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Abstract 

This dissertation of various aspects of electromyogram (EMG: muscle electrical 

activity) signal processing is comprised of two projects in which I was the lead 

investigator and two team projects in which I participated. The first investigator-led 

project was a study of reconstructing continuous EMG discharge rates from neural 

impulses. Related methods for calculating neural firing rates in other contexts were 

adapted and applied to the intramuscular motor unit action potential train firing rate. 

Statistical results based on simulation and clinical data suggest that performances of 

spline-based methods are superior to conventional filter-based methods in the absence of 

decomposition error, but they unacceptably degrade in the presence of even the smallest 

decomposition errors present in real EMG data, which is typically around 3–5%. Optimal 

parameters for each method are found, and with normal decomposition error rates, ranks 

of these methods with their optimal parameters are given. Overall, Hanning filtering and 

Berger methods exhibit consistent and significant advantages over other methods. 

In the second investigator-led project, the technique of signal whitening was applied 

prior to motion classification of upper limb surface EMG signals previously collected 

from the forearm muscles of intact and amputee subjects. The motions classified 

consisted of 11 hand and wrist actions pertaining to prosthesis control. Theoretical 

models and experimental data showed that whitening increased EMG signal bandwidth 

by 65–75% and the coefficients of variation of temporal features computed from the 

EMG were reduced. As a result, a consistent classification accuracy improvement of 3–5% 

was observed for all subjects at small analysis durations (< 100 ms). 

In the first team-based project, advanced modeling methods of the constant posture 

EMG-torque relationship about the elbow were studied: whitened and multi-channel 

EMG signals, training set duration, regularized model parameter estimation and nonlinear 

models. Combined, these methods reduced error to less than a quarter of standard 

techniques. In the second team-based project, a study related biceps-triceps surface EMG 

to elbow torque at seven joint angles during constant-posture contractions. Models 

accounting for co-contraction estimated that individual flexion muscle torques were much 

higher than models that did not account for co-contraction.  
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Chapter 1 

Introduction 

1.1 Background 

1.1.1 Motor unit action potential 

A motor unit (MU) consists of an α-motorneuron originating in the spinal cord and 

the skeletal muscle fibers it innervates. Repeated (albeit not periodic) MU activation 

leads to subsequent mechanical twitches. The summed mechanical activity of many 

concurrently active (typically unsynchronized) MUs produces gross muscle tension. MU 

recruitment refers to increasing the number of those MUs that are active at a specific time. 

Recruitment and average firing rate of individual MUs (discharge frequency, or rate 

coding) are the two schemes used by the central nervous system to control the gross 

tension produced by a muscle. Rate encoding refers to the precise spike timing and firing 

rate describes the time-varying properties of spike timing.  

At the cellular level, cell bodies of α-motorneurons are found in the central nervous 

system (CNS) and their axons extend to the periphery to innervate skeletal muscles. In 

healthy MUs, activation of an α-motorneuron leads to activation of each innervated 

muscle fiber, inducing a brief mechanical twitch. Upper motor neurons send input to α-

motorneurons, which propagate to extrafusal muscle fibers. The corticonuclear tract, one 

pathway between the upper motor neurons and α-motorneurons, connects between the 

cerebral cortex and α-motorneurons. It is found that many parameters associated with 

movement within a body region—such as force, angle and velocity—are represented in 

the motor cortex [Aflalo 2007, Georgopoulos 1982, 1988]. The net membrane current 

induced in an α-motorneuron by various innervation sites determines the firing pattern of 

the MU [Merletti 2004]. All muscle fibers in a MU are of the same fiber type, which is 

defined by biochemical, histochemical and contractile characteristics. Three types of 

motor units [Burke 1971] are found: slow-twitch fatigue-resistant (type I), fast-twitch 

fatigue-resistant (type IIa) and fast-twitch fatigable (type IIb). The activation of a motor 

nerve leads to activation of all associated motor fibers.  
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The motor unit action potential (MUAP) is an all-or-none phenomenon: once the 

recruitment threshold, the stimulus intensity at which a MU begins to fire, is reached, it 

fires fully. In voluntary contractions, force generated is modulated by MU recruitment 

and firing rate [Kukulka 1981]. For small loads requiring less force in healthy subjects, 

slow-twitch low-force fatigue-resistant muscle fibers are recruited earlier and dismissed 

later than fast-twitch high-force or less fatigue-resistant muscle fibers. Henneman’s size 

principle [Henneman 1965] states that MUs are recruited in order of increasing size of 

motorneuron and MU. This size principle, however, has been challenged in observations 

of complex task requirements [Bolhuis 1997], and is considered applicable for tasks with 

little dynamics with isometric contractions.  

1.1.2 Electromyogram 

Electromyogram (EMG) is a technique used for evaluating and recording the 

electrical signal generated by skeletal muscles. It detects the electrical potential generated 

by muscle cells when these cells are electrically or neurologically excited, and is used in 

a variety of applications including prosthesis control, ergonomics, movement and gait 

analysis and sports medicine [Sörnmo 2005]. There are two kinds of EMG in widespread 

use: intramuscular EMG (iEMG) and surface EMG (sEMG). 

The iEMG is a standard clinical tool that uses needle (or wire) electrodes inserted into 

the contracting muscle and can be used to study the morphological properties of motor 

unit action potentials (MUAPs) and distinguish between normal and abnormal activity. 

Studies of recruitment patterns and firing rates of iEMG require high temporal and spatial 

resolution in order to differentiate MU types, among other issues. It provides wide band, 

localized descriptions of the muscle’s electrical activity, utilizing useful spectrum up to 5 

kHz and RMS signal values typically below 1.5 mV. Simulation methods for generating 

EMG signals consistent with clinical observations have been proposed [Hamilton-Wright 

2005], and study of firing pattern statistics associated with muscle fatigue [Kristina 2008] 

have been made. 

EMG decomposition is used to separate the iEMG signal into its constituent MUAP 

trains based on MUAP shapes. Decomposition algorithms use manual and automated 

methods, composed of segmentation and classification stages, possibly followed by 

MUAP classification into pathological situations [Katsis 2006]. Error rates of about 2–5% 

are common [Nawab 2008, Negro 2009, Farina 2001].  
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Various measurements based on EMG decomposition can be derived. Among them 

are MU firing rate and MU synchronization, both containing important information 

related to the brain or CNS. Synchronization occurs when firing times from two or more 

MUs coincide in time more frequently than expected from independent random processes 

and lead to an increase of power at lower frequencies and a relative decrease of power at 

higher frequencies [Weytjens 1984]. Exercise and training may increase the level of 

synchronization of certain muscles [Milner-Brown 1975].  

The sEMG is a non-invasive standard procedure to obtain EMG signal with 

electrodes mounted on the skin surface. It has primary frequency content below 500 Hz 

and the standard deviation of sEMG usually contains the desired information. The sEMG 

measurements sacrifice spatial resolution to gain a gross estimate of a large number of 

MUs. MU firings from a large portion of muscle under surface electrodes are recorded 

simultaneously, making individual MUAPs indiscernible (although closely-spaced, high-

density arrays of electrodes are solving this limitation [Holobar 2009]). Parameters used 

to quantify sEMG signal include mean absolute value (MAV—an estimate of the 

standard deviation), absolute signal length (ASL) and mean spike amplitude. Each EMG 

firing has a similar shape in the time domain (at least for healthy subjects whose muscles 

are not fatigued). Therefore, the sEMG measurements can be considered as a 

superposition of numerous independent, identically distributed (i.i.d.) MU firings, with 

tissue between the site of activation and the skin surface acting as a temporal (lowpass) 

and spatial filter. By virtue of the central limit theorem of probability, sEMG can be 

modeled as amplitude-modulated correlated random noise. 

Neuropathic or myopathic diseases such as hemiparesis [Gemperline 1995, Stålberg 

1997], neuromyotonia [Torbergsen 1996], Parkinson disease [Dietz 1974, Kasi 2009] and 

multiple sclerosis [Rice 1992, Dorfman 1989] may increase firing rate variability, lower 

firing rate or present as bursts of spontaneous firings. They may also change recruitment 

of MUs [Stålberg 1991] or MUAP amplitude [Kuntzer 2004]. Some early attempts have 

been made to differentiate neuromuscular diseases from the EMG signal [Garrault 1987].  
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1.1.3 EMG firing rate analysis 

The MUAP train is modeled as the convolution of firing times and MUAP wave 

shape. In this case, the neural transmission can be modeled as a linear system, with its 

synaptic inputs derived from the summation of all chemical/electrical stimulus from 

contacting neurons and system response the typical temporal neural firing shape. Studies 

of mechanisms of intracellular potential profile have parameterized the sEMG shape 

[Roeleveld 1997, Ruijven 1990] and iEMG [Monsifrot 2013]. Figure 1.1 shows the 

temporal shape of MUAP and fiber AP from a type FF (fast fatigable, IIb) MU recorded 

during stimulation by 40-Hz trains and 30 min recovery period [Sandercock 1985] using 

an iEMG monopolar electrode. Zhou [Zhou 2004] found the average duration of MUAP 

from sEMG to be 5.3±0.63 ms for FDI muscles. 

 

]. 

 

 

During voluntary muscle contraction, a MU normally begins firing at 4–5 pulses per 

second (pps) when initially recruited; with increasing isometric force, the average firing 

rate of bicep brachii increases to a maximum of 20 pps at 100% maximal voluntary 

contraction (MVC) [Clamann 1970, DeLuca 1979].  

Figure 1.1. Representative of MUAP and fiber AP from a type FF (fast fatigable) 

MU recorded stimulation 40-Hz trains and following 30-min recovery period. 

Taken from [Sandercock 1985]. 
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It has been shown [DeLuca 1982] that rate encoding plays a dominant role in first 

dorsal interosseous muscle up to 80% MVC, while recruitment was the major mechanism 

for generating extra force between 40%–80% MVC in deltoid. At a low voluntary 

contraction level, more MUs are recruited asynchronously to generate a larger contraction 

force whereas at a high contraction level, more frequent firings are generated and muscle 

twitches are fused. It was found that the firing rates of active motor units increase 

monotonically with increasing force output [Milner-Brown 1973] and the change of 

firing rate was correlated to the recruitment threshold [Erim 1996]. 

Figure 1.2. Example of the incidences of firing of 21 motor units decomposed from 

the surface EMG signal obtained from the first dorsal interosseous muscle (FDI). 

Each bar represents the firing time of an action potential. The dark solid line 

represents the force output of the FDI muscle. The force in percentage of maximal 

voluntary contraction (MVC) level is scaled on the right and the motor unit number 

in order of recruitment order is listed on the left. B: these are the averaged time-

varying firing rates for each of the 21 motor units calculated from the timing data 

above. Note the hierarchical relationship of the firing rates of each motor unit. The 

earlier recruited motor units (lower-threshold) have greater firing rates. Note that 

the firing rate values at recruitment and de-recruitment are influenced by the filter 

used to smoothen the firing rate values. Taken from [DeLuca 2010]. 
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The firing rate pattern is represented as firing times of each decomposed MU, and the 

property for coherent behavior between firing rates and MU is called common drive—the 

degree to which a single source controls the activities of all MUs in a given pool [DeLuca 

1994]. The “onion skin” pattern refers to the fact that lower-threshold action potentials 

(i.e., those recruited first) always tend to fire at a higher rate than MUs that are recruited 

later, and is interpreted as evidence in favor of common drive shown in Figure 1.2. The 

“onion skin” pattern also implies that for the same increase in force, MUs recruited 

earlier increase their firing rate faster than those recruited later. 

The maximum firing rate measured for clinical usage under constant force contraction 

for healthy subjects is usually below 30 pps [Bigland-Ritchie 1983]. The firing rate of a 

MU in the first dorsal interosseus of the index finger varies between 4–40 pps with 

variation in firing rate below 10 pps/sec for clinical uses [Moritz 2004]. 

Subsequent firings of a MU have timing that is well modeled as an independent 

random process. Neural responses in rate coding are typically treated statistically because 

stimuli are repeated [Basmajian 1985]. Clamann [1967], Perkel [1967] and Masland 

[1969] observed that the majority of inter-pulse intervals (IPIs) of a MUAP train are 

independent during voluntary isometric constant-force non-fatiguing contractions. Persen 

and Kudina [Persen 1972] found no correlation between adjacent IPIs for MUs firing 

below 10 pps, and a negative correlation above 10–13 pps, but DeLuca [DeLuca 1973] 

showed that for MUAP trains recorded from the middle fibers of the deltoid muscle, the 

assumption of IPI independence cannot be rejected.  

The purpose of firing rate calculation is to estimate a time-continuous function from 

the individual timing of firings of a MU. The continuous rate �ሺ�ሻ reflects the change of 

underlying CNS command. Christova [1998] showed that increased firing rates of biceps 

brachii muscle at some elbow angles compensate for the reduction of twitch duration of 

evoked contraction at short muscle lengths. Sinex [1988] showed that the average firing 

rates of auditory-nerve fiber that was tuned to the frequency region near the first formant 

increase at the onset of voicing, closely related to spectral amplitude changes at onset of 

voicing and activation of first formant. In these cases, the CNS uses firing rate to mediate 

functionality of muscle. 

Kamen [Kamen 1995] calculated average firing rate from the five shortest IPIs during 

a steady-state portion of contraction, excluding possible doublets (IPI<10ms) and very 
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long IPIs (>200ms) from the IPI sequence. Gerdle [Gerdle 2008] used median firing rate 

to make the estimate of the mean firing rate less sensitive to possible missed MUAPs. 

Azevedo and Lepora [Azevedo 2005, Lepora 2009] counted the number of spikes in 50 

ms intervals with a sliding window that moves by 10% for electroneurograph (ENG) 

firing rate calculation. Weber [Weber 2011] convolved spike times with a Gaussian 

kernel and resampled at longer intervals. DeLuca [DeLuca 1982] applied a 400 ms 

Hanning filter to a MUAP train to estimate EMG firing rate fluctuation. Berger [Berger 

1986] calculated the heart beat variability by convolving the instantaneous heart rate with 

a rectangle window. Maeto [Maeto 2000] used the integral pulse frequency modulation 

model (IPFM) for simulating electrocardiograph (ECG) variability and Bailón [Bailón 

2011] extended the model to allow for a time-varying threshold parameter in the IPFM.  

1.1.4 EMG-amplitude and signal whitening 

The standard deviation (a.k.a., amplitude) of sEMG waveform has been observed to 

increase with the level of muscle contraction, and has been used as control input of 

proportional control myoelectric prosthesis and in ergonomic studies [Mathiassen 1995]. 

Factors such as temperature [Petrofsky 1980], subcutaneous fat layer thickness 

[Nordander 2003], muscle contraction level [Olson 1968], torque [Karlsson 2001], 

gender and muscle difference [Pincivero 2000], and muscle fatigue [Moritani 1986] each 

affect EMG amplitude. Normalization of sEMG amplitude is needed to enable inter-

subject [Yang 1984], and inter-muscle [Burden 1999] comparisons. EMG amplitude has 

been widely used for prosthesis control [Mann 1981], ergonomics analysis [Dietz 1989, 

Yang 1985] and clinical evaluation [Barry 1990, Ferri 2008]. The relationship between 

EMG amplitude and joint torque has been modeled using neural networks [Song 2005] 

and polynomials [Clancy 1991], and is studied in ergonomics [Jamison 1993] and 

prosthetic control [Luh 1999, Morita 2000]. 

A whitening transformation is a decorrelation transformation that transforms a set of 

random variables with some covariance matrix into a set of new random variables whose 

covariance matrix is the identity matrix. A wide range of methods exists for temporal 

signal whitening, from simple high-pass filtering of sEMG [Potvin 2004] to signal 

detection [Barton 1988]. In general, signal whitening techniques orthogonalize the data 

samples, allowing subsequent analysis to operate on each output sample individually. For 

samples acquired periodically in the time domain, whitening broadens the spectrum of 
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discrete samples and increases statistical bandwidth by decreasing the linear dependency 

of adjacent data samples. This technique had been applied in EMG amplitude estimation 

[Prakash 2005] and EMG to torque estimation [Clancy 2006]. EMG amplitude estimation 

incorporating signal whitening and multiple channel combination was shown to improve 

signal to noise ratio (SNR) by 187% compared with conventional EMG amplitude 

estimation during constant-posture, constant-force, non-fatiguing contractions [Clancy 

1995], and the techniques reduce EMG-torque error by one third [Clancy 1997]. 

 

 

 

 

 

 

Figure 1.3 shows a representative sample of actual and estimated elbow-torque as a 

function of time [Clancy 2012]. Combination of multiple-channel, EMG whitening and 

advanced processor has reduced torque estimation error from 22.10% MVC of 

conventional method to 4.08% MVC. 

  

Figure 1.3. Representative sample of actual and estimated elbow-torque as a function of 

time. Solid line in each graph is actual torque, scaled to percent maximal voluntary 

contraction flexion (%MVCF), for the same 30-s contraction period. Positive values 

denote flexion torque. Dotted line in each plot shows the torque estimated by training a 

model to distinct trials, then using EMG to estimate torque from this trial. (Top) 

Estimates from the best “conventional”method. (Middle) Best single-channel unwhitened 

method. (Bottom) Best multiple-channel whitened method. Taken from [Clancy 2012]. 
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1.2 Contributions of this dissertation 

This dissertation is organized in a compendium form, with each of Chapter 2–12 

being a published (or in preparation) journal/conference manuscript.  Thus, each chapter 

is devoted to an independent aspect of EMG study. Chapter 13 (Appendix) provides more 

background and details of methods / results mentioned in Chapters 2–12. The 

Introduction serves as a brief introduction of background and per-subject overview; the 

body of studies in Chapter 2–12 is published or drafted journal / conference papers; and 

the Appendix elaborates on any data and material not used in the publications of Chapter 

2–12. 

1.2.1 EMG firing rate calculation 

The first investigator-led project resulted in the manuscripts provided in Chapter 2–3.  

This project takes a step back to evaluate the current state of art for calculating EMG 

firing rate (from the EMG firing times), and methods to calculate neural firing rates in 

general. Only the simplest temporal filter with fixed window type and size had been used 

for EMG firing rate estimation, while some more sophisticated methods give more 

accurate depictions of heart rate calculation for electrocardiogram (ECG), and neural 

firings in electroneurogram (ENG). Simulations for generating realistic firing patterns are 

used to evaluate conventional EMG rate methods and those methods previously applied 

to ECG/ENG. Based on these evaluation results, optimal methods with optimal 

parameters are given. 

Chapter 2–3 address how neural firing rates calculated for other types of bioelectric 

signals can be used to calculate firing rate from the firing sequence of iEMG 

decomposition, comparing both their advantages and limitations. In this chapter, methods 

used to obtain a time-varying firing rate from decomposed EMG signals are investigated. 

These methods are applied to both simulated firing times and firing times from 

decomposed clinical data. For simulation, both sinusoidal firing rate modulation and 

more realistic stochastic rate modulation are investigated, using the known “true” firing 

rate from the IPFM model. The rate calculation methods are evaluated within the 

physiological range of firing rates, variation range and variation bandwidth, with iEMG 

decomposition errors representative of the state of the art. Optimal parameters of each 
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method are found under these physiological conditions and their performances are cross-

compared with respect to different decomposition error percentage. 

Formal proofs of a few simple properties of those methods are presented in Appendix. 

The iEMG decomposition error is typically much higher than the error found in ECG 

detection, therefore some preliminary analysis of how missed/spurious firing can affect 

accuracy of firing rates are given in the Appendix, i.e. the difference between a 

presumptuous firing rate that results in missed/spurious firing and the actual firing rate 

based on when the missed/spurious firings take place, ignoring the refractory period. 

Given the mathematical model of the firing times of MUs, we also show approaches to 

estimate more realistic firing patterns such that the resulting IPIs satisfy well established 

properties [DeLuca 1973]. 

Methods for firing rate estimation are evaluated using sinusoidal simulated rate 

modulation spanning from 5 pps to 20 pps, and with stochastic modulation with a 

statistical bandwidth of 1 Hz. Decomposition error ranged from 0–4%. The results show 

that: DeLuca and Berger methods are more applicable to EMG firing rate calculation than 

simple instantaneous method and spline-based methods (Mateo and instantaneous spline). 

The RMS error performances of Berger/DeLuca methods using optimal parameters are 

much lower than the other methods, and spline-based methods perform poorly in 

presence of decomposition errors. Each of these methods smooth the firing rate to some 

extent. Spline-based methods are much more sensitive to smaller errors than LTI-filtering 

based methods, and therefore are unsuitable for EMG analysis since substantial 

decomposition errors (<10% [DeLuca 2006, Holobar 2013]) are standard. 

1.2.2 sEMG whitening for prosthesis control 

The second investigator-led project resulted in the manuscripts provided in Chapter 

4–7. In these chapters, signal whitening techniques are applied as a preprocessing stage to 

pattern classification of motion types of sEMG data collected from intact and amputated 

subjects. Pattern classification of the EMG signal is used as a control mechanism for 

powered, upper-limb prostheses and is under investigation for use in lower-limb 

prostheses. We showed that sEMG classification accuracy is improved due to signal 

whitening. 

EMG classification has long been applied to upper-limb prosthesis control [Saridis 

1982]. Typically a few temporal features are extracted using a sliding window and some 
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frequency measures such as auto-regressive model coefficients are fit to a segment of 

sEMG data, assuming that the properties of the underlying signal are unchanged during a 

short period of time (up to a few hundred milliseconds) when performing some given 

tasks. A classifier based on these features is then trained to determine the user’s intention. 

 

Figure 1.4 sEMG-based motion classification diagram 

Signal whitening had been used for EMG amplitude estimation and EMG to torque 

estimation. It has also been used in lab for proportional control and assessed in constant-

force and various EMG-torque settings [Hogan 1980]. However, whitening has not 

previously been applied to upper-limb prosthesis classification. In Chapter 4–7, we apply 

electromyogram whitening to upper-limb prosthesis classification. We use signal 

whitening as a preprocessing stage to sEMG-based motion classification as shown in 

Figure 1.4. Whitening decreases the variation for temporal features used: mean absolute 

value, average signal length and zero-crossing rate; thereby increasing feature 

discrimination and making the classification task more accurate. In Appendices, 

approaches to estimate statistical bandwidth from sEMG and simulated data in an 

accurate and unbiased way are shown.  

In a study of ten intact subjects and five amputee subjects with up to 11 motion 

classes and ten-electrode channels, we show that using signal whitening as a 

preprocessing stage improves motion classification accuracy by approximately 5%, 

especially at smaller window sizes. This improvement allows for a faster response of 

prosthesis control and higher recognition accuracy. 

1.2.3 Other contributions 

Chapter 8–9 describe a team-based study of advanced models of constant posture 

EMG-torque relationship about the elbow. Advanced EMG amplitude estimation (signal 

whitening and multiple-channel combination), longer duration training sets, regularized 

least squares (pseudo-inverse and ridge regression) and nonlinear models (Wiener model 

and Hammerstein model) are used. When combined, these methods reduce the average 
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estimation error from 19.15±11.5% MVC using conventional methods to 4.65±3.6% 

MVC. 

Chapter 10–12 document another team-based project in which an experimental study 

relating biceps-triceps surface EMG of 12 subjects to elbow torque at seven joint angles 

(spanning 45º-135º) during constant-posture, quasi-constant-torque contractions was 

conducted. Advanced EMG amplitude estimation processors and three nonlinear EMG-

amplitude-torque models were used. The best model that interpolates across angles using 

a parameterized angle dependence achieved an error of 4.17±1.7% MVC, and models 

that accounted for co-contraction estimated individual extension muscle torques ~29% 

higher and individual flexion muscle torques ~68% higher. 

The Appendix of Chapter 13 gives explanations and justifications for certain methods 

used in the previous chapters. Specifically, Section 13.1 gives a brief introduction of 

firing rate calculation methods, Section 13.2 shows firing rate estimations used in 

Chapter 2–3 for constant firing rate conditions; Section 13.3 discusses practical methods 

to estimate statistical bandwidth of a given EMG signal segment; Section 13.4 associates 

the output of the IPFM model with multi-tone input with its true firing instants and 

Section 13.5 takes a brief look at approaches to calculating firing rate when the IPIs are 

stochastic.  

1.3 Summary of Contributions 

In Chapter 2–3, we are the first to quantitatively compare different methods to 

calculate neural firing rate and apply them to the EMG field. Only rudimentary methods 

have been used for EMG firing rate before, presumably because of iEMG’s high 

decomposition error that is absent in other neural firing measures (especially ECG). We 

generalized methods used in other fields as well as EMG firing rate, adapted a method to 

simulate realistic EMG firing sequences and evaluated various firing rate calculation 

methods using both sinusoidal and stochastic simulation rate modulations. 

In Chapter 4–7, we applied signal whitening to the sEMG motion classification 

framework. Signal whitening has been extensively used in information and 

communication theory, and in EMG-amplitude estimation and EMG-force processing; 

but has not been used for pattern recognition within the application of prosthesis control. 

We showed that the coefficient of variation of some temporal features decreased as 

statistical bandwidth increased due to whitening, which supports the observation that 
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motion classification accuracy improves when signal whitening is applied as a 

preprocessing stage. 

In Chapter 8–9, a team-based project relating constant-posture EMG amplitude to 

joint torque, using advanced dynamic models is described that effectively reduces 

estimation error to 4.65±3.6% of MVC flexion, which is less than a quarter of that of 

standard techniques used before. 

In Chapter 10–12, a team-based project relating constant-posture EMG amplitude to 

joint angles, a combination of advanced EMG amplitude estimation processor and a 

dynamic polynomial regression model accounting for co-contraction, are used that 

reduces estimation error below 5% MVC. 

1.4 Summary 

This compendium of studies describes various aspects of electromyogram theory and 

applications. We evaluated methods for firing rate estimation used in the fields of 

EMG/ECG/ENG, in the presence of realistic EMG decomposition errors using simulation 

and clinical EMG data. Our results showed that the simple linear filtering methods of 

Berger/DeLuca are best over a wide range of firing rate conditions and decomposition 

errors. In a different project, we applied signal whitening as a preprocessing stage to 

upper-limb prosthesis control and showed that it decreased the variability of temporal 

features and improved classification accuracy by about 5%. Advanced dynamic/nonlinear 

models for constant-posture EMG amplitude-torque were used and average estimation 

error was reduced by more than 75%. Advanced models for relating biceps/triceps 

surface EMG to elbow torques parameterizing angle dependency achieved lower error.  
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Abstract—The discharge rate of motor unit action potential sequences has been related to fatigue 

and neuromuscular diseases, but typically simple methods are used to do so. We adapted more 

advanced methods used to calculate heart rate to fit in the context of surface electromyogram 

discharge rate calculation. Simulation results with a deterministic discharge rate modulation 

model suggest that parameter fine-tuning is necessary to accurately and robustly estimate 

discharge rate.  

Keywords—surface electromygram; discharge rate; IPFM. 

2.1 Introduction 

The motor unit action potential firing sequence contains information about the central nervous system 

and several neuromuscular diseases have been reported to correlate with firing variability [Gemperline 

1995, Dietz 1974, Rice 1992 and Dorfman 1989]. Simple methods such as filtering the discharge 

sequence [DeLuca 1982] and calculating the average discharge rate [Kamen 1995] have been used for 

estimating electromyogram (EMG) discharge rate. More sophisticated models and methods had been 

used for calculating heart rate [Bayly 1986, Berger 1986 and Maeto 2000], but have not been adapted to 

the EMG application. This omission may be partially due to the fact that detection accuracy of ECG 

complexes is much higher than that of EMG, with effective decomposition methods for EMG being an 

active area of research [Nawab 2008, McGill 2005 and Erim 2008]. Missed and false-detected EMG 

pulses of about 2–5% are common [Erim 2008], even with the best decomposition schemes. The 

http://ieeexplore.ieee.org/xpl/login.jsp?reload=true&tp=&arnumber=6574421&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6574421
http://ieeexplore.ieee.org/xpl/login.jsp?reload=true&tp=&arnumber=6574421&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6574421
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consequences of inaccurate EMG decomposition must be taken into consideration when EMG discharge 

rate is interpreted. 

In this study, we modify methods used to calculate heart rate variability for EMG discharge rate 

estimation. We used the integral pulse frequency modulation (IPFM) model [Bayly 1968] to generate 

discharge sequences from a known deterministic model and evaluated the performance using various 

proposed rate calculation methods. We also artificially introduced missed and false detections into our 

evaluation.  

2.2 Methods 

The IPFM model mimics the dynamic properties of the neural system and has been used to model 

heart rate variation. It can be similarly applied to EMG firing rate. A zero-mean process specifies the 

underlying rate variation. For simplicity, a sinusoidal modulation is used in (2.1): 
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where T is the average inter-pulse interval (s), a/T is the amplitude of discharge rate variation (pps) and ω 

is the variation velocity of discharge rate (radians/s). The discharge sequence comprising of impulses at 

{tk, k } satisfies ktx k )( , and the sampled sequence is one at {[tk]} and zero elsewhere, where the 

notation “[tk]” denotes discrete sampling instant closest to tk. Following this model, the discharge rate is 

given by its derivative )(' tx . [Maeto 2000] 

The instantaneous rate is defined in (2.2a) with step changes at {tk}, which suffers from high 

frequency artifacts. The LeFever method (2.2b) [DeLuca 1982] convolves a 400ms Hanning window 

with the discrete sequence {[tk]}, and the Berger method (2.2c) convolves a rectangular window of 

duration Tc with the instantaneous rate before it is discretized. The Berger method reduces high frequency 

artifacts, but still permits aliasing. Thus we introduce the Berger-variant that convolves a temporal sinc 

function with cut-off bandwidth fc (2.2d) with the instantaneous rate before it is discretized.  
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The Maeto method [Maeto 2000] transforms impulse sequence {tk} to (2.2e) and then spline 

interpolates to obtain continuous function )(ˆ
Lag ty which approximates (2.1). Discharge rate is obtained by 

taking its derivative  tytR LagLag 'ˆ)(  . We define the instantaneous spline method by sampling (2.2a) at 

instants {tk} and spline fitting these values. All these methods are viewed as lowpass filtering, with spline 

interpolation viewed as a time-varying filter whose frequency response depends on the duration between 

interpolated samples. 

2.3 Results 

All methods given except instantaneous rate have one parameter: filter order, cut-off frequency or 

interpolation degree of freedom. The sinusoid IPFM model has three parameters: amplitude, frequency of 

discharge rate variation, and average inter-pulse interval.  

 
Figure 2.1 shows the discharge rate error vs. time, when average discharge rate is 8 pps, a=0.1 and 

1.5 Hz modulation frequency. The LeFever and Berger methods used 400ms windows, the Berger-variant 

method used 10 Hz cutoff frequency and a cubic spline was used for the Maeto and instantaneous spline 

methods. We see that the Laguna rate perfectly follows the true rate, followed by the instantaneous spline 

method that exhibits smaller amplitudes when the discharge rate is changing rapidly. The Berger-variant 

and LeFever methods are capable of following fast-changing portions but fluctuate at peaks with these 

parameters, and the Berger method barely reaches the peak. 

In the presence of missed/false detections, however, the spline-based methods drastically deteriorate 

where these errors take place, due to their capability of tracking fast transients. Figure 2.2 shows the 

 

Figure 2.1. Simulation discharge rate estimation error �̂ሺ�ሻ − �ሺ�ሻ  using 1.5 Hz sinusoid IPFM 

model with average discharge rate of 8 pps and a=0.1. LeFever and Berger methods use 400ms 

window; Berger-variant uses fc=10 Hz; Maeto and instantaneous-spline methods use cubic spline.  
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estimation error vs. detection error rate up to 5% error, with average discharge rates varying up to 10 pps. 

Spline-based methods are more sensitive to detection error than temporal-filtering methods. 

 

Figure 2.2 Average RMSE with different average discharge rate in presence of detection error. 

2.4 Conclusion 

We introduced several methods to calculate EMG discharge rates. While spline-based methods are 

capable of accurately tracking fast rate transitions, they perform poorly in the presence of detection 

errors. Ongoing studies include the use of a stochastic modulation model, variations in method 

parameters, and validation of our methods on clinical data. 
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Comparison of methods for estimating motor unit firing rate times series from 

firing times
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Abstract—The central nervous system regulates recruitment and firing of motor units to modulate 

muscle tension. Estimation of continuous firing rate is typically performed by decomposing the 

electromyogram (EMG) signal into its constituent firing times, then lowpass filtering a constituent 

train of impulses. Little prior work has examined the performance of different estimation methods, 

particularly in the inevitable presence of decomposition errors. The study of electrocardiogram 

(ECG) and electroneurogram (ENG) firing rate presents a similar problem, and has applied novel 

simulation models and firing rate estimation techniques. In this study, we adapted an ENG/ECG 

simulation model to generate realistic EMG firing times derived from known rates, and then 

assessed various firing rate estimation methods. ENG/ECG-inspired rate estimation worked 

exceptionally well when EMG decomposition errors were absent, but degraded unacceptably with 

decomposition error rates of 1% and higher. Typical expert EMG decomposition error rates are 3–

5%. At realistic decomposition error rates, more traditional EMG smoothing approaches 

performed best—when optimal smoothing window durations are selected. This duration decreased 

as the modulation frequency of firing rate increased, average firing rate increased and 

decomposition errors decreased.  Examples of these rate estimation methods on physiologic data 

are also provided. 

Keywords—Electromyogram, decomposition, firing rate, EMG signal processing. 

3.1 Introduction 

It has long been known that the central nervous system regulates recruitment and firing rates of motor 

units (MUs) in order to modulate overall muscle tension [Henneman 1965 and Milner-Brown 1972, 

1973a, 1973b]. For active MUs, firing rate—and other measures derived from firing rate—have been 

studied during many healthy physiologic states, including: constant-force contractions [DeLuca 1996], 
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slowly increasing force contractions [DeLuca 1982a and Milner-Brown 1973b], fatigue [Bigland-Ritchie 

1983], muscle pain [Farina 2004], physical training [Duchateau 2006] and aging [Kallio 2012 and 

Christie 2009]); and during many disease states [Dietz 1974, Dorfman 1989, Gemperline 1995, Kasi 2009 

and Rice 1992]. This research remains ongoing. 

In using the term “firing rate,” we are referring to the firing rate time series as it evolves in time. To 

study firing rate, indwelling electrodes are typically used to record the electromyogram (EMG). This 

EMG is decomposed into its constituent MU firing times, from which individual MU firing rate 

information is extracted. Recently, surface arrays have also been used to identify MU firing times 

[Holobar 2004 and 2007]. In either case, the firing times are generally modeled as a stochastic point 

process, formed as a result of the underlying time-varying firing rate. Most commonly, rather simple 

information extraction techniques have been used and they have been limited to estimating statistical 

parameters of the EMG firing rate time series. Kamen et al. [ Kamen 1995] estimated average firing rate 

during maximum-effort contractions from the five shortest inter-discharge intervals (IDIs) during a 

steady-state portion of contraction, excluding possible doublets (IDI < 10 ms) and very long IDIs (> 200 

ms). Gerdle et al. [Gerdle 2008] used the median firing rate of constant-force contractions to produce an 

estimate that was less sensitive to possible missed MU action potential (MUAP) detections. Navallas et 

al. [Navallas 2014 and 2015] used maximum likelihood estimation to improve computation of the mean 

and standard deviation of the IDI during constant-force contractions. Some researchers have developed 

estimators of the complete (time-varying) firing rate time series. Estimates of the complete time series 

facilitate more advanced characterization of its evolution, beyond what is available in the mean and 

standard deviation values, e.g. the “onion skin” effect, inter-unit synchronization and common drive 

[DeLuca 1982a, DeLuca 1985 and Stashuk 1989]. Lepora et al. [LePora 2009] estimated firing rate from 

the number of firings in contiguous 50 ms time intervals, pooling data across ensemble trials to assure a 

sufficient number of firings per interval. Stashuk [Stashuk 2001] estimated firing rate at each firing time 

as the inverse of a Hamming weighted average of 10 IDIs centered about the firing time, excluding 

outlier intervals. DeLuca et al. [DeLuca 1982a] estimated firing rate by convolving an impulse train 

corresponding to the MU firing times with a non-causal (zero phase) 400 ms duration Hanning filter. 

Physiologically, however, no underlying firing rate time series actually exists; rather, multiple central 

nervous system factors contribute to motor nerve excitation and the resulting MU firing times. Thus, the 

absence of a physiological “gold standard” makes it difficult to objectively assess the accuracy of firing 
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rate time series (and parameter) estimates. We are not aware of rigorous assessment of firing rate time 

series estimation methods within the EMG field. 

More sophisticated models and methods of firing rate time series analysis have been applied to 

studies of the nervous system and heart rate [Bayley 1968, Berger 1986 and Mateo 2000], but have not 

been applied to the EMG application. In particular, the continuous-time integral pulse frequency 

modulation (IPFP) model, adapted for implementation in discrete time, can be used to simulate firing 

times from a firing rate time series. These firing times can be supplied to a firing rate time series 

estimation algorithm, and then the estimated rate compared directly against the known “true” rate at each 

discrete time. Within the ECG literature, robust performance comparisons have been made between 

advanced firing rate estimators using this model: Berger et al. [Berger 1986] estimated heart rate by 

analytically convolving the continuous-time instantaneous heart rate with a rectangular window function 

and then sampling the result, while Mateo and Laguna [Mateo 2000] used spline functions to smooth the 

instantaneous heart rate (directly in discrete time). In each case, the instantaneous rate was defined as the 

inverse of the IDI throughout the duration of each IDI. 

In this study, we used the IPFM model to simulate MUAP firing times from various firing rate 

profiles and then quantitatively evaluated several firing rate time series estimators drawn from both the 

EMG and ECG literature. Existing firing rate estimators drawn from the EMG literature have not been 

previous evaluated in such a manner, while the more advanced ECG firing rate estimators have not 

previously been applied to the EMG field. Our goal was to rigorously cross-compare these estimators. Of 

particular interest was the performance of each rate estimator in the presence of firing 

detection/classification errors. In the ECG field, detection errors are quite low (particularly during 

recording at rest), certainly under 0.7% [Pan 1985]. In contrast, detection errors in EMG decomposition 

are much higher; errors of 3–5% are common even when automated decomposition is augmented by 

exhaustive manual editing [Erim 2008], and considerably higher errors (10–20% or more) occur when 

automated decomposition is used alone or if low amplitude MUAP trains are included [Nawab 2008]. 

Hence, our simulations compared performance across a range of false positive and missed detection rates. 

Lastly, examples drawn from physiologic recordings are used to illustrate the performance of the 

different firing rate estimation algorithms. 
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3.2 Methods 

3.2.1 Integral pulse frequency modulation (IPFM) model and firing rate estimators 

All processing was performed in discrete timebut, as described, may be based on initial continuous-

time steps. Firing timesin our simulations were generated as the output of the IPFM model, given afiring

 rate as input.In acontinuous-valued IPFM model, every two consecutive firing times tk and tk+1 are 

related as [Bayly 1968]: ͳ pulse =  ∫ [ ଴݂ + ெ݂௢ௗሺ�ሻ]௧�+1௧� ݀�       (3.1) 

where ଴݂ > Ͳ  is the average firing rate in pulse/s (pps) and M݂odሺ�ሻ ൒ − ଴݂  is the zero-mean rate 

modulation as a function of time, t, in pps. Thus, the instantaneous firing rate equals ଴݂ + M݂odሺ�ሻ. This 

model is constrained so that the instantaneous firing rate is non-negative. Essentially, the integral sums 

the instantaneous rate until a threshold of 1 pulse is achieved, a simulated firing then occurs and the 

integral resets for accumulation during the next IDI. For a constant firing rate, M݂odሺ�ሻ = Ͳ . 

We implemented this model in discrete time using a discrete sum (rather than an integral) with a 

sampling interval of 1/40960 s. Firing times were rounded to the nearest 1/4096 s, to correspond to the 

sampling rate of the firing rate estimators. For one simulation, this model produced a set of N time-

increasing firing times �⃗� = {�ଵ, �ଶ, … , �ே}. 

Firing rate estimators (in pps) were compared using asampling rate of Fs=4096Hz. Rate estimation 

was made from a N-length firing time vector �⃗� , which was output from the IPFM model. The 

“instantaneous” rate, rInst[n], was computed at each discrete time sample n as the inverse of the IDI in 

which the sample was located. Short duration IDIs correspond to large firing rates; long duration IDIs 

correspond to small firing rates. The rate is constant between firing times and changes in a step fashion 

at the next firing time. If sample n’ falls between firing times tk and tk+1, then the instantaneous rate at 

this sample is: ��௡௦௧[�′] = ଵ௧�+1−௧�        (3.2) 

This estimator has no parameters. 

The “Berger” rate [Berger 1986] begins by considering the continuous-time instantaneous rate, 

defined as above but in continuous-time. Berger et al. show that the continuous-time instantaneous rate 

can be analytically convolved with a rectangular (a.k.a. gate) function and then sampled, producing

 nrBerger . They note that the discrete-time instantaneous rate  nrInst  is actually a sampled version of the 

continuous-time instantaneous rate  trInst , and thus will suffer aliasing at the step transitions occurring 
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at each firing time. Convolution in continuous time with a gate function is a form of lowpass filtering 

that limits the aliasing. Their rate calculation can be thought of as: ��௘௥�௘௥[�] = ��௡௦௧ሺ�ሻ ⊗ Rect்�ሺ�ሻ|௧=ଶ௡்�    (3.3) 

where Rect்�ሺ�ሻ = { ଵଶ்� , −�� ൑ � < ��Ͳ, otherwise . Parameter TB was varied between 20 and 800 ms in 

increments of 20 ms. Note that the lowpass analytic convolution windows the spectrum of the firing rate. 

Berger et al. applied a multiplicative frequency-domain correction (inverse window) at low frequencies 

only—which happen to be the only frequencies applicable to their ECG application. Since we were 

computing a time-domain quantity (firing rate), we did not apply their correction. 

The “DeLuca” rate [DeLuca 1982a] is formed directly in discrete-time. Let time-series ��[�] equal 

one at sample location closest to each firing rate, and zero otherwise. Then,  ��௘௅௨௖�[�] = ��[�] ⊗ Hann்�[�]    (3.4) 

where Hann்�[�]  is a non-causal (zero-phase) Hanning window. The window duration TD varied 

between 20 and 800 ms in increments of 20 ms.  

Mateo and Laguna [Mateo 2000] created a smoothed firing rate by initially assembling the 

previously defined N-length vector of firing times, tF, as the x-axis vector; and the staircase vector {ͳ,ʹ, … , �} as the y-axis vector. A cubic spline fit was made between these non-periodically sampled 

points, and the resulting fit was periodically resampled at Fs=4096 Hz. This signal was differentiated in 

discrete time (first backward difference) to form �ெ�௧௘௢[�]. 
Finally, we implemented a simplified “spline” version of the method of Maeto and Laguna that 

avoided the derivative. The continuous-valued instantaneous rate was sampled at the mid-point of each 

IDI. These non-periodically sampled time (x-axis) and rate (y-axis) value-pairs were cubic spline-fit and 

then resampled periodically at Fs=4096 Hz, forming �௦௣��௡௘[�].  
3.2.2 Simulation methods 

A simulation was performed in which the firing rate was modulated in a (zero-mean) sinusoidal 

fashion, i.e., ெ݂௢ௗ[�] = � sinሺʹ� ௌ݂�௡௘�/�ሻ, where a sets the sine wave magnitude and fSine sets the 

modulation frequency. Sinusoidal evaluation is common in engineering analysis and is relevant to 

repetitive motion profiles. Average firing rates studied were: f0 = 5, 10, 15 and 20 pps. Modulatin 

frequencies studied were: fSine = 0, 0.25, 0.5 and 1 Hz. Modulation magnitude was set to 40% of the 

average firing rate. Each combination of f0, fSine, a and rate estimator parameter was simulated. This 
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sinusoidal modulation was studied in the presence of simulated decomposition errors. Decomposition 

error rates studied were: 0, 1, 2, and 4%, with half of the errors assigned as false negatives (“misses”) 

and half as false positives (extraneous detections). For each simulation, the instantaneous firing rate time 

series, �݂௡௦௧[�] = ଴݂ + ெ݂௢ௗ[�], was used by the IPFM model to produce an initial vector of firing times. 

Errors were then inserted. The number of false positives was computed from the error rate and the 

average firing rate, and these many firings were randomly deleted (each firing having equal probability 

of being deleted). The false positive detections were then inserted randomly into sample times that did 

not already contain detection, again with each time sample having the same probability of insertion. The 

resulting firing times were used by each firing rate algorithm to estimate the firing rate time series. The 

RMS error between the actual and estimated firing rate, excluding firing startup and tail transients, was 

used as the measure of performance. Each simulation was 100 s in duration. For non-zero error rates, 

each simulation was iterated 2000 times, with independent errors generated each iteration. 

Another simulation was performed in which the firing rate was modulated in a zero-mean random 

fashion with predefined average firing rate about the average firing rate. This evaluation is relevant to 

both constant-effort contractions (random IDI variation about an average rate) and more generalized 

motion. A challenge was to design a random firing sequence that is non-negative band-limited and, 

when input to the IPFM model, produced output IDI distribution similar to those found experimentally 

[Clamann 1969, DeLuca 1973 and Englehart 1994]. Most band-limited random signals are produced as a 

Gaussian probability density function. However, the Gaussian PDF includes a tail with negative values 

(out to -∞) that violates the requirements that the instantaneous rate be non-negative. In addition, we 

observed IDI density results that were too clustered about the mean firing interval, perhaps due to rapid 

decay of the Gaussian PDF. A truncated Gaussian PDF fared little better. Alternatively, the uniform 

PDF limits its range of values to appropriately provide only non-negative instantaneous firing rates, but 

similarly limits positive values such that the resulting IDI skewness did not match that of experimental 

data. Thus, we informally evaluated several rate-modulation PDFs. In each case, independent identically 

distributed random variables were generated at a rate sufficient to produce the desired statistical 

bandwidth [Bendat 1971] of 1 Hz, then upsampled to 4096 Hz using spline interpolation. This 

upsampled rate signal was thresholded (the upsampling could produce signal values slightly outside of 

the original region) to arrive at a non-negative instantaneous rate. This upsampling process produces 

limited distortion in the rate signal PDF prior to being input to the IPFM model. We settled on a firing 
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rate modulation PDF mixture with uniform density for negative rates and exponential density for 

positive rates, with equal probability of negative and positive rates (yielding zero-mean modulation): 

��ሺ�ሻ = { Ͳ, � < −�ଵଶ� −� ൑ � < Ͳଵଶ� ݁−�� � ൒ Ͳ       (3.5) 

where x (pps) is the firing rate modulation (it is added to the average firing rate to form the 

instantaneous rate) and parameter a (0<a<1) sets the range of the modulation. This PDF is continuous at 

x=0. A parameter value of a=0.9, corresponding to a modulation range equal to 90% of the mean firing 

rate, was selected to best match experimental distributions. The same average firing rates and 

decomposition error rates as with the sinusoidal analysis were used, as well as the RMS error measure 

between the actual and estimated firing rates. For each case, 2000 iterations of a 200 s trial duration 

were evaluated. Statistical evaluation utilized ANOVA and two-tailed, pairwise and paired t-tests (with 

Bonferroni adjustment for multiple comparisons). 

3.2.3 Experimental examples 

Experimental EMG data and their expert decomposition from a prior study of patients with 

amyotrophic lateral sclerosis (ALS) [Kasi 2009] were used as examples to contrast firing rate estimation 

techniques on actual data. This data-reuse was approved by the WPI Institutional Review Board. In 

brief, quadrifilar needle electrode data were acquired from the first dorsal interosseous muscle during 

constant-posture trials at 20% maximum voluntary contractions (MVC; 15 s duration) and 50% MVC (5 

s). These data were passband filtered between 300 and 10k Hz, then sampled at 25 kHz using 16-bit 

resolution. EMG data were decomposed, including full manual editing, using the publicly-available 

EMGLAB toolbox [McGill 2005]. The toolbox produces an annotation file with the firing times for each 

decomposed MU. 

3.3 Results 

3.3.1 Results contrasting all methods 

Figure 3.1 shows sample firing rate estimators for the Berger, Mateo and spline methods, as well as 

the true firing rate (for simulated data only). For the simulated data, note that the Berger rate—with 

TB=400 ms—follows the lower frequency rate changes well and is not substantially affected by error 

(missed or extra) detections; but has difficulty following rapid rate changes. Alternatively, the Mateo 

and spline methods follow rapid and slow true changes in the simulated firing rate, but produce very 

large errors in the local time region of error detections. These trends seemed characteristic.  Although 
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not shown in these plots, the instantaneous and DeLuca estimators showed performance most similar to 

the Berger method. 

 

 

Figure 3.1: Sample firing rate estimators shown for the simulated sine wave modulated firing rate 

(top), simulated random modulated firing rate (middle) and ALS patient data (bottom).  In plots 

of simulated data, up arrows show the error insertion location of extra firing detections, down 

arrows show the error location of missed firing detections and thick solid black lines show the 

true firing rate vs. time.  In all plots, dashed red line is the Berger method (TB=400 ms), dotted 

brown line is the Mateo method and thin blue line is the spline method. 

Table 3.1 tabulates a complete set of results for the sinusoidal simulations. Note that the 

Berger and DeLuca methods have tunable smoothing parameters which influence performance. 

Only one parameter per method is shown in the table, selected as 400 ms within this table to be 

consistent with the most common selection in the literature [DeLuca 1982a]. The role of these 

parameters will be described in more detail subsequently. The Mateo and spline techniques do 

not have parameters.  In Table 3.1, the trend was for average errors to increase with 
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decomposition error rate, average firing rate and modulation frequency. A three-factor ANOVA 

was conducted for each of the five methods shown in the table, using the factors of: four 

decomposition error rates, three average firing rates and three modulation frequencies. For each 

comparison, each of the three main effects was significant (p<10
-5

), but there were significant 

interactions. For the instantaneous, Mateo and spline methods, there was one significant 

interaction—a two-way interaction between decomposition error rate and average firing rate 

(p<10
-6

).  For the Berger and DeLuca methods, all two-way interactions and the three-way 

interaction were significant (p<10
-6

). The interactions confound the statistical interpretation. 

Hence, comparison between methods was next evaluated. When there were no decomposition 

errors, the Mateo and spline methods were clearly superior to the other three, with errors 

consistently near 0 pps for all conditions.  (No statistical test is appropriate, as these results are 

deterministic.) At decomposition error rates of 1% and above, the Mateo and spline methods 

exhibited much higher errors than each of the other three methods; in fact, all average errors for 

the Mateo and spline methods exceeded their corresponding average firing rate. Within each 

table row, a paired t-test compared results between the Mateo (or spline) method and, separately, 

each of the instantaneous, Berger and DeLuca methods. Each of these six paired comparisons 

was significant (p<0.001). 

Table 3.2 tabulates a complete set of results for the random simulations, again using 400 ms 

smoothing windows for the Berger and DeLuca methods. Average errors tended to increase with 

decomposition error rate and average firing rate. A two-factor ANOVA was conducted for each 

of the five methods shown in the table, using the factors of: four decomposition error rates and 

three average firing rates. For each comparison, each of the two main effects was significant 

(p<10
-6

); but so was the two-way interaction (p<10
-6

), except for the Berger method.  Thus, 

comparison between targeted pairs of methods was next evaluated. When there were no 

decomposition errors, the Mateo and spline methods exhibited lower average errors than the 

other three methods, else they exhibited higher average errors.  Thus, within each table row, a 

paired t-test compared these observations between the Mateo (or spline) method and, separately, 

each of the instantaneous, Berger and DeLuca methods. Each of these six paired comparisons 

was significant (p<10
-6

). 

The simulation results of Figure 3.1 and Tables 3.1 and 3.2 show that the Mateo and spline 

methods are superior when there are no decomposition errors, but greatly inferior at 
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decomposition error rates of 1% or more. As noted previously, error-free decomposition is not 

realistic for EMG decomposition. Decomposition error rates are reported to be 3–5% after 

exhaustive manual editing [Erim 2008] and well above that (10–20%) otherwise [Nawab 

2008]. Thus, we conclude that the excellent performance of the Mateo and spline methods on 

error-free decompositions is not applicable to firing rate computation for EMG. Our 

remaining results will, therefore, concentrate on the other three methods. 

 

Figure 3.2 Optimal window duration for Berger and DeLuca methods for sinusoidal simulations. 

Results for a different decomposition error rate, as titled, are shown in each of the four plots. 

Each plot shows results as a function of modulation frequency. Key at lower right delineates each 

average firing rate. 
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Decomp Err 

Rate (%) 

Ave Firing 

Rate (pps) 

Modulate 

Freq (Hz) 

Error Mean ± Standard Deviation (pps) for Firing Rate Estimator: 

Instantaneous  Instr  Berger  
Bergerr  

TB = 400 ms 

DeLuca  DeLucar  

TD = 400 ms 

Mateo 

 Mateor  

Cubic Spline 

Spline  
Spliner  

Cubic Spline 

0 

5 

0 0.00 0.00 0.00 0.00 0.00 
0.25 0.14 0.10 0.76 0.00 0.01 

0.5 0.27 0.38 0.75 0.00 0.04 

1 0.53 1.13 0.74 0.01 0.14 

10 

0 0.00 0.00 0.01 0.00 0.00 

0.25 0.14 0.19 0.11 0.00 0.01 

0.5 0.27 0.71 0.12 0.00 0.02 

1 0.54 2.19 0.29 0.00 0.08 

20 

0 0.00 0.00 0.01 0.00 0.00 

0.25 0.14 0.37 0.04 0.01 0.01 

0.5 0.27 1.38 0.14 0.01 0.01 

1 0.55 4.35 0.56 0.01 0.04 

1 

5 

0 1.07 ± 0.79 0.26 ± 0.01 0.47 ± 0.02 6.86 ± 20.9 5.83 ± 18.2 
0.25 0.86 ± 0.72 0.24 ± 0.01 0.85 ± 0.01 5.08 ± 17.5 4.22 ± 14.4 

0.5 1.12 ± 0.81 0.47 ± 0.02 0.88 ± 0.01 6.85 ± 18.9 5.61 ± 15.5 

1 1.03 ± 0.70 1.15 ± 0.00 0.83 ± 0.01 5.36 ± 19.5 4.44 ± 16.0 

10 

0 2.00 ± 1.20 0.34 ± 0.02 0.61 ± 0.02 12.1 ± 23.1 10.2 ± 19.2 

0.25 1.99 ± 1.19 0.40 ± 0.02 0.62 ± 0.02 12.8 ± 26.5 10.7 ± 22.0 

0.5 1.99 ± 1.18 0.79 ± 0.02 0.62 ± 0.02 12.8 ± 27.4 10.6 ± 22.6 

1 2.1 5± 1.36 2.22 ± 0.01 0.68 ± 0.02 14.9 ± 31.3 12.2 ± 25.5 

20 

0 4.01 ± 1.62 0.49 ± 0.03 0.86 ± 0.03 25.4 ± 30.8 21.3 ± 25.6 

0.25 4.00 ± 1.64 0.63 ± 0.03 0.87 ± 0.03 25.5 ± 32.3 21.4 ± 26.9 

0.5 3.98 ± 1.53 1.49 ± 0.03 0.88 ± 0.03 25.3 ± 30.2 21.1 ± 25.0 

1 4.13 ± 1.79 4.38 ± 0.01 1.04 ± 0.03 27.0 ± 34.9 22.4 ± 28.8 

2 

5 

0 1.47 ± 1.00 0.33 ± 0.01 0.61 ± 0.02 10.3 ± 25.0 8.62 ± 20.8 
0.25 1.46 ± 1.00 0.35 ± 0.02 0.96 ± 0.01 11.9 ± 40.4 9.81 ± 33.0 

0.5 1.48 ± 0.93 0.51 ± 0.02 0.96 ± 0.01 11.7 ± 30.0 9.56 ± 24.2 

1 1.62 ± 1.34 1.18 ± 0.01 0.96 ± 0.02 12.8 ± 34.0 10.5 ± 27.5 

10 

0 2.94 ± 1.45 0.48 ± 0.03 0.86 ± 0.03 20.3 ± 32.8 17.0 ± 27.2 

0.25 3.03 ± 1.60 0.53 ± 0.03 0.87 ± 0.03 24.4 ± 46.0 20.3 ± 38.3 

0.5 3.02 ± 1.53 0.87 ± 0.03 0.87 ± 0.03 23.3 ± 37.8 19.3 ± 31.1 

1 3.06 ± 1.53 2.25 ± 0.01 0.92 ± 0.03 25.5 ± 66.6 20.8 ± 56.8 

20 

0 5.80 ± 1.73 0.69 ± 0.04 1.22 ± 0.04 40.9 ± 40.6 34.3 ± 33.8 

0.25 5.75 ± 1.79 0.81 ± 0.04 1.22 ± 0.04 43.0 ± 143 36.0 ± 121 

0.5 5.84 ± 1.79 1.58 ± 0.05 1.23 ± 0.04 41.7 ± 38.7 34.8 ± 32.0 

1 5.86 ± 2.14 4.41 ± 0.02 1.36 ± 0.04 42.9 ± 41.8 35.5 ± 34.2 

4 

5 

0 2.25 ± 4.79 0.47 ± 0.03 0.86 ± 0.02 18.6 ± 42.1 15.5 ± 35.3 
0.25 2.22 ± 1.67 0.48 ± 0.03 1.14 ± 0.02 19.4 ± 42.1 16.0 ± 34.5 

0.5 2.15 ± 1.08 0.62 ± 0.03 1.13 ± 0.02 19.5 ± 36.2 15.8 ± 29.1 

1 2.22 ± 1.16 1.23 ±0.01 1.13 ± 0.02 21.2 ± 59.7 17.3 ± 49.7 

10 

0 4.34 ± 2.29 0.68 ± 0.04 1.22 ± 0.04 36.0 ± 41.4 29.9 ± 34.2 

0.25 4.38 ± 1.73 0.72 ± 0.04 1.22 ± 0.04 38.9 ± 52.7 32.4 ± 43.6 

0.5 4.34 ± 2.30 1.01 ± 0.04 1.23 ± 0.04 39.8 ± 57.3 32.8 ± 46.4 

1 4.42 ± 3.51 2.31 ± 0.02 1.26 ± 0.04 40.5 ± 69.1 33.0 ± 55.9 

20 

0 8.48 ± 3.03 0.98 ± 0.05 1.72 ± 0.05 69.7 ± 64.4 58.0 ± 53.2 

0.25 8.45 ± 2.07 1.08 ± 0.06 1.72 ± 0.05 70.7 ± 69.3 58.9 ± 57.5 

0.5 8.49 ± 3.19 1.76 ± 0.06 1.74 ± 0.05 69.8 ± 62.6 57.9 ± 52.1 

1 8.53 ± 2.50 4.48 ± 0.02 1.84 ± 0.06 72.6 ± 60.9 59.6 ± 49.8 

Table 3.1 Mean ± standard deviation RMS errors from sinusoidal simulations. Results when the 

decomposition error rate was 0% show no standard deviations, as these results are deterministic (no 

random errors). Lowest average error bolded within each row. 
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Decomp. 

Error Rate 

(%) 

Ave. Firing 

Rate (pps) 

                                    Mean ± Std. Dev. Error (pps) for Firing Rate Estimator: 

Instantaneous 

 Instr  

Berger 

 ,Bergerr  

TB = 400 ms 

DeLuca 

 ,DeLucar  

TD = 400 ms 

Mateo 

 ,Mateor  

Degree = 2 

Spline 

 ,Spliner  

Degree = 2 

0 
5 1.30 ± 0.06 3.32 ± 0.19 1.15 ± 0.04 0.50 ± 0.07 0.74 ± 0.04 

10 1.54 ± 0.08 6.64 ± 0.37 1.44 ± 0.08 0.21 ± 0.06 0.65 ± 0.04 

20 1.74 ± 0.10 13.3 ± 0.77 2.66 ± 0.16 0.21 ± 0.07 0.66 ± 0.05 

1 
5 1.84 ± 0.60 3.33 ± 0.23 1.26 ± 0.04 15.8 ± 38.3 12.3 ± 32.2 

10 2.96 ± 1.08 6.66 ± 0.37 1.61 ± 0.08 37.6 ± 77.5 27.2 ± 52.3 

20 5.28 ± 1.63 13.3 ± 0.76 2.87 ± 0.16 68.1 ± 350 51.2 ± 290 

2 
5 2.29 ± 0.96 3.34 ± 0.19 1.34 ± 0.04 33.2 ± 87.3 24.9 ± 62.7 

10 4.02 ± 1.31 6.67 ± 0.37 1.77 ± 0.08 68.4 ± 146 50.4 ± 107 

20 7.35 ± 1.75 13.4 ± 0.76 3.07 ± 0.16 109 ± 140 79.9 ± 97.7 

4 
5 3.12 ± 1.50 3.37 ± 0.19 1.51 ± 0.04 60.4 ± 111 45.5 ± 83.9 

10 5.56 ± 2.49 6.72 ± 0.64 2.04 ± 0.08 114 ± 164 83.2 ± 129 

20 10.4 ± 2.87 13.4 ± 0.76 3.44 ± 0.17 194 ± 348 140 ± 227 

Table 3.2 Mean ± standard deviation RMS errors from stochastic simulations. Lowest average error 

bolded within each row. 

3.3.2 Optimal selection of window duration for the Berger and DeLuca methods 

Next, selection of the optimal smoothing window duration is reported for the Berger and DeLuca 

methods. For each simulation case, the window duration exhibiting the lowest average RMS error was 

considered optimal. Figure 3.3 shows optimal window duration results for the sinusoidal simulations and 

Figure 3.4 for the random simulations. We can see that under the same conditions, the optimal Berger 

window duration is about half that of the DeLuca method. For example, with a sinusoidal modulation 

frequency of 0.5 Hz, 2% decomposition error rate and 20 pps average firing rate, a 700 ms window 

duration is optimal for the DeLuca method, while a 220 ms window duration is optimal for the Berger 

method. This ratio is expected since in (3.3), Berger method parameter TB is defined as the half-window 

duration. 
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Figure 3.3 Optimal window duration for Berger and DeLuca methods for random simulations. 

Results shown as a function of average firing rate and decomposition error rate. 

 

Figure 3.4 Mean RMS errors for Berger and DeLuca methods from sinusoidal simulations when 

the optimal window duration is selected for each combination of decomposition error rate, 

average firing rate and modulation frequency. Corresponding results for instantaneous method 

shown in Table 3.1. 
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Figure 3.5 Mean RMS errors for instantaneous, Berger and DeLuca methods from stochastic 

simulations when the optimal window duration (for Berger and DeLuca methods) is selected for 

each combination of decomposition error rate and average firing rate. The instantaneous 

method does not have a selectable parameter. 

Figure 3.4 shows the mean RMS errors for the Berger and DeLuca methods from the sinusoidal 

simulations when the optimal window duration is selected for each combination of decomposition error 

rate, average firing rate and modulation frequency. Table 3.1 lists the corresponding errors for the 

instantaneous method, which has no parameters. Again, statistical comparisons were not performed on 

the results using a decomposition error rate of 0%, as these results are not random. For the remaining 

decomposition error rates, RMS errors for the instantaneous method (Table 3.1) were always statistically 

higher than each of the Berger and DeLuca methods (Figure 3.4) for each condition (p<10
-6

 for each 

paired comparison). We next statistically tested differences between the Berger and DeLuca method 

(Figure 3.4) using paired t-tests. All mean differences were significant (p<10
-6

 for all but two 

comparisons, whose p-values were significant at 0.017 and 0.005).  The actual mean differences were 

rather small at modulation frequencies of 0.5 and 1 Hz. Figure 3.5 shows the mean RMS errors for the 

Berger and DeLuca methods from the random simulations when the optimal window duration is selected 

for each combination of decomposition error rate and average firing frequency, as well as the 

corresponding results for the instantaneous method. Paired comparisons between the three methods for 

each case were each significant (p<10
-5

 for all but two comparisons, whose p-values were significant at 
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0.01 and 0.001). Note that the large number of simulation iterations likely resulting in all result mean 

differences being statistically significant. 

3.3.3 Implications for firing rate applications of physiological data 

Figure 3.6 shows sample normalized power spectral density (PSD) estimates of firing rate, 

computed using Welch periodograms, when the algorithms studied herein were each applied to an 

identical set of MU detections from a patient with ALS. The Mateo, spline and instantaneous methods 

produce similar spectral estimates, which are distinct from the estimate produced by each of the Berger 

and DeLuca methods. This example supports the need for accurate firing rate time series estimates. 

 

Figure 3.6. Example firing rate power spectrum (top=linear scale, bottom=log scale) derived from 

ALS patient data using five different methods of estimating the firing rate time series from 

identical EMG detections. 

3.4 Discussion 

This chapter provides a rigorous model-based comparison of methods for estimating the firing rate 

time series from decomposed EMG signals. In other fields such as nerve signals and ECG, formal 

comparisons have been useful in the development of more accurate rate estimators [Bayley 1968, Berger 

1986 and Mateo 2000]. Within the EMG field, detailed evaluation has been presented when studying the 

mean, median or standard deviation of the firing rate of constant-force contractions [Gerdle 2008, 

Navallas 2014 and 2015]. However, knowledge of the time series allows subsequent estimation of 
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parameters such as firing rate mean, median and standard deviation, while facilitating further general 

analysis of how firing rates evolve in time throughout a contraction, e.g., power spectral analysis, the 

“onion skin” effect, inter-unit synchronization and common drive [DeLuca 1982a, DeLuca 1985 and 

Stashuk 1989]. 

Model-based evaluation of firing rate estimators within the ECG field has led to two spline-based 

algorithms that we evaluated herein within the context of EMG signals. Mateo and Laguna [Mateo 

2000] fit a spline function to a staircase function, whose step locations correspond to the locations of the 

firing events. The derivative of this fit provides a firing rate estimate. We also implemented a direct 

“spline” interpolator, which was simpler in form and avoided the discrete-time derivative computation. 

When EMG decomposition errors were absent, the performance of these two estimators was excellent—

significantly better than all of the other methods. The spline techniques provided smoothing when the 

rate was slowly modulated and the ability to change rapidly when the rate changed quickly. These initial 

results were quite encouraging in the early stages of our investigation. However, each of these rates was 

far inferior once decomposition errors were simulated. These rate estimates reacted too abruptly to the 

missing/extra detections, as shown in the simulation and patient results of Figure 3.1 (as well as the 

detailed results of Tables 3.1 and 3.2, and Figure 3.6). Within the ECG field, error detections are rare 

[certainly under 0.7% [Pan 1985]] and typically associated with artifact regions of an ECG recording. 

During many such regions, accurate rate estimation is either not expected or artifact is detected and 

alternative rate smoothing/interpolation is employed. For EMG, however, missed detections are 

common, especially when the motor unit firing times of multiple units overlap in time. Erim and Lin 

[Erim 2008] reported decomposition error rates of 3–5% after exhaustive manual editing, while Nawab 

et al. [Nawab 2008] reported error rates as high as 10–20% in the absence of manual editing. Hence, it is 

clear that the advanced spline-based methods that excel in ECG applications are simply not appropriate 

for the EMG decomposition problem—at least until decomposition error rates can be brought well 

below 1%. 

For the three remaining firing rate estimation methods, our results (Tables 3.1–3.2 and Figures. 3.4–

3.5) found that the Berger and DeLuca methods consistently produced lower RMS errors than that of the 

instantaneous method—so long as optimal window durations were selected for the Berger and DeLuca 

methods. We examined this performance in simulation. While simulations do not perfectly match the 

firing times of physiologic data, they have the advantage of having a known true firing rate time series 

for comparison. Figure 3.4 shows that the Berger and DeLuca methods (using optimal window 
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durations) had similar performance during sinusoidal modulation at frequencies of 0.5 and 1 Hz. At 

lower modulation frequencies (0 and 0.25 Hz), our implementation of the Berger method produced 

lower errors.  However, we limited the window duration of the DeLuca method to a maximum of 800 

ms [twice the duration recommended by DeLuca et al. [DeLuca 1982a]]. Figure 3.2 shows that the 

DeLuca method utilized this maximum duration at these lower modulation frequencies. Hence, the 

DeLuca method might have produced errors as low/lower than the Berger method at the lower 

modulation frequencies if even longer window durations had been examined. When the firing rate varied 

in a random fashion over a statistical bandwidth of 1 Hz, the DeLuca method produced consistently 

lower errors than the Berger method (each utilizing optimal windows). 

In general, Figures. 3.2–3.3 show that optimal window duration for the Berger and DeLuca methods 

decreased as modulation frequency increased, as average firing rate increased and as decomposition 

error rate decreased. These results elucidate the balance between longer window durations that reduce 

undesired abrupt transitions due to stochastic variation in firing times and/or decomposition errors 

(“variance” errors) vs. shorter window durations which are more capable of following true changes in 

rate (“bias” errors). Window length selection in EMG amplitude estimation makes these same 

considerations, choosing a longer window duration when the amplitude is more constant (e.g., slowly-

varying contractions) and a shorter window duration when the amplitude varies quickly (e.g., rapidly-

varying contractions). In this context, a few researchers developed time-adaptive window length 

smoothing algorithms [Clancy 1999, D’Alessio 1984, Park 1995 and Sanger 2007]. A similar concept 

might help in firing rate time series estimation, so as to choose longer window durations when the rate is 

changing slowly and shorter window durations when the rate is changing rapidly. 

3.5 Conclusion 

Several different techniques for calculating the EMG firing rate time series were compared 

quantitatively, using the integral pulse frequency modulation simulation model. Sinusoidal and random 

rate variation models with artificial decomposition errors were used to assess performance of various 

proposed methods. We found that the Mateo and spline methods outperformed other estimation methods 

in the absence of decomposition errors, but deteriorated rapidly in the presence of even 1% 

decomposition errors; actual errors are typically 3–5% when manually reviewed by experts. Of the 

remaining methods evaluated, the instantaneous rate consistently exhibited higher errors than either of 

the Berger and DeLuca methods—so long as the optimal window duration was selected for the Berger 

and DeLuca methods. When firing rate was modulated as a sinusoid, the Berger method (with optimal 
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window durations selected) exhibited lower error than the DeLuca error, but only at the lowest 

modulation frequencies (0 and 0.25 Hz). However, the DeLuca method may have produced lower error 

had its window duration been permitted to extend beyond 800 ms. When firing rate was modulated 

randomly over a 1 Hz bandwidth, the DeLuca method (with optimal window durations selected) 

exhibited lower error than the Berger method. Overall, each of the Berger and DeLuca methods 

performed well, so long as the optimal window duration was selected. Figures 3.2 and 3.3 provide a 

mechanism for selecting the optimal window length for these methods, based on the characteristics of 

the modulation in firing rate for a particular application. These figures show that optimal window 

duration for the Berger and DeLuca methods decreased as modulation frequency increased, as average 

firing rate increased and as decomposition error rate decreased. 
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Abstract—Time and frequency domain features of the surface electromyogram 

(EMG) signal acquired from multiple channels have frequently been investigated 

for use in controlling upper-limb prostheses. A common control method is EMG-

based motion classification. We propose the use of EMG signal whitening as a 

preprocessing step in EMG-based motion classification. Whitening decorrelates the 

EMG signal, and has been shown to be advantageous in other EMG applications 

including EMG amplitude estimation and EMG-force processing. In a study of ten 

intact subjects and five amputees with up to 11 motion classes and ten electrode 

channels, we found that the coefficient of variation of time domain features (mean 

absolute value, average signal length and normalized zero crossing rate) was 

significantly reduced due to whitening. When using these features along with 

autoregressive power spectrum coefficients, whitening added approximately five 

percentage points to classification accuracy when small window lengths (<100 ms) 

were considered. 

Keywords—coefficient of variation, electromyography, EMG, myoelectric, 

prosthesis, whitening 
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4.1 Introduction 

Approximately 1.5 million people in the U.S. are living with upper or lower limb loss, 

with 230, 000 new cases occurring each year [Adams 1999, Dilingham 2002]. Surface 

electromyogram (EMG) controlled powered hand/wrist/elbow prostheses are used by 

some of these amputees to return partial upper-limb function. Conventional transradial 

prostheses, for example, can use surface EMG amplitudes from the residual forearm 

flexors and extensors to control hand opening and closing. Additional degrees of freedom 

(e.g., wrist rotation) cannot currently be controlled simultaneously in commercial 

systems. Rather, prostheses apply EMG-based or mechanical mode switching, so that the 

same EMG sites sequentially control the additional function(s) [Parker 2006, Varol 

2010]. It is reported that control of more degrees of freedom is the greatest desired 

prosthetic improvement for below-elbow amputees [Atkins 1996]. Accordingly, a pattern 

recognition approach has been emerging over the past several years in which EMG 

signals in the forearm are used to discern desired movements of the hand and wrist 

[Parker 2006, Hudgins 1993, Hargrove 2009, Ahsan 2010, Li 2010, Graupe 1975 and 

Boostani 2003]. Continuous control of multiple degrees of freedom is achieved by 

applying the pattern recognition algorithm in a continuous manner along the EMG signal 

stream. The approach consists of four sequential steps: EMG signal conditioning and 

preprocessing, feature extraction, dimension reduction and pattern classification. 

Common time-domain features that are extracted include the EMG mean absolute 

value (MAV), signal length and zero crossing rate [Hudgins 1993]. Frequency-domain 

features have also been used, e.g. the coefficients of autoregressive power spectral 

modeling of the EMG [Graupe 1975]. In both cases, features are extracted from an 

epoch/window of the EMG signal stream for classification. The extent to which these 

features—or their dimensionally reduced representations—distinguish the different 

motion classes directly relates to the accuracy of the classifier. Limitations in class 

separation in the feature space represent a systematic error (i.e., bias) in the classifier. 

Because the EMG signal presents itself as a stochastic process, a distinct random error 

(i.e., variance) also exists. That is, even if amputees produce a repeatable force pattern in 

their residual limb, the EMG-derived features will vary trial-to-trial due to the inherent 

variations in the EMG signal. 
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Errors due to the stochastic component of the EMG signal are also problematic in the 

related areas of EMG amplitude estimation and EMG-force processing [Clancy 2000, 

Clancy 2002, Hogan 1980a and Hogan 1980b]. In these applications, signal whitening 

has been used to reduce the random error of the processed EMG, with substantial 

performance improvements resulting. Whitening temporally decorrelates the EMG signal, 

increasing the effective number of signal samples (a.k.a., statistical degrees of freedom) 

and reducing the variance in the amplitude estimate. 

Whitening has not previously been applied to the EMG multifunction classification 

problem. In this report, we investigate the hypothesis that EMG signal whitening prior to 

feature extraction will similarly reduce the random error in EMG-based features and lead 

to improved classification accuracy. This effect should be most prominent at short 

window durations, since long window durations already experience high classification 

accuracy (often above 95%, for which little improvement is either available or needed). 

Shorter window durations are relevant, because they reduce the delay between user 

command and prosthesis actuation, permitting higher speed (bandwidth) movement and 

more realistic motion [Farrell 2007]. A preliminary report of this work appeared in [Liu 

2011]. 

4.2 Analytic time-domain feature performance 

For purposes of classification analysis, the random variation of an EMG feature can 

be quantified as the standard deviation of the feature () relative to its mean value (), 

i.e., the feature’s coefficient of variation:CoV = ��. Lower CoVs should facilitate higher 

classification accuracy. An analysis of the CoV of common EMG time-domain 

classification features does not appear to have been previously reported. Thus, we do so 

here. 

A common model of the EMG samples, m[n], from one window is that of a wide 

sense stationary, correlation-ergodic, zero-mean, Gaussian random process [Clancy 2002, 

Hogan 1980a and Kwatny 1970], where n is the sample index and m[∙] is measured in 

millivolts. Without loss of generality, assume that successive model samples are 

independent [Hogan 1980b, Kwatny 1970 and Clancy 1997]. In fact, these samples are 

correlated due to the limited bandwidth of the EMG signal. However, let window length 

NEq represent the equivalent number of independent samples within a window, given by 
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[Bendat 1971]: ��� = ʹ���      (4.1) 

where Bs is the statistical bandwidth of the EMG (Hz) and T is the window length 

(seconds). Since whitening increases NEq via an increase in statistical bandwidth [Hogan 

1980a and Hogan 1980b], the relevant analytic relationship is to determine the CoV vs. 

NEq for each time-domain feature. 

The MAV of an EMG window of NEq samples is defined as: MAV��� = ଵ��� ∑ |݉[݊]|���−ଵ�=଴     (4.2) 

Its CoV is the inverse of the SNR, which has been previously analyzed [Clancy 1999]. 

Inverting the SNR results gives: 

CoVMAV[���] = √ �−ଶଶ��� ≅ ଴.755√���     (4.3) 

The average signal length of NEq samples, in millivolts per second per sample, is 

defined as: SL��� = �����−ଵ ∑ |݉[݊] − ݉[݊ − ͳ]|���−ଵ�=ଵ     (4.4) 

The gain factor 
�����−ଵ, not normally included in the definition of signal length, normalizes 

its values across sampling rates and window lengths. Since the m[n] are zero-mean 

Gaussian, so is each difference term in the sum, but with a doubled variance. An analytic 

form for the sum was not readily apparent due to the correlation between adjacent 

differences, which share a common EMG sample. Hence, the CoV of average signal 

length was approximated numerically in MATLAB by creating 10
6
 replicates of Gaussian 

vectors of size NEq and computing the sample mean and standard deviation of the average 

signal length, across these replica. Window length NEq was varied from 2–2000. The 

resulting CoV values vs. NEq closely fit the model: 

CoV��[���] ≅ ଴.9ଵଵ√���      (4.5) 

The normalized zero crossing rate of NEq samples is defined as the number of 

adjacent samples with different polarity, normalized by the ratio between sampling rate 
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and the number of samples: ZC��� = �����−ଵ ∑ [ͳ − sgnሺ݉[݊]݉[݊ − ͳ]ሻ]���−ͳ�=ଵ   (4.6) 

The gain factor 
�����−ଵ  normalizes the zero-crossing values across sampling rates and 

window lengths, so that its unit is Hz, and sgnሺ�ሻ = {ͳ, � > ͲͲ, � ≤ Ͳ . For independent 

identically distributed Gaussian samples, the probability of a sign change between a pair 

of samples is 0.5. Thus, the number of sign changes in NEq samples follows a Binomial 

distribution with (NEq–1) trials, and its coefficient of variation is [Drake 1967]: 

CoV��[���] = ������ = �����−భ√���−భ4�����−భ���−భమ = ଵ√���−ଵ ≅ ଵ√���   (4.7) 

We see that the CoV for each time-domain feature is (asymptotically) a univariate 

function of the number of equivalent independent samples, in the form of a constant 

divided by √���, where NEq represents the equivalent number of independent samples. 

We expect that signal whitening will increase NEq, thereby reducing CoVs for any given 

window duration, with better classification accuracy hypothesized to result. An 

experimental trial evaluated this hypothesis. 

4.3 Methods 

4.3.1 Experimental methods 

Experimental data from two prior studies were analyzed. The Worcester Polytechnic 

Institute (WPI) Institutional Review Board (IRB) approved and supervised this analysis. 

Data from ten intact-limbed subjects, aged 19–32 years, had been collected at the 

University of New Brunswick [Hargrove 2009]. Briefly, ten adhesive Duotrode
®
 

electrodes (manufactured by 3M) were applied about the circumference of the forearm of 

each intact subject. Twelve equally-spaced locations were marked along the entire 

forearm circumference at 1/3 the distance from the elbow to the wrist, beginning at the 

palmar aspect (see [Hargrove 2009], Fig. 2). The most medial and lateral locations were 

omitted (leaving ten locations). Bipolar electrodes had a contact diameter of 1.4 cm and a 

center-to-center distance of 2 cm. A subject began and ended each trial at rest (fixed 

posture with no motion attempted, muscle effort minimized) with their elbow supported 
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on an armrest. Each trial consisted of two repetitions of the 11 motion classes: 1, 2) wrist 

pronation/supination; 3, 4) wrist flexion/extension; 5) hand open; 6) key grip; 7) chuck 

grip; 8) power grip; 9) fine pinch grip; 10) tool grip; and 11) no motion. Each motion 

class within a trial was maintained for 4 s, and the subject returned to the rest posture for 

a specified inter-motion delay period prior to producing the next motion class. Trials 1–4 

used an inter-motion delay of 3, 2, 1 and 0 s respectively, and trials 5–8 used an inter-

motion delay of 2 s. The eight trials were performed twice and a minimum of two 

minutes inactivity was given between each trial. A general familiarization session was 

provided prior to data collection, typically lasting approximately 15 minutes in duration. 

The EMG data were collected using a custom-built pre-amplification system (Liberating 

Technologies, Inc., Holliston, MA) with a frequency response from 30–350 Hz, and 

sampled at 1000 Hz using a 16-bit ADC.  

The Rehabilitation Institute of Chicago collected EMG data from five subjects aged 

28 to 77 years, who had received unilateral transradial amputation three months to 21 

years prior [Li 2010]. Three subjects were myoelectric prosthesis users, one subject used 

a body-powered prosthesis and one subject had not yet received a prosthesis. A total of 

12 self-adhesive Ag/AgCl snap bipolar electrodes with a 1.25-cm-diameter circular 

contact and center-to-center distance of 2 cm (Noraxon USA, Inc) were used. Eight of the 

12 electrodes were placed around the proximal portion of the forearm over the apex of 

the muscle bulge and the other four on the distal end (see [Li 2010], Fig. 1a). In this 

study, we used only the first ten electrodes, to most closely match the electrode 

placement of the intact-limbed subjects. Only data from the amputated side was used. 

The experiment protocol was the same as that of the intact subjects, including subject 

posture, the general familiarization session and the motion trials. Identical motion trial 

data were available for analysis. The EMG data were transduced using Liberating 

Technologies preamplifiers, bandpass filtered between 5–400 Hz and sampled at 1000 Hz 

using a 16-bit ADC. 

4.3.2 Methods of analysis 

Feature Computation: The trials were segregated into training and testing data, as 

described below. The inter-trial delay segments were removed from data recordings, 

resulting in 22 four–second segments per electrode per trial (two repetitions of 11 motion 
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classes). Each segment was zero-phase notch-filtered (0.4 Hz bandwidth) at the power-

line frequency and its harmonics. When desired, each four–second segment was also 

whitened. To do so, each segment was highpass filtered at 15 Hz, then adaptively 

whitened using an algorithm that was tuned to the power spectrum of each EMG channel 

[12], [23]. Whitening filters were calibrated from a training trial by manually selecting, 

subject-by-subject for each electrode, the trial with the largest MAV. A no motion trial 

was also used to represent resting EMG in the whitening calibration. Prior to feature 

extraction, 0.5 seconds of data were truncated from the beginning and end of each 

segment to account for filter start-up transients. Contiguous, non-overlapping windows 

were formed from the remaining three-second epochs. 

Feature sets were extracted in each window within an epoch. The time-domain feature 

set consisted of the three features described earlier: MAV, average signal length and 

normalized zero-crossing rate. Hysteresis as described in [Hudgins 1993] was applied to 

normalized zero-crossing rate. Specifically, a zero-crossing was not counted if the 

absolute difference between the two adjacent samples did not exceed a fixed threshold 

value. The threshold value was set to approximately 1/6
th

 the average RMS value of the 

no-motion class of all subjects and all electrodes. A frequency domain feature set 

consisted of the estimated AR coefficients of a seventh order AR model [Graupe 1975 

and Neumaier 2001]. A third (combined) feature set concatenated the seven AR 

coefficients and MAV. It has been shown that linear classification models give different 

weights to each feature, and the MAV feature alone tends to have a large amount of 

motion classification power. 

Coefficient of Variation Analysis: CoV values were computed for each of the three 

time-domain EMG features. Because CoV is the ratio between standard deviation and the 

mean of a feature, EMG signals with a small mean value can lead to unstable CoV 

estimates (due to dividing two small numbers in the presence of noise). Thus CoV was 

calculated using only two training trials per channel by manually selecting, subject-by-

subject for each channel, the two trials with the largest MAV. All motion classes were 

considered when searching for the maximum MAV. The sample standard deviation 

divided by the sample mean of the contiguous feature values from a 3 s epoch formed a 

CoV value. The average CoV from the two trials per channel served as the CoV estimate 
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for that channel. Data from the intact subjects were studied separately from those of the 

amputee subjects. CoV values that compared unwhitened to whitened signals were 

computed for the following window durations: 25, 50, 75, 100, 150, 200, 250 and 300 ms. 

Once the CoV had been determined as a function of sample length N, we fit these results 

to the power decay model: CoV[݊] = ܽ/√݊.  

We defined N as the number of samples corresponding to the window duration. The 

number of samples (N) is always greater than the equivalent number of independent 

samples (Neq) due to signal correlation. In practice, this correlation cannot be entirely 

eliminated via whitening. A more direct measure of whitening performance is to assess 

the statistical bandwidth of the EMG before and after whitening. The same 3 s epochs as 

above were used to do so. The discrete-time power spectrum, Smm(k), of each epoch was 

estimated using Welch’s method (window length of 150 ms, Hamming window, 50% 

overlap), where k is the frequency index. The statistical bandwidth was then estimated as 

[Bendat 1971]: �� = Δ�[∑ ���ሺ�ሻ�−భ�=బ ]మ∑ ���మ ሺ�ሻ�−భ�=బ     (4.8) 

where K specifies the range of positive-valued frequencies and Δf = 6.67 Hz is the 

frequency increment. Values from the two trials per channel were averaged. 

Classification Analysis: A linear discriminant classifier was employed. Trials 1–4 of 

the two repetitions were used to train the coefficients of the classifier, and trials 5–8 to 

test classifier performance. The model was trained and tested for each individual subject 

using all features of a feature set, and only test results are reported. Eight window 

durations were used: 25, 50, 75, 100, 150, 200, 250 and 300 ms. We repeated the analysis 

after the EMG signal had been whitened. 

Two global processing variants were also considered. First, the entire analysis was 

repeated using only seven preselected motion classes (the classes denoted above as 

numbers 1–5, 8 and 11), and again using only nine preselected motion classes (1–8 and 

11), thereby giving three motion variations. Second, the entire analysis was repeated 

using a preselected set of six of the electrode channels (channels 1–6, spread around the 

arm circumference), giving two channel variations. 
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4.4 Results 

Coefficient of Variation Results: Figure 4.1 shows a sample 3 s raw EMG epoch, the 

same epoch after whitening, and the spectrum of each of these two signals (normalized to 

the total power in each spectrum). The spectra show how whitening equalizes the 

contributions across frequency, increasing the statistical bandwidth of the signal. Figure 

4.2 shows all CoV results, averaged across subjects, for the three time-domain features, 

together with the standard errors. Lines within the figure show the best fit power decay 

model and the inset tables list the fit errors. The sample size for calculating the CoV and 

standard error was 100 for intact subjects (10 subjects x 10 EMG channels/subject) and 

50 for amputees (5 subjects x 10 EMG channels/subject). The CoV for each feature 

improved (i.e., decreased) with window length and due to whitening, although the MAV 

and SL results were a poor fit to the power decay model. The normalized zero crossing 

rate exhibited substantially lower CoV values than the other two features and fit well to 

the power decay model. CoV values for intact subjects were consistently lower than those 

of amputee subjects. Paired sign tests were conducted between whitened and unwhitened 

features at each window duration and for each of the intact and amputee data sets. All 

comparisons were significant for MAV (p<10
–4

) and for average signal length (p≤0.006 

for intact subjects, p<10
–4

 for amputees). For normalized zero crossing rate, whitened 

features only differed from unwhitened features in intact subjects when the window 

length was ≤50 ms (p<0.002), and in amputees when the window length was ≤ 200 ms 

(p<0.008). 

Table 4.1 shows the results of the statistical bandwidth computations. Whitening 

increased the statistical bandwidth by 65–75%, on average. Statistically, the ten statistical 

bandwidth values per subject (one per electrode) were averaged. These values for 

unwhitened vs. whitened processing were compared using a paired t-test. Results were 

significant for both the intact and amputee subjects (p<10
–4

). 
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Figure 4.1.  Sample original EMG epoch (top), the same epoch after whitening (middle) 

and the normalized spectrum of each (bottom).  The statistical bandwidth, sB , of each 

signal is listed. Data from healthy subject 6, channel 3, fine pinch grip motion, epoch 2. 

Figure 4.2.  Average coefficient of variation (plus or minus one standard error) for the time-

domain features from ten intact and (separately) five amputee subjects. The two recordings per 

channel per subject with the largest MAV EMG were used for this analysis. Lines show fit to 

power decay model: NaN /]CoV[  . Inset tables show fit parameter “a” and fit rms error 
(RMSE). Scale of y-axis differs for normalized zero crossing rate. Sample size is 100 for intact 

subjects, 50 for amputee subjects. 
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 Condition 

Subjects Unwhitened Whitened 

Intact 238.0 ± 49.8 Hz 413.2 ± 73.0 Hz 

Amputee 254.1 ± 53.4 Hz 423.1 ± 52.7 Hz 

Table 4.1 Average ± standard deviation statistical bandwidths. Sample size is 

100 for intact subjects, 50 for amputee subjects. 

 

 

 

 

Classifications Results: Complete classification results were produced for six 

classifier variants (11 or 9 or 7 motion classes vs. 10 or 6 electrodes). Higher accuracies 

were found when fewer motions and/or more electrode channels were included in the 

classifier. Hence, our presentation of results will be limited to the highest (7-motion, 10-

channel) and lowest (11-motion, 6-channel) performing classifiers—all four remaining 

result variants fell between these two extremes. Figure 4.3 shows the average test 

accuracies for intact and amputee subjects, for window lengths between 25 and 300 ms, 

for each feature set with and without whitening. The combined AR-MAV feature set gave 

the highest overall accuracy in each case, and the AR features the lowest. For all feature 

sets, accuracy was generally improved by approximately 5% at shorter window durations 

Figure 4.3.  Average classification accuracies from ten intact (left) and five amputee (right) 

subjects for each of the three feature sets, with and without whitening. The motion-channel 

combinations shown represent the lowest accuracies (fewest channels and most motion classes) 

and highest (most channels and fewest classes). Note the different y-axis scale for each plot. 
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(<100 ms) due to whitening. The improvement was smaller as window duration increased 

further. Accuracy values for intact subject were consistently higher than those of amputee 

subjects. Because sample sizes were small (DoF=9 for ten intact subjects, DoF=4 for five 

amputees) paired t-tests compared unwhitened to whitened processors at each window 

duration. For the AR-MAV feature set and intact subjects, differences were significant 

for: the 7-motion, 10-channel case when the window length was ≤ 300 ms (p<0.009), and 

the 11-motion, 6-channel case for all window lengths except 400 ms (p<0.005). For the 

AR-MAV feature set and amputees, differences were significant for: the 7-motion, 10-

channel case when the window length was ≤ 50 ms (p<0.006), and the 11-motion, 6-

channel case when the window length was ≤ 100 ms (p<0.008). For the TD feature set, 

results were only significant for intact subjects with the 7-motion, 10-channel case when 

the window duration was ≤ 300 ms (p<0.01); and in amputee subjects in the 11-motion, 

6-channel case when the window duration was 25 ms (p=0.004). For the AR feature set 

of amputees, unwhitened vs. whitened result differences were significant in all cases 

when the window length was 25 ms (p<0.006); and in intact subjects with the 7-motion, 

10-channel case when the window duration was ≤ 400 ms (p<0.003). 

4.5 Discussion 

We studied the use of EMG signal whitening in classification algorithms for 

prosthesis control. Signal whitening methods have existed for several years [Clancy 

2000, Clancy 2002, Hogan 1980a and Hogan 1980b], having been shown in the 

laboratory to improve EMG amplitude estimation [Clancy 2000] as well as EMG-force 

estimation [Hogan 1980b]. They had not previously been applied to the EMG 

multifunction classification problem.  Whitening decorrelates the EMG signal in time—

increasing its statistical bandwidth—resulting in a larger number of effective degrees of 

freedom in the data [Bendat 1971]. Essentially, whitening increases the effective sample 

size (NEq) of each individual data epoch, making each epoch more representative of the 

entire sequence. 

Theoretically, the influence of epoch sample size on the MAV feature had been 

previously studied via the SNR (inverse of the CoV) [Clancy 1997]. The CoV decreases 

in a square root fashion with sample size. We extended this analysis to the other two 

time-domain features. The CoV of the average signal length and normalized zero 
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crossing rate also each decrease in a square root relationship with sample size. Our 

theoretic model for normalized zero crossing rate did not include hysteresis. However, 

this effect is generally considered small when an appropriate (small) level of hysteresis is 

applied [Hudgins 1993]. 

In practice, whitening increased statistical bandwidth by 65–75% (Table 4.1) and 

CoV was reduced for each of the three time-domain features (Figure 4.2). However, the 

MAV and average signal length features produced CoV values that did not fit the power 

decay model. Further, our CoV values were consistently much higher than the model 

predictions, based on the statistical bandwidth. For example, for whitened data from 

intact subjects (average bandwidth of 413 Hz from Table I) using a 300 ms window, (4.1) 

and (4.2) can be used to compute an anticipated CoVMAV of 0.048. Our result of ~0.175 

shown in Figure 4.2 is well above this value. Visual inspection of the calibration data 

from both intact and amputee subjects found substantial modulations in EMG amplitude 

within each 3 s epoch. For the MAV and average signal length features, such modulations 

would greatly increase the standard deviation of the contiguous features extracted from 

an epoch, resulting in the observed CoV increase. Recall that intact subjects were not 

provided force feedback; amputee subjects cannot be provided such feedback. While such 

feedback could be provided to the intact subjects, it is generally considered best to train 

classifiers using the same conditions representative of their use—which would exclude 

feedback.  

Consistent with these observations, consider the SNR results of St-Amant et al. [26], 

which were produced by intact subjects utilizing force feedback. The inverse of their 

SNR calculation provides a CoV estimate. Figure 4.4 plots the inverse of their average 

SNR measurements vs. window length, as well as fits to our power decay model. 

Excellent model fits result. Although the St-Amant et al. data are from different muscles 

using a smaller inter-electrode distance, they are supportive of the role of EMG amplitude 

modulation in artificially increasing estimated CoV values. Conversely, the zero crossing 

feature did follow a power decay model as a function of window length and had CoV 

values that followed theoretic expectations. So long as the crossing signal does not have a 

peak or trough near zero voltage, even a modest amount of amplitude modulation will not 
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alter proper identification of the crossing. Hence, zero crossings would not be 

substantially affected by amplitude modulations, as observed in our results. 

 

 

 

 

In any case, the experimental CoV for whitened features was consistently better 

(smaller) than that of unwhitened features for MAV and average signal length, and better 

at shorter epoch lengths for normalized zero crossing rate. Thus, the variability of the 

time-domain features was generally reduced by preprocessing the signal with a whitening 

filter. 

Features with less variability would be expected to lead to more accurate 

classification. However, classification analysis does not solely rely on the CoV of the 

features. Individual features may be weighted differently in the linear classifier, giving a 

larger impact to some features than others; and small changes in the classification model 

space can have varied influence on classification accuracy. 

The classification accuracy results consistently showed an improvement due to 

whitening, when the shorter epoch durations were considered. The shortest epoch 

durations of 25–100 ms generally experienced the greatest improvement—an 

Figure 4.4.  Inverse of average SNR gives an estimate of average coefficient of variation, with 

and without whitening for MAV feature, from the data of St-Amant et al. [St-Amant 1998]. Lines 

show fit to power decay model CoV[݊] = ܽ/√�. Inset table shows fit parameter “a” and fit RMS 
error (RMSE). 
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approximate 4–5% increase in accuracy. It is not surprising that the improvement 

diminishes with increased epoch length, since all accuracies are improving, but cannot 

exceed 100%. Larger sample sizes might be useful in demonstrating significant 

improvements due to whitening at these longer epoch lengths. Consistent with prior 

research [Hargrove 2009 and Li 2010], our results also found that higher accuracies 

resulted when fewer motions and/or more electrode channels were included in the 

classifier. 

Because the performance improvements due to whitening are modest, its inclusion in 

a prosthesis controller should be weighed vs. its costs. Disadvantages/challenges of using 

whitening include its substantial added computation and memory requirements, the need 

to collect calibration data, and possible robustness issues in the presence of high 

frequency noise. Advantages include that whitening is implemented as a stand-alone 

preprocessing step whose output can be feed into all further EMG processing steps, 

accuracy improvements at the shorter epoch durations may facilitate the use of shorter 

epochs thereby reducing prosthesis response time, and that modern signal processing 

hardware is increasingly capable of the required processing demands. A logical next step 

to all of this work is to evaluate whitening within a myoelectric-controlled prosthesis. 

We considered only simple feature vectors and classifiers in this analysis. Many more 

complex features/classifiers have appeared in the literature [Hargrove 2009 and Ahsan 

2010], although their classification performance is not markedly distinct from those 

reported herein. Nonetheless, one would expect that EMG signal whitening would 

similarly improve the performance of those classifiers. Note that the data available to this 

research was collected from EMG electrodes with bandwidth out to 350–400 Hz. This 

bandwidth is common. However, whitened signals have been shown to take advantage of 

a wider bandwidth (out to nearly 2000 Hz in some cases [Clancy 1994 and Liu 2011]), 

with additional performance improvement provided. Future work may wish to utilize a 

wider band EMG data acquisition system. In addition, we calibrated the whitening filters 

from available functional contractions that contained visible amplitude modulations. It 

may be better to collect dedicated calibration contractions at 0% and 50% MVC [12], 

[27].  

In conclusion, we have shown that whitening the EMG signal leads to time-domain 
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features with an increased statistical bandwidth and concomitantly smaller CoV, leading 

to a consistent increase in classification accuracy in both intact and amputee subjects in a 

laboratory evaluation. Whitening added approximately five percentage points to 

classification accuracy at the shortest epoch durations (~25–100 ms). Improvement in 

classification accuracy at these shortest epoch durations is important, as it may allow 

prosthesis control systems to use shorter epochs, thereby improving response time. 
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Abstract—The surface electromyogram (EMG) signal collected from multiple 

channels has frequently been investigated for use in controlling upper-limb 

prostheses.  One common control method is EMG-based motion classification.  Time 

and frequency features derived from the EMG have been investigated. We propose 

the use of EMG signal whitening as a preprocessing step in EMG-based motion 

classification.  Whitening decorrelates the EMG signal, and has been shown to be 

advantageous in other EMG applications.  In a ten-subject study of up to 11 motion 

classes and ten electrode channels, we found that whitening improved classification 

accuracy by approximately 5% when small window length durations (<100ms) were 

considered. 

5.1 Introduction 

The surface EMG has often been used in prosthesis control, ergonomics analysis and 

clinical biomechanics. Whitening has been used as a preprocessor to decorrelate the 

EMG signal.  In the context of EMG-based motion selection for prosthetic control, we 

hypothesized that whitening would provide a decrease in the in-class variation of features 

leading to improved classification accuracy. The present study examined the influence of 

whitening on classification using time and frequency features of the EMG, in particular at 

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5778636
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shorter time durations. Three time domain features: mean absolute value (MAV), signal 

waveform length and zero-crossing rate; and 7th order autoregressive (AR) coefficients 

as frequency features, were used in our study. We observed an accuracy improvement of 

about 5% at smaller window lengths (less than 100 ms) with diminishing returns at longer 

window durations. 

5.2 Methods 

5.2.1 Experimental data and methods 

Data from a prior study [Hargrove 2009] were reanalyzed. The WPI IRB approved 

and supervised this reanalysis. Briefly, ten electrodes were applied transversely about the 

entire circumference of the proximal forearm. A custom electrode amplifier system 

provided a frequency response spanning approximately 30–450 Hz. Ten subjects with 

intact upper limbs began and ended each trial at "rest" with their elbow supported on an 

armrest. Each trial consisted of two repetitions of 11 sequential motion classes: 1, 2) wrist 

pronation/supination; 3, 4) wrist flexion/extension; 5) hand open; 6) key grip; 7) chuck 

grip; 8) power grip; 9) fine pinch grip; 10) tool grip; and 11) no motion. Each motion 

within a trial was maintained for 4 s, after which the subject returned to no motion for a 

specified inter-motion delay period. Trials 1–4 used an inter-motion delay of 3, 2, 1 and 0 

s, respectively, and trials 5–8 used an inter-motion delay of 2 s. A minimum 2-min rest 

was given between trials. EMG data were sampled at 1000 Hz with a 16-bit ADC. Notch 

filters were used to attenuate power-line interference at the fundamental frequency and its 

harmonics. 

5.2.2 Methods of analysis 

The inter-trial delay segments were removed from the data recordings, resulting in 22, 

four-second epochs per electrode, per trial (two repetitions of 11 motion classes). For all 

features, 0.5 seconds of data were truncated from the beginning and end of each epoch. 

Contiguous, non-overlapping windows were formed from the remaining 3-second epoch 

segments.  

Feature sets were computed for each window within an epoch. A time-domain feature 

set consisting of three features per window—MAV, signal length and zero-crossing 

[Hudgins 1993] rate—was evaluated. A frequency domain feature set consisted of seven 

features per window, comprised of the coefficients of a seventh order autoregressive 
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(AR) power spectral density estimate [Neumaier 2001]. A third feature set concatenating 

the seven frequency domain features and the MAV was also evaluated. 

Trials 1–4 were used to train the coefficients of the classifier, and trials 5–8 were used 

to test classifier performance. Initially, all channels and all motions were included in the 

classifier. The models were trained and tested for each individual subject. Only the test 

results are reported. 

Ten window durations were used: 25, 50, 75, 100, 150, 200, 250, 300, 400 and 500 

ms. The analysis was then repeated after the data had been whitened. When doing so, 

each epoch was high-pass filtered at 15Hz, then adaptively whitened using an algorithm 

that is tuned to the power spectrum of each EMG channel [Clancy 2000]. Two global 

variants were also considered. First, the entire analysis was repeated using only nine pre-

selected  motion classes (the classes denoted above as numbers 1–8 and 11), and again 

using only seven pre-selected motion classes (1–5, 8 and 11). Second, the entire analysis 

was repeated using a preselected set of six of the electrode channels. A linear 

discriminant classifier was used for the recognition task. 

5.3 Results 

Figure 5.1 shows the averaged test accuracies for the motion–channel combinations 

with lowest (left) and highest (right) overall performance. Classifying with more channels 

and fewer motion types (right) produced better overall performance. The concatenated 

(AR-MAV) feature set gave the highest overall classification accuracy, and the frequency 

domain feature set the lowest. A consistent 4–5% classification performance increase can 

be seen at shorter window durations for all three feature sets due to whitening, although 

the improvement decreases with longer window duration. Paired t-tests (p<0.05) at all 

window lengths suggest that use of whitening as a preprocessing stage provides a 

statistically significant performance improvement. 
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5.4 Discussion 

We have shown that the use of signal whitening prior to classification analysis of the 

EMG system consistently improves the recognition accuracy, especially at shorter time 

durations. This improvement is modest (~5% for window durations less than 100 ms), but 

may help improve the accuracy of EMG-based artificial limb controllers. The fact that the 

most substantial improvement is seen with small window lengths is important, as it may 

allow a control system to use less data, and therefore improve response time. 

Further work may apply to other EMG processing techniques, such as universal 

principal components analysis [Hargrove 2009] and more sophisticated classifiers to 

further improve classification performance. 

  

50 100 150 200 250 300
60

65

70

75

80

85

90

95

100

Window length/ms
50 100 150 200 250 300

45

50

55

60

65

70

75

80

85

90

95

Window length/ms

A
c
c
u

ra
c
y
 (

%
)

 

 

Freq, wo whiten

TD,    wo whiten

MAR, wo whiten

Freq, w.   whiten

TD,    w.   whiten

MAR, w.   whiten

Figure 5.1. Classification accuracies for intact subjects with (triangle)/without (circle) whitening 

used for pre-processing. The frequency feature set (Freq) is comprised of the seven AR 

coefficients.  The time domain feature set (TD) is comprised of three features, and the concatenated 

feature set (MAR) uses the AR coefficients and MAV. Window durations up to 300 ms are shown.  

Note the different y-axis scale for each plot. 
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Abstract—The electromyogram (EMG) signal has been used as the command input 

to myoelectric prostheses. A common control scheme is based on classifying the 

EMG signals from multiple electrodes into one of several distinct classes of user 

intent/function. In this work, we investigated the use of EMG whitening as a 

preprocessing step to EMG pattern recognition. Whitening is known to decorrelate 

the EMG signal, with improved performance shown in the related applications of 

EMG amplitude estimation and EMG-torque processing. We reanalyzed the EMG 

signals recorded from 10 electrodes placed circumferentially around the forearm of 

10 intact subjects and 5 amputees. The coefficient of variation of two time-domain 

features—mean absolute value and signal length—was significantly reduced after 

whitening. Pre-whitened classification models using these features, along with 

autoregressive power spectrum coefficients, added approximately five percentage 

points to their classification accuracy. Improvement was best using smaller window 

durations (<100 ms). 
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6.1 Introduction 

Traditional myoelectric-controlled upper limb prostheses provide one degree of 

freedom of proportional control, often by subtracting the EMG amplitudes of an 

antagonist pair of muscles. The amputee uses manual mode switches to cycle between 

distinct functions (e.g., hand-wrist-elbow) in order to sequentially control different devices 

[Parker 2006 and Varol 2010]. More natural control of multiple degrees of freedom is 

greatly desired by below-elbow amputees [Atkins 1996]. One emerging method for such 

advanced control is based on EMG pattern recognition [Parker 2006, Hudgins 1993, 

Hargrove 2009, Li 2010, Graupe 1975 and Boostani 2003]. A window (“epoch”) of data 

from multiple electrodes is used to discriminate between a set of distinct hand/wrist/elbow 

actions. For continuous control, classification can be performed on the EMG signal stream 

at a periodic rate. 

Pattern recognition consists of the sequential steps of EMG signal conditioning/ 

preprocessing, feature extraction, dimension reduction and pattern classification. 

Classification errors are due both to a systematic component (e.g., inability of the 

available features to distinguish all investigated motions) and a random component. In the 

related areas of EMG amplitude estimation and EMG-torque modeling, whitening has 

been shown to reduce the variation (i.e., random component) in the EMG signal and 

improve performance [Clancy 2010 and Hogan 1980b]. Physiologically, whitening may 

counteract, in part, the lowpass filter effect imposed on the signal as it propagates from its 

origin along the muscle fiber membranes; through intervening muscle, fat and skin; before 

being recorded at the electrodes. From a stochastic processing standpoint, whitening 

temporally decorrelates the EMG signal, increasing the effective number of signal samples 

(a.k.a., statistical degrees of freedom), which reduces the variance in the amplitude 

estimate. Thus, we hypothesized that pre-whitening of the EMG signal would reduce the 

random variation of the EMG features used in classification, resulting in improved 

classification performance. This effect should be more evident at small window durations, 

since classification accuracy already approaches 100% when long epoch lengths are used. 

A preliminary report of this work appeared in [Liu 2011]. 
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6.2 Methods 

6.2.1 Experimental methods 

Data from two prior experiments with similar protocols were available for reanalysis. 

The reanalysis was approved and supervised by the WPI IRB. The original data collection 

was approved by the human studies boards of the respective institutions and written 

informed consent was received from each subject. Data from ten intact-limbed subjects 

were collected at the University of New Brunswick [Hargrove 2009]. Data from five 

unilateral transradial amputees were collected at the Rehabilitation Institute of Chicago [Li 

2010]. Distinct EMG acquisition systems were available at each site. In each case, ten 

disposable bipolar electrodes (3M Duotrode for intacts; Noraxon 1.25cm diameter 

Ag/AgCl for amputees) were secured about the circumference of the proximal forearm, 

oriented along the presumed direction of action potential conduction. EMG data were 

bandpass filtered (30–350 Hz for intacts; 5–400 Hz for amputees) and sampled at 1000 

Hz. 

Subjects completed two repetitions of eight trials. Each trial was initiated and 

terminated at rest with the subject’s elbow supported on an armrest. Each trial was 

comprised of the sequential performance (or, for amputees, attempted performance) of 11 

motion classes: 1, 2) wrist pronation/supination; 3, 4) wrist flexion/extension; 5) hand 

open; 6) key grip; 7) chuck grip; 8) power grip; 9) fine pinch grip; 10) tool grip; and 11) 

no motion. Each motion within a trial was maintained for 4 s, and the subject returned to 

the rest posture for a specified inter-motion delay period. Trials 1–4 used an inter-motion 

delay of 3, 2, 1 and 0 s respectively, and trials 5–8 used an inter-motion delay of 2 s. A 

minimum of two minutes rest was given between trials. 

 

6.2.2 Computation of EMG features 

The inter-motion delay portions of the data were removed, leaving epochs 4 s in 

duration. Each epoch was notch filtered at the power line frequency and each of its 

harmonics. When whitening was desired, each epoch was highpass filtered at 15 Hz, then 

adaptively whitened using the algorithm of [Clancy 2010 and Prakash 2005]. This 

algorithm initially whitens the complete signal (EMG signal plus noise) based on an 

estimate of the noise-free spectrum of the EMG signal. Unfortunately, this fixed filter also 

accentuates the high-frequency portion of the noise spectrum. Hence, an adaptive Weiner 
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filter (optimal linear filter to attenuate additive noise) is cascaded after the fixed whitening 

filter. This filter adapts its shape based on the spectra of the background noise and the 

EMG signal. The EMG signal spectrum is amplitude modulated with muscle effort, while 

the background noise spectrum is fixed. In practice, the Weiner filter is lowpass in shape, 

with a higher cutoff location occurring when muscle effort is high. Adaptive whitening 

requires calibration to a rest and an active contraction, for each electrode. The “no motion” 

class was used as the rest contraction. One active class was manually selected per 

electrode per subject, corresponding to the class with the largest EMG amplitude. After 

this filtering, the first and last 0.5 seconds of the epoch were discarded, to account for 

filter start-up transients. 

Features were then extracted from each trimmed (3 s) epoch by segregating the epoch 

into contiguous windows. The following window durations were investigated: N = 25, 50, 

75, 100, 150, 200, 250 and 300 ms. The time-domain feature set consisted of the three 

features: mean absolute value (MAV), average signal length (SL) and normalized zero 

crossing rate (ZC) (see [Hudgins 1993] for definitions). Our ZC feature used a noise 

threshold of approximately 1/6
th

 the average RMS value of the “no motion” class. The 

frequency-domain feature set consisted of the coefficients of a seventh-order 

autoregressive (AR) model [Graupe 1975 and Neumaier 2001]. The “combined” feature 

set used the AR coefficients along with MAV. 

6.2.3 Analysis of coefficient of variation of EMG features 
Since the mechanism of improvement due to signal whitening is hypothesized to be a 

reduction in the variation of feature values, we computed the coefficient of variation 

(CoV) of the features. We limited this analysis to the three time-domain features. For each 

electrode for each subject, we identified two classes with the largest EMG amplitudes. The 

CoV was computed for each epoch as the standard deviation of the features divided by 

their mean. Low amplitude recordings were avoided, since the CoV calculation is erratic 

when the mean feature value and its standard deviation are both small numbers. These 

CoV values were averaged across the two selected trials and across all subjects. Results 

were computed both with and without whitening, separately for intact-limbed subjects and 

amputees, and for each window duration N. Thereafter, a modified power decay model 
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was fit to the mean values, using the model: CoV[�] = ܽ + ܾ/√�.Lower CoV values 

denote less variability in the features. 

6.2.4 Analysis of classification performance 

Linear discriminant classification was used with an exhaustive search over all possible 

electrode combinations. For ten electrode channels, there were 1023 possible electrode 

combinations evaluated. Both repetitions of data trials 1–4 were used for training and both 

repetitions of data trials 5–8 were used for testing. The results from the best test result per 

subject are reported. The entire analysis was repeated using a preselected set of six 

electrodes spread evenly about the circumference of the forearm. For six electrode 

channels, there were 63 possible electrode combinations evaluated. The analysis was 

repeated again using only a preselected set of nine motion classes (classes 1–8 and 11); 

and again using a preselected set of seven motion classes (classes 1–5, 8 and 11). Results 

for intact-limbed subjects and amputees are reported separately for each of the window 

durations. 

6.3 Results 

 

 

 

 

Figure 6.1. Average coefficient of variation (plus or minus one standard error) for the time-

domain features from ten intact and (separately) five amputee subjects, with and without 

whitening. Lines show fit to the model:  CoV[�] = ܽ + ܾ/√� . Scale of y-axis differs from 

normalized zero crossing rate. Sample size is 100 for intact subjects, 50 for amputee subjects. 
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Figure 6.1 shows the average plus/minus standard error CoV results for the three time-

domain features, with and without whitening, plotted separately for intact-limbed and 

amputee subjects. Whitening substantially reduced feature variation at all window 

durations for the MAV and SL features. There was rather limited affect due to whitening 

for the ZC feature. The CoV values were lower in the intact-limbed subjects. All plots fit 

well to the offset power law model. 

 

 

 

 

 

Classification accuracy results were higher when the number of EMG channels was 

larger and when the number of motion classes was lower. Thus, results will only be 

presented for the best (10-channel, 7-motion) and worst (6-channel, 11-motion) 

combination. Figure 6.2 shows the across-subject average classification accuracy for these 

channel-motion combinations, with and without whitening, for each of the three feature 

sets (time-domain, frequency-domain and combined), plotted separately for intact-limbed 

and amputee subjects. Whitening provided a consistent increase in performance. At low 

window durations, the performance increase is as much as five percent. The “combined” 

feature set (AR coefficients along with MAV) consistently provided the highest average 

Figure 6.2.  Exhaustive selection average classification accuracies from ten intact (left) and five 

amputee (right) subjects for each of the three feature sets, with and without whitening. The 

motion-channel combinations shown represent the lowest accuracies (fewest channels and most 

motion classes) and highest (most channels and fewest classes). Window durations vary from 25 to 

300 ms. Note the different y-axis scale for each plot. 
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classification accuracy. Accuracy was higher in the intact-limbed subjects than in the 

amputees. 

6.4 Discussion 

Although signal whitening methods have been available for several years, they do not 

seem to have been applied to the EMG pattern recognition problem. When computing 

EMG MAV, the signal to noise ratio (SNR) of the amplitude estimate has been shown to 

increase with window duration in a square root fashion [Clancy 1999], with whitening 

improving the SNR. Since CoV is defined as the reciprocal of the SNR, it follows that the 

CoV of the MAV feature should decrease with window length as the reciprocal of a square 

root; thus our use of the power law model for fitting to the CoV values. Further, whitened 

MAV features should have lower CoV values than unwhitened MAV features. We found, 

however, that an offset term was needed in the power law model in order to achieve an 

acceptable fit (Figure 6.1). Manual inspection of the epochs used to calculate the CoV 

showed that many subjects did not maintain a constant effort level across the 3 s used to 

form features. If the feature values are changing within a 3 s epoch, then a larger sample 

standard deviation will be found for that mean feature value. A larger CoV estimate will 

result. The inflated MAV CoV values fit better to a power law model that included an 

offset term than to the theoretically expected model that is absent an offset. 

Although not described here, analytic and simulation analysis also predicted an inverse 

square root relationship with window duration for the SL and ZC features. Fig.1 shows 

that the SL feature also required substantial offset values in the power law fit, but the ZC 

feature did not. As effort varied within an epoch, the CoV of the SL feature would be 

expected to inflate, again due to the increased within-epoch variance. But, zero crossings 

are not substantially influenced by modulations in EMG amplitude within an epoch—so 

long as the EMG amplitude remains above the noise floor. Hence, the ZC features 

exhibited the lowest overall CoV values (and the lowest standard errors). 

One would expect much lower CoV values for the MAV and SL features if the subject 

contractions were held more constant. However, acquisition of such data is only relevant 

to this intermediate evaluation of CoV. For training classifiers, it is better to collect data 

with the full range of within-epoch modulation that is representative of actual prosthesis 

control use. The classifier will then optimize for that realistic condition. 
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Regardless of this inter-epoch modulation concern, whitening decreased the CoV, 

making the features more repeatable. As shown in Figure 6.2, an improvement in 

classification accuracy resulted. The improvement was most prominent at the shorter 

window durations. This result was expected, since classification performance increases 

towards 100% at the longer window durations. No further increase is possible. 

6.5 Conclusion 

We investigated whitening as a preprocessing step to EMG pattern recognition in 

intact-limb and amputee subjects. Whitening was shown to decrease the average CoV for 

MAV and SL features, with less influence on the ZC feature. Whitening was shown to 

consistently improve the average classification accuracy when distinguishing up to 11 

distinct motion classes using up to 10 different electrodes. Improvement due to whitening 

was also found using fewer motion classes and fewer electrode channels. 
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7.1 Introduction 

A common method for controlling powered upper-limb prostheses is via EMG-based 

motion classification.  We improved classification accuracy by applying whitening as an 

EMG preprocessing step.  Whitening decorrelates the EMG signal and has been shown to 

be advantageous in related problems such as EMG-force processing. 

7.2 Methods 

Previously collected EMG data from ten intact subjects and five amputees were 

reanalyzed, with and without EMG signal whitening.  A linear discriminant classifier was 

employed.  Up to 11 motion classes and ten electrode channels were examined, using 

both time- and frequency-domain EMG features. 

7.3 Results 

Whitening increased the statistical bandwidth of the EMG signal, on average, by 65–

75%.  Whitening significantly reduced the coefficient of variation of time-domain 

features (mean absolute value, average signal length and normalized zero crossing rate).  

Whitening increased classification accuracy approximately five percentage points at 

small window lengths (< 100 ms), with smaller gains found at longer window lengths. 
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7.4 Conclusion 

Whitening the EMG signal prior to its use in classification analysis increased the 

statistical bandwidth of the signal, decreased the coefficient of variation of extracted 

features and increased classification accuracy at short window lengths. 

7.5 Acknowledgement 
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Figure 7.1. Average classification results with vs. without EMG signal prewhitening. 
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Abstract—The surface electromyogram (EMG) from biceps and triceps muscles of 

33 subjects was related to elbow torque, contrasting EMG amplitude (EMGs) 

estimation processors, linear/nonlinear model structures and system identification 

techniques. Torque estimation was improved by: advanced EMGs processors (i.e., 

whitened, multiple-channel signals); longer duration training sets (52 s vs. 26 s); and 

determination of model parameters via pseudo-inverse and ridge regression 

methods. Dynamic, nonlinear parametric models that included second- or third-

degree polynomial functions of EMGs out-performed linear models and 

Hammerstein/Weiner models. A minimum error of 4.65±3.6% maximum voluntary 

contraction (MVC) flexion was attained using a third-degree polynomial, 28
th

-order 

dynamic model, with model parameters determined using the pseudo-inverse 

method with tolerance 5.6x10
–3

 on 52 s of four-channel whitened EMG data. Similar 

performance (4.67±3.7% MVC flexion error) was realized using a second-degree, 

18
th

-order ridge regression model with ridge parameter 50.1. 

Keywords—Biological system modeling, biomedical signal processing, EMG 

amplitude estimation, EMG signal processing, electromyography 
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8.1 Introduction 

The surface electromyogram (EMG) reflects the neural activity of the underlying 

musculature, and has often been used to estimate torque produced about joints.  

Typically, EMG amplitude (EMGs)—the time-varying standard deviation of the EMG 

waveform—is estimated and then related to joint torque through parametric models 

determined via system identification techniques. Both agonist and antagonist muscles are 

included in these models to account for co-contraction (particularly at higher contraction 

levels) [An 1983, Solomonow 1986 and Brown 2008]. Low error EMG-torque estimation 

has several applications. In prosthesis control [Parker 2006], it would be expected to 

provide more accurate emulation of the natural command relationship between the central 

nervous system and peripheral joints/muscles. In ergonomics [Kumar 1996, Mathiassen 

1995 and Hagg 2004] and clinical biomechanics [Disselhorst-Klug 2009 and 

Doorenbosch 2003], it should lead to better estimates of joint loading and muscle tension 

in studies of worker tasks and biomechanical evaluations.  Other applications include 

investigation of motor control [Ostry 2003] and control of powered exoskeletons 

[Fleischer 2008, Rosen 2001 and Khokhar 2001]. 

Numerous studies, concentrating on various aspects of the EMG-torque problem, 

have been conducted over the years (see [Staudenmann 2010] for a recent review).  Study 

conditions have ranged from constant-posture, constant-torque (the simplest) to posture-

varying, torque-varying (the most complete case, representing unconstrained movement). 

The latter condition is most representative of the full range of application tasks, but can 

be too complex when studying methodological improvements (such as those presented 

herein).  To reduce EMG-torque estimation error, some research has applied advanced 

EMGs estimation methods [Hogan 1980a, Hogan 1980b, Clancy 1994, Clancy 1995, 

Clancy 1997a, Clancy 2001, Clancy 2002, Clancy 2006, Sanger 2007, Staudenmann 2007 

and Potvin 2004] or advanced/nonlinear system identification methods relating EMGs to 

torque [An 1983, Solomonow 1986, Brown 2008, Mathiassen 1995, Gottlieb 1971, 

Thelen 1994, Mountjoy 2010 and Koo 2005].  

Based on past research results, we hypothesized that incorporating nonlinear model 

structures into the EMG-torque problem—along with advanced EMGs processors—

would further reduce joint torque error. However, nonlinear models typically require 
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additional parameters, which can lead to over-fitting [Ljung 1999]. There exists a 

complex interplay between the number of fit parameters in the model, training data 

duration, the SNR of the training data and the system identification method [Ljung 1999]. 

Accordingly, this study compares system identification methods for nonlinear EMG-

torque models using advanced EMGs processors (whitening and multiple-channel 

combination), explicitly addressing model over-fitting. Hammerstein and Weiner models 

were specifically examined because their smaller number of model parameters is 

expected to alleviate over fitting [Ljung 1999]. We investigated the fitting of model 

parameters through the singular-value-decomposition-based least squares pseudo-inverse 

approach, in which certain linear combinations of the training data—those that likely 

provide little information but contain considerable noise—are omitted from the training 

solution [Press 1994]. We evaluated least squares estimation of the training parameters 

using ridge regression [Jones 1972, Hoerl 1970, Marquardt1975 and Clancy 1999a]. 

Additionally, we studied the effect of training data duration, as longer training data sets 

support models with more parameters. 

8.2 Methods 

8.2.1 Experimental data and methods 

A subset of experimental data from 33 subjects (18 male and 15 female, ranging in 

age from 18 to 65 years) from two prior studies of the upper arm (fully described in 

[Clancy 1999a] and [Clancy 2000]) were reanalyzed. Because these data had been de-

identified and unlinked, the WPI IRB stipulated that supervision of this reanalysis was 

not required.  In these studies, each subject was secured into the seat of a Biodex exercise 

machine with his/her shoulder abducted 90
o
, forearm oriented in a parasaggital plane, 

wrist fully supinated and elbow flexed 90
o
. The subject was rigidly attached to the 

Biodex dynamometer with a cuff at the styloid process.  The skin above the muscles 

under investigation was cleaned with an alcohol wipe. An array of four Liberty 

Technology MYO115 EMG electrode-amplifiers was placed transversely across each of 

the biceps and triceps muscles, midway between the elbow and the midpoint of the upper 

arm, centered on the muscle midline. Each electrode-amplifier had a pair of 4-mm 

diameter, stainless steel, hemispherical contacts separated by 15 mm (center to center), 

oriented along the muscle’s long axis. The distance between adjacent electrode-amplifiers 
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was approximately 1.75 cm.  A single ground electrode was gelled and secured above the 

acromion process. Custom electronics amplified and filtered each EMG signal (CMRR of 

approximately 90 dB at 60 Hz; second-order, 10–2000 Hz bandpass filter) before being 

sampled at 4096 Hz with 16-bit resolution. 

Each subject was provided a warm-up period, after which MVC torque was measured 

in both elbow extension and flexion.  Five-second duration, constant-posture constant-

force contractions at 50% MVC extension, 50% MVC flexion and rest were recorded.  

These contractions were used to calibrate the advanced EMGs estimation algorithms 

[Clancy 2000 and Prakash 2005]. Then, a real-time feedback signal consisting of one of 

four EMGs processors (formed by subtracting the extensor EMGs from the flexor EMGs) 

was provided on a computer screen. The processors were: single-channel unwhitened, 

single-channel whitened, multiple-channel unwhitened and multiple-channel whitened. 

Thirty-second duration, constant-posture force-varying contraction trials were then 

recorded. The subjects used the feedback signal to track a computer-generated target that 

moved on the screen in the pattern of a band-limited (1 Hz) uniform random process, 

spanning 50% MVC extension to 50% MVC flexion. Twelve trials (three per feedback 

signal) were collected in a randomized order.  Additional tracking trials not used in this 

study were also collected.  Rest was provided between trials to prevent cumulative 

fatigue. 

8.2.2 Methods of analysis 

All analysis was performed offline in MATLAB. Two distinct EMGs processors were 

created from each of the extension and flexion muscle groups for each 30 s trial using our 

open-source MATLAB toolbox [Clancy 2010]. The estimates were either single-channel 

unwhitened (using an electrode located centrally on the muscle) or four-channel whitened 

[19]. Each estimator utilized a 15 Hz high pass filter (5
th

-order Butterworth applied in the 

forward and reverse time directions to achieve zero phase) and a first-order demodulator 

(rectifier). Whitened channels used the non-causal adaptive whitening algorithm of 

Clancy and Farry [Clancy 2000 and Prakash 2005]. After demodulation, signals were 

decimated by a factor of 100 to a sampling rate of 40.96 Hz, using a low pass filter with 

cut-off frequency of 16.4 Hz (which also served as the smoothing stage of the amplitude 

estimate). The torque signal was similarly decimated, producing a data set with a 
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bandwidth approximately 10 times that of the torque signal being estimated [Clancy 2006 

and Ljung 1999]. 

Extension and flexion EMGs were related to joint torque using four parametric, 

dynamic model structures.  For each structure: T[m] was the measured torque at the m
th

 

decimated sample; a0 was an offset parameter (not used in all system identification 

techniques); eq and fq were the extension and flexion fit parameters, respectively; and 

sE[m] and sF[m] were the extension and flexion EMGs estimates, respectively.  The 

model structures were: 

1) Linear, time invariant (LTI) system of dynamic order Q: �[�] = �଴ + ∑ ݁��ா[� − �]��=଴ + ∑ �݂�ி[� − �]��=଴    (8.1) 

2) Polynomial nonlinear model of degree D, dynamic order Q: �[�] = �଴ + ∑ ∑ ݁�,��ா�[� − �]��=଴஽�=ଵ + ∑ ∑ �݂,��ி�[� − �]��=଴஽�=ଵ  (8.2) 

3) Hammerstein model: This model was comprised of a D
th

-degree polynomial static 

nonlinearity cascaded with a Q
th

-order, LTI, FIR system, for each of the extension 

to joint torque. 

4) Weiner model:  This model was comprised of a Q
th

-order, LTI, FIR system cascaded 

with a D
th

-degree polynomial static nonlinearity, for each of the extension and flexion 

 The sum of the extension and flexion outputs was related to joint 

torque. 

In these four model structures, the LTI system order ranged from 1≤Q≤30 and the 

polynomial degree ranged from 1≤D≤4. Two seconds of data were excluded from the 

beginning and end of each 30 s signal to mitigate filter start-up transients. 

The parameters of the LTI and polynomial models were estimated using linear least 

squares. Three approaches were evaluated to reduce over-fitting during parameter 

estimation. First, the singular value decomposition-based pseudo-inverse was used, in 

which the reciprocals of small singular values were replaced with the value zero [Press 

1994].  The tolerance for replacement was based on the ratio of each singular value to the 

maximum singular value, ranging over 40 values spanning 10
-16

 to 0.5 in logarithmic 

increments. The pseudo-inverse model did not include an offset term a0.  Second, ridge 

regression [Jones 1972, Hoerl 1970 and Marquardt 1975] was investigated, including an 
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offset term a0 in the model.  The ridge parameter, k, ranged from 10
–7

 to 10
4
 in 112 

logarithmic increments. Third, we examined the effect of increasing the duration of data 

available to train the least squares, as described in detail below. Parameters of the 

Hammerstein and Weiner models were determined via nonlinear least squares using the 

MATLAB System Identification Toolbox. 

As noted above, each subject completed 12 tracking trials, consisting of three 

repetitions each of four different feedback options. Each set of three repetitions 

(representing one feedback style) was used to produce one test result. In the single-trial 

calibration method, the first trial was used as training data and the second as a test set.  

Then, the third trial was used as training data and the second was again used as the test 

set. The average mean absolute value error (between the actual torque and that predicted 

by the EMG-torque model) of these two test results is reported as the test error value. In 

the dual-trial calibration method, the first and third trials were simultaneously used to 

train one set of parameters (effective sequence duration of 52 seconds), and then tested 

on the second trial. Since all of this analysis was performed post-experiment, tracking 

performance during data collection was not directly relevant.  Rather, the recorded EMG 

was related to the recorded joint torque from the load cell—the real-time feedback signal 

was not considered. In general, each of the feedback options produced torque with a 

similar characteristic (uniform random signal bandlimited to 1 Hz). Nonetheless, all 

training and testing remained within a feedback style.  In all cases, error is reported as a 

percent of the MVC flexion torque. Only test trial results are presented. For statistical 

analysis, the four test trial results from each subject were averaged, and these average 

values subjected to a paired sign test [Miller 1977]. 

Lastly, it was desired to compare the results 

and models to a “conventional” EMG-torque estimator. A conventional estimator was 

formed by filtering the single-channel unwhitened EMGs from each of the biceps and 

triceps muscles through a second-order, Butterworth, low-pass filter; gain scaling these 

outputs based on their respective 50% MVC contractions (achieved by using the 50% 

MVC contractions to calibrate a zero-order linear model using the pseudo-inverse 

approach with the default tolerance in MATLAB); and then subtracting them to form the 

torque estimate. Typically, the cutoff frequency of the low-pass filter in conventional 
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estimators is set at a few Hz [Koo 2005, Lloyd 2003 and Doorenbosch 2004]. In our case, 

selection of the appropriate cut-off frequency was unclear.  Thus, we repeated 

conventional torque estimation 40 times with cut-off frequencies ranging from 0.1 Hz to 

4.0 Hz, in increments of 0.1 Hz. The best of these 40 results is reported. Note that the cut-

off frequency was not adapted to individual subjects; only one flexion and one extension 

gain was subject-specific (based on the 50% MVC contractions). Training and testing 

proceeded as described previously. 

8.3 Results 

EMG-torque performance was studied as a function of two EMG processors, four 

model structures and three system identification techniques. Figures 8.1–8.4 graphically 

depict representative aspects of the overall test results. Figure 8.1 concentrates on results 

from the pseudo-inverse approach, Figure 8.2 on ridge regression results, Figure 8.3 on 

Hammerstein/Weiner model results and Figure 8.4 on results using the longer-duration 

training data (52 s). Figures 8.1, 8.2 and 8.4 show results only from dynamic model 

orders Q=5, 8, 15, 20 and 30, which form a representative sub-set of the 30 model orders 

evaluated.  Table 8.1 lists the lowest test error, along with the corresponding model 

parameters, for the pseudo-inverse approach results. Overall, models which utilized a low 

model order (e.g., Q≤5) exhibited high error, presumably because this low model order 

did not sufficiently capture the system’s true dynamic behavior.  Exceptionally high 

dynamic model order often also led to higher error, particularly for high polynomial 

model degrees and with single-channel unwhitened EMG processors (or their 

combination), presumably due to over-fitting. Excessively large pseudo-inverse tolerance 

values or ridge k values exhibited poor performance, and should be avoided. 

Figures 8.1 and 8.

Excluding tolerance values above ~10
-2

 (Figure 8.1) and ridge k values below ~1 (Figure 

8.2)—regions that users would avoid due to very high error—multiple-channel whitened 

processors consistently performed better than single-channel unwhitened. Statistically, 

the results for parameters of best performance (see Table 8.1) for the pseudo-inverse 

method, 26 s training duration, were compared between the two EMG methods for each 

polynomial degree.  This comparison was repeated for the ridge regression results and for 

the 52 s training duration.  Each comparison was significant (p≤6.8×10
−3

). 
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 Polynomial Degree (D) 

 D = 1 

(Tol, Q) 

D = 2 

(Tol, Q) 

D = 3 

(Tol, Q) 

D = 4 

(Tol, Q) 

 26 s Training 
Single Channel,  

    Unwhitened 

 

7.10±5.9% 

(5.6e-4, 25) 

 

 

7.06±5.7% 

(1.8e-3, 15) 

 

7.43±6.2% 

(5.6e-3, 14) 

 

7.97±7.0% 

(1.0e-2, 20) 

Multiple Channel,  

    Whitened 

 

5.93±4.5% 

(5.6e-3, 30) 

5.55±4.5% 

(1.0e-2, 16) 

5.56±4.6% 

(5.6e-3, 16) 

5.62±4.6% 

(5.6e-3, 14) 

 52 s Training 

Single Channel,  

    Unwhitened 

 

6.38±5.4% 

(3.2e-4, 30) 

 

 

5.86±4.0% 

(5.6e-3, 18) 

 

5.92±4.0% 

(5.6e-3, 16) 

 

6.29±5.1% 

(5.6e-3, 14) 

Multiple Channel,  

    Whitened 

5.15±3.8% 

(5.6e-3, 30) 

 

4.69±3.6% 

(1.0e-2, 15) 

4.65±3.6% 

(5.6e-3, 28) 

4.70±3. 6% 

(5.6e-3, 16) 

Table 8.1. Lowest EMG-torque error (mean ± standard deviation absolute %MVC flexion) with 

corresponding tolerance (tol) and dynamic model order (Q) for pseudo-inverse method. Each 

result from 33 subjects. 

 

 

 

 

Figure 8.3 shows that the Weiner models were clearly inferior to the best polynomial 

nonlinear model.  The results for parameters of best performance for the Weiner model 

(D=2, Q=18, multiple whitened EMG) were statistically different from those of the best 

pseudo-inverse-based polynomial nonlinear model (p<10
–8

). The Hammerstein model’s 

performance was closer to that of the pseudo-inverse and ridge regression methods.  

Comparing the results for parameters of best performance for the Hammerstein model 

(D=2, Q=10, multiple whitened EMG) to results from the best pseudo-inverse-based 

polynomial nonlinear model was marginally significant (p=0.0175). With the available 

Figure 8.1. EMG-torque error as a function of tolerance value, using the pseudo-inverse system identification 

method, with 26 s of training data. Results for tolerance values below 10
−8

 not shown, but follow similar 

trend. Each row shows results from the two EMG processors; columns distinguish the different polynomial 

model degrees (D). Each plot shows the results for representative dynamic model orders (Q) 5, 8, 15, 20 and 

30, as labeled.  Each result is the average from 33 subjects. 
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MATLAB toolbox, it was not possible to produce results that combined two training 

trials into a 52 s training duration for the Hammerstein and Weiner models. 

 

 

 

 

 

The best pseudo-inverse results (4.65±3.6% MVC flexion; D=3, Q=28, Tol=5.6×10
–3

, 

52 s training set, multiple whitened EMG) were not statistically different (p=0.5) from 

the best ridge regression results (4.67±3.7% MVC flexion; D=2, Q=18, k=50.1, 52 s 

training set, multiple whitened EMG). Differences between results were most consistent 

when using multiple-channel whitened EMG processing. The pseudo-inverse results for a 

linear model (D=1) differed from each of the three nonlinear degrees (D=2, 3, 4) when 

using either single unwhite or multiple white EMG processors (p≤1.8×10
−3

). Results 

were less consistent with the 26 s training duration. 

Comparison of the results shown in Figure 8.4 to those in Figure 8.1 clearly 

demonstrates that error is reduced by a longer duration training set (52 s). Statistically, 

the results for parameters of best performance for the pseudo-inverse method, single-

channel unwhitened EMG were compared between the two training durations for each 

polynomial degree.  This comparison was repeated for the ridge regression results and for 

the multiple-channel whitened EMG method. All differences were significant (p<1.6×10
–

4
). 

Figure 8.2. EMG-torque error as a function of ridge “k” value, using the ridge regression system 

identification method, with 26 s of training data. Results for “k” values below 10−5
 not shown, but 

follow similar trend.  Each row shows results from the two EMG processors; columns distinguish the 

different polynomial model degrees (D). Each plot shows the results for representative dynamic 

model orders (Q) 5, 8, 15, 20 and 30, as labeled. Each result is the average from 33 subjects. 
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Finally, results for the “conventional” processor varied as a function of the low-pass 

filter cut-off frequency of the Butterworth filter.  The best cut-off frequency was 1.3 Hz, 

with considerably poorer performance at both lower and higher frequencies.  At this cut-

off frequency, the error was 19.15±11.15% MVC flexion. Statistically, the best 

“conventional” torque estimator was compared to the single-channel unwhitened results 

using a 26 s training duration (D=2, Q=15, Tol=1.8x10
–3

). This comparison was 

significant (p<10
–5), showing that “conventional” modeling performed poorer than our 

more advanced single-channel models (and, by statistical inference, also poorer than our 

multiple-channel models and models that utilized 52 s training durations). Figure 8.5 

displays a representative elbow torque profile, along with the torque predicted using the 

best “conventional” method, best single-channel unwhitened method and best multiple-

channel whitened method. 

Figure 8.3. EMG-torque error as a function of dynamic model order (Q), using the 

Hammerstein and Weiner system identification methods, with 26 s of training data and 

multiple-channel whitened EMG processor. Polynomial degree (D) is labeled on each plot.  

(Degree one not shown, since it is equivalent to the linear model, shown elsewhere.) For 

comparison, asterisks show the best results using the pseudo-inverse method (polynomial 

degree D=2, tolerance = 5.6x10
–4

). Each result is the average from 33 subjects. 
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Figure 8.4. EMG-torque error as a function of tolerance value, using the pseudo-inverse system 

identification method, with 52 s of training data. Results for tolerance values below 10
−8

 not 

ssors; columns 

distinguish the different polynomial model degrees (D). Each plot shows the results for 

representative dynamic model orders (Q) 5, 8, 15, 20 and 30, as labeled. Each result is the average 

from 33 subjects. 

Figure 8.5. Representative sample of actual and estimated elbow torque as a function of time.  

Solid line in each graph is the actual torque, scaled to percent maximum voluntary contraction 

flexion (%MVCF), for the same 30 s contraction trial. Positive values denote flexion torque. Dotted 

line in each plot shows torque estimated by training a model to distinct trials, then using EMG to 

estimate torque from this trial. Top: estimate from best “conventional” method (1.3 Hz cutoff 
frequency); Middle: Best single-channel unwhitened method (2

nd
-degree polynomial, 18

th
-order 

dynamic model, pseudo-inverse tolerance of 5.6x10
–3

, 52 s training); Bottom: Best multiple-

channel whitened method (3
rd

-degree polynomial, 28
th
-order dynamic model, pseudo-inverse 

tolerance of 5.6x10
–3

, 52 s training). Estimated torques omit approximately 2 s from beginning and 

end of trial to account for filter start-up transients. 
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8.4 Discussion 

Though models with a small number of parameters risk missing significant 

relationships in the data, over-fitting poses an obstacle to parameter identification in 

models with a large number of parameters. Factors known to decrease the severity of 

over-fitting include: training sets with higher SNR, larger training sets, model structures 

with fewer parameters, and system identification techniques that are robust with respect 

to training set noise and correlated features. In this study, several clear trends emerged 

from the methodological comparisons performed. 

First, the multiple-channel whitened EMG processor was again demonstrated to 

improve EMG-torque estimation. It is well established that these methods decrease the 

variability of the EMG estimate [Hogan 1980a, Hogan 1980b, Clancy 1994a, Clancy 

1994b, Clancy 1997, Clancy 2001, Clancy 2002, Clancy 2006, Clancy 2007, 

Staudenmann 2007 and Potvin 2004], hence increasing the SNR in the training and 

testing sets. Anecdotally, whitening seemed to provide the clearest performance 

improvement in this study. While multiple-channel EMG processors offer improved 

performance in many situations, problems can arise if even one of the raw EMG signals 

contains a large amount of noise [Clancy 1994b]. In addition, in less constrained 

contractions, multiple electrodes placed longitudinally across a muscle group might need 

to be modeled as separate electrical sources (rather than being combined into one EMG) 

[Staudenmann 2009 and Vieira 2010]. 

Second, increasing the training set duration from 26 s to 52 s provided a clear 

improvement, with considerably lower test errors and reduced sensitivity to the number 

of model parameters. A larger data set helps to reduce the influence of training set noise, 

because parameter estimates are averaged over more training samples. Training from 

multiple trials can also help average trial-to-trial variations in posture, since joint angle 

affects the EMG-torque relation [Hassan 1985, Doheny 2008 and Vrendenbregt 1973]. 

For example, the single-channel unwhitened results based on a 26 s training duration 

(Figure 8.1) show that test set error grows as dynamic model order is increased above 

approximately 15
th

-order, for nonlinear polynomial degrees of D=3 and 4. However, 

when a 52 s training duration was used with the single-channel unwhitened data (Figure 

8.4), the error was lower and remained so at higher model orders. Interestingly, the 
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multiple-channel whitened results for first- and second-degree polynomial models with 

26 s training duration (Figure 8.1) do not exhibit the upward trend in error at high model 

orders. Thus, one might be convinced that adequate training had occurred without over-

fitting. However, the corresponding 52 s training set results shown in Figure 8.4 still 

exhibit substantially lower errors. Thus, the fact that error ceases to vary as model order 

increases does not necessarily indicate that an optimal model has been found. Further 

reduction in EMG-torque error might be realized using even longer training sets or more 

training trials. 

Third, the Weiner model results were consistently poorer than those of the nonlinear 

polynomial models. The Hammerstein models exhibited performance close to, but not as 

good as, the best nonlinear polynomial models. Because the Hammerstein and Weiner 

models contain fewer coefficients, it is possible that they simply did not capture the full 

complexity of the true EMG-torque relationship. These reduced parameter models might 

be advantageous in situations where only short durations of training data (i.e., less than 

26 s) are available. 

Fourth, with the nonlinear polynomial model (D=2 or 3), system identification using 

the best pseudo-inverse tolerance gave performance similar to that of the best ridge 

method. However, the range of pseudo-inverse tolerances over which a nearly optimal fit 

occurred (~10
–16

<Tol<10
–2

) was much wider than the range of ridge k values for its near-

optimal fit (1<k<10
3
). Hence, the pseudo-inverse method may be less sensitive and easier 

to tune. Results also indicate tolerance/ridge k value tuning is more critical when the data 

are more susceptible to over-fitting, i.e., for short duration training sets, single-channel 

unwhitened EMG processing, high nonlinear degree and high dynamic model order. Note 

that the tolerance value and ridge k value were fixed in this analysis, then studied as a 

function of the fixed value. It is possible that better performance is available by adapting 

the tolerance/ridge k value based on information within each training set. Anecdotal 

analysis suggests that the optimal ridge k value for individual subjects ranged across five 

orders of magnitude. Indeed, selection of a ridge k value is often performed based on 

case-by-case (graphical) evaluation of a “ridge trace” [Jones 1972, Hoerl 1970 and 

Marquardt 1975]. Herein, manual evaluation of the ridge trace was not compatible with 
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automated calibration of the EMG-torque relationship. But, automated algorithms for 

ridge trace evaluation might be considered in the future. 

Note that our experimental situation is limited (constant-posture) and does not mimic 

fully dynamic, unconstrained motion. In addition, most daily movement activities of the 

upper limb encompass a smaller range of effort levels [Kern 2001] and may not mimic 

processing should apply to the more complex movement cases since a lower variance 

signal is produced. In addition, there is considerable evidence of inter-subject variability 

in EMG-torque/force relationships as, for example, a function of joint angle [Hassan 

1985, Doheny 2008 and Vredenbregt 1973]. Hence, attention to system identification 

methods for calibrating to these differences should also be useful. Nonetheless, most 

EMG-torque applications will require that the results of this study be appropriately 

translated to, and verified with, more dynamic and unconstrained motions. The relative 

impact of reducing EMG amplitude variance and improving model accuracy can vary 

between applications. 

Taken together, the several techniques utilized in this study provide a substantial 

improvement over typical EMG-torque performance. The best “conventional” estimator 

pro

processors (whitening and multiple-channel combination), more complex EMG-torque 

models (e.g., nonlinear polynomial model) and robust system identification techniques 

(pseudo-inverse/ ridge regression, longer duration training sets) reduced the EMG-torque 

error in these constant-posture, torque-varying contractions to 4.65±3.6% of MVC 

flexion, a substantial performance improvement. These results should be informative to 

applications such as clinical biomechanics, EMG/neural control of powered prostheses, 

ergonomic analyses, motor control and powered exoskeletons. 
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Abstract—The surface electromyogram (EMG) from biceps/triceps muscles of 33 

subjects was related to elbow torque, contrasting EMG amplitude (EMGσ) 

estimation processors, linear/non-linear model structures and system identification 

techniques. EMG-torque performance was improved by: advanced (i.e., whitened, 

multiple-channel) EMGσ processors; longer duration training sets (52 s vs. 26 s); 

and determination of model parameters via the use of the pseudo-inverse and ridge 

regression methods. Best performance provided an error of 4.65% maximum 

voluntary contraction (MVC) flexion. 

9.1 Introduction 

The surface EMG has often been used in prosthesis control, ergonomics analysis and 

clinical biomechanics. We applied advanced EMGσ estimates (whitening, multiple-

channel combination) and different parametric model structures to the EMG-torque 

problem to reduce torque estimation error. The present study examined system 

identification methods for non-linear, dynamic EMG-torque models which utilized 

advanced EMGσ processors and explicitly addressed model over-fitting. Four system 

identification concepts were compared. First, Hammerstein and Weiner model structures 

were specifically selected to have a small number of parameters [Ljung 1999]. Second, 

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5778638
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we investigated the fitting of model parameters via least squares, utilizing the singular 

value decomposition-based pseudo-inverse approach [Press 1994]. Third, we evaluated 

least squares estimation using ridge regression [Jones 1972]. Fourth, we increased the 

duration of the training data. 

9.2 Methods 

9.2.1 Experimental data and methods 

Experimental data from 33 subjects from two prior studies ([Clancy 1999 and Clancy 

200]) were reanalyzed. The WPI IRE stipulated that supervision was not required. A 

subject was secured into the seat of a Biodex exercise machine with their right shoulder 

abducted 90
0
, their forearm oriented in a parasaggital plane, the wrist fully supinated and 

the elbow flexed 90
○
. The subject was rigidly attached to the Biodex dynamometer with a 

cuff at the styloid process. An array of four EMG electrode-amplifiers was placed 

transversely across each of the biceps and triceps muscles. Signals were sampled at 4096 

Hz at 16-bit resolution. Twelve force-varying contraction trials of 30 s duration were 

recorded during which the subjects used a feedback signal to track a computer-generated 

target that moved on a screen as a band-limited (1 Hz) uniform random process, spanning 

50% MVC extension to 50% MVC flexion. Eight trials per subject were used to fit model 

coefficients and four distinct trials were used for testing. Only test trial results are 

presented. 

9.2.2 Methods of analysis 

Two distinct EMGσ processors were created from each of the extension and flexion 

muscle groups for each 30 s trial-single-channel unwhitened and four-channel whitened 

[5]. EMGσ and torque signals were decimated by a factor of 100 to a sampling rate of 

40.96 Hz. 

Extension and flexion EMGσs were related to joint torque using four parametric, 

dynamic model structures. For each structure, m was the decimated discrete-time sample 

index, T[m] was the measured torque; a0 was an offset parameter; eq and fq were the 

extension and flexion fit parameters, respectively; and σE[m] and σF[m] were the 

extension and flexion EMGσ estimators, respectively. The model structures were: 

1. Linear time invariant (LTI) FIR system of order Q. 

2. Polynomial non-linear model of degree D, order Q: 
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�[�] = �଴ + ∑ ∑ ݁�,��ா�[� − �]��=଴஽�=ଵ + ∑ ∑ �݂,��ி�[� − �]��=଴஽�=ଵ  (9.1) 

3. Hammerstein model (D
th

-order polynomial static nonlinearity cascaded with a 

Q
th

-order, LTI, FIR system). 

4. Wiener model (Q
th

-order, LTI, FIR system cascaded with a D
th

-order polynomial 

static non-linearity). 

The LTI system order ranged from 1≤Q≤30 and the polynomial degree ranged from 

1≤D≤4. Two seconds of data were excluded from the beginning and end of each 30 s 

trial. 

Three approaches were evaluated to reduce least squares over-fitting. First, the 

singular value decomposition-based pseudo-inverse was used, in which the reciprocals of 

small singular values were replaced with zero. Forty tolerance values ranged 

logarithmically from 10
-16

 to 0.5. The offset term a0 was not used. Second, ridge 

regression [3] was used and the offset term a0 was included in the model. Ridge 

parameter k ranged logarithmically from 10
-7

 to 10
4
 in 112 values. Third, the duration of 

data available to the least squares fit was altered between 26 s or 52 s. 

9.3 Results 

 

 

 

 

 

Figure 9.1. EMG-torque errors vs. tolerance value for pseudo-inverse system identification 

method, 26 s of training data. Results for tolerance values below 10
-8

 not shown, but follow 

similar trend. Rows plot results from the two different EMGσ processors; columns distinguish 
polynomial model degrees (D). Each plot shows the results for representative model orders (Q) 

5, 15, 20 and 30, as labeled. Each result is average of 132 test trials (33 subjects × 4 test 

trials/subject) 
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Figures 9.1–9.2 show representative aspects of the overall results. Models which 

utilized a low linear model order (e.g. Q≤5) exhibited high error. High model order often 

also led to higher error, particularly for high polynomial model degrees and with single-

channel unwhitened EMGσ processors (or their combination). Excessively large pseudo-

inverse tolerance values and ridge k values exhibited poor performance. 

Although results are not shown here, the Weiner models were clearly inferior to the 

polynomial non-linear model. Hammerstein model results were also inferior to the 

pseudoinverse and ridge regression results, but only mildly so. The best pseudo-inverse 

results (4.65% MVC flexion; D=3, Q=28, Tol=5.6×10
-3

, 52 s training set, multiple 

whitened EMGσ) were not statistically different (p=0.5; paired sign test) than the best 

ridge regression results. Error was consistently reduced by fitting with a longer duration 

training set (52 s). 

9.4 Discussion 

The multiple-channel whitened EMGσ processor was again demonstrated to improve 

EMG-torque estimation. Increasing training set duration from 26 s to 52 s provided a 

clear improvement, with less sensitivity to the number of model parameters. Surprisingly, 

this improvement occurred even if the corresponding 26 s duration error did not vary 

much as a function of model order. Even though Weiner models contained the same 

number of coefficients as equivalent Hammerstein models, their results were consistently 

poorer. Hammerstein models exhibited performance close to that of the non-linear 

polynomial models. With the non-linear polynomial model, the best pseudo-inverse 

tolerance gave performance similar to that of the best ridge method. However, the range 

of pseudo-inverse tolerances over which a nearly optimal fit occurred (~10
-16

<Tol<10
-2

) 

was wider than the range of ridge values for its near optimal fit (1<k<10
3
). 

Figure 9.2. EMG-torque errors vs. tolerance value for pseudo-inverse system identification 

method, 52 s of training data. Plot details similar to Figure 9.1, except only results from the 

multiple-channel, whitened EMGσ processor are shown 
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The merging of advanced EMGσ processors (whitening, multiple-channel 

combination), more complex EMG-torque models (e.g., non-linear polynomial model) 

and robust system identification techniques (pseudo-inverse/ ridge regression, longer 

duration training sets) has reduced the EMG-torque error to 4.65% of MVC flexion-a 

substantial improvement over previous EMG-torque models. 
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Abstract—Electromyogram (EMG)–torque modeling is of value to many different 

application areas, including ergonomics, clinical biomechanics and prosthesis 

control. One important aspect of EMG–torque modeling is the ability to account for 

the joint angle influence. This manuscript describes an experimental study which 

relates the biceps/triceps surface EMG of 12 subjects to elbow torque at seven joint 

angles (spanning 45–135°) during constant-posture, quasi-constant-torque 

contractions. Advanced EMG amplitude (EMGσ) estimation processors (i.e., 

whitened, multiple-channel) were investigated and three non-linear EMGσ–torque 

models were evaluated. When EMG–torque models were formed separately for each 

of the seven distinct joint angles, a minimum “gold standard” error of 4.23 ± 2.2% 

MVCF90 resulted (i.e., error relative to maximum voluntary contraction at 90° 

flexion). This model structure, however, did not directly facilitate interpolation 

across angles. The best model which did so (i.e., parameterized the angle 

dependence), achieved an error of 4.17 ± 1.7% MVCF90. Results demonstrated that 

advanced EMGσ processors lead to improved joint torque estimation. We also 

contrasted models that did vs. did not account for antagonist muscle co-contraction. 

Models that accounted for co-contraction estimated individual flexion muscle 

http://www.sciencedirect.com/science/article/pii/S1050641113001661
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torques that were ∼29% higher and individual extension muscle torques that were ∼68% higher. 

Keywords—Biological system modeling; Electromyography; EMG amplitude 

estimation; EMG signal processing; Joint angle influence 

10.1 Introduction 

The surface electromyogram (EMG) provides a non-invasive measure of muscle 

activation and hence has been used to estimate muscle tension and joint torque (see 

[Staudenmann 2010] for a recent review) [An 1983, Clancy 2006, Clancy 2012, Clancy 

1997, Doheny 2008, Gottlieb 1971, Hasan 1985, Heckathorne 1981, Hof 1981, Hogan 

1980b, Lawrence 1983, Messier 1971, Potvin 2004, Sanger 2007, Shin 2009, Solomonow 

1986, Staudenmann 2009, Thelen 1994 and Vredenbregt 1973]. EMG–torque models 

have application in ergonomics, clinical biomechanics and prosthesis control 

[Disselhorst-Klug 2009, Doorenbosch 2003, Hagg 2004, Kumar 1996, Mathiassen 

1995 and Parker 2006]. These models aim to emulate the natural relationship between the 

central nervous system and peripheral joints/muscles. This relationship must account for 

changes in muscle length/joint angle for several reasons, including the muscle length-

tension relationship, muscle moment arms and the relative positioning of recording 

electrodes with respect to the underlying muscle and innervation zone [Martin 2006, 

Messier 1971, Rack 1969 and Zajac 1989]. 

Limited studies have been conducted over the years to model the influence of joint 

angle on the EMG–torque relationship. Vredenbregt and Rau’s [Vredenbregt 1973] 

classic single-subject study of biceps muscles (more recently supported by the work of 

Doheny et al. [Doheny 2008]) suggests that this EMG–torque relationship may only 

change by a multiplicative gain factor as a function of joint angle. That is, the shape of 

the EMG–torque relationship is the same at each joint angle, but a distinct gain scales this 

shape for each angle. Vredenbregt and Rau did not account for agonist-antagonist co-

contraction, although Solomonow et al. [Solomonow 1986] have shown antagonist 

muscle activity to be considerable (antagonist EMG amplitude levels often 10–20% that 

of the agonist). An additional modeling concern is that Hasan and Enoka [Hasan 1985] 

have shown that the EMG–torque variation across angle changes considerably person-to-
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person, with the angular location of the force peak varying up to 50°. Each of the above 

three studies utilized constant-posture, constant-torque contractions. These results suggest 

that EMG–torque models should account for both individual subject differences, as well 

as agonist and antagonist muscles. 

Advanced EMG amplitude (EMGσ—the time-varying standard deviation of the EMG 

waveform) processing techniques have been developed over the last few years, 

incorporating multiple-channel combination and whitening. Improved EMGσ estimates 

produce decreased EMG–torque error, as do improvements to system identification (i.e., 

model selection and fitting procedures) [Clancy 2002, Clancy 2006, Clancy 2012, Clancy 

2000, Clancy 1995, Clancy 1997, Hogan 1980a, Hogan 1980b, Potvin 2004, Sanger 2007, 

Staudenmann 2010 and Thelen 1994]. These advances have not been incorporated into 

EMG–torque modeling when multiple joint angles are considered. The purpose of this 

study was to systematically investigate the influence of elbow joint angle on EMG–

torque modeling during constant-posture, quasi-constant-torque contractions, while 

incorporating advanced EMGσ processors and muscular co-activation. 

10.2 Methods 

10.2.1 Experimental data and methods 

 

 

 

 

 

Experiments were approved and supervised by the WPI IRB. All subjects provided 

written informed consent. Experimental data were acquired from 12 healthy subjects (9 

Figure 10.1 Experimental apparatus. The subject’s right arm is oriented in a plane parallel to the 
floor, the upper arm is directed laterally outward from the shoulder, and the angle between the 

upper arm and the forearm is selectable, but fixed (shown here at 90°). EMG electrodes are 

mounted over the biceps and triceps muscles. The wrist is tightly cuffed to a load cell at the level 

of the styloid process. 
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male, 3 female; aged 18–52 years). Subjects were strapped into a custom-built straight-

back chair (shown in Figure 10.1) with their right shoulder abducted 90°, their forearm 

oriented in a parasaggital plane, the wrist fully supinated (palm perpendicular to the floor) 

and the wrist tightly cuffed to a load cell (Vishay Tedea–Huntleigh Model 1042, 75 kg 

full scale). The angle between the upper arm and the forearm was selectable, but fixed. 

Skin above the muscles under investigation was cleaned with an alcohol wipe and a small 

bead of electrode gel was massaged into the overlying skin. Six bipolar EMG electrode-

amplifiers were placed transversely across each of the biceps and triceps muscle groups, 

midway between the elbow and the midpoint of the upper arm, this positioning being 

intended to avoid the tendon distally and the innervation zone proximally. Subjects were 

instructed to tense their muscles at both angular extremes (45°, 135°) to aid in visualizing 

the distal tendon and the muscle midpoint locations. EMG recording over the tendon is 

discouraged as it is not electrically active tissue and because our own experience finds 

this location prone to motion artifacts. Recording over the innervation zone (typically 

located near the muscle mid-point for the biceps and triceps) can lead to large swings in 

EMGσ values with small changes in location [Rainoldi 2000]. The electrodes were also 

centered on the muscle midline, to best avoid crosstalk from adjacent muscles. Each 

electrode-amplifier had a pair of 8 mm diameter, stainless steel, hemispherical contacts 

separated by 1 cm edge-to-edge, oriented along the muscle’s long axis. The distance 

between adjacent electrode-amplifiers was ∼1.75 cm. A ground electrode was gelled and 

secured on the upper arm. Custom electronics amplified and filtered each EMG signal 

(CMRR greater than 90 dB at 60 Hz; 8th-order Butterworth highpass at 15 Hz; 4th-order 

Butterworth lowpass at 1800 Hz) before being sampled at 4096 Hz with 16-bit resolution. 

The RMS EMG signal level at rest (representing equipment noise plus ambient 

physiological activity) was on average 2.9 ± 4.3% of the RMS EMG at 50% maximum 

voluntary contraction (MVC) at 90°. 

All contractions were constant-posture, with the elbow angle selectable. Subjects 

were provided a warm-up period, then rested four minutes. MVCs were then measured. 

Subjects took 2–3 s to slowly ramp up to MVC and maintained that force for two seconds. 

The average load cell value during the contraction plateau was taken as the MVC. Both 

elbow extension and flexion MVC were measured at a joint angle of 90°. Ten second 
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duration, constant-force contractions at 50% MVC extension, 50% MVC flexion and at 

rest (arm removed from the wrist cuff) were next recorded at a joint angle of 90°. These 

contractions were used to calibrate advanced EMGσ estimation algorithms [Clancy 

2000 and Prakash 2005]. Then, a sequence of constant-posture, quasi-constant-torque 

contractions was conducted at randomized elbow angles of 45°, 60°, 75°, 90°, 105°, 120° 

and 135°. Elbow angle was the included angle between the forearm and upper arm. At 

each angle, MVC torque was measured in both elbow extension and flexion. The average 

of these two MVC torques was denoted the torque range midpoint. Then, three tracking 

trials of 45 s duration were recorded during which the subjects used the load cell as a 

feedback signal to track a computer-generated torque target ramping at a constant 

absolute torque rate from the torque range midpoint, to 50% MVC flexion, to 50% MVC 

extension, back to 50% MVC flexion, and then back to the torque range midpoint. Two-

three minutes of rest was provided between trials to avoid cumulative fatigue. 

10.2.2 Methods of analysis 

 

 

 

 

 

All analysis was performed offline in MATLAB. The sampled EMG data were notch 

filtered at the power line frequency and all harmonics (2nd-order IIR filter, notch 

bandwidth င0.5 Hz). Small amounts of power line interference, which can be larger in 

magnitude than the EMG signal power at high frequencies, can be inappropriately 

Figure 10.2 A single channel EMG signal (top plots) passing through various steps of EMGσ 
estimation (bottom plot). Data (45 s in duration) were collected from a biceps muscle channel at 

a joint angle of 90° for subject WY01. For simplicity, only one whitened channel is shown 

however, in practice, four channels were combined after demodulation whenever whitening was 

applied. 
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accentuated due to the high gain of whitening filters at these frequencies. The narrow 

bandwidth of these notch filters eliminated this interference source, with limited decrease 

in the overall statistical bandwidth of the signal [Bendat 1971]. Next, two distinct EMGσ 

processors were created for each of the extension and flexion muscle groups for each 45 s 

trial. Estimators were either single-channel, unwhitened (using a centrally located 

electrode) or four-channel whitened (using the four centrally located electrodes). As 

depicted in Figure 10.2, each estimator utilized a 15 Hz highpass filter (5th-order 

Butterworth applied in the forward and reverse time directions to achieve zero phase) and 

a first-order demodulator (e.g., rectifier). Whitened channels used the non-causal adaptive 

whitening algorithm of Clancy and Farry [Clancy 2000]. After demodulation, signals 

were lowpass filtered at 1.6 Hz while being decimated by a factor of 1000, producing a 

resampled frequency of 4.096 Hz. The torque signal was similarly decimated, producing 

an EMG data set with a bandwidth approximately 10 times that of the torque signal being 

estimated [Ljung 1999]. This decimated sampling rate is best for system identification, 

being large enough to capture the system dynamics (the fundamental period of force 

variation was 45 s) and small enough to avoid noise existing out of the signal band 

[Clancy 2006 and Ljung 1999]. The original sampling rate of 4096 Hz is necessary for 

acquiring the raw EMG, but is not appropriate once an EMGσ estimate has been formed. 

The first and last 7.5 s of data were excluded from each 45 s trial to account for filter 

start-up transients. 

The decimated extension and flexion EMGσ inputs were related to joint torque 

(output) using three non-linear polynomial model structures: 

(1) Angle-specific model:  �[�] = ∑ �݂,��ி�[�]஽�=ଵ − ∑ ݁�,��ா�[�]஽�=ଵ    (10.1) 

(2) Flex-extend multiplicative model: �[�] = (∑ ݃�,ி��[�]��=଴ )(∑ �݂,ி�ி�[�]஽�=଴ ) − (∑ ݃�,ா��[�]��=଴ )(∑ ݁�,ா�ா�[�]஽�=଴ ) (10.2) 

(3) Single multiplicative model: �[�] = ሺ∑ ݃���[�]��=଴ ሻ(∑ �݂�ி�[�]஽�=ଵ − ∑ ݁��ா�[�]஽�=ଵ ) (10.3) 

where m was the decimated discrete-time sample index; T[m] was the measured torque; 

ed and fd were the extension and flexion fit parameters (which specified the shape of the 

EMGσ–torque relationship), respectively; σE[m] and σF[m] were the extension and 
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flexion EMGσ estimates, respectively; ga were the angle fit parameters (which specified 

the multiplicative gain vs. joint angle); and θ was the elbow joint angle. The EMGσ 

polynomial degree was varied from 1 င D င 5. The angle polynomial degree was varied 

from 1 င A င 5. Both “A” and “D” were always the same for extension and flexion 

portions within any one model. 

The “angle-specific” model estimated the extension and flexion fit parameters at the 

seven elbow joint angles separately, using linear least squares. The “flex-extend 

multiplicative” model contained two sets of gains (one each for extension and flexion 

activities) which were polynomial functions of elbow joint angle, and simultaneously 

estimated the extension and flexion fit parameters across the seven elbow angles. The 

multiplicative gain functions account for all factors associated with EMGσ–torque 

changes across angle, including muscle moment arms, muscle length–tension 

relationships, and movement of the electrodes with respect to the underlying muscles and 

innervation zones. The “single multiplicative” model was similar, except that it contained 

only one multiplicative gain function. Parameters of the flex-extend and single 

multiplicative models were estimated using non-linear least squares. For the 

multiplicative models, the inclusion of both EMGσ and angle polynomials resulted in one 

redundant overall scaling parameter. Anecdotally, this additional degree of freedom 

seemed to aid the least squares minimization, thus was retained. However, for 

consistency across angles, the angle polynomial was rescaled to a gain of one at 90° after 

the fit was complete, with a compensatory inverse scaling applied to the EMGσ 

polynomial. 

Each subject completed three tracking trials at seven distinct angles. Seven trials, one 

per angle, were combined to form an analysis record (three per subject). The first analysis 

record was used as training data and the second as a test set. Then, the third record was 

used as training data and the second again used as the test set. The mean absolute 

difference between the actual torque and that predicted by the EMG–torque model was 

computed while the actual torque was between 40% MVC extension and 40% MVC 

flexion. Limiting the evaluation range reduces extrapolation errors due to trial-to-trial 

differences in actual torque [Clancy 1997]. The average of these two mean absolute 

difference values was reported as the test error value. All error values were normalized to 
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twice the torque at 50% flexion MVC at angle 90° (MVCF90). Only test trial results are 

presented. For statistical analysis, test error values were subjected to a paired sign test 

[Miller 1977]. Eighty four values contributed to each sign test (seven angles × 12 

subjects). 

10.3 Results 

 

 

 

 

 

Joint angle/ 
Polynomial degree (D) 

 

EMGσ D = 1 D = 2 D = 3 D = 4 D = 5 

45°/ 

Single, unwhite 8.43 ± 6.1 7.22 ± 7.2 7.12 ± 7.5 7.88 ± 11 9.92 ± 18 

Multiple, white 7.44 ± 6.2 6.76 ± 7.2 6.34 ± 6.6 6.40 ± 7.3 7.12 ± 10 

60°/ 

Single, unwhite 7.52 ± 2.6 6.21 ± 3.1 5.96 ± 3.3 5.80 ± 3.3 5.84 ± 3.5 

Multiple, white 6.94 ± 4.1 6.33 ± 5.8 6.18 ± 5.5 13.2 ± 30 35 ± 105 

75°/ 

Single, unwhite 6.64 ± 2.1 5.11 ± 1.8 4.83 ± 1.9 5.77 ± 5.4 11.1 ± 23 

Multiple, white 5.45 ± 2.2 4.21 ± 1.7 3.99 ± 1.9 4.07 ± 2.5 4.73 ± 4.8 

Figure 10.3. EMGσ–torque test results of estimated (solid line) and actual torque (dotted line) vs. 

time for seven elbow angles using three model structures (subject WY01). Data for each angle 

(30 s in duration, after exclusion of filter transients) were collected during distinct trials, then 

concatenated in the figure. Results use multiple-channel whitened EMGσ processing, the best 
EMGσ polynomial degree (D = 3 for the angle-specific model and D = 2 for the other two 

models) and an angle polynomial degree of A = 2. 
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Joint angle/ 
Polynomial degree (D) 

 

EMGσ D = 1 D = 2 D = 3 D = 4 D = 5 

90°/ 

Single, unwhite 5.89 ± 2.6 4.70 ± 1.8 4.59 ± 1.8 4.55 ± 1.8 4.61 ± 1.8 

Multiple, white 5.14 ± 2.5 3.90 ± 1.6 3.63 ± 1.5 3.63 ± 1.5 3.71 ± 1.5 

105°/ 

Single, unwhite 5.04 ± 1.4 4.26 ± 1.3 4.16 ± 1.3 4.14 ± 1.2 4.14 ± 1.2 

Multiple, White 4.32 ± 1.7 3.33 ± 1.5 3.29 ± 1.4 3.34 ± 1.5 3.32 ± 1.4 

120°/ 

Single, unwhite 5.46 ± 2.2 4.56 ± 2.0 4.58 ± 2.0 4.58 ± 2.2 4.65 ± 2.3 

Multiple, white 4.12 ± 2.0 3.37 ± 1.6 3.35 ± 1.6 3.32 ± 1.6 3.45 ± 1.8 

135°/ 

Single, unwhite 3.94 ± 1.2 3.80 ± 1.1 3.79 ± 1.2 3.91 ± 1.4 4.05 ± 1.7 

Multiple, white 2.95 ± 1.5 2.69 ± 1.3 2.80 ± 1.6 2.94 ± 2.0 3.69 ± 4.3 

Overall/ 

Single, unwhite 6.13 ± 2.1 5.12 ± 2.2 5.00 ± 2.2 5.23 ± 3.1 6.32 ± 6.6 

Multiple, white 5.19 ± 2.4 4.37 ± 2.3 4.23 ± 2.2 5.27 ± 5.2 8.66 ± 16 

Table 10.1. Angle-specific model: mean ± std. dev. EMG–torque error (% mean 

absolute MVC flexion at 90° from 12 test trials). 

Figure 10.3 shows an example of the estimated torque and actual torque vs. time for 

seven elbow angles using the three different model structures. The angle-specific model 

was considered the “gold standard,” since it optimized the model coefficients at each 

particular joint angle. It does not interpolate across angles. Table 10.1 gives the mean 

plus/minus standard deviation test error results for the angle-specific model for each 

combination of angle, model order and EMGσ processor. The bottom rows of the table 

list overall errors that collapse results across angle. Error was averaged across the seven 

angles for each subject, then the mean and standard deviation of these 12 values reported. 

The best overall performance was found using the multiple white EMGσ processor and 

polynomial degree D = 3, giving an error of 4.23 ± 2.2% MVCF90. For all angles and 

EMGσ polynomial degrees, multiple-channel whitened processors consistently performed 

better than single-channel unwhitened, except for D စ 2 at 60°. Statistically, results 

between the two EMGσ processors were compared for each EMGσ polynomial degree 

1 င D င 5. The multiple whitened processor was significantly better in all cases 
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(p < 0.001). Note that the “Overall” results for D စ 2 in Table 10.1 obscure this 

difference, due to the large errors associated with one subject at 60°. However, the 

nonparametric statistical analysis (paired sign test) confirms the difference. We next 

statistically compared the best (D = 3) multiple whitened processor results to the other 

multiple whitened processor results. Results for polynomial orders D = 1 and 2 were 

statistically inferior (p < 0.001), while results for D = 4 and 5 did not differ (p > 0.07). 

A.P.D. (A)/ 
EMGσ polynomial degree (D) 

 

Model D = 1 D = 2 D = 3 D = 4 D = 5 

A = 1/ 

Flex-extend 5.55 ± 2.0 4.66 ± 1.5 4.94 ± 2.0 4.67 ± 1.9 5.26 ± 2.9 

Single 6.90 ± 1.9 6.14 ± 1.7 6.67 ± 2.5 6.00 ± 1.7 6.92 ± 3.3 

A = 2/ 

Flex-extend 5.15 ± 2.2 4.17 ± 1.7 4.97 ± 2.9 4.85 ± 2.3 6.52 ± 3.7 

Single 6.34 ± 2.2 5.65 ± 1.9 5.78 ± 2.1 6.11 ± 2.7 6.87 ± 2.9 

A = 3/ 

Flex-extend 5.26 ± 2.3 4.35 ± 1.8 6.25 ± 5.2 4.79 ± 2.8 28 ± 58 

Single 6.50 ± 2.7 5.73 ± 2.0 7.06 ± 5.1 7.15 ± 4.3 15.6 ± 13 

A = 4/ 

Flex-extend 6.27 ± 2.4 5.24 ± 2.1 7.13 ± 5.4 28 ± 44 47 ± 118 

Single 7.37 ± 3.1 6.41 ± 2.1 6.55 ± 2.5 9.67 ± 6.2 38 ± 74 

A = 5/ 

Flex-extend 14.7 ± 9.7 12.3 ± 7.4 12.0 ± 7.1 64 ± 154 282 ± 727 

Single 9.31 ± 8.3 6.81 ± 2.9 8.08 ± 3.4 28 ± 62 33 ± 46 

Table 10.2. Multiplicative models: mean ± std. dev. EMG–torque error (% mean 

absolute MVC flexion at 90° from 12 test trials). “A.P.D” = Angle Polynomial 

Degree. 

Table 10.2 gives the mean plus/minus standard deviation test error results for the two 

multiplicative models, for only the multiple-channel whitened EMGσ processor. For each 

cell, error was averaged across the seven angles for each subject, then the mean and 

standard deviation of these 12 values reported. For both multiplicative models, when both 

D and A were high (စ4), the error became extremely large, likely due to over-fitting. 

Some over-fitting also may have occurred when only one of the two polynomial degrees 

was high (e.g., D = 5, A = 3). The best flex-extend model (D = 2, A = 2) had an error of 

4.17 ± 1.7% MVCF90 and did not differ significantly from the best angle-specific model 
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(p = 0.29). Figure 10.4 graphs an example set of flex-extend model fits for D = 2 and 

A = 2. Figure 10.5 graphs the gain functions for the flex-extend model (one per subject), 

again for D = 2 and A = 2. Considerable gain variation (exceeding a factor of two) exists 

across the span of angles studied. The best performance of the single multiplicative 

model (D = 2, A = 2) was 5.65 ± 1.9% MVCF90, which was statistically different (poorer) 

than the best angle-specific model (p < 0.001) and the best (D = 2, A = 2) flex-extend 

model (p < 0.001). 

 

 

 

 

 

We also statistically compared EMGσ processors for the flex-extend model. The 

multiple white processor consistently produced lower errors (p < 0.006) when both 

polynomial degrees were three or less. For other polynomial degree combinations, results 

were either equivocal or not significant. However, these parameter combinations 

corresponded to higher errors and would not be utilized. Similarly, comparison between 

the two EMGσ processors with the single multiplicative model gave equivocal results 

particularly when the error was high. 

 

Figure 10.4. Flex-extend multiplicative model fits at each angle (subject WY04), using multiple 

white EMGσ processing, an EMGσ polynomial degree of D = 2 and an angle polynomial degree of 

A = 2. Plots provided for each of the seven joint angles (as labeled). Top plots formed from Eq. 

(10.2), while setting σE to zero and the multiplicative gains to one. Bottom plots formed from Eq. 

(10.2) while setting σF to zero and the multiplicative gains to one. 
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Model 

EMGσ value 

 

0.1 0.2 0.3 0.4 

Flexion 

Co-contract 11.8 ± 2.5 22.7 ± 4.4 32.7 ± 5.8 41.8 ± 6.6 

No co-contract 9.1 ± 3.0 17.6 ± 5.2 25.3 ± 6.6 32.3 ± 7.3 

Extension 

Co-contract 14.2 ± 5.2 26.5 ± 9.6 37.0 ± 13.3 45.5 ± 16.5 

No co-contract 8.2 ± 2.5 15.6 ± 4.3 22.2 ± 5.4 28.0 ± 6.2 

Table 10.3. Mean ± std. dev. EMG-estimated muscle torque using 

models with and without co-contraction (% mean absolute MVC 

flexion at 90°). Results computed over all angles for 12 subjects. 

Finally, we also produced flex-extend model EMGσ–torque relationships without 

accounting for muscular co-contraction by ignoring the antagonist muscle term in Eq. 

(10.2). Only parameters D = 2, A = 2 were considered. Within the flexion-dominant range 

of a tracking trial, we related flexion EMGσ to joint torque; and similarly for the 

extension-dominant portion of a tracking trial. Figure 10.6 shows an example result 

(D = 2 and A = 2). At every angle, each subject’s model (flexion or extension) that 

accounted for co-contraction estimated higher muscle torques at every EMGσ value. We 

Figure 10.5. Flexion (top) and extension (bottom) gain functions vs. angle for the twelve subjects 

(numbered 1–12) with the flex-extend multiplicative model, using multiple white EMGσ 
processing, an EMGσ polynomial degree of D = 2 and an angle polynomial degree of A = 2. Note 

that the model requires a gain of one at joint angle 90°. 



110 

 

then computed the model-estimated EMGσ–torque with vs. without modeling co-

contraction at normalized EMGσ values of 0.1, 0.2, 0.3 and 0.4 (where 1.0 denotes the 

EMGσ value at MVC), separately for each of the flexion and extension portions of the 

models. For each subject, results were averaged across the seven angles. Table 10.3 gives 

the mean plus/minus standard deviation results, computed across the 12 subjects. For 

flexion, the models with co-contraction estimated ∼29% more torque. For extension, the 

models with co-contraction estimated ∼68% more torque. 

 

 

 

10.4 Discussion 

We examined three non-linear models for relating EMGσ to joint torque at different 

joint angles during constant-posture, slowly-torque-varying (quasi-constant-torque) 

contractions, as well as the role of advanced EMGσ processors and muscular co-

activation. Rather clear distinctions emerged. The advanced EMGσ processing technique 

that combined whitening and multiple channels consistently provided an approximate 15–

20% performance improvement, compared to unwhitened single-channel performance, 

for the better model structures. Although EMG performance differences were equivocal 

for the poorer performing model structures, these models would not be selected for use. 

These improvement results are consistent with past experimental evaluations [Clancy 

Figure 10.6. EMGσ–torque relationship with (solid lines) and without (dotted lines) 

accounting for muscle co-contraction. An EMGσ polynomial degree of D = 2 and an angle 

polynomial degree of A = 2. Plots provided for each of the seven joint angles (subject 

WY04). 
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1995, Clancy 1997, Clancy 2012, Hogan 1980b, Potvin 2004 and Prakash 2005], 

reflecting that a lower variance EMGσ signal used as the input to system identification 

produces lower modeling errors. There are, however, some possible drawbacks to using 

multiple recording channels, including: increased hardware costs; the risks that artifacts 

on only one channel can greatly degrade the entire EMGσ estimate [Clancy 1995]; and 

the possibility during less constrained contractions that the many electrodes should not be 

combined into one EMGσ, but should be represented as distinct electrical sources/muscle 

compartments [Staudenmann 2009 and Vieira 2010]. 

The particular model structures chosen for evaluation in this study were strongly 

influenced by prior literature in this field. Vredenbregt and Rau [Vredenbregt 1973] 

suggested that the constant-posture EMGσ–torque relation only varies by a multiplicative 

gain as a function of angle. These prior experiments, however, did not account for 

possible muscle co-activation and could not benefit from more recent advances in EMGσ 

processing. Thus, we selected two models that included multiplicative gain as a function 

of angle. Angle-dependent gain was implemented via a polynomial, consistent with the 

expectation of a singly-peaked function [Hasan 1985]. The EMGσ–torque relationship at 

a given angle was also implemented via a polynomial [Clancy 1997 and Vredenbregt 

1973]. These models considered muscular co-activation and were calibrated from 

contraction trials that included both flexion-dominant and extension-dominant 

contraction. 

The optimal EMGσ polynomial degree for the angle-specific model was D = 3, 

consistent with prior work [Clancy 1997]. The EMGσ–torque relationship shown in 

Figure 10.4, however, is much closer to a straight line than that typically plotted in the 

literature, at least for the biceps muscles [Lawrence 1983 and Vredenbregt 1973]. One 

reason for this difference is that we only used efforts up to 50% MVC. Past studies have 

shown the relationship to be mostly straight over this region, with a more curved (non-

linear) shape at higher effort levels. The dependence of gain on joint angle (Figure 10.5) 

did not consistently exhibit a singly-peaked function as might have been anticipated 

[Hasan 1985]. Modeling muscle co-contraction likely influenced this shape, e.g., flexion 

gain was calibrated from both flexion-dominant and extension-dominant torques. In 

addition, subjects generally produced lower absolute torque at the extreme joint angles 
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(see Figure 10.3). Thus, the least squares parameter fit criterion would have given more 

influence to those joint angles closest to 90°, perhaps reducing the influence of the more 

extreme angles. 

Figure 10.6 and Table 10.3 show the constant-posture EMGσ–torque relationship 

with and without consideration of muscle co-contraction. As expected, models that do not 

account for co-contraction estimate lower flexion and extension muscle torque 

contributions, likely underestimating true muscle torque contributions. This error is 

substantial: for flexion, the models with co-contraction estimated ∼29% more torque; for 

extension, the models with co-contraction estimated ∼68% more torque. Unfortunately, 

studies that ignore co-contraction are generally blind to this error. Least squares selection 

of the fit coefficients will reliably match agonist EMG to agonist-direction torque (e.g., 

biceps EMG to flexion-direction torque). Net joint torque will be appropriately estimated, 

but internal torques (i.e., the flexion and extension muscle torque contributions) will 

not—in fact, no antagonist torque is even considered. Of course, such models render 

large errors if the antagonist muscle activity changes from that which was experienced 

during calibration of the model. In most EMGσ–torque studies, subjects are asked to 

minimize muscle co-contraction. Doing so is advantageous from a system identification 

perspective, so as to most independently excite all modes of a system. But, real-life 

contractions will not always preserve the same level of co-contraction. If joint impedance 

were to be volitionally increased by subjects, one would expect even larger errors. For 

example, purposeful co-contraction to increase impedance is common in many tasks 

wherein the endpoint limb segment must be stabilized [Rancourt 2001]. Hence, modeling 

of muscular co-contraction is essential for generalization of an EMGσ–torque model. 

It is not surprising that high degree multiplicative gain functions performed 

significantly poorly, particularly when the EMGσ polynomial model order was high. 

Data from only seven distinct angles were acquired experimentally. Hence, high angle 

polynomial degrees (A) would be expected to lead to over-fitting. One interesting 

solution to this problem would be to separately calibrate the angular dependence and the 

EMGσ dependence. That is, an angle-specific EMGσ–torque polynomial model might be 

calibrated at one reference angle (e.g., 90°) and these coefficients fixed. Thereafter, data 

could be collected while the joint angle was slowly varied across angle (quasi-constant-
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torque). The coefficients of the angle function could then be independently calibrated. In 

doing so, many more angle values would be available, perhaps leading support to a 

higher degree angle polynomial. This calibration technique would also require far less 

data collection. The reduced number of required contractions might further permit 

repeated training trials for each contraction, which might lead to even lower model error 

[Clancy 2012]. Note that many subjects found it awkward to orient their elbow to the 45° 

joint angle and related difficulty in producing torque at this angle. This orientation might 

be outside the range of angles that need be considered in future research. 

The fixed posture and avoidance of dynamic force changes in these experiments 

simplified study of the EMGσ–torque relationship versus joint angle, but may require 

caution when applying the results in less constrained application areas. Our intent was to 

limit the number of variables studied and concentrate on the role of joint angle. It would, 

therefore, be appropriate to reduce these postural and force limitations in future studies, 

transitioning towards EMGσ–torque models in more dynamic, unconstrained contractions. 

For example, when joint angle is allowed to vary dynamically (not the case in this study), 

EMGσ–torque models will likely need to differ as a function of eccentric vs. concentric 

contraction [Komi 2000]. Also, our sample size in this study was limited (12 subjects) 

and predominantly male. Larger and more diverse subject pools can aid in the 

development of EMGσ–torque models that are representative of different body types (e.g., 

height, weight, arm strength) as well as differences that are more specific to EMG signal 

acquisition and processing (e.g., arm circumference, amount of subcutaneous fat, relative 

composition of fast- vs. slow-twitch fibers). 

These results extend the classic results of Vredenbregt and Rau [Vredenbregt 1973] 

by considering muscular co-activation, applying optimized EMGσ estimates, evaluating 

alternative models, quantifying the angular dependence and providing rigorous statistical 

support of all results from multiple subjects. In practice, the results provide strong 

support that the constant-posture, constant-torque EMGσ–torque relationship about the 

elbow maintains the same shape across angles, differing only by a multiplicative gain 

factor as a function of angle. Further, a polynomial function is sufficient to model the 

necessary gain vs. angle. Figure 10.5, for example, could be used to develop normative 

gain vs. angle functions, or better results would be expected if these functions are fit to 
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each subject (as performed in this work). In prosthetics, these results suggest that more 

natural control of a powered elbow might be provided if the gain between EMG and 

motor torque were adjusted as a function of the elbow angle. In ergonomic and 

biomechanical analyses, these results provide a model form in order to account for the 

angle dependence, which should lead to better tracking of predicted joint torques. 

Lastly, this work quantifies the differences in estimated internal muscle tensions with 

vs. without consideration of muscular co-contraction. The differences are quite large, 

suggesting that co-activation about the joint must be considered in musculoskeletal 

models. Formally, doing so is best approached by quantifying joint mechanical 

impedance. That is, net torque about the joint is related to the difference between flexion 

and extension torques, while impedance about the joint is related to the sum of the flexion 

and extension torques. Simultaneously quantifying both joint torque and impedance 

provides a more complete mechanical description of the joint. Rigorous methods for 

relating EMG to joint impedance are just now emerging in the literature [Pfeifer 2012]. 

In summary, EMGσ–torque models were formed during constant-posture, slowly 

force-varying contractions ranging in joint angle from 45° to 135°, while modeling 

muscular co-activation. Advanced EMGσ processing, including signal whitening and 

multiple channel combination, provided consistent performance improvements for the 

better models. A gold standard model was calibrated at each specific angle using a 

polynomial EMGσ–torque relationship. A third-degree polynomial produced the lowest 

estimation error of 4.23 ± 2.2% MVCF90. Models were also formed in which the angular 

dependence was parameterized via a multiplicative gain function written as a polynomial. 

When distinct gains were applied to each of flexion and extension, the best performance 

(EMGσ polynomial degree of two, angle polynomial degree of two) was 4.17 ± 1.7% 

MVCF90. Models which did not account for co-contraction were compared to those that 

do so. Flexion torque was ∼29% higher and extension torque was ∼68% higher in the 

models which included co-contraction. Thus, failure to account for antagonist muscle 

activity can considerably underestimate individual muscle torques. 
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Abstract—This paper describes an experimental study which relates the 

simultaneous biceps/triceps surface electromyogram (EMG) of 12 subjects to elbow 

torque at seven joint angles during constant-posture, quasi-constant-torque 

contractions. Advanced EMG amplitude (EMGσ) estimation processors were 

investigated, and an EMG-torque model considering agonist and antagonist co-

contractions was evaluated at each joint angle. Preliminary results show that 

advanced (i.e., whitened, multiple-channel) EMGσ processors lead to improved joint 

torque estimation and that the EMGσ torque relationship may only change by a 

scaling factor as a function of joint angle. 

11.1 Introduction 

A significant literature has developed around the problem of relating the surface 

EMG to muscle tensions and joint torque. However, most investigators have not 

accounted for muscle co-contractions by assuming that an agonist muscle can be 

contracted while the antagonist muscle is inhibited [Vredenbregt 1973 and Woods 1983]. 

Also, there are clear advances in EMGσ processing techniques over the last few years 

[Clancy 2000], yet little have been incorporated into EMG-torque estimation. The present 

study investigated the EMG-torque problem by modeling agonist-antagonist co-

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5778635
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contractions over a wide range of joint torques at seven different angles, and also applied 

advanced EMGσ processing techniques (whitening, multiple-channel combination). 

11.2 Methods 

11.2.1 Experimental data and methods 

Similar experimental apparatus and methods are described in detail elsewhere 

[Clancy 1997 and Clancy 2000]. Briefly, experimental data from 12 healthy subjects (9 

male, 3 female; aged 18–52 years) were analyzed. A subject was secured into a custom-

built straight-back chair with their right shoulder abducted 90
0
, their forearm oriented in a 

parasaggital plane, the wrist fully supinated (palm perpendicular to the floor) and the 

wrist tightly cuffed to a load cell (Vishay Tedea-Huntleigh Model 1042). The angle 

between the upper arm and the forearm was selectable, but fixed. An array of six EMG 

electrode-amplifiers was placed transversely across each of the biceps and triceps muscle 

groups to record EMG signals. Signals were sampled at 4096 Hz at 16-bit resolution. A 

sequence of constant-posture, quasi-constant-torque contractions was conducted at elbow 

angles of 45°, 60°, 75°, 90°, 105°, 120° and 135°. The order of the angles was 

randomized. At each angle, three tracking trials of forty-five second duration were 

recorded during which the subjects used a feedback signal to track a computer-generated 

target linearly ramping slowly in time between 50% MVC flexion and 50% MVC 

extension. Additionally, subjects performed ten second duration 50% MVC and rest trials 

(0% MVC), used to calibrate the advanced EMGσ processors. 

11.2.2 Methods of analysis 

The sampled EMG data were notch filtered at the power line frequency and all 

harmonics, and then two different EMGσ processors were contrasted. Processor 1 was the 

“conventional” single-channel, unwhitened processor which used EMG recordings from a 

centrally located electrode. The EMG signal was high-pass filtered at 15 Hz and then 

rectified. Processor 2 was a four-channel, whitened processor. Each channel was 

similarly high-pass filtered, adaptively whitened prior to rectification [Clancy 2000], and 

then normalized and ensemble averaged. Prior to use in model fits, EMGσ and torque 

signals were effectively low-pass filtered at 3.3 Hz and decimated by a factor of 1000 

(resulting sampling rate of 4.096 Hz). 
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The decimated extension and flexion EMGσ (inputs) were related to joint torque 

(output) using a degree D polynomial non-linear model: �[�] = ∑ ݁�,��ா�[�]஽�=ଵ + ∑ �݂,��ி�[�]஽�=ଵ    (11.1) 

A train-test paradigm was utilized in which the model coefficients were determined using 

linear least squares from a training trial and then used to “predict” the torque from a 

distinct test trial [Ljung 1999]. An error signal was obtained from the difference between 

the predicted and actual test trial torque. All errors were normalized to twice the torque at 

50% flexion MVC at joint angle 90°. To quantify these errors, we used the mean absolute 

error (MAE) computed for each testing trial, and took the median of 24 MAEs (12 

subjects × 2 test trials per angle) at each joint angle. 

11.3 Preliminary Results 

 

 

 

 

Figure 11.1 shows the normalized joint torque vs. EMGσ during extension-dominant 

(top) and flexion-dominant (bottom) portions of the tracking task at seven different joint 

angles for subject WY04. The EMGσ-torque curves at different joint angles exhibit a 

similar shape but different gains. The EMGσ-torque curves were also generated for the 

other 11 subjects, and this observation was consistent across the subjects. 

Table 11.1 provides the summary results of analysis of median errors between the 

predicted and actual torques from all subjects, at seven different joint angles, when the 

polynomial degree ranged from 1≤D≤5, and using two distinct EMGσ processors. For 

each joint angle and polynomial degree, the four-channel whitened processor produced a 

lower median error than the signal-channel unwhitened processor. 

Figure 11.1. EMGσ estimation shown as a function of normalized extension (left) and flexion 

(right) dominant joint torque at seven joint angles for subject WY04. The dots are real data and 

the solid lines are the second-degree polynomial fits, using multiple-channel, whitened EMGσ 
processor 
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11.4 Discussion 

First, advanced EMGσ estimation was applied to the EMG-torque problem at 

multiple joint angles for constant-posture, quasi-constant-torque contractions about the 

elbow. Results from 12 subjects showed that the multiple-channel whitened EMGσ 

processor consistently produced improved EMG-torque estimation. Depending on the 

joint angle, use of the multiple-channel whitened EMGσ processor with higher 

polynomial degrees produced a median error that was 50%-66% that found when using 

the single-channel, unwhitened EMGσ processor with a polynomial degree of D=1. 

Second, the EMGσ-torque curves of individual subjects, viewed across multiple joint 

angles, indicated that the relationship between EMGσ and joint torque might be 

multiplicative as a function of angle [Vredenbregt 1973]. Therefore, EMG-torque models 

might be calibrated at certain joint angles and then applied to other angles via only a 

change in model gain. 

  

Table 11.1. EMG-torque error (percent of mean absolute MVC flexion at 90°). Each 

result is the median of 24 test trials (12 subjects × 2 trials/subject) 
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Abstract—Relating the electromyogram (EMG) to joint torque is useful in various 

application areas, including prosthesis control, ergonomics and clinical 

biomechanics. Limited study has related EMG to torque across varied joint angles. 

We related the biceps-triceps surface EMG of 22 subjects to elbow torque at six 

joint angles (spanning 60
o
 to 135

o
) during constant-posture, torque-varying 

contractions. Three nonlinear EMGσ-torque models, advanced EMG amplitude 

(EMGσ) estimation processors (i.e., whitened, multiple-channel) and the duration of 

data used to train models were investigated. When EMG-torque models were 

formed separately for each of the six distinct joint angles, a minimum “gold 

standard” error of 4.01 ± 1.2% MVCF90 resulted (i.e., error relative to maximum 

voluntary contraction at 90
o
 flexion). This model structure, however, did not 

directly facilitate interpolation across angles. The best model which did so, achieved 

a statistically equivalent error of 4.06 ± 1.2% MVCF90. Results demonstrated that 

advanced EMGσ processors lead to improved joint torque estimation as do longer 

model training durations. 

Keywords—Biological system modeling, electromyography, electromyogram (EMG) 

amplitude estimation, electromyogram (EMG) signal processing, joint angle 

influence. 
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12.1 Introduction 

For several decades, the surface electromyogram (EMG) has seen extensive 

investigation as a non-invasive measure that can be used to estimate muscle tension 

and/or joint torque (see Staudenmann et al. [Staudenmann 2010] for a recent review) [An 

1983, Clancy 2006, Clancy 1997, Clancy 2012, Doheny 2008, Gottlieb 1971, Hasan 

1985, Hashemi 2012, Hashemi 2013, Heckathorne 1981, Hof 1981, Hogan 1980b, Inman 

1952, Lawrence 1983, Liu 2013b, Messier 1971, Potvin 2004, Sanger 2007, Shin 2009, 

Solomonow 1986, Staudenmann 2009, Thelen 1994 and Vredenbregt 1973]. A common 

approach is to estimate the EMG standard deviation (EMGσ, a.k.a. EMG amplitude) from 

one or more sites on muscles about a joint, and then use system identification techniques 

to model an EMGσ-torque relationship. These non-invasive estimates are used in 

prosthesis control [Parker 2006], clinical biomechanics [Disselhorst-Klug 2009 and 

Doorenbosch 2003] and ergonomics analysis [Hagg 2004, Kumar 1996 and Mathissen 

1995]. Numerous system identification approaches have been successfully applied, with 

most studies now accounting for agonist-antagonist co-activation [Solomonow 1986] and 

individual subject differences in the EMG-torque relationship [Hasan 1985]. Because 

EMG is a stochastic signal, methods which lower the variance of EMGσ estimates—e.g., 

whitening and multiple-channel combination—have been shown to lower EMG-torque 

errors, as have improved system identification methods [Clancy 1995, Clancy 1997, 

Clancy 2000, Clancy 2002, Clancy 2006, Clancy 2012, Hashemi 2012, Hashemi 2013, 

Hogan 1980a, Hogan 1980b, Potvin 2004, Sanger 2007, Staudenmann 2010 and Thelen 

1994]. 

A topic with more limited investigation is the role of joint angle. The EMG-torque 

relationship changes with angle, at least due to the length-tension relationship [Rack 1969 

and Zajac 1989], changes in muscle moment arms [Messier 1971] and the movement of 

electrodes with respect to underlying muscle tissue and the innervation zone [Martin 

2006 and Rainoldi 2000]. Vredenbregt and Rau [Vredenbregt 1973], as well as more 

recent studies [Doheny 2008, Hashemi 2013 and Liu 2013b], found evidence of a 

multiplicative influence of angle on EMG-torque, at least during constant-torque 

contractions at various torque levels. That is, the EMG-torque curve has the same shape 

at each angle, but is scaled by a gain factor that is distinct for each angle. 
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In this study, we report on continued improvements to EMG-torque processing, with 

an emphasis on the influence of joint angle. Our primary contribution focuses on 

extending the experimental conditions to force-varying contractions conducted over a 

range of fixed joint angles. We specifically investigated the appropriateness of extending 

the multiplicative model vs. joint angle to force-varying contractions. We also compared 

standard EMGσ processing to advanced processors that include signal whitening and 

multiple channel combination. Finally, two areas of system identification were contrasted. 

First, we contrasted linear dynamic models to nonlinear dynamic models. Second, the 

duration of data available for model training has seen limited evaluation [Clancy 2012 

and Hahne 2014]. Hence, we also evaluated this modeling variant. 

12.2Methods 

12.2.1 Experimental data and methods 

Experiments were approved and supervised by the WPI IRB. Experimental data were 

acquired from 22 healthy subjects (12 male, 10 female; aged 18–56 years), each of whom 

provided written informed consent. Subjects were seated and strapped into a custom-built 

straight-back chair (see Fig. 1 of [Liu 2013b]) with their right shoulder abducted 90
o
, 

their forearm oriented in a parasaggital plane, and their supinated wrist (palm 

perpendicular to the floor) tightly cuffed to a load cell (Vishay Tedea-Huntleigh Model 

1042, 75 kg full scale). The angle between the upper arm and the forearm was fixed, but 

selectable. Skin above the biceps and triceps muscles was cleaned with an alcohol wipe 

and a bead of electrode gel was massaged into the overlying skin. Six bipolar EMG 

electrode-amplifiers were applied in a row, transversely across each of the biceps and 

triceps muscle groups, midway between the elbow and the midpoint of the upper arm (to 

avoid the innervation zone proximally and the tendon distally). Only the middle four of 

each set of six were analyzed. Subjects were instructed to tense their muscles at both 

angular extremes (60
o
, 135

o
) to aid in visualizing the distal tendon and the muscle 

midpoint locations. EMG recording over the tendon is discouraged because the tissue is 

not electrically active and prone to motion artifacts. Recording over the innervation zone 

(typically located near the muscle mid-point) can lead to large variations in EMGσ values 

with small changes in location [Rainoldi 2000]. The center of the row of electrodes was 

aligned with the muscle midline, to best avoid crosstalk from adjacent muscles. Each 
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electrode-amplifier had a pair of 8 mm diameter, stainless steel, hemispherical contacts 

separated by 1 cm edge-to-edge, oriented along the muscle’s long axis. The distance 

between adjacent electrode-amplifiers was ~1.75 cm. A ground electrode was gelled and 

secured on the upper arm. Custom electronics amplified and filtered each EMG signal 

(CMRR > 90 dB at 60 Hz; 8th-order Butterworth highpass at 15 Hz; 4th-order 

Butterworth lowpass at 1800 Hz) before being sampled at 4096 Hz with 16-bit resolution. 

The RMS EMG signal level at rest (representing equipment noise plus ambient 

physiological activity) was on average 2.4 ± 2.5% of the RMS EMG at 50% maximum 

voluntary contraction (MVC) at 90
o
, using the full available frequency range. For 

comparison to a more common bandwidth found in commercial EMG electrodes, the 

resting signal was digitally lowpass filtered at 500 Hz (2nd-order Butterworth), and this 

RMS noise measure was 2.2 ± 2.5% of RMS EMG at 50% MVC. 

All contractions were constant-posture, with the elbow angle selectable. Subjects 

were provided a warm-up period, then rested three minutes. Separate extension and 

flexion MVCs were then measured at a joint angle of 90
o
. Subjects took 2–3 seconds to 

slowly ramp up to MVC and maintained that force for two seconds. The average load cell 

value during the contraction plateau was taken as the MVC. Five second duration, 

constant-force contractions at 50% MVC extension, 50% MVC flexion and at rest (arm 

removed from the wrist cuff) were next recorded at 90
o
. These contractions were used to 

calibrate advanced EMGσ estimation algorithms [Clancy 2000 and Prakash 2005]. Then, 

a sequence of constant-posture, torque-varying contractions was conducted at randomized 

elbow angles (the included angle between the forearm and upper arm) of 60
o
, 75

o
, 90

o
, 

105
o
, 120

o
 and 135

o
. At each angle (other than 90

o
), MVC torque was measured in both 

elbow extension and flexion. Then, four tracking trials of 30 s duration were recorded 

during which the subjects used the load cell as a feedback signal to track a computer-

generated torque target. The target moved on the screen in the pattern of a bandlimited (1 

Hz) uniform random process, spanning 50% MVC extension to 50% MVC flexion. Two 

minutes of rest were provided between trials to avoid cumulative fatigue. A total of 24 

tracking trials were recorded (four trials for each of six angles). 

12.2.2 Methods of analysis 

Analysis was performed offline in MATLAB. The sampled EMG signals were notch 
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filtered at the power line frequency and its harmonics (2nd-order IIR comb filter 

designed, notch bandwidth ≤ 0.5 Hz each, dual-pass filtered—filter applied in the 

forward, then reverse time directions to achieve zero phase), since whitening at high 

frequencies is particularly susceptible to signal interference; and then each signal was 

highpass filtered (15 Hz cutoff, 5th-order Butterworth filter designed; duel-pass filtered). 

Next, two distinct EMGσ variations were created for each of the extension and flexion 

muscle groups for each 30 s trial. Estimators were either single-channel, unwhitened 

(using a centrally located electrode) or four-channel whitened (using the four centrally 

located electrodes). Whitened channels used the non-causal adaptive whitening algorithm 

of Clancy and Farry [Clancy 2000] and Prakash et al. [Prakash 2005]. After optional 

whitening, each processor utilized a first-order demodulator (rectifier). Thereafter, signals 

were lowpass filtered at 16 Hz then downsampled by a factor of 100 to 40.96 Hz. The 

torque signal was similarly decimated, producing an EMG data set with a bandwidth 

approximately 10 times that of the torque signal being estimated. This decimated 

sampling rate is best for system identification, being large enough to capture the system 

dynamics and small enough to avoid noise existing out of the signal band [Clancy 2006 

and Ljung 1999]. The first and last 2 s of data were excluded from each 30 s trial to 

account for filter startup and tail transients. 

The decimated extension and flexion EMGσ inputs were related to joint torque 

(output), comparing three dynamic nonlinear polynomial model structures. First, a 

dynamic model was fit separately at each joint angle, providing the angle-specific model: �[�] = ∑ ∑ �݂,�,��ி�[� − �]��=଴஽�=ଵ − ∑ ∑ ݁�,�,��ா�[� − �]��=଴஽�=ଵ  (12.1) 

where m was the decimated discrete-time sample index; T[m] the measured torque; D the 

EMGσ polynomial degree (varied from D=1–4, where D=1 produced a linear model); Q 

the number of time lags (Q=20) [Clancy 2012]; θ the elbow joint angle; fd,q,θ and ed,q,θ the 

flexion and extension fit parameters, respectively (which specified the shape of the 

EMGσ-torque relationship); and σF[m] and σE[m] the flexion and extension EMGσ 

estimates, respectively. This model was fit using linear least squares, regularized via the 

pseudo-inverse; if the ratio of the largest to a given singular value in the design matrix 

was less than 0.0056, that singular value was omitted [Clancy 2012 and Press 1994]. This 

angle-specific model served as the performance “gold standard.” 
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Second, a model which incorporated the hypothesized gain variation in the form of 

polynomial gain vs. angle functions (one for flexion and another for extension) provided 

the polynomial-gain model: �[�] = (∑ ݃�,ி��[�]��=଴ )(∑ ∑ �݂,��ி�[� − �]��=଴஽�=ଵ ) − (∑ ݃�,ா��[�]��=଴ )(∑ ∑ ݁�,��ா�[� − �]��=଴஽�=ଵ ) (12.2) 

where ga,F and ga,E were the flexion and extension angle fit parameters, respectively 

(which specified the multiplicative gain vs. joint angle). The angle polynomial degree 

was varied from A=1–4. Note that the dynamic fit coefficients, fd,q and ed,q, were fixed 

across angle (i.e., not a function of angle). This model was fit using nonlinear least 

squares. The initial dynamic parameters (fd,q and ed,q) were those of the angle-specific 

model at 90
o
. The initial angle parameters were then found by fixing the dynamic 

parameters and solving for the ga,F and ga,E parameters via linear least squares 

(simultaneously across all angles). The full nonlinear model was then minimized across 

all angles. The inclusion of both angle and EMGσ polynomials resulted in one redundant 

overall scaling parameter. Anecdotally, this additional degree of freedom seemed to aid 

the least squares minimization, thus was retained. However, for consistency across 

models, the angle polynomial was rescaled to a gain of one at 90
o
 after the fit was 

complete, with a compensatory inverse scaling applied to the EMGσ polynomial. This 

model immediately interpolates the gain function across all joint angles. 

The third model simplified the gain vs. angle relation by utilizing distinct flexion and 

extension gains at each angle. This piece-wise-gain model is: �[�] = ݃�,ி(∑ ∑ �݂,��ி�[� − �]��=଴஽�=ଵ ) − ݃�,ா(∑ ∑ ݁�,��ா�[� − �]��=଴஽�=ଵ ) (12.3) 

where gain parameters gθ,F and gθ,E were designated at each of the six angles (total of 12 

angle parameters). Again, note that the dynamic fit coefficients were fixed across angle. 

This model was fit using nonlinear least squares. The initial dynamic parameters (fd,q and 

ed,q) were those of the angle- specific model at 90
o
. The initial angle parameters could 

then be found by fixing the dynamic parameters and solving for the gθ,F and gθ,E 

parameters via linear least squares (each pair fit separately at each angle). The full 

nonlinear model (angle parameters and dynamic parameters) was then simultaneously 

minimized across all angles, and then normalized to a gain of one at 90
o
. This model did 

not facilitate immediate gain interpolation across angle. However, gain vs. angle 

interpolations which preserve the exact gain values at the measured angles (e.g., spline 
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functions) can be fit post hoc to provide EMG-torque at any angle. 

Each subject completed four tracking trials at six distinct angles. Six trials, one per 

angle, were combined to form an analysis record (four per subject). Initially, one record 

was used for training and a second record for testing. The mean absolute difference 

between the test torque and that predicted by the EMG-torque model was computed. This 

difference excluded the first and last 2 s (due to filter startup and tail transients) as well as 

an additional 488 ms startup transient due to the Q=20 order dynamic filter. Error values 

were normalized to twice the torque at 50% flexion MVC at angle 90
o
 (MVCF90). The 

average test trial error from all 12 possible single-record train-test combinations (full 

cross-validation) was reported for each subject. Next, two records were used for training 

and two for testing, with full cross-validation (12 combinations). Finally, three records 

were used for training and one for testing (four combinations). For statistical analysis, 

test error values were subjected to a paired sign test [Miller 1977]. Twenty two paired 

values contributed to each sign test (22 subjects). 

12.3 Results 

 

 

 

 

Figure 12.1. Sample EMGσ-torque estimation results for the three models. Estimated torque 

(solid blue line) and actual torque (dotted red line) vs. time. Data for each angle (26 s in duration, 

after exclusion of transients) were collected during distinct trials, then concatenated in the figure. 

Results use multiple-channel whitened EMGσ processing, three training records (78 s), and the D 

and A selections providing the lowest overall average errors (see Table 12.2). 
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Figure 12.2. Top: Sample EMGσ-torque results for the shortest (26 s) training duration, piece-

wise gain model, using single-channel unwhitened EMGσ processing and a D=2 nonlinear 

dynamic model (20th order). Bottom: Sample EMGσ-torque results for the longest (78 s) 

training duration, piece-wise gain model, using multiple-channel whitened EMGσ processing 
and a D=3 nonlinear dynamic model (20th order). In each plot, estimated torque shown in solid 

blue line, actual torque shown in dotted red line. 

Figure 12.3. Sample frequency response from the flexion (left two) and extension (right two) 

portions of a linear (D=1) model fit. Piece-wise-gain model, using multiple channel whitened 

EMGσ and three training records (78 s). Model fit uses data from all joint angles. 

Figure 12.4. Flexion (top) and extension (bottom) angular gain functions vs. angle for the 22 

subjects (different plot marker per subject), for the piece-wise-gain model, polynomial degree 

D=3, three training records (78 s). Markers show model gains at the measured angles, lines 

show cubic spline interpolations. Note that the model imposes a gain of one at joint angle 90
o
. 
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Records Used to 

Train 

Angle Degree 

(A) 

    

EMGσ Polynomial Degree (D) 

D = 1 D = 2 D = 3 D = 4 

Angle-Specific Model: 

One N/A 6.36 ± 2.3 5.90 ± 2.0 6.17 ± 2.3 6.56 ± 2.6 

Two N/A 6.00 ± 2.1 5.44 ± 1.9 5.54 ± 2.0 5.71 ± 2.2 

Three N/A 5.87 ± 2.0 5.28 ± 1.8 5.30 ± 1.7 5.37 ± 1.7 

      

Polynomial-Gain Model: 

One 1 6.59 ± 2.2 5.95 ± 2.1 5.92 ± 2.1 6.25 ± 2.2 

 2 6.45 ± 2.4 5.86 ± 2.2 5.81 ± 2.1 6.06 ± 2.1 

 3 6.48 ± 2.3 6.08 ± 2.3 6.13 ± 2.3 6.74 ± 3.1 

 4 7.16 ± 2.4 6.50 ± 2.2 6.48 ± 2.2 6.64 ± 2.5 

      

Two 1 6.48 ± 2.2 5.85 ± 2.1 5.75 ± 2.0 5.78 ± 2.0 

 2 6.30 ± 2.2 5.71 ± 2.1 5.62 ± 2.0 5.68 ± 2.0 

 3 6.30 ± 2.2 5.83 ± 2.1 6.16 ± 2.3 6.30 ± 2.4 

 4 8.35 ± 5.2 6.88 ± 3.1 6.53 ± 2.5 6.35 ± 2.5 

      

Three 1 6.44 ± 2.2 5.80 ± 2.1 5.72 ± 2.1 5.69 ± 1.9 

 2 6.24 ± 2.2 5.66 ± 2.1 5.61 ± 2.2 5.61 ± 2.0 
 3 6.22 ± 2.2 5.81 ± 2.1 5.91 ± 2.2 6.54 ± 2.8 

 4 8.08 ± 3.5 6.20 ±2.2 7.06 ± 2.8 6.80 ± 3.0 

      

Piece-Wise-Gain Model: 
One N/A 6.41 ± 2.3 5.87 ± 2.2 6.12 ± 2.3 11.3 ± 20 

Two N/A 6.09 ± 2.1 5.53 ± 1.9 5.59 ± 1.9 5.74 ± 1.9 

Three N/A 5.95 ± 2.0 5.41 ± 1.8 5.44 ± 1.9 5.54 ± 1.9 

Table 12.1. Mean ± std. dev. EMG-torque test error results from all three models, for 

single-channel unwhitened EMG processing. Errors expressed in percent mean absolute 

MVC flexion at 90
o
 from 22 subjects. Each training record was 26 s in duration. 

Figure 12.1 shows an example of the estimated torque and actual torque vs. time for 

the six elbow angles using the three different model structures. The best performing 

parameters, as indicated in the caption, were selected for each model in the figure. The 

angle-specific model was considered the “gold standard,” since it optimized the model 

coefficients at each particular joint angle. It does not interpolate across angles. Figure 

12.2 shows example EMG-torque estimation vs. time, comparing training duration and 

EMGσ processing. Figure 12.3 shows an example flexion-portion and extension-portion 

frequency response from a linear model (D=1). As would be expected, the least squares 

fit produces a lowpass characteristic in the dynamic model with a cutoff frequency 

similar to the bandwidth of the input tracking bandwidth (1 Hz). Figure 12.4 shows 

angular gain vs. angle for each subject, using the piece-wise-gain model. The gains at the 

six tested angles are shown as well as cubic spline interpolation of gains between these 

angles. The flexion gains trend down at the two angular extremes, while the extension 
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gains trend down as joint angle increases. Table 12.1 gives the mean plus/minus standard 

deviation test error results for the three models when single-channel unwhitened EMGσ 

processing was used. The analysis dimensions enumerated are: EMGσ-torque model, 

number of training records used to fit a model, EMGσ polynomial degree (D) and angle 

polynomial degree (A; applicable to the polynomial gain model, only). Table 12.2 gives 

the corresponding results when multiple-channel whitened EMGσ processing was used. 

The general trends in these results were for lower errors due to multiple-channel 

whitened EMGσ processing, longer duration training and nonlinear dynamic models 

(D>1). The lowest errors in the polynomial-gain model always occurred when the angle 

polynomial equaled A=2. 

Records Used 

to Train 

Angle 

Degree 

(A) 

    

EMGσ Polynomial Degree (D) 

D = 1 D = 2 D = 3 D = 4 

Angle-Specific Model: 

One N/A 4.91 ± 1.8 4.66 ± 1.7 4.75 ± 1.7 5.01 ± 2.1 

Two N/A 4.60 ± 1.6 4.17 ± 1.3 4.17 ± 1.3 4.25 ± 1.4 

Three N/A 4.49 ± 1.5 4.04 ± 1.2 4.01 ± 1.2 4.05 ± 1.2 

      

Polynomial-Gain Model: 

One 1 5.21 ± 1.6 4.74 ± 1.5 4.70 ± 1.4 4.80 ± 1.4 

 2 4.90 ± 1.7 4.46 ± 1.5 4.41 ± 1.3 4.47 ± 1.3 

 3 4.94 ± 1.7 4.57 ± 1.5 4.68 ± 1.4 4.77 ± 1.4 

 4 6.28 ± 2.4 5.03 ± 1.6 5.03 ± 1.5 5.08 ± 1.7 

      

Two 1 5.12 ± 1.6 4.65 ± 1.4 4.57 ± 1.3 4.56 ± 1.3 

 2 4.77 ± 1.6 4.33 ± 1.4 4.25 ± 1.3 4.23 ± 1.2 

 3 4.86 ± 1.6 4.39 ± 1.5 4.49 ± 1.4 4.47 ± 1.4 

 4 6.22 ± 2.0 5.56 ± 3.2 5.11 ± 1.7 4.73 ± 1.5 

      

Three 1 5.09 ± 1.6 4.61 ± 1.4 4.53 ± 1.3 4.47 ± 1.2 

 2 4.73 ± 1.6 4.28 ± 1.4 4.19 ± 1.2 4.16 ± 1.2 

 3 4.89 ± 1.6 4.35 ± 1.4 4.37 ± 1.3 4.52 ± 1.4 

 4 5.84 ± 1.7 4.92 ± 1.8 4.94 ± 1.6 4.84 ± 1.5 

      

Piece-Wise-Gain Model: 

One N/A 4.96 ± 1.8 4.50 ± 1.5 4.53 ± 1.4 4.78 ± 1.7 

Two N/A 4.67 ± 1.6 4.23 ± 1.4 4.16 ± 1.2 4.23 ± 1.2 

Three N/A 4.57 ± 1.5 4.14 ± 1.3 4.06 ± 1.2 4.19 ± 1.3 

Table 12.2. Mean ± std. dev. EMG-torque test error results from all three models, for 

multiple-channel whitened EMG processing. 

Statistical analysis began by comparing single-channel unwhitened results (Table 

12.1) to multiple-channel whitened results (Table 12.2). For each combination of EMGσ-

torque model and training duration (nine combinations per table), the cell with the lowest 
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average error in Table 12.1 was compared to the corresponding cell with the lowest 

average error in Table 12.2. Each of the nine comparisons was statistically significant 

 510p , with multiple-channel whitened results demonstrating lower errors in each case. 

Hence, subsequent statistical analysis was limited to the multiple-channel whitened 

results (Table 12.2). Next, statistical comparison was made between the number of 

training records used to fit a model. Within each of the three models, the cell with the 

lowest average error for each training duration in Table 12.2 was compared pair-wise to 

the results from the other two durations (three combinations for each of the three models). 

Each of the nine comparisons was statistically different (p<10
-3

), with two training 

records always producing lower errors than one training record and three training records 

always producing the lowest error. Hence, subsequent statistical analysis was further 

limited to the results using three training records in Table 12.2. Angle degree was next 

compared (polynomial gain model only). The lowest average error was identified for 

each of the four angle degrees. The data from the cell with the minimum overall error 

(A=2, D=4) was compared to that of each of the other three cells. All differences were 

significant (p<10
-3

); angle degree A=2 produced the minimum error. Accordingly, 

subsequent statistical analysis with the polynomial-gain model limited the angle degree to 

A=2. Then, differences between polynomial degrees (D) were compared within each 

model. For each model, the data from one row in Table 12.2 were used (three training 

trials, A=2 for the polynomial-gain model) by comparing the cell with the minimum 

average error to each of the three other cells. For the angle-specific model, the cell with 

the minimum average error (D=3) differed only from D=1 ( 410p ). For the polynomial-

gain model, D=4 differed significantly from D=1 and D=2  410p . And, for the piece-

wise-gain model, D=3 differed from D=1 and D=2 (p<0.01). Finally, comparison was 

made between models. For each model, the cell with the lowest average error in Table 

12.2 was compared pair-wise to the similar results from the other two models (three 

combinations). There was a weak difference when comparing the angle-specific model to 

the polynomial-gain model (p=0.026) and no difference for the other two model 

comparisons (p>0.25). Thus, the results from the piece-wise-gain model—which can be 

interpolated across angle—were not statistically different than results from the “gold 

standard” angle-specific model. The lowest EMGσ-torque error was 4.01 ± 1.3% MVCF90. 
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12.4 Disussion 

This study evaluated methods for relating EMG to joint torque across a range of 

angles, during constant-posture force-varying contractions. In general, the processing was 

conducted in two sequential stages: estimation of extension and flexion EMGσ, followed 

by system identification of torque from the extension and flexion EMGσ time-series. In 

the first stage, “standard” EMGσ estimation (single-channel unwhitened) was compared 

to advanced EMGσ estimation (multiple-channel whitened). As with past experimental 

studies [Clancy 1995, Clancy 1997, Clancy 2012, Hogan 1980b, Liu 2013b, Potvin 2004 

and Prakash 2005], advanced EMGσ estimation resulted in a substantial decrease in 

torque estimation error. Herein, error was reduced on average by 25% for each of the 

three EMGσ-torque models studied. This performance improvement is attributed to a 

reduction in the variance of the EMGσ signal, due to whitening and channel combination 

[Hogan 1980a, Hogan 1980b and Liu 2013a]. Nonetheless, there may be some drawbacks 

to the use of multiple-channel EMGσ estimators, including: increased hardware cost; the 

increased risk of electrode malfunction and its associated precipitous degradation in the 

EMGσ estimate [Clancy 1995]; and the possibility that better models could be formed by 

including all channels directly in the EMGσ-torque model, rather than combining EMG 

channels at the amplitude estimation stage [Staudenmann 2009 and Vieira 2010]. 

In the second processing stage (relating EMGσ to torque), we studied three model 

structures. The angle-specific model was considered the “gold standard,” since it 

provided a separate fit at each available angle. The other two models incorporated an 

angle-invariant EMGσ-relation that was multiplicatively scaled as a function of angle—

as suggested by the work of Vredenbregt and Rau [Vredenbregt 1973] which studied 

slowly force-varying contractions. We found that the best angle-invariant models had an 

error that was not statistically different from the best gold standard/angle-specific model. 

These EMGσ-torque models account for (and cannot distinguish between) all variations 

due to changes in angle, including: the muscle length-tension relationship, variation in 

muscle moment arms and muscle movement under the skin with respect to electrode 

location. Our results provide further evidence that the constant-posture EMGσ-torque 

relationship maintains the same shape across elbow angles, and need only be scaled to 

account for different angles—extending the prior results to force-varying (constant-
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posture) contractions. The angle-invariant models are simple and can be easily 

interpolated over all angles within the range studied. 

Few studies have rigorously studied the role of training contraction duration on model 

performance. In a prior study of the elbow with a similar protocol, but limited to only the 

90
o
 joint angle, training set durations of 26 s and 52 s were contrasted [Clancy 2012]. The 

longer duration consistently produced better results, particularly as the number of fit 

parameters increased. The best (lowest error) model formed using 26 s of data had an 

error of 5.55 ± 4.5% MVCF90, while the best model using 52 s had an error of 4.65 ± 

3.6% MVCF90. Thus, average error decreased %16 due to the increased training duration. 

In the present study (across six angles), training durations of 26 s, 52 s and 78 s exhibited 

best-case average errors of 4.75 ± 1.7% MVCF90, 4.17 ± 1.3% MVCF90 and 4.01 ± 1.2% 

MVCF90, respectively, for the angle-specific model. Hence, increasing from 26 s to 52 s 

reduced average error by 12%, while increasing from 26 s to 78 s reduced average error 

by 16%. As might be expected, the relative rate of improvement diminishes as the 

training duration increases. Note that the overall lower average errors in the present study 

are likely due to the range of angles studied, as lower torques are generated when joint 

angle deviates from 90
o
. These lower torques lead to lower errors, as all errors were 

referenced to torque at 90
o
. 

The optimal EMGσ polynomial degree ranged from D=2–4 when using single-

channel unwhitened EMGσ processing and from D=3–4 when using multiple-channel 

whitened EMGσ processing. The number of dynamic fit parameters (compared to the 

D=1 linear model, which had 42 dynamic fit parameters) doubles for D=2, triples for 

D=3 and quadruples for D=4. Thus, the nonlinear dynamic models have a very large 

number of parameters, which can be a challenge for robust least squares estimation. For 

this reason, our fit parameter estimates were regularized using the pseudo-inverse 

approach whenever linear least squares fitting was applied [Clancy 2012 and Press 

1994]. In particular, note that regularized linear least squares estimation was used to find 

the initial guess parameters that seeded each of the nonlinear least squares estimators. 

When regularization was not used for the initial guess, several of the nonlinear 

optimizations failed to converge. More generally, the conditioning of the linear least 

squares fit (or convergence of the nonlinear least squares minimization) is improved by 
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longer training durations, fewer parameters and data sets that excite all modes of the 

model [Ljung 1999]; hence our reason for using a broadband torque target in the 

experimental protocol. Of these factors, it is useful to note that our method of achieving a 

nonlinear dynamic model (raising EMGσ and its lag values to a power) does not use fit 

coefficients efficiently. Functions that facilitate a similar model shape, but utilize fewer 

fit coefficients—such as parallel cascade models [Hashemi 2012]—might be more 

parsimonious. 

For the polynomial-gain model, the best angle polynomial degree was A=2 in all 

cases. Since only six distinct joint angles were examined, it is likely that overfitting 

began to occur for degrees above A=2. The piece-wise-gain model avoided this issue 

entirely by fitting gain only at the available joint angles, facilitating interpolation between 

angles as a post hoc processing step. Spline functions are an excellent choice for such 

processing, as they preserve the value of the function at the knots (i.e., at the joint angles 

at which measurements were made) and provide a smooth fit in-between. 

The fixed postures imposed during these experiments facilitated study of the system 

identification methods, and may be representative of conditions experienced by 

prosthesis users whose remnant musculature may be fixed in orientation. But, fixed 

postures are not representative of the free movements made during most activities of 

daily living in non-amputees. Hence, future work should consider conditions during 

which the joint is dynamically changing angle. In doing so, models may need to consider 

differences in the EMGσ-torque relationship as a function of concentric vs. eccentric 

contraction [Komi 2000]. While three distinct models were studied in this work, we did 

not extensively study all possible model parameters (e.g., the number of dynamic model 

lags was fixed at Q=20, the pseudo-inverse tolerance was set at Tol = 0.0056), instead 

fixing these values based on a prior study [Clancy 2012]. Slight tuning of these values 

might provide some additional reduction in torque error estimation, albeit rather limited. 

In summary, models were formed during constant-posture, torque-varying 

contractions ranging in joint angle from 60
o
 to 135

o, using advanced EMGσ estimation 

techniques and multiple training trials. With EMG-torque models formed separately at 

each of the six distinct joint angles, a minimum “gold standard” error of 4.01 ± 1.2% 

MVCF90 resulted [EMGσ polynomial degree of D=3, three training records (78 s) and 
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multiple-channel whitened EMGσ processing]. The piece-wise-gain model, which 

facilitates interpolation across angles, achieved a statistically equivalent error of 4.06 ± 

1.2% MVCF90. Compared to single-channel unwhitened EMGσ processing, multiple-

channel whitened EMGσ processing reduced torque error by 25% on average. Increasing 

the training trial duration from 26 s to 52 s reduced average error by 12%, while 

increasing it from 26 s to 78 s reduced average error by 16%. These results further 

support the experimental observation, for both slowly torque varying and (herein) torque-

varying contractions, that the shape of the constant-posture EMGσ-torque relationship is 

the same at each joint angle, but is scaled by a gain factor that is distinct at each angle. 



134 

 

Chapter 13  

Appendices  

13.1 Introduction to firing rate  calculation models 

This section describes the performance of various firing rate estimation methods 

when the firing rate is constant.  Although physiologic firing rates are never constant, this 

simplified model is helpful in understanding the overall performance of the estimation 

methods. Methods for calculating continuous firing rates of various methods are listed in 

(6.1.1a)–(6.1.1e): instantaneous method [rinst(t)], LeFever method [rLeFever(t)] [DeLuca 

1979], Berger method [rBerger(t)] [Berger 1986], Berger variant method [rBergerV(t)], 

Mateo-Laguna method [rLag(t)] [Mateo 1996] and instantaneous-spline method 

[rinst.spline(t)]. The firing rate is calculated either in the continuous domain ݐ א ℝ+ or in the 

uniformly sampled discrete domain ݐ௡ = ݊ ௦ܶ א ℝ+. To facilitate processing and storage 

on digital computers, methods with firing rates in the continuous time domain are always 

discretized. However, for analytical results, continuous-domain results are analyzed in 

the continuous domain. By convention, rounded parentheses are used to denote 

continuous-time variables, while square-brackets are used to denote discrete-time 

variables. 

The time of the k-th firing occurs at time tk, satisfying 0≤tk<tk+1 and ݇ א ℕ. Some 

commonly used functions are: 

 Indicator function: ͳℑሺݔሻ = {Ͳ, ݔ ב ℑͳ, ݔ א ℑ, 

 The Hanning window function of length w defined on ℤ as: �ann୵[݊] = Ͳ.ͷ ቀͳ − cos ଶ�௡୵−ଵቁ, 

 The rectangular window function of length X as a specialized indicator 

function: Rect௑ሺݔሻ = {Ͳ, |ݔ| ൑ �ͳ, |ݔ| > �, 

 Convolution of continuous functions f and g with domains of ℝ ݂ሺݐሻ⊗ ݃ሺݐሻ = ∫ ݂ሺ߬ሻ݃ሺݐ − ߬ሻ∞−∞ ݀߬, 
 Convolution of discrete functions f and g with domains of ℤ 
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݂[݊]⊗ ݃[݊] = ∑ ݂[݇]݃[݊ − ݇]∞௞=−∞ , 

 Sinc function with domain of ℝ, at cutoff frequency f Hz is sinc௙ሺݐሻ = ୱi୬ଶ�௙௧�௧ , 

 Its discrete counterpart with domain of ℤ at Fs Hz sample frequency sinc௙[݊] = ௦ܨ ୱi୬�௙௡/ிೞ�௡ , 

 The Dirac-delta function can be loosely defined as ߜሺݐሻ = {∞, ݐ = ͲͲ, ݐ ≠ Ͳ, 

satisfying ∫ ∞−∞ሻݐሺߜ ݐ݀ = ͳ. Its discrete counterpart is ߜ[݊] = {ͳ, ݊ = ͲͲ, ݊ ≠ Ͳ. 

 Spline interpolation process: given that ݕ = ݂ሺݔሻ at a set of points {ݔ௞: ݇ ,ℕא ͳ ൑ ݇ ൑ ܰ, ௞ݔ <  ௞+ଵ} (a.k.a. knots), the k-th degree spline interpolatedݔ

function ݃ሺ݇, ሻݔ א ℂ௞ satisfies ݃ሺ݇, ௞ሻݔ = ݂ሺݔ௞ሻ. 
 The integral pulse frequency modulation (IPFM) model. Let the modulation 

process −ͳ ൑ ݉ሺݐሻ < ∞, tı0 be an integrable stochastic process satisfying ݉ܧሺݐሻ = Ͳ. The IPFM model gives ܯሺݐሻ = ∫ ͳ +݉ሺ߬ሻܶ ݀߬∞
଴  

It’s easy to see that M(t) is another stochastic process that is non-negative, 

non-decreasing and bijective of t for t>0, and is linear of m(t). The continuous 

rate function derived from M(t), ̂ݎሺݐሻ = ሻݐሺ′ܯ = ଵ+௠ሺ௧ሻ்  is non-negative and 

continuous as an estimate of firing rate r(t), satisfying ݎ̂ܧ = ଵ்
. The constant T 

is also the expectation of the renewal process {∆௞= ௞ݐ − ݇ :௞−ଵݐ א ℕ, ௞ݐ < ܶ :{௞+ଵݐ = =௞∆ܧ limே→∞ ௧ேಿ . The inverse problem of calculating the firing rate under 

IPFM formulation seeks an estimate of ̂ݎሺݐሻ  based on tk, the only 

measurement from lossy observation of {ݐ௞: ݇ א ℕ,ܯሺݐ௞ሻ = ݇}.  
In practice, it’s required that m(t) be continuous, so that M(t) is also 

continuous. Under that assumption, it can be decomposed as ܯሺݐሻ ۂሻݐሺܯہ= + +is a pure jump surjective function of ℝ ۂሻݐሺܯہ ሻ, whereݐሺܯ̃ → ℕ 
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taking integer values with discontinuity at tk, and ̃ܯሺݐሻ א ℂ[ݐ௞−ଵ, ௞ሻݐ →[Ͳ, ͳሻ is piecewise continuous. 

Let Ts be the uniform temporal sampling interval,  ݎሺݐሻ א ℝ+  be the underlying 

ground-truth continuous firing rate and ݎ[݊] = ௦೙்ೞ א ℝ+ be the uniformly discretized firing 

rate, where sn is the number of firings in interval [ቀ݊ − ଵଶቁ ௦ܶ, ቀ݊ + ଵଶቁ ௦ܶቁ. The continuous 

rate is non-negative, continuous and upper-bounded (usually below 100 pps). Note that ݎ[݊] ≠ ሺ݊ݎ ௦ܶሻ as r[n] is an average measure. In physical measurements, however, it’s 

often assumed that ݔ[݊] = ሺ݊ݔ ௦ܶሻ  due to temporal resolution and aliasing. It is 

straightforward to discretize a proper continuous function (and continuous rate) with this 

relation. Many of the subsequent analyses are carried out in the continuous domain 

because it is easier to apply proper continuous mapping than its discrete counterpart, and 

the result is trivially applicable to discrete cases. 

Let ݐ௞ א ℝ+be the time of the k-th firing. With these definitions of commonly used 

functions, the firing rate estimators studied are defined as: ݎi୬ୱ୲ሺݐሻ = ଵ௧ೖ−௧ೖ−భ∑ ͳ[௧ೖ−భ, ௧ೖሻሺݐሻ∞௞=ଵ            (13.1.1a) 

It is obvious that for any t value, only one interval in the summation takes value one 

(i.e., only one indicator function, ͳ[௧ೖ−భ, ௧ೖሻሺݐሻ, is nonzero) and all others terms are zero. 

[݊]Le୊e୴e୰ݎ = [݊]ݔ ⊗ �ann୵[݊]    (13.1.1b) 

ሻݐ୆e୰ge୰ሺݎ  = ሻݐi୬ୱ୲ሺݎ ⊗ Rect �்ሺݐሻ            (13.1.1c) ݎ୆e୰ge୰V[݊] = [݊]i୬ୱ୲ݎ ⊗ sinc௙�[݊]     (13.1.1d) ݕLagሺݐሻ = ∑ ݐሺߜሻݐሺܯ − ௞ሻே௞=ଵݐ = {݇, ݐ = ,௞Ͳݐ otherwise       ݎLagሺݐሻ = ݃′(݇ = ͵, ,ሻݐLagሺݕ  (13.1.1e)      ({௞ݐ}

ሻݐi୬ୱ୲.Lagሺݎ = ݃ ቀ݇ = ͵,∑ ʹ=ͳ݊݇−݇ݐ−݇ݐሻ݇ݐ−ݐሺߜ ,  ቁ     (13.1.1f){௞ݐ}

in the above, M(t) is the stochastic integral process from IPFM model, and ݃ሺ݇, ݂ሺݐሻ,  .ሻ is spline interpolation of degree k of function f(t) at time {tk}{݇ݐ}

LeFever [DeLuca 1982] applied a 400ms discrete Hanning window function to filter 

the impulse train. This method contains one parameter: odd number of taps of the 

Hanning window.  
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The Berger method analytically convolves a rectangular temporal window of duration 

௖ܶ seconds with the continuous instantaneous heart rate (13.1.1a) before it is sampled. 

The temporal rectangular window is a sinc(f) function in the frequency domain that 

attenuates high-frequency components introduced by jumps in the instantaneous rate that 

occur at each firing time. The resulting rate is piecewise linear in the continuous domain ݐ א ℝ+, with joints at tk±Tc/2 (edges of windows centered at tk where the influence of a 

previous impulse vanishes and/or the next impulse starts to affect ݎ୆e୰ge୰ሺݐሻ ). The 

continuous rate (13.1.1c) is then sampled to its discrete equivalent. Alternatively, the 

discrete firing rate can be calculated only at sampling instants. The Berger method has 

the window taps, odd likewise, as its only method parameter. Berger also corrected for 

the sinc shape in the frequency domain, which we did not do. 

For implementation/simulation purposes of all these methods on a digital computer, 

the continuous functions are first discretized as described before operations in discrete 

counterparts are carried out. The Berger-variant method (13.1.1d) replaces the discrete 

rectangular window in the implementation of Berger method with a discrete sincfc(t) 

function with cut-off frequency fc Hz. As the firing sequence always has finite duration, 

an infinite duration sinc function can be used to convolve with the sampled instantaneous 

rate. Alternatively, we can truncate the sinc function with Nc taps, with sincTr[n]=0 for ݊ < ଵ−ே�ଶ  or ݊ > ே�−ଵଶ .  

To see this, let x[n] be a sequence with Ncx non-zero terms, then ݕ[݊] ≔ [݊]ݔ  ⊗sinc݂ܿ[݊] has infinite non-zero terms because of sincfc[n], but out of which only Ncx terms 

at the same location as x[n] are interesting to us. Let the leftmost non-zero term of x[n] be 

indexed nL, and rightmost non-zero term indexed nR=nL+Ncx-1; then we have ݕ[݊] =∑ ݊]�sinc௙[݇]ݔ − ݇]∞௞=−∞ = ∑ ݊]�sinc௙[݇]ݔ − ݇]௡�௞=௡ಽ , and only nL-nR=1-Ncx ≤ n ≤ nR-nL=Ncx-

1 terms of sincfc[n] are needed in the computation. Thus Nc=2Ncx+1 terms are needed 

from sincfc[n]. 

The Maeto-Laguna method [Maeto 1996] samples from the continuous IPFM result ܯሺݐሻ (which cumulatively sums the rate process) at instants tk and spline interpolates to 

obtain the continuous function ̂ݕLagሺݐሻ with the approximation that ݔ[݊] = ሺ݊ݔ ௦ܶሻ (i.e. 

discrete rate at nTs equals continuous rate at that time), then takes its derivative to obtain 

rate. Note that discretization of integral and differential are performed via summation and 
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difference given that step size (resolution) is high enough, and convolution by summation 

of discrete products.  

The spline interpolation process can be viewed as a time-varying filter whose 

frequency response depends on the duration between interpolated samples. For an l-th 

order spline, the cutoff frequency of the impulse response for uniformly spaced spline 

interpolation is inversely proportional to the interpolated sample duration. A cubic spline 

has a cutoff frequency of 
଴.ସସబ்  Hz and a 14-th order spline has a cutoff frequency of 

଴.ସ8బ்  

Hz [Maeto 2000]. The cubic spline is a good candidate because of its negligible 

dependence on the interpolation factor, and because higher orders barely improve the 

filtering performance due to numerical precision limits [Mateo 2000]. This method has 

the interpolation factor (spline order) as its method parameter. 

13.2 Analysis of constant firing rate estimations 

For most analysis of firing rates in this chapter, it is implicitly assumed that the firing 

sequence starts from zero and extends to infinity, so that the tail transient of filtering 

processes is absent from the analysis. Often, for the sake of further simplicity, it is stated 

that the sequence also has infinite history, i.e. it starts from -∞. Under that assumption, 

both start up transients and tail transients are safely ignored. 

13.2.1 Instantaneous method 

It is trivial to mention that the instantaneous rate (13.1.1a) gives constant output when 

presented with a constant firing rate input, assuming an infinite time sequence. The 

Fourier transform of the instantaneous rate is ܴ௜௡௦௧ሺ�ሻ = ∑ ୱi୬c[�మ ሺ௧ೖ−௧ೖ−భሻ]௧ೖ−௧ೖ−భ ݁−௝�మሺ௧ೖ+௧ೖ−భሻ∞௞=ଵ   (13.2.1) 

13.2.2 Berger method 

The temporal filter in the continuous time domain is a rectangular window of duration 

2T0: wሺݐሻ = ଵଶ బ் �[− బ், బ்]ሺݐሻ with Fourier transform Wሺ�ሻ = ୱi୬� బ்� బ் . The filtered output is: ݎ୆e୰ge୰ሺݐሻ = ሻݐi୬ୱ୲ሺݎ ⊗wሺݐሻ = ଵଶ బ்∑ ௟ೖሺ௧ሻ௧ೖ−௧ೖ−భ∞௞=ଵ    (13.2.2) 

where ݈௞ሺݐሻ is the overlap coverage of the two intervals [ݐ௞−ଵ, ݐ] ௞ሻ andݐ − ଴ܶ, ݐ + ଴ܶሻ for 

each k.  

For an infinite-duration constant firing rate with tk=kT, (13.2.2) reduces to ݎ୆e୰ge୰ሺݐሻ = ∑ ௟ೖሺ௧ሻ∞ೖ=భ் = ଵ்
, the reciprocal of the constant firing interval. In a more general 
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setting, when firing times are non-negative, lk(t) can be classified into five cases 

illustrated in Fig 13.1: 

 

Figure 13.1. Interval intersection cases. This plot shows all five possible cases of a 

rectangle window’s coverage of an interval between (k-1)-th and k-th firing. ݈௞ሺݐሻ = ∫ ͳ[௧ೖ−భ,௧ೖሻሺ߬ሻͳ[௧− బ், ௧+ బ்ሻሺ߬ሻ݀߬∞
−∞

= {  
  ʹ ଴ܶݐ௞ − ௞−ଵݐ ݐ א ௞−ଵݐ] + ଴ܶ, ௞ݐ − ଴ܶሻ ሺcase ͳሻݐ א ௞ݐ] − ଴ܶ, ௞−ଵݐ + ଴ܶሻ ሺcase ʹሻݐ + ଴ܶ − ݐ−௞−ଵݐ + ଴ܶ + ௞Ͳݐ ݐ א ሺݐ௞−ଵ − ଴ܶ, min{ݐ௞ − ଴ܶ, ௞−ଵݐ + ଴ܶ}ሻ ሺcase ͵ሻݐ א ሺmin{ݐ௞ − ଴ܶ, ௞−ଵݐ + ଴ܶ} , ௞ݐ + ଴ܶሻ ሺcase Ͷሻݐ א ሺ−∞, ௞−ଵݐ − ଴ܶሻ ∩ ሺݐ௞ + ଴ܶ, ∞ሻ ሺcase ͷሻ  

(13.2.3) 

It is non-zero for only finite many terms because of finite time support of the 

rectangular window function. Case-1 occurs only when ʹ ଴ܶ ൑ ௞ݐ −  ௞−ଵ, when an intervalݐ

between two adjacent firings is long enough to contain the rectangle window centered at t; 

case-2 occurs only when ʹ ଴ܶ > ௞ݐ −  ௞−ଵ, or when the interval is too short so that it isݐ

contained by the rectangle window centered at t. These two cases are exclusive 

depending on the window duration and where t locates. Case 3 occurs when only (k-1)-th 

firing is covered by the window; case-4 when only k-th firing is covered, and case-5 

when the left edge of window is to the right of k-th firing. 

We see from case-5 that ݎ୆e୰ge୰ሺݐሻ = Ͳ before ݐ଴ − ଴ܶ . When k=1, either case-4 or 

case-1 must be present in (13.2.2) to make interval [ݐ − ଴ܶ, ݐ + ଴ܶ] completely covered 

by [ݐ௞−ଵ, ݐ ௞ሻ, implying thatݐ > ଴ݐ + ଴ܶ. This gives a start-up transient of ʹ ଴ܶ for (13.2.2). 

Find indices ܮ and ܷ into overlapping coverage function (13.2.3) such that ݐ௅−ଵ < ݐ −଴ܶ ൑ ௅ݐ  and ݐ௎ ൑ ݐ + ଴ܶ < ௎+ଵݐ . Note that ܷ + ʹ ൒  ,includes all five cases in (13.2.3) ܮ

then (13.2.2) can be written as: 
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ሻݐ୆e୰ge୰ሺݎ = { ଵ௧ಽ−௧ೆ ܮ > ܷଵଶ బ் ቀ௧ಽ−௧+ బ்௧ಽ−௧ಽ−భ + ௧−௧ೆ+ బ்௧ೆ+భ−௧ೆ + ݑ − ݈ቁ ܮ ൑ ܷ  (13.2.4) 

For constant rate ݐ௞ = ݇ܶ + �, extend the uniform point process to −∞ to avoid finite 

start-up transients: {ݐ௞ א ℝ, ݇ א ℤ: ௞ݐ <  ௞+ଵ}, then (13.2.3) reduces toݐ

݈௞ሺݐሻ = {  
଴ܶݐʹ   ݐ א ݇ܶ + � − [ ଴ܶ, ܶ − ଴ܶሻݐ א ݇ܶ + � − [ܶ − ଴ܶ, ଴ܶሻݐ + ଴ܶ − ሺ݇ − ͳሻܶ − ݐ−� + ଴ܶ + ݇ܶ + �Ͳ ݐ א ݇ܶ + � − ሺܶ + ,଴ݐ max{ݐ଴, ܶ − ଴ܶ}ሻݐ א ݇ܶ + � + ሺ−min{ݐ଴, ܶ − ଴ܶ} , ݐ଴ሻݐ א ሺ−∞, ݇ܶ + � − ܶ − ଴ܶሻ ∩ ሺ݇ܶ + � + ଴ܶ, ∞ሻ 

(13.2.5) 

When case-1 occurs, at most two ݈௞ሺݐሻ’s are non-zero for any given t. When only one ݈௞ሺݐሻ is non-zero, (13.2.2) gives ܴ୆e୰ge୰ሺݐሻ = ଵ்
; when two adjacent ݈௞ሺݐሻ’s are non-zero, 

they correspond to case-4: left partial-cover of interval [ݐ௞−ଵ, ௞ሻݐ  and case-3: right 

partial-cover of interval [ݐ௞−ଵ, ௞ሻݐ ) respectively, so the output is ܴ୆e୰ge୰ሺݐሻ =ଵଶ బ்் ݐ−] + ଴ܶ + ሺ݇ − ͳሻܶ + � + ݐ + ଴ܶ − ݇ܶ − � + ܶ] = ଵ்
. 

When case-2 occurs, at least two ݈௞ terms are non-zero. Let ݏ = ቒ௧− బ்் ቓ, then there are ܮ = ቔ௧+ బ்் ቕ − ݏ ൒ Ͳ terms of ݈௞ሺݐሻ that correspond to case-2 (complete interval coverage), 

contributing to the filtered output ܴ୆e୰ge୰௖ሺݐሻ = ௅்ଶ బ்் = ௅ଶ బ்; one term of ݈௞ that corresponds 

to case-4 and -3 respectively (partial coverage), together contributing to output ܴ୆e୰ge୰�ሺݐሻ = ଵଶ బ்் ݐ−]} + ଴ܶ + ݇ܶ + �] + ݐ] + ଴ܶ − ሺ݇ + ሻܶܮ − �]} = ଵ் − ௅ଶ బ் . So the 

resulting output is still ܴ୆e୰ge୰ሺݐሻ = ሻݐ௖ሺݕ + ሻݐሺ�ݕ = ଵ்
. 

Thus, under constant-rate point process, the continuous output (13.2.2) of the 

Berger’s method is constant and inversely proportional to the firing interval after finite 

initial transient time. An alternative approach to reach the same conclusion is to see that 

the instantaneous rate in this case is constant, thereby so is the continuous Berger rate as 

a rectangle window filtering output of the instantaneous rate. Subsequent sampling does 

not alter this property. 

13.2.3 Berger-variant method 

13.2.3.1 Time-domain approach 

The Berger-variant method is calculated the same way as in Berger method from the 

renewal process {∆௞= ௞ݐ − ݇ :௞−ଵݐ א ℕ, ௞ݐ < ௞ݐ} ௞+ଵ} based on the point processݐ א ℝ: ݇ ,ℕא ௞ݐ < ሻݐ௞+ଵ} of firing times. It is then filtered with a temporal sinc function wሺݐ =sinc௙�ሺݐሻ = ୱi୬��௧�௧  with Fourier transform Wሺ�ሻ = �[−��,��]ሺ�ሻ  with ௖݂ = ��ଶ� , and is 

subsequently sampled.  
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For constant firing rate with tk=kT and infinite duration and infinite past (i.e. inf{݇} =−∞), the Berger-variant rate reduces to 
ଵ் ∫ wሺݐሻ∞−∞ ݐ݀ = ଵ் . 

More generally, when firing times are non-negative, the filtered output before 

sampling is: 

ሻݐ୆e୰ge୰Vሺݎ = ሻݐi୬ୱ୲ሺݎ ⊗ wሺݐሻ = ∫ ∑�[௧ೖ−భ,௧ೖሻሺ߬ሻݐ௞ − ∞௞−ଵݐ
௞=ଵ

∞
−∞ ∙ sin�௖ሺݐ − ߬ሻߨሺݐ − ߬ሻ ݀߬

= �௖ߨ ∑ ͳݐ௞ − ∞௞−ଵݐ
௞=ଵ ∫ sin�௖߬�௖߬ ݀߬௧−௧ೖ−భ௧−௧ೖ  

(13.2.6) 

The change of summation with integral is due to the Fubini-Tonelli theorem [Tonelli, 

1909]. Introduce the sine integral function ௜ܵሺݔሻ = ∫ ୱi୬ ௧௧௫଴ ݐ݀  and the Dirichlet integral 

௜ܵሺ∞ሻ = �ଶ. We have ∫ ୱi୬�బఛ�బఛ ݀߬௧మ௧భ = ௌ೔ሺ�బ௧మሻ−ௌ೔ሺ�బ௧భሻ�బ . The resulting filtered output is: ݎ୆e୰ge୰Vሺݐሻ = ଵ�∑ ௌ೔(�బሺ௧−௧ೖ−భሻ)−ௌ೔(�బሺ௧−௧ೖሻ)௧ೖ−௧ೖ−భ∞௞=ଵ = �బ� ∑ ଵ௧ೖ−௧ೖ−భ∞௞=ଵ ∫ sincሺݐ − ߬ሻ௧ೖ௧ೖ−భ ݀߬ (13.2.7) 
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Figure 13.2. Convergence rate of sine integral. It shows the absolute 

difference between the sine integral and the Direchlet integral is shown in 

black and 1/t (red) in log-log scale. We can see that the absolute difference 

is upper-bounded by 1/t, and is negligible for t>1 second. 
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The convergence rate of ௜ܵሺݐሻ is shown in Figure 13.2. The bandwidth �଴ of the filter wሺݐሻ scales with startup transient effects; doubling �଴ halves the time needed to limit 

start-up effects to a given level. 

For constant firing rates ݐ௞ = ݇ܶ + �, the output becomes: ݎ୆e୰ge୰Vሺݐሻ = ଵଶ் + ଵ�் ௜ܵ(�଴ሺݐ − �ሻ) → ଵ் , ݐ → ∞   (13.2.8) 

We can see that the calculated firing rate for a constant interval is non-constant due to the 

infinite start-up transients of the windowing function in the time domain, converging to 

the constant rate  
ଵ்
 as t→∞.  

13.2.3.2 Frequency approach 

The conclusion (13.2.8) can also be reached by calculating (13.2.6) in the frequency 

domain. The output in the frequency domain is: ܴ୆e୰ge୰Vሺ�ሻ = ܴi୬ୱ୲ሺ�ሻWሺ�ሻ = ∑ ୱi୬c[�మ ሺ௧ೖ−௧ೖ−భሻ]௧ೖ−௧ೖ−భ ݁−௝�మ ሺ௧ೖ+௧ೖ−భሻ∞௞=ଵ �[−�బ,�బ]ሺ�ሻ (13.2.9) 

For constant firing rate with tk=kT and infinite duration and infinite past, ܴi୬ୱ୲ሺ�ሻ =ୱi୬c�మ்் ∑ ݁−௝�ቀ௞−భమቁ்∞௞=ଵ = ఋሺ�ሻ்  almost everywhere, so that (13.2.9) reduces to ܴ୆e୰ge୰Vሺ�ሻ =ఋሺ�ሻ் , which gives ݎ୆e୰ge୰Vሺݐሻ = ଵ்
. 

Let ݕ௞ሺݐሻ = ∫ sinc [�ଶ ሺݐ௞ − [௞−ଵሻݐ ݁௝�௧ ݀��బ−�బ  then when (13.2.9) is put in time domain, 

it becomes: ݎ୆e୰ge୰Vሺݐሻ = ଵଶ�∫ ܴ୆e୰ge୰Vሺ�ሻ݁௝�௧ ݀��బ−�బ = ଵଶ�∑ ௞ݕ ቀݐ − ௧ೖ+௧ೖ−భଶ ቁ∞௞=ଵ   (13.2.10) 

To simplify it, introduce the cosine integral function ܥ௜ሺݐሻ = ∫ c୭ୱఛఛ௧଴ ݀߬, even; and an 

auxiliary function:  ܼሺ�ሻ = ∫ sincሺ߭߬ሻ݁௝జ௧ ݀߭ �
଴ = ͳʹ߬ [ ௜ܵ(�ሺݐ + ߬ሻ) − ௜ܵ(�ሺݐ − ߬ሻ)] − ݆ʹ߬ ݐ௜(�ሺܥ] + ߬ሻ) − ݐ௜(�ሺܥ − ߬ሻ)] 

with ܼሺ−�ሻ = − ଵଶఛ [ ௜ܵ(�ሺݐ + ߬ሻ) − ௜ܵ(�ሺݐ − ߬ሻ)] − ௝ଶఛ ݐ௜(�ሺܥ] + ߬ሻ) − ݐ௜(�ሺܥ − ߬ሻ)] so that ݕ௞ሺݐሻ = ଶ௧ೖ−௧ೖ−భ [ ௜ܵ (�଴ ቀݐ + ௧ೖ−௧ೖ−భଶ ቁ) − ௜ܵ (�଴ ቀݐ − ௧ೖ−௧ೖ−భଶ ቁ)] . Substitute into (13.2.10) to 

arrive at (13.2.8).  

13.2.3.3 Temporal truncated filter 

When the Sinc window is truncated to [− ଴ܶ, ଴ܶ]: sinc�బ,்ሺݐሻ = ୱi୬�బ௧�௧ �[− బ், బ்]ሺݐሻ, its 

Fourier transform becomes: 
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 Sinc�బ, బ்ሺ�ሻ = �[−�బ,�బ]ሺ�ሻ ∗ ଶ ୱi୬� బ்� = ʹ[ ௜ܵ(ሺ� + �଴ሻ ଴ܶ) − ௜ܵ(ሺ� − �଴ሻ ଴ܶ)](13.2.11) 

It’s easy to verify that Sinc�బ,்ሺ�ሻ is even. Now the filtered output (6.2.8) becomes: ݎ୆e୰ge୰Vሺ ଴ܶ, ሻݐ = �బ� ∑ ଵ௧ೖ−௧ೖ−భ ∫ ୱi୬ఛఛ �[௧ೖ−భ, ௧ೖሻሺݐ − ߬ሻ ݀߬బ்− బ்∞௞=ଵ = �బ� ∑ ௟ೖ೅ሺ௧ሻ௧ೖ−௧ೖ−భ∞௞=ଵ (13.2.12) 

With the same classification as (13.2.5): ݈௞்ሺݐሻ = ∫ ୱi୬�బఛ�బఛ ͳ[௧ೖ−భ,௧ೖሻሺ߬ሻͳ[௧− బ், ௧+ బ்ሻሺ߬ሻ݀߬∞−∞ =

{  
  
  ଵ�బ [ ௜ܵ(�଴ሺݐ + ଴ܶሻ) − ௜ܵ(�଴ሺݐ − ଴ܶሻ)], ݐ א ௞−ଵݐ] + ଴ܶ, ௞ݐ − ଴ܶሻଵ�బ [ ௜ܵሺ�଴ݐ௞ሻ − ܵ௜ሺ�଴ݐ௞−ଵሻ], ݐ א ௞ݐ] − ଴ܶ, ௞−ଵݐ + ଴ܶሻଵ�బ [ ௜ܵ(�଴ሺݐ + ଴ܶሻ) − ௜ܵሺ�଴ݐ௞ሻ], ݐ א ሺݐ௞−ଵ − ଴ܶ, min{ݐ௞ − ଴ܶ, ௞−ଵݐ + ଴ܶ}ሻଵ�బ [ ௜ܵሺ�଴ݐ௞−ଵሻ − ௜ܵ(�଴ሺݐ − ଴ܶሻ)], ݐ א ሺmin{ݐ௞ − ଴ܶ, ௞−ଵݐ + ଴ܶ} , ௞ݐ + ଴ܶሻͲ, ݐ א ሺ−∞, ௞−ଵݐ − ଴ܶሻ ∩ ሺݐ௞ + ଴ܶ, ∞ሻ

  

(13.2.13) 

where ݈௞்ሺݐሻ’s are nonzero for only finite terms at any time t as is in Berger’s case. 

Finding indices ݈ and ݑ such that ݐ௟−ଵ < ݐ − ଴ܶ ൑ ௨ݐ ௟ andݐ ൑ ݐ + ଴ܶ <  ,௨+ଵ as in (13.2.4)ݐ

(13.2.12) reduces to ݎ୆e୰ge୰Vሺ ଴ܶ, ሻݐ
= {  
  ௜ܵ(�଴ሺݐ + ଴ܶሻ) − ௜ܵ(�଴ሺݐ − ଴ܶሻ)ߨሺݐ௟ − ௨ሻݐ ݑ < ݈

௜ܵሺ�଴ݐ௟ሻ − ௜ܵ(�଴ሺݐ − ଴ܶሻ)ߨሺݐ௟ − ௟−ଵሻݐ + ௜ܵ(�଴ሺݐ + ଴ܶሻ) − ௜ܵሺ�଴ݐ௨ሻߨሺݐ௨+ଵ − ௨ሻݐ + ∑ ܵ௜ሺ�଴ݐ௞ሻ − ௜ܵሺ�଴ݐ௞−ଵሻߨሺݐ௞ − ௞−ଵሻ௨ݐ
௞=௟+ଵ ݑ ൒ ݈ 

(13.2.14) 

For constant firing rate ݐ௞ = ݇ܶ + � , we have ݈ = ቒ௧− బ்−�் ቓ  and ݑ = ቔ௧+ బ்−�் ቕ  which 

makes it simplifies into  ݎ୆e୰ge୰Vሺ ଴ܶ, ሻݐ = ௌ೔(�బሺ௧+ బ்ሻ)−ௌ೔(�బሺ௧− బ்ሻ)�் = �బ�் ∫ sincሺݐ + ߬ሻబ்− బ் ݀߬  (13.2.15) 

13.2.4 Continuous-time IPFM model and heart timing signal 

A slightly more realistic and complicated scenario than constant-firing rate is the 

single-tone or multi-tone modulation, where the modulation function is the superposition 

of some sinusoidal rates with different amplitudes, frequencies and phases. Indeed, 

Fourier transformation enables us to decompose a stationary process into sinusoids. 

Analysis for the summation of finitely many sinusoids, however, becomes more difficult 

than the constant rate cases. We use the IPFM model to connect the underlying firing rate 
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and observed firing times, and try to establish an analytic relationship between firing 

times and modulation function when finite sinusoids are used in IPFM model. 

Now that ݐሺݔሻ is the time for the x-th pulse, the instantaneous firing rate (13.1.1a) 

from the IPFM model can be written as ݐ′ሺݔሻ. For uniform sampling in time ݐ[݇] = ݇ ௦ܶ, 
the firing rate can be approximated as, ݐ′(ݔሺݐሻ) = ௗ௫−భሺ௧ሻௗ௫ ≅ ்ଵ+ భ೅ೞ ∫ ௠ሺఛሻଵ[೟ೖ−భ ೟ೖ)ሺఛሻ ௗఛ∞−∞     (13.2.16) 

The underlying zero-mean modulating function ݉ሺݐሻ is first modeled in a multitone 

form ݉ሺݐሻ = ∑ ܽ௞ cosሺ�௞ݐ + ߮௞ሻ௅௞=ଵ      (13.2.17) 

with ܽ௞ , �௞ > Ͳ  and ߮௞ א [Ͳ, ሻߨʹ  deterministic. The HT signal [Maeto 1996] is 

calculated as ℎݐሺݐሻ = ܶ ∙ ሻݐሺݔ − ݐ = ∫ ݉ሺ߬ሻ ݀߬௧଴      (13.2.18) 

and is linear in the modulating signal ݉ሺݐሻ . Let ܶܪሺ�ሻ  and ܯሺ�ሻ  be the Fourier 

transforms of ℎݐሺݐሻ and ݉ሺݐሻ, then perfect reconstruction of ݉ሺݐሻ from the spectrum of 

HT signal is possible from ܶܪሺ�ሻ = ெሺ�ሻ௝� +  .ሺ�ሻ [Mateo 2000]ߜሺͲሻܯߨ

To obtain from ݉ሺݐሻ the underlying point process of firing times, we can solve ܰ 

equations for ݐ௞ under the restriction that Ͳ < ௞ݐ ൑ ܰܶ, ͳ ൑ ݇ ൑ ܰ: ℎݐሺݐ௞ሻ = ݇ܶ − ௞ݐ = ∑ ௔೗�೗ [sinሺ�௟ݐ௞ + ߮௟ሻ − sin߮௟]௅௟=ଵ    (13.2.19) 

For each k, the existence of a solution ݐ௞ is guaranteed as ℎݐሺݐ௞ሻ is generated from the 

underlying ݉ሺ߬ሻ. However, the uniqueness of ݐ௞ is not easily guaranteed. Apparently, the 

solution is unique if and only if ݐ + ∫ ݉ሺ߬ሻ௧଴  is strictly increasing, implying |ܽଵ| < ͳ for 

monotone modulation; for multi-tone modulation, sinusoids add up constructively or 

destructively and {ݐ|݉ሺݐሻ < −ͳ} may not be empty. When |݉ሺݐሻ| ا ͳ (or |ܽ௞| ا ͳ), then 

the uniqueness can often be guaranteed as observed from the simulation results of Figure 

13.3. A numeric solution to (13.2.19) may be found using the Newton method with an 

initial guess ݐ௞଴ = ௞ே ேݐ − ∑ ௔೗�೗ sin߮௟௅௟=ଵ . 
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Figure 13.3. Simulation results for uniqueness of ݐ௞ solutions 

In Figure 13.3, the simulated ℎݐሺݐ௞ሻ is generated from a given L, and coefficients al,  ωl and φl, ͳ ൑ ݈ <  are randomly assigned. The al coefficients are uniformly distributed ,ܮ

from [Ͳ, ܽ୫a୶] with ܽ୫a୶ below 1 and ܽ௅ = ܽ୫a୶; the ωl’s are from a standard normal 

distribution and ߮௟’s from uniform distribution of [−ߨ, A total of 5×10 .[ߨ
5
 realizations 

of ℎݐሺݐሻ are generated for each ܽ୫a୶ for ݐ א [Ͳ, ͷ] with spacing of 0.02, and then we 

check if ℎ[ݐ]ݐ is increasing from its samples. The percent of non-increasing realizations 

for each ܽ୫a୶ value are shown in the figure, and the process repeated for various L’s. 

With 95% confidence, the ℎݐሺݐሻ sequence is increasing and thus ݐ௞ solutions of (13.1.25) 

are unique when ܽ୫a୶ < Ͳ.Ͳ͸ for ܮ ൑ ͳͲ. 

It’s straightforward to approximate sin א ݐ with a rational expression for ݐ [Ͳ,  by [ߨ

using the Bhaskara-I’s sine approximation formula: 

{ 
 sin ݐ ≈ Saሺݐሻ ∶= ଵ଺௧ೝሺ�+௧ೝሻହ�మ+ସ௧ೝሺ�+௧ೝሻcos ݐ ≈ Caሺݐሻ ∶= √ହሺ�+ଶ௧ೝሻ√ହ�మ−ଵଶ�௧ೝ−ଵଶ௧ೝమହ�మ+ସ௧ೝሺ�+௧ೝሻ

 when ݐ − ቔ ௧ଶ�ቕ א ሺߨ,  ሻ (13.2.20a)ߨʹ

{ 
 sin ݐ ≈ Saሺݐሻ ∶= ଵ଺௧ೝሺ�−௧ೝሻହ�మ−ସ௧ೝሺ�−௧ೝሻcos ݐ ≈ Caሺݐሻ ∶= √ହሺ�−ଶ௧ೝሻ√ହ�మ+ଵଶ�௧ೝ−ଵଶ௧ೝమହ�మ−ସ௧ೝሺ�−௧ೝሻ

 when ݐ − ቔ ௧ଶ�ቕ א [Ͳ,  ሻ (13.2.20b)ߨ

where ݐ௥ = { ݐ − ቔ ௧ଶ�ቕ , ݐ − ቔ ௧ଶ�ቕ א [Ͳ, ݐሻߨ − ቔ ௧ଶ�ቕ − ߨʹ ݐ − ቔ ௧ଶ�ቕ א ሺߨ, ሻߨʹ א ,ߨ−] ௥ݐ Replace t for .[ߨ  in (13.2.20) 

when ݐ א ሺ−ߨ,   .ሻߨ
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Figure 13.4 shows the  Bhaskara I’s approximation error |sin ݐ − Saሺݐሻ| in solid line 

and |cos ݐ − Caሺݐሻ| in dash-dotted line.  

By imposing the constraint that �௟ א ℚ+ , extending the greatest common divisor 

(GCD) to ℚ, and letting �ெ = ଵୋେୈ{�೗−భ|ଵ≤௟≤௅}, ܴ ≜ ௞ே ேݐ + ∑ ܾ௟ sin߮௟௅௟=ଵ , ݊ ≜ ቔ�೗ோଶ� ቕ, ܴ௥ ≜ ܴ −ଶ௡��ಾ א [Ͳ, ଶ��ಾቁ and ݐ௞௦ ≜ ௞ݐ − ଶ௡��ಾ , �௟ݐ௞௦ א [Ͳ, ∑ ሻ and (13.2.19) reduces toߨʹ ܾ௟Saሺ�௟ݐ௞௦ + ߮௟ሻ௅௟=ଵ + ௞௦ݐ = ܴ௥     (13.2.21) 

with classification of quadrants of term �௟ݐ௞௦ + ߮௟ for each l, it’s possible to approximate 

(13.2.19) by solving a cubic equation, thereby determining analytically the firing times of 

finite sinusoids based on the IPFM model. 

When ht is known at {tk} instants, a spline interpolation is used to obtain a continuous 

function with known value at irregularly spaced instants. Note that ℎሺݐሻ א ℂ∞ is smooth, 

and the k-th derivative of ݉ሺݐሻ is ℎݐሺ௞ሻሺݐሻ = ሺ−ͳሻቔೖమቕ∑ �௟௞−ଵ cos {�௟ݐ + ߮௟ − �ସ [ͳ + ሺ−ͳሻ௞]}௅௟=ଵ   (13.2.22) 

Let the ܮ�-th order spline be piecewise polynomials ௝ܲሺݐሻ = ∑ �௝ሺ݈ሻݐ௟௅�−ଵ௟=଴ , ݐ א ,௝−ଵݐ]  [௝ݐ
satisfying ௝ܲሺ௞ሻ(ݐ௝) = ௝ܲ+ଵሺ௞ሻ(ݐ௝) for Ͳ ൑ ݇ <  By substituting .�ܮ

௝ܲሺ௞ሻ(ݐ௝) = ℎݐሺ௞ሻ(ݐ௝) = ∑ ∏ ሺ݉ + ݈ሻ௞௠=ଵ �௝ሺ݈ + ݇ሻݐ௝௟௅�−௞−ଵ௟=଴   (13.2.23) 

we obtain ܮ� linear equations at each ݐ௝ for coefficients �௝’s. In matrix notation: 

Figure 13.4. Approximation errors for Bhaskara I’s formula. The solid line 
shows |sin ݐ − Saሺݐሻ| and the dash-dotted line shows |cos ݐ − Caሺݐሻ|. 
.  
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( 
 ͳ ௝ݐ ௝ଶݐ ڮ ௝௅�−ଶݐ ௝௅�−ଵͲݐ ͳ ௝ݐʹ ڮ �ܮ) − ௝௅�−ଷݐ(ʹ �ܮ) − ͳ)ݐ௝௅�−ଶڭ Ͳڭ Ͳ ڭ ⋱Ͳ ڮ ڭ Ͳڭ �ܮ) − ͳ)! ) 

 
( 
 �௝ሺͲሻ�௝ሺͳሻڭ�௝(ܮ� − ͳ)) 

 = ( 
 ℎݐ(ݐ௝)ℎݐ′(ݐ௝)ڭℎݐ(௅�−ଵ)(ݐ௝)) 

 
 

 (13.2.24) 

The solutions can be written in the recursive form: 

{ �௝(ܮ� − ͳ) = ℎ௧(ಽ�−భ)(௧ೕ)(௅�−ଵ)!�௝ሺ݇ሻ = ଵ௞! [ℎݐሺ௞ሻ(ݐ௝) − ∑ ∏ ሺ݉ + ݈ሻ௞௠=ଵ �௝ሺ݇ + ݈ሻݐ௝௟௅�−௞−ଵ௟=ଵ ]  (13.2.25) 

So that the analytic form of spline approximating finite sinusoidal summations is solved, 

an actual firing rate at any time can be approximated by substituting (13.2.25) into 

(13.2.22)–(13.2.23). 

13.2.5 LeFever and DeLuca Method 

LeFever and Deluca convolved a discrete Hanning function with the discrete impulse 

train {ݐ௞ = ݇ ௦ܶ: ݇ א ℕ, ௞ݐ <  ௞+ଵ} sampled atݐ
ଵ்ೞ Hz to obtain an estimate of the average 

firing rate of EMG. The Hanning function may be replaced by any other commonly used 

window function. 

The sampled input pulse sequence x[n] for constant firing rate ݐ௞ = ݇ܶ, extending to 

infinity in both directions; and the Hanning function w[n] of length 2N+1 are: ݔ[݊] = ∑ ሺ݊ߜ − ݈ܶሻ∞௟=−∞      (13.2.26) w[݊] = ଵଶ ቀͳ + cos ௡�ே ቁ �[−ே, ே][݊]    (13.2.27) 

The filtered output is: 

[݊]Le୊e୴e୰ݎ = [݊]w⊗[݊]ݔ = ͳʹ ∑ (ͳ + cos݊ − ݈ܶܰ ௡−ே்]�(ߨ ௡+ே் ][݈]∞
௟=−∞

= ݈ଶ − ݈ଵ + ͳʹ + ͳʹ∑ cos݊ − ݈ܶܰ ௟మߨ
௟=௟భ  

(13.2.28) 

where ݈ଵ = ቒ௡−ே் ቓ and ݈ଶ = ቔ௡+ே் ቕ. Note that −ͳ < ݈ଶ − ݈ଵ − ଶே் < ͳ, so 
௟మ−௟భ+ଵଶ א ቀே் , ே் + ͳቁ 

is approximately linear with 
ଵ்
. Let ̂ݎLe୊e୴e୰[݊] = ே்

, then ܧLe୊e୴e୰[݊] = [݊]Le୊e୴e୰ݎ − [݊]Le�everݎ̂ = ቀ௟మ−௟భ+ଵଶ − ܰܶቁ + ଵଶ∑ cos ௡−௟்ே ௟మ௟=௟భߨ   (13.2.29) 

Use identity ͳ − ݁௝� = ʹ sin �ଶ ݁�−�మ ௝ to evaluate the second term: 

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4121379&tag=1
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∑cos݊ − ݈ܶܰ ௟మߨ
௟=௟భ = Re{∑ ݁௡−௟்ே ௝�௟మ

௟=௟భ }
= √ͳ + cotଶ ܶʹܰ ߨ cos (݊ܰ − ݈ଵ + ݈ଶʹܰ ߨ(ܶ sin (݈ଶ − ݈ଵʹܰ ߨܶ +  (ߙ

 (13.2.30) 

with ߙ satisfying { 
 sinߙ = ͳ √ͳ + cotଶ ଶ்ேߨ⁄cosߙ = cot ଶ்ேߨ √ͳ + cotଶ ଶ்ேߨ⁄ . 

Observing from (13.2.21) that |∑ cos ௡−௟்ே ௟మ௟=௟భߨ | ൑ √ͳ + cotଶ ଶ்ேߨ and substituting it into 

(13.2.28) gives |ܧLe୊e୴e୰[݊]| < ͳ + ଵଶ√ͳ + cotଶ ଶ்ேߨ , which implies the upper bound of 

estimation error is determined by the Hanning function length N and firing period T. 

When ܰ ب ܶ ൒ ͳ  (trivially satisfied), we have |ܧLe୊e୴e୰[݊]| ൑ ͳ + ଵଶ√ͳ + cotଶ ଶ்ேߨ~ ே்
, 

when the upper bound becomes overly pessimistic as |௟మ−௟భଶே |ߨܶ < �ଶே ا ͳ, |ߙ| ≈ |sin |ߙ ≈்�ଶே ا ͳ so that in (13.2.30), |sin ቀ௟మ−௟భଶே ߨܶ + ~|ቁߙ ்+ଵଶே ߨ ا ͳ. Therefore, the perturbation 

term in (13.2.28) is negligible when the constant term 
௟మ−௟భ+ଵଶ = ଵ் ب ͳ. 

13.3 Stochastic analysis of firing rate simulation 

In a more realistic setting of the CNS encoding process, the modulation function of 

the IPFM model is stochastic and non-stationary. The physiological range of firing rate 

and bandwidth of variations, amongst other factors, determine how m(t) looks like.  

To obtain a stochastic generator of families modulation functions and thus the firing 

rates from IPFM model whose resulting IPIs conform to known observations, we tried 

several methods. We started easy and observed the shortcomings of its outcome, and 

gradually evolved the design of modulation function generators. The goal was to produce 

IPI histograms consistent with those from experimental studies. 

In a less ideal setting, i.e. in the presence of decomposition errors, various methods to 

calculate firing rates are more or less affected by missing and spurious firings. In the 

simplest case, we look at how much the RMSE deteriorates for the instantaneous method. 

For the continuous case (i.e. firing time can be arbitrary as opposed to uniform grids in 

the discrete case). Note that the precision of measurement is constrained by sampling 

frequency and the precise timing of an event, and the refractory period of neural firing 
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further imposes a “hard limit” on the attainable upper limit of firing frequency. These 

make such strict temporal analysis of this section in real domain of little practical value. 

We show that RMSE deterioration for either spurious or missed firings can be arbitrarily 

large. Then we give upper bounds for the two cases in the discrete case. 

13.3.1 Stochastic approaches of firing rate simulation 

One approach to a modulation function is to use a sinusoidal model as (13.2.17) with 

time-varying parameters coming from some stochastic process. This approach has the 

advantage of precisely knowing a priori variation of modulation once processes at and ft 

are well known and satisfy certain conditions (bounded value, bounded total variation, 

etc.), and the disadvantage that its spectrum is hard to analyze even for constant at. 

Another approach is to down-sample a discrete random process to the desired 

bandwidth and interpolate back to the higher sampling rate. Bendat [Bendat 2010] had 

shown that for a Gaussian process, the relationship between the bandwidth Be of a 

spectrum with constant amplitude within Be, and a degree of freedom n in given time T: ݊ =  ௘ܶ        (13.3.1)ܤʹ

From this relation the number of independent samples per second required to achieve a 

desired statistical bandwidth can be inferred. For a modulation frequency of 1 Hz (or 

1pps/sec), two samples per second are required. 

DeLuca [DeLuca 1979] has shown that the IPI histograms from a MUAPT for 

constant contraction assume a shifted Weibull distribution with PDF fx(x) and CDF Fx(x): 

௫݂ሺݔሻ = ௞ఉ ቀ௫−ఈఉ ቁ௞−ଵ exp [− ቀ௫−ఈఉ ቁ௞] �[଴, ∞ሻሺݔ −  ሻ  (13.3.2a)ߙ

ሻݔ௫ሺܨ = {ͳ − exp [−ቀ௫−ఈఉ ቁ௞]} �[଴, ∞ሻሺݔ − �ܧ ሻ   (13.3.2b)ߙ = Ȟቀͳߚ + ଵ௞ቁ       (13.3.2c) 

with ݇ א ሺͲ.ͻ͹, ͳ.͵Ͷሻ, ߚ א ሺ͵ͳ.ͳͻ, ͳͻͶ.Ͷʹሻ and 1.07≤α≤6.71 ms from his finding and Γ the 

Gamma function. Others have reported symmetric/skewed distributions. 

It’s straightforward from (13.1.2) and (13.1.22) that the relationship between 

instantaneous rate ݎሺݐሻ = ଵ+௠ሺ௧ሻ்  and the reciprocal relationship between instantaneous 

rate and inter-pulse interval as a time-varying continuous function, that when random 

variable y comes from the modulation process m(t), then the random variable 1/y must 

follow the same distribution of IPI histogram as in (13.3.2) [Papoulis 2002]. This gives  
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௬݂ሺݕሻ = ௞�[బ, ∞ሻሺ௬−ఈሻఉೖሺ௬−ఈሻሺೖ+భሻ e୶୮{[ఉሺ௬−ఈሻ]−ೖ}    (13.3.3a) ܨ௬ሺݕሻ = exp{−[ߚሺݕ − {ሻ]−௞ߙ �[଴, ∞ሻሺݕ − ݕܧ ሻ  (13.3.3b)ߙ = ଵఉ Ȟ ቀͳ − ଵ௞ቁ      (13.3.3c) 

with parameters k, α and ȕ in the aforementioned range. As this random variable has 

positive expectation, the requirement that the modulation process be zero-mean is 

addressed by ̌ݔሺݐሻ = ∫ ଵ+௠ሺఛሻ்ሺଵ+ா௬ሻ݀߬௧଴       (13.3.4) 

so that the n-th firing instant occurs when the numerator of the integrand accumulates to ݊ܶሺͳ +  ሻ. Random variable y can be generated by transforming the standard uniformݕܧ

random variable u using ݕ = ߙ + −ሺߚ] ln   .ሻభೖ]−ଵݑ
To obtain an estimate of the PDF of the resulting IPI from different modulation 

functions, the modulation function is discretized at 4096 Hz using 100 second duration 

sequences. First, i.i.d. uniform random variables are transformed to the distribution of y. 

Then spline interpolation with the factor obtained from (13.4.1), followed by thresholding 

is used such that the resulting statistical bandwidth of m(t) is roughly around the desired 

value (1Hz) satisfying m(t)ı–1. For a summation to approximate the integral process of 

the IPFM, N=20 divisions per sampling interval are taken: ∫ ݂ሺݐሻሺ௡+ଵሻ ೞ்௡ ೞ் ݐ݀ ≈
ೞ்ே ∑ ݂ (ቀ݊ + ௞ேቁ ௦ܶ)ே−ଵ௞=଴ . A total of 16 repetitions of realizations of the modulation 

function are taken and their result averaged to obtain a PDF estimate. When estimating 

the PDF of the resulting IPIs, 2048 samples along a uniform logarithmic scale spanning 

from 0.002 to 300 are taken and the Gaussian kernel for kernel density estimation is used 

with support of IPI>0. 

Figure 13.5 shows the estimated density function of y and its reciprocal with a fixed 

set of parameters (k=1.2, ȕ=130 and α=0), together with the theoretical density 

calculated from (13.3.2a) and (13.3.3a). The empirical results of IPIs from the given 

modulation are then used for kernel density estimation of IPIs, and a nonlinear regression 

to the Weibull PDF in (13.3.2a) with some reasonable initial values are used to check if it 

follows the Weibull distribution. A Kolmogorov-Smirnov test was also used to check y 

against (13.3.3b). 
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Inspections of IPI distribution from simulation results using (13.3.3) show that the IPI 

histograms from (13.3.3) fail to follow the shifted Weibull distribution. There are several 

reasons for this disagreement:  spline interpolation and thresholding after down-sampling 

of the modulation samples alter the distribution that is then fed to the IPFM model. Recall 

that spline interpolation can be viewed as a time-varying lowpass filtering process whose 

filter order is related to the interpolation factor (hereby from (13.3.1) the sampling 

frequency and statistical bandwidth) and, by the central limit theorem, filtering re-shapes 

most distributions towards the normal distribution. Due to this filtering effect, the 

expectation is for altered distribution changes when the original distribution is skewed. 

The discrete IPFM process approximates (13.3.1) by finite-step summation. The reset 

process that changes continuous output (3.3.2) to the point process {ݐ௞} also alters the IPI 

distributions. Amongst all these factors, we found that the filtering effect from spline 

interpolation turns out to be most contributive to distortion of IPI distribution, as shown 

in Figure 13.6 as the kernel density estimates of IPI measured from a MUAP recorded 

during an isometric contraction [DeLuca 1973]. 
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Figure 13.5. PDF estimates of Weibull distribution and instantaneous firing rate 

distribution. Theoretical and empirical distributions are shown in both plots. 
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Other possible distributions for independent random variables as the modulation 

process m(t) are described below.  

Doubly-truncated zero-mean Gaussian with density function: 

௫݂,௠�ሺݔሻ = exp ቀ− ௫మଶ�మቁ ଶ�ߨʹ√] erfሺ݉ √ʹ⁄ ሻ]⁄ ͳ[−௠�, ௠�]ሺݔሻ  (13.3.5) 

parameterized by standard deviation σ and truncation locations ±mσ (m>0), requiring that 

mσ <1. A random number can be generated to fit the truncated distribution by simply 

discarding values that lie beyond the range of a Gaussian random number with the same 

mean and σ. The truncated distribution has discontinuities at the truncation locations with 

change related to m. The ensuing filtering and thresholding process makes the 

distribution of dependent samples of m(t) more Gaussian. The spreading imposed on the 

resulting IPI distribution, though positively-skewed, is found to be densely packed 

around the mean value and does not attain the spread of the Weibull distribution of given 

parameter ranges in (6.4.2) or histograms of physiological measurements obtained by 

DeLuca and others. A plausible reason for this lack of spread is that the decay rate ݁−௧మ 

of a Gaussian is too fast so that too few samples fall away from the average IPI. 
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Figure 13.6. Kernel density estimates of 10 equal and consecutive time-series of a 

MUAP train that was recorded during an isometric contraction. Adapted from Figure 

3 of [DeLuca 1973]. 



153 

 

 

 

 

Figure 13.7 shows the shows the kernel density estimation of the doubly-truncated 

zero-mean Gaussian PRNG data source (dash in upper plot), spline-

interpolated/thresholded modulation function (solid line in upper plot) and IPI 

distribution (lower) in a simulation. In this simulation, σ=0.33 and is truncated at ±3σ, 

the average IPI is chosen at 10 Hz and sEMG is generated at 4096 Hz with duration of 

145 sec. 

Piecewise-uniform with density ௫݂ሺݔሻ = ௕௕−௔ ͳ[௔,଴ሻሺݔሻ − ௔௕−௔ ͳ[଴,௕]ሺݔሻ parameterized by 

-1≤a<0<b . It is zero-mean and has a discontinuity at 0 except when a=-b (symmetric). 

The first term contributes to the right tail ቀܶ, ்ଵ+௔ቁ, and second term the left portion ቀ ்ଵ+௕ , ܶቁ  of the IPI distribution. Random numbers from a mixture model such as 

piecewise-uniform can be generated by assigning each sample to one of the distributions, 

which is generated from that pseudo random number generator (PRNG). The filtering 

effect broadens the density function so that the left/right bounds given above are 

larger/smaller than the bounds of m(t). When a+b1ب it causes a thump at x=0 due to the 

discontinuity in the density function and the filtering effect. The resulting IPI distribution 

exhibits a bimodal shape, which is unrealistic from a clinical point of view for the sEMG 

of constant-force contraction. When we set a~-1 and a+b~0 (typically aİ-0.8), the 
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Figure 13.7. Kernel density estimations of the doubly-truncated zero-mean Gaussian 

model. The random number source (dash in upper plot), modulation function after 

interpolation and thresholding (solid in uppler plot) and the IPI from IPFM process 
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distribution looks more Weibull-like but the spread is still tight as compared with 

physiological data.  

  

 

 

Figure 13.8 shows the kernel density estimation of the piecewise-uniform PRNG data 

source (dash in upper plot), spline-interpolated/thresholded modulation function (solid 

line in upper plot) and IPI distribution (lower) in a simulation. In this simulation, a=-1, 

b=2 are chosen. 

 Discrete uniform with Pr{ݔ = −ͳ} = Pr{ݔ = ͳ} = Ͳ.ͷ. This gives sufficient samples at 

both low and high ends after interpolation (i.e. sufficient samples in [−ͳ − ,ߝ −ͳ +  [ߝ
and [ͳ − ,ߝ ͳ + ߝ for [ߝ ≈ Ͳ.ͳ). This yields sufficient data samples at both ends of 

IPFM firing rate in ranges [ ଵ೘்�� ሺͳ − ,ሻߝ ଵ೘்�� ሺͳ + [ሻߝ  and [ ଵ்೘೔೙ ሺͳ − ,ሻߝ ଵ்೘೔೙ ሺͳ + [ሻߝ ; but the IPI distribution only remotely resembles the 

shifted Weibull distribution as shown in Figure 13.9. 
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Figure 13.8. Kernel density estimations of the piece-wise uniform random model. The 

random number source (dash in upper plot), modulation function after interpolation 

and thresholding (solid in uppler plot) and the IPI from IPFM process (lower plot). 
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The truncated Gaussian-mixture model with density function: 

௫݂ሺݔሻ = [w�−ଵ,�భሺݔሻ + ሺͳ − wሻ�ଵ,�మሺݔሻ]ͳሺ−ଵ, ଵሻሺݔሻ   (13.3.6a) ��,�ሺݔሻ = exp [−ሺ௫−�ሻమଶ�మ ] ⁄ଶ�ߨʹ√       (13.3.6b) 

w = �మ஻−ವ√మ+√�మ�భ஺+�మ஻−಴+ವ√మ +√ଶ�       (13.3.6c) 

ܣ = Ȟቀͳ, ଶ�భమቁ − ͳ, ܤ = Ȟቀͳ, ଶ�మమቁ − ͳ, ܥ = Ȟ ቀଵଶ , ଶ�భమቁ, ܦ = Ȟቀଵଶ , ଶ�మమቁ (13.3.6d) 

where Ȟሺܽ, ሻݖ = ∫ ௔−ଵ݁−௧ݐ ௭∞ݐ݀  is the incomplete Gamma function. This distribution is 

zero-mean, continuous in (-1, 1) and is parameterized by the two standard deviations σ1, 

σ2>0 of the two truncated Gaussian distributions. 
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Figure 13.9. Kernel density estimations of the discrete uniform random 

model. The random number source (dash in upper plot), modulation 

function after interpolation and thresholding (solid in uppler plot) and the 

IPI from IPFM process (lower plot). 
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Figure 13.10 shows the kernel density estimates of truncated Gaussian mixture model. 

Two Gaussian distributions from �−ଵ,଴.8  and �ଵ,଴.ଶ . It is found that minሺ�ଵ, �ଶሻ < Ͳ.ͳ 

violates the shifted Weibull shape of IPI distribution, and that the spread is still not 

attained in either polarity. 

The uniform-truncated-Cauchy mixture model with density function 

௫݂ሺݔሻ = wͳ[−ଵ,଴]ሺݔሻ + ଵ−୵�ఊ[ଵ+ቀ��ቁమ]ͳሺ଴,்ሻሺݔሻ    (13.3.8a) 

ܶ = exp√ߛ ቀ ଵఊమቁ − ͳ,  w = ቀͳ + ߛ atan ఊ்ቁ−ଵ   (13.3.8b) 

and is parameterized by Ȗ>0 that controls the decaying rate. It is zero-mean, continuous 

in [−ͳ, ܶ] and the right-side truncated tail has even slower decay rate than the uniform-

exponential mixture model. Simulation results show that the majority of resulting IPIs are 

typically >500ms and thus unacceptable. 
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Figure 13.10. Kernel density estimations of the truncated Gaussian mixture model. 

The random source (dash in upper plot), modulation function after interpolation and 

thresholding (solid in uppler plot) and the IPI from IPFM process (lower plot). 
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Figure 13.11 shows the density estimate of using uniform-Cauchy mixture model. 

The distribution of resulting IPI is not shown because its minimum value occurs 

at >500ms and therefore deviates far from the shifted Weibull distribution. 

The uniform-exponential mixture model with density function  

௫݂ሺݔሻ = ଵଶ௔ ͳ[−௔,଴]ሺݔሻ + ଵଶ௔ exp ቀ− ௫௔ቁͳሺ଴,∞ሻሺݔሻ  (13.3.7) 

is zero-mean, continuous in [−ܽ,∞ሻ and is parameterized by Ͳ ൑ ܽ < ͳ. The right tail 

enables the resulting IPIs to take 0 as their lower bound and parameter a controls the 

decay of both tails of the IPI distribution. The decay rate e
-t
 of the density is also slower 

than Gaussian. By varying parameter a, it’s observed that (0.8, 1) seem to be a good 

range to give plausible IPI histograms that match both the shifted Weibull distribution 

and the physiological dataset. 
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Figure 13.11. Kernel density estimations of the uniform-Cauchy mixture model. 

The random source (dash in upper plot), modulation function after interpolation and 

thresholding (solid in uppler plot) and the IPI from IPFM process (lower plot). 
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Figure 13.12 shows the density estimates using PRNG from this model when a=0.9. 

The IPI distribution matches closely to the ideal distribution from Figure 13.5 and 

measurement distribution from Figure 13.6. Therefore, this PRNG model with parameter 

a=0.9 is used to generate ground truth firing rate which is then used to obtain firing times 

for stochastic simulations. 

13.3.2 Bounds for instantaneous RMSE due to decomposition error in firing 

rate 

It is interesting to take a brief look at how much damage a “fly in the ointment” can 

bring or, in this context, how awry firing rate can become because of decomposition error. 

First we look at the continuous time-domain, where actual firing times as well as spurious 

ones are real and arbitrary. Then we march to the discretized domain. Note that due to 

frequency aliasing and the precision limit of temporal resolution (i.e. sampling frequency) 

of signal acquisition devices, and the neural refractory period that limits possible neural 

firing frequency, the analysis in the real domain is of little practical interest. 

First we look at firing instants in the continuous time-domain. Let the IPI of a finite 

duration interval be the renewal process: ȟ ≜ {Ͳ < ȟ௞ < ܶ, ͳ ൑ ݇ ൑ ܰ}from the firing 

instants ߯ ≜ {Ͳ < ௞ݐ < ௞+ଵݐ < ܶ, ͳ ൑ ݇ < ܰ ௞ݐ א ℝ+}, the false positive rate be ߩ+ 

and the false negative rate be ߩ−. Then there are on average a total of ܰߩ+  spurious 

firings: ߯+ ≜ {Ͳ < +௞ݐ < ܶ, ͳ ൑ ݇ ൑ +ߩܰ ௞ݐ א ℝ+}  satisfying ߯+ ∩ ߯ = ∅ ; and a 
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Figure 13.12. Kernel density estimations of the uniform-exponential mixture model. 

The random source (dash in upper plot), modulation function after interpolation and 

thresholding (solid in uppler plot) and the IPI from IPFM process (lower plot). 
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total of ܰߩ−  missed firings ߯− ≜ {߯௞− א ߯, ͳ ൑ ݇ ൑ {−ߩܰ . In general, the RMSE 

between the two firing sequences of the same duration 0≤t≤T: ߯ଵ ≜ {Ͳ < ௞ݐ < ௞+ଵݐ < ܶ, ͳ ൑ ݇ < ଵܰ ௞ݐ א ℝ+}, ߯ଶ ≜ {Ͳ < ௞ߞ < ௞+ଵߞ < ܶ, ͳ ൑ ݇ < ଶܰ ௞ߞ א ℝ+} 
is: RMS� = [∑ ∑ ( ଵ௧ೖ+భ−௧ೖ − ଵ఍ೕ+భ−఍ೕ)ଶேమ௝=ଵேభ௞=ଵ ∫ ͳ[௧ೖ,௧ೖ+భሻሺݐሻͳ[఍ೕ,఍ೕ+భ)ሺݐሻ ଴∞ݐ݀ ]ଵ/ଶ (13.3.9) 

with {k}={1≤n≤N1} and {j}={1≤n≤N2} for both terms under the square root. Note that 

the integration represents the overlapping portion of two intervals [ݐ௞, [௞+ଵݐ  and [ߞ௝ ,  .[௝+ଵߞ
It’s easy to show that the RMSE due to a false positive event is unbounded 

(instantaneous rate can be arbitrarily when the false positive occurs at a time 

infinitesimally after/before an existing firing, thus error jumps unbounded in this region; 

similarly when a missing firing occurs infinitesimally close to another firing, the maximal 

instantaneous firing rate drastically drops in that region), which is equivalent to show that 

the RMS of Dirac delta function over a finite interval is infinite. The measureable Dirac 

delta function and its RMS are given below, thanks to the monotone convergence 

theorem (by letting ௡݂ሺݐሻ = limఛ→଴ ଵሺబ,�ሻሺ௧ሻఛ+ఌ೙ , lim௡→∞ ௡ߝ = Ͳ in the theorem).  ߜሺݐሻ = limఛ→଴ ଵሺబ,�ሻሺ௧ሻఛ      (13.3.10) 

RMSఋሺ௧ሻ = √ଵ் ∫ ଶሺ߬ሻ଴்ߜ ݀߬ = √ଵ் lim�→଴ ∫ ଵሺబ,�ሻሺఛሻ�మ଴் ݀߬ = ∞ (13.3.11) 

Now let’s see the effects of missing one firing event on RMSE. Assume that the l-th 

firing was missing, where 1<l<N. Assume that � = ∆೗∆೗+భ  (note that ∆௟  and ∆௟+ଵ  are 

interchangeable), then the RMSE becomes: RMS�௟−ଶ = ͳ∆௟ଶ + ͳ∆௟+ଵଶ − ͳሺ∆௟ + ∆௟+ଵሻଶ = ͳ∆௟ଶ [ͳ + ͳ� − ͳሺͳ + �ሻଶ] → ∞, � → Ͳ+ 

Similar to a false positive, there is no upper-bound due to a single missed firing: 

(13.3.10)–(13.3.11) applies to missed firings in exactly the same way. 

The upper bound of RMSE due to false negative occurs in similar condition as the 

upper bound of a false positive. Let ∆୫a୶ ሺ݇ሻ denote the k-th maximum firing interval 

and ∆୫i୬ ሺ݇ሻ the k-th minimum, then the lower bound of a false positives occurs when 

the ܰߩ− maximum firing intervals are adjacent and spurious firings occur in the middle 

point of ∆୫a୶ ሺ݇ሻ: 
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inf |RMS� − RMS�ߩ+| = √∑ ∆୫a୶−ଶ ሺ݇ሻଵ+ே௠−௞=ଵ    (13.3.11) 

and the lower bound of false negative occurs when {ݐ୫i୬ ሺ݇ሻ, ͳ ൑ ݇ ൑ ͳ +  are {−ߩܰ

adjacent and missing: inf|RMS� − RMS�௠−| = √∑ ∆୫i୬−ଶ ሺ݇ሻଵ+ே௠−௞=ଵ − ଵ∑ ∆ౣi౤ሺ௞ሻభ+ಿ೘−ೖ=భ  (13.3.12) 

More generally, let the renewal process ȟ follow the density function ∆݂ሺݐሻ, positive 

only for t>0, be independent, identically distributed, and its expectation �∆ be finite. The 

probability that a false negative event occurs at time ts and the expectation of RMSE 

difference due to a single false negative event are given below. The analysis for multiple 

false negative events is more cumbersome. Pr{ݐ௦− א {∆= ∆ଵ} ∩ +௦ݐ א {∆= ∆ଶ}} = ∆݂ሺ∆ଵሻ ∆݂ሺ∆ଶሻ   (13.3.13) �|RMS� − RMS�ߩ−| = ∫ ∫ ∆݂ሺݐሻ ∆݂ሺ߬ሻ ቀ√ݐ−ଶ + ߬−ଶ − ଵ௧+ఛቁ ଴∞ݐ݀ ݀߬∞଴ (13.3.14) 

The probability that a false positive event occurs in an interval of duration t is 
௧௙∆ሺ௧ሻ୉∆ , 

and is by assumption uniformly distributed inside this interval. The expectation of RMSE 

difference due to a single false positive event is infinite: 

�|RMS� − RMS�ߩ+| = ∫ ݐ ∆݂ሺݐሻ�∆ ∫ ଶ−ݐ√ + ሺ߬ − ሻ−ଶݐ − ͳ ݐ⁄ݐ ݀߬௧
଴ ∞ݐ݀

଴= ͳ�∆∫ ∆݂ሺݐሻ ቆ∫ ଶ−ݐ√ + ሺ߬ − ሻ−ଶݐ ݀߬௧
଴ − ͳቇ݀ݐ∞

଴ = ∞ 

(13.3.15) 

When the signal is sampled with Fs Hz, the upper bound of RMSE due to false 

positive occurs when each spurious event occurs at the next sampling time of a minimal 

event (not necessarily adjacent). With ∆̃୫i୬ ሺ݇ሻ be the k-th minimum elements of ∆ that is 

larger than 
ଵிೞ, this gives 

sup |RMS� − RMS�ߩ+| = +ߩ௦ܨܰ +√∑ (∆̃୫i୬ሺ݇ሻ − ͳܨ௦)−ଶேߩ+
௞=ଵ −√∑ ∆̃୫i୬−ଶ ሺ݇ሻேߩ+

௞=ଵ  

(13.3.16) 

The other bounds are close to (13.3.3)–(13.3.5), except due to the fact that ݐ௞ is now 

discretized. 
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For the discrete case, let ∆݂[݊] = limఛ→଴+ ∫ ∆݂ሺ݊ ௦ܶ + ሻݐ ఛ−ఛݐ݀  be the discrete mass 

function of IPIs with expectation �∆= ∑ ݊ ∆݂[݊]∞௡=ଵ < +∞ . Then the expectations of 

RMSE difference due to a single false positive event or a single false negative event are: 

�|RMS� − RMS�ߩ+| = ∆�ݏܨ − ͳ∑ሺ݊ − ͳሻ∞
௡=ଶ ∆݂[݊](∑ √݉−ଶ + ሺ݊ −݉ሻ−ଶ௡−ଵ

௠=ଵ − ݊ − ͳ݊ ) 

(13.3.17) �|RMS� − RMS�ߩ−| = ௦ܨ ∑ ∑ ∆݂[݊] ∆݂[݉] ቀ√݊−ଶ +݉−ଶ − ଵ௡+௠ቁ∞௠=ଵ∞௡=ଵ  (13.3.18) 

It’s straightforward that the set of rates calculated using the instantaneous method is a 

subset of rates calculated using the instantaneous spline method. Thus the bounds carry 

over to the instantaneous spline method. 

In summary, for the continuous time-domain, the RMSE difference due to the 

presence of decomposition error is lower-bounded by the sum of (13.3.12) and (13.3.13), 

and its expectation is infinite; for periodically sampled time series, the RMSE is upper-

bounded by approximately the sum of (13.3.11) and (13.3.17) and lower-bounded by 

approximately same amount as the continuous case. The RMSE differences for other 

calculating methods are bounded by the same settings but are harder to analyze. 

13.4 Calculations of statistical bandwidth 

In Chapters 4–7, we showed that application of signal whitening significantly 

improves sEMG classification accuracy for prosthesis control. There we showed that the 

CoV reduced as a result of reduction of the equivalent number of independent samples in 

a signal, based on the fact that signal whitening effectively makes the signal less 

correlated, thereby increasing the number of equivalent independent samples of the signal. 

The fact that the CoV decreases makes the classification task easier and justifies the 

improvement of classification accuracy observed there. 

To quantify the amount of bandwidth change, it is necessary to estimate equivalent 

statistical bandwidth of a given signal. In this section, we introduce some empirical 

methods for the estimation and explain how they fit in the project of Chapters 4–7. 

13.4.1 Background 

[Bendat 2010] introduced the calculation of statistical bandwidth, Bs, from the power 

spectral density of energy signal ݔሺݐሻ א ℒଶ  from the continuous-time power spectrum ௫ܲ௫ሺ݂ሻ, as 
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௦ܤ ≜ [∫ ���ሺ௙ሻ∞బ ௗ௙]మ∫ ���మ ሺ௙ሻ∞బ ௗ௙      (13.4.1) 

where f is frequency in Hz and �ሺ݂ሻ = �ሺ−݂ሻ for ݔሺݐሻ א ℝ.  

When the continuous raw EMG signal ݔሺݐሻ is sampled at Fs Hz whose discrete-time 

power spectrum is Gd[k] using samples of ܵ௫௫(݁௝�) of Nf -point discrete Fourier transform, 

its equivalent becomes: ܤ௦ௗ ≜ (∑ ���[௞]ಿ−భೖ=బ )మ∑ ���మ [௞]ಿ−భೖ=బ ∆௙     (13.4.2) 

where ܰ = { ே�ଶ + ͳ ௙ܰ  evenଵଶ ( ௙ܰ + ͳ) ௙ܰ  odd  are the non-negative frequencies and ∆௙= ிೞே� Hz is the 

frequency increment. The discrete-time power spectrum ܩௗ  can be estimated using a 

variety of methods, such as the Bartlett method and Welch method in the nonparametric 

methods family. 

In a study [Hogan 1980], intact and amputee subjects were instructed to exert 

maximum force for 3–5 second durations, and subsequent recordings sampled at ܨ௦ =ʹͲͶͺ Hz were taken at 25%, 10% and 5% of maximum contraction level for 10 seconds, 

each repeated six times. Of these six repetitions, five were used with only the middle 

five-second portion of 10-second duration, giving a total of 25-seconds of data per 

contraction level. This 25-second segment was first divided into 50 non-overlapping 

sections, each 0.5s long, and spectrum estimation was performed on each section of data 

without windowing to obtain a 2 Hz resolution estimate using the Bartlett method 

(essentially using a 1024-point DFT), before the 50 estimates were averaged to obtain an 

estimate ܩௗ̂ of the quantity ܩௗ. The standard deviation of ܩௗ̂ was reported to be 14% of 

its mean. 

The power spectrum estimate for discrete-time Fourier transforms using the Bartlett 

method for an Ns-point sequence divided into K non-overlapping segments ݔ௜, each of 

length M as in [Proakis 2006] is 

௫ܲ௫஻ ሺ݂ሻ = ଵெ௄∑ |∑ ௜[݊]݁−௝ଶ�௙௡ெ−ଵ௡=଴ݔ |ଶ௄−ଵ௜=଴     (13.4.3) 

The Welch method is similar to Bartlett’s method except that overlapping and windowing 

before computing the periodigram are introduced (U is the normalization factor to 

account for the power of window function): 

௫ܲ௫ௐሺ݂ሻ = ଵெ௎௄∑ |∑ ௝ଶ�௙௡ெ−ଵ௡=଴−݁[݊]ݓ[݊]௜ݔ |ଶ௄−ଵ௜=଴ .   (13.4.4) 
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For a given Ns value, smaller K (fewer segments) gives longer segments, or better 

frequency resolution at the cost of less averaging of estimated spectral values. In the 

context of ௫ܲ௫ in (13.4.3) and (13.4.4), segment length M substitutes N in (13.4.2).  

The bias-variance tradeoff for the selection of K value for a given dataset states that 

larger K gives smaller variance with large ܤ௦̂ values, while smaller values rough spectrum 

estimate and smaller ܤ௦̂. There is no quantitative measurement of the goodness of K for 

bandwidth estimation, considering the amount of data, frequency content of the 

underlying data and windowing function as factors. 

The quality of a spectral estimate (Bartlett, Welch, etc.) of the continuous-time ݔሺݐሻ is 

defined as: 

ܳ஺ = {୉[����̂ ሺ௙ሻ]}మ୴a୰[����̂ ሺ௙ሻ]        (13.4.5) 

Where the expectation and variance of continuous-time and discrete-time spectrum are: � ௫ܲ௫ሺ݂ሻ = lim௙ೠ→∞ ଵ௙ೠ ∫ ௫ܲ௫ሺ݂ሻ ݂݀௙ೠ଴ , � ௫ܲ௫[݊] = ଵே∑ ௫ܲ௫[݇]ே−ଵ௞=଴  (13.4.6) Var[ ௫ܲ௫ሺ݂ሻ] = lim௙ೠ→∞ ଵ௙ೠ [∫ ௫ܲ௫ଶ ሺ݂ሻ ݂݀௙ೠ଴ − ଵ௙ೠ ቀ∫ ௫ܲ௫ሺ݂ሻ݂݀௙ೠ଴ ቁଶ],   Var{ ௫ܲ௫[݊]} = ଵே−ଵ∑ ሺ ௫ܲ௫[݇] − � ௫ܲ௫[݊]ሻଶே−ଵ௞=଴     (13.4.7) 

Given that total power ∑ ௫ܲ௫[݇]ே−ଵ௞=଴ = ∑ ௫ܲ௫̂[݇]ே−ଵ௞=଴  is constant, we can see that smooth 

estimates with smaller variance give larger bandwidth values than rough estimates of the 

same spectrum.   

13.4.2 Method description 

The UNB dataset [Li 2010, Hargrove 2009] consists of ten intact subjects and five 

amputee subjects, each subject performing a sequence of 11 motions (including no-

motion) recorded in a 10-channel surface electrode array, placed on the forearm of ten 

intact subjects and around the proximal portion of the forearm over the apex and distal 

end of the muscle bulge for five amputee patients. Recordings for each motion are four-

seconds in duration sampled at 1 kHz and are repeated 16 times, and only the middle 

three-seconds are used, giving 16 three-second epochs. It was shown in Chapters 2–3 that 

whitening effectively decreases temporal correlation and improves subsequent motion 

classification results. Prior to whitening, power-line harmonics are notch filtered for each 

epoch. For each channel, we used “no-motion” recordings as the 0% MVC level (noise 

floor) and the motion with maximum mean absolute value (MAV) as a high signal level 

(typically 50% MVC in past whitening studies) to calibrate the whitener, and then 



164 

 

simultaneously whitened all electrodes for each motion. This technique gives us a new set 

of whitened EMG records for intact subjects and amputees. 

For each electrode only two motions with maximum MAVs are used to calculate 

bandwidth, as they give higher SNR and are more representative of the current motion. It 

is observed in calculating the coefficient of variation that the moving-average envelope of 

EMG activity during each three-second epoch is not quite constant, and the level of 

activity for different epochs is different. Moreover, inter-subject differences for the same 

motion-electrode set are not negligible. We assumed and visually confirmed that the 

intra-subject spectra shapes for the 16 epochs (repetitions) are more similar than that of 

inter-subjects. 

As the three-second data duration is deemed insufficient for a satisfactory spectrum 

estimate, an ensemble average is performed on the power-normalized spectrum of 16 

epochs per electrode per subject to smooth the spectrum estimate, and statistical 

bandwidths using the Welch method with different K’s in (13.4.3) are then estimated. In 

this way, we get a set of spectrum estimates with different frequency resolutions. The 

spectra are normalized so that the total power ∑ ௫ܲ௫̂[݇]ே−ଵ௞=଴  are identical for all 16 epochs. 

At each resolution, this average spectrum estimate is then assumed to be ground truth and 

estimates with different K values are used on one three-second epoch to get a set of 

bandwidth values. When the bandwidth is plotted against window length M (“bandwidth-

M” curve) in Figures 13.13–13.14, we see a decreasing trend. 
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Estimation

Truth

Averaged at 1000ms
	=> 317.585Hz

Estimate at 330ms
	=> 317.396Hz

Estimation

Truth

Averaged at 1000ms
	=> 140.933Hz

Estimate at 650ms
	=> 139.394Hz

Figure 13.13. Typical bandwidth-M curves with DoF=15 ensemble averaging. In the upper plot, red 

dash-dot line shows the true bandwidth estimated using ensemble average with DoF=15, and black 

curve is the bandwidth-M curve of the selected subject, channel and epoch. Their intersection gives 

optimal window length which is used for PSD estimation of dash-dot in lower plots. 
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Figure 13.14 shows a representative plot: the upper-left shows the bandwidth-M of an 

overlapping segment for intact subject 6, channel 5 on the fourth epoch. The ensemble 

average of spectrum estimates is performed on all 16 epochs of that subject, as shown in 

black in the lower-left power spectrum estimates, with a frequency resolution of 0.976 Hz 

(M =1000, Nf =1024), which gives a bandwidth of 317.6 Hz from (13.2.2). We can see 

that the curve is rather steep when M<40 and then tapers off slowly (K=3 with 50% 

overlapping for truncated three-second recording). The intersection with ground truth 

bandwidth shows that when M=330 ms on the single epoch (with frequency resolution of 

3.91 Hz), the bandwidth from that epoch approximates the true value. The right two plots 

show results for a different intact subject, where we found the ground truth to be 140.9 

Hz and an optimal M around 630 ms. 

  

 

 

 

 

Figure 13.15 shows a different ensemble-averaging scheme for the same two cases as 

Figure 13.15: over all ten intact subjects and 16 epochs to give a 159 DoF evaluation. 

While the averaged spectra are smoother than Figure 1, both the calculated bandwidths 

and the shape/amplitude of two averaging schema are different. This implies that inter-
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	=> 146.169Hz

Figure 13.14. Typical bandwidth-M curves with DoF=159 ensemble averaging. In 

the upper plot, red dash-dot line shows the true bandwidth estimated using 

ensemble average with DoF=159, and black curve is the bandwidth-M curve of the 

selected subject, channel and epoch. Their intersection gives optimal window 

length which is used for PSD estimation of dash-dot in lower plots. 
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epoch, thus we prefer the first ensemble-averaging scheme and apply it to subsequent 

analysis. 

I propose the following hypothesis to explain the relation between M and ܤ௦ௗ observed 

in simulations: small M value gives smooth spectral estimates and larger bandwidth than 

large M values whose estimates are more variable. It is based on simulation observations 

and its discrete form is straightforward to describe. 

Let ݂ሺݔሻ , ݃ሺݔሻ א ,ܽ]ଵܥ ܾ]  be two Riemann-integrable functions of  [ܽ, ܾ] → ℝ+ 

satisfying ∫ ݂ሺݔሻ ௕௔ݔ݀ = ∫ ݃ሺݔሻ ௕௔ݔ݀ = ܯ < ∞. If the total variation of f is less than g, i.e. ∫ |݂′ሺݔሻ| ௕௔ݔ݀ < ∫ |݃′ሺݔሻ| ௕௔ݔ݀ , then it is hypothesized that ∫ ݂ଶሺݔሻ݀ݔ௕௔ < ∫ ݃ଶሺݔሻ݀ݔ௕௔ . There 

is yet no proof available for this hypothesis. 

It is found that the optimal M value varies between subjects, channels and epochs, and 

M corresponding to 100–800 ms is a reasonable guess if one global value must be used 

for all subjects. Table 13.1 shows the average bandwidths for the four conditions: intact 

subject original EMG, intact subject whitened EMG, amputee original EMG and amputee 

whitened EMG. For each subject, two out of 11 motions are used per electrode and 16 

bandwidths are calculated from each three-second epoch, giving 320 bandwidths per 

subject, or a DoF of 3199 for intact subjects and 1599 for amputees for the standard 

deviation. 

Window length 150 ms 300 ms 450 ms 600 ms 750 ms 

Intact-original 236.8±49.4 226.4±47.3 216.9±45.9 209.4±44.8 201.7±43.8 

Intact-white 411.7±72.7 393.4±71.5 378.1±69.3 365.6±67.2 353.0±65.2 

Amputee-original 252.4±53.8 240.9±54.1 230.4±53.4 222.4±52.6 214.4±51.5 

Amputee-white 421.1±52.6 400.6±52.0 383.1±50.8 369.1±49.7 355.9±48.2 

Table 13.1. Average bandwidths (Hz) with same window length for all subjects 

To find an optimal window length for calculating the power spectrum of typical EMG 

data, simulated EMG data can be generated whose spectrum resembles that of real data. 

To do this, we calculate the Welch spectrum using the Hamming window of length N1 for 

a 3-second epoch, and then design a FIR filter by Hamming-windowing the inverse-DFT 

of the frequency responses. The filter order N2 controls smoothness of the designed filter: 

a small value overly smooths and may fail to follow the trend of the given spectrum while 

a large N2 unnecessary follows all fluctuations of the spectrum estimate due to 

insufficient averaging. Then Matlab’s “freqz” method is used with the designed FIR filter 
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coefficients, with N3=1024 data points in [Ͳ,  ሻ, and bandwidth is calculated from theߨ

resulting power spectrum of the designed filter.  

An N1=500 ms window with 500 data samples with 50% overlap and a 512-point 

DFT with zero-padding is used to obtain the spectrum, and it’s found that varying the 

window length N1 from 100 to 800 ms gives less than 3% difference in terms of the 

bandwidth calculated. From several three-second trials, an N2=200-order FIR filter 

follows the trend of the original power spectrum and gives sufficient smoothing; N3 is 

relatively insensitive around 1000 for the final bandwidth result. This bandwidth is used 

as ground truth as the three parameters N1, N2 and N3 give satisfactory spectrum 

approximation of real data with sufficient smoothing, and are insensitive in that range. 

These give an empirical estimate of the three parameters with the available dataset. 

Then a three-second data segment is created from white Gaussian noise using the 

designed filter coefficients. By varying window lengths of the Welch method, a sequence 

of different bandwidths are obtained from generated data which follow a general 

decreasing trend similar as shown in Figure 13.5 and Figure 13.6. By finding the 

intersection of the curve with ground truth, we can establish an optimal window length to 

be used for calculating the bandwidth of simulated EMG signal. 

13.4.3 Results 
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Intact unwhite, optimal 126.483.3ms
Estimated bandwidth=245.846.4Hz

Intact white, optimal 198.245.3ms
Estimated bandwidth=447.925.9Hz

Amputee unwhite, optimal 112.867.4ms
Estimated bandwidth=247.150.7Hz

Amputee white, optimal 192.153.8ms
Estimated bandwidth=432.737.8Hz

Figure 13.15. Kernel density estimates of optimal window lengths for bandwidth 

calculations of four subject types. The mean and standard deviations of optimal 

window lengths and estimated bandwidth in Hz are also shown. 
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Figure 13.15 shows the kernel density estimates of optimal windows found for the 

four types of subjects. The kernel density estimation is a method to estimate PDF from 

observation of data outcomes. We can see that the distributions for unwhite data are more 

skewed than whitened data. The two intact types have a DoF of 16×10×10-1=1599 each, 

and two amputee types have a DoF of 799. Their results are shown in the first column of 

Table 13.2.  

  

 

 

 

 

The upper-left plot in Figure 13.8 shows the designed FIR filter frequency response 

(red) against partial underlying spectrum (black) with filter orders N2 from 50 to 250 of 

one spectrum. A FIR filter of N2=50 taps is incapable of following the fast increase 

portion around 50 Hz, and N2=200 proves to be satisfactory in this case. The bandwidth-

M curve in the lower plot intersects with ground-truth at 35 ms, where the bandwidth is 

154.62 Hz. The upper-right plot shows PSD estimates of that three-second epoch with 

different window lengths M. Note that when the window length 
ெ∆� (in units of seconds) is 

too small, the estimates have overly small frequency resolution (approximate triangle 

when M=50); when it is too large, too much variation arises due to noise. The optimal 
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Figure 13.16. FIR Filter design with respect to filter order for intact unwhitened 

subject-5, channel-8, epoch-2, sampled at 1 kHz. The upper-left plot shows the 

ensemble-averaged spectrum in black and PSD of designed FIR filter with increasing 

order. Upper-right shows PSD of a single 3-second epoch with selected optimal 

window length in black and other window lengths. The lower plot shows the 

bandwidth-M curve of this 3-second epoch sEMG data. 
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window length for this epoch lies between 100–150 ms. It is expected that longer signal 

durations and more averaging of the spectral estimate would increase the optimal M to 

allow for better frequency resolution when the quality ܳ஺ of the spectral estimate is fixed. 

 Optimal M 

(ms) 

Type-dependent 

bandwidths 

Global 

bandwidths 

Intact-original 105.55±75.21 241.37±50.89 Hz 238.81±50.10 Hz 

Intact-white 174.6±41.50 408.72±72.66 Hz 413.63±72.35 Hz 

Amputee-original 94.19±60.76 259.69±51.32 Hz 255.12±52.88 Hz 

Amputee-white 167.08±48.08 419.33±52.36 Hz 424.30±52.01 Hz 

Table 13.2. Average bandwidths (Hz) with optimal window lengths. 

Table 13.2 shows the averaged bandwidths using the optimal window lengths 

described above. In the third column, each of the four EMG types uses its averaged 

optimal window length found in the first column; in the last column, each uses a 

“Global” optimal window length of 137ms. Paired t-tests between the bandwidth of 

intact groups (DoF=3199, two motions per electrode) and amputee groups 

(DoF=1599) for both optimal schema each reject the null hypothesis with p=0. 

 

Figure 13.17. Averaged bandwidths and standard deviations vs. window lengths 
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MAV values are selected. The bandwith-M curve is then evaluated using either one or 
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two motions with maximum MAV. When both motions are under use, average bandwidth 

is shown at each window length. Figure 13.17 shows the intra-subject ensemble-averaged 

bandwidth and their standard deviations against window lengths when all four types of 

subjects use the same window length and when one/two motions per electrode are used. 

Note that the unwhitened types suffer from a larger drop as the window length increases 

above 50 ms.  

 

Figure 13.18. Simple statistics for bandwidth estimations 

The mean and standard deviation of bandwidth of the four subject types are shown in 

Figure 13.18, when 150 ms is chosen as the global optimal window length. Paired t-tests 

for intact subjects with DoF=9 give p=4.78×10
-10

 / 5.36×10
-9

 for one/two motions per 

electrode, and for amputees with DoF=4 gives p=6.17×10
-6 

/ 1.57×10
-5

. Paired t-tests at 

all other M values are also significant. 
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