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Abstract

Spectral rendering, or the synthesis of images by taking into account the wavelengths 

of  light,  allows effects otherwise impossible  with  other methods.   One of these effects is 

dispersion, the phenomenon that creates a rainbow when white light shines through a prism.  

Spectral  rendering has previously  remained in  the realm of  off-line rendering  (with a few 

exceptions)  due  to  the  extensive  computation  required  to  keep  track  of  individual  light 

wavelengths.  Caustics, the focusing and de-focusing of light through a refractive medium, 

can be interpreted as a special case of dispersion where all the wavelengths travel together. 

This  thesis  extends  Adaptive  Caustic  Mapping,  a  previously  proposed  caustics  mapping 

algorithm, to handle spectral dispersion.  Because ACM can display caustics in real-time, it is 

quite amenable to be extended to handle the more general case of dispersion.  A method is  

presented  that  runs  in  screen-space  and  is  fast  enough  to  display  plausible  dispersion 

phenomena in real-time at interactive frame rates.
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Chapter 1: Introduction

Spectral  rendering  is  the  synthesis  of  images  by  taking  into  account  the  wave 

properties of light.  Underlying mechanisms such as refraction, interference, and diffraction 

cause white  light to be split  into its constituent wavelengths,  generating iridescent colors. 

Most graphics techniques and engines only perform lighting calculations utilizing the particle  

nature of light, which does not give a full picture of the world around us.  Images generated  

with spectral  rendering enabled can display such phenomena as the rainbows that  occur 

when white light shines through a prism and the beautiful colors that appear inside gemstones 

such as diamonds.  Figure 1 illustrates these effects.

In terms of refraction, which is the focus of this thesis, most graphics implementations 

of any kind (offline or online) treat the refractive index of an object as constant throughout the 
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Figure 1: Image generated using spectral rendering with LuxRender [Lux].  Render time was 
one hour.  Dispersion amount has been set very high in order to more effectively show the  
phenomenon.  Note the rainbows on both the "floor" and on the surface of the torus.



light spectrum.  However,  when light  travels through a transparent  object  it  is  not  simply 

refracted, it is dispersed – different wavelengths of light refract at different angles through the 

object.  This thesis presents an alogrithm to simulate and display this important phenomenon,  

responsible for rainbows in the sky, in real-time on current hardware.

Speed of image synthesis is an issue for spectral renderers.  LuxRender [Lux], an open 

source unbiased offline renderer, for example, uses bidirectional path tracing combined with 

Metropolis sampling in its spectral rendering engine.  This method is physically accurate, but 

far from amenable to real-time graphics, as evidenced by the 1-hour render time of figure 1 

for a noise-free image.  To increase speed, the algorithm presented in this thesis makes a  

number of approximations, but strives to maintain the highest quality final image.

Performance  issues  arise  in  spectral  rendering  for  multiple  reasons.   The  most 

prominent  is  that  complex equations need to  be  evaluated for  multiple  wavelengths.   To 

calculate truly accurate physically-based indices of refraction for example, complex numbers 

need  to  be  utilized.   Depending  on  the  chosen  method  of  sampling  the  spectrum  and 

converting wavelengths to  RGB colors,  performance can be reduced.   Choosing discrete 

wavelengths may be faster,  but  evaluating  the spectrum using  a function or  using  many 

wavelength samples can slow performance down greatly.  Transitioning from wavelengths to 

RGB using a CIE XYZ representation of colors and evaluating the conversion functions can 

be a slow process as well.

1.1 Spectral Phenomena

There are multiple phenomena of light that occur due to its spectral nature.  These 
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include dispersion, diffraction, interference, and scattering.  In this section an overview of the 

light spectrum is presented, along with what it means for each of the phenomena mentioned 

above.

Light itself is composed of a long continuous spectrum, with wavelengths ranging from 

very large: ~103 m for radio waves, to the very small: ~10-12 m for gamma rays.  Figure 2 is a 

diagram illustrating the wavelengths of light and where the visible spectrum fits in.

The visible spectrum is centered around what the human eye can see, which ranges 

from around 400 nm (violet) wavelength to around 700 nm (red).  Figure 3 is an image of the  

full visible spectrum, from a photograph taken by the author of dispersed light out of a prism.

3

Figure 2: The electromagnetic spectrum, with the visible spectrum highlighted.  From [DD08].



Dispersion is a phenomenon that occurs because light of different wavelengths refracts 

at different angles.  A rainbow is one special case of dispersion; in fact it occurs throughout 

the entire electromagnetic spectrum, and in other kinds of waves as well, such as those of  

sound.  Figure 4 shows an example photograph of visible light dispersion through an acrylic  

4

Figure 4: Spectral dispersion through an acrylic prism.  Photograph by the author.

Figure 3: The visible spectrum with wavelengths labeled, from a photograph by the author.  Units are in  
nanometers.  The scale is squashed and stretched in places because of the physical size of the color  
bands created from the prism that dispersed the light.



prism.

The amount of refraction varies by wavelength depending on the material the light is 

traveling through.  A material such as a diamond, with a high refractive index, disperses light  

far more noticeably than a material such as glass, which has a lower refractive index.  Even 

air disperses light, though in amounts so miniscule it is not normally noticeable by the human 

eye.

A second phenomena that  separates white  light  into its  component  wavelengths is 

diffraction.  Diffraction can be described as the behavior of a wave when it encounters an 

obstacle or a non-uniformity in its medium [Cro10].  Like dispersion, diffraction works not just 

with visible light, but occurs in the entire electromagnetic spectrum and other waves as well.  

Figure 5 shows what happens when a water wave encounters a barrier with two gaps in it.  

The wave nature of light was in fact originally recognized when François Arago and Augustin-

Jean Fresnel were performing their experiments in light diffraction [Cha05].  In terms of light, 
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Figure 5: Diffraction in sinusoidal water waves, which are  
coming up from the bottom and encountering a wall with two  
slits.  From [Cro10].



you can see diffraction yourself when looking at the back of a CD, where the familiar rainbow 

patterns are due to the individual tracks acting as a diffraction grating.  Figure 6 shows this 

phenomenon on a CD, and Figure 7 shows diffraction caused by tiny scratches and possibly 

from the manufacturing process of an acrylic prism.
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Figure 6: An image of the back of a compact disc demonstrating 
optical diffraction.  Photo taken by author.



A phenomenon reminiscent of diffraction that creates similar effects is interference.  In 

terms of light waves, the most familiar form of interference is called thin-film interference.  

This phenomenon is what creates the rainbow patterns seen in oil slicks or on bubbles.  In  

essence, it occurs when light waves reflected by the upper and lower boundaries of a thin film  

(such as oil on a road or a bubble's surface) interfere with each other.  Figure 8 shows a 

synthesized image example of thin film interference.
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Figure 7: Diffraction due to light waves being blocked by tiny scratches and a pattern likely caused by the  
manufacturing process of this prism.  Photo taken by the author.



Scattering is a phenomenon that also occurs due to the wave nature of light.  Light  

scatters  when  certain  wavelengths  are  affected  by  a  medium and  others  are  not.   The 

scattered wavelengths are the color we see.  It, along with absorption, is the reason objects in 

the world are observed to be a certain color.  Scattering, specifically Rayleigh scattering, is 

the reason that the sky is blue: the composition of the atmosphere (particles smaller than the 

wavelength of the light) is such that longer wavelengths, such as red and yellow, pass right  

through,  but  short  wavelengths,  such as blue,  are scattered.   The scattered blue light  is 

radiated in different directions all around the sky, causing it to be the color we see.

1.2 Dispersion

This thesis focuses on one of the mechanisms that split white light into its component 

colors:  dispersion.   Specifically,  chromatic  dispersion  is  implemented,  which  is  the 

phenomenon in which visible white light is separated into components of different individual  

wavelengths.  As mentioned before, dispersion works at all the wavelengths of light, but for 
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Figure 8: Sunglasses with a thin film coating.  Image from [GMN94]



the purposes of this thesis just the visible spectrum is studied.

For the visible spectrum, the refractive index of most transparent materials such as air 

and glass decreases with increasing wavelength [Cha05].  So, a wavelength in the red range 

will refract at a smaller angle through glass than a wavelength in the violet range.  It is for this  

reason we see rainbows.  Air has a very small refractive index, changing the direction of light  

very minimally.  Alternatively, diamond has a very large refractive index, changing the wave  

direction in a large way and creating the well-known beautiful color patterns on its surface. 

Figure 9 shows a diagram of a prism dispersing a ray of white light, denoted by the arrow.  

Figure 4 in section 1.1 shows the exact same effect – the red portion of the spectrum has 

refracted little compared to the violet portion.

In  physics  there  are  generally  two  types  of  dispersion:  material  dispersion  and 

waveguide dispersion.  For the purposes of this thesis only material dispersion is important; it 

is the type described above that causes different wavelengths to refract at different angles 

through a particular material.  Waveguide dispersion occurs in applications such as fiber optic 

data transfer when the speed of a wave depends on its frequency for geometric reasons, 
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Figure 9: A diagram of a prism dispersing a ray of light.  
Note the angles of refraction with each color: red is affected  
very little, while violet's angle has changed more due to its  
wavelength.



independent  of  the  material  the  wave  is  traveling  through.   From  this  point  on,  when 

“dispersion” is mentioned, it is material dispersion.

Dispersion can have both positive and negative effects when it comes to optics.  A 

rainbow in the sky is  an obvious example of a positive effect.   However,  a  big issue for 

camera lens manufacturers for example is chromatic aberration caused by dispersion.  This 

problem is caused by the failure of a lens to focus all  of the colors (wavelengths) coming  

through it to the same point on film or a CCD.  The result is an image that has extra unwanted  

colors at the boundaries between dark and light parts of a photograph.  Figure 10 illustrates 

this problem.

1.3 Spectral Rendering Challenges

Spectral rendering has remained a somewhat niche topic in computer graphics.  Only 
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Figure 10: An example of chromatic aberration on a photograph of a  
whale's tail through aquarium glass.  Note the red color on the left edge  
and the blue color on the right edge of the tail. Photo taken by author.



within the last decade has it begun to emerge in offline renderers, for example LuxRender 

[Lux] and Maxwell Render  [Max].  In terms of interactive or real-time applications, spectral 

rendering is only in the beginning stages.

Usually, during rendering, colors are represented as an RGB tuple, which essentially 

samples light behavior at three wavelengths (RGB) in the visible spectrum.  However, spectral 

rendering requires samples to be taken at more points in the spectrum, which significantly 

increases the computational costs.  The requirements of performing lighting calculations using 

continuous waves or multiple specific sampled wavelengths are more processor intensive 

than using only single photons or rays of  light.   This is because in the discrete world of 

computers, continuous functions need to be sampled at high enough levels to produce quality 

results.

Another performance hurtle for spectral rendering is the fact that computer displays 

only work with the usual tricolor RGB data.  One cannot send a wavelength to a monitor and 

expect  anything to  appear  on the screen.   After  the light  transport  in  a scene has been 

calculated using waves,  it  has to  be converted from a wavelength to  an RGB value – a 

process that is not normally a simple one-to-one conversion if physical accuracy is the goal.

Caustics  can  be  regarded  as  a  specific  case  of  dispersion,  in  which  all  the  light 

wavelengths travel and intersect a diffuse surface in one location.  With dispersion, the light  

wavelengths travel in different paths, possibly reaching a diffuse surface in different locations. 

The  extra  calculations  required  to  handle  dispersion  beyond  caustics  require  an  extra 

performance cost that needs to be considered.
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1.4 Goals of this Thesis

Adaptive  Caustic  Mapping  [WN09] simulates  light  transport  through  a  refractive 

medium in order to display caustics on diffuse surfaces.  The purpose of this thesis is to 

extend the Adaptive Caustic Mapping algorithm so it can handle spectral dispersion.  Mild 

approximations are made to physically accurate models to enable us to achieve real-time 

frame  rates.   The  fact  that  there  is  very  little  published  research  on  real-time  or  even 

interactive  spectral  rendering  is  a  driving  force  behind  this  project.   With  the  real-time 

synthesis  of  images  increasing  in  realism  and  fidelity  on  an  almost  weekly  basis  with 

advances  in  global  illumination,  surface  phenomena  representation,  and  shadowing, 

achieving real-time frame rates for physically accurate dispersion is desirable.  Challenges to 

overcome  include  accelerating  all  steps  of  spectral  rendering:  sampling  the  light  wave, 

refracting through an object by wavelength, smoothing noise and gaps in the spectral map, 

and conversion from wavelength data to RGB data.

1.5 Contributions

There is one major contribution for this thesis: an interactive or real-time performance 

(depending on scene) method of synthesizing spectral dispersion phenomena.

1.6 Thesis Organization

This thesis is organized as follows: Chapter 2 gives a historical perspective by going 
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over  recent  work  in  the  display  of  caustics  and  spectral  phenomena.   Chapter  3  is  an 

overview of how Adaptive Caustic Maps (ACMs) work, including a section on the separate – 

but closely related – deferred refraction algorithm used to display refractive objects.  Chapter  

4 is about the extensions to ACMs that add spectral dispersion effects.  Chapter 5 goes into 

the  specific  implementation,  and  Chapter  6  is  a  discussion  of  the  results.   The  thesis 

concludes and describes some areas of future research in Chapter 7.  Finally, Appendix A 

contains shader code samples from the software written for this thesis.
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Chapter 2: Related Work

This  chapter  describes previous research into  the  display of  caustics  and spectral 

rendering.   First,  offline  rendering  methods  are  discussed,  and  they  are  followed  with 

interactive and real-time algorithms.

2.1 Caustics – Offline

Caustics, the focusing  and de-focusing of light due to reflection and refraction, was 

relegated  to  the  world  of  offline  rendering  up  until  around  a  decade  ago.   This  light  

phenomenon can be seen at the bottom of a pool of water on a sunny day or on a table when 

bright light shines through a glass.  Figure 11 is an offline rendering that displays the caustics  

formed when light reflects off the inside of a ring.  Various offline methods that could render 

caustics date back to at least 1986, when Kajiya  [Kaj86] mentioned their generation using 

path tracing in his seminal paper, “The Rendering Equation”.

14

Figure 11: Caustics formed when light reflects off the inside surface  
of a ring.  Image rendered in about 20 minutes using LuxRender.



In  1990 Peter  Shirley published  [Shi90] with  a  ray-tracing  method for  synthesizing 

entire scenes that also included the ability to display caustics.  He presented an interesting 

three-pass  method  that  combines  conventional  ray-tracing,  illumination  ray-tracing,  and 

radiosity calculations.  Shirley's work has a surprising similarity to this thesis – specifically in 

the method for finding specular objects in the scene.  His algorithm first shoots “feeler” rays  

into the scene from the light source sparsely in all directions to find specular objects, and  

once  they  are  found,  illumination  rays  are  then  sent  towards  those  objects  for  lighting 

calculations.  These extra illumination rays sent towards specular objects can be used for  

caustic generation.

Beyond ray-tracing, and also offline, Jensen's [Jen96] work on photon mapping allowed 

the display of realistic caustics.  Photon mapping is a two-pass algorithm: in the first pass,  

photons are fired into a scene and eventually rest on a diffuse surface once some termination 

criteria is met.  The photons are stored in a photon map, which is normally a  kd-tree data 

structure.  In the second pass, the photons near each final image pixel are gathered and their 

total  illumination  is  calculated.   Photon  mapping  as  originally  proposed  uses  a  separate 

special data structure called a “caustics photon map” which is separate and distinct from a 

normal photon map.  The caustics photon map keeps track of where photons end up after  

refraction through a transparent medium.  This is similar to the method used in this thesis, as 

a texture called a spectral map is utilized in which photons are splatted, or in other words the 

pixel in the texture where the photon lands is colored, after refraction and dispersion.
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2.2 Caustics – Online

Beginning in the early 2000's researchers began to generate realistic looking caustics 

with specialized methods that perform at interactive or real-time frame rates.  One of the first 

was introduced by Wand and Straßer in 2003 [WS03], who utilized the observation that the 

facets of a reflective object lit by a light source create light spots on diffuse surfaces that are 

in essence blurred images of the light source itself.  They first discretize specular surfaces 

into sample points, and then each sample point is treated as an individual pinhole camera 

which projects an image of the light source onto a diffuse surface.  The method is fast, but 

only handles light reflection, not refraction, though they mentioned it should be easy to add 

single-surface refraction such as from a water surface.  Double-surface refraction is not easily 

possible with this method.  This method is similar to ACMs in that only the refractive surfaces 

are sampled to handle the caustic calculations.

A modified version of photon mapping to display interactive caustics was published by 

Gunther, Wald, and Slusallek  [GWS04].  Their method presents improvements to the three 

stages of photon mapping: photon firing,  kd-tree construction, and the  k nearest neighbor 

queries during rendering.  They essentially presented a new complete framework for real-time 

distributed  photon  mapping  which  utilizes  improvements  in  real-time  ray  tracing,  photon 

mapping algorithms, and parallelized execution.  A pitfall of their system is that it does not 

utilize a GPU's power and instead uses many parallel CPUs (their results were obtained with  

9 to 36 CPUs working in tandem).  A possibility for their choice against using GPUs could be 

that implementing a  kd-tree on a GPU is not straightforward  [WN09].   However,  they did 
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present an adaptive sampling strategy that accelerates the photon generation process, which 

is reminiscent of the adaptive sampling used in this thesis.

In 2007 Yu et al. published their paper [YLY07] on generating real-time caustics.  They 

presented a novel algorithm that renders caustics based on a pair of caustic surfaces instead 

of  as  photons gathered on scene geometry,  as  most  other  methods (including  ours)  do. 

Caustic brightness is derived from the ray characteristic equation, the calculations of which 

are performed on the GPU.  Their method runs in real-time and produces very good quality  

results, but its fairly complicated caustic generation scheme made utilizing a caustic mapping 

algorithm instead for a dispersion extension an easier choice.

The idea for “caustic mapping”, in which a special texture is created containing caustic 

data and projected onto a scene similar to shadow mapping, began with Shah et al.'s image-

space technique in 2005 [SKP05].  They perform refraction calculations at each vertex of the 

refractive surface, then estimate the intersection point of the refracted ray with the receiver 

geometry, and finally estimate the intensity of the caustic at that point.  This algorithm is quite  

fast  and handles both reflective and refractive (single and double-surface)  caustics.   The 

methods presented in this thesis are based partly on Shah et al.'s research, and also perform 

almost completely in image-space and utilize a caustic map texture, though the generation 

method is quite different.  In addition, the paper showed an example image using caustic  

mapping for a pseudo-spectral refraction effect by giving a different refractive index for each 

of the three tristimulus colors.

Wyman et al. introduced a similar method [WD06] also operating in image space that 

could display caustics at interactive rates.  This approach requires two passes: one to emit  

particles from the light  source and interact  with  the object,  and a second to  gather  their  
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contributions as seen from the eye.  Wyman extended his own algorithm and introduced 

Hierarchical Caustic Maps [Wym08] to increase both speed and quality. This is accomplished 

by adjusting the number of photons utilized in the caustic calculations on the fly based on a 

reduced resolution version of the scene using mipmaps.  The work also improved issues with 

over- and under-sampling due to too much photon converging or diverging after refraction.  A 

third contribution from Wyman was Adaptive Caustic Maps  [WN09], which further improve 

speed and quality.  ACMs are discussed in detail in the next chapter, as they form the basis of  

this thesis.

In  a  method  that  could  basically  be  interpreted  as  caustic  mapping,  Ming  et  al. 

[MKKLYK07] published their method for real-time display of the effects of light shining through 

a stained-glass window.  They create a caustic map and a depth map from the light's view, 

blur the caustics according to distance from the stained glass (using mipmaps), and project 

into the scene as in a shadow map.  

2.3 Spectral Rendering – Offline

Spectral rendering, specifically regarding light dispersion, began in a similar vein as the 

display of caustics.  In 1982 Cook and Torrance published a paper  [CT82 ] outlining their 

reflectance model for graphics in which they present a method for rendering that takes into 

account light wavelengths and spectral energy distribution.  At that early date however they 

were only concerned with basic light transfer, not the effects discussed in this thesis.

Spencer Thomas published a paper  [Spe86] specifically about spectral dispersion in 

1986.  He models dispersion such that when a single ray encounters a refractive object, it is  
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split as needed into several subrays, each of which covers a small portion of the full visible  

spectrum.  Each of these rays is possibly reflected or refracted and split again with a smaller 

wavelength range, and so forth until a ray intersects a diffuse surface, loses significance in 

the lighting calculation, or reaches a recursion depth threshold.  Thomas implemented a fairly  

physically-accurate  representation  of  dispersion,  and  as  such  it  can  be  quite  slow:  he 

mentions in his paper that it is likely over 100 rays are created for a single pixel in an image.

Research beginning around the late 1980s in spectral  rendering mostly focused on 

rendering two types of effects related to dispersion: the first being realistic and physically 

accurate rainbows, and the second being the display of gemstones.  Thomas's paper included 

a very realistic image of diamonds rendered with his algorithm.

Musgrave published a paper [Mus89] in which he used a Monte-Carlo distributed ray-

tracer to simulate light dispersion in raindrops for the creation of rainbows.  He outlined the 

two largest problems that still plague spectral rendering algorithms to this day: how to sample 

the continuous spectrum of visible light, and how to convert wavelengths to RGB values for 

accurate display on a computer monitor.  His solution for sampling the spectrum was to take 

13 samples at specific intervals, making sure they sum to white.  This thesis employs a very  

similar method, though seven samples are used instead: one for each of the major rainbow 

colors (ROYGBIV).  As for converting wavelengths to RGB values, Musgrave uses the three 

tristimulus functions for the metameric color used to represent the color of monochromatic 

light of each wavelength sample.  In this thesis for speed reasons a specific RGB value for  

each of the seven wavelengths is chosen, adding them one at a time in a shader.  

In 2000 Wilkie et al. published [WTP00] a paper specifically about rendering dispersion 

effects using a simple ray tracer.  Their spectrum sampling varied in order to show the effects 
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of using a small number of regularly-spaced deterministic samples vs. a stochastic sampling 

method.  They only discussed internal dispersion, that which you see on the surface of a 

prism, for example, as opposed to the light that refracts out of it.

Radziszewski  et  al.  presented  [RBA09] a  full-spectrum  technique  for  synthesizing 

images that was optimized for quasi-Monte Carlo sampling of the spectrum.  This sampling 

method can effectively represent both smooth light distributions and lights with narrow spikes 

in their spectra, such as neon bulbs.  Their method produced physically-accurate results for 

wave effects such as dispersion and scattering, 

Other wavelength-dependent effects using offline algorithms have been researched as 

well.   Smits  et  al.  [SM92] and  Hirayama  et  al.  [HKYYM99] published  work  on  thin  film 

interactions.  Both presented a physically-based approach to displaying thin film phenomena 

that takes into consideration the spectral composition of light.  Dong  [Don06] presented a 

method for combining both RGB rendering and spectral rendering in the same image, and 

proved it  could work by implementing a multilayer thin film ray tracer.  For scattering, the 

phenomenon that creates our blue sky, Nishita et al. published  [NND96] on the display of 

clouds.  They take into account multiple anisotropic scattering due to particles in the clouds,  

and also utilize sky light in addition to direct light from the sun.  Stam [Sta99] and Agu [Agu01] 

have presented methods for displaying physically accurate diffraction, both in a ray-tracing 

context.

2.4 Spectral Rendering – Online

The most recent contribution in the rendering of rainbows was published in 2010, over 
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20  years  after  Musgrave.   Kanamori  et  al.  [KFYRTK10] published  a  similar  rainbow 

generation paper which goes far beyond Musgrave's original research, in which they take into 

account such details as the radius of each raindrop, the volume (density) of raindrops in the 

atmosphere based on meteorological data, and scattering due to air molecules and aerosols.

The accurate display of gemstones and their dispersion properties has received much 

attention in graphics research.  In 2004 Guy and Soler published [GS04 ] a paper with their 

algorithm using the GPU to display physically-based light transport in gemstones in real-time. 

They  accurately  display  the  internal  reflection  and  refraction  properties  of  gemstones, 

including effects due to the polarization of light.  Their algorithm uses the concept of facets to 

represent a set of points inside a gem that corresponds to the succession of transformations a 

photon of light travels.  The facets are grouped into a tree structure for each frame and all  

their contributions are accumulated using a fragment program to reach the final pixel color. 

While  their  results  are  fantastic  in  terms of  “internal”  light  phenomena (effects  inside the 

gemstone), this algorithm stops short of representing dispersion on external surfaces.

In 2005  Ďurikovič et al. presented a spectrally-based framework for image synthesis 

that  runs  on  the  GPU  [ĎK05].   Their  method  performed  at  interactive  frame  rates  and 

accurately displayed multilayered thin  film interference effects,  utilized the spectral  power 

distribution of a light source, and included the metamerism of surfaces.  They precomputed a 

large amount of the data required for rendering and stored it in 1D arrays in textures for quick  

fetching in a fragment shader.

Ihrke et al. published a paper in 2007 [IZTTMS07] on their wave-based light transport 

algorithm  they  called  Eikonal  Rendering.   The  algorithm  can  account  for  the  emission, 

absorption,  reflection,  and  scattering  effects  of  light  using  a  set  of  ordinary  differential 
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equations  based  on  the  Eikonal  equation.   While  this  algorithm  does  make  use  of  an 

infrequently-utilized “wavefront model” for image formation (allowing effects otherwise more 

difficult in mainstream methods) and runs in real-time, it still has a few pitfalls.  These include 

the  inability  to  move  the  light  source  without  5-10  seconds  of  pre-computation  time,  a 

somewhat  complex  structure,  and  being  only  suitable  for  simulation  of  spatially  confined 

refractive objects.

Possibly the most similar (in terms of final result) previous work to what is presented in 

this thesis is Sikachev et al.'s 2008 paper [STI08] that describes their algorithm for rendering 

spectral caustics on planes.  It performs at interactive rates and accurately simulates light 

entering a refractive object, splitting into various wavelengths based on physical properties, 

and projecting onto a plane upon exiting the object.   While their  algorithm displays more 

realistic  gems or  refractive  objects  than what  is  presented in  this  thesis,  it  only projects 

dispersion onto planes, as opposed to arbitrary surfaces, as presented here.  

As  with  the  offline  algorithms,  much  research  has  been  performed  on  displaying 

spectral  phenomena  other  than  dispersion  interactively  or  in  real-time.   Lindsay  et  al. 

published  [LA06] in  2006  on  rendering  spectral  diffraction  effects.   Using  the  GPU they 

presented  a  way  to  perform  physically-based  diffraction  in  real-time  (with  some 

precomputation  of  SH  coefficients),  preserving  high  dynamic  range  illumination.   They 

adaptively sample the diffraction BRDF and precompute it to a Spherical Harmonic basis to 

preserve the full intensity of the reflected light.  Iwasaki et al. presented [IMN04] a method in 

2004 for rendering soap bubbles in real-time that takes into account wave-based thin film 

interference.  They precalculated and stored the reflectivities of the thin film of the bubbles as  

textures in order to speed rendering.  
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Chapter 3: Adaptive Caustic Maps

We chose to extend Adaptive Caustic Mapping [WN09] in particular because it solved 

several  issues  inherent  in  other  caustic  mapping  algorithms:  notably  aliasing  due  to 

insufficient sampling and excessive temporal noise due to sampling variations.  ACMs use an 

importance-based  adaptive  photon  sampling  algorithm  that  increases  quality  while  also 

speeding up the rendering of caustics beyond other methods of similar quality.  In addition, 

they utilize a deferred rendering process that displays refractive objects more quickly than 

other methods.  

3.1 Caustic Generation

Wyman introduced Adaptive Caustic Maps as a deferred shading method to improve 

the speed of caustic mapping.  He also included an efficient deferred method for displaying 

refractive objects, which will be detailed in the next section.  

The general structure for using ACMs to create caustic effects is similar to other caustic 

mapping techniques.  Refractive objects are rendered from the view of the light source, and a 

method is used to place photons on the object.  The photons are refracted through the object 

and splatted onto the caustic map, which is then projected onto the scene like a shadow map.

Where ACMs differ from other caustic mapping algorithms is in the photon emission 

and refractive object  “locating” phase.  Other caustic mapping algorithms normally fix  the 

number of photons prior to emission and send them throughout the entire light view, often 

wasting computation time because photons that may not actually hit the refractive object are  
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still processed.  

ACMs start with a reduced resolution view of the scene from the light using mipmaps, 

and only emit a few regularly-spaced photons into that image.  In a loop, moving up one 

mipmap level at a time, each photon that actually hits a refractive object is subdivided into 

four new photons.  Photons that do not hit a refractive object are simply discarded, never to  

be processed.  When this is complete, the photon buffer contains a high-resolution set of  

points that all intersect with the surface of a refractive object.  Figure 12 is an illustration of  

this process on the bunny model.  These photons are all then refracted through the object and 

splatted (the texel corresponding to the photon's final location is colored) into the caustic map.

The  caustic  map  is  projected  into  the  scene  in  a  very  similar  fashion  to  shadow 

mapping.  It differs from shadow mapping in that no depth test is required for checking what 

the light can “see”, since the caustics may appear anywhere in the scene.  Depending on 

refractive index, object shape, and light source, caustics may form both inside an object's 

shadow and/or in direct light.  Figure 13 shows screen captures with a caustic map and the 

final scene with the map projected into it.
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Figure 12: Photon traversal and refinement.  In the first stage, very few photons are evenly spread through the scene in  
order to find the refractive objects.  Each subsequent level refines the photons that hit the refractive object.



3.2 Deferred Refraction

The display of the refractive objects in the scene is completed in a separate pass at the 

end,  after  the  caustics  have  been  projected  onto  the  background  geometry.   It  uses 

information already collected for caustic formation, and so does not require extra data or  

special textures.  Input for this algorithm includes the front and back-facing normals for the 

refractive objects, which are held in a single texture array and gathered in one pass before 

caustic calculations.  Depth textures of front and back-facing surfaces of the refractive objects 

are also needed, along with a depth texture of the background geometry.

In essence, pixels that lie on the surface of a refractive object are treated as photons, 

just like with the caustics calculations.  Using the front normal, the photon is refracted at that  

front surface.  The depth textures allow calculation of the distance between the front and back 
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Figure 13: The caustic map, A, and final image with caustic map projected, B, for the beer glass scene.  30 fps.



surfaces of the object, which are used for the photon's path to check for intersection with the 

back-facing surface.  At the back-facing surface, the photon is refracted again, after which it is 

projected  out  to  the  background  geometry.   The  point  at  which  it  hits  the  background 

geometry is then set as the color for that pixel on the refractive object.

Figure 14 shows images representing the data needed for deferred refraction.  Parts A 

through E of  Figure  14 are all  flat  textures:  data  gathered from previous render  passes,  

encoding the data required for refraction and coloring.
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Figure 14: The image data required for deferred refraction.  A and B are the front and back-facing normals, respectively, of  
the refractive object.  C and D are the depth maps for the refractive object and background, respectively.  E is the  
background color texture, with shadows and caustics already complete, and F is the final result. 



Chapter 4: Spectral Dispersion

4.1 Creating Dispersion Phenomena

To extend ACMs with spectral dispersion in order to create the new spectral maps, 

changes were  made to  both the caustic  generation algorithm and the deferred refraction 

algorithm.  Specifically, the caustic generation algorithm was extended to handle what this  

thesis will  call  “external” dispersion, or that which is produced by light exiting a refractive 

object and landing on a diffuse surface.  This is the type of dispersion seen when a prism is 

put  into  white  light.   The deferred  refraction  algorithm was extended to  handle  “internal” 

dispersion,  which  is  the  phenomena  that,  for  example,  creates  the  colors  seen  inside 

diamonds.  Figure 15 illustrates the distinction between these two types of dispersion.

                                                           

The spectral  dispersion algorithm begins as a choice of how many samples of the 

continuous visible light spectrum to utilize.  As outlined above, the visible spectrum ranges 

from around 400 nm wavelength for violet up to around 700 nm for red.  For the examples in  
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Figure 15: The distinction between "internal" dispersion, inside the  
refractive object, and "external" dispersion, on the diffuse surface.



this thesis seven samples were chosen which are evenly distributed through the spectrum. 

The number of chosen samples is essentially arbitrary, though with fewer than seven there 

tends  to  be  too  many  missing  colors,  and  with  more  the  speed  loss  becomes  a  major 

problem.  These issues are discussed further in the next section.

Our seven samples each correspond to a different color of the rainbow: red, orange, yellow,  

green, blue, indigo, and violet, and each has a specific wavelength.  Figure 16 shows the  

wavelengths and colors chosen from the spectrum.

Refraction of light between two mediums with different refractive indices, regardless of 

wavelength, can be described using Snell's law  [Hec01].  Snell's law is represented by the 

following equation along with figure 18:

n1 sinƟ i=n 2 sinƟt
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Figure 16: The seven chosen wavelength samples.



Where n1 and n2 are the refractive indices of the mediums.  Figure 17 shows that light from 

medium n1 at incident angle Ɵi is refracted when entering medium n2 at angle Ɵt.  

The refraction angles in Snell's law, when considering light dispersion, are wavelength 

dependent.  These angles, taking into account wavelength, can be calculated using Cauchy's 

equation  [Cha05] [Hec01],  which  describes  an  empirical  relationship  between  a  visible 

spectrum wavelength and the refractive index of a particular material:

n (λ)=A+ B
λ2 +

C
λ4 +...

Where λ is the wavelength, and A, B, C, etc. are coefficients specific to a particular material.  

Note  it  was  found  Cauchy's  equation  only  works  for  the  visible  spectrum,  not  the  entire 

spectrum of light.  Since only the visible spectrum is required for this thesis, it is adequate.  
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Figure 17: Refraction of light according to Snell's law.  Light  
traveling through medium n1 at incident angle Ɵi is refracted when 
entering medium n2 at angle Ɵt.  Image from [Hec01]



The above is  the  general  form of  this  equation,  but  for  the  purposes of  this  thesis  it  is  

sufficient to use the following two-term form [Mus89]:

n (λ)=A+ B
λ2

The A and B coefficients are based on physical measurements, and tables of them can be 

found in  various sources such as physics books and the Internet.   Table 1 shows some 

examples for common glass types.

Material A B (um)
Fused Silica 1.4580 0.00354
Borosilicate glass BK7 1.5046 0.00420
Hard crown glass K5 1.5220 0.00459
Barium crown glass BaK4 1.5690 0.00531
Barium flint glass BaF10 1.6700 0.00743

Table 1: Cauchy A and B coefficients for various types of glass. Data from [Goo10].

After the photons have all been emitted, positioned in the hierarchy on the refractive 

object, and ready to be refracted and splatted, the next stage of the algorithm takes place.  

Each photon is caught just as it is about to be refracted through the front surface of the object. 

The photon is split into seven separate photons, one for each wavelength, and each one is 

refracted according to the index of refraction generated for it from Cauchy's equation.  Each 

of these seven photons is then refracted a second time on the back-facing surface of the 

object, after which its final position on the background geometry is sent to the final stage for 

splatting into the spectral map.  Figure 18 illustrates this process, and compares it to Adaptive 

Caustic Mapping.
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In  Figure  18  note  how each  individual  refracted  ray's  final  position  on  the  diffuse 

surface is in a unique location.  Depending on material - specifically the refractive index of  

that material, and the shape of the object, all (or most) of the rays may still land in nearly the  

same location.  In this case the colors would all be added back together, producing white.  It is 

for this reason that the RGB values for each wavelength must be carefully calculated so that  

they sum to white.  If they do not, the results will be incorrect.  

Because only seven samples are being utilized,  the distance between where each 

specific wavelength ray intersects the diffuse surface matters.  Issues can sometimes arise in 

which the caustics have gaps between each color.  Figure 19 illustrates this problem.  
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Figure 18: Refraction using seven samples, illustrating how 
different wavelengths are refracted at different angles in an external  
dispersion context. The final locations on the diffuse surface make  
up the spectral map.  The dotted line indicates how original ACMs  
worked.



The next  section  outlines  and describes the  novel  algorithm for  handling these sampling 

problems on the spectral caustic map.

Once the spectral map has been created and projected into the scene like a shadow 

map, internal dispersion is calculated in a completely separate pass at the end.  No spectral  

map is  required because we are only coloring the pixels  on the surface of  the refractive 

object.  In ACMs the color of each pixel on the surface of the refractive object is calculated  

using a single background color texture fetch, however in ASMs seven texture fetches are 

performed – one for each wavelength sample.  Figure 20 shows how this works.  Pixel A is a  

representation of original ACMs, and pixel B shows how the extension works.  Note that the 

angles of the lines are exaggerated to illustrate the process better.

Each of these texture fetches may be in a slightly different location, akin to the photons 

for each wavelength being splatted into a different location in the spectral map.  The color of  

the texel chosen from the background texture is altered by the color of the wavelength that 
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Figure 19: Problems with discontinuous caustics when using seven  
samples. Each sample color is clearly visible, with gaps between the  
colors.  Note the chromatic aberration visible in the red portion of  
the “gem” as well. 



hits it, so if all wavelengths arrive at the same location, or the same color as in Figure 20  

(because they add up to white), then the color is exactly the same as the background.  The 

wavelength is converted to an RGB value here, when it is calculated based on the color of the  

background texture.  The largest effect is seen where the background texture has a transition 

between light and dark colors, because the separate photons of different wavelengths may hit  

both the light and the dark side.  This can be seen in Figure 19, where the red and gray walls  

intersect as viewed through the gem an orange color is present.

4.2 Filling the Gaps

  One of the major  issues with  spectral  rendering due to discrete sampling of the 

spectrum is gaps or empty portions in the resulting spectral map.  As shown in figure 19 it can 
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Figure 20: Deferred dispersive refraction.  View is from above,  
looking straight down (A and B are on the front of the prism).  
The pixel on the surface of the prism at A shows original ACM,  
and the pixel at B illustrates our extension.



be a visually disturbing problem, breaking the impact and realism of the image.  Note the 

absence of gaps in the rainbows directly under the refractive object: this is a problem that 

must be solved to work for any situation, detecting whether gaps are apparent in the caustics 

or not while performing a fix.

An effective solution is to increase the number of wavelength samples taken along the 

visible spectrum.  By far the simplest solution, this indeed results in fewer gaps and holes,  

more colors, and greater physical accuracy.  Unfortunately, it also slows everything down: like 

any graphics effect one is attempting to simulate, the more samples used, the more processor 

intensive and the slower the performance.  With offline applications this is not a problem (just  

wait longer...), but real-time performance is being attempted.  In addition, [STI08] mentioned 

that for their algorithm, gaps still existed even when using 20 wavelength samples.  To check 

on this claim, the algorithm was tested with 21 samples, and figure 21 shows the result.
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As can be seen in Figure 21, the worst large gaps have actually been reduced to a  

great degree.  Where there is a large dispersion amount however, there are still some visible 

gaps between each color band – notably on the bottom left of the image, but they are small.  

However, what the image does not convey is the rather large frame rate drop when using 21  

samples.  The gem object in Figure 19, with seven samples, was performing at 40 frames per  
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Figure 21: Adaptive Spectral Mapping using 21 evenly-distributed wavelength samples.



second, while Figure 21, with 21 samples, was performing at 10 frames per second.  Using 

the greater number of  samples did succeed in removing most large gaps, but  it  dropped 

performance from real-time to interactive.  Further frame rate performance data comparing 

seven and 21 spectrum samples can be found in the Results section below.

Besides increasing the number of wavelength samples, various methods have been 

proposed.   In  [STI08] again  Sikachev  et  al.  proposed  interpolating  colors  between  the 

caustics that do exist in order to solve the color gap problem.  They integrate the interpolation  

results for each point by performing additive blending, and use a given step size which is  

taken in the view space coordinates.

We propose a similar, but slightly different, method: for each pixel in the caustic map 

that is not already illuminated, a test is performed to check whether it is within a gap between 

caustic splats.  If the pixel is found to be in a gap, then it is colored based on the splats near 

it.  In essence, a step is performed one pixel at a time, horizontally and vertically from the 

current pixel.  Along the way, if a colored pixel is found, its color is mixed with the current 

pixel's color.  It is akin to “smearing” the colors surrounding a gap towards each other, or 

interpolating the colors around a gap to fill it in.  This filling is accomplished completely in  

image space, with the only input being the spectral caustic map generated in the previous 

pass.  Output is the spectral map texture with gaps filled in.  Pseudocode for the algorithm is 

shown in Figure 22.
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A diagram illustrating the idea behind the gap-filling algorithm is shown in Figure 23:

The algorithm begins with parts 1 and 2 of the pseudocode simply checking whether 
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Figure 22: Pseudocode for the gap-filling algorithm.

Figure 23: A diagram showing how the filling algorithm works.  Each grid square is one pixel in the  
spectral map.



the pixel currently being processed already has color present, and if it does, just output that  

color.  If no color is present, the possibility exists that the pixel is within a rainbow's color gap. 

Part 3 of the pseudocode is to make a set number of steps horizontally from the current pixel, 

one pixel at a time, to the left and right.  Any colored pixels encountered on the way are 

added to the current pixel.  Part 4 is the same process, only up and down vertically.  The gray 

pixels in Figure 23 represent these two steps.  Part 5 mixes the horizontally-found colors and 

the vertically-found colors, and part 6 sets the current pixel to the mixed color.  In Figure 23, 

pixel A is set to a light red color, because its vertical and horizontal neighbors are either from 

the red band or from nothing at all.  Pixel B is set to a mixture of the red and orange color 

bands due to  its  proximity  to  both  colors  in  the  spectral  map.   Figure  24 shows screen 

captures of the spectral map before and after the gap-filling procedure.
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Figure 24: The spectral map texture, before (A) and after (B) filling in the gaps.



A certain efficiency is inherent when using this algorithm, because a form of blurring is 

essentially built-in.  Since the pixels check for what is around them in order to pick a color and  

fill in gaps, blurring is basically given for free in the process.  This helps with spots in the 

spectral  map  that  may  have  contained  single-pixel  noise  before  the  filling  algorithm  is 

performed, smoothing out inconsistencies.

The blurring can also be an issue in some cases, because there are situations where 

sharply defined caustics are desired.  There is in fact a tradeoff here: the number of steps, or  

pixels to check outwards from the current pixel, matters in this case.  A large step value can  

fill in large gaps, but also creates a more blurred edge on the spectral colors.  A smaller step 

amount will give sharper edges, but any large gaps will not be completely filled in.
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Chapter 5: Implementation

This thesis was implemented using C/C++ and OpenGL 4.2, with vertex, geometry, and 

fragment shaders written in GLSL.  The video card utilized was a NVIDIA GeForce GTX480 in 

a Windows 7 environment.

The implementation began with Wyman's Adaptive Caustic Mapping algorithm [WN09], 

and great thanks to him for providing a code download on his website to use as a reference.  

His shaders were altered and extended to handle spectral dispersion – specifically to handle  

multiple wavelength samples instead of just single photon calculations.  The photon splatting 

shaders were extensively modified by inserting a new geometry shader to perform the photon 

splitting into seven samples and to handle the refraction for each wavelength.  The fragment 

shader was altered to handle the extra photons and convert the wavelength values to RGB.

The ACM code was also altered to make it faster, separate from the specific dispersion 

extensions.  Instead of performing photon refinement on six mipmap levels of the refractive 

object texture, only three are traversed.  This had two effects: almost an order of magnitude  

speed increase (in some scenes going from 2 fps to 12 fps), and a reduction in caustic quality.  

The quality decrease specifically meant dimmer caustics and more “holes”, or missing pixels,  

in them.  Much of this was taken care of with the gap-filling shader.

After  creating the spectral  map and before projection onto the scene's background 

geometry, the novel gap-filling shader is inserted.  It works directly on the spectral map itself  

in image-space.  Figure 25 shows the entire pipeline for this project from beginning to final 

image.  
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Each box in Figure 25 describes a separate render pass.  The yellow, blue, and green 

boxes in the background show how those passes are being rendered – whether it is from the 

light's view, from the camera's view, or in image space (on a full-screen quad).  This diagram 

also compares the Adaptive Spectral Mapping algorithm with the original ACMs: each white 

box is unaltered from the original ACM algorithm, light red boxes are altered from the original 

ACMs, and pass 5, the dark red box, is a completely new pass.  Code samples for the altered 

shaders can be found in Appendix A.  As can be seen in the figure, all of the actual spectral 
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Figure 25: The rendering pipeline from beginning to end.  This whole pipeline is completed each  
frame.  This diagram shows both the Adaptive Spectral Mapping algorithm and the original ACM  
algorithm: the red boxes are passes altered from original ACMs, and pass 5, with the dark red  
background, is a completely new pass.



dispersion calculations described in this thesis are performed in the image space passes.

The two “light view” passes and the first “camera view” pass utilize simple shaders that 

only output the specific required information into textures.  The 2nd and 3rd passes, where the 

front and back normals are written out, use texture arrays to hold the data.  In this way both  

front-facing normals and back-facing normals can be written to the same texture in the same 

pass, thus increasing efficiency and only using one OpenGL texture unit.   Layer 0 of the 

texture array holds the front-facing data, and layer 1 holds the back-facing data.  This is  

possible due to OpenGL's geometry shader functionality allowing one to choose the layer in a  

texture array to write to on the fly.  Incidentally, it was discovered during implementation that 

the specific call, gl_Layer, is flawed on ATI video cards (as of late 2011) and more often than  

not produces unknown or random results in the textures.  Implementation in fact began with 

an ATI Radeon HD 6750M video card, but when this bug was discovered, the code was  

transferred to a computer with the aforementioned NVIDIA GTX480.  As such, this thesis will  

currently only work on NVIDIA GPUs.  Note that no specific NVIDIA video card function calls  

are being performed, so if ATI fixes the bug, this thesis will also then work with ATI cards.

The  fourth  pass,  in  which  all  the  photon  processing  and  splatting  takes  place,  is 

composed of two separate but connected parts.  The first part is photon traversal, described 

above in section 3.1, where the photons are placed on the refractive objects and refined to 

increase resolution where it is required.  This part of the ACM algorithm was essentially left  

untouched and runs as Wyman and Nichols [WN09] originally wrote it.

Our  spectral  dispersion  extensions  were  added  to  the  second  part  of  the  ACM 

algorithm, where the photons are actually refracted through the object and splatted into the 
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spectral map.  In the original ACM code, the photon positions gathered in the traversal phase 

were refracted twice in the vertex shader: once through the front of the refractive object and 

again through the back, and then their positions were sent to the fragment shader for splatting 

after a simple gaussian filtering.  The extension first does away with any processing in the 

vertex shader, instead moving all these calculations into a newly-inserted geometry shader.

This geometry shader contains most of the ACM code that was originally in the vertex 

shader,  but it  was moved here in order to support splitting the single original photon into  

seven separate wavelength photons and emitting them all individually.  New inputs to this  

shader are the refractive indices for each individual wavelength, which are precomputed in  

the C++ code.  The process is outlined in the pseudocode in figure 26.  

Part  1  in  figure  26  was  added  in  order  for  the  algorithm  to  work  with  all  seven 

wavelengths instead of just one photon, as with the original ACM code.  Part 2 was altered in 

order to use the GLSL built-in refract() function instead of the ACM author's custom refraction 

function for speed reasons (it's not as physically accurate, but the visual difference is quite  
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Figure 26: Photon splat pseudocode.



minimal).  Specifically, the difference is that the ACM author's refraction function takes care of  

the case where an incident ray reflects off the object's surface, whereas the built-in GLSL 

function does not.  Part 3 still  uses the ACM author's more physically accurate refraction 

function, but both parts 2 and 3 were edited to use the Cauchy equation-calculated refractive  

indices per wavelength.  Part  4 is a geometry shader requirement,  just  there to  emit  the 

photon/vertex so the fragment shader will see each and every photon.  Part 5 is identical to 

the ACM author's original code.  In the newly-created part 6, the wavelength for that photon is 

converted into an RGB value.  Part 7 is a simple call to gl_FragData, required for all fragment  

shaders.

For many of the examples in this thesis, Cauchy coefficients corresponding to fused 

silica glass were  chosen,  in  which  A =  1.4580 and B = 0.00354.   Note  that  a  higher  B  

coefficient corresponds to a larger dispersion amount.  Some of the examples use this feature 

of the Cauchy equation in order to more effectively illustrate the dispersion phenomenon, 

making rainbows far  more  likely to  show up and easier  to  see.   For  these,  the same A 

coefficient as the fused silica glass was chosen, but an extremely high B coefficient of 0.6 was 

utilized.   Figure  27 shows the  difference  in  dispersion  between  these two  values of  the  

Cauchy coefficients.  For speed reasons, the algorithm pre-computes the refractive indices for 

each wavelength for each Cauchy coefficient value and sends that data to the shaders as an 

array at run-time.  This allows the dispersion amount to be changed by the user in real time.  
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Conversion from a wavelength to an RGB value is, again for speed considerations, as 

simple as it gets.  Because it is known exactly which wavelengths are being sent to the splat 

shader,  a  constant  red,  green,  and blue  value  for  each one can be set.   As  mentioned  

previously, these values must be carefully chosen to make sure they sum to white (i.e. all  

equal the same number) when adding all the wavelengths together as put forth in [Mus89].  If 

they  do  not  sum to  white,  the  caustics  will  almost  certainly  be  too  red,  green,  or  blue,  

depending on the  scene's  circumstances.   Table  2 gives  the  RGB values used for  each 

wavelength.  These are approximations based on using the CIE color matching functions to 

get  the relative contributions of  light  from wavelength,  and converting them to XYZ color  

space coordinates [RBA09].  From the XYZ coordinates, it is possible to get RGB values.
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Figure 27: Comparison between dispersion that occurs with two different Cauchy B coefficients.  Image A uses the real-life  
value for fused silica glass, 0.00354, and image B uses an extreme value of 0.6.  Image B performs far more dispersion,  
making rainbows more likely.  Dispersed colors are set to be brighter than normal for ease of comparison.



Wavelength (nm) Red Green Blue
380 77 0 204
430 51 51 255
480 0 229.5 255
530 76.5 255 102
580 204 229.5 77
630 229.5 128 0
680 255 0 0

Total 893 893 893

Table 2: The RGB values chosen for each wavelength.  Colors are on a 0-255 scale.  Before splatting, the totals are scaled  
so all dispersed waves are not bright white.

In this way,  a particular pixel's color in the scene is summed for each wavelength-

specific photon that hits it.  If all wavelengths end up on the same pixel, it will be white, as it is  

in physical reality.  If only one photon wavelength hits a particular pixel, the pixel will only be  

that color.

After the spectral map is created, the next pass performs the gap-filling shader to take 

care  of  gaps  and  any noise  or  missing  pixels  in  the  spectral  map.   The  algorithm was 

described in detail  in section 4.2, so the specifics will  not be explained here again.  The 

shader code for this algorithm is presented in Appendix A.  One note is that the number of  

steps to perform when searching for a color in the spectral map can be set to any value.  As  

mentioned earlier, this is a tradeoff between blurry dispersion and better filling, or sharper  

dispersed colors and the possibility of gaps not completely filled in.  It was found that a step  

size of 20 creates a good combination of gap filling and blurriness.

Following the spectral caustic map's processing, it is projected into the scene in a very 

similar way to a shadow map.  This code is essentially unchanged from the Wyman and 
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Nichols  [WN09] code – the only alterations involved combining a simple shadow mapping 

shader with their caustic projection shader so both operations are performed in the same 

pass.  

The deferred refraction pass was also extended to handle seven separate wavelengths 

as opposed to single photons, as it was originally presented.  In addition, a quick and simple  

depth check was added so that the refractive object does not appear in front of  all  other 

geometry all the time due to its deferred nature.  Since no extra photons need to be created 

as in the caustic splatting pass, only the fragment shader's code required extension (that is, 

an entirely new geometry shader was not needed).   No extra photons are required as in  

caustic calculations because the color for each pixel on the surface of the refractive object is  

chosen  from  the  background  geometry  texture.   It  is  the  location  of  the  fetch  from  the 

background geometry texture  that  is  important,  and seven texture  fetches are  performed 

instead of just one per pixel as with Adaptive Caustic Mapping [WN09].

The color  of  this  pixel  fetch  from the background texture is  altered slightly by the 

wavelength of the photon that hits it.  Like the spectral caustic map colors, if all seven photon 

wavelengths hit the same pixel in the background texture, the sum will be the exact same 

color as the background texture.  If only the “red” portion of the spectrum hits the background 

texel, it will be shaded more red on the refractive object image.

Gap-filling is not  performed on the surface of  the refractive object as it  is  with the 

spectral caustic map because gaps and missing pixels are basically non-existent.  This is due 

to the fact that photons are not being splatted into a separate map – colors are being pulled  

from background geometry, which always exists (or is black if nothing is there).  The only 
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issue that may come up is non-smooth transitions between some colors,  which was also 

observed and outlined in [WTP00].  Figure 28 shows a close-up example of this problem.

This issue is usually only apparent when using an extreme dispersion value (Figure 28 used 

the very high Cauchy B coefficient value of 0.6) and/or if the viewer gets very close to the 

refractive object.  
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Figure 28: Example of non-smooth transitions between colors of a refracted  
image on the refractive object.



Chapter 6: Results and Discussion

Table 3 contains performance data for the algorithm compared to Adaptive Caustic 

Mapping.  Figure 29 shows all  of the test scenes.  Tests were performed on the Adaptive 

Spectral Mapping algorithm using both seven and 21 wavelength samples.  As can be seen in 

the table,  the extra photons needed for dispersion and gap-filling reduces performance in  

some scenes, and increasing wavelength samples severely reduced speed in all scenes.  The 

sphere, at least with seven samples, still performs at the same speed as with ACMs, most  

likely due to its simplicity and the small size of its dispersion.  The gem, being composed of  

far fewer faces than all the other objects, still performs slower than the sphere - this is most 

likely due to  its size, which is an image-space algorithm issue discussed in the following 

paragraphs.  The greatest difference in performance is the glass on the table, which is also 

due to its physical size in the light's view.  Also, because the original ACM algorithm has no 

smoothing or blurring pass, it can display the scenes with better performance.

Object Number of 
Faces

Adaptive 
Caustic 

Mapping (fps)

Adaptive 
Spectral 

Mapping (fps) 
with 7 samples

Adaptive 
Spectral 

Mapping (fps) 
with 21 samples

Sphere 5120 60 60 19
Ring 65536 27 20 9
Gem 24 60 40 10

Bunny 138902 12 10 6
Glass on Table 12137 60 16 5

Table 3: Frame rates for each test object.  The sphere, ring, gem, and bunny were all refractive objects inside a Cornell box  
scene.  The glass is on a "table" with a wood texture applied.  The five test scenes can be seen in Figure 29.
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Since  this  algorithm  runs  in  image-space,  the  number  of  pixels  covered  by  the 

refractive object from the light's view has an impact on frame rate.  The closer the object is to 

the light, the more pixels involved in caustic calculations, and the slower the performance.  In 

fact, the relationship between this number of pixels and frame rate is closely tied.  Table 4  

shows what happens as the sphere is moved closer to the light source.  Figure 30 shows the 

sphere on the “floor” of the Cornell box along with the view from the light source for pixel  

comparison.
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Figure 29: The five testing scenes.



Frame rate (frames per second) Total pixels covered by refractive object
60 2.5%

(sphere on the “floor” of the Cornell box)
40 4%
30 7%
20 13%
10 33%

Table 4: Table showing relative number of pixels taken up by a refractive sphere as seen from the light source and a frame  
rate comparison.

The percentage of fragments covered in the light's view by the refractive object directly affects 

the  algorithm's  performance.   Of  course,  this  is  closely  related  to  the  common graphics 

problem of quality vs. speed as well.  If the refractive object is close to the light, then with this 

algorithm more photons will  be refracted through the object,  increasing the quality of  the  

dispersion.  However, as table 4 illustrates, the quality boost has severe consequences on 
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Figure 30: The sphere on the "floor" of the Cornell box, final image, A, and the view of the sphere's front-facing normals  
from the light, B.  In this example the sphere's pixels are covering only 2.5% of the light's entire view.



frame rate. 

Figure 31 shows a comparison between a screen capture of the software and a ground 

truth image, which is the same scene rendered with the unbiased offline engine LuxRender 

[Lux].  Image A in the figure was performing at 40 frames per second, and image B took one  

hour to render.  There are a few things to note: first is that the large caustic directly under the 

gem is very similar in shape, size, and color in both images.  However, there are a couple 

discrepancies, one of which can easily be explained.  The caustics on the walls in the ground 

truth image were created by reflective caustics, which this algorithm, and indeed Adaptive 

Caustic Maps as well, do not simulate.  A reason for this is that reflective caustics are more 

difficult to simulate due to the sometimes extreme changes in a light path's direction, though 

this  could be overcome by using  a cube map for  the  spectral  map  [SKP05].   The extra 
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Figure 31: A comparison between the algorithm presented in this thesis, A, and a ground truth render of the same scene, B.



caustics on the floor of the screen capture that do not appear in the ground truth are possibly 

there as a result of imperfect sampling of the refractive object for photon placement.

As for the gem itself, Figure 32 gives a close-up comparison.  The gem rendered using 

the  presented  algorithm seems a  bit  pixelated  –  this  is  from the  lower  resolution  of  the 

refracted “image” shown in the gem.  Its  colors were fetched from possibly non-adjacent  

texels in the texture map, causing the artifacts seen in the figure.  The red rectangle in each 

image is there to denote a similarity between the two.  Inside the rectangles, on the left there  

is  a  yellowish  tinge above  the  red  color,  and on the  right  there  is  a  green  color  at  the  

intersection  of  the  walls.   These  color  shifts  are  a  result  of  utilizing  spectral  dispersion 

calculations, and would not be present using an algorithm that does not account for the wave 

nature of light.  Figure 33 shows this effect in reality, as seen in the photograph of an acrylic  

prism.
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Figure 32: A close-up of the gem from Figure 31.  The red box in each image highlights the spectral nature of the light  
calculations.



There are dissimilarities between the images as well, the most obvious being that the color of  

the gem to the bottom left corner of the red rectangles is different.  The refraction appears to  

be correct however, because the lines and areas denoting refractions of the walls are quite 

similar.
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Figure 33: A photograph showing reddish 
color shifting on an edge between light and  
dark areas in the prism.  Photo taken by  
author.



Chapter 7: Conclusion

This thesis presented Adaptive Spectral Mapping, a spectral dispersion extension to 

the proposed algorithm Adaptive Caustic Mapping.  Changes to both ACM itself and to the 

related algorithm for deferred refraction were described.  The algorithm displays a plausible 

approximation of the dispersion phenomenon of light, and does so at interactive and real-time 

frame rates.  The ASM algorithm is one of the first of its kind, bringing spectral rendering one 

step closer to being fully displayed in real-time contexts such as games.

There  are  some  limitations  to  the  presented  algorithm,  however.   The  gap-filling 

procedure  creates  horizontal  and  vertical  lines  in  some  situations  due  to  the  sampling 

process.  This could be ameliorated with a more random sampling method, perhaps inside a 

certain  radius around the current  pixel.   This  would introduce a temporal  cohesion issue 

(depending on the randomness of the sampling), but at the same time there would be fewer 

vertical and horizontal noise lines.

Performance is  severely impacted by the number of  pixels  covered by a refractive 

object as seen from the light.  This issue is common to all image-space techniques, however.  

A simple solution that could work in some instances would be to make sure the light is always 

a certain distance away from any refractive objects.

Many opportunities exist for future directions of research.  The first is to extend ASMs 

to simulate reflective caustics, which at least one other caustics mapping algorithm [SKP05] 

has succeeded in accomplishing.  Others include extending ASMs to display other spectral 

phenomena  that  require  wavelength  calculations,  such  as  diffraction  and  thin-film 
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interference.   Integrating  a  fast  volumetric  caustics  algorithm  with  ours  would  certainly 

produce  beautiful  images,  along  the  lines  of  recent  research  such  as  [HDIGYS10]. 

Dispersion colors, as with shadows, become more diffuse the farther they are from the object 

that creates them.  Any gaps between the colors also become larger the farther they are from 

the refractive object.  A distance-aware blurring algorithm such Screen-Space Soft Shadows 

[GCS10] could be modified to work with the spectral maps to make them more physically 

accurate, and also help with very distant gaps as well.
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Appendix A: Code Samples

This appendix contains GLSL shader code for the new and altered passes illustrated in 

Figure 25.  Simple shaders that either only perform a few calls or aren't extended from the 

original ACM code are not presented.  Most comments from the original ACM code are left in 

unaltered to aid understanding.

The following is the GLSL geometry shader for photon splatting into the spectral map: 

the second half of pass 4 in the pipeline in Figure 25.  The first half of pass 4 - the creation of  

the photon hierarchy - is essentially unchanged from Adaptive Caustic Mapping.  This code is 

also much the same as original ACMs (unchanged from Chris Wyman's code, including some 

comments), but it was in the vertex shader instead, and only output one photon instead of 

seven,  as  this  code  does.   Original  ACM  code  and  extensions  are  commented  where 

necessary.

// This file takes in some basic info from the vertex shader 
// (basically each individual "photon" that has hit the refractive 
// object) and splits it into seven new photons, each representing a
// specific wavelength. They are refracted and each photon is 
// emitted, after which the fragment shader splats them into the 
// spectral map.

#version 120
#extension GL_EXT_geometry_shader4 : enable
#extension GL_EXT_gpu_shader4 : enable

uniform float tanLightFovy2;

// local1 contains data for the light's near and far clipping
// distances and local2 contains index of refraction data from the 
// c++.
uniform vec4 local1, local2;

// front and back facing normals of the refractive geometry
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uniform sampler2DArray geomNorm;
// refractive geometry depths per pixel
uniform sampler2DArray geomDepth;
// background geometry depths
uniform sampler2D otherObjsDepth; 

// spotlight texture
uniform sampler2D spotLight;

const int numWavelengths = 7;

// Since the ACM refraction function requires four separate values of 
// the index of refraction, we must hold each of these for each 
// wavelength, all pre-calculated in the c++
uniform float waveIndex1[numWavelengths];
uniform float waveIndex2[numWavelengths];
uniform float waveIndex3[numWavelengths];
uniform float waveIndex4[numWavelengths];

// (function from original ACMs)
// This takes an eye-space (actually light-space since
// our "eye" is at the light here) position and converts
// it into a image-space (u,v) position. This simply
// applies the GL projection matrix and homogeneous
// divide.
vec2 ProjectToTexCoord( vec4 eyeSpacePos )
{

vec4 projLoc = gl_ProjectionMatrix * eyeSpacePos;
return ( 0.5*(projLoc.xy / projLoc.w) + 0.5 );

}

// ACM author's more accurate refraction function
vec4 refraction( vec3 incident, vec3 normal, float ni_nt, float 

ni_nt_sqr )
{

vec4 returnVal;
float tmp = 1.0;
float IdotN = dot( -incident, normal );
float cosSqr = 1.0 - ni_nt_sqr*(1.0 - IdotN*IdotN);
return ( cosSqr <= 0.0 ? 

vec4( normalize(reflect( incident, normal )), -1.0 ) :
vec4( normalize( ni_nt * incident + (ni_nt* IdotN - 
sqrt( cosSqr )) * normal ), 1.0 ) );

}

// (function from original ACMs)
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// Takes a screen coordinate and turns it into a 3D vector pointing
// in the correct direction (in eye-space)
vec3 DirectionFromScreenCoord( vec2 texPos )
{

vec3 dir = vec3( tanLightFovy2 * ( 2.0*texPos - 1.0 ), -1.0 );
return normalize( dir );

}

void main( void )
{

// the following is unchanged from original ACMs, up to the for 
// loop going through numWavelengths.
vec4 vertCoord = gl_TexCoordIn[0][0];
vec3 coord = vec3( vertCoord.xy, 0.0 );
float outside = 0.0, noBackNorm = 0.0;
vec2 Dist;

// Get the front facing surface normal based upon the screen-
// space vertex position. 
vec4 tmp = texture2DArray( geomNorm, coord );

// Get front facing refractor position
vec4 P_1 = vec4( tmp.w*DirectionFromScreenCoord( coord.xy ), 

1.0);

// Check if this pixel has refractive materials or not.
outside = dot(tmp.xyz, tmp.xyz) < 0.5 ? 1.0 : 0.0;

// Compute normalized V and N_1 values.
vec3 N_1 = normalize( tmp.xyz ); // Surface Normal
vec3 V = normalize( P_1.xyz ); // View direction

// Find the distance to front & back surface, first as 
//normalized [0..1] values, than unprojected
Dist.x = texture2DArray( geomDepth, vec3(coord.xy,1) ).z;
Dist.y = texture2DArray( geomDepth, vec3(coord.xy,0) ).z; 
Dist = local1.x / (Dist * local1.y - local1.z );

// Distance between front & back surfaces
float d_V = Dist.y - Dist.x;
vec4 projectedPhoton = vec4(0.0);
bool invalidPhoton = false;

// everything from here down needs to be done once per 
// wavelength since each wavelength sample has a different index 
// of refraction.
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for (int i = 0; i < numWavelengths; i++) {
// the following is unchanged from original ACMs (including 
// comments) except for the front-surface refraction and 
// the output of seven photons (and a few other small 
// changes).
// find the refraction direction
// 1.0003 is the refractive index of air
vec3 T_1 = refract(V, N_1, 1.0003/waveIndex3[i]);

// Right now, we're using a hacked hack to avoid requiring 
// d_N
float d_tilde = d_V;

// Compute approximate exitant location & surface normal
vec4 P_2_tilde = vec4( T_1 * d_tilde + P_1.xyz, 1.0);
vec3 N_2 = texture2DArray( geomNorm, 

vec3( ProjectToTexCoord( P_2_tilde ), 1.0) ).xyz;

float dotN2 = dot( N_2.xyz, N_2.xyz );

// What happens if we lie in a black-texel? Means no 
// normal! Conceptually, this means we pass thru "side" of 
// object. Use norm perpindicular to view
if ( dotN2 == 0.0 ) {

N_2 = normalize(vec3( T_1.x, T_1.y, 0.0 ) );
}

// Refract at the second surface
vec4 T_2 = refraction( T_1, -N_2, waveIndex3[i], 

  waveIndex4[i] );

invalidPhoton = T_2.w < 0.0 || outside > 0.5;
T_2.w = 0.0;

// Scale the vector so that it's got a unit-length z-
// component
vec4 tmpT2 = T_2 / -T_2.z;

// Compute the texture locations of ctrPlusT2 and 
// refractToNear.
float index, minDist = 1000.0, deltaDist = 1000.0;
for (index = 0.0; index < 2.0; index += 1.0)
{

float texel = texture2D( otherObjsDepth, 
ProjectToTexCoord( P_2_tilde + tmpT2 * 
index ) ).x;
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float distA = -(local1.x / (texel * local1.y - 
local1.w)) + P_2_tilde.z;

if ( abs(distA-index) < deltaDist )
{

deltaDist = abs(distA-index);
minDist = index;

}
}

// Do our final iteration to home in on the final photon 
// position.
// Original ACMs used 10 here, but actually using 5 seems 
// to work just as well (very small visual difference), and 
// it's faster
for (float index = 0.0; index < 5.0; index += 1.0)
{

float texel1 = texture2D( otherObjsDepth, 
ProjectToTexCoord( P_2_tilde + minDist * tmpT2 ) ).x;

minDist = -(local1.x / (texel1 * local1.y - local1.w)) 
+ P_2_tilde.z;

}

// OK, find the projected photon position in the caustic 
// map.
vec4 photonPosition = P_2_tilde + minDist * tmpT2;
projectedPhoton = gl_ProjectionMatrix * 

vec4( photonPosition.xyz, 1.0 );

projectedPhoton /= projectedPhoton.w;

gl_Position = projectedPhoton;
gl_TexCoord[2] = projectedPhoton;
gl_TexCoord[1] = vec4(i, 0.0, 0.0, 0.0);

// spotlight color
gl_TexCoord[3] = gl_TexCoordIn[0][3];

EmitVertex();
EndPrimitive();

}
}
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The following is the GLSL fragment shader for photon splatting, performed for each vertex 

emitted from geometry shader above.  Like the previous shader, this is mostly unchanged 

from the original ACMs, including comments, except for the wavelength color calculations at 

the end.

#version 120
#extension GL_EXT_gpu_shader4 : enable

// splatResolutionModifier is an intensity modifier that results
// from changing various resolution parameters using the user
// interface, scene file, or simply traversal through the hierarchy.
// In order to keep the correct splat intensity, we need to know
// what level of subdivision has been applied to this photon.
uniform float splatResolutionModifier;

// Since our gl_FragCoord is in image space, we need to know how
// big this image is if we plan to use the gl_FragCoord to do
// useful things independent of resolution.
uniform float renderBufRes;

void main( void )
{

// We'll fix our Gaussian splat size at just under 3 pixels. Set 
// Gaussian distribution parameters.
float splatSize = 2.5;
float sizeSqr = splatSize*splatSize;

float isInsideGaussian = 0.0;

// We need to compute how far this fragment is from the center 
// of the splat. We could do this using point sprites, but our 
// experience is the final framerate is significantly faster 
// this way. You may find differently.
vec2 fragLocation = gl_FragCoord.xy;

float red = 0.0, green = 0.0, blue = 0.0;
vec4 finalColor = vec4(0.0);

// position of the vertex output from the geometry shader
vec4 wavePos = gl_TexCoord[2];

vec2 pointLocation = (wavePos.xy * 0.5 + 0.5) * renderBufRes;

62



// Gaussian from Graphics Gems I, "Convenient anti-aliasing 
// filters that minimize bumpy sampling"
float alpha = 0.918;
float beta_x2 = 3.906; // == beta*2 == 1.953 * 2; 
float denom = 0.858152111; // == 1 - exp(-beta); 
float distSqrToSplatCtr = dot(fragLocation - pointLocation, 

fragLocation - pointLocation);

float expResults = exp( -beta_x2*distSqrToSplatCtr/sizeSqr );

// Are we even inside the Gaussian?
isInsideGaussian = ( distSqrToSplatCtr/sizeSqr < 0.25 ? 1.0 : 

0.0 );

// Make sure the Gaussian intensity is properly normalized.
float normalizeFactor = 10.5 * sizeSqr / 25.0;

// Compute the Gaussian intensity
expResults = alpha + alpha*((expResults-1.0)/denom);

// In original ACMs, this was calculated just before splatting,
// but in ASMs we do it here in order to apply it to each 
// wavelength.
float adjustment = splatResolutionModifier * isInsideGaussian * 

expResults / normalizeFactor;

// RGB values hardcoded in.
// seven sample version, each index in gl_TexCoord[1].x 
// represents a certain wavelength.
if (gl_TexCoord[1].x == 0) {

// violet
red = adjustment * 0.3;
blue = adjustment * 0.8;

}
if (gl_TexCoord[1].x == 1) {

// indigo
red = adjustment * 0.2;
green = adjustment * 0.2;
blue = adjustment * 1.0;

}
if (gl_TexCoord[1].x == 2) {

// blue
green = adjustment * 0.9;
blue = adjustment * 1.0;

}
if (gl_TexCoord[1].x == 3) {
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// green
red = adjustment * 0.3;
green = adjustment * 1.0;
blue = adjustment * 0.4;

}
if (gl_TexCoord[1].x == 4) {

// yellow
red = adjustment * 0.8;
green = adjustment * 0.9;
blue = adjustment * 0.3;

}
if (gl_TexCoord[1].x == 5) {

// orange
red = adjustment * 0.9;
green = adjustment * 0.5;

}
if (gl_TexCoord[1].x == 6) {

// red
red = adjustment * 1.0;

}

finalColor = vec4(red, green, blue, 1.0);

// finally, multiply by the spotlight color and output
gl_FragData[0] = vec4(gl_TexCoord[3].rgb * finalColor.rgb, 1.0);

}

The following is the GLSL fragment shader for the gap-filling procedure, which is pass 5 in 

Figure 25.  This shader is completely original, made for the ASM algorithm.

#extension GL_EXT_gpu_shader4 : enable
// the spectral map
uniform sampler2D spectralMap;

// use this shader?
uniform int useSmear;

// number of steps to go out from the current pixel
int steps = 20;

// boost (or diminish) the brightness of the filled-in pixels
float brightness = 0.2;
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vec4 checkVertical(ivec2 origPos) {
vec4 newColorUp = vec4(0.0);
vec4 newColorDown = vec4(0.0);
// check each pixel up from the current pixel
for (int vUp = 1; vUp < steps; vUp++) {

newColorUp += texelFetch2DOffset(spectralMap, origPos, 0, 
ivec2(0, vUp));

}

// check each pixel down from the current pixel
for (int vDown = -1; vDown > -steps; vDown--) {

newColorDown += texelFetch2DOffset(spectralMap, origPos, 0, 
ivec2(0, vDown));

}

// if the color found is bright enough, mix it in
if ((newColorUp.r > 0.1 || newColorUp.g > 0.1 || newColorUp.b > 
0.1) && (newColorDown.r > 0.1 || newColorDown.g > 0.1 || 
newColorDown.b > 0.1)) {

return vec4(mix(newColorUp, newColorDown, 0.5).rgb, 1.0) * 
brightness;

}

return vec4(0.0);
}

vec4 checkHorizontal(ivec2 origPos) {
vec4 newColorLeft = vec4(0.0);
vec4 newColorRight = vec4(0.0);

// check pixels to the right of the current pixel
for (int vRight = 1; vRight < steps; vRight++) {

newColorRight += texelFetch2DOffset(spectralMap, origPos, 
0, ivec2(vRight, 0));

}

// check pixels to the left of the current pixel
for (int vLeft = -1; vLeft > -steps; vLeft--) {

newColorLeft += texelFetch2DOffset(spectralMap, origPos, 0, 
ivec2(vLeft, 0));

}

// mix in any bright enough pixels
if ((newColorRight.r > 0.1 || newColorRight.g > 0.1 || 
newColorRight.b > 0.1) && (newColorLeft.r > 0.1 || 
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newColorLeft.g > 0.1 || newColorLeft.b > 0.1)) {

return vec4(mix(newColorRight, newColorLeft, 0.5).rgb, 1.0) 
* brightness;

}

return vec4(0.0);
}

void main() {
// this pixel's screen location
ivec2 pos = ivec2(gl_FragCoord.xy);

// color in the caustic map
vec4 causticColor = texelFetch2D(spectralMap, pos, 0);

if ((causticColor.r < 0.3 && causticColor.g < 0.3 && 
causticColor.b < 0.3) && useSmear == 1) {

// little or no color, so this pixel is possibly in a gap 
// between caustic colors
vec4 vertColor = checkVertical(pos);
vec4 horizColor = checkHorizontal(pos);

gl_FragColor = vec4(mix(vertColor, horizColor, 0.5).rgb, 
1.0);

} else {
// just pop out caustic color
gl_FragColor = causticColor;

}
}

The following is the vertex shader used to project both the shadow map and the spectral map 

into the scene, which is pass 6 in figure 25.  This code is a combination of standard shadow 

mapping, original programming, and some ACM code used for spectral map projection.

uniform mat4 MctoLightMatrix;
uniform vec3 LightPosition;
// ambient and diffuse scale factors
const float As = 1.0 / 1.5;
const float Ds = 1.0 / 3.0;
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void main() {
vec3 normal = gl_Normal; // world space normal
vec4 ecPosition = gl_ModelViewMatrix * gl_Vertex;
vec3 ecPosition3 = (vec3(ecPosition)) / ecPosition.w;
vec3 VP = LightPosition - ecPosition3;
VP = normalize(VP);

float diffuse = max(0.0, dot(normal, VP));
float scale = min(1.0, As + diffuse * Ds);

vec3 eyeNorm = gl_NormalMatrix * gl_Normal;

gl_TexCoord[0] = gl_MultiTexCoord0;
gl_TexCoord[5] = ecPosition;
gl_TexCoord[6].xyz = eyeNorm;

// for shadow map coordinates
vec4 texCoord = MCtoLightMatrix * gl_Vertex;
vec4 ShadowCoord = texCoord;
ShadowCoord.z -= 0.005;
gl_TexCoord[2] = ShadowCoord;

vec4 color = vec4(scale * gl_Color.rgb, gl_Color.a);
gl_TexCoord[1] = color;

gl_TexCoord[3] = gl_Vertex;
gl_Position = ftransform();

}

The following is the fragment shader that goes along with the above vertex shader.  It is also 

a combination of standard shadow mapping, original code, and a small amount of ACM code  

used for spectral map projection in particular.

#extension GL_EXT_gpu_shader4 : enable
uniform sampler2D causticMap;
uniform sampler2D spotLight;
uniform sampler2DShadow shadowMap;
uniform sampler2DShadow causticDepth;

uniform vec4 sceneAmbient;

// textures for different scenes if required
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uniform sampler2D tex1;
uniform int useTexMaps;

void main() {
vec4 color = gl_TexCoord[1];
color.a = 1.0;
vec4 ShadowCoord = gl_TexCoord[2];

// shadow map coordinates
vec4 smapCoord = ShadowCoord; 
smapCoord /= smapCoord.w;
smapCoord.z = smapCoord.z <= 0.0 ? 0.0 : smapCoord.z;

// spotlight contribution, and whoa there hold it back a touch
vec4 spotContrib = texture2D(spotLight, smapCoord.xy) * 0.7;

// the shadows and light
float shadeFactor = shadow2DProj(shadowMap, ShadowCoord).z;
shadeFactor = shadeFactor * 0.25 + 0.75;

// this makes anything not in the light's view dark, otherwise 
// the spotlight texture shows up duplicate where the light 
// can't see.
vec4 lightContribution = (all( equal(smapCoord.xyz,

clamp(smapCoord.xyz, vec3(0), vec3(1)) ) ) ? 
vec4(shadeFactor * color.rgb, 1.0) * spotContrib : 
vec4(0.0));

// and this makes the dark parts show up as just dark instead of 
// totally black
lightContribution += (color * sceneAmbient);

// spectral map projection, as in original ACMs
float lightIntensity = 1.0;
vec3 toLight = normalize( gl_LightSource[0].position.xyz - 

gl_TexCoord[5].xyz );
vec3 norm = normalize( gl_TexCoord[6].xyz );

float NdotL = lightIntensity * max( 0.0, dot( norm, toLight ) );
vec4 causticContribution = texture2D(causticMap, smapCoord.xy) * 

NdotL;

// final color, combining everything
if (useTexMaps == 1) {

// texture for something in the scene if required
vec4 texContribution = vec4(1.0);

68



texContribution = texture2D(tex1, gl_TexCoord[0].st);
gl_FragData[0] = (lightContribution + causticContribution * 

3.0) * texContribution;
} else {

gl_FragData[0] = lightContribution + causticContribution * 
3.0;

}

// pixel positions
gl_FragData[1] = gl_TexCoord[3];

// pixel normals
gl_FragData[2] = vec4(norm, 1.0);

}

The following is the deferred refraction GLSL fragment shader.  It contains code mostly from 

the original ACM deferred refraction algorithm (including comments), with extensions to work 

with seven texture fetches instead of just one plus the wavelength to color conversion code.

#extension GL_EXT_gpu_shader4 : enable

// local1 contains data for the light's near and far clipping
// distances and local2 contains index of refraction data from the 
// c++.
uniform vec4 local1, local2;

// background geometry depths
uniform sampler2DArray otherObjsEyeDepth;

// background geometry colors
uniform sampler2DArray otherObjsEye;

// spotlight texture
uniform sampler2D spotLight;

// geometry front and back facing normals and depths
uniform sampler2DArray geomNorm;
uniform sampler2DArray geomDepth;

uniform mat4 gluOrtho, shadowMatrix;
uniform float renderBufRes, tanEyeFovy2;

69



uniform vec4 glassColor;
uniform vec4 sceneAmbient;

// the light's position
uniform vec3 lightPosition;

// number of wavelength samples
const int numWavelengths = 7;

// Since the ACM refraction function requires four separate values of 
// the index of refraction, must hold each of these for each 
// wavelength, calculated in the c++
uniform float waveIndex1[numWavelengths];
uniform float waveIndex2[numWavelengths];
uniform float waveIndex3[numWavelengths];
uniform float waveIndex4[numWavelengths];

// (original ACM function)
// Get the spotlight color based upon an eye-space position
vec4 SpotLightColor( vec4 eyeSpaceCoord )
{

vec4 smapCoord = shadowMatrix * eyeSpaceCoord;
smapCoord /= smapCoord.w;
return 
( all(equal(smapCoord.xyz,clamp(smapCoord.xyz,vec3(0),vec3(1)))) 

? texture2D( spotLight, smapCoord.xy, 0.0 ): 
vec4( 0.25 ) );

}

// (original ACM function)
// Take the eye-space position and project it into a 2D image 
// coordinate
vec2 ProjectToTexCoord( vec4 eyeSpacePos )
{

vec4 projLoc = gl_ProjectionMatrix * eyeSpacePos;
return ( 0.5*(projLoc.xy / projLoc.w) + 0.5 );

}

// (original ACM function)
// A simple refraction shader similar to the built in GLSL one (only 
// this one is real)
vec4 refraction( vec3 incident, vec3 normal, float ni_nt, float 

ni_nt_sqr )
{

vec4 returnVal;
float tmp = 1.0;
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float IdotN = dot( -incident, normal );
float cosSqr = 1.0 - ni_nt_sqr*(1.0 - IdotN*IdotN);
return ( cosSqr <= 0.0 ? 
vec4( normalize(reflect( incident, normal )), -1.0 ) :
vec4( normalize( ni_nt * incident + (ni_nt* IdotN - sqrt( cosSqr 

)) * normal ), 1.0 ) );
}

// (original ACM function)
// Approximate the fresnel coefficients using Schlick's approximation
vec2 fresnelApprox( float cosAng )
{

float oneMinus = 1.0-cosAng;
float approx = 0.05 + 

0.95*(oneMinus*oneMinus*oneMinus*oneMinus*oneMinus);
return vec2( approx, 1.0-approx );

}

// (original ACM function)
// Take a 2D image-space screen position (in [0..1]) and turn it into
// an eye-space viewing direction.
vec3 DirectionFromScreenCoord( vec2 texPos )
{

vec3 dir = vec3( tanEyeFovy2 * ( 2.0*texPos - 1.0 ), -1.0 );
return normalize( dir );

}

void main( void )
{

vec3 coord = vec3( gl_TexCoord[0].xy, 0.0 );
float outside = 0.0, noBackNorm=0.0;
vec2 Dist, fresnel;
vec4 reflectedColor = vec4(0.0);

// Find our surface normal on the front refractive surface.
// If there's no refractive surface there, this shader is
// easy -- we're done.
vec4 tmp = texture2DArray( geomNorm, coord );

// ASMs: changed from original ACMs here.
// if no refractive surface, put the background pixel there.
// it's looking at a texture that only contains the refractive 
// object - so if it doesn't see it, just throw in the 
// background texture (no need to do extra work)
if (tmp.a == 0.0) {

gl_FragColor = texture2DArray(otherObjsEye, 
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vec3(gl_TexCoord[0].xy, 0.0));

} else if (texture2DArray(otherObjsEyeDepth, coord).z < 
texture2DArray(geomDepth, vec3(gl_TexCoord[0].xy, 0.0)).z) 

{
// (new in ASMs)
// if the background is closer than the object, show the 
// background, otherwise object will always be in front of 
// everything
gl_FragColor = texture2DArray(otherObjsEye, 

vec3(gl_TexCoord[0].xy, 0.0));
} else {

// Get front facing position and normal
vec4 P_1 = 

vec4( tmp.w*DirectionFromScreenCoord( coord.xy ), 
1.0 );

// (this simplified for speed in ASMs)
// Check if this pixel has refractive materials or not.
// for ASMs every pixel that gets to this point is 
// refractive.
outside = 1.0;

// Compute normalized V and N_1 values.
vec3 N_1 = normalize( tmp.xyz ); // Surface Normal
vec3 V = normalize( P_1.xyz ); // View direction
float NdotV = dot( -V, N_1 );

// Compute a direction for the light (to use for a Phong 
// reflected component)
vec3 toLight = normalize( lightPosition - P_1.xyz );
vec3 halfVec = normalize( toLight - V ); 
float NdotH = max( 0.0, dot( N_1, halfVec ) );
vec4 reflectedLightColor = pow( NdotH, 50.0 ) * 

SpotLightColor( P_1 );

// Find the reflective (.x) and refractive (.y) fresnel 
// coefficients 
fresnel = fresnelApprox( NdotV );

// Find the distance to front & back surface, first as 
// normalized [0..1] values, than unprojected
Dist.y = length( P_1.xyz );
Dist.x = texture2DArray( geomDepth, vec3(coord.xy,1) ).z;
Dist.x = 2.0 * local1.x / (Dist.x * local1.y - local1.z );

72



// Distance between front & back surfaces
float d_V = -Dist.y - Dist.x;

// compute the reflection direction and the reflection 
// color we do a matrix multiply to account for (potential) 
// user rotation of the environment
tmp = vec4( reflect( V, N_1 ), 0.0 );
reflectedColor = fresnel.x * (20.0 * reflectedLightColor + 

2.0 * sceneAmbient);

// ASMs:
// here, where the refraction takes place, is our time to 
// split and run through all the wavelength samples
vec4 finalColor = vec4(0.0, 0.0, 0.0, 1.0);

// ASMs – go through each wavelength, one at a time.
for (int i = 0; i < numWavelengths; i++) {

// find the refraction direction
// glsl refract() may be less accurate, but close 
// enough to not notice and it's faster
// 1.0003 is the refractive index of air
vec3 T_1 = refract(V, N_1, 1.0003 / waveIndex3[i]);

// (these comments and mention of the SIGGRAPH paper 
// are from the original ACM code)
// Our approximation of d_tilde is different than that 
// given in the SIGGRAPH paper. It seems there's not 
// usually any need to interpolate between d_V and d_N 
// -- instead d_V alone works surprisingly well just 
// about as often. Plus, this approach requires no 
// precomputation.
float d_tilde = d_V;

// Compute approximate exitant location & surface 
// normal
vec4 P_2_tilde = vec4( T_1 * d_tilde + P_1.xyz, 1.0);
vec3 N_2 = texture2DArray( geomNorm, 

vec3( ProjectToTexCoord( P_2_tilde ), 1.0) ).xyz;
float dotN2 = dot( N_2.xyz, N_2.xyz );

// What happens if we lie in a black-texel? Means no 
// normal! (d_tilde is too big...)
if ( dotN2 == 0.0 )
{

// Conceptually, we pass thru the "side" of the 
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// object (not front/back)
// Use a 'normal' perpendicular to view direction 
// (but generally along same direction as our 
// refracted direction T_1)
tmp = vec4( T_1.x, T_1.y , 0.0, dot(T_1.xy, 

T_1.xy) );
N_2 = tmp.xyz / tmp.w;

}

// Refract at the second surface
vec4 T_2 = refraction( T_1, -N_2, waveIndex3[i], 

waveIndex4[i] );

bool TIR = T_2.w < 0.0;
T_2.w = 0.0;

// Scale the vector so that it's got a unit-length z-
// component
vec4 tmpT2 = T_2 / -T_2.z;

// Compute the texture locations of ctrPlusT2 and 
// refractToNear.
float index, minDist = 1000.0, deltaDist = 1000.0;

for (index = 0.0; index < 2.0; index += 1.0)
{

float texel = texture2DArray( otherObjsEyeDepth, 
vec3(ProjectToTexCoord( P_2_tilde + tmpT2 * 
index ), 0.0) ).x;

float distA = -(local1.x / (texel * local1.y - 
local1.w)) + P_2_tilde.z;

if ( abs(distA-index) < deltaDist )
{

deltaDist = abs(distA-index);
minDist = index;

}
}

float distOld = minDist; 
for (float index = 0.0; index < 10.0; index += 1.0)
{

float texel1 = texture2DArray( otherObjsEyeDepth, 
vec3(ProjectToTexCoord( P_2_tilde + distOld 
* tmpT2 ), 0.0) ).x;
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distOld = -(local1.x / (texel1 * local1.y – 
local1.w)) + P_2_tilde.z;

}

vec4 transmitColor = vec4( exp(-d_V * glassColor.a) * 
glassColor.rgb, 1.0);

vec4 refractedColor = transmitColor * 
texture2DArray( otherObjsEye, 
vec3(ProjectToTexCoord( P_2_tilde + distOld * 
tmpT2 ), 0.0) );

// ASMs – convert wavelength to color.
if (i == 0) {

refractedColor *= vec4(0.3, 0.0, 0.8, 1.0);
}
if (i == 1) {

refractedColor *= vec4(0.2, 0.2, 1.0, 1.0);
}
if (i == 2) {

refractedColor *= vec4(0.0, 0.9, 1.0, 1.0);
}
if (i == 3) {

refractedColor *= vec4(0.3, 1.0, 0.4, 1.0);
}
if (i == 4) {

refractedColor *= vec4(0.8, 0.9, 0.3, 1.0);
}
if (i == 5) {

refractedColor *= vec4(0.9, 0.5, 0.0, 1.0);
}
if (i == 6) {

refractedColor *= vec4(1.0, 0.0, 0.0, 1.0);
}

// scale so it's not too bright or too dark
// (why 0.26? It's a matter of each of the above R, G, 
// and B values adding up to 3.5)
refractedColor *= 0.26;

finalColor += vec4(refractedColor.xyz, 1.0) * 
fresnel.y;

} // end for loop for numWavelengths 
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gl_FragColor = vec4(reflectedColor.xyz + finalColor.xyz, 
1.0);

} // end if statement for background color
}
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