateral
sclerosis (ALS). EMG recordings were gathered during isometric
contractions reaching 20 or 50 % of the force output produced
during a maximum voluntary contraction (MVC). Recordings
were analyzed using available EMG decomposition software
(EMGLAB). Results showed differences in mean motor unit
firing rates between patients with ALS and control subjects.
Differences were also observed between patients with LMN- and
UMN-dominant forms of ALS. Motor unit substitution was
observed in patients despite the contractions lasting just a few
seconds. Finally, we observed that motor unit action potential
(MUAP) waveforms recorded from patients were more complex
than those recorded from control subjects as often observed in
motor neuron diseases.

Keywords: Amyotrophic lateral sclerosis; motor units; motor
unit firing rate; motor unit decomposition

L INTRODUCTION

Amyotrophic lateral sclerosis (ALS), also known as Lou
Gehrig’s disease, is a neurodegenerative disease that affects
both the lower (LMN) and upper (UMN) motor neurons. ALS
is typically seen in individuals 40 to 70 years old, with a slight
male predominance. It is estimated that in the US alone, about
30,000 people are affected by ALS and more than 5,000
people are newly diagnosed each year. It can be difficult to
diagnose ALS in the early stages of the disease because its
symptoms may mimic other disorders. To date, the cause of
ALS has not been determined thus making the search for a
cure very difficult.

In order to detect small changes in the rate of disease
progression, multiple outcome measures are normally
used [1]. The neurophysiologic measures that have been
utilized to date are: (1) the compound motor action potential
(CMAP) amplitude, (2)the motor unit number estimate
(MUNE), and (3) the neurophysiologic index derived from
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motor nerve conduction study parameters [2]. Both the CMAP
amplitude and the MUNE decline over time in ALS [1]. All of
the measures mentioned above are sensitive to changes in the
number of motor units, which decreases as the disease
progresses. However, these measures do not allow one to
assess the firing characteristics of the motor units. Since
functional impairment in ALS is caused by muscle weakness
(1.e. the inability to generate force), and given that in addition
to motor unit number, the motor unit firing rate characteristics
mfluence the generation of muscle force, it is important to
study the firing rate characteristics of the remaining motor
units (in addition to their number) in order to fully understand
the etiology of muscle weakness in ALS.

II.  METHODS

A.  Subject Recruitments

Eight control subjects, 56.6 + 7.7 years of age (mean + SD)
were enrolled in the study. Each control subject was examined
by a practicing physiatrist for exclusion criteria including
neuromuscular disorders and the use of medications that could
affect muscle activity. Six subjects 52 + 5.3 years of age
(mean + SD) with ALS were also recruited in the study.
Individuals with ALS were recruited among patients routinely
examined at the EMG clinic, Massachusetts General Hospital.
Patients met clinical and electro-diagnostic criteria for definite
ALS. Four patients had dominant LMN dysfunction and two
had dominant UMN dysfunction. The Revised ALS
Functional Rating scale (ALSFRS-R), a standard clinical
assessment tool based on interviewing and clinically observing
patients, was administered. Also, a muscle stretch reflex
assessment was performed. Biceps, triceps, brachioradialis,
knee and ankle reflexes were tested using standard physical
examination techniques and graded using a scale ranging from
0 to 4. The modified Ashworth scale, a standard clinical
assessment tool for assessing spasticity, was used to evaluate
elbow flexor spasticity. Finally, a nerve conduction test was
performed on all subjects (including both control subjects and
ALS patients.).

Authonized licensed use limited to: Worcester Polytechnic Institute. Downloaded on July 15, 2009 at 08:41 from |IEEE Xplore. Restrictions apply.
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Figure 1. Motor unit data collection. A) Needle insertion. B) Equipment
used during the EMG data collection. C) The trapezoidal trajectory that
subjects traced during an isometric muscle contraction. D) Raw EMG
data for three of the channels recorded using the quadrifilar needle.

B. Experimental Setup

A device to monitor index finger abduction force was used
(Figure 1). The device was adjustable and accommodated
different hand sizes. Two force transducers were used to
provide subjects with feedback concerning abduction and
flexion of the index finger. The acquisition system was set up
with a first screen utilized to help the researcher conducting
the data collection to inspect the quality of the data and a
second screen to provide subjects with a template of the force
trajectory to be followed during testing. A set of speakers was
used for feedback to the researcher as well. Sound generated
by the EMG signal, in addition to visual feedback, was used to
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Figure 2. The quadrifilar needle electrode utilized to record motor unit
action potential waveforms
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Figure 3. The left panel shows a polyphasic MUAP waveform
representative of the recordings we gathered from patients with ALS. The
right panel shows a MUAP waveform representative of our observations
in control subjects.

assess whether we were recording high quality EMG data.

A 25-gauge stainless steel quadrifilar needle electrode was
used to record electromyographic (EMG) signals. The
quadrifilar needle electrode was composed of four electrodes
made of platinum wires with diameter of 50 pm. The wires
were fed through the cannula of the needle and reached a side
port where the electrodes were arranged in a 2x2 array with
mter-electrode distance of 200 pm (Figure 2). Four channels
(differentially amplified) of EMG data were recorded.

Data was sampled at 25 kHz using a 16-bit acquisition card
(NI6035E). When active muscle fibers were within the
detection volume of the quadrifilar needle electrode, motor
unit action potential (MUAP) waveforms were recorded.
MUAPs related to different motor units were marked by
different shapes and amplitude values, due to the orientation of
each recording area relative to the propagation of the electric
field associated with the presence of depolarized zones
traveling along the muscle fibers.

C. Protocol

All study procedures were approved by the local ethical
committee. All subjects provided written informed consent
before taking part in the study. EMG data was recorded from
the first dorsal interosseous (FDI) muscle of the right hand. A
quadrifilar needle electrode was inserted into the FDI muscle
(approximately 0.25-0.5 cm deep) and positioned in a manner
so as to obtain MUAP recordings that were assessed (via
visual inspection) to be suitable for the analysis of motor unit
finng rate characteristics. Based on our experience, we
considered the uniqueness of the MUAP waveforms
associated with each motor unit and the consistency of the
MUAP shapes over time to predict the number of motor units
whose firing rate characteristics could be derived. Subjects
abducted their index finger in order to activate the FDI muscle
while tracing a trapezoidal template (a ramp up and a ramp
down were set with a slope of 10% MVC/s) displayed on a
computer screen as shown in Figure 1. The plateau of the
trapezoidal trajectory lasted for 15 s for the 20% MVC tests
and 5 s for the 50% MVC tests. Subjects rested for at least one
minute after each contraction.

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on July 15, 2009 at 08:41 from IEEE Xplore. Restrictions apply.
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D. Data Analysis

We analyzed the EMG signals by relying on a procedure
known as “motor unit decomposition technique”. The motor
unit decomposition technique 1s a method designed to identify
the occurrence of MUAP waveforms related to the activity of
a given set of motor units. We utilized a software tool
(EMGLAB) developed by McGill et al [3].

During the decomposition process, visual inspection of the
recordings and results of the automated analysis was
performed to assure reliability of the results. Estimation of the
firing rate of a specific motor unit was based on associating a
specific MUAP waveform shape with a given motor unit.

The analysis of the EMG data was challenging in
recordings from patients because MUAP waveforms in
patients were typically more complex than in healthy control
subjects. In addition, changes over time in MUAP waveform
shape in recordings from patients were more dramatic than in
recordings from control subjects. Figure3 shows two
examples of MUAP waveforms recorded from a control
subject and a patient with ALS. The complexity of the
polyphasic waveform recorded from the patient compared to
the relatively simple waveform recorded from the control
subject is apparent. The complexity of the MUAP waveform
made the data difficult to decompose because the shape of the
waveform changed over time. Therefore, we had to combine
the use of automated decomposition software [4] with editing
tools [3]. The complexity of the EMG decomposition further
increased when waveform superpositions occurred. Data were
analyzed using an algorithm designed to automatically resolve
superpositions [5]. Instances that were not resolved by the
automated algorithm were resolved manually.

After the decomposition process, we derived the
instantaneous motor unit firing rate time series from
occurrences of MUAP waveforms that belonged to a given
motor unit. Firing rate time series were defined taking the
inverse of the inter-pulse intervals of MUAP waveform
occurrences.

II.

Examples of motor unit firing rate time series are shown in
Figures 4 and 5. These examples demonstrate one of the main
observations we performed in this study, namely the fact that
motor unit substitution occurred in individuals with ALS
despite the short duration of the contractions performed in the
study. This observation was made in patients with dominant
UMN dysfunction. Motor unit substitution has been observed
before in healthy subjects, but only when contractions of long
duration (i.e. minutes) were performed [6]. The observation of
motor unit substitution during contractions of short duration
suggests an early onset of fatigue in individuals with ALS
with dominant UMN dysfunction. Comparison of the results
we obtained from control subjects and individuals with ALS
and comparison of the results we obtained from subjects with
dominant LMN dysfunction and subjects with dominant UMN
dysfunction revealed other interesting characteristics of motor
unit behavior (Figures 6 and 7). Mean firing rate values in
control subjects were generally in the range between 15 and

RESULTS

12

20 Hz with slightly lower values for motor unit recordings
performed at 20 % MVC compared to motor unit recordings
performed at 50 % MVC. Larger variability was observed in
motor unit recordings from individuals with dominant LMN
dysfunction. Besides, a difference in mean firing rate was
observed in patients with ALS compared to controls. We
observed a higher mean firing rate value in patients with
dominant LMN dysfunction likely due to a compensatory
mechanism aimed at producing the desired force output
despite the loss of motor units. We observed a lower mean
firing rate value in patients with dominant UMN dysfunction
likely due to a lack of “central drive”. Finally, we observed a
decrease in variability of the motor umit firing rate time series
m patients with dominant LMN dysfunction compared to both
control subjects and patients with dominant UMN
dysfunction. This observation is likely due to spasticity in
patients that have dominant LMN dysfunction.
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Figure 4. Firing rate time series from a 50% MVC contraction (control
subject). The green trajectory is the index abduction force measured by
a force transducer, and the blue trajectories are the motor unit firing rate
time series of two of the detected motor units.
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Figure 5. Firing rate time series from a 50% MVC contraction (patients
with ALS). The green trajectory is the index abduction force measured
by a force transducer, and the blue trajectories are the motor unit firing
rate time series of two of the detected motor units. This figure shows a
motor unit substitution. Thin dashed line is force trajectory and the
others represent motor units.
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Figure 6. Motor unit firing rate characteristics in control subjects and
individuals with dominant LMN and dominant UMN dysfunction for
recordings performed at 20% MVC. Data is shown as a box plot for
the control subjects and as collection of mean values for individual
motor units for patients with ALS.
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Figure 7. Motor unit firing rate characteristics in control subjects and
individuals with dominant LMN and dominant UMN dysfunction for
recordings performed at 50% MVC. Data is shown as a box plot for the
control subjects and as collection of mean values for individual motor
units for patients with ALS.

IV. CONCLUSIONS

To our knowledge, this is the first report concerning the
characteristics of motor unit behavior in individuals with ALS.
Our study identified several unique features of motor unit
behavior in individuals with ALS compared to control
subjects. Besides, we identified differences between
recordings performed in patients with dominant LMN
dysfunction and recordings performed in patients with
dominant UMN dysfunction. MUAP waveforms recorded
form patients were generally more complex then MUAP

13

waveforms recorded from control subjects. The firing rate
time series recorded in patients with dominant UMN
dysfunction showed motor unit substitution despite the short
duration of the contractions. Greater variability in the mean
motor unit firing rate was observed in patients with dominant
LMN dysfunction compared to control subjects. Decreased
variability in motor unit firing was observed in patients with
dominant UMN dysfunction. Elevated motor unit firing rate
values were observed in patients with dominant LMN
dysfunction likely due to a compensatory mechanism to cope
with the loss of motor units. Decreased motor unit firing rate
was observed in patients with dominant UMN dysfunction
likely because of lack of “central drive”. Decreased variability
in the firing rate time series was observed in recordings from
patients with dominant UMN dysfunction likely because of
spasticity.
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Abstract— The surface electromyogram (EMG) signal collected
from multiple channels has frequently been investigated for use
in controlling upper-limb prostheses. One common control
method is EMG-based motion classification. Time and frequency
features derived from the EMG have been investigated. We
propose the use of EMG signal whitening as a preprocessing step
in EMG-based motion classification. Whitening decorrelates the
EMG signal, and has been shown to be advantageous in other
EMG applications. In a ten-subject study of up to 11 motion
classes and ten electrode channels, we found that whitening
improved classification accuracy by approximately 5% when
small window length durations (<100ms) were considered.

I. INTRODUCTION

The surface EMG has often been used in prosthesis control,
ergonomics analysis and clinical biomechanics. Whitening has
been used as a preprocessor to decorrelate the EMG signal. In
the context of EMG-based motion selection for prosthetic
control, we hypothesized that whitening would provide a
decrease in the in-class variation of features leading to
improved classification accuracy. The present study examined
the influence of whitening on classification using time and
frequency features of the EMG, in particular at shorter time
durations. Three time domain features: mean absolute value
(MAYV), signal waveform length and zero-crossing rate; and
7th order autoregressive (AR) coefficients as frequency
features, were used in our study. We observed an accuracy
improvement of about 5% at smaller window lengths (less
than 100 ms) with diminishing returns at longer window
durations.

II. METHODS

A.  Experimental Data and Methods

Data from a prior study [1] were reanalyzed. The WPI IRB
approved and supervised this reanalysis. Briefly, ten
electrodes were applied transversely about the entire
circumference of the proximal forearm. A custom electrode
amplifier system provided a frequency response spanning
approximately 30-450 Hz. Ten subjects with intact upper
limbs began and ended each trial at "rest" with their elbow
supported on an armrest. Each trial consisted of two
repetitions of 11 sequential motion classes: 1, 2) wrist
pronation/supination; 3, 4) wrist flexion/extension; 5) hand
open; 6) key grip; 7) chuck grip; 8) power grip; 9) fine pinch

grip; 10) tool grip; and 11) no motion. Each motion within a
trial was maintained for 4 s, after which the subject returned to
no motion for a specified inter-motion delay period. Trials 1-4
used an inter-motion delay of 3, 2, 1 and 0 s, respectively, and
trials 5-8 used an inter-motion delay of 2 s. A minimum 2-min
rest was given between trials. EMG data were sampled at
1000 Hz with a 16-bit ADC. Notch filters were used to
attenuate power-line interference at the fundamental frequency
and its harmonics.

B. Methods of Analysis

The inter-trial delay segments were removed from the data
recordings, resulting in 22, four-second epochs per electrode,
per trial (two repetitions of 11 motion classes). For all
features, 0.5 seconds of data were truncated from the
beginning and end of each epoch. Contiguous, non-
overlapping windows were formed from the remaining 3-
second epoch segments.

Feature sets were computed for each window within an
epoch. A time-domain feature set consisting of three features
per window—MAYV, signal length and zero-crossing [2]
rate—was evaluated. A frequency domain feature set
consisted of seven features per window, comprised of the
coefficients of a seventh order autoregressive (AR) power
spectral density estimate [3]. A third feature set concatenating
the seven frequency domain features and the MAV was also
evaluated.

Trials 1-4 were used to train the coefficients of the
classifier, and trials 5-8 were used to test classifier
performance. Initially, all channels and all motions were
included in the classifier. The models were trained and tested
for each individual subject. Only the test results are reported.

Ten window durations were used: 25, 50, 75, 100, 150, 200,
250, 300, 400 and 500 ms. The analysis was then repeated
after the data had been whitened. When doing so, each epoch
was high-pass filtered at 15Hz, then adaptively whitened using
an algorithm that is tuned to the power spectrum of each EMG
channel [4]. Two global variants were also considered. First,
the entire analysis was repeated using only nine pre-selected
motion classes (the classes denoted above as numbers 1-8 and
11), and again using only seven pre-selected motion classes
(1-5, 8 and 11). Second, the entire analysis was repeated using
a preselected set of six of the electrode channels. A linear
discriminant classifier was used for the recognition task.
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Fig. 1. Classification accuracies for intact subjects with (triangle)/without (circle) whitening used for pre-processing. The frequency feature set (Freq) is
comprised of the seven AR coefficients. The time domain feature set (TD) is comprised of three features, and the concatenated feature set (MAR) uses
the AR coefficients and MAV. Window durations up to 300 ms are shown. Note the different y-axis scale for each plot.

III. RESULTS

Fig. 1 shows the averaged test accuracies for the motion—
channel combinations with lowest (left) and highest (right)
overall performance. Classifying with more channels and
fewer motion types (right) produced better overall
performance. The concatenated (AR-MAV) feature set gave
the highest overall classification accuracy, and the frequency
domain feature set the lowest. A consistent 4-5%
classification performance increase can be seen at shorter
window durations for all three feature sets due to whitening,
although the improvement decreases with longer window
duration. Paired t-tests (p<0.05) at all window lengths suggest
that use of whitening as a preprocessing stage provides a
statistically significant performance improvement.

IV. DISCUSSION

We have shown that the use of signal whitening prior to
classification analysis of the EMG system consistently
improves the recognition accuracy, especially at shorter time
durations. This improvement is modest (~5% for window

durations less than 100 ms), but may help improve the
accuracy of EMG-based artificial limb controllers. The fact
that the most substantial improvement is seen with small
window lengths is important, as it may allow a control system
to use less data, and therefore improve response time.

Further work may apply to other EMG processing
techniques, such as universal principal components analysis
[1] and more sophisticated classifiers to further improve
classification performance.
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Abstract— The surface electromyogram (EMG) from
biceps/triceps muscles of 33 subjects was related to elbow torque,
contrasting EMG amplitude (EMGQ) estimation processors,
linear/non-linear model structures and system identification
techniques. EMG-torque performance was improved by:
advanced (i.e., whitened, multiple-channel) EMGG processors;
longer duration training sets (52 s vs. 26 s); and determination of
model parameters via the use of the pseudo-inverse and ridge
regression methods. Best performance provided an error of
4.65% maximum voluntary contraction (MVC) flexion.

I. INTRODUCTION

The surface EMG has often been used in prosthesis control,
ergonomics analysis and clinical biomechanics. We applied
advanced EMGo estimates (whitening, multiple-channel
combination) and different parametric model structures to the
EMG-torque problem to reduce torque estimation error. The
present study examined system identification methods for
non-linear, dynamic EMG-torque models which utilized
advanced EMGGo processors and explicitly addressed model
over-fitting. ~ Four system identification concepts were
compared. First, Hammerstein and Weiner model structures
were specifically selected to have a small number of
parameters [1]. Second, we investigated the fitting of model
parameters via least squares, utilizing the singular value
decomposition-based pseudo-inverse approach [2]. Third, we
evaluated least squares estimation using ridge regression [3].
Fourth, we increased the duration of the training data.

II. METHODS

A. Experimental Data and Methods

Experimental data from 33 subjects from two prior studies
([4] and [5]) were reanalyzed. The WPI IRB stipulated that
supervision was not required. A subject was secured into the
seat of a Biodex exercise machine with their right shoulder
abducted 90°, their forearm oriented in a parasaggital plane,
the wrist fully supinated and the elbow flexed 90°. The
subject was rigidly attached to the Biodex dynamometer with
a cuff at the styloid process. An array of four EMG electrode-
amplifiers was placed transversely across each of the biceps
and triceps muscles. Signals were sampled at 4096 Hz at 16-
bit resolution. Twelve force-varying contraction trials of 30 s
duration were recorded during which the subjects used a

feedback signal to track a computer-generated target that
moved on a screen as a band-limited (1 Hz) uniform random
process, spanning 50% MVC extension to 50% MVC flexion.
Eight trials per subject were used to fit model coefficients and
four distinct trials were used for testing. Only test trial results
are presented.

B. Methods of Analysis

Two distinct EMGo processors were created from each of
the extension and flexion muscle groups for each 30 s trial—
single-channel unwhitened and four-channel whitened [5].
EMGo and torque signals were decimated by a factor of 100
to a sampling rate of 40.96 Hz.

Extension and flexion EMGos were related to joint torque
using four parametric, dynamic model structures. For each
structure, m was the decimated discrete-time sample index;
T[m] was the measured torque; a, was an offset parameter; e,
and f, were the extension and flexion fit parameters,
respectively; and ox/m/ and or/m] were the extension and
flexion EMGo estimates, respectively. The model structures
were:

1) Linear time invariant (L TI) FIR system of order Q.
2) Polynomial non-linear model of degree D, order Q:

Thnl=a,+ 3 3 e, u0ilm—a+ 33 £ 0ilm—gq] D

d=1 g=0 d=1g=0
3)Hammerstein model (D”-order polynomial static non-
linearity cascaded with a O"-order, LTI, FIR system).
4) Weiner model (0™-order, LTI, FIR system cascaded with a
D"_degree polynomial static non-linearity).
The LTI system order ranged from 1<Q<30 and the
polynomial degree ranged from 1<D<4. Two seconds of data
were excluded from the beginning and end of each 30 s trial.
Three approaches were evaluated to reduce least squares
over-fitting.  First, the singular value decomposition-based
pseudo-inverse was used, in which the reciprocals of small
singular values were replaced with zero. Forty tolerance
values ranged logarithmically from 107 to 0.5. The offset
term a, was not used. Second, ridge regression [3] was used
and the offset term a, was included in the model. Ridge
parameter & ranged logarithmically from 107 to 10% in 112
values. Third, the duration of data available to the least
squares fit was altered between 26 s or 52 s.
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Fig. 1. EMG-torque errors vs. tolerance value for pseudo-inverse system identification method, 26 s of training data. Results for tolerance values below 1078
not shown, but follow similar trend. Rows plot results from the two different EMGo processors; columns distinguish polynomial model degrees (D). Each plot
shows the results for representative model orders (Q) 5. 15. 20 and 30, as labeled. Each result is average of 132 test trials (33 subjects x 4 test trials/subject).
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Fig.2. EMG-torque errors vs. tolerance value for pseudo-inverse system identification method, 52 s of training data. Plot details similar to Fig. 1, except only

results from the multiple-channel, whitened EMGo processor are shown.

1.

Figs. 1-2 show representative aspects of the overall results.
Models which utilized a low linear model order (e.g., O<5)
exhibited high error. High model order often also led to
higher error, particularly for high polynomial model degrees
and with single-channel unwhitened EMGG processors (or

RESULTS

their combination). Excessively large pseudo-inverse
tolerance values and ridge & values exhibited poor
performance.

Although results are not shown here, the Weiner models
were clearly inferior to the polynomial non-linear model.
Hammerstein model results were also inferior to the pseudo-
inverse and ridge regression results, but only mildly so. The
best pseudo-inverse results (4.65% MVC flexion; D=3, 0=28,
Tol=5.6x107, 52 s training set, multiple whitened EMGo)
were not statistically different (p=0.5; paired sign test) than
the best ridge regression results. Error was consistently
reduced by fitting with a longer duration training set (52 s).

IV. DISCUSSION

The multiple-channel whitened EMGGo processor was again
demonstrated to improve EMG-torque estimation. Increasing
training set duration from 26 s to 52 s provided a clear
improvement, with less sensitivity to the number of model
parameters. Surprisingly, this improvement occurred even if
the corresponding 26 s duration error did not vary much as a
function of model order. Even though Weiner models

contained the same number of coefficients as equivalent
Hammerstein models, their results were consistently poorer.
Hammerstein models exhibited performance close to that of
the non-linear polynomial models. With the non-linear
polynomial model, the best pseudo-inverse tolerance gave
performance similar to that of the best ridge method.
However, the range of pseudo-inverse tolerances over which a
nearly optimal fit occurred (~10'°<70/<107%) was wider than
the range of ridge values for its near optimal fit (1<k<10%).

The merging of advanced EMGo processors (whitening,
multiple-channel combination), more complex EMG-torque
models (e.g., non-linear polynomial model) and robust system
identification techniques (pseudo-inverse/ ridge regression,
longer duration training sets) has reduced the EMG-torque
error to 4.65% of MVC flexion—a substantial improvement
over previous EMG-torque models.
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Abstract— This paper describes an experimental study which
relates the simultaneous biceps/triceps surface electromyogram
(EMG) of 12 subjects to elbow torque at seven joint angles
during constant-posture, quasi-constant-torque contractions.
Advanced EMG amplitude (EMGG) estimation processors were
investigated, and an EMG-torque model considering agonist and
antagonist co-contractions was evaluated at each joint angle.
Preliminary results show that advanced (i.e., whitened, multiple-
channel) EMGGO processors lead to improved joint torque
estimation and that the EMGG torque relationship may only
change by a scaling factor as a function of joint angle.

I. INTRODUCTION

A significant literature has developed around the problem
of relating the surface EMG to muscle tensions and joint
torque. However, most investigators have not accounted for
muscle co-contractions by assuming that an agonist muscle
can be contracted while the antagonist muscle is inhibited [1],
[2]. Also, there are clear advances in EMGG processing
techniques over the last few years [3], yet little have been
incorporated into EMG-torque estimation. The present study
investigated the EMG-torque problem by modeling agonist-
antagonist co-contractions over a wide range of joint torques
at seven different angles, and also applied advanced
EMGo processing  techniques (whitening, multiple-channel
combination).

II. METHODS

A. Experimental Data and Methods

Similar experimental apparatus and methods are described
in detail elsewhere [3], [4]. Briefly, experimental data from 12
healthy subjects (9 male, 3 female; aged 18-52 years) were
analyzed. A subject was secured into a custom-built straight-
back chair with their right shoulder abducted 90°, their
forearm oriented in a parasaggital plane, the wrist fully
supinated (palm perpendicular to the floor) and the wrist
tightly cuffed to a load cell (Vishay Tedea-Huntleigh Model
1042). The angle between the upper arm and the forearm was
selectable, but fixed. An array of six EMG electrode-
amplifiers was placed transversely across each of the biceps
and triceps muscle groups to record EMG signals. Signals
were sampled at 4096 Hz at 16-bit resolution. A sequence of
constant-posture, —quasi-constant-torque contractions was
conducted at elbow angles of 45°, 60°, 75°, 90°, 105°, 120°

and 135°. The order of the angles was randomized. At each
angle, three tracking trials of forty-five second duration were
recorded during which the subjects used a feedback signal to
track a computer-generated target linearly ramping slowly in
time between 50% MVC flexion and 50% MVC extension.
Additionally, subjects performed ten second duration 50%
MVC and rest trials (0% MVC), used to calibrate the
advanced EMGG processors.

B. Methods of Analysis

The sampled EMG data were notch filtered at the power
line frequency and all harmonics, and then two different
EMGo processors were contrasted. Processor 1 was the
“conventional” single-channel, unwhitened processor which
used EMG recordings from a centrally located electrode. The
EMG signal was high-pass filtered at 15 Hz and then rectified.
Processor 2 was a four-channel, whitened processor. Each
channel was similarly high-pass filtered, adaptively whitened
prior to rectification [3], and then normalized and ensemble
averaged. Prior to use in model fits, EMGo and torque signals
were effectively low-pass filtered at 3.3 Hz and decimated by
a factor of 1000 (resulting sampling rate of 4.096 Hz).

The decimated extension and flexion EMGos (inputs) were
related to joint torque (output) using a degree D polynomial
non-linear model:

Tim]=S 0,02 [ml+ 3 frool[m]

where m was the decimated discrete-time sample index; 7fm/
was the measured torque; e, and f; 5 were the extension and
flexion fit parameters at joint angle €, respectively; and oxz/m/
and op/m] were the extension and flexion EMGo estimates,
respectively. The polynomial degree ranged from 1<D<S5 and
7.5 seconds of data were excluded from the beginning and end
of each 45 s trial to account for filter transients.

A ftrain-test paradigm was utilized in which the model
coefficients were determined using linear least squares from a
training trial and then used to “predict” the torque from a
distinct test trial [5]. An error signal was obtained from the
difference between the predicted and actual test trial torque.
All errors were normalized to twice the torque at 50% flexion
MVC at joint angle 90°. To quantify these errors, we used the
mean absolute error (MAE) computed for each testing trial,
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Extension EMG Amplitude
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Flexion-Dominant Torque
Fig. 1: EMGo estimation shown as a function of normalized extension (top)
and flexion (bottom) dominant joint torque at seven joint angles for subject
WY04. The dots are real data and the solid lines are the second-degree
polynomial fits, using multiple-channel, whitened EMGG processor.

TABLE 1: EMG-TORQUE ERROR (PERCENT OF MEAN ABSOLUTE MVC
FLEXION AT 90°). EACH RESULT IS THE MEDIAN OF 24 TEST TRIALS (12
SUBJECTS X 2 TRIALS/SUBJECT).

Polynomial Degree (D)
Joint Angle/ D=1 D=2 D=3
EMGao Processor

45°
Single, Unwhite 6.79% 527% | 4.87% | 4.71% | 4.70%
Multiple, White 535% | 4.65% | 422% | 432% | 433%

60°
Single, Unwhite 6.53% 5.14% 5.09% | 4.96% | 4.73%
Multiple, White 5.69% | 423% | 3.96% | 4.08% | 3.88%

75°
Single, Unwhite 576% | 439% | 4.19% | 421% | 4.10%
Multiple, White 480% | 3.36% | 3.07% | 2.88% | 2.88%

90°
Single, Unwhite 5.06% | 4.60% 4.18% | 3.98% 391%
Multiple, White 4.59% 3.38% 3.15% | 3.30% 3.29%

105°
Single, Unwhite 478% | 421% | 423% | 4.12% | 4.02%
Multiple, White 4.18% | 3.22% | 3.16% | 321% | 3.26%

120°
Single, Unwhite 486% | 422% | 4.19% | 417% | 4.17%
Multiple, White 333% | 2.90% | 2.86% | 2.79% | 2.69%

135°
Single, Unwhite 4.13% | 3.75% | 3.73% | 3.68% | 3.66%
Multiple, White 246% | 226% | 224% | 2.23% | 2.26%

and took the median of 24 MAEs (12 subjects x 2 test trials
per angle) at each joint angle.

III. PRELIMINARY RESULTS

Fig. 1 shows the normalized joint torque vs. EMGG during
extension-dominant (top) and flexion-dominant (bottom)
portions of the tracking task at seven different joint angles for
subject WY04. The EMGo-torque curves at different joint
angles exhibit a similar shape but different gains. The EMGo-
torque curves were also generated for the other 11 subjects,
and this observation was consistent across the subjects.

Table 1 provides the summary results of analysis of median
errors between the predicted and actual torques from all
subjects, at seven different joint angles, when the polynomial
degree ranged from 1<D<S5, and using two distinct EMGo
processors. For each joint angle and polynomial degree, the
four-channel whitened processor produced a lower median
error than the signal-channel unwhitened processor.

IV. DISCUSSION

First, advanced EMGo estimation was applied to the EMG-
torque problem at multiple joint angles for constant-posture,
quasi-constant-torque contractions about the elbow. Results
from 12 subjects showed that the multiple-channel whitened
EMGGo processor consistently produced improved EMG-
torque estimation. Depending on the joint angle, use of the
multiple-channel whitened EMGo processor with higher
polynomial degrees produced a median error that was 50%-
66% that found when using the single-channel, unwhitened
EMGGo processor with a polynomial degree of D=1. Second,
the EMGo-torque curves of individual subjects, viewed across
multiple joint angles, indicated that the relationship between
EMGo and joint torque might be multiplicative as a function
of angle [1]. Therefore, EMG-torque models might be
calibrated at certain joint angles and then applied to other

angles via only a change in model gain.
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Abstract—We provide a preliminary report on work to relate the
EMG activity from forearm flexors and extensors to the flexion-
extension forces generated at the finger tips during constant-
posture, slowly force-varying contractions. EMG electrode
arrays (up to 64 channels) were applied over the flexor and,
separately, extensor musculature of the forearm. Spatial filters
were used to create derived EMG channels that were then related
to finger tip force (via least squares models). Preliminary results
identify the “pinky” finger as having the most independent
EMG-force control, with moderate control available from some
combinations of the other fingers.

[.  INTRODUCTION

Existing commercial EMG-controlled powered hand
prostheses are limited to rudimentary control capabilities of
either three discrete states (open. close, off) or one degree of
freedom of proportional control [1]. Some studies of finger
movement have considered multi-finger proportional control
via EMG-based estimation of finger tip forces or finger joint
angles [2]. [3]. In this report, we describe preliminary
findings of an exploratory study to relate forearm flexor and
extensor EMG to flexion-extension force generated at the tips
of the four fingers during constant-posture, slowly force-
varying contractions. A high resolution EMG array was
utilized over the flexion and extension muscles of the forearm,
and spatial filters were formed to enhance signal separation.
The project goal was to assess the ability to determine two or
more independent, continuous degrees of freedom of control
from the antagonist muscles of the forearm.

II. METHODS

A.  Experimental Apparatus and Methods

Experimental procedures were approved by the New
England IRB. Subjects provided written informed consent. A
custom-built restraint, shown in Fig. 1, was rigidly clamped to
a table. The palm of the seated subject’s hand was secured to
the restraint with the thumb directed upwards, the four
remaining digits were passively extended beyond the restraint
and the elbow angle was 90°. The distal phalange of any one
digit was secured to a load cell.

Two, 64-channel monopolar electrode arrays acquired the
EMG (ELSCHO064R3S Adhesive Electrode Arrays, EMG-
USB Amplifier. OT Bioeletronica, Torino. Italy). Each array
was a 13x5 matrix of electrodes (one corner clectrode
omitted). utilizing 2 mm diameter electrodes (gel-filled)
separated by 8 mm. The “flexion™ array was oriented along

Supported by U.S. Army under USAMRAA Grant W81XWH-08-1-0422.

the medial aspect of the forearm, the “extension™ array along
the lateral aspect. Eight extension clectrodes were unused.
Each clectrode channel had a bandwidth from 10-750 Hz.
EMG data were sampled at 2048 Hz (12-bits). A PC sampled
the finger tip flexion-extension load cell data (128 Hz
sampling rate, 16 bits) and served as a subject display.

Four subjects completed one experiment. Each subject
performed separate maximum voluntary contraction (MVC)
flexion, then extension trials for each of the four digits.
Thereafter, subjects performed a series of slowly force-
varying tracking trials, with their force ranging between 30%
MVC extension and 30% MVC flexion. Four tracking trials
of 30 s duration were completed per digit.

B. Methods of Analysis

Data Preprocessing: Each monopolar EMG signal from the
electrode arrays was band-pass filtered (15-700 Hz) and notch
filtered at the power line frequency and all harmonics. Then,
cach trial was manually reviewed. EMG signals with
anomalous data (e.g., obviously corrupted by excessive power
line noise or motion artifact) were removed.

Formation of Classic Spatial Filters: Classic spatially
filtered channels, using known (pre-selected) spatial filter
weights [4], were formed. A spatial filter is a memory-less
weighted sum of the monopolar signals. First, L
(preprocessed) monopolar signals were extracted for each of

Extension Electrode Array

Fig. 1. Photograph of hand/arm secured into finger restraint. Velero strap is
wrapped around one finger (not visible) to secure it to the load cell.
Gloved hand is held to the restraint upright using Velcro. Electrode
arrays are mounted over the medial (flexion array—not visible) and
lateral (extension array) aspects of forearm.
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the extensor and flexor muscle groups. These
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of each spatially filtered channel was computed

and then decimated to 20.48 Hz. The first and last
five seconds of each 30 s tracking trial were
discarded, to eliminate filter startup transients.
Four trials, representing data from each of the four
digits, were combined to form an analysis record.
When one finger tip was active in the load cell, the
finger tip force of the three remaining unmeasured
finger tips was set to zero. Linear least squares

-50
0

Fig. 2. Constant-Posture, Slowly Force-Varying Record: EMG-force test results of estimated
(jagged blue line) and actual force (red line) vs. time for four combined ramp trials to 30%
flexion-30% extension MVC using I=13 bipolar spatial filters. Upward force is in the
flexion direction. Each finger is active for 20 s. For example, the index finger is active
during the first 20 s of this record. Thereafter, other fingers are secured to the load cell
and, thus, the index finger tip force is set to zero. Subject WY04; trials 22, 23, 32, 33.

40 50
Time (s)

70 80

was used to simultaneously relate the L extension
EMGo’s and L flexion EMGG6’s to the four finger tip forces.
Separate training and testing records were used.

III. PRELIMINARY RESULTS

Only preliminary results are available at this time. Fig. 2
shows results using a bipolar montage of 13 derived electrode
channels from each of the flexion and extension arrays. In
these results, the “pinky” finger seems to exhibit excellent
independent control and the “index” finger the least
independent control. Some amount of EMG cross talk/muscle
co-activation is visible in the EMG-force estimates for the
index, middle and ring fingers.

Although statistical comparisons are not yet available, there
did not seem to be an obvious advantage to use of the more
complex spatial filter montages (LDD, NDD). One concern is
that formation of these montages in software from monopolar
electrodes is technically more challenging than doing so in
hardware, and may lead to inferior comparisons.

IV. DISCUSSION

In this study, we are concentrating on determining available
degrees of freedom of independent, proportional control,
expecting that future research would determine how those
signals might be fully utilized to control a hand prosthesis.
This study was intended as an initial assessment of EMG-
force estimation in the finger tips. As such, several study
limitations should be noted. First, data were only successfully
collected from four subjects. Additional subjects would

improve generalizability of the results. Second, subjects only
produced constant-posture, slowly force-varying contractions.
Third, the performance of EMG-force models has seen little
testing relative to the influences of localized muscle fatigue,
electrode movement and day-to-day variations.

The electrode arrays used in this project are not appropriate
for use in reusable systems (such as prosthetics) that are
routinely donned and doffed by their user. The system was
selected for its large number of active electrodes, with the
understanding that knowledge learned in this study might
direct research towards a more deployable electrode solution
in the future. Future EMG-based prosthesis control systems
might achieve high selectivity and better noise/interference
performance via indwelling electrodes.
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Abstract— The electromyogram (EMG) signal has been used
as the command input to myoelectric prostheses. A common
control scheme is based on classifying the EMG signals from
multiple electrodes into one of several distinet classes of user
intent/function. In this work, we investigated the use of EMG
whitening as a preprocessing step to EMG pattern recognition.
Whitening is known to decorrelate the EMG signal, with
improved performance shown in the related applications of
EMG amplitude estimation and EMG-torque processing. We
reanalyzed the EMG signals recorded from 10 electrodes
placed circumferentially around the forearm of 10 intact
subjects and 5 amputees. The coefficient of variation of two
time-domain features—mean absolute value and signal
length—was significantly reduced after whitening. Pre-
whitened classification models using these features, along with
autoregressive  power  spectrum  coefficients, added
approximately five percentage points to their classification
accuracy. Improvement was best using smaller window
durations (<100 ms).

I. INTRODUCTION

Traditional myoelectric-controlled upper limb prostheses
provide one degree of freedom of proportional control, often
by subtracting the EMG amplitudes of an antagonist pair of
muscles. The amputec uses manual mode switches to cycle
between distinet functions (e.g., hand-wrist-elbow) in order
to sequentially control different devices [1], [2]. More natural
control of multiple degrees of freedom is greatly desired by
below-elbow amputees [3]. One emerging method for such
advanced control is based on EMG pattern recognition [1],
[4]-[9]. A window (“epoch™) of data from multiple
electrodes is used to discriminate between a set of distinct
hand/wrist/elbow  actions. For continuous control,
classification can be performed on the EMG signal stream at
a periodic rate.

Pattern tecognition consists of the sequential steps of
EMG signal conditioning/ preprocessing, feature extraction,
dimension reduction and pattern classification. Classification
errors are due both to a systematic component (e.g., inability
of the available features to distinguish all investigated
motions) and a random component. In the related areas of
EMG amplitude estimation and EMG-torque modeling,
whitening has been shown to reduce the variation (i.e.,
random component) in the EMG signal and improve

L. Liu (e-mail: Wliud5@wpi.edu), P. Liu (e-mail: puliu@wpi.edu) and E.
A. Clancy (e-mail: ted@wpi.edu) are with the Electrical and Computer
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performance [10], [11]. Physiologically, whitening may
counteract, in part, the lowpass filter effect imposed on the
signal as it propagates from its origin along the muscle fiber
membranes; through intervening muscle, fat and skin; before
being recorded at the electrodes. From a stochastic
processing standpoint, whitening temporally decorrelates the
EMG signal, increasing the effective number of signal
samples (a.k.a., statistical degrees of freedom), which reduces
the wvariance in the amplitude estimate. Thus, we
hypothesized that pre-whitening of the EMG signal would
reduce the random variation of the EMG features used in
classification, resulting in  improved classification
performance. This effect should be more evident at small
window durations, since classification accuracy already
approaches 100% when long epoch lengths are used. A
preliminary report of this work appeared in [12].

II.METHODS

A. Experimental Methods

Data from two prior experiments with similar protocols
were available for reanalysis. The reanalysis was approved
and supervised by the WPI IRB. The original data collection
was approved by the human studies boards of the respective
institutions and written informed consent was received from
cach subject. Data from ten intact-limbed subjects were
collected at the University of New Brunswick [5]. Data from
five unilateral transradial amputees were collected at the
Rehabilitation Institute of Chicago [6]. Distinct EMG
acquisition systems were available at each site. In each case,
ten disposable bipolar electrodes (3M Duotrode for intacts;
Noraxon 1.25cm diameter Ag/AgCl for amputees) were
secured about the circumference of the proximal forearm,
oriented along the presumed direction of action potential
conduction. EMG data were bandpass filtered (30-350 Hz
for intacts; 5400 Hz for amputees) and sampled at 1000 Hz.

Subjects completed two repetitions of eight trials. Each
trial was initiated and terminated at rest with the subject’s
elbow supported on an armrest. Each trial was comprised of
the sequential performance (or, for amputees, atfempted
performance) of 11 motion classes: 1, 2) wrist
pronation/supination; 3, 4) wrist flexion/extension; 5) hand
open; 6) key grip; 7) chuck grip; 8) power grip; 9) fine pinch
grip; 10) tool grip; and 11) no motion. Each motion within a
trial was maintained for 4 s, and the subject returned to the
rest posture for a specified inter-motion delay period. Trials
1—4 used an inter-motion delay of 3, 2, 1 and 0 s respectively,
and trials 5—8 used an inter-motion delay of 2 s. A minimum
of two minutes rest was given between trials.
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Fig. 1. Average coefficient of variation (plus or minus one standard error) for the time-domain features from ten intact and (separately) five amputee
subjects, with and without whitening. Lines show fit to the model: CoV[N]=a+5/+N . Scale of y-axis differs for normalized zero crossing rate. Sample

size is 100 for intact subjects, 50 for amputee subjects.

B. Computation of EMG Features

The inter-motion delay portions of the data were removed,
leaving epochs 4 s in duration. Each epoch was notch filtered
at the power line frequency and each of its harmonics. When
whitening was desired, each epoch was highpass filtered at
15 Hz, then adaptively whitened using the algorithm of [10],
[13]. This algorithm initially whitens the complete signal
(EMG signal plus noise) based on an estimate of the noise-
free spectrum of the EMG signal. Unfortunately, this fixed
filter also accentuates the high-frequency portion of the noise
spectrum. Hence, an adaptive Weiner filter (optimal linear
filter to attenuate additive noise) is cascaded after the fixed
whitening filter. This filter adapts its shape based on the
spectra of the background noise and the EMG signal. The
EMG signal spectrum is amplitude modulated with muscle
effort, while the background noise spectrum is fixed. In
practice, the Weiner filter is lowpass in shape, with a higher
cutoff location occurring when muscle effort is high.
Adaptive whitening requires calibration to a rest and an
active contraction, for each electrode. The “no motion™ class
was used as the rest contraction. One active class was
manually selected per electrode per subject, corresponding to
the class with the largest EMG amplitude. After this filtering,
the first and last 0.5 seconds of the epoch were discarded, to
account for filter start-up transients.

Features were then extracted from each trimmed (3 s)
epoch by segregating the epoch into contiguous windows.
The following window durations were investigated: N = 25,
50, 75, 100, 150, 200, 250 and 300 ms. The time-domain

feature set consisted of the three features: mean absolute
value (MAV), average signal length (SL) and normalized
zero crossing rate (ZC) (see [4] for definitions). Our ZC
feature used a noise threshold of approximately 1/6™ the
average RMS value of the *“no motion™ class. The frequency-
domain feature set consisted of the coefficients of a seventh-
order autoregressive (AR) model [8], [14]. The “combined”
feature set used the AR coefficients along with MAV.

C. Analysis of Coefficient of Variation of EMG Features

Since the mechanism of improvement due to signal
whitening is hypothesized to be a reduction in the variation
of feature values, we computed the coefficient of variation
(CoV) of the features. We limited this analysis to the three
time-domain features. For each electrode for each subject, we
identified two classes with the largest EMG amplitudes. The
CoV was computed for each epoch as the standard deviation
of the features divided by their mean. Low amplitude
recordings were avoided, since the CoV calculation is erratic
when the mean feature value and its standard deviation are
both small numbers. These CoV values were averaged across
the two selected trials and across all subjects. Results were
computed both with and without whitening, separately for
intact-limbed subjects and amputees, and for each window
duration N. Thereafter, a modified power decay model was fit
to the mean values, using the model: CoV[N]=a~+b/+/N .

Lower CoV values denote less variability in the features.
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Fig. 2. Exhaustive selection average classification accuracies from ten intact (left) and five amputee (right) subjects for each of the three feature sets, with
and without whitening. The motion-channel combinations shown represent the lowest accuracies (fewest channels and most motion classes) and highest
(most channels and fewest classes). Window durations vary from 25 to 300 ms. Note the different y-axis scale for each plot.

D. Analysis of Classification Performance

Linear discriminant classification was used with an
exhaustive search over all possible electrode combinations.
For ten electrode channels, there were 1023 possible
electrode combinations evaluated. Both repetitions of data
trials 1—4 were used for training and both repetitions of data
trials 5—8 were used for testing. The results from the best test
result per subject are reported. The entirc analysis was
repeated using a preselected set of six clectrodes spread
evenly about the circumference of the forearm. For six
electrode channels, there were 63 possible electrode
combinations evaluated. The analysis was repeated again
using only a preselected set of nine motion classes (classes 1—-
8 and 11); and again using a preselected set of seven motion
classes (classes 1-5, 8 and 11). Results for intact-limbed
subjects and amputees are reported separately for each of the
window durations.
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Fig. 1 shows the average plus/minus standard error CoV
results for the three time-domain features, with and without
whitening, plotted separately for intact-limbed and amputee
subjects. Whitening substantially reduced feature variation at
all window durations for the MAV and SL features. There
was rather limited affect due to whitening for the ZC feature.
The CoV values were lower in the intact-limbed subjects. All
plots fit well to the offset power law model.

RESULTS

Classification accuracy results were higher when the
number of EMG channels was larger and when the number of
motion classes was lower. Thus, results will only be
presented for the best (10-channel, 7-motion) and worst (6-
channel, 11-motion) combination. Fig. 2 shows the across-
subject average classification accuracy for these channel-
motion combinations, with and without whitening, for each
of the three feature sets (time-domain, frequency-domain and
combined), plotted separately for intact-limbed and amputee
subjects. Whitening provided a consistent increase in
performance. At low window durations, the performance
increase is as much as five percent. The “combined” feature
set (AR coefficients along with MAV) consistently provided
the highest average classification accuracy. Accuracy was
higher in the intact-limbed subjects than in the amputees.

IV. DiIScUssioN

Although signal whitening methods have been available
for several years, they do not seem to have been applied to
the EMG pattern recognition problem. When computing
EMG MAV, the signal to noise ratio (SNR) of the amplitude
estimate has been shown to increase with window duration in
a square root fashion [15], with whitening improving the
SNR. Since CoV is defined as the reciprocal of the SNR, it
follows that the CoV of the MAV feature should decrease
with window length as the reciprocal of a square root; thus
our use of the power law model for fitting to the CoV values.
Further, whitened MAV features should have lower CoV
values than unwhitened MAV features. We found, however,
that an offset term was needed in the power law model in
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order to achieve an acceptable fit (Fig. 1). Manual inspection
of the epochs used to calculate the CoV showed that many
subjects did not maintain a constant effort level across the 3 s
used to form features. If the feature values are changing
within a 3 s epoch, then a larger sample standard deviation
will be found for that mean feature value. A larger CoV
estimate will result. The inflated MAV CoV values fit better
to a power law model that included an offset term than to the
theoretically expected model that is absent an offset.

Although not described here, analytic and simulation
analysis also predicted an inverse squarc root relationship
with window duration for the SL and ZC features. Fig.l
shows that the SL feature also required substantial offset
values in the power law fit, but the ZC feature did not. As
effort varied within an epoch, the CoV of the SL feature
would be expected to inflate, again duc to the increased
within-epoch variance. But, =zero crossings are not
substantially influenced by modulations in EMG amplitude
within an epoch—so long as the EMG amplitude remains
above the noise floor. Hence, the ZC features exhibited the
lowest overall CoV values (and the lowest standard errors).

One would expect much lower CoV values for the MAV
and SL features if the subject contractions were held more
constant. However, acquisition of such data is only relevant
to this intermediate evaluation of CoV. For training
classifiers, it is better to collect data with the full range of
within-epoch modulation that is representative of actual
prosthesis control use. The classifier will then optimize for
that realistic condition.

Regardless of this inter-epoch modulation concern,
whitening decreased the CoV, making the features more
repeatable. As shown in Fig. 2, an improvement in
classification accuracy resulted. The improvement was most
prominent at the shorter window durations. This result was
expected, since classification performance increases towards
100% at the longer window durations. No further increase is
possible.

V.CONCLUSION

We investigated whitening as a preprocessing step to
EMG pattern recognition in intact-limb and amputee
subjects. Whitening was shown to decrease the average CoV
for MAV and SL features, with less influence on the ZC
feature. Whitening was shown to consistently improve the
average classification accuracy when distinguishing up to 11
distinct motion classes using up to 10 different electrodes.
Improvement due to whitening was also found using fewer
motion classes and fewer electrode channels.
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Abstract— This paper investigates the ability of surface
electromyogram (EMG) to estimate joint torque at future times,
up to 1 s. EMG was recorded from the biceps and triceps muscles
of 54 subjects during constant-posture, force-varying
contractions and related to the torque produced about the elbow.
EMG to joint torque was predicted up to 80 ms into the future
without any changes in the minimum least square error of 5.48%
of maximum voluntary contraction for the best estimation model
investigated: whitened, multiple-channel EMG used with a non-
linear model. Error progressively increased for prediction times
above 80 ms.

L INTRODUCTION

Real-time applications such as myoelectric prosthesis
control [7], teleoperations and control of exoskeletons require
minimization of time delays introduced between intention
sensing and actuator activation. Similarly, virtual environment
applications [8] employing head mounted displays need to
reduce the latency between movement and scene generation.
These applications motivate the need to anticipate torque
ahead of time. In this regard, EMG is an attractive control
source, since peak electrical activation of a muscle precedes
peak twitch force by 40—100 ms. It has previously been shown
that EMGa-torque performance is improved by advanced (i.e.,
whitened, multiple-channel) EMGa processing [4]. Thus, this
processor was used to estimate torque at future times up to 1
second and the change in maximum voluntary contraction
(MVC) flexion error was observed. Linear and non-linear
models were investigated using the pseudo-inverse to
regularized the least squares model fit.

II.  METHODS

A. Experimental Data and Methods

Experimental data from 54 subjects (30 male, 24 female;
aged 37.6£16.5 years) from three prior studies were utilized.
The study was approved by the WPI IRB. Subjects had
previously provided written informed consent. The three
studies had nearly identical apparatus and protocols with
respect to the data reanalyzed [1], [3]. Subjects were seated and
secured with their shoulder abducted 90°, forearm oriented in a
parasagittal plane, wrist fully supinated and elbow flexed 90°.
Their right wrist was rigidly cuffed to a load cell (Biodex
dynamometer; or Vishay Tedea-Huntleigh Model 1042, 75 kg
capacity). Skin above the muscles under investigation was
scrubbed with an alcohol wipe. In one study, a small bead of
electrode gel was massaged into the skin. Four bipolar
electrode-amplifiers were placed transversely across each of
the biceps and triceps muscles, midway between the elbow and
the midpoint of the upper arm, centered on the muscle midline.
Custom electronics amplified each EMG signal (CMRR of ~90
dB at 60 Hz) followed by bandpass filtering (either a 2nd-
order, 10-2000 Hz bandpass filter; or 8th-order highpass at 15
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Hz followed by a 4th-order lowpass at 1800 Hz). All signals
were sampled at 4096 Hz with 16-bit resolution.

After a warm-up period, MVC torque was measured in both
elbow extension and flexion. Five-second, constant-posture
constant-force contractions at 50% MVC extension, 50% MVC
flexion and rest were recorded for calibration of advanced
EMGo estimation [3], [6]. Then, a real-time feedback signal
consisting of either the load cell voltage or a four-channel
whitened EMGo processor (formed by subtracting the extensor
EMGo from the flexor EMGo) was provided on a computer
screen. Thirty-second duration, constant-posture force-varying
contraction trials were then recorded. The subjects used the
feedback signal to track a computer-generated target that
moved on the screen in the pattern of a band-limited (1 Hz)
uniform random process, spanning 50% MVC extension to
50% MVC flexion. Three trials were collected.

B. Methods of Analysis

All analysis was performed offline in MATLAB. Two
distinct EMGo processors were used: single-channel
unwhitened (using a centrally located electrode) and four-
channel whitened [2], [3]. Each processor used a 15 Hz
highpass filter (causal, Sth-order, Butterworth) and first-order
(i.e., absolute value) demodulation. The four-channel processor
whitened each channel prior to demodulation [6] and then
averaged the four channels after demodulation. Finally, the
EMGo signal was formed by decimated this signal by a factor
of 100 to a sampling rate of 40.96. To do so, the signal was
decimated twice by a factor of ten (effective lowpass filter
prior to downsampling of 164 Hz, causal, O9th-order,
Chebychev Type 1). The torque signal was similarly
decimated, yielding a bandwidth approximately one tenth that
of the input EMGo signals [5]. Extension and flexion EMGaos
were related to joint torque via the parametric model [4]:

Tlnl=3"S e, ,otlm—gl+ 33 1 otlm—q]

d=1 g=0 d=1 g=0

where Tfm/ is the decimated torque signal, oy is the extension
EMGo, o is the flexion EMGo, e,, are extension fit
coefficients and f ; are flexion fit coefficients. Integer O sets
the number of signal lags. When integer D=1, the model is
linear. When integer D=2, a nonlinear dynamic model is
facilitated. Parameter (Q was set to 30 for our linear model and
15 for our non-linear model. The pseudo-inverse tolerance
values for varied combinations of EMG estimates were chosen
based on performance results of torque estimates using the
singular value decomposition pseudo-inverse technique [4]. A
5 ms time resolution was used to advance the EMG. Two
seconds of data were excluded from the beginning of each 30s
trial to account for filter start-up transients.
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Fig. 1 shows the average error for four processing
combinations: single-channel unwhitened vs. multiple-channel
whitened EMGo estimates; cascaded with a linear vs. non-
linear model structure. The lowest error is 5.48% (referenced to
MVC flexion), achieved using the multiple-channel whitened
EMGo estimator and the non-linear model structure. The error
does not vary for prediction times up to approximately 80 ms.
This result suggests that EMG-based torque prediction at 80 ms
into the future has an error that is no different than estimating
torque at the current time. Table | shows the lowest average
MVC error of the predicted torque for each of the four
processing combinations.

RESULTS

TABLE | : LOWEST AVERAGE ERROR FOR FOUR EMGa PROCESSORS

System Identification ModelEMGa Lowest Average Error
Technigue (% MVC Flexion)
Linear/Single Channel, Unwhitened 8.62%
Non-linear/Single Channel, Unwhitened T.65%
Linear/Multiple Channel, White 6.24 %
Non-Linear/Multiple Channel, White 548 %

IV. DISCUSSION

EMG to torque prediction was performed to investigate
error as a function of future time. Error varied with processing
technique.  Multiple-channel whitened EMGo estimators
provided lower errors than single-channel unwhitened. A
second-degree non-linear model provided lower error than a
linear model. These results are consistent with past observation
in EMG-torque models [4].We observed no differences in
torque estimation errors for the range of prediction times
between 0-80 ms. This result is unexpected, as most
researchers explicitly model delays of 40-100 ms to improve
EMG-torque performance. However, these other models tend

to apply fixed dynamics (e.g., first- or second-order
Butterworth lowpass filter with cut-off frequency between 1-3
Hz). Our models adapt their dynamics to each subject. After
prediction times of 80 ms, error grew with the amount of time
into the future, until error leveled-off at approximately 600 ms
with a worst-case value of approximately 18% MVC flexion.
At this error, EMG is no longer indicative of the torques being
produced in this experiment. The lowest errors occurred at any
future time between (~80 ms using the multiple-channel
whitened EMGao estimator and a non-linear model structure.
The error corresponding to these conditions was 5.48% MVC
flexion.
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Fig. 1. Error (percent maximum voluntary flexion contraction) vs. time predicted into the future for EMG-torque processing. Error is shown
for the four combinations of EMGa estimators (single-channel unwhitened and multiple-channel whitened) and model structures (linear and
non-linear). Torque estimates were computed every 5 ms, Each estimate is the average result from 54 subjects.
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Abstract—It has been demonstrated that whitening the surface
electromyogram (EMG) improves EMG amplitude (EMGo)
estimation. But, due to the wide bandwidth ranges often used
when whitening, custom high-cost electrodes (bandwidth of
~2000 Hz) have been used. This paper investigates the effect of
limiting the bandwidth for the whitened EMG data. The change
in the average error of EMG to torque estimation was observed
for 54 subjects over different whitening bandwidths ranging
from 20-2000 Hz. We found that the average error remained the
same for bandwidth limits between 600 Hz to 2000 Hz, suggesting
that wider EMG electrodes were not helpful with this data set.

L. INTRODUCTION

Whitening of the surface electromyogram (EMG) has been
shown to improve EMG amplitude estimation and to lower
EMG-torque errors [1], [2]. The current adaptive whitening
approach used in our laboratory [3] utilizes more signal
bandwidth when EMGo is large (SNR is high) but less signal
bandwidth when EMGo is low (more noise than signal only
exists at the lower frequencies). This strategy has been shown
advantageous when contraction levels extent to 50-75% of
maximum voluntary contraction (MVC) [1], [3]. To take
advantage of the broader bandwidth during higher contraction
levels, our work has utilized custom-designed electrodes with a
passband to nearly 2,000 Hz. As a result, we typically sample
the incoming EMG signal at 4096 Hz and implement adaptive
signal whitening over the entire Nyquist bandwidth (2048 Hz).
However, most day-to-day contractions occur at average levels
below 25% MVC. At these contraction levels, the adaptive
whitening may be discarding much of the higher frequencies in
the signal. Given the cost and effort required for custom
electrodes, we wanted to rigorously investigate the role of
bandwidth on EMGo processing at more modest contraction
levels. In this work, the maximum frequency out to which
whitening was applied was limited using digital lowpass
filtering. We examined bandwidth limiting for frequencies
ranging from 20 Hz to the full whitening bandwidth of 2048
Hz. For each of these bandwidths, EMG to torque estimation
was performed for 54 subjects and the average error in percent
MVC flexion was computed.

II.  METHODS

A. Experimental Data and Methods

Experimental data from 54 subjects (30 male, 24 female;
aged 37.6£16.5 years) from three prior experimental studies
were analyzed. This study was approved and supervised by the
WPI IRB. All subjects had previously provided written
informed consent. The three studies had nearly identical
experimental apparatus and protocols (fully described in [3]
and [4]). Subjects were seated and secured with their shoulder
abducted 90°, forearm oriented in a parasagittal plane, wrist
fully supinated and elbow flexed 90°. Their right wrist was
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tightly cuffed to a load cell (Biodex dynamometer; or Vishay
Tedea-Huntleigh Model 1042, 75 kg capacity) at the styloid
process. Skin above the muscles under investigation was
scrubbed with an alcohol wipe. In one study, a small bead of
electrode gel was massaged into the skin. Four bipolar
electrode-amplifiers were placed transversely across each of
the biceps and triceps muscles, midway between the elbow and
the midpoint of the upper arm, centered on the muscle midline.
Each electrode-amplifier had a pair of 4-mm (or 8mm)
diameter, stainless steel, hemispherical contacts separated by
10 mm edge-to-edge, oriented along the muscle’s long axis.
The distance between adjacent electrode-amplifiers was ~1.75
cm. A single ground electrode was gelled and secured above
the acromion process or on the upper arm. Custom electronics
amplified each EMG signal (CMRR of approximately 90 dB at
60 Hz) followed by bandpass filtering (either a second-order,
10-2000 Hz bandpass filter; or 8th-order highpass at 15 Hz
followed by a 4th-order lowpass at 1800 Hz). All signals were
sampled at 4096 Hz with 16-bit resolution.

After a warm-up period, MVC torque was measured in both
elbow extension and flexion. Two repetitions of five-second
duration, constant-posture constant-force contractions at 50%
MVC extension, 50% MVC flexion and rest were recorded. A
real-time feedback signal consisting of either the load cell
voltage or a four-channel whitened EMGo processor (formed
by subtracting the extensor EMGo from the flexor EMGo) was
provided on a computer screen. Thirty-second duration,
constant-posture force-varying contraction ftrials were then
recorded. The subjects used the feedback signal to track a
computer-generated target that moved on the screen as a band-
limited (1 Hz) uniform random process, spanning 50% MVC
extension to 50% MVC flexion. Three trials were collected. At
least three minutes of rest was provided between contractions
to prevent cumulative fatigue. Additional sensors were applied
and tracking trials collected, but not used in this study.

B. Methods of Analysis

All analysis was performed offline in MATLAB. A four-
channel whitened (but bandwidth restricted) EMGo processor
was used. Each processor used a 15 Hz highpass filter (causal,
Sth-order, Butterworth) and first-order (i.e., absolute value)
demodulation. The four-channel processor whitened each
channel (causal algorithm of Clancy and colleagues [3], [5],
[6]). Whitening filters were calibrated from one of the
constant-force contraction sets, comprised of a 50% MVC
extension, 50% MVC flexion and a rest recording. To restrict
bandwidth, the whitened signal was lowpass filtered using a
causal, 9th-order, Chebychev Type I whose cutoff frequency
was selectable. Cutoff frequencies incremented by 10 Hz
between 20 and 200 Hz, and then incremented by 100 Hz up to
2000 Hz. After bandwidth restriction, each signal was
demodulated and then the four EMG channels were averaged.
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Finally, the EMGa signal was formed by decimating this signal
by a factor of 100 to a sampling rate of 40.96. To do so, the
signal was decimated twice by a factor of ten (effective
lowpass filter prior to downsampling of 16.4 Hz, causal, 9th-
order, Chebychev Type I). The torque signal was similarly
decimated, yielding a bandwidth approximately one tenth that
of the input EMGo signals [7]. Extension and flexion EMGos
were related to joint torque via the parametric model [2]:

Timl=3" e, ,otlm—ql+ 33 1 otlm—q]

d=1 g=0 d=1 =0

where Tf{m/ is the decimated torque signal, o is the extension
EMGo, op is the flexion EMGo, e,, are extension fit
coefficients and f; ; are flexion fit coefficients. Integer Q sets
the number of signal lags. When integer D=1, the model is
linear. When integer D=2, a nonlinear dynamic model is
facilitated. Parameter Q was sel to 30 for our linear model and
15 for our non-linear model. Fit parameters were found via
least squares, regularized via the pseudo-inverse approach [2].

ML

Fig. 1 shows the average error (difference in the estimated
vs. actual torque) from all 54 subjects for whitened multiple
channel EMG, using the linear and non-linear models, as a
function of maximum frequency used for whitening. The
average error remains at almost constant value of 5.48% (non-
linear) and 6.24% (linear) for maximum frequencies between
~600 Hz and 2000 Hz. Below maximum frequencies of ~600
Hz, the error increases. A steep error increase occurs for
maximum whitening frequencies below 200 Hz.

RESULTS

IV. DISCUSSION

EMG estimation was performed using different
bandwidths of the whitened EMG in order to observe the
change in error. It was observed that the error both for linear
and non-linear models remained relatively constant over a wide
range of maximum frequencies, i.e. 600 Hz up to 2000 Hz.
This result questions the need for adaptive whitening over such
a wide frequency range as 2048 Hz, at least for contractions at
these levels. These data ranged in contraction from 50% MVC
flexion to 50% MVC flexion, with an average contraction level
below 25%. This result also supports eliminating the
requirement to use custom high bandwidth electrodes when
acquiring data with these contraction characteristics, as most
off-the-shelf EMG hardware has a bandwidth up to ~500 Hz.
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Abstract—Electromyogram (EMG) activity from the extensor
and flexor muscles of the forearm was sensed with high-density
surface electrode arrays and related to the force produced at the
four fingertips during constant-posture, slowly force-varying
contractions from three healthy subjects. Various electrode
montages (spatial filters) and number of electrodes used in the
system identification were studied. Average errors were small,
ranging from 4.21 to 8.10 %MVCy (flexion maximum voluntary
contraction), with errors trending lower when more EMG
channels were used and when a monopolar electrode montage
was selected. Results are supportive that multiple degrees of
freedom of proportional control information are available from
the surface EMG of the forearm, at least in intact subjects.
Applications for future study include the control of prosthetic
upper limb devices in amputees.

Keywords—Biological system modeling; electromyography;
EMG signal processing; biomedical signal processing.

L. INTRODUCTION

Numerous research studies have attempted to relate the
electromyogram (EMGQG) activity of the forearm muscles to the
mechanical activity of the wrist, hand and/or fingers. A
primary interest is for EMG control of powered upper-limb
prostheses, with additional interests including ergonomic
analysis of manual tasks and clinical neuromuscular
evaluation. The long-term goal for prosthetic control is to
provide a replacement limb with functionality and control
similar to that of an intact limb, ie. “... simultaneous,
independent, and proportional control of multiple degrees of
freedom ...” [1]. Existing commercial EMG-controlled
powered hand prostheses are limited to rudimentary control
capabilities of either three discrete states (open, close, off) or
one degree of freedom of proportional control [1]. To extend
control capabilities, several classification schemes using inputs
from conventional surface EMG electrodes have been
demonstrated in  various laboratory conditions  for
discriminating between 5-10 hand/wrist functions [2]-[8] or
for classification of individual finger movements [9]-[13].
Classification accuracy above 95% has been reported in some
conditions, with accuracy decreasing as the number of classes
increases, the number of EMG electrodes decreases and the
window length of the EMG processor decreases. These
methods may provide for increased amputee function, even
though continuous proportional control of movement is
generally not achieved. Some studies of finger movement have
considered proportional control via EMG-based estimation of
finger forces or finger joint angles [13]-[15].
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Many studies have approached this problem while limiting
the number of EMG electrodes and the amount of computer
computation, since prosthesis-based solutions must fit into low
power, low weight, portable systems. However, advances in
EMG electrode technology and low power microprocessors are
rapidly making these concerns moot, and such concerns are not
as pressing in ergonomic and medical applications. In recent
years, high resolution spatial filtering of surface EMG has been
used to localize electrical potentials to small volumes of
muscle tissue [16]-[18]. These systems are attractive for the
small muscles of the forearm, in order to reduce EMG cross-
talk that might hinder signal separation from functionally
distinct muscles that lie in close proximity.

In this report, we describe a laboratory study that relates
forearm flexor and extensor EMG to flexion-extension force
generated at the tips of the four fingers (index, middle, ring,
pinky) during constant-posture, slowly force-varying
contractions. A high resolution EMG array was applied over
the flexion and extension muscles of the forearm, and various
spatial filters were utilized to enhance signal separation. The
project goal was to assess the ability to determine two or more
degrees of freedom of control from the agonist-antagonist
muscles of the forearm.

1.  METHODS

A. Experimental Apparatus

The experimental apparatus consisted of a restraint device
for constant-posture finger flexion-extension, a custom
LabView interface for acquisition and real-time display of
finger forces, and a commercial EMG amplifier array and
acquisition system. The finger restraint and an EMG electrode
array are shown in Fig. 1. The experimental apparatus and
procedures were approved by the New England Institutional
Review Board, an IRB of record for Worcester Polytechnic
Institute.

The finger restraint was custom built using modular
framing (10 Series Profiles, 80/20 Inc., Columbia City, IN,
U.S.A)). As shown in Fig. 1, the restraint contained a
rectangular base with outer dimensions of 20 by 45 cm, with
extensions that were rigidly clamped to a heavy table. The
subject sat along the table edge with their elbow forming a 90°
angle. A cushioned elbow rest plate was mounted at the rear of
the base. The location of this plate (distance from the restraint
upright) was adjusted for each subject such that the forearm
was only supported by the olecranon process. The EMG
electrodes, once mounted on the forearm, were never in contact
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Fig. 1. Photograph of handfarm secured into the finger restraint. A Velcro strap is wrapped around one finger (the fourth digit is used in this photo) to
secure it to the load cell, which measures finger flexion-extension. The gloved hand is held to the restraint upright using Velero. Electrode arrays are
mounted over the medial (flexion array} and lateral (extension array—not visible) aspects of the forearm

with the finger restraint. The height of the elbow rest plate was
also adjusted for each finger to keep the long axis of the
forearm parallel to the table. After donning a glove, the palm of
the hand was secured to the front of the restraint to an upright,
using Velcro. The glove adhered to the Velcro better than the
bare hand and prevented the need to actively stabilize the hand
during contractions of a finger. The hand was oriented with the
thumb directed upwards and the four remaining digits
passively curled and extending bevond the upright. The height
of the hand above the base could be adjusted so that the distal
phalange of any one of the four remaining digits was aligned
with the load beam. A phalange was secured to the load beam
by wrapping a thin Velcro strip around the beam and distal
phalange. The load on this beam was measured with a one
degree of freedom load cell and amplifier (Load Cell Model
LCL-040, Amplifier Model DMD-465WB; Omega
Engineering, Inc., Stamford, CT, U.S.A.). The cut-off
frequency of the amplifier lowpass filter was set at 9.4 Hz
(second-order, Bessel). A constant-posture flexion force was
directed towards the restraint upright and an extension force
was directed away. Measurement was only made on one digit
at a time. The load cell amplifier was re-zeroed before each
contraction to prevent drift during the experiment. Between
trials, subjects were released from the Velcro restraints, as
needed, so as to maintain normal circulation to the hand.

For EMG recordings, the skin over the circumference of the
proximal right forearm was scrubbed with an alcohol wipe.
Two, 64-channel monopolar electrode arrays and their
associated commercial —amplification-acquisition  system
recorded the EMG (ELSCHO064R3S Adhesive Electrode
Arrays, EMG-USB Amplifier; OT Bioeletronica, Torino,
Italy). Each array was a rectangular, 13x5 matrix of electrodes

(with one corner electrode omitted), utilizing 2 mm diameter
electrodes (gel-filled) separated by 8 mm (center-to-center).
The long axis of the “flexion™ array was oriented and secured
along the circumference of the right forearm, centered on the
mid-line of the medial aspect of the forearm. The omitted
corner electrode was closest to the base of the finger restraint,
in the most proximal electrode column. The second
“extension” array was secured with the long axis oriented
along the right forearm circumference, centered on the mid-line
of the lateral aspect of the forearm. The omitted corner
electrode was closest to the base of the finger restraint, in the
most distal electrode column. The eight extension electrodes
located furthest from the base of the finger restraint along the
most proximal electrode column were not recorded, leaving 56
electrodes. A gap of 3.5-7 cm existed between the two
electrode arrays, both at the restraint base and 180" along the
forearm circumference. The proximal edge of each EMG array
was located three fingers width from the olecranon process
[19]. A wrist-band reference electrode was applied to the left
wrist. Two wrist-band electrodes were also used to operate a
“driven-right-leg” interference attenuation circuit. Both of
these electrodes were applied to the right arm, typically distal
to the recording electrodes. Each electrode channel had a gain
of 20,000, a bandwidth extending from 10-750 Hz, a CMRR
greater than 104 dB at the power line frequency, an input
impedance greater than 10" €2, and an input referred noise of
less than 1 pV RMS. EMG data were sampled within the
commercial amplifier system at 2048 Hz using a 12-bit ADC,
and then transferred to a dedicated PC that controlled operation
of the EMG system. As a measure of total EMG system noise,
data from the three electrode rows closest to the muscle mid-
line were analyzed while subjects relaxed their arm completely.
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The recorded signal’s MAV level, containing equipment noise
as well as ambient physiological activity, averaged 9.44 +
5.48% of the MAV EMG at 30% maximum voluntary
contraction (MVC).

A second PC was used to collect the finger flexion-
extension load cell data (after amplification) and as a subject
display. The 18 inch monitor of this PC was placed
approximately 1 m in front of the subject. A custom LabView
interface displayed a vertical line on the screen that moved
horizontally with the subject’s extension-flexion force. A fixed
or dynamic target could also be displaved on the screen as well
as a text box indicating the voltage level corresponding to the
instantaneous force exerted by the subject. The flexion-
extension load cell data were acquired at 128 Hz using a 16-bit
ADC (model PCI6229, National Instruments, Austin, TX,
U.S.A.). In addition, a signal generator was used to produce a 1
V, 0.5 Hz sine wave. This sine wave was simultaneously
acquired by the LabView PC and EMG array hardware, and
utilized off-line to time synchronize the data recordings from
these two devices.

B. Experimental Methods

Three subjects successfully completed one experiment
each. Subjects had no known neuromuscular deficits of their
right hand, arm or shoulder. Each subject was instructed to
relax all muscles not directly involved in the task, and to
maintain consistent postures and contraction techniques for
each finger throughout all trials. After signing written informed
consent, subjects were fitted into the hand restraint device.
Subjects warmed up and accommodated to the contraction task
by producing force against the load cell separately with each
digit, followed by a three minute rest period to avoid fatigue.
Thereafter, each subject performed separate maximum flexion,
then extension trials for each of the four digits, repeated twice.
For each contraction, subjects began at rest and then took 2-4 s
to ramp force up to their maximum. The plateau maximum that
was maintained for approximately 1 s was recorded. Consistent
verbal encouragement was provided for each trial. The average
flexion plateau for each digit and the average extension plateau
for each digit were used as the respective MVC values.
Subsequent contractions were scaled to the MVC of the
respective digit.

The EMG electrode arrays were then secured to the
forearm, as detailed above. Subjects then performed a series of
slowly force-varying tracking tasks. The LabView display of
extension-flexion force was scaled over the range from 30%
MVC extension to 30% MVC flexion. A target signal on the
screen began at the force level half-way between these two
extremes (this level was not equivalent to zero force, since
extension and flexion MVCs are not equal in magnitude),
advanced to 30% extension, continued to 30% flexion, returned
to 30% extension, and ended back at the halt-way force. This
tracking lasted 30 s, with all target movement at a constant
speed equal to 6% MVC,,, per second, where MVC,,, is the
average of the flexion and extension MVCs. Four tracking
tasks were completed per digit. A typical experiment lasted

approximately three hours. Explicit rest was not provided
between exertion trials, since adequate rest to prevent localized
fatigue was provided by only utilizing one digit per trial and
rotating through the digits.

C. Methods of Analysis

Data Preprocessing: All data analysis was performed off-
line using MATLAB (The MathWorks, Natick, MA). The
sampled EMG data were bandpass filtered (15-700 Hz) using a
fourth-order Butterworth filter, and second-order notch filters
at the power line frequency and all harmonics (due to the
presence of significant power line interference). Filtering was
applied in the forward, then reverse time directions to achieve
zero phase. Each data recording was plotted and reviewed.
Channels with anomalous data (e.g., obviously corrupted by
excessive power line noise or motion artifact) were marked and
avoided from further use. Nonetheless, all desired electrode
configurations were achieved. The finger force data were
upsampled to the same rate as the EMG data (2048 Hz), time-
aligned to the EMG data and scaled to its respective flexion
MVC value (MVCg). The fingertip force for inactive fingers
was set to zero.

EMG-Force Using Classic Spatial Filters: The EMG-force
model is shown in Fig. 2. Numerous classic spatial filters with
known (pre-selected) spatial filter coefficients were
investigated. The preprocessed extensor/flexor signal sets (
€ra [ﬂ]w ep, [n], where i indexes the spatial channels and »

indexes time) were spatially filtered to produce L
extensor/flexor channels (m, ,[n]. m,,[n]). A spatial filter is a

memory-less weighted sum of the monopolar potentials. The
EMG standard deviation (EMG amplitude estimate) of each
channel was computed by rectifying each channel and then
decimating to 1024 Hz. After decimating, the signal was
further lowpass filtered (cut-off frequency of 1 Hz, fourth-
order Butterworth filter applied in the forward, then reverse
time directions), producing signals EMGo,, [m] and

EMGo,, ,[m)], where m indexes time at the reduced rate. The

first and last five seconds of each 30 s tracking trial were
discarded, to eliminate filter startup transients, leaving one
complete contraction cycle of duration 20 s per digit. Four
sequential tracking recordings, representing data from each of
the four digits, were concatenated to form an 80 s data set. A fit
coefficient was multiplied by each of the L extension EMGgo’s
to estimate each of the four digit extension force contributions
(total of 4L coefficients). Another 4L coefficients were
similarly required to estimate flexion force contributions. Their
difference was the estimate of total force for each finger.
Linear least squares was used to estimate the fit coefficients
from an 80 s tracking set. Four tracking data sets were
available per subject. Three data sets were used for coefficient
training and the fourth for performance testing, with full leave-
one-out cross-validation. The average error from the four
cross-validations was expressed in percent MVC flexion
(%MVCy), relative to each respective digit.
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Fig. 2. EMG-force model. Each of the 56 extension and 64 flexion monopolar arrays are spatially filtered into L signals, each signal being used to produce one
EMG standard deviation (EM{ia) estimate at the reduced sampling rate. Least squares estimation is then used to simultaneously relate the EMGa’s to force of
the four {or selections of two) fingertips (indexed by ¢). Sample index » denotes signals at the rate of 2048 Hz, while sample index m denotes signals at the rate

of 20.48 Hz. The “B” matrices hold the coefficients of the spatial filters, while the 4™ matrices hold the coefficients relating EMGo to torque.

Each extension/flexion EMG array contained 13 rows of
electrodes. An [L=13 channel monopolar spatial filter
(montage) was formed by choosing one of the central
electrodes in each row. Then, alternate rows were selected to
form an =7 channel monopolar spatial filter. By skipping
increasingly more rows, filters were formed for L=5 and 4
channels. Next, these four row selections were repeated,
utilizing additional adjacent columns to form bipolar and linear
double difference (LDD) filters [16]. Note that these filters
were formed along the presumed direction of action potential
propagation. Lastly, normal double difference (NDD) filters
were formed. Because of the additional rows required to form
NDD filters, the selected channel sizes were =11, 6 and 4.
Thus a total of 15 classic spatial filters were investigated.

Models were initially formed relating the EMG channels
simultaneously to forces in all four fingers. Modeling was then
repeated to relate the EMG channels to force in each pair of
fingers, of which there were six combinations (index-middle,
index-ring, index-pinky, middle-ring, middle-pinky, ring-
pinky).

I

Fig. 3 shows sample results using a monopolar montage of
13 electrode channels per extension and flexion array. The
pinky finger seems to exhibit the most independent control and
the index finger the least. Table I shows RMS error results for
the various electrode montages and number of channels, when
force was simultaneously estimated in all four fingertips. The
trend was for lower error when more EMG channels were used
and when the monopolar montage was selected. In many
applications, as few as two degrees of freedom of proportional
control would represent a significant control advantage. Thus,
Table Il shows RMS error results for each pair of fingers for
various electrode montages, using the maximum number of
channels. The trend was for lower errors when using the
monopolar montage and when one of the fingers in a pair was
the pinky finger. All of these errors are similar in general

RESULTS

magnitude to EMG-force errors found in studies of other joints
(c.f., [20]). Given the small number of subjects (three),
statistical comparisons were not pursued.

IV. DISCUSSION

Although the sample size was small, the results showed
relatively small EMG-force errors, averaging 4.21-8.10
%MV Cp, depending on the number of electrode channels and
the montage used. The evidence from this research work, as
well as prior research (see the Introduction section) suggests
that surface EMG activity from the forearm encodes multiple
degrees of freedom of proportional control information that
may be sufficient for use in controlling prosthetic wrists, hands
and/or fingers—ar least when tested on intact subjects. It
would, therefore, seem appropriate to encourage investigation
of the use of these EMG-force algorithms in amputees. It
seems important to determine if the extent of information and
control available in the intact forearm is also available in the
remnant forearm muscles of amputees. In an off-line, four-
class study, Hudgins er @l. [5] found an average + standard
deviation classification accuracy of 91.2% + 5.6% for able-
bodied subjects and 85.5 + 9.8% for amputees. In an off-line,
11-class study of amputees, Li ef al. [6] found a classification
accuracy of 94% + 3% with the intact arm vs. 79% + 11% with
the amputated arm. Real-time evaluation using a virtual
prosthesis showed additional performance deficits comparing
the amputated side to the intact side. The reason(s) for the
lower performance in these studies from the amputated side is
unclear. Perhaps damage to the remnant muscle tissue has
adversely altered the anatomy through reduced muscle mass,
altered muscle locations, scar tissue (which insulates the EMG
signal from the surface electrodes), or other affects.
Alternatively, perhaps the loss of afferent receptors in the
amputated arm hinders calibration of the EMG-based
controllers (e.g., it is difficult for subjects to repeat a task with
precision when joint torques cannot be measured)—an issue
that might be alleviated through repetitive training.
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Fig. 3. Sample EMG-force test results of estimated (jagged blue line) and actual (solid red line) force vs. time using =13 monopolar montage. Four, 20 s ramp
trials are combined to form each plot. Each finger is only active for one 20-s portion and resting otherwise. Subject WY 04, trials 22, 23, 32, 33

TaBLE [
AVERAGE RMS TEST ERROR RESULTS (%MVCg) FROM THREE
SUBJECTS FOR FINGERTIP TRACKING TRIALS WHEN ESTIMATING
FORCES IN FOUR FINGERS SIMULTANEOUSLY

EMG Channels Spatial Filter
(L) Mono Bipolar LDD NDD
13 (11 for NDD) 4.41 5.49 5.97 5.51
7 (6 for NDD) 4.51 5.68 5.73 5.58
5 4.69 5.37 591 —
4 4.84 545 5.99 5.51

This study was intended as an initial assessment of EMG-
force estimation in the fingers. As such, several study
limitations should be noted. First, data were only analyzed
from three subjects. Additional subjects would improve
generalizability of the results. Second, subjects only produced
constant-posture, slowly force-varying contractions. It is well
known that the EMG-force relationship varies with posture
[21], [22] and with force dynamics [23], [24]. Third, the
performance of EMG-force models has seen little testing
relative to the influences of localized muscle fatigue, electrode
movement and day-to-day variations (when applicable).
Fourth, the electrode arrays used in this project are not
appropriate for use in reusable systems (such as prosthetics)
that are routinely donned and doffed by their user. The system
was selected for its large number of active electrodes, with the
understanding that knowledge learned in this study might
direct research towards a more deployable electrode solution in
the future. Fifth, the spatial filters derived in software from the
acquired monopolar EMG channels do not have characteristics

TaBLE Il
AVERAGE RMS TEST ERROR RESULTS (%M VCr) FROM THREE
SUBJECTS FOR FINGERTIP TRACKING TRIALS WHEN ESTIMATING
FORCES IN TWO FINGERS SIMULTANEOUSLY, 13 EMG CHANNELS
(11 FORNDD)

Spatial Filter
Finger Pair Mono Bipolar LDD NDD
Index-Middle 582 8.10 7.72 7.60
Index-Ring 5.59 6.30 6.14 5.51
Index-Pinky 541 6.34 7.01 591
Middle-Ring 5.03 5.93 6.16 6.80
Middle-Pinky 4.21 5.85 6.79 6.46
Ring-Pinky 4.81 5.81 7.28 771

identical to hardware-based spatial filters. In particular,
software-derived EMG signals tend to contain higher common-
mode interference (thus, our need to notch filter the power-line
and its harmonics—Ilosing a portion of the usable EMG
spectrum in the process) and the smaller surface area of the
array electrodes tend to exhibit more random (background)
measurement noise [25]. Nonetheless, we selected a high
resolution surface array to take advantage of its small inter-
electrode distance (to improve selectivity), which is generally
not available with conventional bipolar surface EMG systems
(due to the risk of electrode shorting, among other concerns).
Future EMG-based prosthesis control systems might achieve
high selectivity and better noise/interference performance via
indwelling electrodes [26], [27). Lastly, our modeled
relationship between forearm EMG and finger forces does not
include thumb movement, thus leaving ambiguity as to how
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several common hand motions (e.g., key grip, pinch grip), or
even concomitant wrist activation, might be controlled. In this
study, we have concentrated on determining available degrees
of freedom of independent, proportional control, expecting that
future research would determine how those signals might be
fully utilized to control a prosthesis (or be utilized in other
applications).

V. CONCLUSION

EMG signals were acquired from the extensor and flexor
muscles of the forearm during constant-posture, slowly force-
varying contractions and related to the force produced in the
four fingers (index, middle, ring and pinky). Various
conventional electrode montages and number of EMG
channels were considered. Over a range of contraction forces
spanning 30% MVC extension to 30% MVC flexion, RMS
EMG-force error ranged from 4.21-8.10 %MVCy, depending
on the montage and number of channels. Errors tended to be
lower when more channels were used and when the monopolar
montage was selected. Results were encouraging for forearm
EMG-force applications in areas such as prosthesis control and
ergonomic analysis.
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ABSTRACT

Existing commaercial hand prostheses can be controlled from
the electrical activity (electromyogram or EM() of remnant
muscle tissue within the forearm, but are limited in function
to one degree of freedom of proportional control. In a pilot
study (N=3 subjects), we used least squares estimation to
identify a model between forearm electrical activity
recorded by high-resolution (64 channel) electrode arrays
(applied over the [lexor and, separately, extensor muscles of
the torearm) to force in the four fingertips. Average errors
ranged from 4.21 to 1020 °%MVCp (flexion maximum
voluntary contraction), depending on the muscle contraction
task performed, number of EMG electrodes in the model
and the electrode montage selected. Results suggest that, at
least for intact subjects, 2 4 degrees of freedom of
proportional control are available from the EMG signals of
the forearm.

Index Terms— EMG signal processing, biomedical
signal processing, EMG-force, electromyography

1. INTRODUCTION

Classic myoelectric control of a hand prosthesis provides, at
most, one degree of freedom of proportional control from
the electromyogram (EMG) of one extension electrode and
one flexion electrode, each placed on the skin over the
remnant muscle tissue of the forearm [1, 2]. Amputees
desire improved control capabilitics, particularly an increase
in the number of degrees of freedom [1, 2]. One approach to
increased control 1s multifunction selection in which
classitication analysis is used to relate features derived from
forearm EMG to various hand/wrist functions [3-9].
Classification accuracies above 95% have been achieved.
with higher accuracies found when more electrodes are
used, fewer functions are selected and/or longer EMG signal
durations are cbserved. Some studies have concentrated on
classification of individual finger movements [10-14]. This
approach can increase amputee function, but does not
provide the desired proportional control.

Supported by U.S. Army vnder USAMRAA grant W1 XWH-08-1-0422.

Some recent effort [14-17] has concentrated on the
goal of providing proportional finger contrcel via EMG-
based estimation of finger joint angles or forces. Force
estimation may be preferable, as it 15 likely to be less
influenced by external forces that interact with the hand.
However, many questions remain, particularly with respect
to the number of electrodes required and how their signal
should be acquired and processed. In particular, the muscles
of the forearm are small in cross section and packed tightly
beside each other, making it difficult 1o sense their activities
independently. Over the past few vears, high resolution
spatial filtering of EMG array signals has been used to
localize the electrical potentials of small muscle tissue
volumes [ 18-20]. We hypothesized that such systems would
be useful in separating the source electrical activity of
distinet hand muscles within the foreanm, facilitating more
accurate EMG-force identification.

This paper presents the methods and results of a pilot
study (AM=3 subjects) in which commercial high-resolution
(64 channel) electrode arrays were used to measure EMG
signals from the extensor and flexor muscles of the forearm
while recording fingertip flexion-exiension [orces during
constant-posture contractions. The goal of the study was to
investigate and compare the performance of various EMG
spatial filters (“montages”) in terms of their ability to
identify an EMG-force relationship for the fingertips. Our
results showed average errors ranged from 4.21 to 10.20
2oMVCr. depending on the muscle contraction tagk
performed, number of EMG electrodes in the model and the
clectrode montage sclected. Our results also suggest that, at
least for intact subjects, 2-4 degrees of freedom of
proportional control are available from the forearm EMG.

2. METHODS
2.1. Experimental Apparatus

The arm restraint device, shown in Fig. 1, was used to
record constant-posture  finger flexion-extension.  The
subject sat along the table edge with their elbow forming a
90° angle. The height of the elbow rest plate was adjusted
for each finger to keep the long axis of the forearm parallel
to the table. After donning a glove, the palm of the hand
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Flexion Electrode Array

Restraint Base

Fig. 1. Photograph of hand/arm secured into the finger restraint.
Electrode arrays are mounted over the medial (flexion array) and
lateral (extension array—not visible) aspects of the forearm.

was secured at the front of the restraint to an upright via
Velcro. The hand was oriented with the thumb directed
upwards and the four remaining digits passively curled
beyond the upright. The height of the hand was adjusted to
align the distal phalange of any one digits with the load
beam. A phalange was secured to the load beam by a
tightly-wrapped Velero strip. Load on this beam was
measured with a one degree of freedom load cell and
amplifier  (models LCL-040 and DMD-465WB,
respectively; Omega Engineering, Inc., Stamford, CT,
USA). The cut-off frequency of the amplifier lowpass filter
was 9.4 Hz (second-order, Bessel). Measurement was only
made on one digit at a time.

The skin over the circumference of the proximal right
forearm was scrubbed with an alcohol wipe. Two,
commercial 64-channel monopolar electrode arrays were
applied (ELSCHO064R3S Adhesive Electrode Arrays, EMG-
USB Amplifier; OT Bioeletronica, Torino, Italy). Each
array was a rectangular, 13x5 matrix of electrodes (with one
corner electrode omitted), utilizing 2 mm diameter gel-filled
electrodes separated by 8 mm center-to-center. The long
axis of the “flexion” array was oriented along the
circumference of the right forearm, centered on the mid-line
of the medial aspect of the forearm. The second “extension”
array was secured with the long axis oriented along the right
forearm circumference, centered on the mid-line of the
lateral aspect of the forearm. The eight extension electrodes
located furthest from the base of the finger restraint along
the most proximal electrode column were not used, leaving
56 electrodes. A gap of 3.5-7 cm existed between the
superior and inferior edges of the two electrode arrays. The
proximal edge of each EMG array was located three fingers
width from the olecranon process [21]. A reference
electrode was applied to the left wrigt and a power-line
aftenuation circuit (“driven-right-leg™ was applied to the
right arm. Each electrode channel had a passband from 10—
750 Hz, CMRR greater than 104 dB at the power line

frequency, input impedance greater than 10" €2, and input
referred noise <1 pV RMS. EMG data were sampled at
2048 Hz with 12-bit resolution.

A PC was used to collect the finger flexion-extension
load cell data (128 Hz, 16 bits, synchronized offline with
the EMG data) and as a subject display. Its 18 inch monitor
was placed approximately one meter in front of the subject.
A custom LabView interface displayed a vertical line on the
screen that moved horizontally with the subject’s extension-
flexion force. A fixed or dynamic target could also be
displayed on the screen.

2.2. Experimental Methods

The New England IRB approved and supervised the human
studies. Three subjects each completed one experiment.
Subjects had no known neuromuscular deficits of their right
hand, arm or shoulder. After signing written informed
consent, subjects were fitted into the hand restraint device.
Each subject performed separate maximum flexion, then
extension trials for each of the four digits, repeated twice.
The average flexion platean for each digit and the average
extension plateau for each digit were used as the respective
maximum voluntary contraction (MVC) values. Subsequent
contractions were scaled to the MVC of the respective digit.
The EMG electrode arrays were then secured (see above).
Subjects next performed five-second constant-force
contractions. Two such recordings were made for 30%
MVC flexion and, separately, 30% MVC extension, for
each digit. Subjects lastly performed a series of gowiy
force-varming {ramp) tracking tasks. The LabView display

of extension-flexion force was scaled over the range from
30% MVC extension to 30% MVC flexion. A target signal
began at the force level half-way between these two
extremes (this level was not equivalent to zero force, since
extension and flexion MVCs are not equal), advanced to
30% extension, continued to 30% flexion, returned to 30%
extension, and ended back at the half-way force. Tracking
lasted for 30 seconds, with all target movement at a constant
speed. Four tracking tasks were completed per digit.

2.3. Methods of Analysis

Data Preprocessing: Data analysis was performed off-line
using MATLAB. The sampled EMG data were bandpass
filtered (15-700 Hz) using a fourth-order Butterworth filter,
and second-order notch filters at the power line frequency
and all harmonics. Filtering was applied in the forward, then
reverse time directions to achieve zero phase. Each data
recording was plotted and reviewed. Channels with
anomalous data {e.g., obviously corrupted by excessive
power line noise or motion artifact) were avoided from
further use. Regardless, all desired electrode configurations
were achieved. The finger force data were upsampled to the
same rate as the EMG data (2048 Hz), time-aligned to the
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Fig. 2. EMG-force model. Extension and flexion monopelar arrays are spatially filtered into L signals, each
signal being used to produce one EMG standard deviation (EMGo) estimate. Least squares estimation then
relates the EMGo’s to force of the four fingertips (indexed by ¢). The “B” matrices hold the coefficients of
the spatial filters; the A matrices hold the coefficients relating EMGo to force.

EMG data and scaled to its respective flexion MVC value,
The fingertip {orce for inactive fingers was sel to zero.
EMG-Force Processing: The EMG-force model is
shown in I'ig. 2. Numerous classic spatial filters with known
{pre-sclected) spatial filter coefficients were investigated.
The preprocessed  extensorfflexor signal sets (e, [«],

e, [n] where § indexes the spatial channels and # indexes

time)} were spatially filtered to produce I extensor/flexor
channels (m, _,[n]~ m, ,[n])- A spatial filter is a memory-less

weighted sum of the monocpolar potentials. The EMG
standard deviation (EMG amplitude estimate) of each
channel was computed by rectifying each channel and then
decimating to 10.24 Hz. After decimating, the signal was
further lowpass filtcred {cut-off frequency of 1 1z, fourth-
order Butterworth filter applied in the forward, then reverse
time directions), producing signals  FAMGe, [m] and

EMGa,., [m], where m indexes time at the reduced rate. This

reduced rate is appropriale as il is approximately ten times
that of the force signal being estimated [22, 23].

For the constani-force recordings. distinct five second
flexion and extension recordings from each finger were
concatenated, forming a 40 sccond data sct (4 fingers x 10
scconds per finger). A fit cocfficient was multiplicd by cach
ol the L extension EMGa’s 1o estimate each of the four digil
extension force contributions (total of 4L coefficients).
Another 4/ coefficients were similarly required to estimate
flexion force contributions. Their difference was the
cstimatc of total force for cach finger. Lincar lcast squarcs
was uscd to cstimate the fit cocfficients from a 40 sccond
data set. Since there were two constant-force recordings per
finger per flexion/extension coniraction, two such sels were
available per subject. One set was used for coefficient
training and the second for performance testing. with full
Icave-onc-out cross-validation. The average error from the

two test Cross-
56 Extend Extensor , Extensor validations was

e, |7 " m,. |n EMGo, |m _ F. m .
Extensor ’-~’[ ] 5_Pat'3| f--'[ ] EMGamp "’[ 1 EMGG_ E~“[ ] expressed in percent
Monopolar 2“9"5: Estimate, | Trce. MVC flexion
Electrodes E(56xL) Decimate E{Lxd) (%AMVCy). relative to
F M‘c[m] each respective digil.
For the siowly
< force-varving (ramp)
contractions, the first

64 / Flex Flexor . Flexor :
e [n] N [”] EMGo,. [m]] Emco- and last five scconds

Flexor I Spatial I EMGamp P
Filters: A »  Force: of cach 30 sccond
Monopelar ' Estimate, A F [m] o )

Electrodes Brioany Decimate Filxd) re tr‘ac.kmg trial W_Crc
discarded. leaving
one complete

contraction cycle of
duration 20 scconds

per digit. Four
sequential  tracking

recordings. representing data from each of the four digits.
were concatenaled 1o form an 80 second dala set. Linear
least squares was again used to estimate fit coefficients
(samc mcthod as described above) from an 80 sccond
tracking sct. Four tracking data scts were available per
subject. Three data sets were used for coefficient training
and the fourth for performance testing, with full leave-one-
oul cross-validation. The average error from the four cross-
validations was expressed in %MVC,, relative to each
respective digit.

For cach of the constant-force and ramp contraction
data sets, each extension/flexion EMG array contained 13
rows of clectrodes. An £=13 channcl monopolar spatial
filter (montage) was formed by choosing one of the central
electrodes in each row. Then, allernale rows were selected
to form an L=7 channel monopolar spatial filter. By
skipping increasingly more rows. filters were formed for
£=5 and 4 channels. Next, these four row selections were
repeated, utilizing additional adjacent columns to form
bipolar and lincar double difference (I.DD) filters [20].
Note that these [illers were [ormed along the presumed
direction of action potential propagation. Lastly, normal
double difference (NDD) filters were formed. Because of
the additional rows required to form NDD filters, the
selected channel sizes were L=11, 6 and 4. Thus, a total of
15 classic spatial filters were investigated.

3. RESULTS

Fig. 3 shows sample results [rom the constant-force irials
using a 3-channel, bipolar electrode montage. Table I shows
the complete summary results for all montages and number
of EMG channels studied. Fig. 4 shows sample results from
the slowly force-varving (ramp) frials using a 13-channel
monopolar montage. Table IT shows the complete summary
results, Taken together. the results suggest that the
montages known to be more spatially selective (LDD and
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Fig. 3. Constant-force trial sample EMG-force test results of
estimated (jagged blue line) and actual (solid red line) force vs.
time using L=>5 bipolar montage. Subject WZ04, trials 01-08.
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Fig. 4. Slowly force-varving (ramp) force trial sample EMG-
force test results of estimated (jagged blue line) and actual (solid
red line) force vs. time using =13 monopolar montage. Subject
WZ09, trials 26, 27, 36, 37.

TabrE | TapLe I
ConsTANT-ForcE TRial AVERAGE RMS TEST ERROR RESULTS Srowry Forcr-Varvivg (Ravp) Triar AVERAGE RMS TEST
(%MVCE) Error REsuLTS (%eMVCy)
EMG Channels Spatial Filter EMG Channels Spatial Filter

L) Mono | Bipolar | LDD | NDD @) Mono | Bipolar | LDD | NDD

13 (11 for NDD) 925 8.03 10.02 | 10.03 13 (11 for NDD) 4.41 549 5.97 551
7 (6 for NDD) 8.95 8.99 8.64 | 10.20 7 (6 for NDD) 4.51 568 573 558

5 834 722 10.31 — 5 4.69 537 591 —

4 7.82 8.43 8.17 8.82 4 4.84 5.45 5.99 5.51

NDD) did net produce lower EMG-force estimation errors;
in fact, their errors were generally higher. There was also
not a strong trend for lower errors as the number of EMG
channels was mcreased. The constant-force results seem to
show higher average errors overall, perhaps due to the small
duration of signal (5 seconds) available for training [24].
Given the small number of subjects, statistical comparisons
were not pursued.

4. DISCUSSION AND CONCLUSIONS

The EMG-force errors found in this study (ranging from
4.21 to 10.20 %MVCF) are similar to errors found in studies
of other joints (c.f., [24]). This outcome is significant, since
there is currently no consensus within the literature that
multiple degrees of freedom of proportional control are
available—at least in intact subjects—to relate forearm
electrical activity to fingertip forces. Further, these results
suggest that there may be no obvious advantage to high-
resolution (and high channel count) electrode arrays and
spatial montages. Such arrays are thought to reduce EMG
crosstalk (undesired recording of more distant muscles away
from the recording site). Crosstalk 1s thought to confound
EMG-force identification, although blind source separation
techniques have been attempted to resolve this problem

[25]. If high resolution arrays provide little or no advantage,
then standard electrode hardware might be used instead.
Such hardware is simpler, less expensive and more readily
available. In fact, existing commercial high resolution
arrays are not suitable (or designed) for use in commercial
prostheses.

The sample size used in this study was small and
primarily intended as part of a pilot study. While the results
are encouraging, a number of limitations exist, including:
the lack of dynamics in the contraction forces, the limitation
of constant-posture contractions, the omission of models
that incorporate the thumb (necessary for many hand
actions/grips) and the limited model forms studied.

In summary, EMG signals were acquired from the
extensor and flexor muscles of the forearm during constant-
posture contractions and related to the force produced in the
four fingers (index, middle, ring and pinky). Various
conventional electrode montages and number of EMG
channels were considered. Over a range of contraction
forces spanning 30% MVC extension to 30% MVC flexion,
RMS EMG-force error ranged from 4.21-10.20 %MVCy,
depending on the montage and number of channels. Results
were encouraging for finger EMG-force applications in
prosthesis control.
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Identification of Constant-Posture EMG—Torque
Relationship About the Elbow Using Nonlinear
Dynamic Models

Edward A. Clancy*, Senior Member, IEEE, Lukai Liu, Pu Liu, and Daniel V. Zandt Moyer

Abstract—The surface electromyogram (EMG) from biceps
and triceps muscles of 33 subjects was related to elbow torque,
contrasting EMG amplitude (EMGeo) estimation processors, lin-
ear/nonlinear model structures, and system identification tech-
niques. Torque estimation was improved by 1) advanced EMGo
processors (i.e., whitened, multiple-channel signals); 2) longer du-
ration training sets (52 s versus 26 s); and 3) determination of
model parameters via pseudoinverse and ridge regression meth-
ods. Dynamic, nonlinear parametric models that included second-
or third-degree polynomial functions of EMGe outperformed lin-
ear models and Hammerstein/Weiner models. A minimum error
of 4.65 + 3.6% maximum voluntary contraction (MVC) flexion
was attained using a third-degree polynomial, 28th-order dynamic
model, with model parameters determined using the pseudoinverse
method with tolerance 5.6 X 10~? on 52 s of four-channel whitened
EMG data. Similar performance (4.67 + 3.7% MVC flexion error)
was realized using a second-degree, 18th-order ridge regression
model with ridge parameter 50.1.

Index Terms—Biological system modeling, biomedical signal
processing, electromyography, EMG amplitude estimation, EMG
signal processing.

1. INTRODUCTION

HE SURFACE electromyogram (EMG) reflects the neural
T activity of the underlying musculature, and has often been
used to estimate torque produced about joints. Typically, EMG
amplitude (EMGo )—the time-varying standard deviation of the
EMG waveform—is estimated and then related to joint torque
through parametric models determined via system identification
techniques. Both agonist and antagonist muscles are included
in these models to account for cocontraction (particularly at
higher contraction levels) [1]-[3]. Low-error EMG—-torque ¢s-
timation has several applications. In prosthesis control [4], it
would be expected to provide more accurate emulation of the
natural command relationship between the central nervous sys-
tem and peripheral joints/muscles. In ergonomics [5]—[7] and
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clinical biomechanics [8], [9], it should lead to better estimates
of joint loading and muscle tension in studies of worker tasks
and biomechanical evaluations. Other applications include in-
vestigation of motor control [10] and control of powered ex-
oskeletons [11]-[13].

Numerous studies, concentrating on various aspects of the
EMG-torque problem, have been conducted over the years
(see [14] for arecent review). Study conditions have ranged from
constant-posture, constant-torque (the simplest) to posture-
varying, torque-varying (the most complete case, representing
unconstrained movement). The latter condition is most repre-
sentative of the full range of application tasks, but can be too
complex when studying methodological improvements (such
as those presented herein). To reduce EMG—torque estimation
error, some research has applied advanced EMGo estimation
methods [15]-[25] or advanced/nonlinear system identification
methods relating EMGo to torque [11-{3], [6], [26]-[29].

Based on past research results, we hypothesized that in-
corporating nonlinear model structures into the EMG-torque
problem—along with advanced EMGo processors—would fur-
ther reduce joint torque error. However, nonlinear models typ-
ically require additional parameters, which can lead to overfit-
ting [30]. There exists a complex interplay between the number
of fit parameters in the model, training data duration, the SNR
of the training data, and the system identification method [30].

Accordingly, this study compares system identification meth-
ods for nonlincar EMG—torque models using advanced EMGo
processors (whitening and multiple-channel combination), ex-
plicitly addressing model overfitting. Hammerstein and Weiner
models were specifically examined because their smaller num-
ber of model parameters is expected to alleviate overfitting
[30]. We investigated the fitting of model parameters through
the singular-value-decomposition-based least squares pseudoin-
verse approach, in which certain lincar combinations of the
training data—those that likely provide little information but
contain considerable noise—are omitted from the training solu-
tion [31]. We evaluated least squares estimation of the training
parameters using ridge regression [32]-[34]. Additionally, we
studied the effect of training data duration, as longer training
datasets support models with more parameters.

1. METHODS
A. Experimental Data and Methods

A subset of experimental data from 33 subjects (18 male
and 15 female, ranging in age from 18 to 65 years) from two

0018-9294/$26.00 © 2011 IEEE
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prior studies of the upper arm (fully described in [35] and [36])
were reanalyzed. Because these data had been de-identified and
unlinked, the WPI Institutional Review Board stipulated that
supervision of this reanalysis was not required. In these studies,
cach subject was secured into the scat of a Biodex exercise ma-
chine with his/her shoulder abducted 90°, forcarm oriented in a
parasaggital plane, wrist fully supinated, and elbow flexed 90°.
The subject was rigidly attached to the Biodex dynamometer
with a cuff at the styloid process. The skin above the muscles
under investigation was cleaned with an alcohol wipe. An array
of four Liberty Technology, Hopkinton, MA, MYO115 EMG
electrode-amplifiers were placed transversely across each of the
biceps and triceps muscles, midway between the elbow and the
midpoint of the upper arm, centered on the muscle midline. Each
electrode-amplifier had a pair of 4-mm diameter, stainless steel,
hemispherical contacts separated by 15 mm (center to center),
oriented along the muscle’s long axis. The distance between ad-
jacent electrode-amplifiers was approximately 1.75 cm. A sin-
gle ground electrode was gelled and secured above the acromion
process. Custom electronics amplified and filtered each EMG
signal (common mode rejection ratio of approximately 90 dB at
60 Hz; second-order, 10-2000 Hz bandpass filter) before being
sampled at 4096 Hz with 16-bit resolution.

Each subject was provided a warm-up period, after which
MVC torque was measured in both elbow extension and flex-
ion. 5-s duration, constant-posture constant-force contractions
at 50% MVC extension, 50% MVC flexion and rest were
recorded. These contractions were used to calibrate the ad-
vanced EMGe estimation algorithms [36], [37]. Then, a real-
time feedback signal consisting of one of four EMGo pro-
cessors (formed by subtracting the extensor EMGe from the
flexor EMGe) was provided on a computer screen. The proces-
sors were single-channel unwhitened, single-channel whitened,
multiple-channel unwhitened, and multiple-channel whitened.
30-s duration, constant-posture force-varying contraction trials
were then recorded. The subjects used the feedback signal to
track a computer-generated target that moved on the screen in
the pattern of a bandlimited (1 Hz) uniform random process.
spanning 50% MVC extension to 50% MVC flexion. Twelve
trials (three per feedback signal) were collected in a random-
ized order. Additional tracking trials not used in this study were
also collected. Rest was provided between trials to prevent cu-
mulative fatigue.

B. Methods of Analysis

All analysis was performed offline in MATLAB. Two dis-
tinct EMGe processors were created from each of the exten-
sion and flexion muscle groups for each 30 s trial using our
open-source MATLAB toolbox [38]. The estimates were either
single-channel unwhitened (using an electrode located centrally
on the muscle) or four-channel whitened [19]. Each estimator
utilized a 15-Hz high-pass filter (fifth-order Butterworth ap-
plied in the forward and reverse time directions to achieve zero
phase) and a first-order demodulator (rectifier). Whitened chan-
ncls used the noncausal adaptive whitening algorithm of Clancy
and colleagues [36], [37]. After demodulation, signals were dec-

imated by a factor of 100 to a sampling rate of 40.96 Hz, using
a low-pass filter with cutoff frequency of 16.4 Hz (that also
served as the smoothing stage of the amplitude estimate). The
torque signal was similarly decimated, producing a datasct with
a bandwidth approximately ten times that of the torque signal
being estimated [22], [30].

Extension and flexion EMGos were related to joint torque us-
ing four parametric, dynamic model structures. For each struc-
ture T'[m] was the measured torque at the mth decimated sample;
ay was an offset parameter (not used in all system identifica-
tion techniques); ¢, and f, were the extension and flexion fit
parameters, respectively, and og[m] and op[m] were the ex-
tension and flexion EMGo estimates, respectively. The model
structures were the following.

1) Linear, time invariant (LTI) system of dynamic order Q

Q 9
T [m] =ag + Zeqcrg [m—q] + qucrp [m —q].

q=0
ey
2) Polynomial nonlinear model of degree D, dynamic order

Q

q=0

D Q
T [m] =ag + Z Zeanigﬁé [m — ¢

d=1g=0

D Q
+3) fpack [m—d]. )

d=1q=0

3) Hammerstein model: This model was comprised of a Dth-
degree polynomial static nonlinearity cascaded with a OQth-
order, LTI, finite impulse response (FIR) system, for each
of the extension and flexion EMGe inputs. The sum of the
extension and flexion outputs was related to joint torque.

4) Weiner model: This model was comprised of a Qth-order,
LTI, FIR system cascaded with a Dth-degree polynomial
static nonlinearity, for each of the extension and flexion
EMGo inputs. The sum of the extension and flexion out-
puts was related to joint torque.

In these four model structures, the LTI system order ranged
from 1 < Q < 30 and the polynomial degree ranged from 1 <
D < 4.2 s of data were excluded from the beginning and end of
each 30 s signal to mitigate filter start-up transients.

The parameters of the LTI and polynomial models were esti-
mated using linear least squares. Three approaches were evalu-
ated to reduce overfitting during parameter estimation. First, the
singular value decomposition-based pseudoinverse was used, in
which the reciprocals of small singular values were replaced
with the value zero [31]. The tolerance for replacement was
based on the ratio of each singular value to the maximum sin-
gular value, ranging over 40 values spanning 1071% to 0.5 in
logarithmic increments. The pseudoinverse model did not in-
clude an offset term g . Second, ridge regression [32]-[34] was
investigated, including an offset term @ in the model. The ridge
parameter & ranged from 107 to 10* in 112 logarithmic incre-
ments. Third, we examined the effect of increasing the duration
of data available to train the least squares, as described in detail
in the following. Parameters of the Hammerstein and Weiner
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Fig. 1.

EMG-torque error as a function of tolerance value, using the pseudoinverse system identification method, with 26 s of fraining data. Results for tolerance

values below 107 not shown, but follow similar trend. Each row shows results from the two EMGo processors; columns distinguish the different polynomial
model degrees . Each plot shows the results for representative dynamic model orders (Q) 5, 8, 15, 20, and 30, as labeled. Each result is the average from 33

subjects.

models were determined via nonlinear least squares using the
MATLAB system identification toolbox.

As noted previously, each subject completed 12 tracking tri-
als, consisting of three repetitions each of four different feedback
options. Each set of three repetitions (representing one feedback
style) was used to produce one test result. In the single-trial cal-
ibration method, the first trial was used as training data and the
second as a test set. Then, the third trial was used as training
data and the second was again used as the test set. The average
mean absolute value error (between the actual torque and that
predicted by the EMG—torque model) of these two test results
is reported as the test error value. In the dual-trial calibration
method, the first and third trials were simultancously used to
train one set of parameters (effective sequence duration of 52 s),
and then tested on the second trial. Since all of this analysis was
performed postexperiment, tracking performance during data
collection was not directly relevant. Rather, the recorded EMG
was related to the recorded joint torque from the load cell—the
real-time feedback signal was not considered. In general, each of
the feedback options produced torque with a similar character-
istic (uniform random signal bandlimited to 1 Hz). Nonetheless,
all training and testing remained within a feedback style. In all
cases, error is reported as a percent of the MVC flexion torque.
Only test trial results are presented. For statistical analysis, the
four test trial results from each subject were averaged, and these
average values subjected to a paired sign test [39].

Finally, it was desired to compare the results using these
advanced EMGe processors and models to a “conventional”
EMG-torque estimator. A conventional estimator was formed
by filtering the single-channel unwhitened EMGeos from each
of the biceps and triceps muscles through a second-order, But-
terworth, low-pass filter, gain scaling these outputs based on
their respective 50% MVC contractions (achieved by using the
50% MVC contractions to calibrate a zero-order linear model
using the pscudoinverse approach with the default tolerance in
MATLAB), and then subtracting them to form the torque es-

timate. Typically, the cutoff frequency of the low-pass filter in
conventional estimators is set at a few Hertz [29], [40], [41].
In our case, selection of the appropriate cutoff frequency was
unclear. Thus, we repeated conventional torque estimation 40
times with cutoff frequencies ranging from 0.1 to 4.0 Hz, in
increments of 0.1 Hz. The best of these 40 results is reported.
Note that the cutoff frequency was not adapted to individual
subjects; only one flexion and one extension gain was subject-
specific (based on the 50% MVC contractions). Training and
testing proceeded as described previously.

III. RESULTS

EMG-torque performance was studied as a function of two
EMGo processors, four model structures, and three system iden-
tification techniques. Figs. 1-4 graphically depict the represen-
tative aspects of the overall test results. Fig. 1 concentrates on
results from the pseudoinverse approach, Fig. 2 on ridge regres-
sion results, Fig. 3 on Hammerstein/Weiner model results, and
Fig. 4 on results using the longer duration training data (52 s).
Figs. 1, 2, and 4 show results only from dynamic model orders
Q =5, 8, 15, 20, and 30. which form a representative subset
of the 30 model orders evaluated. Table I lists the lowest test
error, along with the corresponding model parameters, for the
pseudoinverse approach results. Overall, models that utilized a
low model order (e.g.. @ < 5) exhibited high error, presumably
because this low model order did not sufficiently capture the
system’s true dynamic behavior. Exceptionally high dynamic
model order often also led to higher error, particularly for high
polynomial model degrees and with single-channel unwhitened
EMGa processors (or their combination), presumably due to
overfitting. Excessively large pseudoinverse tolerance values
or ridge k values exhibited poor performance, and should be
avoided.

Figs. 1 and 2 each provide direct comparison between the
EMGo processors. Excluding tolerance values above ~102
(see Fig. 1) and ridge & values below ~1 (see Fig. 2)—regions
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that users would avoid due to very high error—multiple-channel
whitened processors consistently performed better than single-
channel unwhitened. Statistically, the results for parameters of
best performance (see Table I) for the pseudoinverse method,
26 s training duration, were compared between the two EMGa
methods for each polynomial degree. This comparison was re-
peated for the ridge regression results and for the 52-s training
duration. Each comparison was significant (p < 6.8 x 107%).
Fig. 3 shows that the Weiner models were clearly inferior to
the best polynomial nonlinear model. The results for parameters
of best performance for the Weiner model (D =2, Q = 18, mul-

tiple whitened EMGo ) were statistically different from those of
the best pseudoinverse-based polynomial nonlinear model (p <
107#). The Hammerstein model’s performance was closer to that
of the pseudoinverse and ridge regression methods. Comparing
the results for parameters of best performance for the Ham-
merstein model (D = 2, @ = 10, multiple whitened EMGo) to
results from the best pseudoinverse-based polynomial nonlinear
model was marginally significant (p = 0.0175). With the avail-
able MATLAB toolbox, it was not possible to produce results
that combined two training trials into a 52-s training duration
for the Hammerstein and Weiner models.

The best pseudoinverse results (4.65 4+ 3.6% MVC flexion;
D=3,0 =28 Tol =56 x 1073, 52-s training set, multiple
whitened EMGo) were not statistically different (p = 0.5) from
the best ridge regression results (4.67 £ 3.7% MVC flexion;
D =2, 0 = 18, k = 50.1, 52-s training set, multiple whitened
EMGe). Differences between results were most consistent when
using multiple-channel whitened EMGe processing. The pseu-
doinverse results for a linear model (D = 1) differed from each
of the three nonlinear degrees (D = 2, 3, 4) when using either
single unwhite or multiple white EMGo processors (p < 1.8
% 1073). Results were less consistent with the 26-s training
duration.

Comparison of the results shown in Fig. 4 to those in Fig. 1
clearly demonstrates that the error is reduced by a longer dura-
tion training set (52 s). Statistically, the results for parameters of
best performance for the pseudoinverse method. single-channel
unwhitened EMGo were compared between the two training
durations for each polynomial degree. This comparison was
repeated for the ridge regression results and for the multiple-
channel whitened EMGo method. All differences were signifi-
cant (p < 1.6 x 1074).

Finally, results for the “conventional™ processor varied as a
function of the low-pass filter cutoff frequency of the Butter-
worth filter. The best cutoff frequency was 1.3 Hz, with consid-
erably poorer performance at both lower and higher frequencies.
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TABLE 1
LOWEST EMG-TORQUE ERROR (MEAN £ STANDARD DEVIATION
ARSOLUTES%MVC FLEXION) WITH CORRESPONDING TOLERANCE (TOL) AND
DyNaMIC MODEL ORDER (Q) FOR PSEUDOINVERSE METHOD

Polynomial Degree (1
LM e D=1 =2 =3 =4
(Tol. &3 (Tol, &) (Tol, & (Tel, &)
265 T 1o
Single Channel, 7.10=3.9%, TO0E5. 7%, T.43+6.2%, 7.97=7.0%
Unwhitencd (5.6c-4,23) | {1.8e-3, 15) | (5.60-3. 14y | {1.0c-2,20)
Multiple Channel, | 5.93-4.5% | 535+4.5% | 556+4.6% | 5.602-46%
Whitenad (5.6e-3. 300 | (1.02-2.16) | (36316} | (56e-3 140
52 5 Training
Single Chammel, 6.38=5.4% | SRex40% | 5.02:40% | 6.29=51%
Unwhitened (3.2e-4, 300 | {3.60-3, 18) | (D.be-3. 16} | (3603, 14
Multiple Channel, | 5,15 3.8% | 4.6913.6% | 46513.0% | 4.70 3.6%
Whitcned 15.60-3,307 | {1.0c-2.015) | (5.6e-3, 28} | (S.60-3010)

Tach result from 373 subjeers.

At this cutoff frequency, the error was 19.15 & 11.15% MVC
flexion. Statistically, the best “‘conventional” torque estimator
was compared to the single-channel unwhitened results using
a 26-s training duration (D =2, @ = 15, Tol = 1.8 x 10-9).
This comparison was significant (p < 107°), showing that “con-
ventional” modeling performed poorer than our more advanced
single-channel models (and. by statistical inference, also poorer
than our multiple-channel models and models that utilized 52-s
training durations). Fig. 5 displays a representative elbow torque
profile, along with the torque predicted using the best “conven-
tional” method, best single-channel unwhitened method, and
best multiple-channel whitened method.

IV. DISCUSSION

Though models with a small number of parameters risk miss-
ing significant relationships in the data, overfitting poses an ob-
stacle to parameter identification in models with a large number
of parameters. Factors known to decrease the severity of over-

. 40 Conventional (Butterworth) Method:  Error = 22.10 %MVC_
|8
(5]
s 20
= 0
£
g
2 4
TS 0 5 10 15 20 25 30
_5 40~ Single, Unwhitened Method: Error = 7.73 %MVC_
§ =
=
E 0
O -20
2 “or
£ w0l .
5 o 5 10 15 20 25 30
; 40 Multiple, Whiteped Method: Error = 4.08 %MV/
= 20
= 0
€
g 0f
S
Trial LB1748
o g0t L 1 : s MLl i
0 5 10 15 20 25 30

Time (s)

Fig.5. Representative sample of actual and estimated elbow torque as a func-
tion of time. Solid line in each graph is the actual torque, scaled to percent
maximum voluntary contraction flexion (%MVCg ), for the same 30-s contrac-
tion trial. Positive values denote flexion torque. Dotted line in each plot shows
torque estimated by training a model to distinct trials, then using EMG to esti-
mate torque from this trial. (Top) Estimate from the best “conventional” method
(1.3-Hz cutoff frequency). (Middle) Best single-channel unwhitened method
(second-degree polynomial, 18th-order dynamic model, pseudoinverse toler-
ance of 5.6 x 107°, 52-s training). (Bottom) Best multiple-channel whitened
method (third-degree polynomial, 28th-order dynamic model, pseudoinverse
tolerance of 5.6 » 102, 52-s training). Estimated torques omit approximately
2 s from the beginning and end of trial to account for filter start-up transients.

fitting include training sets with higher SNR, larger training
sets, model structures with fewer parameters, and system iden-
tification techniques that are robust with respect to training set
noise and correlated features. In this study, several clear trends
emerged from the methodological comparisons performed.
First, the multiple-channel whitened EMGe processor was

again demonstrated to improve EMG—torque estimation. It is
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well established that these methods decrease the variability of
the EMGo estimate [15]-[19], [25], hence increasing the SNR
in the training and testing sets. Anccdotally, whitening scemed
to provide the clearest performance improvement in this study.
‘While multiple-channel EMGo processors offer improved per-
formance in many situations, problems can arise if even one of
the raw EMG signals contains a large amount of noise [18]. In
addition, in less constrained contractions, multiple electrodes
placed longitudinally across a muscle group might need to be
modeled as separate clectrical sources (rather than being com-
bined into one EMGe) [42], [43].

Second, increasing the training set duration from 26 to 52 s
provided a clear improvement, with considerably lower test er-
rors and reduced sensitivity to the number of model parame-
ters. A larger dataset helps to reduce the influence of training
sel noise, because parameler estimates are averaged over more
training samples. Training from multiple trials can also help av-
erage trial-to-trial variations in posture, since joint angle affects
the EMG—torque relation [44]-[46]. For example, the single-
channel unwhitened results based on a 26-s training duration
(see Fig. 1) show that test set error grows as dynamic model
order is increased above approximately 15th-order, for nonlin-
ear polynomial degrees of D = 3 and 4. However, when a 52-s
training duration was used with the single-channel unwhitened
data (see Fig. 4), the error was lower and remained so at higher
model orders. Interestingly, the multiple-channel whitened re-
sults for first- and second-degree polynomial models with 26-s
training duration (see Fig. 1) do not exhibit the upward trend in
error at high model orders. Thus, one might be convinced that
adequate training had occurred without overfitting. However,
the corresponding 52-s training set results shown in Fig. 4 still
exhibit substantially lower errors. Thus, the fact that error ceases
to vary as model order increases does not necessarily indicate
that an optimal model has been found. Further reduction in the
EMG-torque error might be realized using even longer training
sets or more training trials.

Third, the Weiner model results were consistently poorer than
those of the nonlinear polynomial models. The Hammerstein
models exhibited performance close to, but not as good as, the
best nonlinear polynomial models. Because the Hammerstein
and Weiner models contain fewer coefficients, it is possible that
they simply did not capture the full complexity of the true EMG—
torque relationship. These reduced parameter models might be
advantageous in situations where only short durations of training
data (i.e., less than 26 s) are available.

Fourth, with the nonlinear polynomial model (D = 2 or 3),
system identification using the best pseudoinverse tolerance
gave performance similar to that of the best ridge method. How-
ever, the range of pseudoinverse tolerances over which a nearly
optimal fit occurred (1071% < Tol < 1072) was much wider
than the range of ridge k values for its near-optimal fit (1 < k
< 10%). Hence, the pseudoinverse method may be less sensitive
and easier to tune. Results also indicate that tolerance/ridge k
value tuning is more critical when the data are more susceptible
to overfitting, i.c., for short duration training sets, single-channel
unwhitened EMGo processing, high nonlinear degree, and high
dynamic model order. Note that the tolerance value and ridge

k value were fixed in this analysis, and then studied as a func-
tion of the fixed value. It is possible that better performance is
available by adapting the tolerance/ridge & value based on infor-
mation within each training set. Anccdotal analysis suggests that
the optimal ridge & value for individual subjects ranged across
five orders of magnitude. Indeed, sclection of a ridge & value is
often performed based on case-by-case (graphical) evaluation
of a “ridge trace” [32]-[34]. Herein, manual evaluation of the
ridge trace was not compatible with automated calibration of the
EMG—torque relationship. But, automated algorithms for ridge
trace evaluation might be considered in the future.

Note that our experimental situation is limited (constant-
posture) and does not mimic fully dynamic, unconstrained mo-
tion. In addition, most daily movement activities of the upper
limb encompass a smaller range of effort levels [47] and may not
mimic the bandwidth investigated herein. However, improve-
ment due to advanced EMGo processing should apply to the
more complex movement cases since a lower variance signal
is produced. In addition, there is considerable evidence of in-
tersubject variability in EMG—torque/force relationships as, for
example, a function of joint angle [44]-[46]. Hence, attention
to system identification methods for calibrating to these differ-
ences should also be useful. Nonetheless, most EMG—torque
applications will require that the results of this study be ap-
propriately translated to, and verified with, more dynamic and
unconstrained motions. The relative impact of reducing EMG
amplitude variance and improving model accuracy can vary be-
tween applications.

Taken together, the several techniques utilized in this study
provide a substantial improvement over typical EMG-torque
performance. The best “conventional” estimator provided an er-
ror of 19.15 £ 11.15% MVC flexion. The merging of advanced
EMGo processors (whitening and multiple-channel combina-
tion), more complex EMG-torque models (e.g., nonlinear poly-
nomial model). and robust system identification techniques
(pseudoinverse/ridge regression, and longer duration training
sets) reduced the EMG—torque error in these constant-posture,
torque-varying contractions to 4.65 £ 3.6% of MVC flexion,
a substantial performance improvement. These results should
be informative to applications such as clinical biomechanics,
EMG/neural control of powered prostheses, ergonomic analy-
ses, motor control, and powered exoskeletons.
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ABSTRACT

Electromyogram (EMG)-torgue modeling is of value to many different application areas, including ergo-
nomics, clinical biomechanics and prosthesis control. One important aspect of EMG-torque modeling is
the ability to account for the joint angle influence. This manuscript describes an experimental study
which relates the biceps/triceps surface EMG of 12 subjects to elbow torque at seven joint angles {span-
ning 45-135°) during constant-posture, quasi-constant-torque contractions. Advanced EMG amplitude
(EMGo) estimation processors (i.e., whitened, multiple-channel) were investigated and three non-linear
EMGao-torque models were evaluated. When EMG-torque models were formed separately for each of the
seven distinct joint angles, a minimum “gold standard” error of 4.23 £ 2.2% MVCeo resulted (ie., error
relative to maximum voluntary contraction at 90° flexion). This model structure, however, did not
directly facilitate interpolation across angles. The best model which did so (i.e., parameterized the angle
dependence), achieved an error of 4.17 + 1.7% MVCpgq. Results demonstrated that advanced EMGo pro-
cessors lead to improved joint torque estimation. We also contrasted models that did vs. did not account
for antagonist muscle co-contraction. Models that accounted for co-contraction estimated individual flex-
ion muscle torques that were ~29% higher and individual extension muscle torques that were ~68%

higher.

@© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The surface electromyogram (EMG) provides a non-invasive
measure of muscle activation and hence has been used to estimate
muscle tension and joint torque (see Staudenmann et al. (2010) for
a recent review) (An et al., 1983; Clancy et al., 2006, 2012; Clancy
and Hogan, 1997; Doheny et al., 2008; Gottlieb and Agarwal, 1971;
Hasan and Enoka, 1985; Heckathorne and Childress, 1981; Hof and
Van den Berg, 1981; Hogan and Mann, 1980b; Lawrence and
DeLuca, 1983; Messier et al., 1971; Potvin and Brown, 2004;
Sanger, 2007; Shin et al, 2009; Solomonow et al, 1986;
Staudenmann et al., 2009; Thelen et al., 1994; Vredenbregt and
Rau, 1973). EMG-torque models have application in ergonomics,
clinical biomechanics and prosthesis control (Disselhorst-Klug
et al., 2009; Doorenbosch and Harlaar, 2003; Hagg et al., 2004;
Kumar and Mital, 1996; Mathiassen et al., 1995; Parker et al,
2006). These models aim to emulate the natural relationship be-
tween the central nervous system and peripheral joints/muscles.
This relationship must account for changes in muscle length/joint

# Corresponding author. Address: Department of Electrical and Computer Engi-
neering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609,
USA. Tel.: +1 (508) 831 5778; fax: +1 (508) 831 5491.

E-mail address: ted@wpi.edu (E.A. Clancy).

1050-6411/$ - see front matter @ 2013 Elsevier Ltd. All rights reserved.
http:{/dx.doi.org/10.1016/j.jelekin.2013.06.011

angle for several reasons, including the muscle length-tension rela-
tionship, muscle moment arms and the relative positioning of
recording electrodes with respect to the underlying muscle and
innervation zone (Martin and Maclsaac, 2006; Messier et al.,
1971; Rack and Westbury, 1969; Zajac, 1989).

Limited studies have been conducted over the years to model
the influence of joint angle on the EMG-torque relationship. Vre-
denbregt and Rau's (1973) classic single-subject study of biceps
muscles (more recently supported by the work of Doheny et al.
(2008)) suggests that this EMG-torque relationship may only
change by a multiplicative gain factor as a function of joint angle.
That is, the shape of the EMG-torque relationship is the same at
each joint angle, but a distinct gain scales this shape for each angle.
Vredenbregt and Rau did not account for agonist-antagonist co-
contraction, although Solomonow et al. (1986) have shown antago-
nist muscle activity to be considerable (antagonist EMG amplitude
levels often 10-20% that of the agonist). An additional modeling
concern is that Hasan and Enocka (1985) have shown that the
EMG-torque variation across angle changes considerably person-
to-person, with the angular location of the force peak varying up
to 50°. Each of the above three studies utilized constant-posture,
constant-torque contractions. These results suggest that
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EMG-torque models should account for both individual subject dif-
ferences, as well as agonist and antagonist muscles.

Advanced EMG amplitude (EMGo—the time-varying standard
deviation of the EMG waveform) processing techniques have been
developed over the last few years, incorporating multiple-channel
combination and whitening. Improved EMGG estimates produce
decreased EMG-torque error, as do improvements to system iden-
tification (i.e., model selection and fitting procedures) (Clancy
et al., 2002, 2006, 2012; Clancy and Farry, 2000; Clancy and Hogan,
1995, 1997; Hogan and Mann, 1980a, 1980b; Potvin and Brown,
2004; Sanger, 2007; Staudenmann et al, 2010; Thelen et al,
1994). These advances have not been incorporated into EMG-tor-
que modeling when multiple joint angles are considered. The pur-
pose of this study was to systematically investigate the influence of
elbow joint angle on EMG-torque modeling during constant-pos-
ture, quasi-constant-torque contractions, while incorporating
advanced EMGo processors and muscular co-activation.

2. Methods
2.1. Experimental data and methods

Experiments were approved and supervised by the WPI IRB. All
subjects provided written informed consent. Experimental data
were acquired from 12 healthy subjects (9 male, 3 female; aged
18-52 years). Subjects were strapped into a custom-built
straight-back chair (shown in Fig. 1) with their right shoulder
abducted 90°, their forearm oriented in a parasaggital plane, the
wrist fully supinated (palm perpendicular to the floor) and the wrist
tightly cuffed to a load cell (Vishay Tedea—Huntleigh Model 1042,
75 kg full scale). The angle between the upper arm and the forearm
was selectable, but fixed. Skin above the muscles under investiga-
tion was cleaned with an alcohol wipe and a small bead of electrode
gel was massaged into the overlying skin. Six bipolar EMG elec-
trode-amplifiers were placed transversely across each of the biceps
and triceps muscle groups, midway between the elbow and the
midpoint of the upper arm, this positioning being intended to avoid
the tendon distally and the innervation zone proximally. Subjects
were instructed to tense their muscles at both angular extremes
(45°, 1357) to aid in visualizing the distal tendon and the muscle
midpoint locations. EMG recording over the tendon is discouraged
as it is not electrically active tissue and because our own experience
finds this location prone to motion artifacts. Recording over the

Fig. 1. Experimental apparatus. The subject's right arm is oriented in a plane
parallel to the floor, the upper arm is directed laterally outward from the shoulder,
and the angle between the upper arm and the forearm is selectable, but fixed
(shown here at 90°). EMG electrodes are mounted over the biceps and triceps
muscles. The wrist is tightly cuffed to a load cell at the level of the styloid process.

innervation zone (typically located near the muscle mid-point for
the biceps and triceps) can lead to large swings in EMGo values
with small changes in location (Rainoldi et al., 2000). The electrodes
were also centered on the muscle midline, to best avoid crosstalk
from adjacent muscles. Each electrode-amplifier had a pair of
8 mm diameter, stainless steel, hemispherical contacts separated
by 1 cm edge-to-edge, oriented along the muscle’s long axis. The
distance between adjacent electrode-amplifiers was ~1.75cm. A
ground electrode was gelled and secured on the upper arm. Custom
electronics amplified and filtered each EMG signal (CMRR greater
than 90dB at 60 Hz; 8th-order Butterworth highpass at 15 Hz;
4th-order Butterworth lowpass at 1800 Hz) before being sampled
at 4096 Hz with 16-bit resolution. The RMS EMG signal level at rest
(representing equipment noise plus ambient physiological activity)
was on average 2.9 + 4.3% of the RMS EMG at 50% maximum volun-
tary contraction (MVC) at 90°.

All contractions were constant-posture, with the elbow angle
selectable. Subjects were provided a warm-up period, then rested
four minutes. MVCs were then measured. Subjects took 2-3 s to
slowly ramp up to MVC and maintained that force for two seconds.
The average load cell value during the contraction plateau was ta-
ken as the MVC. Both elbow extension and flexion MVC were mea-
sured at a joint angle of 90°. Ten second duration, constant-force
contractions at 50% MVC extension, 50% MVC flexion and at rest
{arm removed from the wrist cuff) were next recorded at a joint
angle of 90°. These contractions were used to calibrate advanced
EMGo estimation algorithms (Clancy and Farry, 2000; Prakash
et al., 2005). Then, a sequence of constant-posture, quasi-con-
stant-torque contractions was conducted at randomized elbow an-
gles of 45°, 60°, 75°, 90°, 105°, 120° and 135°. Elbow angle was the
included angle between the forearm and upper arm. At each angle,
MVC torque was measured in both elbow extension and flexion.
The average of these two MVC torques was denoted the torque
range midpoint. Then, three tracking trials of 45 s duration were
recorded during which the subjects used the load cell as a feedback
signal to track a computer-generated torque target ramping at a
constant absolute torque rate from the torque range midpoint, to
50% MVC flexion, to 50% MVC extension, back to 50% MVC flexion,
and then back to the torque range midpoint. Two-three minutes of
rest was provided between trials to avoid cumulative fatigue.

2.2. Methods of analysis

All analysis was performed offline in MATLAB. The sampled
EMG data were notch filtered at the power line frequency and all
harmonics (2nd-order 1IR filter, notch bandwidth <0.5 Hz). Small
amounts of power line interference, which can be larger in magni-
tude than the EMG signal power at high frequencies, can be inap-
propriately accentuated due to the high gain of whitening filters at
these frequencies. The narrow bandwidth of these notch filters
eliminated this interference source, with limited decrease in the
overall statistical bandwidth of the signal (Bendat and Piersol,
1971). Next, two distinct EMGo processors were created for each
of the extension and flexion muscle groups for each 45 s trial. Esti-
mators were either single-channel, unwhitened (using a centrally
located electrode) or four-channel whitened (using the four cen-
trally located electrodes). As depicted in Fig. 2, each estimator uti-
lized a 15 Hz highpass filter (5th-order Butterworth applied in the
forward and reverse time directions to achieve zero phase) and a
first-order demodulator (e.g., rectifier). Whitened channels used
the non-causal adaptive whitening algorithm of Clancy and Farry
(2000). After demodulation, signals were lowpass filtered at
1.6 Hz while being decimated by a factor of 1000, producing a
resampled frequency of 4.096 Hz. The torque signal was similarly
decimated, producing an EMG data set with a bandwidth approxi-
mately 10 times that of the torque signal being estimated (Ljung,
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Fig. 2. Asingle channel EMG signal (top plots) passing through various steps of EMGG estimation (bottom plot). Data (45 s in duration) were collected from a biceps muscle
channel at a joint angle of 90° for subject WYO1. For simplicity, only one whitened channel is shown however, in practice, four channels were combined after demodulation

whenever whitening was applied.

1999). This decimated sampling rate is best for system identifica-
tion, being large enough to capture the system dynamics (the fun-
damental period of force variation was 45 s) and small enough to
avoid noise existing out of the signal band (Clancy et al., 2006;
Ljung, 1999). The original sampling rate of 4096 Hz is necessary
for acquiring the raw EMG, but is not appropriate once an EMGo
estimate has been formed. The first and last 7.5 s of data were ex-
cluded from each 45 s trial to account for filter start-up transients.

The decimated extension and flexion EMGo inputs were related
to joint torque (output) using three non-linear polynomial model
structures:

(1) Angle-specific model:

o n
Tim) = > fooodim) - 3 eyqotm) (1
d=1 d=1

(2) Flex-extend multiplicative model:
A D
Tm] = (Zguf““ [m]) (Zfdﬁﬁ[m])
a=0 d=1
A D
- (Zga.f“a[m]) (Zedo'g[m]) 2)

a=0 d=1

(3) Single multiplicative model:

A D D
T[m] = (Zgu“‘“[m]) (Zﬁaﬂg [m] - Zedﬁﬁ[m]) 3)
a=0 d=1 d=1

where m was the decimated discrete-time sample index; T[m] was
the measured torque; eg and f; were the extension and flexion fit
parameters (which specified the shape of the EMGo-torque rela-
tionship), respectively; a¢[m] and agm] were the extension and
flexion EMGao estimates, respectively; g, were the angle fit param-
eters (which specified the multiplicative gain vs. joint angle); and ¢
was the elbow joint angle. The EMGo polynomial degree was var-
ied from 1 < D < 5. The angle polynomial degree was varied from
1< A< 5. Both "A” and “D" were always the same for extension
and flexion portions within any one model.

The “angle-specific” model estimated the extension and flexion
fit parameters at the seven elbow joint angles separately, using lin-
ear least squares. The "flex-extend multiplicative” model con-
tained two sets of gains (one each for extension and flexion
activities) which were polynomial functions of elbow joint angle,

and simultaneously estimated the extension and flexion fit param-
eters across the seven elbow angles. The multiplicative gain func-
tions account for all factors associated with EMGo-torque
changes across angle, including muscle moment arms, muscle
length-tension relationships, and movement of the electrodes with
respect to the underlying muscles and innervation zones. The “sin-
gle multiplicative” model was similar, except that it contained only
one multiplicative gain function. Parameters of the flex-extend and
single multiplicative models were estimated using non-linear least
squares. For the multiplicative models, the inclusion of both EMGo
and angle polynomials resulted in one redundant overall scaling
parameter. Anecdotally, this additional degree of freedom seemed
to aid the least squares minimization, thus was retained. However,
for consistency across angles, the angle polynomial was rescaled to
a gain of one at 90° after the fit was complete, with a compensatory
inverse scaling applied to the EMGo polynomial.

Each subject completed three tracking trials at seven distinct
angles. Seven trials, one per angle, were combined to form an anal-
ysis record (three per subject). The first analysis record was used as
training data and the second as a test set. Then, the third record
was used as training data and the second again used as the test
set. The mean absolute difference between the actual torque and
that predicted by the EMG-torque model was computed while
the actual torque was between 40% MVC extension and 40% MVC
flexion. Limiting the evaluation range reduces extrapolation errors
due to trial-to-trial differences in actual torque (Clancy and Hogan,
1997). The average of these two mean absolute difference values
was reported as the test error value. All error values were normal-
ized to twice the torque at 50% flexion MVC at angle 90° (MVCggo).
Only test trial results are presented. For statistical analysis, test er-
ror values were subjected to a paired sign test (Miller and Freund,
1977). Eighty four values contributed to each sign test (seven an-
gles = 12 subjects).

3. Results

Fig. 3 shows an example of the estimated torque and actual tor-
que vs. time for seven elbow angles using the three different model
structures. The angle-specific model was considered the “gold stan-
dard,” since it optimized the model coefficients at each particular
joint angle. It does not interpolate across angles. Table 1 gives the
mean plus/minus standard deviation test error results for the an-
gle-specific model for each combination of angle, model order and
EMGo processor. The bottom rows of the table list overall errors
that collapse results across angle. Error was averaged across the
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Fig. 3. EMGo-torque test results of estimated (solid line) and actual torque (dotted line) vs. time for seven elbow angles using three model structures (subject WY01). Data
for each angle (30s in duration, after exclusion of filter transients) were collected during distinct trials, then concatenated in the figure. Results use multiple-channel
whitened EMGo processing, the best EMGo polynomial degree (D = 3 for the angle-specific model and D =2 for the other two models) and an angle polynomial degree of

A=2,

Table 1
Angle-specific model: mean # std. dev. EMG-torque error (% mean absolute MVC
flexion at 90° from 12 test trials).

Table 2
Multiplicative medels: mean £std. dev. EMG-torque error (% mean absolute MVC
flexion at 90° from 12 test trials). “A.P.D" = Angle Polynomial Degree.

Joint angle/ Polynomial degree (D) AP.D. (A)/ EMGeo polynomial degree (D)

EMGo D=1 D=2 D=3 D=4 D=5 Model D=1 D=2 D=3 D=4 D=5
45¢/ A=1f

Single, unwhite 843+6.1 722+72 71275 7.88+11 09092+18 Flex-extend 5.55+2.0 466+15 494+20 467+19 52629
Multiple, white 7.44+6.2 6.76+72 634+6.6 640+73 7.12+10 Single 690+19 6.14+17 667+25 600+1.7 692+33
60°/ A=2/

Single, unwhite 7.52+2.6 621+3.1 596+33 580:33 584+35 Flex-extend 5.15+22 417+17 497+29 485+23 65237
Multiple, white 694+4.1 633+58 6.18%55 132230 35£105 Single 634+22 565+19 578%21 61127 687+29
75 A=3f

Single, unwhite 664+2.1 511+18 483+19 577+54 11.1+23 Flex-extend 526+23 435+18 625+52 479+28 28 +58
Multiple, white 545+22 421+1.7 399%1.9 407225 473:48 Single 65027 573+£20 7.06%51 7.15+43 156+13
907/ A=4/

Single, unwhite 589+26 470+18 459+1.8 455218 4.61%18 Flex-extend 627124 524:21 713154 2844 47 £118
Multiple, white  5.14+25 390+1.6 363%+1.5 363215 371115 Single 73731 641+£21 655%25 967+6.2 38+74
105%/ A=5f

Single, unwhite 504+14 426+13 416213 414212 414212 Flex-extend 147197 123+74 120x7.1 64+154 282+727
Multiple, White 4.32+1.7 333+15 329%14 334215 332114 Single 931+83 681+£29 808134 2862 33+46

1200/
Single, unwhite
Multiple, white
135%/
Single, unwhite
Multiple, white

Overallf
Single, unwhite
Multiple, white

546422 456+20 458+20 458+22 465+23
412+2.0 337+16 335%1.6 332+16 34518

394+12 380+11 379%1.2 391214 40517
295+15 269+13 28016 294+20 36943

613+21 512+22 500+22
519+24 437+23 423+22

523%£31 632+66
527%52 B66+16

seven angles for each subject, then the mean and standard devia-
tion

of these 12 values reported. The best overall performance was
found using the multiple white EMGo processor and polynomial
degree D =3, giving an error of 4.23 + 2.2% MVCgqp. For all angles
and EMGo polynomial degrees, multiple-channel whitened proces-
sors consistently performed better than single-channel unwhi-
tened, except for D = 2 at 60°. Statistically, results between the

two EMGo processors were compared for each EMGo polynomial
degree 1< D < 5. The multiple whitened processor was signifi-
cantly better in all cases (p < 0.001). Note that the “Overall” results
for D = 2 in Table 1 obscure this difference, due to the large errors
associated with one subject at 60°. However, the nonparametric sta-
tistical analysis (paired sign test) confirms the difference. We next
statistically compared the best (D = 3) multiple whitened processor
results to the other multiple whitened processor results. Results for
polynomial orders D = 1 and 2 were statistically inferior (p < 0.001),
while results for D = 4 and 5 did not differ (p > 0.07).

Table 2 gives the mean plus/minus standard deviation test error
results for the two multiplicative models, for only the multiple-
channel whitened EMGo processor. For each cell, error was aver-
aged across the seven angles for each subject, then the mean and
standard deviation of these 12 values reported. For both multipli-
cative models, when both D and A were high (=4), the error be-
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Fig. 4. Flex-extend multiplicative model fits at each angle (subject WY04), using multiple white EMGo processing, an EMGo polynomial degree of D=2 and an angle
polynomial degree of A = 2. Plots provided for each of the seven joint angles (as labeled). Top plots formed from Eq. (2), while setting & to zero and the multiplicative gains to
one. Bottom plots formed from Eq. (2) while setting &¢ to zero and the multiplicative gains to one.
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Fig. 5. Flexion (top) and extension (bottom) gain functions vs. angle for the twelve subjects {numbered 1-12) with the flex-extend multiplicative model, using multiple white
EMGo processing, an EMGo polynomial degree of D=2 and an angle polynomial degree of A = 2. Note that the model requires a gain of one at joint angle 90°.

came extremely large, likely due to over-fitting. Some over-fitting
also may have occurred when only one of the two polynomial de-
grees was high (e.g., D=5, A=3). The best flex-extend model
(D=2, A=2) had an error of 4.17 + 1.7% MVCgoo and did not differ
significantly from the best angle-specific model (p = 0.29). Fig. 4
graphs an example set of flex-extend model fits for D=2 and
A= 2, Fig. 5 graphs the gain functions for the flex-extend model
{one per subject), again for D=2 and A = 2. Considerable gain var-
iation (exceeding a factor of two) exists across the span of angles
studied. The best performance of the single multiplicative model
(D=2, A=2)was 5.65% 1.9% MVCroo, which was statistically dif-

ferent (poorer) than the best angle-specific model (p < 0.001) and
the best (D = 2, A= 2) flex-extend model (p < 0.001).

We also statistically compared EMGo processors for the flex-
extend model. The multiple white processor consistently produced
lower errors (p < 0.006) when both polynomial degrees were three
or less. For other polynomial degree combinations, results were
either equivocal or not significant. However, these parameter com-
binations corresponded to higher errors and would not be utilized.
Similarly, comparison between the two EMGG processors with the
single multiplicative model gave equivocal results particularly
when the error was high.
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Fig. 6. EMGo-torque relationship with (solid lines) and without (dotted lines) accounting for muscle co-contraction. An EMGo polynomial degree of D=2 and an angle
polynomial degree of A =2, Plots provided for each of the seven joint angles {subject WY04).

Table 3

Mean = std. dev. EMG-estimated muscle torque using models with and without co-
contraction (% mean absolute MVC flexion at 90°). Results computed over all angles
for 12 subjects.

Maodel EMGao value

0.1 0.2 0.3 0.4
Flexion
Co-contract 11.8+25 22.7+4.4 32.7+58 41.8+6.6
No co-contract 91+3.0 176+52 253 +6.6 323+73
Extension
Co-contract 142452 26.5+£9.6 37.0£133 45,5+ 16.5
No co-contract 82+25 15643 222+54 28.0+6.2

Finally, we also produced flex-extend model EMGo-torque
relationships without accounting for muscular co-contraction by
ignoring the antagonist muscle term in Eq. (2). Only parameters
D=2, A=2 were considered. Within the flexion-dominant range
of a tracking trial, we related flexion EMGo to joint torque; and
similarly for the extension-dominant portion of a tracking trial.
Fig. 6 shows an example result (D=2 and A = 2). At every angle,
each subject’s model (flexion or extension) that accounted for co-
contraction estimated higher muscle torques at every EMGo value.
We then computed the model-estimated EMGo-torque with vs.
without modeling co-contraction at normalized EMGo values of
0.1, 0.2, 0.3 and 0.4 (where 1.0 denotes the EMGa value at MVC),
separately for each of the flexion and extension portions of the
models. For each subject, results were averaged across the seven
angles. Table 3 gives the mean plus/minus standard deviation
results, computed across the 12 subjects. For flexion, the models
with co-contraction estimated ~29% more torque. For extension,
the models with co-contraction estimated ~68% more torque.

4. Discussion

We examined three non-linear models for relating EMGo to
joint torque at different joint angles during constant-posture,
slowly-torque-varying (quasi-constant-torque) contractions, as
well as the role of advanced EMGao processors and muscular co-

activation. Rather clear distinctions emerged. The advanced EMGo
processing technique that combined whitening and multiple
channels consistently provided an approximate 15-20% perfor-
mance improvement, compared to unwhitened single-channel
performance, for the better model structures. Although EMG
performance differences were equivocal for the poorer performing
model structures, these models would not be selected for use.
These improvement results are consistent with past experimental
evaluations (Clancy and Hogan, 1995, 1997; Clancy et al., 2012;
Hogan and Mann, 1980b; Potvin and Brown, 2004; Prakash et al.,
2005), reflecting that a lower variance EMGo signal used as the in-
put to system identification produces lower modeling errors. There
are, however, some possible drawbacks to using multiple recording
channels, including: increased hardware costs; the risks that arti-
facts on only one channel can greatly degrade the entire EMGo
estimate (Clancy and Hogan, 1995); and the possibility during less
constrained contractions that the many electrodes should not be
combined into one EMGao, but should be represented as distinct
electrical sources/muscle compartments (Staudenmann et al,
2009; Vieira et al., 2010).

The particular model structures chosen for evaluation in this study
were strongly influenced by prior literature in this field. Vredenbregt
and Rau (1973) suggested that the constant-posture EMGo-torque
relation only varies by a multiplicative gain as a function of angle.
These prior experiments, however, did not account for possible mus-
cle co-activation and could not benefit from more recent advances in
EMGo processing. Thus, we selected two models that included mul-
tiplicative gain as a function of angle. Angle-dependent gain was
implemented via a polynomial, consistent with the expectation of a
singly-peaked function (Hasan and Enoka, 1985). The EMGG-torque
relationship at a given angle was also implemented via a polynomial
(Clancy and Hogan, 1997; Vredenbregt and Rau, 1973). These models
considered muscular co-activation and were calibrated from contrac-
tion trials that included both flexion-dominant and extension-domi-
nant contraction.

The optimal EMGo polynomial degree for the angle-specific
model was D = 3, consistent with prior work (Clancy and Hogan,
1997). The EMGo-torque relationship shown in Fig. 4, however,
is much closer to a straight line than that typically plotted in the
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literature, at least for the biceps muscles (Lawrence and DeLuca,
1983; Vredenbregt and Rau, 1973). One reason for this difference
is that we only used efforts up to 50% MVC. Past studies have
shown the relationship to be mostly straight over this region, with
a more curved (non-linear) shape at higher effort levels. The
dependence of gain on joint angle (Fig. 5) did not consistently
exhibit a singly-peaked function as might have been anticipated
(Hasan and Enoka, 1985). Modeling muscle co-contraction likely
influenced this shape, e.g., flexion gain was calibrated from both
flexion-dominant and extension-dominant torques. In addition,
subjects generally produced lower absolute torque at the extreme
joint angles (see Fig. 3). Thus, the least squares parameter fit crite-
rion would have given more influence to those joint angles closest
to 90°, perhaps reducing the influence of the more extreme angles.

Fig. 6 and Table 3 show the constant-posture EMGo-torque
relationship with and without consideration of muscle co-con-
traction. As expected, models that do not account for co-contrac-
tion estimate lower flexion and extension muscle torque
contributions, likely underestimating true muscle torque contri-
butions. This error is substantial: for flexion, the models with
co-contraction estimated ~29% more torque; for extension, the
models with co-contraction estimated ~68% more torque. Unfor-
tunately, studies that ignore co-contraction are generally blind to
this error. Least squares selection of the fit coefficients will reli-
ably match agonist EMG to agonist-direction torque (e.g., biceps
EMG to flexion-direction torque). Net joint torque will be appro-
priately estimated, but internal torques (i.e. the flexion and
extension muscle torque contributions) will not—in fact, no
antagonist torque is even considered. Of course, such models ren-
der large errors if the antagonist muscle activity changes from
that which was experienced during calibration of the model. In
most EMGo-torque studies, subjects are asked to minimize mus-
cle co-contraction. Doing so is advantageous from a system iden-
tification perspective, so as to most independently excite all
modes of a system. But, real-life contractions will not always pre-
serve the same level of co-contraction. If joint impedance were to
be volitionally increased by subjects, one would expect even lar-
ger errors. For example, purposeful co-contraction to increase
impedance is common in many tasks wherein the endpoint limb
segment must be stabilized (Rancourt and Hogan, 2001). Hence,
modeling of muscular co-contraction is essential for generaliza-
tion of an EMGo-torque model.

It is not surprising that high degree multiplicative gain func-
tions performed significantly poorly, particularly when the EMGo
polynomial model order was high. Data from only seven distinct
angles were acquired experimentally. Hence, high angle polyno-
mial degrees (A) would be expected to lead to over-fitting. One
interesting solution to this problem would be to separately
calibrate the angular dependence and the EMGo dependence. That
is, an angle-specific EMGo-torque polynomial model might be
calibrated at one reference angle (e.g., 90°) and these coefficients
fixed. Thereafter, data could be collected while the joint angle
was slowly wvaried across angle (quasi-constant-torque). The
coefficients of the angle function could then be independently cal-
ibrated. In doing so, many more angle values would be available,
perhaps leading support to a higher degree angle polynomial. This
calibration technique would also require far less data collection.
The reduced number of required contractions might further permit
repeated training trials for each contraction, which might lead to
even lower model error (Clancy et al., 2012). Note that many sub-
jects found it awkward to orient their elbow to the 45° joint angle
and related difficulty in producing torque at this angle. This orien-
tation might be outside the range of angles that need be considered
in future research.

The fixed posture and avoidance of dynamic force changes in these
experiments simplified study of the EMGo-torque relationship ver-

sus joint angle, but may require caution when applying the results
inless constrained application areas. Our intent was to limit the num-
ber of variables studied and concentrate on the role of joint angle. It
would, therefore, be appropriate to reduce these postural and force
limitations in future studies, transitioning towards EMGo-torque
models in more dynamic, unconstrained contractions. For example,
when joint angle is allowed to vary dynamically (not the case in this
study), EMGo-torque models will likely need to differ as a function of
eccentric vs. concentric contraction (Komi et al., 2000). Also, our sam-
ple size in this study was limited (12 subjects) and predominantly
male. Larger and more diverse subject pools can aid in the develop-
ment of EMGo-torque models that are representative of different
body types (e.g., height, weight, arm strength) as well as differences
that are more specific to EMG signal acquisition and processing
(e.g., arm circumference, amount of subcutaneous fat, relative com-
position of fast- vs. slow-twitch fibers).

These results extend the classic results of Vredenbregt and Rau
(1973) by considering muscular co-activation, applying optimized
EMGo estimates, evaluating alternative models, quantifying the
angular dependence and providing rigorous statistical support of
all results from multiple subjects. In practice, the results provide
strong support that the constant-posture, constant-torque
EMGo-torque relationship about the elbow maintains the same
shape across angles, differing only by a multiplicative gain factor
as a function of angle, Further, a polynomial function is sufficient
to model the necessary gain vs. angle. Fig. 5, for example, could
be used to develop normative gain vs. angle functions, or better
results would be expected if these functions are fit to each subject
(as performed in this work). In prosthetics, these results suggest
that more natural control of a powered elbow might be provided
if the gain between EMG and motor torque were adjusted as a
function of the elbow angle. In ergonomic and biomechanical anal-
yses, these results provide a model form in order to account for the
angle dependence, which should lead to better tracking of pre-
dicted joint torques.

Lastly, this work quantifies the differences in estimated internal
muscle tensions with vs. without consideration of muscular
co-contraction. The differences are quite large, suggesting that co-
activation about the joint must be considered in musculoskeletal
models. Formally, doing so is best approached by quantifying joint
mechanical impedance. That is, net torque about the joint is related
to the difference between flexion and extension torques, while
impedance about the joint is related to the sum of the flexion and
extension torques. Simultaneously quantifying both joint torque
and impedance provides a more complete mechanical description
of the joint. Rigorous methods for relating EMG to joint impedance
are just now emerging in the literature (Pfeifer et al., 2012).

In summary, EMGo-torque models were formed during con-
stant-posture, slowly force-varying contractions ranging in joint
angle from 45° to 135°, while modeling muscular co-activation.
Advanced EMGo processing, including signal whitening and multi-
ple channel combination, provided consistent performance
improvements for the better models. A gold standard model was
calibrated at each specific angle using a polynomial EMGo-torque
relationship. A third-degree polynomial produced the lowest esti-
mation error of 4.23 4 2.2% MVCgog. Models were also formed in
which the angular dependence was parameterized via a multipli-
cative gain function written as a polynomial. When distinct gains
were applied to each of flexion and extension, the best perfor-
mance (EMGo polynomial degree of two, angle polynomial degree
of two) was 4.17 £ 1.7% MVCgqp. Models which did not account for
co-contraction were compared to those that do so. Flexion torque
was ~29% higher and extension torque was ~68% higher in the
models which included co-contraction. Thus, failure to account
for antagonist muscle activity can considerably underestimate
individual muscle torques.
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Electromyogram Whitening for Improved
Classification Accuracy in Upper Limb
Prosthesis Control

Lukai Liu, Pu Liu, Edward A. Clancy, Senior Member;, IEEE, Erik Scheme, Student Member, IEEE, and
Kevin B. Englehart, Senior Member, IEEE

Abstract—Time and frequency domain features of the surface
electromyogram (EMG) signal acquired from multiple channels
have frequently been investigated for use in controlling upper-limb
prostheses. A common control method is EMG-based motion clas-
sification. We propose the use of EMG signal whitening as a prepro-
cessing step in EMG-based motion classification. Whitening decor-
relates the EMG signal and has been shown to be advantageous in
other EMG applications including EMG amplitude estimation and
EMG-force processing. In a study of ten intact subjects and five
amputees with up te 11 moetion classes and ten electrode channels,
we found that the coefficient of variation of time domain features
(mean absolute value, average signal length and normalized zero
crossing rate) was significantly reduced due to whitening. When
using these features along with autoregressive power spectrum co-
efficients, whitening added approximately five percentage points
to classification accuracy when small window lengths { < 100 ms)
were considered.

Index Terms—Coefficient of variation, electromyography, EMG,
myoelectric, prosthesis, whitening.

I. INTRODUCTION

PPROXIMATELY 1.5 million people in the U.S. are

living with upper or lower limb loss, with 230 000 new
cases occurring each year [1], [2]. Surface electromyogram
(EMG) controlled powered hand/wrist/elbow prostheses are
used by some of these amputees to return partial upper-limb
function. Conventional transradial prostheses, for example, can
use surface EMG amplitudes from the residual forearm flexors
and extensors to control hand opening and closing. Additional
degrees of freedom (e.g., wrist rotation) cannot currently be
controlled simultaneously in commercial systems. Rather,
prostheses apply EMG-based or mechanical mode switching,
so that the same EMG sites sequentially control the additional
function(s) [3], [4]. It is reported that control of more degrees
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of freedom is the greatest desired prosthetic improvement for
below-elbow amputees [5]. Accordingly, a pattern recognition
approach has been emerging over the past several years in
which EMG signals in the forearm are used to discern desired
movements of the hand and wrist [3], [6]-[11]. Continuous
control of multiple degrees of freedom is achieved by applying
the pattern recognition algorithm in a continuous manner along
the EMG signal stream. The approach consists of four sequen-
tial steps: EMG signal conditioning and preprocessing, feature
extraction, dimension reduction and pattern classification.

Common time-domain features that are extracted include
the EMG mean absolute value (MAV), signal length and zero
crossing rate [6]. Frequency-domain features have also been
used, e.g., the coefficients of autoregressive power spectral
modeling of the EMG [10]. In both cases, features are ex-
tracted from an epoch/window of the EMG signal stream for
classification. The extent to which these features—or their di-
mensionally reduced representations—distinguish the different
motion classes directly relates to the accuracy of the classifier.
Limitations in class separation in the feature space represent a
systematic error (i.e., bias) in the classifier. Because the EMG
signal presents itself as a stochastic process, a distinct random
error (i.e., variance) also exists. That is, even if amputees
produce a repeatable force pattern in their residual limb, the
EMG-derived features will vary trial-to-trial due to the inherent
variations in the EMG signal.

Errors due to the stochastic component of the EMG signal
are also problematic in the related areas of EMG amplitude es-
timation and EMG-force processing [ 12]-[15]. In these applica-
tions, signal whitening has been used to reduce the random error
of the processed EMG, with substantial performance improve-
ments resulting. Whitening temporally decorrelates the EMG
signal, increasing the effective number of signal samples (a.k.a.,
statistical degrees of freedom) and reducing the variance in the
amplitude estimate.

Whitening has not previously been applied to the EMG mul-
tifunction classification problem. In this paper, we investigate
the hypothesis that EMG signal whitening prior to feature ex-
traction will similarly reduce the random error in EMG-based
features and lead to improved classification accuracy. This ef-
fect should be most prominent at short window durations, since
long window durations already experience high classification
accuracy (often above 95%., for which little improvement is
either available or needed). Shorter window durations are rel-
evant, because they reduce the delay between user command

1534-4320 © 2013 IEEE
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and prosthesis actuation, permitting higher speed (bandwidth)
movement and more realistic motion [16]. A preliminary report
of this work appeared in [17].

II. ANALYTIC TIME-DOMAIN FEATURE PERFORMANCE

For purposes of classification analysis, the random variation
of an EMG feature can be quantified as the standard deviation of
the feature (&) relative to its mean value (), i.e., the feature’s
coefficient of variation: CoV = g fp. Lower CoVs should fa-
cilitate higher classification accuracy. An analysis of the CoV
of common EMG time-domain classification features does not
appear to have been previously reported. Thus, we do so here.

A common model of the EMG samples, m[n], from one
window, is that of a wide sense stationary, correlation-ergodic,
zero-mean, Gaussian random process [13], [14], [18], where
is the sample index and me[-] is measured in millivolts. Without
loss of generality, assume that successive model samples are in-
dependent [15]., [18], [19]. In fact, these samples are correlated
due to the limited bandwidth of the EMG signal. However,
let window length Ngg represent the equivalent number of
independent samples within a window, given by [20]

Ngq = 28,T (1)

where B, is the statistical bandwidth of the EMG (Hz) and T'
is the window length (seconds). Since whitening increases Ngy
via an increase in statistical bandwidth [14], [15], the relevant
analytic relationship is to determine the CoV versus Ngg for
each time-domain feature.

The MAV of an EMG window of Ngq samples is defined as

1 N]a;q—l
MAVy,, = New Z |7 [m]]- 2
a n=0

Its CoV is the inverse of the signal-to-noise ratio (SNR),
which has been previously analyzed [21]. Inverting the SNR re-
sult gives

7m—2 _ 0.756
covmav Ve = o ong, = Ve
q

The average signal length of Nggq samples, in millivolts per
second per sample, is defined as

f Ngg—1
SLivea = o 1 E mla]—mp-1]. @

The gain factor f, /{Ngq — 1, not normally included in the defini-
tion of signal length, normalizes its values across sampling rates
and window lengths. Since the m[n] are zero-mean Gaussian,
so is each difference term in the sum, but with a doubled vari-
ance. An analytic form for the sum was not readily apparent
due to the correlation between adjacent differences, which share
a common EMG sample. Hence, the CoV of average signal
length was approximated numerically in MATLAB by creating

108 replicates of Gaussian vectors of size Ngg and computing
the sample mean and standard deviation of the average signal
length, across these replica. Window length Ng, was varied
from 2-2000. The resulting CoV values versus N, closely fit
the model

0.911
COVSL [Nqu o N . (5)
Eqg

The normalized zero crossing rate of Ngg samples is defined
as the number of adjacent samples with different polarity, nor-
malized by the ratio between sampling rate and the number of
samples

Ngq—1

Z [1 — sgn(m[n] mn — 1])]. (6)

n=1

fa
ZC ==
Nea ™ (Ngg — 1)
The gain factor f,/{Ngy — 1) normalizes the zero crossing

values across sampling rates and window lengths, so that its

unit is Hertz, and
1, t>0

sgn(t) = 10, t<0

For independent identically distributed Gaussian samples, the
probability of a sign change between a pair of samples is 0.5.
Thus, the number of sign changes in Ngq samples follows a
Binomial distribution with Ngg — 1 trials, and its coefficient of
variation is [22]

. fo ., fNeg—1
Z¢ Nigg—1 4
COVZC [NEq] = =2 - ¥ o —"
kzo ﬂ% . —E;—
1 1

= = . ()]

W Neg—1 /Ny

We see that the CoV for each time-domain feature is (asymp-
totically) a univariate function of the number of equivalent in-
dependent samples, in the form of a constant divided by /Ngg,
where Ngq represents the equivalent number of independent
samples. We expect that signal whitening will increase Ngg,
thereby reducing CoVs for any given window duration, with
better classification accuracy hypothesized to result. An exper-
imental trial evaluated this hypothesis.

1. METHODS

A. Experimental Methods

Experimental data from two prior studies were analyzed. The
Worcester Polytechnic Institute (WPI) Institutional Review
Board (IRB) approved and supervised this analysis. Data from
ten intact-limbed subjects, aged 19-32 years, had been collected
at the University of New Brunswick [7]. Briefly, ten adhesive
Duotrode electrodes (manufactured by 3 M) were applied
about the circumference of the forearm of each intact subject.
Twelve equally spaced locations were marked along the entire
forearm circumference at 1/3 the distance from the elbow to
the wrist, beginning at the palmar aspect (see [7] and Fig. 2).
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Fig. 1. Sample original EMG epoch (top), same epoch after whitening (middle) and the normalized spectrum of each (bottom). Statistical bandwidth, H, . of each
signal is listed. Data from healthy subject 6, channel 3, fine pinch grip motion, epoch 2.

The most medial and lateral locations were omitted(leaving ten
locations). Bipolar electrodes had a contact diameter of 1.4 cm
and a center-to-center distance of 2 cm. A subject began and
ended each trial at rest (fixed posture with no motion attempted,
muscle effort minimized) with their elbow supported on an
armrest. Each trial consisted of two repetitions of the 11 motion
classes: 1) and 2) wrist pronation/supination; 3) and 4) wrist
flexion/extension; 5) hand open; 6) key grip; 7) chuck grip; §)
power grip; 9) fine pinch grip; 10) tool grip; and 11) no motion.
Each motion class within a trial was maintained for 4 s, and the
subject returned to the rest posture for a specified inter-motion
delay period prior to producing the next motion class. Trials
1—4 used an inter-motion delay of 3, 2, 1, and 0 s respectively,
and trials 5—8 used an inter-motion delay of 2 s. The eight trials
were performed twice and a minimum of two minutes inactivity
was given between each trial. A general familiarization session
was provided prior to data collection, typically lasting approx-
imately |5 minutes in duration. The EMG data were collected
using a custom-built pre-amplification system (Liberating
Technologies, Inc., Holliston, MA) with a frequency response
from 30-350 Hz, and sampled at 1000 Hz using a 16-bit ADC.

The Rehabilitation Institute of Chicago collected EMG data
from five subjects aged 28 to 77 years, who had received uni-
lateral transradial amputation three months to 21 years prior
[9]. Three subjects were myoelectric prosthesis users, one sub-
ject used a body-powered prosthesis and one subject had not
vet received a prosthesis. A total of 12 self-adhesive Ag/AgCl
snap bipolar electrodes witha 1.25-cm-diameter circular contact
and center-to-center distance of 2 cm (Noraxon USA. Inc) were
used. Eight of the 12 electrodes were placed around the prox-
imal portion of the forearm over the apex of the muscle bulge

and the other four on the distal end [see [9] and Fig. 1(a)]. In
this study, we used only the first ten electrodes, to most closely
match the electrode placement of the intact-limbed subjects.
Only data from the amputated side was used. The experiment
protocol was the same as that of the intact subjects, including
subject posture, the general familiarization session and the mo-
tion trials. ldentical motion trial data were available for analysis.
The EMG data were transduced using Liberating Technologies
preamplifiers, bandpass filtered between 5—400 Hz and sampled
at 1000 Hz using a 16-bit ADC.

B. Methods of Analyvsis

1) Feature Computation: The trials were segregated into
training and testing data, as described in the following. The
inter-trial delay segments were removed from data recordings,
resulting in 22 4-s segments per electrode per trial (two rep-
etitions of 11 motion classes). Each segment was zero-phase
notch-filtered (0.4 Hz bandwidth) at the power-line frequency
and its harmonics. When desired, each four-second segment was
also whitened. To do so, each segment was highpass filtered at
15 Hz, then adaptively whitened using an algorithm that was
tuned to the power spectrum of each EMG channel [12], [23].
Whitening filters were calibrated from a training trial by man-
ually selecting, subject-by-subject for each electrode, the trial
with the largest MAV. A no motion trial was also used to rep-
resent resting EMG in the whitening calibration. Prior to fea-
ture extraction, 0.5 s of data were truncated from the beginning
and end of each segment to account for filter startup transients.
Contiguous, nonoverlapping windows were formed from the re-
maining three-second epochs.
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Fig. 2. Average coefficient of variation (plus or minus one standard error) for the time-domain features from ten intact and (separately) five amputee subjects.
Two recordings per channel per subject with the largest MAV EMG were used for this analysis. Lines show fit to power decay model: CoV[N] = af+v'N. Inset
tables show fit parameter “a” and fit rms error (RMSE). Scale of y-axis differs for normalized zero crossing rate. Sample size is 100 for intact subjects, 50 for
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Feature sets were extracted in each window within an
epoch. The time-domain feature set consisted of the three
featuresdescribed earlier: MAV, average signal length and
normalized zero-crossing rate. Hysteresis as described in [6]
was applied to normalized zero-crossing rate. Specifically, a
zero-crossing was not counted if the absolute difference be-
tween the two adjacent samples did not exceed a fixed threshold
value. The threshold value was set to approximately 1/6th the
average RMS value of the no-motion class of all subjects and
all electrodes. A frequency domain feature set consisted of
the estimated AR coefficients of a seventh order AR model
[10], [24]. A third (combined) feature set concatenated the
seven AR coefficients and MAV. It has been shown that linear
classification models give different weights to each feature, and
the MAV feature alone tends to have a large amount of motion
classification power.

2) Coefficient of Variation Analvsis: CoV values were com-
puted for each of the three time-domain EMG features. Be-
cause CoV is the ratio between standard deviation and the
mean of a feature, EMG signals with a small mean value can
lead to unstable CoV estimates (due to dividing two small
numbers in the presence of noise). Thus CoV was calcu-
lated using only two training trials per channel by manually
selecting, subject-by-subject for each channel, the two trials
with the largest MAV. All motion classes were considered
when searching for the maximum MAV. The sample stan-
dard deviation divided by the sample mean of the contiguous
feature values from a 3-s epoch formed a CoV wvalue. The
average CoV tfrom the two trials per channel served as the
CoV estimate for that channel. Data from the intact subjects
were studied separately from those of the amputee subjects.
CoV values that compared unwhitened to whitened signals
were computed for the following window durations: 25, 50,

75, 100, 150, 200, 250 and 300 ms. Once the CoV had been
determined as a function of sample length ¥, we fit these re-
sults to the power decay model: CoV[N] = afv/N.

We defined N as the number of samples corresponding to
the window duration. The number of samples (N} is always
greater than the equivalent number of independent samples
(Ngq) due to signal correlation. In practice, this correlation
cannot be entirely eliminated via whitening. A more direct
measure of whitening performance is to assess the statistical
bandwidth of the EMG before and after whitening. The same
3-s epochs as previously mentioned were used to do so. The
discrete-time power spectrum, Smm{k), of each epoch was
estimated using Welch’s method (window length of 150 ms,
Hamming window, 50% overlap), where & is the frequency
index. The statistical bandwidth was then estimated as [20]

o (sme)

B, = ®)

K-1
3 St ()
k=0

where K specifies the range of positive-valued frequencies and
Af = 6.67 Hz is the frequency increment. Values from the two
trials per channel were averaged.

3) Classification Analvsis: A linear discriminant classifier
was employed. Trials 1-4 of the two repetitions were used to
train the coefficients of the classifier and trials 58 to test clas-
sifier performance. The model was trained and tested for each
individual subject using all features of a feature set, and only
test results are reported. Eight window durations were used: 25,
50,75, 100, 150, 200, 250 and 300 ms. We repeated the analysis
after the EMG signal had been whitened.
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Two global processing variants were also considered. First,
the entire analysis was repeated using only seven preselected
motion classes (the classes denoted above as numbers 1-5, 8
and 11), and again using only nine preselected motion classes
(1-8 and 11), thereby giving three motion variations. Second,
the entire analysis was repeated using a preselected set of six
of the electrode channels (channels 1-6, spread around the arm
circumference), giving two channel variations.

IV. RESULTS

1) Coefficient of Variation Results: Fig. | shows a sample
3-s raw EMG epoch, the same epoch after whitening, and the
spectrum of each of these two signals (normalized to the total
power in each spectrum). The spectra show how whitening
equalizes the contributions across frequency, increasing the
statistical bandwidth of the signal. Fig. 2 shows all CoV results,
averaged across subjects, for the three time-domain features,
together with the standard errors. Lines within the figure show
the best fit power decay model and the inset tables list the fit
errors. The sample size for calculating the CoV and standard
error was 100 for intact subjects (10 subjects x 10 EMG
channels/subject) and 50 for amputees (5 subjects x 10 EMG
channels/subject). The CoV for each feature improved (i.c.,
decreased) with window length and due to whitening, although
the MAV and SL results were a poor fit to the power decay
model. The normalized zero crossing rate exhibited substan-
tially lower CoV values than the other two features and fit
well to the power decay model. CoV values for intact subjects
were consistently lower than those of amputee subjects. Paired
sign tests were conducted between whitened and unwhitened
features at each window duration and for each of the intact
and amputee data sets. All comparisons were significant for

TABLE I
AVERAGE £ STANDARD DEVIATION STATISTICAL BANDWIDTHS. SAMPLE
SIZE 1S 100 FOR INTACT SUBJECTS, 50 FOR AMPUTEE SUBIECTS

Condition
Subjects Unwhitened Whitened
Intact 2380+ 498 Hz 413.2+73.0Hz
Amputee 254.1 £ 53.4 Hz 423.1 £ 52.7 Hz

MAV (p < 10~*%) and for average signal length (p < 0.006
for intact subjects, p < 10~% for amputees). For normalized
zero crossing rate, whitened features only differed from un-
whitened features in intact subjects when the window length
was € 50 ms {p < 0.002), and in amputees when the window
length was < 200 ms (p < 0.008).

Table I shows the results of the statistical bandwidth com-
putations. Whitening increased the statistical bandwidth by
65%—75%, on average. Statistically, the ten statistical band-
width values per subject (one per electrode) were averaged.
These values for unwhitened versus whitened processing were
compared using a paired t-test. Results were significant for both
the intact and amputee subjects (p < 107%).

2) Classifications Results: Complete classification results
were produced for six classifier variants (11 or 9 or 7 motion
classes versus ten or six electrodes). Higher accuracies were
found when fewer motions and/or more electrode channels were
included in the classifier. Hence, our presentation of results will
be limited to the highest (7-motion, 10-channel) and lowest (11-
motion, 6-channel) performing classifiers—all four remaining
result variants fell between these two extremes. Fig. 3 shows
the average test accuracies for intact and amputee subjects, for
window lengths between 25 and 300 ms, for each feature set
with and without whitening. The combined AR-MAV feature
set gave the highest overall accuracy in each case, and the AR
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features the lowest. For all feature sets, accuracy was generally
improved by approximately 5% at shorter window durations
{< 100 ms} due to whitening. The improvement was smaller as
window duration increased further. Accuracy values for intact
subject were consistently higher than those of amputee sub-
jects. Because sample sizes were small (DoF = 9 for ten intact
subjects, DoF = 4 for five amputees) paired t-tests compared
unwhitened to whitened processors at each window duration.
For the AR-MAV feature set and intact subjects, differences
were significant for: the 7-motion, 10-channel case when the
window length was € 300 ms (p < 0.009), and the 11-mo-
tion, 6-channel case for all window lengths except 400 ms (p <
0.005). For the AR-MAV feature set and amputees, differences
were significant for: the 7-motion, 10-channel case when the
window length was < 50 ms {p < 0.006), and the 11-motion,
6-channel case when the window length was < 100 ms (p <
0.008). For the TD feature set, results were only significant
for intact subjects with the 7-motion, 10-channel case when the
window duration was < 300 ms (p < 0.01) and in amputee sub-
jects in the 11-motion, 6-channel case when the window dura-
tion was 25 ms (p = 0.004). For the AR feature set of amputees,
unwhitened versus whitened result differences were significant
in all cases when the window length was 25 ms (p < 0.006)
and in intact subjects with the 7-motion, 10-channel case when
the window duration was < 400 ms (p < 0.003).

V. DISCUSSION

We studied the use of EMG signal whitening in classifica-
tion algorithms for prosthesis control. Signal whitening methods
have existed for several years [12]-[15], having been shown in
the laboratory to improve EMG amplitude estimation [12] as
well as EMG-force estimation [25]. They had not previously
been applied to the EMG multifunction classification problem.
Whitening decorrelates the EMG signal in time—increasing its
statistical bandwidth—resulting in a larger number of effective
degrees of freedom in the data [20]. Essentially, whitening in-
creases the effective sample size (Wgq) of each individual data
epoch, making each epoch more representative of the entire
sequence.

Theoretically, the influence of epoch sample size on the MAV
feature had been previously studied via the SNR (inverse of the
CoV) [19]. The CoV decreases in a square root fashion with
sample size. We extended this analysis to the other two time-do-
main features. The CoV of the average signal length and nor-
malized zero crossing rate also each decrease in a square root
relationship with sample size. Our theoretic model for normal-
ized zero crossing rate did not include hysteresis. However, this
effect is generally considered small when an appropriate (small)
level of hysteresis is applied [6].

In practice, whitening increased statistical bandwidth by
65%—75% (Table I) and CoV was reduced for each of the three
time-domain features (Fig. 2). However, the MAV and average
signal length features produced CoV values that did not fit the
power decay model. Further, our CoV values were consistently
much higher than the model predictions, based on the statistical
bandwidth. For example, for whitened data from intact subjects
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Fig.4. Inverse of average SNR gives an estimate of average coefficient of vari-
ation, with and without whitening for MAV feature, from the data of St-Amant
et al. [28]. Lines show fit to power decay model CoV[N] = afv/A. Inset table
shows fit parameter “g” and fit rms error (RMSE).

(average bandwidth of 413 Hz from Table I) using a 300 ms
window, (1) and (2) can be used to compute an anticipated
CoVpay of 0.048. Our result of ~ 0.175 shown in Fig. 2
is well above this value. Visual inspection of the calibration
data from both intact and amputee subjects found substantial
modulations in EMG amplitude within each 3-s epoch. For the
MAV and average signal length features, such modulations
would greatly increase the standard deviation of the contiguous
features extracted from an epoch, resulting in the observed
CoV increase. Recall that intact subjects were not provided
force feedback: amputee subjects cannot be provided such
feedback. While such feedback could be provided to the intact
subjects, it is generally considered best to train classifiers using
the same conditions representative of their use—which would
exclude feedback. Consistent with these observations, consider
the SNR results of St-Amant et al. [26], which were produced
by intact subjects utilizing force feedback. The inverse of their
SNR calculation provides a CoV estimate. Fig. 4 plots the
inverse of their average SNR measurements versus window
length, as well as fits to our power decay model. The excellent
model fits the result. Although the St-Amant ef al. data are
from different muscles using a smaller inter-electrode distance,
they are supportive of the role of EMG amplitude modulation
in artificially increasing estimated CoV values. Conversely,
the zero crossing feature did tollow a power decay model as a
function of window length and had CoV values that followed
theoretic expectations. So long as the crossing signal does not
have a peak or trough near zero voltage, even a modest amount
of amplitude modulation will not alter proper identification of
the crossing. Hence, zero crossings would not be substantially
affected by amplitude modulations, as observed in our results.
In any case, the experimental CoV for whitened features was
consistently better (smaller) than that of unwhitened features
for MAV and average signal length, and better at shorter epoch
lengths for normalized zero crossing rate. Thus, the variability
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of the time-domain features was generally reduced by prepro-
cessing the signal with a whitening filter. Features with less vari-
ability would be expected to lead to more accurate classification.
However, classification analysis does not solely rely on the CoV
of the features. Individual features may be weighted differently
in the linear classifier, giving a larger impact to some features
than others; and small changes in the classification model space
can have varied influence on classification accuracy.

The classification accuracy results consistently showed
an improvement due to whitening, when the shorter epoch
durations were considered. The shortest epoch durations
of 25-100 ms generally experienced the greatest improve-
ment—an approximate 4%—5% increase in accuracy. It is not
surprising that the improvement diminishes with increased
epoch length, since all accuracies are improving, but cannot
exceed 100%. Larger sample sizes might be useful in demon-
strating significant improvements due to whitening at these
longer epoch lengths. Consistent with prior research [7], [9].
our results also found that higher accuracies resulted when
fewer motions and/or more clectrode channels were included
in the classifier.

Because the performance improvements due to whitening
are modest, its inclusion in a prosthesis controller should be
weighed versus its costs. Disadvantages/challenges of using
whitening include its substantial added computation and
memory requirements, the need to collect calibration data, and
possible robustness issues in the presence of high frequency
noise. Advantages include that whitening is implemented as a
stand-alone preprocessing step whose output can be fed into all
further EMG processing steps, accuracy improvements at the
shorter epoch durations may facilitate the use of shorter epochs
thereby reducing prosthesis response time, and that modern
signal processing hardware is increasingly capable of the
required processing demands. A logical next step to all of this
work is to evaluate whitening within a myoelectric-controlled
prosthesis.

We considered only simple feature vectors and classifiers
in this analysis. Many more complex features/classifiers have
appeared in the literature [7], [8], although their classification
performance is not markedly distinct from those reported
herein. Nonetheless, one would expect that EMG signal
whitening would similarly improve the performance of those
classifiers. Note that the data available to this research was
collected from EMG electrodes with bandwidth out to 350—400
Hz. This bandwidth is common. However, whitened signals
have been shown to take advantage of a wider bandwidth (out
to nearly 2000 Hz in some cases [27], [28]), with additional
performance improvement provided. Future work may wish to
utilize a wider band EMG data acquisition system. In addition,
we calibrated the whitening filters from available functional
contractions that contained visible amplitude modulations. It
may be better to collect dedicated calibration contractions at
0% and 50% MVC [12], [27].

In conclusion, we have shown that whitening the EMG signal
leads to time-domain features with an increased statistical band-
width and concomitantly smaller CoV, leading to a consistent in-
crease in classification accuracy in both intact and amputee sub-

jects in a laboratory evaluation. Whitening added approximately
five percentage points to classification accuracy at the shortest
epoch durations {(~25 — 100 ms). Improvement in classifica-
tion accuracy at these shortest epoch durations is important, as
it may allow prosthesis control systems to use shorter epochs,
thereby improving response time.
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Electromyogram Bandwidth Requirements
When the Signal is Whitened

MeeraDasog,KishorKoirala, Pu Liu, andEdward A. Clancy, Senior Member, IEEE

Abstract—W hitening the surface electromyogram (EMG)
improves EMG amplitude (EMGo) and EMG-torque estimation.
Laboratory studies utilizing contraction levels up to maximum
voluntary contraction (MVC) show that whitening is useful over a
frequency band extending to 1000-2000 Hz. However, EMG
electrode systems with such wide bandwidth are uncommon,
particularly in real-time applications; and these contraction levels
are also not common. Thus, we studied the influence of the
frequency band over which whitening was performed vs. the
resulting performance. Low-level, torque-varying contractions
(average torque level of 18.5% flexion MVC) of the elbow were
contrasted with medium-level 50% MVC constant-torque
contractions. For each, the maximum whitening bandwidth was
varied between 30-2000 Hz. The low-level contractions (which
incorporate the contraction range of most daily tasks) showed that
performance utilizing frequencies out to 400-500 Hz was not
statistically different (p<0.01) than results out to the full available
frequency (2000 Hgz). For the medium-level (50% MVC)
contractions, frequencies out to 800900 Hz were statistically
equivalent to the full bandwidth. These results suggest that
conventional electrodes with a typical passband of ~500 Hz are
appropriate when whitening data from contraction levels typically
experienced in many applications. Wider bandwidths may be
advantageous for strenuous activities.

Index Terms— Biological system modeling, biomedical signal
processing, electromyography, EMG amplitude estimation, EMG
signal processing, whitening.

1. INTRODUCTION

HITENING of the electromyogram (EMG) signal has

been performed for several decades, dating back at least
to the work of Kaiser and Petersen in 1974 [1]. Whitening
temporally decorrelates EMG samples, reducing the variance of
parameters that are extracted from it [2]-[11] These
parameters are used in various applications, including:
myoelectric prosthesis control [12], ergonomic assessment [13],
[14], clinical biomechanics [15], [16], motor control research
[17], control of powered exoskeletons [18]-[22] and the
actuation of powered rehabilitation devices [23]-[25] In
laboratory studies, whitened EMG processors have been shown
to improve the signal to noise ratio (SNR) by 32-65% in the
assessment of constant-torque EMG [2], [3], [8], [9]. reduce
classification errors by 25-50% in myoelectric multifunction

Asterisk indicates corresponding author.

M. Dasog, K. Koirala, P. Liu and *E. A. Clancy are with Worcester
Polytechnic Institute (WPI), Worcester, MA 01609 USA (e-mail:
mgdasog@wpi.edu; kkoirala@wpi.edu; puliv@wpi.edu; ted@wpi.edu).

selection [4], [11] and reduce EMG-torque estimation errors by
12-26% [3], [26]-30].

Referring to Fig. 1, the EMG spectrum peaks (mode
frequency) at ~100-150 Hz, then decays as the frequency
increases. Accordingly, whitening filters exhibit their minimum
gain in the frequency range of 100-150 Hz, with an increase in
gain as the frequency increases [8]. At different effort levels,
the EMG spectrum maintains the same general shape, but is
amplitude modulated [3]. In contrast, EMG background noise
is considered constant in spectral shape and amplitude. Hence,
Fig. 1 depicts that the relative SNRas a function of frequency
varies with the effort level; higher effort levels maintain a
higher SNR. Whitening should be limited to those frequencies
at which there is significantly more signal power than noise
power. At high effort levels, there exists significantly more
signal thannoise out to higher frequencies. At low effort levels,
there exists significantly more signal than noise out to a much
lower frequency.

To resolve these contrasting whitening bandwidth needs,
Kaiser and Peterson [1] implemented whitening with an
adaptive analog filter. Their filter was comprised of a
broadband fixed whitening filter, cascaded with an adaptive
lowpass filter. At high effort levels, frequencies out to at least
1000 Hz were whitened; while at low effort levels, whitening
was only applied at frequencies out to the EMG mode
frequency. Filter shapes were a function of the analog
components. A similar adaptive concept has since been
implemented in discrete-time [31], [32]. This system cascades a
fixed broadband digital whitening filter with an adaptive
Wiener filter/noise canceller. The Wiener filter assumes a
lowpass characteristic. These filters are tuned to the spectrum
of each subject via two calibration contractions—one at rest (to
estimate the noise spectrum) and another at a modest
contraction effort, typically 50% maximum voluntary
contraction (MVC). At 100% MVC, these filters whiten out to
2048 Hz (the Nyquist frequency).

In each of the above adaptive filtering methods, the EMG
acquisition system incorporated a passbandfrom just above DC
out to 1000-2000 Hz Such a wide passband is not
characteristic of many commercially-available electrode
systems (particularly when also considering the real-time
computational requirements of some applications) and, thus,
were custom-built by the respective mvestigators. Many
commercial passbands for surface EMG systems only extend to
~500-600 Hz, limited either by the analog electrodes or by
sampling rates/processor computation power (e.g., the standard
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Delsys Inc. Bagnoli Desktop EMG Systems are limited by their
acquisition system to a maximum frequency of 450 Hz). This
bandwidth limit is consistent with the frequency band
containing most of the EMG signal power (see Fig. 1 and [3]).
While the wider passbands appear usefulwhen whitening at
high effort contractions, the vast majority of contraction levels
in most EMG applications are relatively low (e.g., [33], [34]).
Thus, the benefit of the custom passband and increased
computation/throughput is unclear in these applications,
particularly weighed vs. their cost. In fact, the need for custom
wide bandwidth electrode systems can be an impediment to
adoption of whitening into these applications.

Thus, this project investigated the role of whitening
bandwidth, contrasting low- and medium-intensity contractions
from the same data set. The low-intensity contractions
consisted of constant-posture, torque-varying contractions of
the elbow, limited in effort over the range from 50% MVC
extension to 50% MVC flexion. The p+c instantaneous
contraction level was 18.5 = 11.1% MVC flexion (MVCy).
EMG was related to joint torque, with the RMS error between
actual torque and EMG-estimated torque serving as our
performance  measure.  Medium-intensity  contractions
consisted of constant-posture, constant-torque contractions at
50% MVC. In this case, the more customary SNR was used as
the performance measure. In each case, we characterized
performance as a function of the whitening bandwidth.
Preliminary results of this work appeared in [35].

II. METHODS

A. Experimental Data and Experimental Methods

Experimental data from 54 subjects (30 male, 24 female; aged
37.6£16.5 years) from three prior experimental studies were
analyzed. This study was approved and supervised by the WPI
IRB. All subjects had previously provided written informed
consent. The three studies had nearly identical experimental
apparatus and protocols (fully described in [31], [36]). Subjects
were seated and secured with their shoulder abducted 90°,
forearm oriented in a parasaggital plane, wrist fully supinated
and elbow flexed 90°. Their right wrist was tightly cuffed to a
load cell (Biodex dynamometer;, or Vishay Tedea-Huntleigh
Model 1042, 75 kg capacity) at the styloid process. The skin
surface above the muscles under mvestigation was scrubbed
with an alcohol wipe. In one study, a small bead of electrode gel
was massaged into the skin. Four bipolar electrode-amplifiers
were placed transversely across each of the biceps and triceps
muscles, midway between the elbow and the midpoint of the
upper arm, centered on the muscle midline. Each
electrode-amplifier had a pair of 4-mm (or 8-mm) diameter,
stainless steel, hemispherical contacts separated by 10 mm
edge-to-edge, oriented along the muscle’s long axis. The
distance between adjacent electrode-amplifiers was ~1.75 em.
A single ground electrode was gelled and secured above the
acromion process or on the upper arm. Custom electronics
amplified each EMG signal (CMRR of approximately 90 dB at
60 Hz) followed by bandpass filtering (either a second-order,
10-2000 Hz bandpass filter; or 8th-order highpass at 15 Hz

followed by a 4th-order lowpass at 1800 Hz). All signals were
sampled at 4096 Hz with 16-bit resolution.

After a warm-up period, MVC torque was measured in both
elbow extension and flexion. Two repetitions of five-second
duration, constant-posture constant-torque contractions at 50%
MVC extension, 50% MVC flexion and rest were recorded. A
real-time feedback signal consisting of either the load cell
voltage or a four-channel whitened EMGo processor (formed
by subtracting the extensor EMGo from the flexor EMGo [36])
was provided on a computer screen. Thirty-second duration,
constant-posture torque-varying contraction trials were then
recorded. The subjects used the feedback signal to track a
computer-generated target that moved acrossthe screen as a
band-limited (1 Hz) uniform random process, spanning 50%
MVC extension to 50% MVC flexion. Three trials were
collected. At least three minutes of rest wereprovided between
contractions to prevent cumulative fatigue.

B. Methods of Arnalysis

All analysis was performed offline in MATLAB. For all
EMG-torque analyses, afour-channel, whitened (but bandwidth
limited) EMG amplitude (EMGo—the time-varying standard
deviation of the EMG signal) processor was used, one
processor for the biceps muscles and separately one for the
triceps muscles. For a processor, each of the four EMG
channels was highpass filtered (15 Hz cutoff, causal, Sth-order,
Butterworth filter) and notch filtered at the power-line and each
harmonic frequency (2nd-order IIR filter, notch bandwidth <
1.5 Hz). Each channel wasthenadaptively whitened across all
frequencies (causal algorithm of Clancy and colleagues [31],
[32], [37]). Whitening filters were calibrated from one of the
constant-torque contraction sets, comprised of a 50% MVC
extension, 50% MVC flexion and a rest recording. To restrict
bandwidth, the (full-band) whitened signal was lowpass filtered
using a causal, 9th-order, Chebyshev Type I filter whose cutoff
frequency was selectable. The cutoff frequencies investigated
were: 30-200 Hz in increments of 10 Hz and 300-2000 Hz in
increments of 100 Hz After bandwidth restriction, each
channel was first-order demodulated (i.e., absolute value) and
the four channels were ensemble averaged.

The torque-varying contractions served as the low-intensity
data set. For these data, each EMGo signal was formed by
decimating the ensemble average by a factor of 100 (effective
lowpass filter prior to downsampling of 16.4 Hz, causal,
9th-order, ChebyshevType I) to a sampling rate of 40.96 Hz.
Thetorque signal was similarly decimated to 40.96 Hz, yielding
EMGo (input) data with bandwidth approximately ten times
that of the (output) torque signal [38]. Extension and flexion
EMGos were related to joint torque via the parametric model
[29]:

Thnl=3Se, oilm-al 33 footlm-g) D

d=14=0 d=1g=0
whereT is the decimated torque signal at samplesm, oz is the
extension EMGa, oy 1s the flexion EMGo, e, are extension fit
coefficients and f; , are flexion fit coefficients. Integer O sets
the number of signal lags. When integer D=1, the model is
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linear. When integer D=2, a nonlinear dynamic model is
facilitated. Model parameters were fit using the pseudo-inverse
technique to regularize a least squares minimization [29], [39].
The tolerance (7ol) for removal of singular values was the ratio
of the largest singular value to each other singular value in the
design matrix. Based on a prior model optimization study
utilizing non-causal processing [29], two optimal model forms
(30th-order linear,70{=0.0056; 15th-order nonlinear, 70/{=0.01)
were implemented. Models were calibrated (trained) from two
of the torque-varying trials [29] and tested on the third trial per
subject. This set of three trials utilized the same real-time
feedback signal. The RMS error between the measured torque
from the load cell and the EMG-estimated torque on the test
trial from each subject was expressed as a fraction of twice the
torque at 50% MVC flexion (MVCg) of each subject. The first 2
s of signal were omitted from the RMS error computation to
account for filter startup transients. Error was evaluated as a
function of the whitening cutoff frequency, with full bandwidth
results (2000 Hz) serving as the reference.

The second set of 50% MVCs served as the
medium-intensity data set.  Extension electrodes from
extension contractions and flexion electrodes from flexion
contractions were analyzed separately. Initial EMG processing
for each individual channel, through the demodulation stage,
was the same as above. After demodulation, EMGo was formed
for each individual channel by performing a moving average,
using a 125 ms smoothing window. For constant-torque
contractions, it is customary to compare performance via the
EMG SNR [40]. Thus, the SNR of each EMGo was computed
as the sample mean divided by the sample standard deviation.
The first 250 ms of the signal was ignored, to account for filter
startup transients. The SNR values from the four channels on
one muscle were averaged and this value reported. SNR was
evaluated as a function of the whitening cutoff frequency. All
statistical comparisons were between pairs of data values and
were computed using the paired sign test [41].

III. RESULTS

Fig. 2 shows sample EMG waveformsand their power
spectral density estimates from both the low-intensity tracking
trials and the medium-intensity 50% MVC trials, contrasting
unwhitened vs. whitened processing. While the effects of
whitening can be subtle to visualize in the time domain (top
plots) at this time-scale, the spectra (bottom plots) of the
whitened signals are clearly flatter, as desired. Note that the
spectra of the tracking trial exhibit noticeabledownward spikes
due to power-line notch filtering Fig. 3 shows typical processed
time-series plots—torque estimates for a low-intensity tracking
trial and EMGo estimates for a medium-intensity 50% MVC
trial. The plots contrast full whitening bandwidth (cutoff
frequency of 2000 Hz) vsgreatly restricted whitening
bandwidth (cutoff frequency of 100 Hz). As would be expected,
poorer performance was found at the greatly restricted
whitening bandwidth.

Fig.dshows u+c error results from 54 subjects vs. the
whitening cutoff frequency for the two parametric models
(linear and nonlinear), corresponding to the low-intensity

contractions. Lower errors correspond to superior performance.
For both models, the error remained essentially flat for cutoff
frequencies extending from 2000 Hz down to ~400-500 Hz.
The error rose slowly thereafter as the cutoff frequency was
reduced towards zero, until a rapid rise occurred for frequencies
below approximately 50 Hz. For the linear model, the minimum
error of 6.05 + 2.24% MVCpoccurred at a cutoff frequency of
700Hz, but this error did not differ significantly from the error
at the maximum cutoff frequency of 2000 Hz (p=0.77) More
importantly, however, was to test when error results first
significantly departed from the minimum error at the 700 Hz
cutoff frequency. Thus, we applied a backward progressive
paired sign test. Our backward progressive technique began
with a paired sign test using data from the cutoff frequency of
the error minimum and one backward frequency increment (i.e.,
700 Hz and 600 Hz). If this result was non-significant (p=>0.01),
we widened the frequency span backward to 700 Hz and 500
Hz and recomputed the paired sign test. The frequency span
was progressively increased until a significant difference
(p<0.01) was achieved. That corresponding cutoff frequency
indicated when the increasing error became statistically
significant. This statistically significant change occurred at 400
Hz. For the nonlinear model, the minimum error of 5.39+ 2.20%
MVCroccurred at a cutoff frequency of 900 Hz, but this error
did not differ significantly from the error at the maximum
cutoff frequency of 2000 Hz (p=0.93). A backward progressive
paired sign test found that the error first significantly deviated
from the location of the minimum error (900 Hz) at a cutoff
frequency of 500 Hz Lastly, we contrasted the linear vs.
nonlinear model performances, pairing data from the minimum
error location of each, respectively. The nonlinear model had a
statistically significant lower error (p=<107"). Note that these
lowest average error values, as well as the relative errors found
when contrasting the linear to nonlinear models, are consistent
with past analysis ofa subset of these data [29].

Fig. Sshows ptoc SNR results from 54 subjects vs. the
whitening cutoff frequency for the 50% MVC constant-torque
contractions, corresponding to the medium-intensity
contractions. Higher SNRs correspond to  superior
performance For both models, the error remained somewhat
flat for cutoff frequencies extending from 2000 Hz down to
~800-900 Hz. The SNR decayed progressively thereafter as the
cutoff frequency was reduced towards zero. For extension
contractions, the maximum SNR of 14.74 £ 2.75 occurred at a
cutoff frequency of 1100 Hz, but this error did not differ
significantly from the error at 2000 Hz (p=0.25). A backward
progressive paired sign test found that the error first
significantly deviated from the location of the maximum SNR
(1100 Hz) at a cutoff frequency of 800 Hz For flexion
contractions, the maximum SNR of 14 81 + 4 98 occurred at a
cutoff frequency of 1300 Hz, but this error did not differ
significantly from the error at 2000 Hz (p=0.34). A backward
progressive paired sign test found that the error first
significantly deviated from the location of the maximum SNR
(1300 Hz) at a cutoff frequency of 900 Hz Lastly, we
contrasted the extension vs. flexion performances, pairing data
from the maximum SNR location of each, respectively. The

-101-



Electromyogram Whitening Bandwidth Requirements, TNSRE-2013-00111 6

results did not differ (p=0.55) Note that these highest average
SNR results are consistent with past results in the literature [8].

IV. DiIscussioN

Signal whitening has been used in laboratory settingsto
reduce the variability of parameters extracted from the EMG
signal since at least the work of Kaiser and Petersen in 1974 [1].
Their work implemented a form of adaptive whitening (based
on effort level) in an analog filter. Harba and Lynn [4]
implemented whitening off-line in  software;continuing
advances have been reported in the literature over the
intervening years(see [40], [42] for reviews). Unfortunately,
few of these advances seem to have transitioned far outside of
those research groups who have developed the techmques, and
none have seemed to transition to commercial devices. One
issue has been the historically limited amount of computation
performed onmicroprocessor-controlled commercial devices in
prosthetics, orthotics and related areas [43], [44], although
manufacturer experience and increases in MICTOProcessor
performance over time are likely mitigating this issue. Another
issue is the complexity of whitening algorithms, particularly
time-adaptive processing to attenuate noise [31]. To combat the
challenge in algorithm complexity, Potvin and Brown [27]
implemented whitening with a fixed, low-order FIR highpass
filter. Of interest, their system sampled EMG at 1024 Hz, hence
whitening only occurred out to a frequency of 512 Hz (the
Nyquist frequency). Their implementation was inherently
bandwidth limited.

The issue investigated in this paper was that of the bandwidth
(maximum frequency) required when whitening. Wide
bandwidths, out to 1000-2000 Hz have been successfully
implemented in the laboratory [1], [31]. But, these wide
bandwidths can require the development of custom wideband
electrodes and necessitate more powerful
microprocessors—factors which can impede the transition of
whitening into real-time commercial devices. The literature
suggested that the primary advantage of the wider bandwidths
1s at high contraction levels; such levels have been commonly
tested in laboratory studies. However, most routine tasks and
most applications of EMG processing primarily utilize the low
range of muscle contraction force.

Our results in this study from the low-level contractions (Fig.
4) suggest that conventional electrodes with passbandsout to
400-500 Hz and an inter-electrode spacing of 10 mm
edge-to-edge capture all of the relevant EMG-torque
information in our data, at least if EMGo is the parameter of
interest. This electrode passband and spacing is consistent with
many common commercial electrode systems. Joint torque
estimation is a common usage of EMG/EMGo. We found that a
cutoff frequency as low as 400-500 Hz was the first to exhibit
torque estimation errors that were significantly different from
that of the full-band signal (at least as defined using a
significance level of p<0.01). Although we termed our
torque-varying contractions as “low-level,” they span 50%
MVC extension to 50% MVC flexion, with approximately
equal use of each contraction level in between (uniform
distribution). The average instantaneous contraction level was

18.5%MVCy. Hence, these contractions are representative of a
wide class of daily muscle usages and, thus, EMG applications.
To contrast these results, we compared to
medium-level,static 50% MVC contractions (Fig. 5). Since
these contractions were constant-torque and non-fatiguing,
SNR was used as the performance measure. This measure
assumes that EMGG6 is unchanging during the trial, but takes
advantage of not having to assume/estimate a relationship
between EMGo and joint torque. At this higher contraction
level, somewhat wider bandwidth proved advantageous, out to
approximately 800-900 Hz. SNRs at cutoff frequencies of
800-900 Hz were first to differ statistically from the highest
SNRs. This result is consistent with the data shown in Fig. 1 in
which recorded EMG 1s closely represented as the sum of an
amplitude modulated “true” EMG (i.e., noise-free) and
background noise. As the EMG signal strength is increased, the
frequency region over which there exists more signal than noise
also increases. These regions can be successfully whitened.
Many commercial electrodes systems may not facilitate this
full bandwidth, thus reducing (but not eliminating) the
mprovement due to whitening. Of course, when the EMG
signal is not whitened, this wider bandwidth is not necessary.

Hence, the required bandwidth for whitening seems largely
related to the noise power relative to the true EMG power, as a
function of frequency. Logically, increased bandwidth could be
utilized if noise power can be reduced. However, noise power
due to the acquisition electronics is typically only a few pVs
RMS [45] or about 1% of the RMS level at MVC [31].
Additional noise sources, including electrode-skin interface
noise, only increase the total RMS noise to approximately 3%
of the RMS level at MVC [31]. Hence, large reductions in noise
are unlikely, at least for conventional surface EMG with
standard skin site preparation.

Our inter-electrode spacing of 10 mm edge-to-edge is typical
of many commercial electrodes. However, smaller electrode
spacing leads to increased statistical bandwidth of the acquired
EMG signal [3], which might then permit whitening out to
higher frequencies. Additionally, other factors can influence the
bandwidth of the EMG signal. For example, localized muscle
fatigue tends to compress the spectrum towards lower
frequencies [46]. The resulting reduced bandwidth would
likely reduce the range over which whitening should be applied.
Finally, other contraction profiles/dynamicsmight also
influence the average contraction level or the EMG spectrum
[47]—=each of which influences the whitening bandwidth.

Although we contrasted results from two different
contraction levels, the actual comparison measure varied
(EMG-torque error and SNR). However, each measure is
applicable to the contraction type studied. For constant-torque
contractions, use of the SNR avoids the need for a model
relating EMGo to torque. Since torque was largely held
constant during these contractions (no dynamics or even any
change in torque level occurred), a model serves little purpose
other than to set a system gain. SNR 1s gain mvariant, thereby
avoiding the issue altogether. For dynamic (torque-varying)
trials, a dynamic EMGo-torque model is required. In either case,
we studied relative changes in performance, which should be
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more robust to variations in the performance measure. Other
factors that might influence the interpretation of these results
include the use of altemative electrode shapes and
inter-electrode distances, and the extraction of other features
from the EMG signal (e.g., zero crossing rate and average
signal length).In particular, whitening has been shown to
reduce classification errors by 25-50% in myoelectric
multifunction selection when utilizing EMGo, zero crossing
rate and average signal length [4], [11], but the role of
whitening bandwidth was not investigated. Since most
EMG-based multifunction classification utilizes lower-effort
contractions, we would hypothesize that the bandwidth
requirement of 400-500 Hz provided by our lower-level
contractions would be applicable. However, direct evaluation
of this hypothesis in the future seems appropriate.

In this off-line study, we limited whitening bandwidth via the
use of a lowpass filter inserted after EMG had been whitened to
the full Nyquist frequency (2048 Hz). This method was
convenient for off-line study of performance vs. whitening
bandwidth, but would clearly be inefficient in a real-time
system. In practice, anti-aliasing lowpass filters would be
applied at the desired whitening cutoff frequency and the signal
appropriately sampled at a rate that is a least twice this
frequency Presumably, this rate is well below the rate of 4096
Hzused in this study. Whitening would then be performed in its
normal manner, over the full Nyquist frequency, without
further bandwidth restriction.

Anocther advantage of reduced-bandwidth whitening is
related to power line interference. At high frequencies (e.g.,
above 500 Hz), power line interference can easily be larger in
magnitude than the EMG signal power. Since whitening
accentuates the higher frequency range via high gains, our own
whitening algorithms now apply notch filters at the power line
frequency and eachof its harmonics. For off-line analysis
utilizing double precision floating-point arithmetic, very sharp
filters are readily achieved. However, many real-time
applications are limited to fixed-point arithmetic, in which such
narrow notch filters present a challenge. Reduced-bandwidth
whitening may eliminate this problem altogether by simply
avoiding these troublesome frequency bands.

In  summary, we concludethat the torque-varying
contractions studied in these experiments only require a
frequency bandwidth of 400-500 Hz when whiteming is applied,
at least when EMGo-torque is studied. These contractions
uniformly occupied the torque range from 50% MVC extension
to 50% MVC flexion (average instantaneous contraction level
of 18.5% MVCp)—thus they include contraction levels at or
above typical muscular exertions. Medium-level contractions
(e.g., constant-torque 50% MVC contractions) benefit from a
bandwidth out to approximately 800-900 Hz. Contractions at
even higher levels would presumably benefit from an even
wider frequency band.
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Fig. 1. Power spectra of EMG demonstrating amplitude modulated
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behavior. All spectra are from constant-posture contractions (see
Methods). Top two plots show EMG power spectra at different
maximum voluntary contraction (MVC) levels (100% and 50%) during
constant-torque contractions Plot labeled “Dynamic” is from
force-varying contractions that averaged 18.5% MVC. Bottom plot is
EMG during rest, representing the background noise level. All spectra
computed using Welch’s method. Subject LB0S.
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Fig. 2. EMG signals and their spectra, contrasting unwhitened vs.
whitened processing. Top left shows unwhite and corresponding
whitened EMG signal during a 30 s tracking trial, superimposed on the
same axis. Bottom left shows their spectra, each normalized to their
respective total signal power. Plots at right show equivalent data from a
5-s duration 50% MVC trial. All spectra computed using Welch’s
method. Single-channel biceps EMG data from subject LAOS.
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Fig. 3.Typical (low-intensity) torque tracking and (medium-intensity)
EMGo estimates at filll bandwidth (2000 Hz cutoff) and restricted
bandwidth (100 Hz cutoff). Top shows 10-s portion of the torque
estimates from one trial, along with the actual torque (solid line). Trial
errors in %MV Cr are listed. Bottom shows normalized EMGa estimates,
along with the ideal EMGo(solid line). SNRs are listed. Note the EMGo
startup transient during the first 250 ms. Subject wx11 (single-channel
biceps data used for 50% MVCs).
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Fig. 4. Low-intensity torque-varying contraction results. Average plus
(or minus) one standard deviation error (expressed in percent maximum
voluntary flexion contraction—2%MV Cg) from 54 subjects vs. the
whitening cutoff frequency for the linear and non-linear models, each
using four EMG channels. Lower error corresponds to better

performance.
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Fig. 5. Medium-intensity contraction results. Average plus (or minus)
one standard deviation signal to noise ratio (SNR) from 54 subjects vs.
the whitening cutoff frequency for the extension and flexion 50%

maximum veoluntary contractions. All results are single-channel EMG.

Higher SNR corresponds to better performance.
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Using the Electromyogram to Anticipate Torques
About the Elbow

Kishor Koirala, Meera Dasog, Pu Liu, and Edward A. Clancy, Senior Member, [EEE

Abstract—Processed (i.c., rectified, smoothed) clectromyogram
(EMG) activity from skeletal muscles precedes mechanical tension
by 50-100 ms. This property can be exploited to anticipate muscle
mechanical activity. Thus, we investigated the ability of surface
EMGC to estimate joint torque at future times, up to 750 ms. EMG
recorded from the biceps and triceps muscles of 54 subjects
during constant-posture, force-varying coniraclions was related
to elbow torque. lligher-order FIR niodels, combined with
advanced EMG processing (whitening; four EMG channels per
muscle), provided a nearly identical minimum error of 5.48 + 2.21%
MVCy (flexion maximum voluntary contraction) over the time
advance range of 0—60 ms. Error grew for larger time advances.
The more common method of filtering EMGC amplitude with a
Butterworth filter (2nd-order, 1.5 Hz cutoff frequency) produced
a statistically inferior (p<10"’) minimum torque error of 6.90 =
2.39% MVCyg, with an error nadir at a time advance of 60 ms,
Error was progressively poorer at all other time advances.
Lower-order FIR models mimicked the poorer performance of
the Butterworth models. The more advanced models provide
lower estimation error, require wuo selection of an
electromechanical delay term and maintain their lowest crror
over 4 snbstantial range of advance times.

Index Terms—Biological systemh modeling, biomedical signal
processing, electromyography, EMG amplitude estimation, EMG
signal processing, EMG-force.

[ INTRODUCTION

T has long been known that electromyogram (EMG) activity

from skeletal muscles precedes the associated mechanical
activity [1]. This electromechamical delay may vary with the
condition, but is typically measured as a pure delay between
peak surface EMG amplitude (e.g., rectitied, smoothed EMG)
and peak mechamical activity of approximately 50-100ms [1]-
[3]. In many biomechanical models that relate EMG to
force/joint torque, it is common to mclude a model term that
accounts for this pure delay [4] [7]. Such models can also
account additionally for frequency-dependent dslay via a
dynamical system model.

A related use of electromechanical delay is to predict muscle
forces/joint torques at future times from EMG. Applications
that do, or could, benefit from this property include:
anticipating head motion in virtual environments to reduce

Asterisk ndicates comvesponding anthor.,

K. Koirala, M. Dasog. P. Liun and =E. A. Clancy are with Worcester
Polytechnic  Institute  (WPD), Worcester. MA 01602 USA  (e-mail:
kkoirala@wpi.edu; mgdasog@mvpi edu; pulingwpi.edu; tedi@wpi.edoy.

scene vs. sensory alignment errors [8], optimizing controller
delay 1n myoclectric prostheses [9], user control of excskeleton
suits [10]-[12] and the actuation of rehabilitation devices from
inpaired linbs [13]-[18]. In many of these cases, eslinating
forces 30-100 ms intc the future permits better temporal
matching of user motor intent in the presence of computational
delays and inherent delays within mechanical actuators.

Since applications  might  benefit from
“anticipatory”  EMG-lorque  estimates, we  performed  a
systematic evaluation of the errors associated with doing so
over a broad range of times. No such detailed analysis had been
previously identified i the literature. In addition, more
advanced EMG-torque models can now incorporate multiple
EMG channels per muscle, EMG signal whitening, as well as
advanced model identification that is subject-specific [7], [19]-

22]. These techniques have been shown to reduce EMG-torque
errors and might influence the realization of slectromechanical
delay within EMG-torque models. Thus, we have investigated
the performance of these advanced EMG-torque algorithims
when estimating as much as 750 ms into the future. Preliminary
results of this work were presented i [23].

numerous

T METHODS

A. Experimental Data and Methods

Experimental data from 34 subjects (30 male, 21 female; aged
37.6 £ 16.5 vears) from three prior experimental studies were
utilized. This reanalysis study was approved and supervised by
the WPT IRB. All subjects had previously provided written
informed consent. The three studies had nearly identical
experimental apparatus and protocols with respect to the data
reanalyzed (fully described mn [19], [24]). As shown in Fig. 1,
subjects were seated and secured with their shoulder abducted
90°, forearm oriented in a parasaggital plane, wrist fully
supinated and elbow flexed 90°. Their right wrist was rigidly
cuffed to a load cell (Biodex dynamometer;, or Vishay
Tedea-Huntleigh Model 1042, 75 kg capacity) at the styloid
process. Skin above the muscles under nvestigation was
scrubbed with an alcohol wipe. In one study, a small bead of
electrode gel was also massaged mto the skin. Four bipolar
electrode-amplifiers were placed transversely across each of
the biceps and triceps muscles, midway between the elbow and
the midpoint of the upper arm, centered on the muscle midline.
Each electrode-amplifier had a pair of 4-mm (or 8-mm)
diameter, stainless steel, hemispherical contacts separated by
10 mm (edge to edge), oriented along the muscle’s long axis.
The distance between adjacent electrode-amplifiers was ~1.75
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cm. A single growund electrode was gelled and secured above the
acromion process or on the upper arm. Custom electronics
amplified each EMG signal (CMRR of approximately 90 dB at
60 Hz) followed by bandpass filtermg (erther a 2nd-order, 10—
2000 Hz bandpass filter; or &th-order highpass at 15 Ilz
[ollowed by a 4th-order lowpass at 1800 Hz). All signals were
sampled at 4096 Hz with 16-bit resolution.

After a warm-up period, maximum voluntarv contraction
(MVC) torque was measured 1in both elbow cxtension and
flexion. Subjects began at rest, then mcreased contraction
gradually over 2-3 s until their maximurm was aclieved. Verbal
encouragement was provided while the maximum was
maintained for 2 3 s. The average of the maximum strain gauge
voltage level from two such MVC trials was used as the voltage
MV Next, duration,
constanlt-posture  constani-force  contractions at 50% MVC
extension, 50% MVC flexion and rest were recorded for
calibration of advanced EMG amplitude (EMGo) estimation
algonithms |19]. [25]. Then. a real-time fecdback signal
consisting of either the load cell voltage or a four-channel
whitened EMGo processor (formed by subtracting the extenscr
EMGo from the flexor EMGo) was provided on a computer
screen. Thirty-second duration, constant-posture force-varying
contraction trials were then recorded. The subjects used the
feedback signal to track a computer-generated target that
moved on the screen in the pattemn of a band-limited (1 Hz)
uniform random process, spaming 50% MVC extension to 50%
MVC flexion. Three trials were collected. At least three
minutes of rest was provided between contractions to prevent
cumulative faligue

corresponding  fo five-second

B. Methods of Analysis
All analysis was performed offline in MATLAB. Two

distimet  EMGo  processors  were  used:  single-channel
unwhitened (using a centrally located electrode) and
four-channel wlutened [19]. [25]. [26]. Each processor used a
15 Hz highpass filter (causal, Sth-order, Butterworth filter),
notch filters at the power-line and each harmonic frequency
(2nd-order IIR [iller, notch bandwidth < 1.5 Hz), and {irst-order
(1.e., absolute value) demodulation. The four-channel processor
whitened each channel prior to demodulation (cavsal algorithm
of Clancy and colleagues [19]. [25]. |26]) and then averaged the
four channels after demodulation. Finally, the EMGo signal
was formed by decimating this signal by a factor of 100 to a
sampling rate of 40.96 Hz. To do so, the signal was decimated
twice by a factor of ten (effective lowpass filter prior to
downsamplig of 16.4 Hz, causal, Sth-order, Chebyshev Type
). The torque signal was similarly decimated, yielding an EMG
(input) data set with bandwidth approximately ten times that of
the torque signal (output) being estimated [27]. Note that
additional lowpass filtering of EMGo (typically below 1-2 Hz,
see Fig. 7 for an example) is implicitly accomplished by the
parametric modeling that relaies EMGo 1o joint larque
(described subsequently), with the cutoff frequency optimized
to each subject.

Imually, extension and flexion EMGas were related to joint

L2

torque via the parametric model [21]:

)] D g .
T il= 586, otl-als S/ otln gl O

d=1y=0 =1 ¢=0
where 715 the decimated torque signal, 72 15 the current sample,
i 1s the future time advance in samples, op is the extension
EMGo, o7 is the flexion EMGeo, e.; are extension fit
coefficients and 7, ; are flexicn fit coefficients. Integer () sets
the number of signal lags. When integer =1, the model 1s
lmear. When integer D=2, a nonlmear dynamic model s
facilitatecl Madel parameters were {1t using the pseudo-inverse
technique to regularize a least squares minimization [21], [28].
The tolerance (Zof) for removal of singular values was the ratio
of the largest singular value to cach singular value n the design
matrix. Based on & prior model optimization study utilizing
non-causal  processing  [21], two  optimal model  forms
(30th-order linear, 15th-order nonlinear) were selected for both
EMG processors, with the Tol for each as listed in Table 1.

In addition to these optimal models, two groups of other
models were examined for companison.  First, many
nwestigators cascade a [ixed low-arder Butlerworth [ilter afler
cach of the extension and flexion EMGo signals, setting their
difference as the estimated torque. Thus, we utilized 2nd-order
Butterworth filters, one for the extension EMG and one for the
flexion EMQ, with cut-off frequencies at 1.5 Hz. The gains of
both filters, representing the fit coe[Tictents for the Bulterworth
model, were simultaneously calibrated for each subject in the
training stage via least squares. These gaing were tit separately
tor cach time advance. Both EMG processors were myvestigated.
Second, our linear FIR models, specified in (1), use a large
number of lag values compared to whal might be commonly
found in the literature. Thus, we also imvestigated the linear
model form with lag values of: (0=3. 5,7, 9, 12and 15. Only the
four-channel whitened processor was 1nvestigated. The
pseudo-nverse tolerance was 0.0056 for all lag values

All models estimated torque for 131 future time advances
between 0 and 750 ms, at an increment of 5 ms. Models were
calibrated (tramed) from two of the trials [21] and tested on the
third trial per subject. This set of three trials utilized the same
real-time feedback signal. The RMS error between the
measured torque from the load cell and the EMG-estimated
torque on the test trial from each subject was expressed ag a
fraction of twice the torque at 50% MVC flexion (MVCy) of
each subject. The first 2 5 of signal were omtted from the RMS
error compulation to accowrit for filter startup transients. Mean
and standard deviation (p4o) errors from the 34 subjects are
reported.  Statistical comparisons utilized ANCOVA when
comparing across time advances within a particular
combination of model and EMG processor. Paw-wise
comparison bedween distincl models or EMG processors was
performed at the best time advance and utilized paired sign tests
[29], each utilizing all 54 subjects.

G.d

III. RESULTS
Fig. 2 shows u=o error results from 354 subjects vs. future
time advance for the two optimal-order (i.e., high-order) FIR
models and the two EMG processors. The minimum average
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error for each model-EMG processor combination, listed in
Table 1, cccwrred at a time advance of 0 ms. At this optimal
time advance, paired sign tests (34 subjects) showed that each
model-EMG processor pair was sigmficantly different than the
other (p<107 ). Thus, the nonlinear model using four channel
whitened HEMG processing exhibited the lowest error.
ANOVAs applied separately to each of the four plots in Fig. 2
cach showed a significant change in error vs. time advance over
the full 750 ms (54 subjects x 151 advence times, F(150,
8003)>68, p=.1 07 for each). More importantly, however, was to
test when error results fust sigmificantly departed from the
mimimun error at zero tune advance. Thus, we applied a
Jorward progressive. ANOVA 1o the resulis of each plol
condition. Our forward progressive technique began with an
ANOVA using data from the time location of the error
mirumuin and onc forward time merement (1.¢., 0 and 5 ms; 54
subjects x 2 advance times). If this result was non-sigruficant
(p=0.05), we mereased the time range [orward o mclude 0, 5
and 10 ms (54 subjects x 3 advance times) and recemputed the
ANOVA. The time range was progressively increased until a
sigmficant  difference  (p<0.05)  was achieved.  That
corresponding time advance indicated when the upward trend
became stalistically sigmficant. For all four plols, the time
advance for a statistically significant change was between 140—
170 ms, with individual results shown in Table 1.

Fig. 3 shows a sample time-series plot of the actual and
EMG-estimated torque using the nonlinear maodel with four
channel whitened EMG processimg, at three distinct tume
advances. At time advances of U ms and 50 ms, both the shape
and phase of the estimated torque closely match that of the
actual torque, vielding a low RMS error. At a tune advance of
400 ms, the genaral shape of the estimated torque matches that
of the actual torque, but the estimated torque lags in phase. In
addition, the estimated torque exhibits higher wvariance.
Substantially higher RMS error results.

Fig. 4 shows plo error results from the Butterworth models
for both EMG processors. With single channel unwhilened
EMG processing, the minimum error of 9.16 + 4.58% MVCE
occurred at a time advance of 50 ms. This value did not differ
significantly (ANOVA Fil, 106)71.9, p~0.30) from the results
at a time advance of O ms. A forward progressive ANOVA
starting al the mimmun error advance time (60 ms) showed
that the upward trend became statistically significant at 160 ms.
With four channel whitened EMG processing, the mimimum
error of 6,90 + 2.39% MV Cy also occurred at a time advance of
60 ms. This value did differ significantly (ANOVA
F(1,106)-554, p—0.02) from the results at 4 time advance of 0
ms. A forward progressive ANOVA starting at the mnumum
error advance time (60 ms) showed that the upward trend
became statistically significant at 120 ms. The optimal error
locations between Butterworth plots were compared using a
paired sign test (54 subjects), and these values differed (p<107
9 F mally, the best Butterworth model (four channel whitened
EMG processor, 60 ms time advance) was compared to i) the
best linear model (30th-order, four channel whitened EMG
processor, O ms time advance) and, separately. #i) the best
nonlinear model (15th-order, four channel whitened EMG

processor, (0 ms time advance) using paired sign tests (54
subjects). Both comparisons were significant (p<10°%), thus this
best Butterworth model had inferior RMS error performance
compared to each.

Fig. 5 shows sample time-series results (actual vs.
EMG-estimated torque) using the Bullerworth model with four
channel whitened EMG processing, for the same time advances
as Fig. 3. In all cases, the shape of the estimated torque matches
that of the actual torque, but at a 0 ms time advance the
estimated torque slightly leads in phase—this lead is subtle to
observe, bul consistent throughout the data—while al the 400
ms time advance, the estimated torque lags substantially in
phase rand exhibits a decreased force range ). The RMS error1s
lowest at the 60 ms time advance, which is properly phase
aligned

Fig. 6 shows mean error results {rom each of the lower-order
lnear FIR models using the four channel whitened EMG
processor. Model orders 3 and 5 exhibit a substantial nadir in
RMS error near 100 ms, whereas model orders above ©
demonstrate no noticeable dip 1 this error. Each of the
low-order models achieves a mimmum average error at an
advance time above O ms, but that time approaches 0 ms as the
order increases. Similarly, RMS error decreases as model order
increases, although the error decrease slows with increasing
order. (At arder 30, the error 1s 6.24 £ 2.21, as shown in Table T
and Fig. 2.) Fig. 6 lists the location and value of the minunum
average error for each model order. Fig. 6 also lists the
ANOVA  p-value comparing the results at cach order’s
mimmum error location to the witlhin-order results at a time
acdvance of O ms (54 subjects x 2 advance times, for each order ).
For model orders 3 and 5, these differences were significant.
Next for each adjacent model order pair, a paired sign test (54
subjects) was conducted at the respective location of the
minimum error. All five paired comparisons were significant
(p=107%). Time-series lorque plots for model orders 3 and 5 ol
shown) exhibited phase trends similar to the Butterworth
models—the estimated phase slightly led at 0 ms, was
appropriate at the time advance corresponding to the lowest
average error and lagged at 400 ms.

The linear EMGo-torque models whose results are shown m
Fig. & can be split intc a lmear FIR flexion model and a linear
FIR extension model. as described in (1). Fig. 7 shows sample
normalized magnitude and phasce responses of the flexion
portion of one subject’s EMGo-torque model, for three
different linear model orders (3, 7 and 15) and two lime
advances (0 and 60 ms). Also shown in each plot is the
Butterworth model. Since most of the torque power was below
1 Hz, this frequency span 1s most mnportant. The magmtude
responses are rather sumilar over the 0-1 Hz span, with more
shaping cecurring in the FIR models as the order increases. But,
there are substantial differences between the phase responses.
At model order 3 thigh average crrors, see Fig. 6), the FIR
responses cannot add sutticient phase delay (if we consider the
phase of the lower-ervor 1 sth-order model as closer to ideal). At
model order 15 (low average errors, see Fig. 6), the FIR models
are able to adapt their phase responses to the advance time,
while the Butterworth phase 1s fixed. In any case, the phase
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responses are all quite linear over the 0~1 Hz span.

TV. DISCUSSION

Our interest in this work was to exploit the electromechanical
delay between surface EMG and jomnt torgque, m order to
estimate torque m advance of its occurrence. While some
literature on this topic has appeared in the past in which a few
advance times were studied, we conducted a finely-grained
analysis and mcorporated more recent EMG-torque processing
approaches. Applications that might benefit from torque
estimation at advanced times include: anticipatory head motion
m virtual environments, myoelectric prosthesis control, control
of exoskeleton suits and powered rehabilitation devices. The
observed delay between peak EMG amplitude and peak force is
typically 50-100 ms [1]{3]. Many biomechanical models,
particularly those based on 1st- or 2nd-order Butterworth filter
dynamics, nclude a pure delay term of this time duration. We
systematically studied time advances rangng from 0-730 ms.
using high-order linear (30th-order! and nonlinear (1 5th-order)
models with and without advanced EMG processing (whitening
and mulliple chammel combmation). The selection of these
model orders, and the pseundo-inverse tolerance used in the
associated least squares training, was optimized based on a
prior study of a subset of thesc data [21]. We also studicd
Butterworth models and lower-order FIR models, as these
forms are commonly found in the literature.

Far the high-order optimal models, Fig. 2 shows that torque
could be estimated for time advances of ~0-60 ms with no
discermible change in minimum error, and out to 140-170 ms
before a statistically significant change in error occurred (at the
p=0.05 level of significance). Thus, these EMG-torque models
would not benefit from the use of a pure delay term, which
simply time-shifts the x-axis m tlus plot. At very large time
advances, the error consistently appreached an average error of
~18.5%% MVCg. This error is comparable to the error that would
be achieved if the mput EMG were ignored and a constant
torque, set in the mid-range of all experimental torques, was
used;, implying that EMG is no longer providing any useful
predictive information at these advance times. The errors for all
of the models display this same masximum average error.
Consistent with prior research [7], [19]-[22]. the high-order
models also showed that the nonlinear models produced lower
error than the linear models and that advanced EMG processing
(multiple-channel, whitened) produced lower error than
standard EMG processing

The Butterworth models (Fig. 4) and the low-order FIR
models (Fig. 6) exhibited error that contained a single nadir as a
function of advanes time. This error nadwr cccurred at a time
advance of 60 ms for the Butterworth models and 115 ms for
the 3rd-order FTR model The ermor at each of these locations
was significantly lower (statistically) than the respective error
at a time advance of O ms. Figs. 3 and 5 suggest that a primary
reason for an mcreasing error as the advance time moved away
from the nadir was improper phase alignment of the
EMG-based estimated lorque. The sample magnitude and
phase responses in Fig. 7 further support this contention—the
magnitude responses of this linear model do not differ much

across the (-1 Hz range, but the phase responses do at the
higher-order (thus, more accurate) models. The Butterworth
model has a fixed phase response that cannot adjust to the
subject or time advance. The low-order FIR models do not
seem to have a sufficient number of degrees of freedom/filter
lags n order 1o accommodate the necessary phase response. For
each, the result i3 an estimated torque that feads the actual
torque (albeit slightly) for short time advances but lags the
actual torque tor long time advances. Additionally. the
existence of an error nadir explains why these models can
benelit rom a pure delay lern; the delay lerm atternpts to lime
shift the torque to the advance time corresponding to the error
nadir. As the FIR model order mcreased, the nadir in the models
disappeared  and  was  replaced  with &  platean
region—concomitant with an overall decrease in ermor

At the physiologic level, an electromechumcal delay of 50—
100 ms [1], [2] 1s measured as the time between some
processed reference EMG activity (e.g.. rectified and lowpass
filtered) and the resulting peak force. Physiologically, thus
delay inclucles the delay in excitation-contraction coupling, any
delay due to slack in the muscle, and delay due to force
development (i.e., the rise time from force initiation to force
peak) [30] The excitation-contraction delay is quite small,
approximately 5 ms [31].

However, delay 15 incurred by the filters which process the
EMG and force signals, and must also be considerad. The exact
delay is specific to the filtering utilized and force profiles
utilized (Le.. input excitation frequencies). Thelen et al. [4]
avolded these signal processing delays by computing EMG
amplitude  offine with zero-phase  (two-pass)  fillers, then
cascading a pure delay in their EMGo-torque model. Their
optimal pure delay ranged between 111-218 ms. This
technique 1s not available for real-time systems. The classic
work of Inman et al. [1] computed their EMG amplitude via a
full-wave reclifier (no delay) and a passive RC lowpass [ilter.
As with most filters, their RC filter has rather linear phase over
the frequency range from 0-1 Hz (the frequency range relevant
to most physiologic contractions, including those used m this
study). Their RC time constant (R = 50k, C =2 pF) of 100 ms
corresponds to g pure delay of ~90.0 ms (over the 0-1 Hz
range). They cite a delay from processed EMG peak to force
peak of ~%0 ms. Hence. their overall delay averaged 170 ms.
well within the range found by Thelen ct al. [4]. In this study.
our pre-processing, filters impart a combined delay of ~7 mns,
primarily due to the whitening filters. (We need not account for
the ~76 ms delay due to the lowpass filters in the decimation
operation, since the torque signal was similarly decimated.) As
shown n Fig, 7, this sample 15th-order flexion filter imparts an
mput-output delay of 150 ms at a time advance of 0 ms (the
phase is approximately linear between 0-1 Hz, with a value of —
34" at 1 Hz). Hence, our overall filtering delay is ~-1 57 ms_ also
well within the range found by Thelen et al. [4]. Further. as the
time advance increases. the time delay required by our
EMGo-torque model decreases. This change is shown inFig, 7,
with the phase of the 60 ms time advance models exhibiting a
lower-valued negative slope.

Note that our constrained (constant-posture) contractions
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ardl limited bandwidth (1 Hz) will not be representative of all
possible contraction profiles. Certainly. ballistic motions can
exhibit frequencies that easily exceed 1 Hz and may have
mplications for the desired phase response in an EMG-torque
model. Unconstrained motions will necessarily add complexity
to the models to account for changes n jomt angle

Most applications which could benefit from anticipatory
EMGo-torque estimates employ real-time processing, usually
on a microprocessor. Many modem microprocessors wherently
mcorporate floating point processing (required for most of
these algorithuns) and have sulficient computational power [or
even the most intensive of these algorithms (eg.,
multiple-channel EMG whitening combined with the nonlinear
EMGo-torque maodel). Hence, the processmg delay, itsclf, may
only account for a few ms. However, intensive computation is
typrcally aclieved al the cost ol lugher elecirical power
consumption, which can impact the battery life {and size) in
real-time systems.

Overall, our results show that the higher-order optimized
maclels are clearly superior to the second-order Butterworth
maodels and the low-order FIR models. First, the best error in
the highar-order models is significantly lower than that of the
other model forms, with the nonlinear 15th-order model
exlubiting the lowest error of all. Second, a range of times
spanning af least 60 ms (and, statistically, up to 140-170 ms) 18
available in which the error maintains this minimum, whereas
the other models only exhibit their minimum average error at
one specific time advance. Third, no delay term need be
determined; the complete model is calibrated through the least
squares Bl of the model parameters.  Anc, fourth, mos
Butterworth models are not calibrated to dynamic contraction
trials as we have done here. If constant-force trials are used to
calibrate the Butterworth filter gains. then sigmticantly lugher
errors result (approaching 20% MVCp), as demonstrated
previously on 4 subsel of these data [21]. If force-varying dala
are available for calibration, researchers might as well choose
the higher-order models which can be calibrated from these
same data, Our 15th-order nonlinear model, using four channel
whitened EMG, provided the lowest error of 548 £ 2.21%
MVCp over the tme advance range from approxiunately 0-60
ms. Errors increased as the tine advance was increased further.
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TABELEIL
PARAMETERS VALUES AND SUMMARY RESULTS OF THE FULL

LINEAR/NONLINEAR FIR MODELS. MINIMUM ERROR VALUES ALL OCCURRED

AT 4 FUTURE TIME ADV ANCE OF 0 M3, 2 NUMBER OF Lass. TOL:
PSEUDO 1NV ERSE TOLERANCE. ADVANCE: FORWARD TIME ADV ANCE TO
FIRST CHANGE FROM MINIMUM ERROR (ANCV A <005

Min.
Model EMG p+e Advance
Linearity Processor [} Tal Error (ms)
(%o MVCg)
Linear 1 Channel, 30 0.00032 862308 170
Unwhitened
Monlinear 1 Channel, 15 0.0056 Fo5+273 160
Unwhitened
Linear 4 Channels, 30 0.0056 624+233 145
Whitened
Monlinear 4 Channels, 15 0.01 5483+221 140
Whitened

Load Cell

Fig 1. Expenmental apparatus from experiment W3{. A subject’s right arm 1s
oriented 10 a plane parallel to the floor, the upper arm iz directed laterally
outward from the shoulder, the wrist is fully supinated and the angle between
the upper arm and the forearm 15 90°. Four EMG electrodes are mounted over
the biceps and triceps muscles. The wrist 12 tightly cuffed to a load cell at the
lewel of the styloid process.

Full Linear and
Nonlinear FIR Models
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Torque Error {%MVCF]

Lincar Model, 1 Unwhitc EMG Ghannel
-+ Nonlinear Model, 1 Unwhite EMG Channel

4 White EMG

Menlinaar Model, 4 White EMC Channels

. \
% 100 200 200 400 500 &0 700
Time Advance {msj
Fig 2. Mean errors (ene-sided stan dard deviations shown for two of the models)
from 54 subjects ve. future time advance for the two optimal -order models and

two EMG processors. Mean values computed every Sms, std. dev. values only
shown every 50 ms.
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o
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Fig. 3 Sample time-series plots of the actual (solid) and EMG-estimated

(dashed) torque using 15th-crder erder nenlinear medel with four channel

whitened EMG processing, at three distinct time advances. Seven second
segments shown in each plot. Subject W15
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Fig. 4.

future time advance for the Butterworth filter model. Separate plot for each
EMG processor. Mean values computed every 5 ms, std. dev. values only
shown every 50 ms.
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Mean and one-sided standard deviation errors from 54 subjects vs.  pig ¢,

20

Lower Order Linear FIR Models

15
10
3 in. & ANOVA
_—— Time of hin_ Error  p.value, Min.
H 2P Symbol Order Min. (ms)  *MVCe)  Time vs. 0 ms
ocoooo0 3 15 8.02 + 245 <10®
5 5 95 7.38 2.4 axio
7 75 697 + 2.41 0.10
9 80 672+241 0.51
12 45 646+ 240 0.90
15 35 646 + 241 097
0
0 100 200 300 400 500 800 700
Time Advance {ms}
Mean ermrors from 54 subjects vs. future time advance for the

lower-order linear FIR models. EMG processing used four whitened channels
in each case. Inset table shows the advance time value and error value (p+o)
corresponding to the minimum location of each plot; as well as the ANOVA

p-value comparing the results at each minimum location to the results at an
advance time of 0 ms, within each plot.

0 ms Advance r 60 ms Advance 400 ms Advance

Error=7.3 %MVC,_

Error = 5.2 %MVG,_ Error = 18.4 %MVC,_

Fig. 5.

8 8 10 12 8 8 0 12 6 8 10 12

Time (s}

Sample time-series plots of the actual (solid) and EMG-estimated

(dashed) torque using the Butterworth model with four channel whitened EMG
processing, at three distinet time advances. Seven second segments shown in
each plot. Subject WX15.
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Flexion FIR Model: ... - 0 ms Advance, xxx — 60 ms Advance

1> Order 3 Order 15
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Fig. 7. Sample magnitude and phase responses of the flexion portions of linear FIR EMGo-torque models at different model orders, plotted along with a
second-order Butterworth filter (. = 1.5 Hz). All magnitude responses normalized to the DC gain. EMG processing used four whitened channels in each case.
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ABSTRACT:

Relating the clectromyogram (EMG) to joint torque is uscful in various application arcas, including
prosthesis control, ergonomies and clinical biomechanics. Limited study has related EMG to torque across
varied joint angles. We related the biceps-triceps surface EMG of 22 subjects to elbow torque at six joint
angles (spanning 60° to 135°) during constant-posture, torque-varving contractions. Three nonlinear
EMGo-torque models. advanced EMG amplitude (EMGo) estimation processors (ie., whitened.
mulliple-channel) and the duration of data used (o train models were investigated. When EMG-lorque
models were formed separately for each of the six distinet joint angles, a minimum “gold standard” error of
4.01 £ 1.2% MVCpy) resulted (i.e., error relative to maximum voluntary contraction at 90° flexion). This
model structure, however, did not directly facilitate interpolation across angles. The best model which did
s0, achieved a statistically equivalent error of 4.06 + 1.2% MVCroo. Results demonstrated that advanced

EMGo processors lead to improved joint torque estimation as do longer model training durations.
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1. Introduction

For several decades, the surface electromyogram (EMG) has seen extensive investigation as a
non-invasive measure that can be used to estimate muscle tension and/or joint torque [see Staudenmann et
al. (2010) for a recent review] (An et al., 19%83; Clancy et al., 2006, Clancy and Hogan, 1997; Clancy et al.,
2012; Doheny ct al., 2008; Gottlich and Agarwal, 1971: Hasan and Enoka, 1985; Hashemi ct al., 2012,
2013; Heckathorne and Childress, 1981; Hof and Van den Berg, 1981; Hogan and Mann. 1980b; Inman et
al., 1952; Lawrence and DeLluca, 1983; Liu <t al_| 2013b; Messier et al., 1971; Potvin and Brown, 2004,
Sanger, 2007; Shin et al., 2009; Solomonow et al., 1986; Staudenmann et al., 2009; Thelen et al., 1994,
Vredenbregt and Rau. 1973). A common approach is to estimate the EMG standard deviation (EMGog, a.k.a.
EMG amplitude) from one or more sites on muscles about a joint, and then use system identification
techniques to model an EMGo-torque relationship. These non-invasive estimates are used in prosthesis
control (Parker et al., 2006). clinical biomechanics (Disselhorst-Klug et al., 2009, Doorenbosch and
Harlaar, 2003) and ergonotmnics analysis (Hagg et al., 2004, Kumar and Mital, 1996; Mathissen et al., 1993).
Numerous system identification approaches have been successfully applied. with most studies now
accounting for agonist-antagonist co-activation (Solomonow et al., 1986) and individual subject
differences in the EMG-torque relationship (Hansan and Enoka, 1985). Because EMG is a stochastic signal,
methods which lower the variance of FMGo estimates—e.g., whitening and multiple-channel
combination—have been shown to lower EMG-torque errors, as have improved system identification
methods (Clancy et al., 2002. 2006, 2012, Clancv and Farry, 2000; Clancy and Hogan, 1995, 1997,
Hashemi et al., 2012, 2013; Hogan and Mann, 1980a, 1980b; Potvin and Brown, 2004; Sanger, 2007,
Staudenmann et al., 2010; Thelen ¢t al., 1994).

A topic with more limited investigation is the role of joint angle. The EMG-torque relationship changes
with angle, at least due to the length-tension relationship (Rack and Westbury, 1969; Zajac 1989), changes
in muscle moment arms (Messier et al., 1971) and the movement of electrodes with respect to underlying
muscle lissue and the innervation zone (Martin and MacIsaac, 2006; Rainoldi et al., 2000). Vredenbregl
and Rau (1973), as well as more recent studies (Doheny et al., 2008; Hashemi et al., 2013; Liu et al., 2013b),
found evidence of a multiplicative influence of angle on EMG-torque, at least during constant-torque
contractions at various torque levels. That is, the EMG-torque curve has the same shape at each angle, but

is scaled by a gain factor that is distinct for each angle.
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In this study, we report on continued improvements to EMG-torque processing, with an emphasis on the
influence of joint angle. We extended the experimental conditions to force-varying contractions conducted
over a range of fixed joint angles. We specifically investigated the appropriateness of the multiplicative
model vs. joint angle. With these [orce-varying contractions, we also compared standard EMGo processing
to advanced processors that include signal whitening and multiple channel combination. Finally. two areas
of system identification were contrasted. First. we contrasted linear dynamic models to nonlinear dynamic
models. Second, the duration of data available for model training has seen limited evaluation (Clancy et al.,

2012). Hence, we also evaluated this modeling variant.

2. Methods
2.1 Ixperimental Data and Methods

Experiments were approved and supervised by the WPI IRB. Experimental data were acquired from 22
healthy subjects (12 male, 10 female; aged 18-56 vears), each of whom provided written informed consent.
Subjects were seated and strapped into a custom-built straight-back chair (see Fig. 1 of Liu et al., 2013b)
with their right shoulder abducted 90°, their forearm oriented in a parasaggital plane. and their supinated
wrist (palm perpendicular to the floor) tightly cuffed to a load cell (Vishay Tedea-Humntleigh Model 1042,
75 kg ftull scale). The angle between the upper arm and the forearm was fixed, but selectable. Skin above
the biceps and triceps muscles was clecaned with an alcohol wipe and a bead of clectrode gel was massaged
into the overlying skin. Six bipolar EMG electrode-amplifiers were applied in a row, transversely across
each of the biceps and triceps muscle groups, midway between the elbow and the midpoint of the upper arm
(to avoid the innervation zone proximally and the tendon distally). Only the middle four ot each set of six
were analvzed. Subjects were instructed to tense their muscles at both angular extremes (60°, 135%) to aid in
visualizing the distal tendon and the muscle midpoint locations. EMG recording over the tendon is
discouraged because the tissue is not electrically active and prone to motion artifacts. Recording over the
innervation zone (tvpically located near the muscle mid-point) can lead to large variations in EMGo values
with small changes in location (Rainoldi et al., 2000). The center of the row of electrodes was alighed with
the muscle midline, to best avoid crosstalk from adjacent muscles. Each electrode-amplifier had a pair of 8
mm diameter, stainless stecl, hemispherical contacts separated by 1 em edge-to-edge. oriented along the
muscle’s long axis. The distance between adjacent electrode-amplifiers was ~1.75 em. A ground electrode
was gelled and secured on the upper arm. Custom electronics amplified and filtered cach EMG signal
(CMRR > 90 dB at 60 Hz: 8"-order Butterworth highpass at 15 Hz; 4™ order Butterworth lowpass at 1800
Hz) before being sampled at 4096 Hz with 16-bit resolution.

4=
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All contractions were constant-posture, with the clbow angle selectable. Subjects were provided a
warm-up period. then rested three minutes. Scparate extension and flexion MVCs were thon measured at a
joint angle of 90°. Subjects took 2-3 seconds to slowly ramp up to MVC and maintained that force for two
seconds. The average load cell value during the contraction plateau was taken as the MVC. Five second
duration. constant-force contractions at 50% MVC extension, 30% MVC flexion and at rest (arm removed
from the wrist cuff) were next recorded at 90°. These contractions were used to calibrate advanced EMGo
estimation algorithms (Clancy and Farry, 2000, Prakash et al., 2003). Then, a sequence of constant-posture,
torque-varying contractions was conducted at randomized elbow angles (the included angle between the
forearm and upper arm) of 60°, 757, 907, 1059, 120° and 135°. At each angle (other than 90%). MVC torque
was measured in both elbow extension and flexion. Then, four tracking trials of 30 s duration were
recorded during which the subjects used the load cell as a feedback signal to track a computer-generated
torque target. ‘The target moved on the screen m the pattern of a bandlimited (1 Hz) vniform random
process, spanning 50% MVC extension to 50% MVC flexion. Two minutes of rest were provided between
trials to avoid cumulative fatigue. A total of 24 tracking trials were recorded (four trials for each of six

angles).

2.2 Methods of Analysis

Analysis was performed offline in MATLADB. The sampled EMG signals were notch filtered at the power
line frequencv and its harmonics (2nd—0rder IIR comb filter. notch bandwidth < 0.5 Hz each. dual-pass
filtered—filter applied in the forward. then reverse time directions to achieve zero phase), since whitening
at high frequencies is particularly susceptible to signal interference; and then each signal was highpass
filtered (135 Hz cutoft, 5" order Butterworth, ducl-pass filtered). Next, two distinct EMGo variations werc
created for each of the extension and flexion muscle groups for each 30 s trial. Estimators were either
single-channel, unwhitened (using a centrally located electrode) or four-channel whitened (using the four
centrally located electrodes). Whitened channels used the non-causal adaptive whitening algorithm of
Clancy and Farry (2000) and Prakash et al. (2005). After optional whitening, each processor utilized a
Nirst-order demodulator (rectifier). Thereafter, signals were lowpass filtered at 16 Hz then downsampled by
a factor of 100 to 40.96 11z. The torque signal was similarly decimated, producing an EMG data set with a
bandwidth approximately 10 times that of the torque signal being estimated. This decimated sampling rate
is best for system identification, being large enough to capture the system dynamiecs and small enough to
avoid noise existing out of the signal band (Clancy et al., 2006; Ljung, 1999). The first and last 2 s of data

were excluded from each 30 s trial to account for filter startup and tail transients. The decimated extension
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and flexion EMGo inputs were related to joint torque (output), comparing three dynamic nonlinear
polvnomial modal structurcs. First, a dynamic model was fit scparately at cach joint angle, providing the
angle-specific model:
>3} e
Tlml= 32 frguoslm=al=3 > e, 0 [m-ql, ()
d=1 g=0 =1 4=0

where m was the decimated discrete-time sample index: T/m] the measured torque; D the EMGo
polynomial degree (varied from D=1-4, where =1 produced a linear model); {J the number of time lags
((J=20Y, & the elbow joint angle; 75, » and ey, g the flexion and extension fit parameters, respectively (which
specified the shape of the EMGo-torque relationship); and oxfm/ and oxfm/ the flexion and extension
EMGo estimates, respectively. This model was fit using linear least squares, regularized via the
pseudo-inverse; 1f the ratio of the largest to a given singular value was less than 0.0056, that singular value
was omitted (Clancy et al., 2012; Press et al., 1994). This angle-specific model served as the performance
“gold standard.”

Second, a model which incorporated the hypothesized gain variation in the form of polynomial gain vs.
angle functions {one for flexion and another for extension) provided the polynomial-gain model:

A D Q A D g
(S, 70l S5 rstl-d S 00l S et o
a=0 d=1 g=0 a=0 d=1 g=0

where g, r and g, g were the tlexion and extension angle fit parameters, respectively (which specified the
multiplicative gain vs. joint angle). The angle polynomial degree was varied from /=1 4. Note that the
dynamic fit coefTicients, fz, and e,,, were fixed across angle (i.e., not a function of angle). This model was
fit using nonlinear least squares. The initial dynamic parameters (fa, and eqq) were those of the
angle-specific model at 90°. The initial angle parameters were then found by fixing the dynamic parameters
and solving for the g, r and g, g parameters via linear least squares (simdltaneously across all angles). The
full nonlinear model was then minimized across all angles. The inclusion of both angle and EMGao
polynomials resulted in one redundant overall scaling parameter. Anccdotally, this additional degree of
freedom seemed to aid the least squares minimization, thus was retained. For consistency across models.
the angle polynomial was rescaled 1o a gain of one at 90° afier the [it was complete, with a compensatory
mverse scaling applied to the EMGo polynomial. This model immediately interpolates the gain function
across all joint angles.

The third model simplified the gain vs. angle relation by utilizing distinct flexion and extension gains at

cach angle. This piece-wise-gain model 1s:
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D Q D Q
T[m]= gor .(szd,q Gg[mQ]Jge,E '[Zzed,q Crg [m‘?I]J s (3

where gain parameters gg y and gq p were designated at each of the six angles (total of 12 angle parameters).
Again, note that the dynamic {11 coefficients were fixed across angle. This model was fit using nonlinear
least squares. The initial dynamic parameters (f44 and ¢q4,) were those of the angle-specitic model at 90°.
The initial angle parameters could then be found by fixing the dvnamic parameters and solving for the gg ¢
and gp z parameters via linear least squares (each pair fit separarely at cach angle). The full nonlinear model
(angle parameters and dynamic parameters) was then simultancously minimized across all angles, and then
normalized to a gain of one at 90°, This model did nof facilitate immediate gain interpolation across angle.
However, gain vs. angle interpolations which preserve the exact gain values at the measured angles (e.g.,

spline functions) can be fit post hoc to provide EMG-torque at any angle.

Each subject completed four tracking trials at six distinct angles. Six trials, one per angle, were combined
to form an analysis record (four per subject). Initially, one record was used for training and a second record
for testing. The mean absolute differcnce betweeon the test torque and that predicted by the EMG-torque
model was computed. This difference excluded the first and last 2 s (due to filter startup and tail transients)
as well as an additional 488 ms startup transient due to the 0=20 order dynamic filter. Error values were
normalized to twice the torque at 30% flexion MVC at angle 90° (MVCypg;). The average test trial error
from all 12 possible single-record train-test combinations (full cross-validation) was reported for each
subject. Next, two records were used for training and two for testing, with full cross-validation (12
combinations). Finally, three records were used for training and one for testing (4 combinations). For
statistical analvsis, test error values were subjected to a paired sign test (Miller and Freund. 1977). Twenty

two paired values contributed to each sign test (22 subjects).

3. Results

Fig. 1 shows an example of the estimated torque and actual torque vs. time for the six elbow angles using
the three different model structures. The best performing parameters, as indicated in the caption, were
sclected for each model in the figure. The angle-specific model was considered the “gold standard.” since it
optimized the model coefficients at each particular joint angle. It does not interpolate across angles. Fig. 2
shows example EMG-torque estimation vs. time, comparing training duration and EMGo processing.
Table 1 gives the mean plus‘minus standard deviation test error results for the three models when

single-channel unwhitened EMGo processing was used. The analysis dimensions enumerated are:

_7-
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EMGo-torque model, number of training records used to fit a model, EMGo polynomial degree (£3) and
angle polynomial degree (4; applicable to the polynomial gain modcl, only). Table 2 gives the
corresponding results when multiple-channel whitened EMGao processing was used. The general trends in
these resulls were [or lower errors due 1o multiple-channel whitened EMGo processing, longer duration
training and nonlinear dynamic modesls (D>1). The lowest errors in the polynomial-gain model always
occurred when the angle polynomial equaled .1=2.

Statistical analysis began by comparing single-channel unwhitened results (Table 1) to multiple-channel
whitened results (Table 2). For each combination of EMGo-torque model and training duration (nine
combinations per table), the cell with the lowest average error in Table 1 was compared to the cell with the
lowest average error in Table 2. Each of the ninc comparisons was statistically different ( p < 107°), with
multiple-channel whitened results demonstrating lower average errors in each case. Ilence. subsequent
statistical analysis was limited to the multiple-channel whitened results (Table 2). Next, statistical
comparison was made between the number of training records used to fit a model. Within each of the three
models. the cell with the lowest average error for one training duration in Table 2 was compared pair-wise
to the results from the other two durations (three combinations for each of the three models). Each of the
nine comparisons was statistically diffcrent ( p <107%), with two training trials always producing lower
crrors than one training trial and three training trials always producing the lowest error. Ilence, subsequent
statistical analysis was further limited to the results using three training records in Table 2. Lastly.
comparison was made between models. For each model, the cell with the lowest average error in Table 2
was compared pair-wise to the similar results from the other two models (three combinations). There was a
weak difference when comparing the angle-specific model to the polynomial-gain model (p—0.026) and no
difference for the other two model comparisons (p>0.25). Thus, the results from the piece-wise-gain
model—which can be interpolated across angle—were not statistically different than results from the “gold

standard” anglc-specific model. The lowest EMGo-torque crror was 4.01 = 1.3% MV Croq.

4. Discussion

This study evaluated methods for relating EMG to joint torque across a range of angles, during
constant-posture force-varving contractions. In general, the processing was conducted in two sequential
stages: estimation of extension and flexion EMGao, followed by system identification of torque from the
extension and flexion EMGa time-series. In the first stage, “‘standard” EMGeo estimation (single-channel
unwhitened) was compared to advanced EMGo estimation (multiple-channel whitened). As with past

experimental studies (Claney and Hogan, 1995; Claney and Hogan, 1997; Clancv et al., 2012; Hogan and
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Mann, 1980b; Liu et al., 2013b; Potvin and Brown, 2004; Prakash et al., 2003), advanced EMGao
cstimation resulted in a substantial decrcase in torque ¢stimation crror. In our study, error was reduced on
average by 25% for each of the three EMGo-torque models studied. This performance improvement is
altributed to a reduction in the variance of the EMGo signal, due to whitening and chamnel combination
{(Hogan and Mann, 1980a, b; Liu et al., 2013a). Nonetheless, there may be some drawbacks to the use of
multiple-channel EMGo estimators, including: increased hardware cost: the increased risk of electrode
malfunction and its associated precipitous degradation in the EMGo estimate (Clancy and Hogan, 1995);
and the possibility that better models could be formed by including all channels directly in the
EMGo-torque model, rather than combining EMG channels at the amplitude estimation stage
(Staudemmann et al., 2009; Vieira et al., 2010).

In the second processing stage (relating EMGo to torque), we studied three model structures. The
angle-specitic model was considercd the “gold standard.” since it provided a separate fit at cach available
angle. The other two models incorporated an angle-invariant EMGo-relation that was multiplicatively
scaled as a function of angle—as suggested by the work of Vredenbregt and Rau (1973). We found that the
best angle-invariant models had an error that was not statistically different from the best gold
standard/angle-specific model. These EMGo-torque models account for (and cannot distinguish between)
all variations due to changes in angle, including: the muscle length-lension relationship, variation in
muscle moment arms and muscle movement under the skin with respect to electrode location. Our results
provide further evidence that the constant-posture EMGo-torque relationship maintains the same shape
across elbow angles, and need only be scaled to account for different angles. The angle-invariant models
are simple and can be easily interpolated over all angles within the range studied.

Few studies have rigorously studicd the role of training contraction duration on model performance. In a
prior study of the elbow with a similar protocol, but limited to only the 90° joint angle, training set
durations of 26 s and 52 s were contrasted (Clancy et al., 2012). The longer duration consistently produced
better results, particularly as the number of fit parameters increased. The best (lowest error) model formed
using 26 s of data had an error of 3.533+4.3% MV Cro, while the best model using 32 s had an error of
4.65+3.6% MVCqpy. Thus, average error decreased %16 due to the imcreased training duration. In the
present study (across six angles), training durations of 26 s, 52 s and 78 s exhibited best-case average errors
of 4.75+1.7% MV Cpoq. 4.17£1.3% MV Croo and 4.01+1.2% MV Croy, respectively, for the angle-specitic
model. Hence, increasing from 26 s to 52 s reduced average error bv 12%, while increasing from 26 s to 78
s reduced average error by 16%. As might be expected. the relative rate of improvement diminishes as the

training duration increases.
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The optimal EMGo polynomial degree ranged from D—-2-4 when using single-channel unwhitened
EMGo processing and from D=3—4 when using multiple-channel whitened EMGo processing. The number
of dynamic fit parameters (compared to the 2=1 linear model. which had 42 dynamic fit parameters)
doubles [or D=2, triples for D=3 and quadruples for D=4. Thus, the nonlinear dynamic models have a very
large number of parameters, which can be a challenge for robust least squares estimation. For this reason,
our fit parameter estimates were regularized using the pseudo-inverse approach whenever /inear least
squares fitting was applied (Clancy et al., 2012, Press et al., 1994). In particular, note that regularized linear
least squares estimation was used to find the initial guess parameters that seeded each of the nonlinear least
squares estimators. When regularization was not used for the initial guess, several of the nonlinear
optimizations failed to converge. More generally, the conditioning of the linear least squares fit (or
convergence of the nonlinear least squares minimization) is improved by longer training durations, fewer
paramcters and data sets that excite all modes of the model (Ljung, 1999); hence our reason for using a
broadband torque target in the experimental protocol. Of these factors, it is useful to note that our method
of achieving a nonlinear dynamic model (raising EMGo and its lag values to a power) does not use fit
coctlicients cfficiently. Functions that facilitate a similar model shape, but utilize fewer fit
coefficients—such as parallel cascade models (Hashemi et al., 2012)—might be more parsimonious.

For the polynomial-gain model, the best angle polynomial degree was 4=2 in all cases. Since only six
distinct joint angles were examined. it is likely that overfitting began to occur for degrees above 4=2. The
piece-wise-gain model avoided this issue entirely by fitting gain only at the available joint angles.
facilitating interpolation between angles as a post hoc processing step. Spline functions are an excellent
choice for such processing, as they preserve the value of the function at the knots (i.e.. at the joint angles at
which mcasurements were made) and provide a smooth fit in between.

The fixed postures imposed during these experiments facilitated study of the system identification
methods, and may be representative of conditions experienced by prosthesis users whose remnant
musculature may be tixed in orientation. But, tixed postures are not representative of the free movements
made during most activities of daily living in non-amputees. Hence, future work should consider
conditions during which the joint 1s dynamically changing angle. In doing so, models may need 1o consider
differences in the EMGo-torque relationship as a function of concentric vs. eccentric contraction (Komi et
al., 2000). While three distinct models were studied in this work, we did not extensively study all possible
model parameters (e.g., the number of dynamic model lags was fixed at =20, the pseudo-inverse tolerance

was set at 7ol = 0.0056), instead fixing these values based on a prior study (Clancy et al., 2012). Slight
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tuning of these values might provide some additional reduction i torque error estimation, albeit rather
limited.

In summary, models were formed during constant-posture, torque-varying contractions ranging in joint
angle from 60° (0 135°, using advanced EMGo estimation (echmigues and multiple training trials. With
EMG-torque models formed separately at each of the six distinct joint angles, a minimum “gold standard”
error of 4.01 + 1.2% MV Cgoq resulted [EMGo polynomial degree of 13=3, three training records (78 s) and
multiple-channel whitened EMGao processing]. The piece-wise-gain model, which facilitates interpolation
across angles, achieved a statistically equivalent error of 4.06 £ 1.2% MV Crg. Compared to single-channel
unwhitened EMGo processing, multiple-channel whitened EMGo processing reduced torque error by 25%
on average. Increasing the training trial duration from 26 s to 32 s reduced average error by 12%, while
increasing it from 26 s to 78 s reduced average error by 16%. These results further support the experimental
observation that the shape of the EMGo-torque relationship i1s the same at cach joint angle, but is scaled by

a gain factor that is distinct at each angle.
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416
417  Table 1
418 Mean =+ std. dev. EMG-torque test error results from all three models, for single-channel unwhitened EMG
419 processing (errors expressed in % mean absolute MVC flexion at 90° from 22 subjects). Each training
20 record was 26 s in duration.

21

Angle polynomial FMGo polynomial degree (1))

Training records degree (A) D=1 D=2 D=3 D=4
Angle-Specific Model:
One N/A 636+23 590+20 6.17+23 656+2.6
Two N/A 600£21 544+19 35544£20 3571£22
Three N/A 5871420 528+1.8 530117 337117

Polynomial-Gain Model:

One 1 6.59+£22 595+£21 592+£21 625+22
2 645124 586122 581+£2.1 606121
3 6.48+23 608zx23 6.13x23 674x3.1
4 716+24 650+£22 648+£22 6.64+25
Two 1 648122 585121 3575120 578120
2 630+22 35371+x21 562+2.0 368+£2.0
3 630+£22 383+21 616+23 630+24
4 833+3532 688+31 653+25 635+235
Three 1 644122 580+21 572x21 3569+19
2 624+£22 366x21 5.61+22 561=£2.0
3 622+22 381+21 591+22 654+2%
4 808+335 62022 70628 6.80=3.0
Piece-Wise-Grain Model:
One N/A 641+23 587+£22 6.12+£23 113+20
Two N/A 6.09+21 533+£19 55919 574+19
Three N/A 595+£20 S541+£18 3.44+£19 35419

Ja
[N T ]
[FX I ]
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424  Table2

425 Mean + std. dev. EMG-torque test error results from all three models, for muftiple-channel whitened EMG
426  processing (errors expressed in % mean absolute MVC flexion at 90° from 22 subjects). Each training

427 record was 26 s in duration.

28
Angle polvnomial EMGo polynomial degree (D)
Training records degree (A) D-1 D-2 D-3 D-4
Angle-Specific Model:
One N/A 491+18 466+1.7 475+17 35.01+2.1
Two N/iA 460+16 417+13 417+13 425+1.4
Three N/A 449+£15 404+12 401+1.2 405£1.2
Polymnomial-Gain Model:
One 1 521+16 474+15 47014 480+14
2 490+17 446+15 44113 447+13
3 494117 4571135 468114 477114
4 628+24 503+16 503+15 3508z1.7
Two 1 512+1.6 4653+14 457+13 456+13
2 4971416 433114 425113 423112
3 486+1.6 439+15 449+14 447+14
4 622+20 356x32 51117 473+1.35
Three 1 509+16 46114 4353x13 447+1.2
2 473+16 428+14 419:12 416%1.2
3 489+16 435+14 437+x13 452x14
4 584+17 492+1.8 494+16 4.84+1.35
Piece-Wise-Gain Model:
One N/A 496+18 450+15 453+14 478+17
Two N/A 467+16 423+14 416+12 423+12
Three N/A 457415 414213 406+1.2 4.19+13
429
430
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%MVC_o

Angle-Specific Mo
00

del MAYV Error = 3.89% MVCFgo
75° ) 90° 120° 135°

60°

|Polynomial-Gain Model

MAYV Error = 4.05% MVC
120° 135°

F90

75°

60°

|Piece-Wise-Gain Model

MAYV Error = 4.05% MVC

120° 135° Fe0

75°

26 seconds

Time in Seconds

Fig. 1. Sample EMGga-torque estimation results for the three models. Estimated torque (solid line) and
actual torque (dotted line) vs. time. Data for each angle (26 s in duration, after exclusion of transients) were
collected during distinct trials, then concatenated in the figure.
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50 |26s of Trajning, Single, Unwhitened MAV Error =5.11% MVCFgu
0° 75° , 20° 105°, 120° 135°

%MVC_y,

78s of Training, Multiple, Whitened
50 (+] 50

MAYV Error = 4.05% MVC_
7

90° 105°, 120° 135°

%MVC g,

26 seconds

Time in Seconds

Fig. 2. Top: Sample EMGo-torque results for the shortest (26 s) training duration, piece-wise gain model,
using single-channel unwhitened EMGo processing and a D=2 nonlinear dynamic model (20"“h order).
Bottom:; Sample EMGo-torque results for the longest (78 s) training duration, piece-wise gain model, using
multiple-channel whitened EMGo processing and a 7=3 nonlinear dynamic model (20th order). In each
plot, estimate torque shown in solid line, actual torque shown in dotted line.
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APPENDIX A

Design and Construction of the Experimental Finger Restraint Apparatus
Overview

The experimental finger restraint was custom-built at WPI, based on a design developed by Francois
Martel and Denis Rancourt (Sherbrooke University, Sherbrooke, Quebec, Canada). Apparatus
construction was based around the use of the modular aluminum framing system [10 Series Profiles,
80/20 Inc., Columbia City, IN, U.S.A.]. These modular aluminum profiles allow for easy cutting to a
specified length and then manual assembly using various hardware accessories (angle brackets, screws,
plates, leveling pads, etc.). Modular framing is a particularly strong choice when most/all of the structural
pieces of the apparatus are attached at right angles. Attachment for the force sensor was then assembled
to the framing. A back and side view of the completed experimental finger restraint apparatus is shown
below.
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Fig. 1: Back view with hand/arm secured into the experimental finger restraint apparatus.
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Fig. 2: Side view with hand/arm secured into the experimental finger restraint apparatus.
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Parts List

Label | Quantity 80/20 Inc. Aluminum Framing Systems Part Name [Part Number]

A 2 Restraint Upright: T-slotted Profile (curved), length 8.25 inch [1012]

B 1 Support Beam: T-slotted Profile (rectangle with aspect ratio of 2), length 6 inch
c 1 [Slu%zp%]rt Beam: T-slotted Profile (rectangle with aspect ratio of 2), length 14 inch
D 1 E:lr%zs(s)]Beam: T-slotted Profile (rectangle with aspect ratio of 2), length 8 inch

E 1 [Blaosze(:)]T-slotted Profile (rectangle with aspect ratio of 2), length 7 inch [1020]

F 4 Base: T-slotted Profile (rectangle with aspect ratio of 3), length 7 inch [1030]
Gl 1 Base: T-slotted Profile (rectangle with aspect ratio of 2), length 23 inch [1020]
G2 1 Base: T-slotted Profile (square), length 17 inch [1010]

18 2 Hole 1/8” Inside Corner Bracket [4108]

1 4 Hole Inside Gusset Corner Bracket [4134]

4 2 Hole Joining Strip [4107]

1 Plain End Caps for 1010 [2015-PI]

2 Plain End Caps for 1012 [2022-PI]

~6 Plain End Caps for 1020 [2025-PI]

~8 Plain End Caps for 1030 [2026-PI]

~22 1/4-20 x3/8 Flanged BHSCS Screw & Economy T-Nut [3386]

~7 1/4-20 x1/2 BHSCS Screw & Economy T-Nut [3393]

Table of 80/20 Inc. Aluminum Framing System Parts. Profile parts are cut from stock Series 10
profiles.

" The length of these parts is not critical.

Label | Quantity Omega Engineering, Inc. Load Cell and Amplifier [Part Number]
H 1 Thin Beam Load Cell with 40 Pound Capacity [LCL-040]
J 1 Strain Gage Amplifier with Voltage Output and 110 Vac Power [DMD-465WB]

~140-



Some Notes on Assembling Modular Aluminum Framing Systems

e The primary method for securing parts together in a modular framing system involves screwing a
bracket/plate/etc. (which is a part ordered with the framing system) to a nut that is placed within the
embedded track of the protrusion framing part. The nut must be placed into the framing from an open
end of the part—it cannot be inserted throughout the length of the part. If both ends of the part have
already been obstructed (e.g., as the part is incorporated into the apparatus), then the nut cannot be
inserted. Instead, the apparatus must be partially de-constructed to insert the nut. Therefore, it is
advantageous to pre-place the nuts within the appropriate track for each such piece of the system. In
some cases, pre-placement of the nuts is not sufficient; rather, it is best to loosely secure one side of

the attachment bracket/plate, etc.

e Itis best to install end caps only after the complete apparatus is assembled. Once end caps are

installed, nuts cannot be inserted using that end of the protrusion.

e |tis best to only secure nuts to a modest torque until the entire apparatus is completed. Doing so may
help the structure maintain its proper shape and is useful if portions of the structure need rework or

access (e.g., to insert a nut).

Assembly of the Primary Frame

As shown in Fig. 3, the restraint contained a rectangular base (part “E”, part “F1”, parts “G1-2”), a
cushioned elbow rest plate (parts “F2-3”), a restraint upright (parts “A1-2""), and beams to secure the load

cell and amplifier (parts “B”, “C” and “D”).

~141-



(”AZ")
(”H")
(”B")

(”J")

(”F3")

(an) (”|") (”E") (”Fl”) (”G].") (”GZ”) (lle")

Fig. 3: Side view of the experimental apparatus labeling parts A - J of the assembly.

Two-hole joining strips and the 1/4-20 x1/2 BHSCS screws & economy T-nuts are used to tie parts “A1”
and “A2” together and secure the load cell (part “H”) to the support beam (part “B”). Two strips are used

in total, as marked in Fig. 4.
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Fig. 4: Side view of the experimental apparatus labeling locations of the 2 Hole Joining strips and 1/4-
20 x1/2 BHSCS screws & Economy T-nuts used to tie parts “A1”” and “A2” together and secure the
load cell (part “H”) to the support beam (part “B”).

The support beam (part “B”) is secured to the cross beam (part “D”) using the 4 hole inside gusset corner
bracket and 1/4-20 X 1/2 BHSCS screws & economy T-nuts. One corner bracket of this kind is used, as
marked in Fig. 5.
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Fig. 5: Side view of the experimental apparatus labeling locations of the 4 Hole Inside Gusset Corner
bracket and 1/4-20 X 1/2 BHSCS screws & Economy T-nuts used to secure the support beam (part
“B”) to the cross beam (part “D”).

Parts C, D, E, F1, G1, G2, and F2 are secured to each other using the 2 hole 1/8” inside corner brackets
and 1/4-20 x3/8 flanged BHSCS screws & economy T-nuts. 18 corner bracket of this kind are used in
total, as marked in Fig.6.
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Fig. 6: Side view (a) and bottom view (b) of the experimental apparatus labeling locations of the 2
Hole 1/8” Inside Corner brackets and 1/4-20 x3/8 Flanged BHSCS screws & Economy T-nuts used to
secure the base (Parts C, D, E, F1-2, and G1-2).
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A custom piece (part “I”) is attached to the load cell (part “H”) used a regular screw, and the amplifier
(part “J”) is secured to part “C” using a long regular screw and a 1/4-20 Economy T-Nut, as marked in
Fig. 7.

Part “F3” is not secured to the apparatus. It can be put on or taken away from part “F2” to adjust the
height of the elbow. Part “F3” is made of two pieces of the same size of part “F1”or “F2”. Two 2-hole
joining strips and 1/4-20 x3/8 flanged BHSCS screws & economy T-nuts are used to tie the two pieces

together, as marked in Fig. 8.

When appropriate, end caps are inserted into the end of each aluminum beam.

~146-



(b)

Fig. 7: (a) Aerial view of the custom piece (part “I”’) and load cell (part “H”) labeling locations of the
regular screw. (b) Aerial view of the amplifier (part “J”) labeling locations of the long regular screw

and 1/4-20 Economy T-Nut.
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Fig. 8: Aerial view of part “F3” labeling locations of the 2 Hole Joining strips and 1/4-20 x3/8
Flanged BHSCS screws & Economy T-nuts.
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APPENDIX B

Design and Construction of the Experimental Wrist Restraint Apparatus
Overview

The experimental wrist restraint device was used for simultaneous measurement of constant-posture wrist
flexion-extension, ulnar-radial deviation and pronation-supination. The wrist restraint device was custom-
built at WPI, based on a design developed by Francois Martel and Denis Rancourt (Sherbrooke University,
Sherbrooke, Quebec, Canada). Apparatus construction was based around the use of the modular
aluminum framing system [10 Series Profiles, 80/20 Inc., Columbia City, IN, U.S.A.]. These modular
aluminum profiles allow for easy cutting to a specified length and then manual assembly using various
hardware accessories (angle brackets, screws, plates, leveling pads, etc.). Modular framing is a
particularly strong choice when most/all of the structural pieces of the apparatus are attached at right
angles. Attachment for the load cell was then assembled to the framing. A back and a side view of the
completed experimental wrist restraint apparatus is shown in Fig.1 and Fig.2.
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Fig. 1: Back view with hand/arm secured into the experimental wrist restraint apparatus.
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Fig. 2: Side view with hand/arm secured into the experimental wrist restraint apparatus.
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Parts List

Label | Quantity 80/20 Inc. Aluminum Framing_] Systems Part Name [Part Number]
A 1 Support Beam: T-slotted Profile (rectangle with aspect ratio of 2), length 5 inch
[1020]

B 1 Base: T-slotted Profile (rectangle with aspect ratio of 2), length 12 inch [1020]
C 2 Base: T-slotted Profile (rectangle with aspect ratio of 3), length 7 inch [1030]
D 1 Base: T-slotted Profile (square), length 14 inch [1010]
E 1 Base: T-slotted Profile (rectangle with aspect ratio of 2), length 20 inch [1020]
J 1 Base: T-slotted Profile (square), length 5 inch [1010]

8 2 Hole 1/8” Inside Corner Bracket [4108]

1 4 Hole Inside Gusset Corner Bracket [4134]

1 2 Hole Joining Strip [4107]

1 Plain End Caps for 1010 [2015-PI]

4 Plain End Caps for 1020 [2025-PI]

4 Plain End Caps for 1030 [2026-PI]

18 1/4-20 x3/8 Flanged BHSCS Screw & Economy T-Nut [3386]

4 1/4-20 x1/2 BHSCS Screw & Economy T-Nut [3393]

Table of 80/20 Inc. Aluminum Framing System Parts. Profile parts are cut from stock Series 10

profiles.

Label | Quantity AMTI Load Cell and Amplifier [Part Number]
F 1 Multi-Component Force Transducer [MC3A-6-250]
* 1 MiniAmp Strain Gauge Amplifier [MSA-6]

* Shown in Fig. 4, it is attached to part “F”.

Label

Quantity

Handle [McMaster-Carr Part Number]

G

2

Phenolic Tapered Handles: Fluted, 1/4”-20 x 3/8” threaded stud, 1-1/8” diameter
[62385K32]
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Some Notes on Assembling Modular Aluminum Framing Systems

e The primary method for securing parts together in a modular framing system involves screwing a
bracket/plate/etc. (which is a part ordered with the framing system) to a nut that is placed within the
embedded track of the protrusion framing part. The nut must be placed into the framing from an open
end of the part—it cannot be inserted throughout the length of the part. If both ends of the part have
already been obstructed (e.g., as the part is incorporated into the apparatus), then the nut cannot be
inserted. Instead, the apparatus must be partially de-constructed to insert the nut. Therefore, it is
advantageous to pre-place the nuts within the appropriate track for each such piece of the system. In
some cases, pre-placement of the nuts is not sufficient; rather, it is best to loosely secure one side of

the attachment bracket/plate, etc.

e Itis best to install end caps only after the complete apparatus is assembled. Once end caps are

installed, nuts cannot be inserted using that end of the protrusion.

e |tis best to only secure nuts to a modest torque until the entire apparatus is completed. Doing so may
help the structure maintain its proper shape and is useful if portions of the structure need rework or

access (e.g., to insert a nut).

Assembly of the Primary Frame

As shown in Fig. 3, the apparatus contained a rectangular base (parts “B”, “C1”, “D”, “E” and “J”), an
elbow rest plate (part “C2”), and beam to secure the load cell and amplifier (part “A”). In the experiment,

a cushion will be put on part “C2”, as shown in Fig. 2.

Parts “G1-2” are used to restrain the wrist. They are secured to part “C1” using Economy T-Nut from
80/20 Inc. Aluminum Framing Systems. The position of part “G2” can be adjusted for each individual

subject.
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Fig. 3: Side (a) and end (b) views of the experimental apparatus labeling parts A - J of the assembly.
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Fig. 4: Top view of the experimental apparatus with strain gauge amplifier attached.




Parts “A” and “B” are tied together using one 2-hole joining strip with the 1/4-20 x3/8 Flanged BHSCS
screws & economy T-nuts and one 4-hole inside gusset corner bracket with 1/4-20 x1/2 BHSCS screws &

economy T-nuts, as marked in Fig. 5.

Fig. 5: Front view of the experimental apparatus labeling locations of the 2 Hole Joining strip with
1/4-20 x3/8 Flanged BHSCS screws & Economy T-nuts and the 4 Hole Inside Gusset Corner Bracket
with 1/4-20 x1/2 BHSCS screws & Economy T-nuts used to tie part “A” and part “B” together.

Parts B, C1-2, D, E and J are secured to each other using the 2-hole 1/8” inside corner brackets and 1/4-20
x3/8 flanged BHSCS screws & economy T-nuts. Eight corner brackets of this kind are used in total, as
marked in Fig. 6.
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Fig. 6: Bottom view of the experimental apparatus labeling locations of the 2 Hole 1/8” Inside Corner

brackets and 1/4-20 x3/8 Flanged BHSCS screws & Economy T-nuts used to secure the base (Parts B,
C1-2, D, E and J).

The load cell (part “F”) is secured to support beam (part “A”) using two screws coming with the load cell.
In Fig. 7(a), only the top screw is shown. The other screw is on the bottom.

A custom-built epoxy grip (part “H”) is attached to a custom-built metal piece (part “I”’) using two regular

screws. In the left side of Fig. 7(b), only the top screw is shown. The other screw is on the bottom.

Part “I”” is secured to the load cell (part “F”’) using two regular screws. In the right side of Fig. 7(b), only

the top screw is shown. The other screw is on the bottom.

A thin Velcro strap is tightly attached to the epoxy grip (part “H”) using screws not shown in Fig. 7. In
the experiment, the Velcro strap should be tightly wrapped around the posterior of the hand, just proximal
to the knuckles, to secure the hand to the epoxy grip.

When appropriate, end caps are inserted into the end of each aluminum beam.
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Fig. 7: (a) Top view of the custom pieces (part “I”’ and “H”’) and load cell (part “F”) labeling locations
of screws. (b) Zoomed-in view of the dash-boxed part in (a).
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