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Abstract

In this report, I first review the evolution of ideas of causation as it relates to causal
inference. Then I introduce two currently competing perspectives on this issue:
the counterfactual perspective and the noncounterfactual perspective. The ideas of
two statisticians, Donald B. Rubin, representing the counterfactual perspective, and
A.P.Dawid, representing the noncounterfactual perspective are examined in detail
and compared with the evolution of ideas of causality. The main difference between
these two perspectives is that the counterfactual perspective is based on counterfactu-
als which cannot be observed even in principle but the noncounterfactual perspective
only relies on observables. I describe the definition of causes and causal inference
methods under both perspectives, and I illustrate the application of the two types of
methods by specific examples. Finally, I explore various controversies on these two

perspectives.
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Chapter 1

Introduction

Establishing cause is of vital practical interest in many disciplines. In medicine, it
is imperative to know that medications cause the desired effects. In epidemiology,
people look for causes of diseases. In social sciences, researchers try to discover the

causes of human behaviors.

However, behind the practical need to establish cause is the basic question of what
constitutes cause and when one can show there is a cause. Philosophy and statistics
are two disciplines that consider such fundamental questions. Cause is of theoretical
interest in philosophy and of theoretical and methodological interest in statistics.
Philosophers have been discussing the idea of cause for millennia, and continue that
discussion today. Causal inference has been explored by statisticians for nearly a

century and continues to be an active research area in statistics.

This paper is a research review report about causal inference in statistics. Its aim
is to present a survey of some recent research in causal inference. It focuses on one
of the most active areas of recent research: causal models involving counterfactuals.
These models are based on ideas first broached by statisticians in the early twentieth
century, and so the paper also considers the historical development of these ideas.
Not all statisticians agree with the validity of basing inference on counterfactuals,

which are unobservable in principle as well as in practice. Consequently, I present



some competing views of what constitutes valid causal inference.

The report is based on readings of a number of key papers. I have synthesized the
material from those papers and divided it into the following four chapters. In chap-
ter 2, I review some early thoughts on causality from philosophers and statisticians
(Holland 1986). It is shown that philosophers have widely different ideas and dis-
tinct emphases. But several statisticians seem to implicitly share the same basic
perspective. In chapter 3, I introduce Rubin’s Counterfactual Model (Rubin 1974,
1978, 1990, 2004) (Holland and Rubin 1983), which has been the focus of much of
the recent statistical research in causal inference. I first describe the basic elements
of this model. Then I compare the definition of causation in this model with histor-
ical definitions and explain the inference methods behind this model. At the end, I
give an example of a specific application of this model. In chapter 4, I introduce an
important competing view for causal inference, Dawid’s Noncounterfactual method
(Dawid 2000). I first illustrate Dawid’s criticism of Rubin’s counterfactual model by a
specific example and then describe the idea of Dawid’s noncounterfactual perspective
and his inference method. In chapter 5, I show some controversies on these two con-
tradictory points of view among statisticians (Dawid 2000). The emphases are put on

four topics: positivism, untestable assumptions, instrumental use, and application.



Chapter 2

History

A great deal has been said about causality by philosophers and statisticians, so it
is impossible to give a complete coverage of their ideas. This chapter views some

important contributions.

2.1 Ideas from philosophers

Aristotle listed four causes of a thing in his physics (Holland 1986): The material
cause (that out of which the thing is made), the formal cause (that into which the
thing is made), the efficient cause (that which makes the thing), and the final cause
(that for which the thing is made). His notion of efficient cause is the one that is

close to the usual modern definition of cause.

Locke (1690) introduced his definitions on causality (Holland 1986): “ That which
produces any simple or complex idea, we denote by the general name ‘cause’, and
that which is produced, ‘effect’.” It should be noted that Locke’s notion included the

idea of an effect, which differed from that of Aristotle who only focused on cause.

Hume (1740, 1748) proposed three basic criteria for causation (Holland 1986): (a)

spatial /temporal contiguity, (b) temporal succession, and (c¢) constant conjunction.



For Hume, in order to show A causes B, it is necessary that (a) A and B be contiguous
in space and time, (b) A precede B in time, and (¢) A and B occur (or do not occur)

together.

Mill (1843) provided some ideas regarding how to discover causation in practice (Hol-
land 1986). He described four methods: (a) the method of concomitant variation:
if Y varies as A varies, A might be a cause of the change in Y; (b) the method of
difference: the difference between Y when A happens and when B happens indicates
the cause; (c) the method of residues: the effect of B on Y can be observed by taking
the difference between Y when A and B both happen and that when only A hap-
pens; and (d) the method of agreement: if Y does not change regardless of A or B

happening, neither A nor B cause change in Y.

2.2 Ideas from Statisticians

After reviewing some ideas from philosophers, I will take a look at some early statis-
ticians’ thoughts. Although the exact idea was not always stated explicitly, many
statisticians brought up the idea of multiple versions of the responses and considered

the difference between them to be causal effects.

Kempthorne (1952) in a discussion of the analysis of an agricultural experimental
plan (in which larger tracts of land, called blocks, are each subdivided into p plots
and then one of the experimental treatments is applied at random to each of the p
plots within each block.) defined yields as follows: “We shall denote the yield with
treatment & ...on plot j of block I ...by y;,.” He then wrote: “In fact we do not
observe the yield of treatment k& on plot j but merely the yield of treatment £ on a
randomly chosen plot in the block ...we denote the observed yield of treatment k in
block @ by y;,”. It seems evident that the y;j; in the first quotation refers to different
versions of the response-one for each k-on each combination (7, j) of plot within block.
The y;;, in the second quotation is the value of y;;, for that plot to which treatment

k is actually applied in block ¢ (Holland 1986).
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In an experiment with treatments 77, Ty, D.R.Cox (1958) defined the true treatment
effects as the difference between “the observation obtained on any unit when, say,
Ty is applied” and “the observation that would have been observed had, say, T,
been applied”, namely, the difference between multiple versions of responses (Holland

1936).

Earlier, Fisher (1926) and Neyman (1935) had expressed similar ideas, though their
disagreement on the nature of the resulting inference caused controversy. Fisher
insisted that inference be conducted at the individual unit level. Assume for simplicity
that each unit can be given either treatment or “control”, which might denote a sham
treatment. For Fisher, the null hypothesis of no causal effect was that the difference
between the response under the treatment and the response under the control equal
zero for each unit. In contrast, Neyman considered the null hypothesis of no treatment

effect to be that the difference in mean effect, computed over the entire population,

equal zero (Holland 1986).



Chapter 3

Rubin’s Counterfactual Model

In statistics, there are two main competing ideas for causal inference currently: the
counterfactual perspective and noncounterfactual perspective. One particular model
based on the counterfactual perspective that I will explore in detail has been primar-
ily developed by Donald B. Rubin over the last 35 years (Rubin 1974, 1978, 1990,
2004) (Holland 1986). Rubin’s model extends ideas of earlier philosophers and statis-
ticians, particularly Kempthorne, D.R.Cox and Neyman (Holland 1986). Generally,
a counterfactual is a conditional statement the first clause of which expresses some-
thing contrary to fact, as “If I had known”. In Rubin’s model, counterfactuals play

a specific role, as will be shown.

3.1 Model Elements

A unit is a single thing or person, denoted by w. Units can be considered coming
from a population U. Without loss of generality, I consider two causes or treatments:

treatment (W=1) and control (WW=0). Treatments are applied to the units.

Before any treatment is applied, there are two potential responses from unit u: Y (u)

and Yy(u). Yi(u) is the response from unit u when treatment 1 is applied. Yy(u)



is the response from unit u when treatment 0 is applied. The particular time when
treatment is applied and when the response is measured must be specified since the
same treatment applied at different times might cause different effects. Similarly,
responses which are measured at different times are different responses. In Rubin’s
model, therefore, only one of the two treatments can be applied, and only the response

to that treatment can be observed.

Once treatment 1 is applied to u, Yp(u) becomes a counterfactual since treatment 0
was not applied. As a result, Yy(u) cannot be observed even in principle. Similarly,
if treatment 0 is applied to unit u, Yy(u) is observed and Yi(u) is the counterfactual.
In other words, one of the potential responses would become the actual response and

the other would become the counterfactual.

In some causality analyses, researchers are interested in the difference of the causal
effects across different groups of units. As a result, a group variable G, which denotes
the group to which a unit belongs, is present in many analyses. Finally, (causal) effect
of 1 (relative to 0) on u is defined as 7(u) = Yi(u) — Yo(u), namely, the difference
between the response under treatment 1 and that under treatment 0. Note that 7(u)
cannot be observed because it is the difference between an actual response and a

counterfactual, and the latter cannot be observed.

Covariates are variables whose values are not affected by the treatment assignment.
Covariates are denoted as X. The assignments of treatments often depend on par-
ticular covariates, and some covariates might also have causal relationships with the
responses. Therefore, it is usually preferable to adjust the inferences for some covari-

ates (Rubin 1974, 1978, 1990, 2004).

A simple example will better illustrate the basic elements in Rubin’s counterfactual
model. The subjects are patients who are having a cold. Half of male patients are
treated with aspirin and the other half are treated with a new drug. Separately, the
same treatment assignment is used for the female patients. For each gender group,

will the proportion of patients whose colds disappear in two days differ for those given



treatment (the new drug) and control (aspirin)? Is there any difference in the results

between male and female groups?

In this example, the units are patients. The treatments are aspirin (W = 0), and the
new drug (W = 1). The two potential responses are “cold disappears in two days”
(Y (u) = 1), and “cold does not disappear in two days” (Yy (u) = 0). The group
variable is gender. Covariates could be age, race, weight and so on. The effect of the

new drug (relative to aspirin) on patient u is 7(u) = Y1 (u) — Yo(u).

3.2 What Can Be A Cause”?

Before introducing causal inference, it will be helpful to review the old ideas of cause
again in the context of Rubin’s counterfactual model. Aristotle defined cause without
reference to any effect of the cause. Locke gave a general definition of an effect but

without the notion of difference between effects of different causes.

Hume’s first criterion is expressed in the counterfactual model since the application
of a treatment and the measurement of the response take place on a common unit
(spatial contiguity). The time period between the measurement of a response and
the application of a treatment affects the effect (temporal contiguity). Temporal
succession is also embraced by the counterfactual model since the measurement of
a response always happens after the application of a treatment. However, constant
conjunction might fail since the causal effect Y;(u) — Yy(u) could vary with the unit
u. Hume didn’t have the notion that the effect is always relative to another cause

either.

Mills’s method of concomitant variation might imply causation, but it can also result
from mere correlation. The methods of difference and residues can be regarded as
useful for discovering the causal effect in the counterfactual model. And the method

of agreement is just for identifying no effect in the model.

The definition of an effect as the difference between multiple versions of responses,



initially proposed by statisticians, is exactly same as the definition in the counter-
factual model. Moreover, Fisher and Neyman further proposed methods for causal

inference (Rubin 2004).

It should be noted that Rubin’s counterfactual model does not address all possible
causes, and it only accommodates treatments which can be applied at least in princi-
ple. Examples given by Holland (1986) explain this idea in more detail. (A)“She did
well on the exam because she was coached by her teacher.” (B) “She did well on the
exam because she is a woman.” (C) “She did well on the exam because she studied
for it.” In (A), whether a person is coached or not can usually be determined so
that they are valid causes and can be applied in practice. In (B), the gender of a
person is an attribute of this unit which cannot be manipulated. Even though some
extreme situations are considered, the unit itself would be changed if his/her gender
were switched. In this sense, gender is not a valid cause in the counterfactual model.
In some cases, it is hard to tell if one thing is a cause or not. In (C), willingness to
study might be considered an attribute that some people are born with and others
are not. And no one can be educated to become more or less willing to study. More-
over, even though a person is inclined to study in general, he/she might not study
due to some other uncontrolled causes: for instance, forgetting to bring the book
home. On the other hand, some other people might think education certainly affects
one’s willingness to study. Therefore, the“validity” of a cause sometimes depends on

opinion.

Another important consideration about causes in Rubin’s counterfactual model is that
treatments usually consist of a series of actions and the effects in this instance should
be attributed to the entire series of actions. For example, consider the statement “I
took two aspirin and a cup of water, the headache then went away.” Obviously, taking
water and aspirin constitute the treatment in this example and the effect is ascribed
to both of them. Usually, for convenience, it is not necessary to state every action in
the series. One would say “I took two aspirin, the headache then went away.” But

knowing what is the real treatment clearly is important.



3.3 Causal Inference

This section considers the use of Rubin’s counterfactual model in causal inference.
It begins by introducing the Fundamental Problem of Causal Inference (FPCI) and
solutions to it. Lord’s paradox provides a specific example of causal inference under

Rubin’s counterfactual model. (Holland and Rubin, 1983)

3.3.1 The Fundamental Problem of Causal Inference

The Fundamental Problem of Causal Inference (FPCI) states that it is impossible to
observe the value of Y] (u) and Yy(u) on the same unit and, therefore, it is impossible
to observe the effect of Treatment 1 (relative to Treatment 0) on u. Upon observa-
tion, one of the two potential responses becomes the actual observed response, but
the other response remains unobserved: it is the counterfactual that could never be
observed even in principle. Therefore, the difference Y;(u) — Yy(u), the effect, cannot

be observed directly.

However, in certain scientific settings it may be reasonable to assume that the FPCI
does not apply. For example, this can occur in the presence of temporal stability
and causal transience. Temporal stability means that the response does not change
if the time when a treatment is applied is varied slightly. Causal transience means
that the response of one treatment is not affected by prior exposure of the unit to
the other treatment. If these two assumptions are plausible, one can simply apply
one treatment first and then the other and treat them as if both had been applied to
the unit at the same time. The difference of the two observed responses is therefore

equal to the effect.

Another assumption that is often used to avoid the FPCI is the unit homogeneity
assumption, which states that the units are homogeneous with respect to the treat-
ments and responses. If this assumption holds, one can apply two different treatments

to two different units respectively. The observed response of one unit is then treated
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as the counterfactual of the other unit.

Although these assumptions are widely used in a variety of areas, there are many
situations in which none of them is plausible. In such cases, statistical solutions may

provide another option.

3.3.2 Assignment Mechanism of Treatments

The assignment mechanism of treatments (causes) plays an essential role in causal
inference. Let W denote the vector of treatment assignments for the units. Uncon-

founded assignment mechanisms are defined as those which satisfy:
PWIX. Yi(U), Yo (U)] = P.(W]X).

Unconfounded assignment mechanisms do not depend on any responses, but may

depend on covariates. Assignment mechanisms are called ignorable if
E WX, Y1 (U), Yo(U)] = P.(WIX, Yobs)

Ignorable assignment mechanisms may depend on observed responses in addition
to covariates, but not on counterfactuals. “Ignorable” means that the assignment
mechanisms are totally understood since those which cannot be observed, the coun-
terfactuals, have no effect, and can therefore be “ignored”. Nonignorable assignment
mechanisms are those which rely on counterfactuals. Therefore, one doesn’t know

how the mechanisms work entirely since counterfactuals cannot be ignored.

Most analyses, make the “Stable-Unit-Treatment-Value Assumption” (SUTVA), mean-
ing that the response of a unit u to treatment W is not affected by what treatments
other units receive. For instance, in two different assignments, if unit u receives the
same treatment W, then under SUTVA, Yy (u) would be the same value regardless

of how different are the treatment assignments for other units.

The completely randomized treatment assignment mechanism is the simplest ignor-

able/unconfounded assignment mechanism since all the assignments share an equal

11



constant probability that doesn’t depend on covariates, counterfactuals, or other
units. Regular designs are similar to completely randomized treatment assignment
mechanism except that the probabilities of treatment assignment are allowed to de-
pend on covariates, and so can vary from unit to unit. Regular designs are the
major template for the analysis of experiments and observational studies. They have
two properties. First, they use an unconfounded assignment mechanism. Second,
Pr(W|X) = g(W) Hjlvp,-, where ¢g() is an exchangeable function (g(x1,...,x,) is an
exchangeable function if g(z,...,2,) = g(P(z1,...,2,)), where P(.) is any permu-
tation of xy,...,2,.) and p; = P.(W;|X;), 0 < p; < 1. The p; are usually called

propensity scores (Rubin 2000).

3.3.3 Inference Methods

There are three common statistical inference methods useful in causal inference. 1

first introduce their applications in completely randomized experiments.

Fisherian randomization-based inference is the first method. Suppose there is a pop-
ulation U, and that the observed responses for all units in u € U are known. The
null hypothesis is 7(u) = 0 for all w € U. Under this hypothesis, the counterfactual is
equal to the observed response for each unit. Therefore, for each possible assignment,
the value of the statistic S = E(Y(u)|T' = 1) — E(Y(u)|T = 0) = y1 — 9o is known.
This allows one to conduct an exact test and obtain a p value based on the permuta-
tion distribution of S (Rubin 1974). Fisher’s approach can be extended to additive
null hypotheses (ANH): 7(u) = ¢ where ¢ is any constant, for all u. The test statistic
is calculated by substituting Y] (u) — ¢ for Y;(u), and the analysis is then performed
in the same way as described above (Rubin 2004).

The second method is Neymanian randomization-based inference. Neymanian infer-
ence concerns the average effect on U: E(7(u)) = E(Y1(u)) — E(Yo(u)) instead of
the effects at the individual level. Under completely random assignment, an unbiased

estimate for E(7) is the difference between the average response of the units receiv-
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ing treatment 1 and those receiving treatment 0: F(7(u)) = E(Yi(u)) — E(Yo(u)) =
EY )T =1) - E(Y(u)|T =0) = g1 — yo. Assuming ANH holds, an unbiased
estimate of the variance of 7, 0%(7), is (se)? = s?/ny + s3/ng, where s? and s3 are the
standard deviations of the Treatment 1 and Treatment 0 groups respectively, and n;
and ng are the sizes for the two groups. As a result, a 95% confidence interval for

E(7(u)) can be obtained using normal approximation: g, — 9o & 1.96se.

The last method is Bayesian inference. Here potential responses are treated as random
variables. A prior model for them given the covariates is specified: Pr(Y;(u), Yo(u)|X).
Under this model, the unobservable counterfactuals are assumed to be missing val-
ues. Using Bayesian methods, one can obtain a posterior predictive distribution of
the counterfactuals Yi,is, Pr(Yinis|W, X, Yops), based on the observed responses Yo,
and the prior model. Finally, the predictive distribution of the effects can be eas-
ily obtained by taking differences. Due to the reliance of the prior model and the
assignment on the covariates, the result can be highly sensitive to the prior distribu-
tion when covariates have unbalanced distributions in the two groups (treatment and

control).

In controlled experiments, with more complex randomized assignment mechanisms
with known propensity scores, the analyses almost proceed as in completely random-
ized experiments. Although probabilities of assignments are not constants but depend
on covariates, they are still known. For Fisherian inference, the distribution of S can
be obtained so that the exact test can still be conducted. For Neymanian inference,
the results under regular assignment mechanisms are still valid. For Bayesian in-
ference, the prior model is more complicated but the analysis still follows the same

method (Rubin 2004).

In observational studies, sometimes one holds a “Strongly Ignorable Treatment As-
signment” assumption meaning that assignment mechanisms are still viewed as they
are in controlled experiments but with unknown propensity scores. In this situa-
tion, many methods (e.g., discriminant analysis, logistic regression) can be used to

estimate propensity scores. Once one has the estimates, the analyses are same as
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those with known propensity scores. But the “Strongly Ignorable Treatment Assign-
ment” assumption is certainly not plausible in many cases. In such cases, conducting
sensitivity analyses to get bounds on estimates is the best one can do. Stratifica-
tion/Blocking/Matching are common approaches to adjust for propensity scores so

that less sensitive, more precise results can be obtained (Rubin 2004).

Covariates that have causal relationships with responses can aid inference. Such
covariates are known as “correct covariates”. For example, suppose researchers are
analyzing the causal relationship between a new drug and death for some seriously ill
patients. From previous research, it is known that smoking has a causal relationship
with death. Then in this analysis, smoking or not is a correct covariate. Adjusting for
correct covariates results in a more sensitive test in the Fisherian method, a shorter
interval in the Neymanian method, and less sensitivity to model specification in the
Bayesian method. Stratification/Blocking/Matching are still the common methods
for adjustment (Rubin 2004).

3.3.4 Lord’s Paradox

Lord’s paradox (Lord 1967) presents a situation in which two statisticians, using
different, but standard, statistical methods come to contradictory conclusions. Here,

I show how the paradox can be resolved using Rubin’s counterfactual model (Holland

and Rubin 1983).

Lord introduces the problem thus: “A large university is interested in investigating
the effects on the students of the diet provided in the university dining halls and any
sex differences in these effects. Various types of data are gathered. In particular, the
weight of each student at the time of his/her arrival in September and his/her weight

the following June are recorded.”

The data were fabricated by Lord, but for our purposes, the important information
is:

The average weight for males was 180 in both September and June.

14



The average weight for females was 130 in both September and June.
The average weight gain for males was zero.

The average weight gain for females was zero.

In Lord’s description, Statistician 1 looks at gain scores and concludes that there was
no effect of diet on weight, and no evidence of different effect for the two sexes, as
weight gain was zero in both groups. Statistician 2 is interested in weight gain for
males and females with the same weight in September, and finds that on average,
for a given September weight, men weighed more in June than women. Thus, the
new diet resulted in more weight gain for men. The two conclusions are obviously
contradictory to each other. However, both of them are based on the same data and
on standard statistical methods, and seem to be reasonable. This contradiction is the

source of Lord’s paradox.

In order to use the counterfactual model, one needs to first identify the basic elements

in this example. The results are shown in Table 3.1:

Table 3.1:
Study Design
U: The students at the university in the specified school year.
Treatment 1: The dining hall diet,
Treatment O: ?
W: W =1 for all units.
Variable Measured
G: Student gender (1=male, 2=female),
X: The weight of a student in September,
Y: The weight of a student in June.

The question mark in Table 3.1 is due to no control diet, 0, even hinted at in the
example. Since no one is exposed to 0, one is forced to make untestable assumptions on
Yy (u) in order to obtain an estimate of the causal effect. The analyses are summarized

in Table 3.2.
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Table 3.2:

Statistican 1

Testable Assumptions -
Untestable Assumptions a=0,0=1
Formula for Causal Effects A; A =FEY - X|G=1)
Formula for Differential Causal Effect A A =FEY;|G=1)—-EM|G=2)—-[E(X|G=1)—- E(X|G = 2)]

=difference in mean weight gains

Assume Yy = a + X for all units in U.

Statistican 2

Testable Assumptions EW|X,G=1)=a; +bX
Untestable Assumptions B=0
Formula for Causal Effects A; A, =EY1 —a—-bX|G=1)

Formula for Differential Causal Effect A A =EY1|G=1)—- EW|G=2)-bE(X|G=1)—- E(X|G = 2)]

=covariate adjusted mean difference in June weights.

Assume Yy = a + X for all units in U.

In the analyses which are associated with the ideas of the two statisticians, one
assumes Yy = a + X for all units in U. If one makes an untestable assumption that
a =0, =1, the average effect of 1 in each group would be A; = E(Y; —Yy|G =1i) =
E(Yy — X|G = 1). Then the difference between the effects of the two gender groups is
A=A —Ay=EY||G=1)—EMY|G=2)-[E(X|G=1)— E(X|G = 2)] which is
the difference in mean weight gains estimated by Statistician 1. As mentioned above,
it is zero so that there is no difference of the effects of 1 between males and females.
However, if one makes a testable assumption that E(Y1|X,G =1i) = a; + bX and an
untestable assumption 3 = b, the differences of the effects would be A = A; — Ay, =
E(Y; - /G = 1) = E(Yi - YolG = 2) = E(Vi|G = 1) — E(V[G = 2) — JE(X|G =
1) — E(X|G = 2)] which is the covariate-adjusted mean difference in June weights
estimated by Statistician 2.

In summary, Rubin’s counterfactual model reveals that, although based on the same
data, the two contradictory conclusions actually come from two sets of different as-
sumptions. The contribution of the counterfactual model is to make clear what those

unstated assumptions are. That different assumptions lead to distinct conclusions

16



should not be a surprise. However, the paradox arises not solely because the assump-
tions differ, but also because they are untestable from the data, as the analysis with

the counterfactual model makes clear.
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Chapter 4

The Noncounterfactual Pespective

Some statisticians think that causal inferences should not be based on unobservable
counterfactuals. They believe that appropriate analysis methods should only rely
on observables and testable assumptions. I call this view the Noncounterfactual
Perspective. A. P. Dawid is a leading proponent of the Noncounterfactual Perspective.
In the following sections, I introduce Dawid’s ideas on causal inference, his criticisms

on Rubin’s counterfactual model, and his noncounterfactual causal inference method.

4.1 Two Types of Causal Inferences

In contrast to statisticians like Donald B. Rubin who focus the analyses of causal
inferences on the causal effects, Dawid proposed two problems relating causes and
effects: the effects of causes and causes of effects. The effects of causes are same as
the causal effects in Rubin’s counterfactual model which are the comparisons between
responses to different treatments. The causes of effects are defined as the treatments
which cause the observed response. Here are two sentences: “I have a headache. Will
it be gone if I take aspirin?”. “My headache has gone. Is it because I took aspirin?”.
The former one is querying the effects of causes. The latter one is querying the causes

of effects. Consider first the effects of causes.
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4.2 Effects of Causes

4.2.1 Problems with Rubin’s Counterfactual Model

In order to compare Rubin’s counterfactual perspective with Dawid’s noncountefac-
tual perspective clearly, I first review some of Dawid’s comments on Rubin’s counter-

factual model.

Jeffrey’s Law

Here is one more example regarding Rubin’s counterfactual model. Suppose the po-
tential responses (Yi(u), Yo(u) : u € U) are modeled as independent random variables
following a bivariate normal distribution with means (61, 6y), common variance ¢y,
and correlation p > 0. Then one can represent this structure by means of the mixed
model:

Yi(u) = 0; + B(u) + 7i(u),

where (u) and 7;(u) are mutually independent normal random variables with means
0 and variances: ¢g = poy and ¢, = (1 — p)¢y. For each u, after the treatment is
applied, one of Yy(u) and Y;(u) will be the observed response, and the other will be

the counterfactual. The causal effect
7(u) = Yi(u) — Yo(u) ~ N(1,29,).

A crucial problem with this model is that parameter ¢., cannot be identified from the
observed data. For instance, consider three people who have different ideas on the
specific structure of this model. A thinks ¢3 = 0, ¢, = ¢y. B thinks ¢3 = ¢y, ¢, = 0.
C thinks ¢g = ¢, = (1/2)¢y. Then which one is correct cannot be determined since
these models are intrinsically indistinguishable on the basis of any data that could

ever be observed. Only the constraint 0 < ¢, < ¢y can be obtained.

Dawid holds the point of view that any scientific investigation should follow Jeffrey’s

law that mathematically distinct models that cannot be distinguished on the basis of

19



empirical observation should lead to indistinguishable inferences. However, counter-
factual models are based on unobservables: assumed observations that are not just
unobserved (like missing data) but that are not even potentially observable. Thus
unverifiable assumptions are intrinsic to this entire class of models including Ru-
bin’s counterfactual model. And distinct inferences based on these assumptions are
drawn under indistinguishable specifications in Rubin’s counterfactual model. Lord’s
paradox is one particular example. These violations of Jeffrey’s law lead to Dawid’s

argument that Rubin’s counterfactual model should not be used.

Fatalism

Another problem with the Rubin’s counterfactual model is what Dawid terms fatalism
(Dawid 2000): “This considers the various potential responses Y;(u), when treatment i
1s applied to unit u, as predetermined attributes of unit u, waiting only to be uncovered
by suitable experimentation.” Rubin’s counterfactual model is built on the notion that
every unit has two potential responses, only one of which can be observed. And they
are unaffected by any human being’s activities. This idea can be (and has been)
interpreted in terms of many parallel worlds (Stalnaker 1984) (Lewis 1973, 1983).
Different treatments are applied in different worlds, and one can only live in one of
them so that one could ever observe only one response. There is never any possibility
of empirically testing this assumption of fatalism. Thus any counterfactual models
including Rubin’s are questionable. The commonly used STUVA assumption is a

direct result of fatalism.

4.2.2 Dawid’s Noncounterfactual Method

Dawid’s noncounterfactual causal inference method has a fairly simple structure. First
it does not assume any potential responses which may or may not be observed. That
is to say it does not make use of counterfactuals. It only takes into account the actual

responses in the two groups. In the context of the counterfactual model, it means
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that Dawid only considers the marginal distribution of each response. As a result,

there would be no unidentifiable parameters present in the analysis.

“If one cannot get a sensible answer to the question, then perhaps the question itself,
with its focus on inference for T(uy), is not well posed.” (Dawid 2000). In the analysis
of causal inference, instead of asking what is the causal effect of a treatment on unit
u, or what is the mean causal effect on the population of units, Dawid rephrased
the question to ask which treatment would one prefer to apply to a new unit ugy. In
order to answer this question, he suggests a decision-analytic approach. The idea is
straightforward. Suppose there is a loss function L on the response Y. Of course, one
prefers to have small L(Y) on a unit. Then the conclusion is simply application of
the treatment giving the smaller loss. For instance, assume L(Y) =Y, the decision
process involves first conducting a two sample ¢ test on the group mean responses, and
then picking the treatment which gives a lower mean response if there is a significant

difference. Otherwise, choose either one.

4.3 Causes of Effects

In addition to effects of causes, Dawid discussed another causal inference, causes of
effects. For example, if T'=1,Y = 1, the causes of effects would be P(Yy = 1|T =
1,Y = 1): the probability that the potential response of the unapplied treatment is
same as the actual response. In contrast, effects of causes is the difference between the
actual response and the counterfactual. It asks what are the effects the treatments
cause. Dawid concluded that the counterfactual model cannot be avoided when deal-
ing with causes of effects. As a result, unidentifiable parameters would be present in

analyses.

Consider again the bivariate normal counterfacutal model in 4.2.1. The conditional
distribution of 7(u) = Yi(u) — Yo(u), given Yj(u) = y, is normal, with mean and

A= E{r()|Yi(u) =y} =y — 0 — ply — 61)
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and
0* = Var {r(u)|Y1(u) = y} = (1 - p*) ¢y

Only 6y, 6y, and ¢y can be identified based on the data. The correlation between the
actual responses and the counterfactuals, p, cannot be learned from the counterfactual
model. When p =0, A =y — 6y and 6> = ¢y. If p =1, A = 0, — 0y and 5% = 0.
Assuming p > 0, only the constraints

A lies between 6; — 6y and yo — 6
and

5 < ¢y

can be inferred. Dawid’s suggestion is to try to gain more knowledge on covariates

to improve the constraints (Dawid 2000).
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Chapter 5

Counterfactual vs.

Noncounterfactual

While Dawid is a prominent critic of counterfactual models, there are other statis-
ticians who voice both criticism and support for such models. Their thinking about
the issues surrounding these models helps shed light on the concepts behind causal

inference. In this chapter, I describe four of the more important issues.

5.1 Positivism

Positivism is a philosopical point of view which asserts that meaningful propositions
must be either analytic (mathematical) or empirically falsifiable or verifiable by pos-
sible sensory observations. Dawid’s comments on Rubin’s counterfactual model can

be viewed as based on positivism.

Some consider positivism too rigid a philosophy to serve as a suitable underpinning

of scientific investigation:

e “Logical positivism’s main tenet is that meaningful propositions must be ei-

ther analytic or empirically falsifiable or verifiable by possible sensory obser-
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vations.. .. It was too rigid and technically unworkable.” (Casella, Schwartz

2000).

o “A pragmatic empiricist insists on asking empirically testable queries, but leaves
the choice of theories to convenience and imagination; the dogmatic empiricist
insists on positing only theories that are expressible in empirically testable vo-

cabulary.” (Pearl 2000).

Others, in support of Dawid, take a more positivist view. Shafer is one of them and
he rephrased Dawid’s perspective as : “Dawid’s central theme is that counterfactuals
should be held up to de Finetti’s observability criterion that it is legitimate to assess a

probability distribution for a quantity Y only if Y is observable at least in principle.”

(Shafer 2000).

Some argue that positivism should be abandoned in science since it is already out
of fashion in philosophy: “Starting in about 1950, logical positivism was subjected
to a withering series of criticisms and has now entirely lost favor among philoso-
phers.” (Casella, Schwartz 2000). To which Dawid replied: “I trust, however, that
my arqguments will be considered on their own merits, rather than on whether they are

fashionable.” (2000).

5.2 Untestable Assumptions

The other reason why Dawid rejected Rubin’s counterfactual model is that inferences
drawn under it are often based on untestable assumptions. However, drawing infer-
ences based on testable assumptions is also possible in many situations under the
model. For instance, under completely random assignment, the conditional expecta-
tion difference E(Y (u)|T = 1) — E(Y (u)|T = 0) is equal to the average causal effect
E(t(u)) = E(Yi(u)) — E(Yy(u)). Therefore, some argue that one should apply the
counterfactual model in a proper way rather than simply abandon it: “Use powerful

mathematics to filter, rather than muzzle, the untestable queries that such languages
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tempt us to ask.” (Pearl 2000). Dawid’s reply to this is : “My point is that the
models I criticize also have untestable implications, and that it us all too easy to use
them to make ‘inferences’ that are sensitive to purely arbitrary and untestable choices
that may be made for ingredients in these models. I would prefer to build on firmer
ground than this, using models that do not allow empirically meaningless statements

and inferences, whenever this is possible (which currently believe is always).” (2000).

5.3 Instrumental Use

Even though one may decide not to make causal inferences using counterfactual mod-

els, they may still have some valuable instrumental uses:

e “The counterfactual modeling languages are somewhat richer than the ones
needed for routine predictions. . ..lack of identifiability is possible in any statis-
tical problem. But it should not prevent us from using counterfactuals to provide

simple and clear explanations for causality.” (Pearl 2000).

o “The meaningfulness of counterfactual variables need not prevent one from using

them for mathematical convenience.” (Shafer 2000).

But Dawid did not agree with this: “... However, I do not feel that the counterfactual

approach to causal inference has, as yet, provided any of these advantages. ” (2000).

5.4 Applications

Dawid discussed his noncounterfactual approach only in the context of controlled
experiments. In contrast, the counterfactual model has shown its great power of
clarifying and solving problems in a variety of settings and areas. Lord’s paradox is

a good example. Although Dawid said that he is currently developing the ideas, it
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seems that his noncounterfactual model cannot affect Rubin’s counterfactual model’s

dominance until some ideas are well established under it.
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Chapter 6

Conclusion

In this report, I mainly introduce two currently competing views on causal inference:
the counterfactual perspective and noncounterfactual perspective. It is shown that
one of the most popular counterfactual models, Rubin’s counterfactual model, has
great usefulness. As a result, although even Rubin and his advocates do not dispute
the legitimacy of Dawid’s concerns on the counterfactual perspective, Rubin’s model
is still widely used and seems to have a dominant position among all the models
regarding causal inference. In contrast, Dawid’s noncounterfactual causal inference
method is no doubt based on a firmer ground. But its application is highly limited

and still needs much development.
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