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Abstract

Data warehousing is becoming an increasingly important technology for information

integration and data analysis. Given the dynamic nature of modern distributed

environments, both source data updates and schema changes are likely to occur

autonomously and even concurrently in different data sources. Current approaches

[31, 5] to maintain a data warehouse in such dynamic environments sequentially

schedule maintenance processes to occur in isolation. Furthermore, each mainte-

nance process is handling the maintenance of one single source update. This limits

the performance of current data warehouse maintenance systems in a distributed

environment where the maintenance of source updates endures the overhead of net-

work delay as well as IO costs for each maintenance query.

In this thesis work, we propose two different optimization strategies which can

greatly improve data warehouse maintenance performance for a set of source up-

dates in such dynamic environments. Both strategies are able to support source

data updates and schema changes. The first strategy, the parallel data warehouse

maintainer, schedules multiple maintenance processes concurrently. Based on the

DWMS Transaction model, we formalize the constraints that exist in maintaining

data and schema changes concurrently and propose several parallel maintenance

process schedulers. The second strategy, the batch data warehouse maintainer,

groups multiple source updates and then maintains them within one maintenance

process. We propose a technique for compacting the initial sequence of updates, and

then for generating delta changes for each source. We also propose an algorithm to



adapt/maintain the data warehouse extent using these delta changes. A further op-

timization of the algorithm also is applied using shared queries in the maintenance

process.

We have designed and implemented both optimization strategies and incorpo-

rated them into the existing DyDa/TxnWrap system. We have conducted exten-

sive experiments on both the parallel as well as the batch processing of a set of

source updates to study the performance achievable under various system settings.

Our findings include that our parallel maintenance gains around 40 ∼ 50% perfor-

mance improvement compared to sequential processing in environments that use

single-CPU machines and little network delay, i.e, without requiring any additional

hardware resources. While for batch processing, an improvement of 400 ∼ 500% im-

provement compared with sequential maintenance is achieved, however at the cost

of less frequent refreshes of the data warehouse content.



Acknowledgements

I have many people to thank for the help and encouragement on this work toward

my master’s degree. First i will thank my advisor, Professor Elke A. Rundensteiner,

for her precious advice and support during this study. With her guidance and

understanding i was able to finish the thesis. Great thanks are also to my thesis

reader, Professor George Heineman. He gave me constructive feedback on my work

which is important on my thesis.

I would also thank Songting Chen for his help and discussions on my thesis work.

I would also thank to Xin, Jehad, Lily and all the other members in DSRG, who

gave me a lot of help.

I would also thank WPI computer science department, which gave me a chance

to study and work to earn my master’s degree. And also thank to all the faculty

members in the department who have helped me in this period.

A special thank to my family, my wife Xiaojie and my parents, who support me

all the time.

i



Contents

1 Introduction 1

1.1 Data Warehouse Maintenance . . . . . . . . . . . . . . . . . . . . . . 1

1.2 State-of-the-Art in Data Warehouse Maintenance . . . . . . . . . . . 3

1.3 Proposed Optimization Strategies . . . . . . . . . . . . . . . . . . . . 5

1.4 Assumptions and Restrictions . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background 10

2.1 Data Warehouse Maintenance Processes . . . . . . . . . . . . . . . . 10

2.1.1 View Maintenance (VM) . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 View Synchronization (VS) . . . . . . . . . . . . . . . . . . . 11

2.1.3 View Adaptation (VA) . . . . . . . . . . . . . . . . . . . . . . 13

2.2 TxnWrap Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 The DW Maintenance Transaction Model . . . . . . . . . . . 15

2.2.2 Concurrency Control Strategy in TxnWrap . . . . . . . . . . . 16

3 A Transactional Approach to Parallel DW Maintenance 19

3.1 Towards Flexible DWMS Transaction

Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

ii



3.1.1 Version Management using Local Identifier . . . . . . . . . . . 20

3.1.2 DWMS Transaction Management using TxnID . . . . . . . . . 22

3.2 Parallel Maintenance Scheduler . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Parallel Architecture . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.2 Aggressive Scheduler for

Data Update Only Environments . . . . . . . . . . . . . . . . 24

3.2.3 Scheduling in a Mixed Data Update and

Schema Change Environment . . . . . . . . . . . . . . . . . . 25

3.2.3.1 TxnID-Order-Driven Scheduler . . . . . . . . . . . . 27

3.2.3.2 Dynamic TxnID Scheduler . . . . . . . . . . . . . . . 30

3.2.4 DW Commit and Consistency . . . . . . . . . . . . . . . . . . 32

3.3 Design and Implementation Issues . . . . . . . . . . . . . . . . . . . . 32

3.4 Performance Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.1 Experimentatl Environment . . . . . . . . . . . . . . . . . . . 34

3.4.2 Aggressive Scheduler Experiments . . . . . . . . . . . . . . . . 35

3.4.3 Experiments with Mixed Data and Schema Changes Scenarios 38

4 Batch Data Warehouse Maintenance 39

4.1 Preprocessing Source Updates . . . . . . . . . . . . . . . . . . . . . . 40

4.1.1 Combine Schema Changes . . . . . . . . . . . . . . . . . . . . 41

4.1.2 Combine Data Updates . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Evolve View Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Adapt View Extent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Optimize Number of Operations . . . . . . . . . . . . . . . . . . . . . 48

4.5 Implemented Batch DW Maintenance Architecture . . . . . . . . . . 51

4.6 Performance Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.6.1 Experimental Environment . . . . . . . . . . . . . . . . . . . . 52

iii



4.6.2 Cost Measurement . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Related Work 62

6 Conclusion and Future Work 65

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7 Appendix 68

7.1 Proof of Parallel TxnWrap Maintenances . . . . . . . . . . . . . . . . 68

iv



List of Figures

1.1 Explanations of Maintenance Anomaly Problems. . . . . . . . . . . . 2

2.1 Example of View Synchronization. . . . . . . . . . . . . . . . . . . . . 11

3.1 Wrapper Version (Before Source Updates). . . . . . . . . . . . . . . . 21

3.2 Wrapper Version (After Source Updates). . . . . . . . . . . . . . . . . 21

3.3 Architecture of TxnWrap Extended with Parallel Scheduler. . . . . . 24

3.4 Example of Scheduling Order Restriction. . . . . . . . . . . . . . . . 28

3.5 Scheduling Example of Basic TxnID-Order-Driven Algorithm. . . . . 29

3.6 Scheduling Example of Improved TxnID-Order-Driven Algorithm. . . 30

3.7 Scheduling Example of Dynamic TxnID Scheduler. . . . . . . . . . . 31

3.8 Implementation View of Parallel TxnWrap. . . . . . . . . . . . . . . . 33

3.9 Control Strategies in Improved TxnID-Order-Driven Scheduler. . . . 34

3.10 Change the Number of Threads. . . . . . . . . . . . . . . . . . . . . . 36

3.11 Change the Number of Tuples in Each IS. . . . . . . . . . . . . . . . 37

3.12 Change the Network-Delay in Each Maintenance Query. . . . . . . . . 37

3.13 Change the Number of Schema Changes. . . . . . . . . . . . . . . . . 38

4.1 Group Delta Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Batch DW Maintenance Architecture. . . . . . . . . . . . . . . . . . . 51

4.3 Maintenance Cost of TxnWrap and Batch. . . . . . . . . . . . . . . . 55

v



4.4 Performance Improvement of Batch Processing. . . . . . . . . . . . . 56

4.5 Batch Large Number of Updates in a Single Query. . . . . . . . . . . 57

4.6 Batch using Different Query-size. . . . . . . . . . . . . . . . . . . . . 57

4.7 Schema Changes from Different Sources. . . . . . . . . . . . . . . . . 58

4.8 Schema Changes from the Same Source. . . . . . . . . . . . . . . . . 58

4.9 Maintenance Cost of Both Data Updates and Schema Changes. . . . 59

4.10 Performance Improvement of Batch Processing. . . . . . . . . . . . . 60

4.11 Change the Number of Dropped Updates. . . . . . . . . . . . . . . . 60

4.12 Maintenance Cost of Changing View Definition. . . . . . . . . . . . . 61

4.13 Performance Improvement of Batch Processing. . . . . . . . . . . . . 61

vi



List of Tables

2.1 Notations of View Definition. . . . . . . . . . . . . . . . . . . . . . . 12

4.1 Combination Rules between Two SCs . . . . . . . . . . . . . . . . . . 41

vii



Chapter 1

Introduction

1.1 Data Warehouse Maintenance

Data Warehouses (DW) [11, 21] are built by gathering data from data sources and

integrating it into one repository customized to users’ need. Data warehousing is

important for many applications, especially in large-scale environments composed

of distributed sources, such as travel services, E-commerce and decision support

systems. A data warehouse management system (DWMS) is the management sys-

tem that is responsible of maintaining the data warehouse extent and schema upon

changes of the underlying sources. In distributed environments, these remote sources

are typically owned by different information providers and function independently.

This implies that they will update their data or even their schema without any

concern for how these changes may affect the data warehouse, in particular, the

materialized views defined upon them.

When incrementally maintaining data warehouses under source updates, main-

tenance problems will arise due to the independence and autonomy between data

sources and data warehouses.
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Let’s first illustrate the maintenance problems in such dynamic environments

via some running examples. As depicted in Figure 1.1, the data warehouse view V

is defined on relations R and S with the condition “R.C = S.C and R.B < 7 and

S.E > 50”. First, when a data update DU1: Insert (3,5,5) into R in IS1 occurs

and is reported to the data warehouse, then the data warehouse will generate a

maintenance query Q1 = “Select S.C, S.D from S where S.C = 5 and S.E > 50” to

IS2 to incrementally incorporate this data change (DU1) into the view V. The data

warehouse at that point will assume that the IS2 is in the state in which the DU1

was committed. However, this may not necessarily be true. Below we distinguish

between two cases that may occur at relation S respectively:

341

DCA

Data Warehouse

V

Create VIEW V AS
Select R.A, R.C, S.D
From IS1.R, IS2.S
Where R.C=S.C and 
R.B<7 and S.E >50
Group By R.C;

Q1:Select S.C, S.D
From S
Where S.C=5 and S.E>50;

785

421

CBA

8725

5534

EDC

IS1
IS2

R

DU1:Insert(3,5,5) SCj:Drop S.C

DUi:Insert(5,3,75)

S

Figure 1.1: Explanations of Maintenance Anomaly Problems.

• Case 1: Assume during the transfer time of the maintenance query Q1 to rela-

tion S, S already commits a new data update, for example,DUi: Insert(5,3,75)

into S in IS2. This new tuple would also be captured by Q1, thus an extra

tuple (3,5,3) would be inserted into the view due to this maintenance query.

However, when the data warehouse starts processing DUi later, the same tuple

would be inserted into the view again. A duplication anomaly problem
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appears [33].

• Case 2: Assume that during the transfer time of the query Q1 to S, S under-

goes the schema change SCj: Drop S.C. Then the query Q1 can not even be

processed due to the inconsistency between the schema specified in the query

Q1 (S.C, S.D and S.E are required) and the schema of S (only S.D and S.E

are left). A broken query anomaly problem arises [31].

We use term concurrent updates to describe such source updates and refer to

the above data warehouse maintenance problems that caused by concurrent updates

as ‘anomaly problems’. To summarize, the problem is how to execute maintenance

queries while the data warehouse doesn’t know the current state of the underlying

sources due to the data warehouse and the sources are operating independently.

Thus in a dynamic environment, the maintenance queries to sources may contain

incorrect query results or may even fail to complete due to schema changes [31].

1.2 State-of-the-Art in Data Warehouse Mainte-

nance

There are three tasks related to maintaining the data warehouse in such dynamic

environments. Incremental view maintenance (VM) [33, 1, 28, 32] maintains the

data warehouse extent whenever a data update occurs within a source. View syn-

chronization (VS) [15] rewrites any affected view definition in the DW whenever

there is a schema change in one of the ISs rendering the current view definition

undefined. View adaptation (VA) [12, 24, 21] adapts the view extent incrementally

after the view definition has been modified either directly by the data warehouse

designer or indirectly by the view synchronization system.

3



Most work in the literature only handles data warehouse maintenance problems

in a data update only environment [33, 1, 28]. DyDa [31] is the first system to handle

concurrent schema change and data update maintenances. It employs a compensa-

tion query based strategy. DyDa is complex in the sense that concurrency detection

and handling had to be significantly extended to support the schema changes. Txn-

Wrap [5] is the first transactional approach to handle the concurrency for both data

and schema changes. It introduces the concept of a DWMS Transaction model [5]

to formally capture the overall data warehouse maintenance process as a transac-

tion. Once cast in terms of transaction concepts, a multiversion timestamp-based

concurrency control algorithm [3], called ShadowWrapper, can solve the anomaly

problems in data warehouse maintenance. However, like other solutions in the liter-

ature, both DyDa and TxnWrap apply a sequential approach towards maintaining

concurrent updates. Furthermore, each maintenance process only takes care of one

single source update. This limits its performance in a distributed environment where

maintaining of source updates endures the overhead of network delay and IO costs

in each maintenance query.

Thus it is worthwhile to investigate techniques for parallelizing the maintenance

processes by running multiple maintenance processes at the same time. On the

other hand, we also can try to maintain multiple source updates by one single

maintenance process to reduce the total maintenance cost for a given set of source

updates, along the line of batch processing. Both optimization ideas [32, 28, 7, 22]

are well addressed in the literature in the context of data update only environments.

The contribution of my thesis is to apply optimization strategies when both data

updates and schema changes are present and also concurrent with one another. That

is, in a fully dynamic data warehousing environment.

4



1.3 Proposed Optimization Strategies

Parallel Data Warehouse Maintenance. We propose to develop a parallel

maintenance scheduler that is capable of maintaining concurrent data and schema

changes in parallel. We also show that this significantly improves the performance of

data warehouse maintenance. We have chosen TxnWrap [5] as the basis of our par-

allel processing solution because the transactional approach of TxnWrap provides

a formal way to analyze conflicts (in terms of read/write of critical resources) that

exist in data update maintenance and schema change maintenance. Our proposed

parallel maintenance scheduler (PMS) thus overcomes TxnWrap’s performance limi-

tation by parallelizing the executions of different maintenance tasks. To achieve this,

three issues must be tackled. First, we characterise all potential conflicts among the

data warehouse maintenance processes in terms of read/write of critical resources.

Second, we design strategies to generate possible schedules that resolve these identi-

fied conflicts. Three algorithms have been proposed that each applicable to distinct

situations: an aggressive scheduler that can handle data update only environments

and the TxnID-Order-Driven and Dynamic-TxnID schedulers that both can main-

tain updates in parallel when source data and schema changes are present. Lastly,

we examine the commit problem for each maintenance task in parallel processing.

Batch Data Warehouse Maintenance. For batch data warehouse mainte-

nance in such dynamic environments, three steps are proposed. First, group all the

source updates based on the relation they come from, and analyze the relationship

between data updates and schema changes from the same source. Second, evolve

the view definition based on the schema changes and calculate the delta changes

of each source. The third, adapt the view extent using these delta changes. One

optimization strategy is proposed by making use of shared queries in a distributed

5



environment when incrementally adapting the view extent.

Note that the target application domains of these two optimization strategies

are also somewhat different. Parallel maintenance is more suitable in situations

when the source updates are more distributed into different sources. For example,

the view in the data warehouse is defined on 5 distributed sources. If in a certain

period, 5 source updates have happened which each source has one update. Thus

parallel processing of these maintenance tasks can fully make use of the processing

capability of individual sources. While for the batch maintenance, the maximal

performance gains are likely to be achieved when source updates are concentrated

in a relative small number of sources. As described in the above example, if all these

5 updates are come from the same source, then there is only one batch maintenance

task involved. Thus the total number of operations will be reduced and so will the

total maintenance time.

We have designed and implemented both the parallel scheduler and the batch

maintenance system based on TxnWrap [5] using Java, with Oracle8i as data server

for sources and materialized views and JDBC for connection to Oracle8i. We have

conducted experiments to measure the performance of parallel and batch process-

ing under various environmental settings including the number of sources involved,

view definitions in the data warehouse, network delay of the maintenance query,

and so on. The experimental results confirm that both parallel and batch data

warehouse maintenance achieve an excellent performance improvement compared

to basic TxnWrap processing.

6



1.4 Assumptions and Restrictions

In this work, we have made the following assumptions on the data warehouse envi-

ronments which were also made by most of previous research [33, 1] in this area.

Assumption 1 We assume a centralized data warehouse system which means there

is only one database management system that stores and maintains the materalized

views.

Assumption 2 We assume that all source transactions are local and every data

update and schema change at a source is reported to the DWMS once it is committed

at the source.

Assumption 3 The data warehouse network environment will not have permanent

unrecoverable failure and the message transfer through the network between sources

and data warehouse is First-In-First-Out (FIFO).

Assumption 4 Each underlying source is autonomous, which means it is only re-

sponsible of answering maintenance queries from data warehouses and sending out

update notifications.

Assumption 5 We assume that there is only one relation in each underlying data

source.

1.5 Contributions

In summary, this thesis provides the following contributions:

• For parallel data warehouse maintenance,

7



– Identify the performance limitation of the TxnWrap system (and other

data warehouse maintenance systems in general) in terms of the sequen-

tial handling of a set of updates, and then characterize the research issues

that must be addressed to achieve parallel maintenance.

– Formalize the constraints (in terms of read/write conflicts) of parallel

scheduling updates in a mixed schema change and data update environ-

ment.

– Propose several parallel scheduling strategies suitable for different envi-

ronments. Address solution strategies for the DW commit problems in

parallel scheduling.

– Design and implement the proposed parallel schedulers and incorporate

them into existing TxnWrap [5] data warehousing system.

– Conduct extensive experimental studies, with the results illustrating the

performance improvements achievable due to parallel processing.

• For batch data warehouse maintenance,

– Analyze the relationship between source data update and schema change

maintenance processes.

– Formalize the calculation of the delta changes of each source in situations

when both data update and schema change are present.

– Investigate the methods suitable for maintaining the data warehouse us-

ing delta changes, and optimize incremental view maintenance algorithm

by making use of shared maintenance queries.

– Design and implement a batch data warehouse maintenance system based

on TxnWrap.

8



– Provide a cost model to measure the performance of batch processing and

conduct extensive experimental studies to measure batch maintenance

performance.

1.6 Outline of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 provides the necessary

background related to data warehouse maintenance tasks in situations when both

data update and schema changes are present, followed by a brief description of the

TxnWrap system which represents the foundation of our proposed work. We present

our parallel maintenance scheduler strategies and also its design and implementation

issues in Chapter 3. The experimental studies of parallel maintenance are also

presented in this chapter. Chapter 4 describes our solution strategies for batch data

warehouse maintenance and the corresponding implementation issues, followed by

cost model and performance studies. Finally, related work is given in Chapter 6,

and conclusions and future work are summarized in Chapter 7.

9



Chapter 2

Background

2.1 Data Warehouse Maintenance Processes

Below we briefly introduce View Maintenance (VM), View Synchronization (VS)

and View Adaptation (VA) strategies as needed for the remainder of this paper.

2.1.1 View Maintenance (VM)

View maintenance (VM) aims to incrementally maintain the view extent under a

source data update (DU). The basic idea is to send a maintenance query based on

the data update to calculate the delta change of this update on the view extent.

A lot of work in the literature [33, 34, 1, 28] has addressed the conflicts between

a maintenance query and concurrent data updates using either a compensation or

multi-version [3] strategy. However, these works assume the schema of all relations

remains static throughout the maintenance process.

10



2.1.2 View Synchronization (VS)

View Synchronization (VS) [23, 18] drops this assumption in that it aims at rewriting

the view definition when the schema of the source relation has been changed. We

distinguish between two primitive types of source schema changes (SCs) that may

affect the view defined upon them: The SCs that rename attributes or relations at

sources; and the SCs that delete attributes or relations. Note that since adding a

relation or attributes will not affect the existing view definition, the VS will not take

them into consideration.

[23, 18] propose some name mapping strategies of renaming the corresponding

view meta data to handle source rename operations, which is relatively straightfor-

ward. For drop operations, since they would invalidate the view defined upon, they

proposed two strategies. Here we briefly describe them by two examples and then

formalize the methods.

3

D

5541

ECA

DW

V

Create VIEW V AS Select R.A, 
R.C, S.D, S.E From IS1.R, IS2.S 
Where R.C=S.C and 
R.B<7 and S.E >50 Group By 
R.C;

785

421

CBA

8725

5534

EDC

IS1 IS2

R

DU1:Insert(3,5,5)

SC2:Drop R.A

DU1:Insert(5,3,75)

S

DU3:Insert(15,5)

DU4:Delete(2,4)

DU2:Delete(4,3,55)

…

587

125

ABE

Rnew

IS3

…

8725

5524

EDC

Snew

IS4

SC3:Drop S

Figure 2.1: Example of View Synchronization.

• Drop Relation: In Figure 2.1, relation S in IS2 is dropped in update SC3.

VS will try to find an alternative relation for replacement, in this case, say

the relation Snew in IS4, to rewrite the view definition. Thus the new view

11



definition after this operation will be “Create VIEW V ′ as Select R.A, R.C,

Snew.D, Snew.E From IS1.R, IS4.S
new Where R.C = Snew.C and R.B < 7

and Snew.C > 50 Group By R.C”.

We now generalize this algorithm using the notations in Table 2.1. For sim-

plicity, we assume that there is only one view in the DW and each data source

has exactly one relation.

Notation Meaning
V Old data warehouse view state, defined as R1 � R2 � ... � Rn

V ′ New data warehouse view state, defined as Rnew
1 � Rnew

2 � ... � Rnew
n

Ri Old state of source relation i.
R′

i New state of relation Ri after several updates.
Rk

i kth (k ≥ 1) replacement found by VS for view rewriting.
Rnew

i Relation Ri is replaced by Rnew
i after view rewriting.

Table 2.1: Notations of View Definition.

Assume a relation Ri is dropped, VS will find a replacement Rnew
i for the

dropped relation Ri using the strategies proposed in [18], which are omitted

here due to the limited space. The view V is rewritten as V ′ = R1... � Ri−1 �

Rnew
i � Ri+1... � Rn.

• Drop Attribute: Similarly, the VS will also try to locate an alternative

attribute for replacement when an attribute is dropped. Note that a join is

often necessary for this step. In Figure 2.1, the attribute A of relation R

in IS1 is dropped in update SC2. Then VS locates the relation Rnew for

replacement. The new view definition is thus rewritten as follows, “Create

VIEW V ′ as Select Rnew.A, R′.C , S.D From IS3.R
new, IS1.R

′, IS2.S Where

R.C = S.C and R.B < 7 and S.C > 50 and IS1.R
′.B = IS3.R

new.B Group

By R.C”. Here, the relation R in the old view definition is replaced by

ΠA,B,C(R′
�R′.B=Rnew.B Rnew) forming a new view definition.

12



We thus generalize that if there are several attributes of Ri that are dropped,

the relation Ri in the old view definition V is replaced by Rnew
i = ΠRi(R

′
i �

R1
i � R2

i � ... � Rm
i ), where m is the number of dropped attributes, Rk

i (

k ≥ 1) is the replacement found by VS for the kth drop attribute operation

and R′
i is the new state of Ri after several attributes have been dropped.

Correspondingly, the new view V ′ is defined as V ′ = R1... � Ri−1 � Rnew
i �

Ri+1... � Rn.

Note that the rewriting view may not be equivalent to the old one, although in

VS there are mechanisms designed to bring the view as close as possible to the old

one [18].

2.1.3 View Adaptation (VA)

View Adaptation (VA) [12, 25] incrementally adapts the view extent after the rewrit-

ing of a view definition. Since a rename operation won’t affect the view extent, here

we just briefly describe the incremental view adaptation after a drop operation. The

basic idea is to determine the delta changes between the old relation and the new

replaced one.

• Drop Relation: After the view rewriting for Drop Relation as shown in

previous section, VA incrementally adapts the extent as follows. Depending

on how the data warehouse system is designed, the dropped relation S can

be restored either from the view in the data warehouse using ΠC,D,E(V ) 1 or

by making use of versioned data if the data warehouse system using a multi-

version strategy. Then ∆S = Snew − S. Finally we calculate the view delta

1Assumptions for this include all attributes in conditions must also be selected. For details,
please refer to [25]. In this case, if the assumptions are not held, we would resolve to perform view
recomputation based on the new view definition.
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changes by sending the query: ∆S � R, which we call view adaptation

query instead of view maintenance query. This view adaptation query

aims to incorporate the effects of a source schema change into the materialized

view extent. We now give a brief formalization of the algorithm above. First

we calculate the difference between the old relation and the new one, i.e.,

∆Ri = Rnew
i − Ri. Then we compute the view delta change by calculating

∆V = ∆Ri � R1... � Ri−1 � Ri+1... � Rn.

• Drop Attribute: Similarly, after view rewriting for the Drop Attribute as

shown in Section 2.1.2, we need to determine the delta between the old relation

and the new joined relation, i.e.,

∆R = ΠA,B,C(R′
�R′.B=Rnew.B Rnew) − R. Then we calculate the view delta

change using the view adaptation query: ∆R � S.

To generalize the procedure, we first need to calculate the delta between the

original Ri and the replaced Rnew
i and join the delta with other relations to

get the view change. In other words, we first get ∆Ri = ΠRi(R
′
i � R1

i � R2
i �

... � Rm
i ) − Ri, and we adapt the view delta change ∆V = ∆Ri � R1... �

Ri−1 � Ri+1... � Rn.

2.2 TxnWrap Revisited

In this section, we briefly review the TxnWrap solution which represents the foun-

dation for our proposed parallel scheduling strategies and batch data warehouse

maintenance algorithms.
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2.2.1 The DW Maintenance Transaction Model

In a typical DW environment where one DW is designed over several independent

sources (IS), a complete DW maintenance process is composed of the following steps:

• IS Update: An IS update transaction at some ISi is committed, denoted as

“w(ISi)CIS” where w(ISi) represents the write on ISi, i is the index of the

IS, and CIS is the commit of this write.

• Report: The IS reports the update made by this transaction to the DWMS.

• Propagation: The DWMS computes the effect to the DW caused by this up-

date in order to maintain the DW, denoted as “r(V D)r(IS1)r(IS2)...r(ISn)”.

Here VD represents the view definition in the DW and r(VD) stands for the

operations that generate the maintenance queries for individual ISs based on

the view definition. r(ISi) is a read over ISi which represents the maintenance

query to ISi and its corresponding results to calculate the effect on the DW.

• Refresh: The result calculated in the propagation step finally is refreshed

into the DW, denoted as “w(DW )CDW ”, where w(DW) is to update the DW

extent and CDW is the commit of w(DW) to the DW.

TxnWrap introduces the concept of a global transaction, called DWMS Transaction,

to encapsulate the above four DW maintenance steps within the context of the over-

all data warehouse environment.

Definition 1 A DWMS Transaction is a transaction model that encapsulates the

four maintenance steps (IS Update, Report, Propagation, Refresh) taking care of the

maintenance process for one source update. Each DWMS Transaction starts with

the processing of a local database transaction at some IS (IS Update), and it commits

15



when the DW database has been successfully refreshed (Refresh) reflecting the update

committed in this IS Update.

A DWMS Transaction will be created only after CIS of the corresponding IS up-

date transaction has successfully been committed at the IS, and the commit of a

DWMS Transaction is right after the CDW in the Refresh step. A DWMS Transaction

is a conceptual rather than a real transaction model. It has a nested structure and

sits at a higher level above the DBMS transactions local to the IS or to the DW.

Thus, in the DWMS Transaction model, there is no automatic rollback or abort

mechanism, because the local IS transaction is out of the control of the DWMS and

the committed IS updates must be propagated to the DW if we want the DW to

stay consistent. So, for brevity, we remove the “CDW ” and “CIS” operations and

denote a DWMS Transaction as “w(ISi)r(V D)r(IS1)r(IS2)...r(ISn)w(DW )”. Fur-

thermore, we refer to the Propagation and Refresh steps in one DWMS Transaction

(“r(V D)r(IS1)r(IS2)...r(ISn)w(DW )”) as the DWMS Transaction maintenance pro-

cess, since these two correspond to the actual maintenance steps in the DWMS.

Based on this model, we can rephrase the DW anomaly problem as a concurrency

control problem. Note that the only conflict we must consider in the context of

DWMS Transactions is the ‘read dirty data’ conflict. That is, one operation in

the Propagation phase may read some inconsistent query results written by the

IS Update phase of the maintenance process. Here we assume all other conflicts can

be solved simply by the respective local DBMS at the IS or the DW. See [5] for

further information.

2.2.2 Concurrency Control Strategy in TxnWrap

It is well known that read/write conflicts of transactions can be dealt with by either a

locking or by a version-based [3] strategy. Locking of source data is not feasible in our
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environment due to the autonomy of data sources. Hence, TxnWrap has designed a

multiversion concurrency control algorithm [3] (called ShadowWrapper) to solve the

anomaly problems in DW maintenance. That is, TxnWrap keeps versions of both

all updated tuples as well as schema meta data in a dedicated wrapper for each IS.

In short, the ShadowWrapper concurrency control algorithm performs the following

steps at the wrapper 2:

• Initialize the wrapper schema and wrapper relations according to the DW view

definition and the corresponding IS’s local schema and data.

• When an IS commits a local transaction and reports its update to the wrap-

per, the ShadowWrapper first assigns a timestamp, called a global id (globally

unique in the DW environment), to each update. Then it generates the corre-

sponding version data in the wrapper. After that, the ShadowWrapper reports

the update (with its unique global id) to the DWMS.

• At any time, when a wrapper receives a maintenance query from the DWMS,

then:

– ShadowWrapper rewrites the maintenance query in terms of proper ver-

sioned data according to its global id, and executes this rewritten query

upon the wrapper schema and data;

– Thereafter, the ShadowWrapper returns the query result to the DWMS.

• When a DWMS Transaction is committed in the DW, the corresponding ver-

sion data will be cleaned up by the ShadowWrapper.

Integrated with the ShadowWrapper, the maintenance steps for each update in

TxnWrap can now be characterized as follows:

2We illustrate a running example of ShadowWrapper version management in Section 3.1.1.
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• w(ISi)w(Wrapperi)r(IS1)r(IS2)...r(ISn)w(DW )

Here w(Wrapperi) generates the versioned data in the wrapper indexed by its global

id i, and r(ISi) (1 ≤ i ≤ n) now refers to a read of the corresponding versioned

data from the wrapper using its global id rather than directly accessing the remote

(non-versioned) ISi.

Thus, we have the formal representation of maintenance task in TxnWrap in

term of typical read/write operations. In the following chapter, we first will make

use of such representation to analyze the relationship (conflicts of read/write critical

resource) between maintenance tasks, then propose solution strategies for parallel

data warehouse maintenance.
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Chapter 3

A Transactional Approach to

Parallel DW Maintenance

Like other DW maintenance algorithms in the literature [33, 31], TxnWrap uses a

sequential processing model for the DW maintenance process. This restricts the

system performance. That is, only after the current DWMS Transaction mainte-

nance process has been committed, would the handling of the next one begin. Fur-

thermore, in the propagation step of each DWMS Transaction, the DWMS issues

maintenance queries one by one to each ISi and collects the results [1]. Thus only

one IS is being utilized at a time in the maintenance propagation phase. In a dis-

tributed environment, the overhead of such remote queries is typically high involving

both network delay and IO costs at the respective ISi. If we could interleave the

execution of different DWMS Transaction maintenance processes, we would reduce

the total network delay, and possibly also keep all ISs busy. This way, the overall

performance would improve. We choose TxnWrap as the base system to propose

our parallel schedulers. There are two reasons behind this. First, the transactional

approach that TxnWrap has taken provides us with a formal way to analyze the
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conflicts that exist due to execution of different update maintenance processes in

parallel. Second, a multi-version concurrency control strategy in TxnWrap further

simplifies the processing logic of parallel maintenances. In the following sections, we

first introduce the concept of local id to make the version and DWMS Transaction

management more flexible, then we describe our proposed solution strategies which

can be applied in different situations. Finally, we provide some design and imple-

mentation issues and the corresponding experimental studies .

3.1 Towards Flexible DWMS Transaction

Management

Using a global id in TxnWrap to track IS updates restricts the flexibility of scheduling

DWMS Transactions because it tightly binds the version management in the IS

wrapper with the overall maintenance task of the DWMS server. Furthermore, the

global id would have to be issued by a global id-server in the DWMS to assure

its uniqueness in the overall data warehousing system. We relax this binding by

introducing a local id for version management in the wrapper and a TxnID to

manage DWMS Transactions in the DWMS, as described below.

3.1.1 Version Management using Local Identifier

We define a local id to be a timestamp that represents the time the update happened

in the respective IS. Without loss of generality, we use an integer k (k ≥ 0) to

represent the local id. Note that local id is unique within the IS and monotonically

increasing starting from 0. Compared to the global id, there are two benefits to

using local id instead. First, the process of id generation can be performed locally

in each wrapper. Thus no longer have to communicate with the DWMS during
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version management. Second, we have to assume a global FIFO in the overall DW

system to use the global id, which is too restrictive for distributed environments.

Using of local ids would relax this restriction of the global FIFO assumption 1.

Figures 3.1 and 3.2 illustrate the version management in the wrapper using local

ids. As an example, the IS1 wrapper in Figure 3.1 contains the data of relation R as

well as the related meta information. The IS2 wrapper stores the same for relation

S.
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Two additional attributes #min and #max in the wrapper denote the lifetime of

each tuple. #min denotes the beginning of the life of the tuple (by insertion) while

#max denotes the end of the life of the tuple (by deletion). The value of #min

and of #max of an updated tuple are set by the corresponding DWMS Transaction

using its local id in the Report phase. Assume in Figure 3.1, DU1 : Insert(3, 5, 5)

and DU2 : Delete(5, 8, 7) happened in IS1. Then in the IS1 Wrapper, one tuple

(3,5,5) is inserted, which is depicted in Figure 3.2. Its [#min, #max] value is set to

[1,∞]. This means that the lifetime of this tuple starts from the timestamp 1. Next,

1A running example of relaxing the global FIFO assumption is illustrated in Section 3.2.3.2.
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the tuple (5,8,7) is deleted. Its [#min, #max] value is thus changed from [0,∞] to

[0,2]. This means that this tuple becomes invisible after timestamp 2. A similar

process happens to the IS2 Wrapper when DU1 : Insert(5, 9, 58) is committed in

the IS2. From a transaction point of view, the local id serves as the version write

timestamp for the given IS update.

3.1.2 DWMS Transaction Management using TxnID

In the global DWMS environment, we still need identifiers to track each DWMS transaction,

and to construct correct maintenance queries that access the appropriate versions

of data in each wrapper.

Definition 2 A TxnID τ is a vector timestamp, τ = [k1 . . . ki · · · kn] with τ [i] =

ki, that concatenates the current local id ki of each ISi (the largest local id that has

been assigned thus far) when this TxnID is generated. n is the number of ISs and

0 ≤ i ≤ n.

While the local ids in each ISs may be the same, the TxnIDs are globally unique.

From the view point of the DWMS, each entry of the TxnID vector records the

current state of each IS on arrival of the IS update. As an example, assume

three updates happened in the two ISs depicted in Figure 3.1 and 3.2, IS1:DU1,

IS1:DU2 and IS2:DU1. Suppose they arrive at the DWMS in the following order,

IS1:DU1,IS2:DU1, and then IS1:DU2, then their TxnIDs will be [1,0], [1,1] and

[2,1] respectively. We assume that the initial local ids are all 0 and no other updates

happened before.

The TxnID serves a dual purpose: one is to uniquely identify each DWMS Transaction

in the global environment and the other is to record the underlying ISs’ states in

terms of timestamps when this update is reported to the DWMS. We know that
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the maintenance queries are all IS specific. Thus, it is now possible to identify the

right versioned data in the wrapper with the help of its TxnID. The following is

a simple example illustrating the use of TxnID in maintenance query generation.

Assume as in Figure 3.1, a data update IS1:DU1 “Insert(3,5,5)” in IS1 is reported

to the DWMS first. Then we assign TxnID [1,0] to IS1:DU1. To maintain this up-

date, we will issue a maintenance query “Q1: Select S.C, S.D From S Where S.C=5

and S.E>50” to IS2. Based on TxnID [1,0], we know that this maintenance query

should see the timestamp 0 of IS2. Thus we rewrite the Q1 into Q′
1: “Select S.C,

S.D From S Where S.C=5 and S.E>5 and (#min≤ 0 and #max > 0) ”. Thus,

even though another update DU1:IS2 has already happened in IS2, its effect can

easily be excluded from Q′
1 because of the timestamps recorded in its TxnID and

the #min and #max values of each tuple in the wrapper.

3.2 Parallel Maintenance Scheduler

3.2.1 Parallel Architecture

Figure 3.3 describes the overall architecture of the TxnWrap system, with our pro-

posed extension for parallel scheduling (the Parallel Scheduler and the Commit

Controller 2). The maintenance process flow of each DWMS Transaction can be

described as follows. The Parallel Scheduler keeps fetching updates from the UMQ

(a queue containing updates reported from ISs waiting to be maintained), checks

whether system resources are available for maintenance processing and then verifies

what conflicts related to this update exist to decide when to start the maintenance.

More specifically, if this is a data update, then it is sent to the View Maintenance

(VM) module, which is responsible for generating maintenance queries, sending

2The detailed descriptions of the TxnWrap structure can be found in [5].
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these queries to the wrapper, and collecting maintenance results. If this is a schema

change, then it first is sent to the View Synchronization (VS) module to find a

suitable replacement for any schema element in the view definition that has been

deleted. Then VS updates the affected view definitions. If necessary, the View

Adaptation (VA) module calculates the delta changes to the DW extent. After

that, VM or VA submit the final result to the Commit Controller module. Based

on the commit strategy, the Commit Controller will push the result to the DW. The

Parallel Scheduler also analyzes waiting DWMS Transactions in UMQ to identify

possible constraints (in terms of read/write critical resources) and then generate a

serializable schedule for a set of DWMS Transactions.

3.2.2 Aggressive Scheduler for

Data Update Only Environments

First, we study a direct extension of the serial scheduler and find that this is

only suitable for data update only environments. As we stated in Section 2.2.2,

one data update DWMS Transaction maintenance process can be represented as
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r(V D)r(IS1)r(IS2) · · · r(ISn)w(DW ). The ShadowWrapper algorithm guarantees

that each r(ISi) operation can easily identify the right versioned data using the local

ids recorded in the TxnID for that respective IS. So, there will be no read block be-

tween DWMS Transaction maintenance processes assuming that the versioned data

is generated before any of the corresponding version read operations. In TxnWrap,

this condition is always true because a DWMS Transaction is created only after the

local DBMS transaction has been committed and reported to the DWMS. The later

is clearly after the w(Wrapper) operation which recorded the update in the form of

properly versioned data in the respective wrapper.

Borrowing traditional concurrency control concepts [3], an aggressive sched-

uler for data update only environments is straightforward. That is, we can start

the DWMS Transaction maintenance processes for each data update almost at

the same time as long as sufficient computational resources are available in the

DWMS server 3 because there is no read/write conflicts in the Propagation step of

DWMS Transactions.

3.2.3 Scheduling in a Mixed Data Update and

Schema Change Environment

However, more issues must be dealt with if we take schema changes into considera-

tion. First, we briefly review how schema changes are maintained [17, 6]. There are

three steps for maintaining a schema change:

• Determine which views in the DW are affected by the change. [(r(VD)]

• For each affected view:

3Detailed explanation and its correctness proof are presented in [19].
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– Find the suitable replacement for schema elements removed from the

view definitions via operations such as drop relation or drop attribute

and rewrite the view definition in the DW if needed. [w(VD)]

– Calculate the delta changes in term of data tuples to be added or to

be deleted due to the replacement between the old and the new view

definition and adapt the DW by committing these delta changes to the

DW using the VA algorithm. [r(V D)r(IS1)r(IS2) · · · r(ISn)]

As can be seen, reading the VD to calculate the affected views occurs in step

1, while rewriting the VD may be required in step 2. In step 3, we read the VD

again to generate the maintenance queries. Thus, the view definition (VD) of the

DW represents a critical resource and the following sequence of operations occurs

during SC maintenance: r(VD)w(VD)r(VD).

Putting it all together, one schema change DWMS Transaction maintenance

process can be represented as r(VD)w(VD)r(VD)r(IS1)r(IS2)· · ·r(ISn)w(DW ).

Thus, if more than one schema change DWMS Transactions exist in the UMQ, we

can’t interleave their executions randomly because of the r(VD)/w(VD) conflicts

in these different transactions. In theory, it is possible that we could maintain

schema changes in parallel, for example, using either a lock-based or multi-version [3]

algorithm to control the concurrency of the view definition (VD), a shared resource.

But the resulting control strategy would be more complicated and the likelihood of

a major performance gain is low since schema changes don’t occur that frequently.

Thus, for simplicity of the control strategy, we propose to schedule schema changes

sequentially.

Now, we examine the DWMS Transactions in the case of a mixture of data

updates and schema changes. For the data update maintenance, we need to read the

view definition to break down the maintenance queries, denoted by r(VD). While for
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schema change maintenance, the following sequence occurs, r(V D)w(V D)r(V D).

Thus, all combinations of the read/write conflicts of VD exist in updates between

two schema changes, and also between one schema change and many data updates.

Hence, our parallel maintenance scheduler has to consider all these constraints.

3.2.3.1 TxnID-Order-Driven Scheduler

In a DWMS Transaction environment, we need to keep the assumption of FIFO

for updates which come from the same information source, otherwise certain up-

dates wouldn’t be correctly maintained. For example, two updates “DU1: Insert

into A(1,2,3)” and “DU2: Delete (1,2,3) from A” happened in the same IS in this

order, we should maintain DU1 before DU2 in the DWMS. If not, it is possible that

the maintenance result of DU2 couldn’t be refreshed in the DW because the corre-

sponding tuple isn’t in the DW yet. Thus, we can’t reorder DWMS Transactions

randomly. Secondly, once we assign the corresponding TxnID (timestamps) to each

update, more ordering restrictions need to be imposed. That is, we can’t randomly

reorder these DWMS Transactions in the scheduler even if these updates come from

different ISs, otherwise the maintenance result may also be inconsistent with the

IS state. To explain this, we first define the TxnID order as follows. Assume two

TxnIDs τj and τk, τj < τk ⇐⇒ ∀i, 1 ≤ i ≤ n (n is the size of TxnID vector)

τj[i] < τk[i].

Observation 1 Once we have assigned TxnIDs to updates in a mixed data updates

and schema changes environment, then parallel scheduling of these updates needs to

keep their TxnID order.

The following example illustrates this ordering restriction.

Example 1 As depicted in Figure 3.4, assume two updates from two different ISs,

one is the schema change “SC1: drop table R” in IS1, and the other is the data
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update “DU1: insert into R1(3, 8, 4)” in IS3. We also assume that the view definition

V before the updates is
∏

(A,C,D)(R �� S). After we drop relation R in IS1, the system

will find R1 in IS3 as a replacement and the new view V ′ will be
∏

(A,C,D)(R1 �� S).

So, if we assign TxnIDs [1, 0, 0] and [1, 0, 1] to these two updates when they come
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Figure 3.4: Example of Scheduling Order Restriction.

to the UMQ. This means that the schema change “drop table R” has arrived at

the DWMS first, and the data update “insert into R1” arrived second. If these two

updates are being maintained correctly, then the final schema in data warehouse will

be V ′, and its content is (1, 4, 3), (3, 8, 3). But if the parallel maintenance scheduler

schedules [1, 0, 1] before [1, 0, 0], that is, no changes to the DW extent because R1 is

not in the view definition V yet. While for update [1, 0, 0], the DWMS can’t see the

data update because the TxnID tells us that when the DWMS maintains this update,

it can only see the state 0 in IS3. State 0 is the state before DU1 happened in IS3.

So, the final result in the data warehouse will be V ′, and its content will be (1, 4, 3).

That is, the maintenance result of DU1 will be lost. In short, we can’t simply change

the scheduling order for these two updates.

Based on the above analysis, we propose the following basic TxnID-Order-Driven

scheduler:
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1. Start DWMS Transaction maintenance processes based on their TxnID order.

2. Start schema change maintenance only if all the previous data updates and

schema changes maintenance processes have been committed.

3. Block all the subsequent schema changes and data updates once a schema

change is being processed.

DU DU DU SC DU DU SC DU …

T1
T2
T3
T4
…

time

Figure 3.5: Scheduling Example of Basic TxnID-Order-Driven Algorithm.

A sample execution plan is depicted in Figure 3.5. DU and SC each stands for

their corresponding DWMS Transaction maintenance process. For space limitations,

the detailed control procedures of this scheduler are omitted.

Additional improvements are possible. We don’t have to fully block all the

subsequent data updates while a schema change is being processed. That is, we

could only synchronize the VS part of a schema change (the w(VD) operation), while

the scheduler continues to analyze the following updates. If it is a data update,

then the scheduler could start maintaining it. If it is a schema change, then the

scheduler would continue to keep waiting until the previous schema change has

been committed. Figure 3.6 depicts an example of this improved scheduling plan.

The limitation of this algorithm is that once we assign the TxnIDs based on the

arrival order of updates at the DWMS, we then have to keep this order in scheduling.

That is, all the following data updates in the UMQ have to wait for the previous
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schema change to finish its VS part. Below, we thus develop a dynamic scheduler

that relaxes this ordering constraint.

DU DU DU SC DU DU SC DU …

T1
T2
T3
T4
…

time

Figure 3.6: Scheduling Example of Improved TxnID-Order-Driven Algorithm.

3.2.3.2 Dynamic TxnID Scheduler

To have a more flexible scheduler, we first need to determine if it is possible to

change the scheduling order of updates in the UMQ while still keeping the DW

consistent in a mixed data update and schema change environment.

Observation 2 The arrival order of updates at the DWMS doesn’t affect the DW

maintenance correctness as long as these updates come from different ISs.

We provide the following as an argument supporting the above observation. Without

loss of generality, we define the view in the DW as V = Ai �� Aj �� A, where A is

an abbreviation of the join of possibly multiple relations. Assume there are changes

�Ai in Ai and �Aj in Aj independently.

• if �Ai arrives at the DWMS before �Aj, then the final change to the DW

should be �V = �Ai �� Aj �� A + (Ai +�Ai) �� �Aj �� A.

• if �Aj arrives at the DWMS before �Ai, then the final change to the DW

should be �V ′ = Ai �� �Aj �� A+�Ai �� (Aj +�Aj) �� A.
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As you can see, �V = �V ′. So, the maintenance result should always be the same

even if these two updates come to the DWMS in a different order. The assumption

is that we can read the right version of the data during the maintenance process.

Compared to the example in Figure 3.4, the difference is that we now delay the

assignment of the TxnID to the update until the time of scheduling. This way, the

DWMS can see the correct version of the data.

This observation gives us the hint that we should be able to exchange the schedul-

ing order of updates in the UMQ that come from different ISs as long as we assign

the corresponding TxnIDs dynamically. That is, if a schema change arrives, we

can postpone its maintenance process, and go on maintaining the following data

updates, as long as these data updates come from different ISs than the IS to which

the schema change belongs to. This may give us some increased performance be-

cause less data updates would be waiting for scheduling. Also, the schema change

maintenance is probably more time consuming, so it is reasonable we postpone its

maintenance while letting the following data updates, which have a light overhead,

be maintained first. Figure 3.7 is an example of the Dynamic TxnID scheduler exe-

cution plan. Here, we assume that we generate a TxnID for each update only when

we are ready to schedule it.

DU DU DU SC DU DU SC DU …

T1
T2
T3
T4
…

time

Figure 3.7: Scheduling Example of Dynamic TxnID Scheduler.
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3.2.4 DW Commit and Consistency

Even if each individual data update is being maintained correctly, the final DW state

after committing these effects may still be inconsistent. This Variant DW Commit

Order problem in a data update only environment has been addressed in [32]. Not

surprisingly, this problem also exists in the mixed data update and schema change

environment. Let’s examine the following example to illustrate this problem.

Example 2 Assume the following update sequence in the UMQ: DU,DU,SC,DU,DU,SC,. . .

• The commit problem between the DUs is the same as in [32].

• Based on our parallel scheduler, no commit problem between < DU, SC > and

< SC, SC > sequences can arise because of the ordering constraint we add

into our scheduler.

• For the sequence < SC,DU >, its commit problem is also the same as what

has been addressed in [32] because we only start DUs after the previous SC

finishes its VS part.

That is, we can apply the same commit control strategy used in the data update

only environments also to our mixed data update and schema change environments.

However, the easiest control strategy is a strict commit order control. That is,

only after we commit all the previous updates’ effects, could we begin committing

the current delta changes to the DW. If every DWMS Transaction contains only one

IS transaction, then this solution will achieve complete consistency [34].

3.3 Design and Implementation Issues

We implemented our parallel maintenance scheduler and incorporated it into the

existing TxnWrap system developed by the Database Systems Research Group at
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WPI. We use Java threads to encapsulate the DWMS Transaction maintenance of

the updates and correspondingly interleave the executions of these threads. That

is, we impose no constraints on data updates’ maintenance threads while we have

related threads wait whenever a schema change maintenance thread is running.

Figure 3.8 shows the abstract view of the parallel scheduler in the TxnWrap system

extracted from Figure 3.3.

UMQ

Parallel
Scheduler

Commit Controller

VM VS VA

Query Engine

Wrapper

Data Warehouse

Legend

Module

Queue

Data
Flow

DU Maintenance
Thread

SC Maintenance
Thread

Threads Scheduler

Figure 3.8: Implementation View of Parallel TxnWrap.

A parallel scheduler in the DU only environment is straightforward to implement

because there is no constraint (no read block between DWMS Transactions) between

threads. Here we briefly introduce how the improved TxnID-Order-Driven scheduler

in a mixed DU and SC environment be implemented in the system. We have four

variables to control the ordering constraint we addressed in Section 3.2.3.1.

• latest started id. To control the start sequence of updates.

• latest completedSC id. To control the sequential order when we execute SCs.

• ongoing SC id. To control the maintenance of the DUs after one SC could be

started only this SC has completed its VS part or no SC is running.

33



• latest committed id. To control the commit sequence of updates to make sure

that SC could only starts its maintenance when all previous DUs have been

committed.

Logically, we need to assign every SC an individual ID to identify the sequence of

schema changes, we call it a SC id. And for all updates, we use its TxnID as the

global id. Figure 3.9 depicts the control strategies implemented in the improved

Fix-Order Scheduler.

If it is a DU { 
1. Check latest_started_id
2. Wait until there is no update still waiting 

before this.  
3. Check ongoing_SC_id
4. Wait until global_id < ongoing_SC_id or 

ongoing_SC_id = -1  (no SC is running now) 
5. Start DU maintenance.

} 
If it is a SC { 

1. Check latest_completedSC_id 
2. Wait until no SC is still waiting  before this
3. Check latest_commited_id 
4. Wait until no update is still waiting for 

committing before this. 
5. Start SC maintenance.

}

Inside Thread

[Latest_started_id] 
If it is a DU, then set latest_started_id = this 
global_id after we start to read VD.
If it is a SC, then set latest_started_id = this 
global_id after we start to update the VD 
[latest_completedSC_id]
Set latest_completedSC_id = this SC_id after we 
finish VS part (in theory) 
[ongoing_SC_id] 
Set ongoing_SC_id = this global_id when we start 
SC maintenance; 
Set ongoing_SC_id = -1 after we finish VS part.

Other Related Controls

While threads available {
1. Get an update from UMQ and assign TxnID
2. If it is SC, then assign a SC_id
3. Build a thread for this update, and start it

} Or wait until threads are available.

Main Control

Figure 3.9: Control Strategies in Improved TxnID-Order-Driven Scheduler.

3.4 Performance Studies

3.4.1 Experimentatl Environment

Our experimental environment uses a local network and four machines (Pentium III

PC with 256M memory, running Windows NT workstation OS and Oracle 8.1.6.0.0
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Server). Three of them serve as Database (DB) servers and the fourth as the DWMS

server. Each DB server contains several IS relations. Typically, there is one mate-

rialized join view defined in the DWMS machine over all IS relations.

We measure the performance of DWMS Transaction maintenance for a set of up-

dates. The processing time is composed of three categories. Query-Time describes

the time span between the DB server receiving the query request and the DB server

returning the desired results. Network-Delay is the time span between the DWMS

sending out the maintenance query and the underlying IS (the DB server) receiving

the query request. This is fairly small in a local network such as ours. CPU-Time

is the time spent in the DWMS to generate maintenance queries, collect results

and other miscellaneous scheduling overhead. In our experimental environment, the

CPU overhead can’t be reduced much because we use single CPU machines.

3.4.2 Aggressive Scheduler Experiments

The goal of this first experiment is to measure the effect of changing the number

of threads on the total processing time (Figure 3.10). We set up nine sources and

one view defined as a join of these nine ISs. These ISs are evenly distributed over

three DB servers located on different machines. Each IS has two attributes and 1000

tuples. We use 100 concurrent data updates as our sample. The x-axis denotes the

number of parallel threads in the system, with S denoting the serial scheduler while

the y-axis represents the total time of processing 100 concurrent data updates.

In Figure 3.10, if we only use one thread, then the total processing time is

slightly higher than the serial one. This is due to the overhead of the parallel

maintenance scheduler logic and thread management. Around thread number 5, the

total processing time reaches its minimal. If we further increase the thread number,

the processing time will be stable. This can be explained by possible additional
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Figure 3.10: Change the Number of Threads.

system overhead such as the maintenance queries processed by ISs are blocked by

each other at every IS because the query capability of each IS is limited.

The maximum percentage of performance improvement in this scenario is around

53%. We note that the CPU overhead can’t be fully reduced by our multi-threading

solution because we use a one-CPU DWMS server. The network delay in a local

network environment is typical less than 1ms, so the total Network-Delay in the

maintenance process is very small. The Query-Time is also relatively small in our

environments. Thus, the Query-Time and Network Delay, which are the two tasks

that are parallelized, are too small in the total processing time. For this reason, an

improvement linear in the thread number is not achieved.

For the second experiment, we change the number of tuples in each IS to mea-

sure the effect of increasing the Query-Time of each maintenance query on system

performance. We set up six sources while the other settings are the same with

Experiment 1. We change the number of tuples in each IS from 1000 to 50000.

From Figure 3.11, we see that if we increase the number of tuples in each IS,

the total processing time increases. This is as expected. Also, the improvement

percentage is increased slightly, from around 50% to around 53%. This can be

explained by the fact that the percentage of the Query-Time in the total processing
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Figure 3.11: Change the Number of Tuples in Each IS.

time also increased, which in turn is partly parallelized. So the performance gain

increases correspondingly.
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Figure 3.12: Change the Network-Delay in Each Maintenance Query.

The goal of the third experiment is to measure the effect of changing the Network-

Delay. It is similar to experiment 2 except each IS has 1000 tuples. We list the

performance changes in Figure 3.12 from no network-delay to 100ms and then 200ms.

From Figure 3.12, we see that the larger the network delay, the more performance

improvement is being achieved. Clearly, we can fully make use of the network delay

in the parallel scheduler.
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3.4.3 Experiments with Mixed Data and Schema Changes

Scenarios

This experiment measures the effect of changing the number of schema changes on

the performance of the improved TxnID-Order-Driven Scheduler. We use six sources

and the view is defined on three of them. Each IS has two attributes and 10000

tuples. We use 100 concurrent data updates and change the number of schema

changes from 0 to 3.
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Figure 3.13: Change the Number of Schema Changes.

From Figure 3.13, we see that the total processing time increases if we add more

schema changes because a schema change maintenance is much more time consuming

than that of a data update. Furthermore, if we add more schema changes, the

maximum improvement achieved by the scheduler will decrease because we can’t

fully maintain schema changes in parallel and all the subsequent data updates have

to wait until the present schema change has finished its VS. If we increase the

number of parallel threads, the total processing time also increases a little. This is

due to the extra overhead on the commit controller caused by an increase in updates

waiting to be committed.
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Chapter 4

Batch Data Warehouse

Maintenance

Another possible data warehouse maintenance optimization strategy is batch pro-

cessing. That is, instead of processing one source update at a time each in a separate

dedicated maintenance process, we can group several source updates together and

try to maintain all of these updates as one data warehouse maintenance process.

This way, the total maintenance performance for a given set of source updates is

likely to improve.

There are two new issues of batch processing in a dynamic environment in which

both concurrent data updates and schema changes are present. The first one is that

we need to determine how to batch both schema changes and data updates at the

same time. The second one is that we need to conduct batch processing in a con-

current update environment. In the following sections, we first provide the overall

steps of our solutions and the algorithms for batch processing in such an environ-

ment. That is, given a sequence of source updates that need to be maintained, we

first group these updates based on the source relation that they have occurred on.
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Then for those schema changes that affect the data warehouse view definition, the

necessary view evolution will be conducted. After that, view adaptation algorithms

will adapt the view extent to make the data warehouse consistent.

4.1 Preprocessing Source Updates

If there is a sequence of source updates in the data warehouse that need to be

maintained, we first partition these updates based on the source relations that they

come from. There are two types of source updates in a dynamic environment. Thus

we can further group the updates from the same source relation into two subgroups,

one is for schema changes and the other is for data updates. Given a sequence of

updates to one relation Ri, we define two subsequences as follows. < SCi > denotes

the collection of all schema changes to Ri, while < DUi > denotes the collection of

all data updates. We keep the same order in subsequences as they appear in the

original one because the order of updates coming from the same source will affect the

result of view maintenance. Notice that the schema changes from the same relation

can sometimes be combined. For example, if rename A to B and followed by rename

B to C occur to the same relation, we could simply rename A to C. Also note that,

the data updates may be inconsistent with their schema due to some schema changes

occurring in between two data updates. For example, given two tuple inserts into

the same relation with a drop attribute schema change in between, then these two

tuple inserts will have different schemata. Thus we have to preprocess these updates

for each relation to adjust these differences and to enable us to maintain them in

batch processing.
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4.1.1 Combine Schema Changes

For schema changes defined in < SCi > from source Ri, we want to combine these

schema changes in < SCi > as much as possible to get an equivalent sequence with

the minimal number of schema changes. This would optimize our later data ware-

house schema change processing, because those removed individual schema changes

could then be ignored.

Table 4.1 shows all possible combinations between two SCs (SC1, SC2) with SC1

the row entry and SC2 the column entry. If the entry at the position T[SC1, SC2]

in Table 4.1 is empty, then this means that the combination of the two operations

SC1 followed by SC2 has no effect on each other. Hence the combined result will

keep both of them. Note that there is no schema changes could happen after a

“drop relation” operation because all the schema changes are occurred on the same

relation.

S → T drop S b→ c drop b drop Condc

R→ S R→ T drop R - - -
a→ b - - a→ c drop a -
Legend: Capital letter (e.g., R, S, T) represents relation, lower case letter (e.g., a, b, c) represents attribute.

Table 4.1: Combination Rules between Two SCs

Notice that we don’t consider add attribute or relation here, because neither will

affect the data warehouse view definition. Finally we define < SC ′
i > by combining

the schema changes in < SCi > pairwise using the rules above.

4.1.2 Combine Data Updates

We then try to calculate the effect of data updates in subsequence < DUi >. Notice

that the data updates before a schema change may have different schemata with

the data updates after due to the schema change in between. Thus we can’t simply
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group them together. To group these data updates, we define < DU ′
i >=

Πattr(Ri)∩attr(R′
i)
< DUi >. That is, we project on the common attributes of both

the original relation Ri and its new state R′
i which is Ri after incorporating all

these updates. These common attributes are actually the attributes of Ri minus the

dropped ones.

The purpose of this projection is to remove all attributes that are not related to

the final data warehouse view at the end of the batch and thus to make the data

updates in < DUi > all schemata consistent. We justify this below.

Lemma 1 Πattr(R′
i)∩attr(Ri) contains all the attributes related to view definition.

This is obvious since either dropped or added attributes will not appear in the new

view definition.

Lemma 2 Suppose a view V = Ri � RA, where Ri is a single relation and RA is

an abbreviation of the join from R1 � · · · � Ri−1 � Ri+1 � · · · � Rn. We have

Πattr(R′
i)∩attr(Ri) < DU ′

i >� RA = Πattr(R′
i)∩attr(Ri) < DUi >� RA.

Proof:

Πattr(R′
i)∩attr(Ri) < DU ′

i >� RA = Πattr(R′
i)∩attr(Ri)(Πattr(Ri)∩attr(R′

i)
< DUi >) � RA

= Πattr(R′
i)∩attr(Ri) < DUi >� RA.

This lemma proves that the projected data updates have the same effect on DW

view maintenance as the original ones. Thus the projection is correct in terms of

DW maintenance.

Lemma 3 All < DU ′
i > have the same schemata.

Proof: We prove this by contradiction. Suppose that one tuple r contains one

more attribute than another tuple s. This extra attribute must be either an added
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attribute in r or a dropped attribute in s. Note that the added attribute would

only appear in the new state of relation R′
i, while the dropped attribute will only

appear in the old state of relation Ri. Thus such attributes will not appear in

attr(R′
i)∩attr(Ri). That is, the tuples in < DU ′

i > will not contain such attributes.

Thus the assumed case will never happen. Hence all tuples in < DU ′
i > must have

the same attributes.

By the above lemmas, we can see that the projection operation is as expected.

Example 3 Assume a view V(A,B,C) defined as R1(A,B) � R2(A,C). Suppose

relation R2(A,C) has updates: DU2 = +(3,4), add attribute D, +(4,5,6), drop at-

tribute C, and -(5,7). We have R2(A,C) and R′
2(A,D) and attr(R2) ∩ attr(R′

2) =

{A}. We get < DU ′
2 >= Πattr(R2)∩attr(R′

2)
< DU2 >= {+(3),+(4),−(5)}, which are

schemata consistent.

Now let’s examine the new view definition V ′, a possible rewriting could be

V ′(A,B,C) = R1(A,B) � Πattr(R2)(R
′
2(A,D) � R3(A,C)). Since only attribute

A of R′
2 is involved in the view definition V ′, we confirm that < DU ′

2 > is sufficient

for view maintenance.

After preprocessing, we end up with two subsequences of updates < SC ′
i > and

< DU ′
i > for each source relation Ri. Note that if there is a schema change “drops

relation Ri” in < SC ′
i >, then < DU ′

i > would thus become empty because attr(R′
i)

is empty. In other words, if a relation is dropped, we won’t consider any previous

data updates from it. If there is no drop operation in < SCi >, then there would

be no change on < DUi > since attr(Ri) and attr(R′
i) are the same 1. We describe

the relationship between < SC ′
i > and < DU ′

i > as follows:

• If < SC ′
i > contains “Drop Relation Ri”, then < DU ′

i >= ∅ and

1No view adaptation is necessary for rename operation, we thus think the schema of Ri and R′
i

are the same if there are only rename schema changes existed.
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< SC ′
i > = Drop Relation Ri.

• If < SC ′
i > contains a “Drop Attribute” operation, then both < SC ′

i > and

< DU ′
i > might not be empty.

• If < SC ′
i > contains no drop operation of either kind, < DU ′

i > = < DUi >.

4.2 Evolve View Definition

For schema changes that affected the view definition in the data warehouse, view

evolution is likely to occur. View Synchronization [23, 18] is responsible of rewriting

the view definition. From preprocessing steps described above, we know that all

the schema changes are collected in < SC ′
i >. Thus, next we rewrite the view

definition using VS techniques for all schema changes in < SC ′
i >. Here we denote

the old view definition as V = R1 � R2 � ... � Rn and the new view definition as

V ′ = Rnew
1 � Rnew

2 � ... � Rnew
n .

Based on the VS description in Section 2.1.2, we have the following possible

rewritings for each relation Ri. If the updates on Ri contain drop relation, then from

the previous section we know that< SC ′
i > contains only the drop relation operation.

Thus the rewriting [23, 18] is just to find an alternative relation. If the updates

contain drop attributes, alternative attributes and additional joins are needed as

described in Section 2.1.2. If the updates don’t contain any drop operations, then it

is exactly the same with R′
i. In summary, we have each new source relation as:

Rnew
i =




Πattr(Ri)R
1
i : Drop − Rel

Πattr(Ri)(R
′
i � R1

i � R2
i ... � Rm

i ) : Drop − Attr
Πattr(Ri)R

′
i : No−DropSC

(4.1)
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The meanings of Rnew
i , R′

i and Rk
i are described in Table 2.1 in Section 2.1.2.

Here we assume a valid view rewriting exists. Otherwise the view would become

invalid and there would be no need to maintain it.

4.3 Adapt View Extent

After we finish evolving the view definition in the data warehouse based on the

schema changes in each < SC ′
i >, we also need to adapt the view extent corre-

spondingly to make the data warehouse consistent. Typically, there are two ways to

adapt the view in the data warehouse. Assume the old view definition is V = R1 �

R2 � · · · � Rn and the new view definition is V ′ = Rnew
1 � Rnew

2 � · · · � Rnew
n , V ′

incorporates all schema changes.

• Recomputation. For this, just simply recalculate the view extent based on

the new source relations.

V ′ = (Rnew
1 ) �� (Rnew

2 ) �� · · · �� (Rnew
n ). There are only n join operations (we

will use join operation and maintenance query alternatively in the following

sections) in recomputation, but the results of each query are likely very large.

Thus, unless the underlying base relations are very small, it is an undesirable

choice.

• Incremental Maintenance. That is, rather than completely recomputing

the view extent, the changes from V to V ′ are computed by making use of

Equation 4.2 and then applied the �V to the extent of V.

V ′ = (R1 +�R1) �� (R2 +�R2) �� · · · �� (Rn +�Rn) (4.2)

Depending on how you rewrite the Equation 4.2, you can get different com-
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putation formula to calculate the delta changes.

– Case 1: Split the equation using all the components in it, then you will

end up with 2n factors with each factor having n-1 join operations in it.

Thus the �V will be the summation of 2n − 1 factors with each factor

containing n-1 joins. In each factor, there is at least one �Ri, which will

make the join cost decreased greatly if we can start the join from such

relative small delta changes.

�V = (R1 �� R2 �� · · · �� �Rn) + (R1 �� R2 �� · · · �Rn−1 �� Rn) + · · ·+
(�R1 �� �R2 �� · · ·�Rn−1 �� �Rn)

– Case 2: Make use of the equation Rnew
i = Ri +�Ri with 1 ≤ i ≤ n. We

can rewrite the equation as follows:

�V = �R1 �� R2 �� · · · �� Rn

+ Rnew
1 �� �R2 �� R3 �� · · · �� Rn

+ Rnew
1 �� Rnew

2 �� · · · �� �Ri · · · �� Rn

+ · · ·
+ Rnew

1 �� Rnew
2 �� · · · �� �Rn

or

�V = �R1 �� R
new
2 �� Rnew

3 �� · · · �� Rnew
n

+ R1 �� �R2 �� R
new
3 �� · · · �� Rnew

n

+ R1 �� R2 �� · · ·�Ri · · · �� Rnew
n

+ · · ·
+ R1 �� R2 �� R3 �� · · · �� �Rn

Both of these equations only have n factors with each factor having n-1

join operations. In each factor, there is exactly one �Ri which is enough

to make the whole join operation cost of that factor small if we start the
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join operation from this �Ri.

For the first case in incremental maintenance, we can compute the delta changes

to the view extent using the delta changes of each relation Ri and only the old state

of each relation Ri (the state that before these updates happened). While for the

second case, we compute the changes using both old states Ri and the new states

Rnew
i of source relations along with their delta tables. In both cases, we divide the

whole DW maintenance task into a series of join operations. Depending on what

the underlying system is, the way to access Ri and Rnew
i is different. For example,

in a multi-version based system [3], these two states can be easily identified by

timestamps and versions. In compensation based systems [33, 31], the old state Ri

could be projected from view extent in some cases and the new state Rnew
i could be

gotten by extra conflict detection and compensation strategies.

Compared with these two cases, the second case appears more favorable in most

situations because the number of factors is much less than the first case, while each

factor in the second case is probably still small due to each factor containing one

delta changes. Typically the size of such delta changes is much smaller compared

with that of the source relation.

Thus, the last question remains for batch processing is how to calculate �Ri for

each source relation Ri so that it incorporates the effect of < DU ′
i >. We define the

following formula to calculate the delta changes for each source:

�Ri =





∏
attr(Ri)(R

1
i )− Ri : Drop − Rel∏

attr(Ri)(R
′
i �� R

1
i �� · · · �� Rm

i )− Ri : Drop − Attr∏
attr(Ri)(R

′
i)− Ri : No−DropSC

Thus, if no drop schema operation appears, then the change to the original

relation is the summation of data updates. That is, ∆Ri =
∏

attr(Ri)(R
′
i)− Ri
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=< DU ′
i >. If there is a schema change “drop relation” operation, then we know

that the < DU ′
i > is empty. This means that the data updates that happen before

the ‘drop relation’ have no effect on the data warehouse maintenance. However,

if the schema changes contain “drop attribute” operations, notice that < DU ′
i >

might not be empty. We now prove that < DU ′
i > has already been incorporated

into ∆Ri = Πattr(Ri)(R
′
i � R1

i � R2
i ... � Rm

i )− Ri.

Lemma 4 Π(attr(Ri)∩attr(R′
i))

(R′
i) = Π(attr(Ri)∩attr(R′

i))
Ri +Π(attr(Ri)∩attr(R′

i)
< DU ′

i > .

This lemma is intuitively true. Because < DU ′
i > are from Ri and the final state

is R′
i.

Theorem 1 Πattr(Ri)(R
′
i � R1

i � R2
i ... � Rm

i ) has taken the < DU ′
i > into consid-

eration.

We have Π(attr(Ri)∩attr(R′
i))

(R′
i � R1

i � R2
i ... � Rm

i ) = Π(attr(Ri)∩attr(R′
i))

(Ri � R1
i �

R2
i ... � Rm

i ) + Π(attr(Ri)∩attr(R′
i))
< DU ′

i >� R1
i � R2

i ... � Rm
i by Lemma 4. The

latter is the delta effect of < DU ′
i >. Thus Theorem 1 is proven.

Thus, we can conclude that after we adapt the view extent using �Ri of each

source Ri, we get the correct maintenance as well as adaptation result.

4.4 Optimize Number of Operations

From Section 4.3, we can see that a trade-off exists between the number of factors

(join operations) and the operator size of each join operation in maintenance. In

recomputation, there is only 1 factor with n-1 join operations, but the size of each

in the join operation is typically large. This would will make it very costly. In

the second case of incremental maintenance, there are n factors with each factor

containing one delta change. This delta will typically decrease the result size of
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each factor. While in the first case of incremental maintenance, the result size of

each factor could be even smaller because each factor is likely to have more than one

delta changes. But the total number of factors will up to 2n − 1. In a distributed

environment, the cost of remote queries is typically high. Thus if we can reduce the

number of join operations and also try to keep the result size of each factor relatively

small, good DW maintenance performance is likely to be achieved.

If we omit the join operators in the ∆V computation in Equation 4.3, the formula

can be rewritten as a matrix, as depicted in Figure 4.1.

∆Rn…R4
newR3

newR2
newR1

new

Rn……………

Rn…∆R4R3
newR2

newR1
new

Rn…R4∆R3R2
newR1

new

Rn…R4R3∆R2R1
new

Rn…R4R3R2∆R1

Figure 4.1: Group Delta Tables.

Seen from Figure 4.1, Row 1 and Row 2 have the common elements from R3 to

Rn, Row 1, Row 2 and Row 3 have the common elements from R4 to Rn, and so on.

So, if we can make use of theses common join operations in calculating the Equation

4.3, then we can further reduce the total number of join operations.

We call the matrix defined in Figure 4.1 the Join-Matrix with size n. A Group-

Join is the summation of join operations along the diagonal of the Join-Matrix. The

size of the Group-Join is the number of the summation operations. A Share-Join is

the common join operations that exist in different rows in a Join-Matrix. As depicted

in the figure, if we select the size of Group-Join k=2, that means we will partition

all these rows by 2 2. So, �R1 �� R2 +Rnew
1 �� �R2 is one of the Group-Join in the

2It is possible to partition these operations unevenly. For simplicity, we only analyze the
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matrix. Its Share-Join is R3 �� R4 �� · · · �� Rn. The �R3 �� R4 + Rnew
3 �� �R4 is

the second Group-Join while Rnew
1 �� Rnew

2 and R5 �� · · · �� Rn are its corresponding

Share-Joins, and so on. If we increase Group-Join size k, then the join operation

numbers of each Share-Joins will decrease.

Based on the Join-Matrix, we can roughly estimate its performance. We omit

the cost differences between different relations, and simply use ψ(n) to denote the

total cost of calculating the join of n relations. With the Group-Join size is k, then

the calculation cost will be

�n
k
 ∗ k ∗ ψ(k − 1) + ψ(n− k) +� with � = [n− �n

k
 ∗ k] ∗ ψ(n− 1)

� includes the factors left for the n that can’t be divided by k 3.

Thus, if we only optimize for the number of join operations to be calculated,

then ψ(n)=n. That is, the cost measure will be

�n
k
 ∗ k ∗ (k − 1) + (n− k) +�

By simple calculation, we can know when k is around
√
n, then the cost will reach

its minimal.

However, the real calculation cost of these operations is more than the number of

join operations. It also depends on the base relations, the delta tables, the previous

join result and also the DW environments such as network delay in distributed

environment, view definition of the DW, etc. Thus the optimized group size will

differ in different situations. However, given a specific data warehouse environment,

we can estimate such point via some experimental data.

situation that operations are evenly partitioned by a given k in this thesis.
3We can recursively apply the Group-Join to reduce the cost in calculating the leftovers
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4.5 Implemented Batch DW Maintenance Archi-

tecture

The proposed batch processing can be applied to different DW maintenance sys-

tems. Here we choose TxnWrap [5] as our base system to implement the batch DW

maintenance system. The reason is that TxnWrap uses a multiversion concurrency

strategy, thus we can easily access the old state of each relation Ri before all up-

dates have happened and the new state Rnew
i which exactly incorporates the effect

of these updates from the versioned data. Furthermore the transactional approach

that TxnWrap system used would make the concurrency control strategy of batch

maintenance easier. We could apply the same processing logic to a compensation-

based view maintenance system such as DyDa [31]. However, the corresponding

concurrent update detection and handling strategies will be more complex. Figure

4.2 gives a high-level view of the batch maintenance system architecture.

VM

…
IS1

Wrapper

Query Engine (QE)

DW
Legend:

DB

Module

UMQ

Data
Flow

Version

VA VS

ISn

Wrapper

Batch Control Calc DeltaUMQ

Figure 4.2: Batch DW Maintenance Architecture.

We plug two modules into TxnWrap framework. One is Batch Control, which

is responsible for controlling the overall batch maintenance process. The other

is Calculate Delta Changes, which takes care of grouping updates together and
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generating delta table for each corresponding relation. We also extend some of the

exist modules such as VS and VA by plugging some new functions to support the

batch processing requirements. The whole batch maintenance process flow can be

described as follows. The Batch Control module keeps fetching the updates from

the UMQ (which contains all the updates that have been reported from ISs). If a

certain criteria is reached, such as the time has been elapsed since the last batch

processing or a number of updates have been accumulated. Then Batch Control

module triggers the batch maintenance processing by sending all these updates to the

Calculate Delta Changes module. Three processes are involved in this module. First,

it groups updates based on the relations where these updates happened. Second, it

evolves the view definition of the DW if there are related schema changes by calling

functions in the VS module. Third, it calculates delta changes for each IS using the

proposed algorithms. After that, Batch Control sends these delta tables to VM/VA

to maintain or adapt the DW extent using the maintenance algorithms we proposed

in Section 4.3.

4.6 Performance Studies

We have implemented our batch DW maintenance system based on the TxnWrap.

We compare the total processing time of maintaining a certain number of source

updates using batch processing against the basic (non-batch) TxnWrap to measure

the respective system performance.

4.6.1 Experimental Environment

Our experimental environment consists a local network and four machines (Pen-

tium III PC with 256M memory, running Windows NT workstation OS and Oracle
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8.1.6.0.0 Server). Three of them serve as Database (DB) servers and the fourth as

the DWMS server. Each DB server contains serveral IS relations. Typically, there

is one materialized join view defined in the DWMS machine over all IS relations.

4.6.2 Cost Measurement

Given a number of source updates, the total maintenance cost of TxnWrap can be

roughly represented as:

Ttxnwrap =
n∑

i=1

s−1∑
j=1

Cf(1) (4.3)

Here n is the number of source updates in the data warehouse that are to be main-

tained in one batch processing, s is the number of source relations, while Cf(1)

represents the average cost of issuing and answering a maintenance query composed

of a single source update. As described in Section 4.3, the corresponding batch

maintenance cost can be represented as:

Tbatch =
s∑

i=1

s−1∑
j=1

Cf(n), with
s∑
f(n) = n (4.4)

with Cf(n) represents the cost of issuing a maintenance query for grouped f(n) source

updates. Note that the actual value of function f(n) depends on the distribution of

these updates on the underlying sources. We use the term granularity of mainte-

nance query to describe the size f(n). To simplify the discussion below, we minimize

the difference between maintenance queries with the same granularity, and assume

that total number of updates are evenly distributed in different sources. Thus the

maintenance cost can be simplified as Ttxnwrap = n(s-1)C1 and Tbatch = s(s-1)Cn/s.

Note that the maintenance cost of Cn/s (n/s > 1) will be different depending on

how we implement issuing the large size maintenance query. If the cost of Cn/s is a
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linear function on the variable n, then when:

nC1

sCn/s

> 1

we can always use batching processing whenever it is possible and acceptable to

users. However, if the cost of Cn/s is not a linear function, then we instead to find

an optimized number k (k >1), which maximaizes:

kC1

sCk
> 1

Then the total maintenance cost for batching n (n/s ≥ k) updates can be written

as Equation 4.5. We can see that total cost will also reach its minimal with the

optimized k.

Tbatch = s(s− 1)(� n
ks
Ck + Cn−� n

ks
�k) (4.5)

In our environment, we assume that the remote sources are totally autonomous.

Thus we can not require any support toward maintenance from the source relations

such as building temporary tables, locking source relations, etc. This is typical in

a web based application environment. Thus, in our implementation of issuing a

maintenance query with granularity n, we have to use a SQL query to get data

from the sources and to maintain and adapt the view extent in the data warehouse.

Based on such an implementation, the maintenance cost of Ck with k > 1 is not of

linear complexity.

In the following experiments, we will change the granularity of each maintenance

query (number of updates, distributions of updates, etc), the view definition and

the environments such as network delay to observe the performance changes of the

batch processing.
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4.6.3 Experiments

Change the Number of Updates being Processed. The goal of this experiment

is to measure the effect of changing the granularity of maintenance queries (the

number of updates being grouped) on the total processing time of batch processing

and also compare the performance with that of TxnWrap system (Figures 4.3 and

4.4). We set up 6 sources and one view defined as a join of these sources. Theses

sources are evenly distributed over three DB servers located on different machines.

Each source has 100,000 tuples. We vary the number of data updates from 10 to 150

and all these updates come from the same source. The x-axis denotes the number of

updates while the y-axis represents the total processing time of these data updates.
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Figure 4.3: Maintenance Cost of TxnWrap and Batch.

From Figure 4.3, we see that if we increase the total number of updates, the

TxnWrap processing time increases steadily of the same rate because in the above

experimental environments, each update maintenance query cost of C1 is almost the

same. While in batch maintenance, the total processing time also increases slowly

because the cost of Cn increases when we enlarge the number of grouped updates.

We can see that the increase of the maintenance query cost Cn for a small batch

size of n is much less than the total cost increase for the same number of queries

when done individually. The total cost of batch maintenance in above environments
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is around 4 times lower than that of TxnWrap maintenance.
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Figure 4.4: Performance Improvement of Batch Processing.

Figure 4.4 measures the ratio between TxnWrap and Batch processing by com-

paring their total processing time depicted in Figure 4.3. The higher the ratio, the

more the performance improvement. We can see that in our current environmental

setting, the cost of Cn is not a linear function of n. The result shows that when the

total number of updates is around 50, the batch maintenance processing is the most

efficient. Its cost is almost 500% less than that of sequential TxnWrap processing.

Note that this empirically determined optimal batch size is specially to our experi-

mental settings, and a new optimal number would need to be determined for a new

experiment.

We can see that the larger the number of grouped source updates, the higher the

increase of the query cost Cn. While for TxnWrap, the ratio of increase is almost

fixed. Thus, for a batch maintaining a large number of updates, we can make use of

maximal txnwrap/batch ratio to divide this large Cn into smaller subbatch queries

of size k, thus
∑
Ck with k < n will also smaller than

∑
Cn.

In Figure 4.5, we can see that if keep on increasing the number of source updates,

and still try to incorporate all these updates into one single maintenance query, then

even the cost of such batch maintenance will become worse than that of sequential
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Figure 4.5: Batch Large Number of Updates in a Single Query.

processing. This is because the increase of the cost Cn for a large number n will be

much larger than the increase of cost for sequential processing. In Figure 4.6, we

use different k, which is around the optimization number we found in Figure 4.4.

We see that when k is also around 50, the total batch processing cost is the best.
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Figure 4.6: Batch using Different Query-size.

Batch Pure Schema Changes. In this next experiment, we try to measure

the effect of pure source schema changes on the performance of batch system (Fig-

ures 4.7 and 4.8). We use the same experimental environment as in the previous

experiment and vary the number of schema changes. There are two cases here.

One, if the schema changes are happening in different sources, thus we can’t do too

much to optimize them. Thus the total processing time will be almost the same

with TxnWrap system. This is depicted in Figure 4.7. We increase the number of

57



schema changes (drop relation operations, which can’t be combined) and the total

processing time of batch maintaining increases correspondingly.
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Figure 4.7: Schema Changes from Different Sources.

Figure 4.8 shows the case when we can combine the schema changes from the

same sources. Then the total processing time will be decreased dramatically as

expected. We only illustrate two cases here. In first experiment, five rename relation

operations are then followed by one drop relation operation. The another experiment

is six rename relation operations.
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Figure 4.8: Schema Changes from the Same Source.

Batch in Both Data Update and Schema Change Environments. This

experiment measures the performance of batch maintenance in an environment in

which both data updates and schema changes are present. We use the same experi-

mental environments as above. Note that the location of the drop schema change in
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a group of updates (the source updates pattern) will affect the batch maintenance

processing because all the data updates before the drop operation can be safely

dropped.
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Figure 4.9: Maintenance Cost of Both Data Updates and Schema Changes.

In Figure 4.9, we measure the total processing time when we fix the location

of schema change and increase the number of updates. In all cases, the first 25

data updates can be dropped due the drop relation schema change. Both processing

times increase due to the increase in the number of updates, but the increase of the

batch maintenance is much slower than that of TxnWrap. The reasons are similar

to those of the first experiment. Compared with the experiment that has pure data

updates, the performance increase is a little bit smaller (Figure 4.10). There are two

reasons for this. One, a schema change processing is much more time consuming

compared to one data update maintenance processing. Two, the cost of one schema

change processing in batch processing is almost the same as in TxnWrap’s (see the

second experiment).

Figure 4.11 shows the effect of changing the location of the drop schema change

in a fixed number of updates in the performance of batching. In this experiment,

the number of data updates that can be dropped are from 25 up to 85 out of

100 source updates. The total TxnWrap processing time increases steadily due to
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Figure 4.10: Performance Improvement of Batch Processing.

View Adaptation processing time increasing because the delta changes between the

original source and the replacement expends (the time of calculating delta changes

and issuing and answering view adaptation queries). The cost of batch processing

decreases a little bit. This is because the more dropped data updates, the smaller

the delta changes for each source. Thus the cost of each maintenance query also

decreases.

0

100

200

300

400

500

600

700

25 45 65 85

P
ro

ce
ss

in
g 

Ti
m

e 
(s

) TxnWrap Batch

Figure 4.11: Change the Number of Dropped Updates.

Change View Definitions. The goal of this experiment is to determine the

effect of the view definition itself on the performance of batch processing. Figure 4.12

shows the result of executing 100 data updates on different views defined on 4 sources

up to 10 sources. We can see that the more complex the view definition, the more

expensive cost of both batch processing and TxnWrap become for maintenance. It
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is as expected because the performance can be measured by n(s−1)C1 for TxnWrap

and s(s − 1)Cn/s for batch processing with s the number of sources that the view

is defined upon. Thus, if we increase the number s, the total processing time of

both systems will increase. The performance improvement can be measured by

nC1/sCn/s. Thus improvement will decrease with the increase of s. This is depicted

in Figure 4.13
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Figure 4.12: Maintenance Cost of Changing View Definition.
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Figure 4.13: Performance Improvement of Batch Processing.
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Chapter 5

Related Work

Maintaining materalized views under source updates in a data warehouse environ-

ment is one of the important issues of data warehousing [29, 8]. Initially, some

research has studied incremental view maintenance assuming no concurrency. Such

algorithms for maintaining a data warehouse under source data updates are called

view maintenance algorithms [7, 9, 20]. There has also been some work on rewriting

view definitions under IS schema changes [17], and on adapting the view extent

under IS schema changes [12, 25, 31].

Self-Maintenance [2, 10, 26] make views self-maintainable by storing auxiliary

data at the data warehouse so that the warehouse data can be maintained without

accessing any source data. Recently, [30] also have extended this concept to temporal

views. [16] summarize limited source access approaches.

In approaches that need to send maintenance queries down to the IS space,

concurrency problems can arise [33]. They introduce the compensation-based al-

gorithm ECA for incremental view maintenance under concurrent IS data updates

restricted to a single IS. Strobe [34] handles multiple ISs while still assuming the

schema of all ISs to be static. SWEEP [1] ensures the consistency of the data
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warehouse in a larger number of cases compared to Strobe [34]. As a compromise

between self-maintenance and view maintenance via compensation, [14] proposes an

intermediate approach to maintenance without using all the base relations but with

requiring additional views to facilitate maintenance.

DyDa [31] is the first system to also handle concurrent schema changes which still

employing a compensation query based strategy, like all prior approaches. DyDa is a

heavy-weight solution in the sense that it adds complexity of concurrency detection

and handling not only into each VS, VA and VM maintenance module but it also

requires special strategies of coordination between these modules to achieve overall

correct compensation.

TxnWrap [5] is the first transactional approach to handle the concurrency for

both data and schema changes. TxnWrap encapsulates each maintenance process in

a DWMS Transaction and uses a multiversion concurrency control algorithm [3, 4]

to guarantee a consistent view of data inside each DWMS Transaction.

In the context of maintaining a DW in parallel, PVM [32] addresses the problem

of concurrent data update detection in a parallel execution mode and the variant DW

commit order problem. However, PVM works in a data update only environment.

Extension of this approach when considering schema changes would be complex

given that it is a compensation based approach.

There are also many works on maintaining data warehouse using delta changes

to the source relations. In [7], an incremental deferred view maintenance algorithm

is introduced. It proposes the decomposition of the view maintenance problem into

two separate propagate and refresh phases. It makes use of auxiliary tables that con-

tain information recorded since the last view refresh to maintain view extent. [13]

introduces several algorithms to use view definition to produce rules that compute

the changes to the view using the delta changes to the source relations. [22] pre-
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sented a incremental maintenance of relational views that involved aggregation using

summary-delta table. A summary-delta table records the net change to an aggre-

gate over a particular time window. [27] describes an algorithm called 2VNL which

makes use of multi-version approach to reduce contention between materialized view

updates maintenance and the corresponding data warehouse read applications.

[28] is a closely related work to our batch view maintenance. It proposed a

compensation-based technique for asynchronous incremental view maintenance. It

also provides explicit control over the granularity of the view maintenance trans-

actions. Compared with our approach in this paper, it can’t handle the schema

changes in the IS updates. Also no further optimization of the view maintenance

algorithm due to the complexity of their compensation-based approach.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

Data warehouse maintenance techniques are becoming important because of increas-

ingly use of data warehousing applications. Given the dynamic nature of modern

distributed environments, both source data updates and schema changes are likely to

occur autonomously and even concurrently in different sources. Current approaches

[33, 1, 31, 5] to maintain a data warehouse in such dynamic environments apply se-

quential processing schedulers which only maintain source updates one by one. Also

each maintenance process only corresponds to a single source update. This limits its

performance in a distributed environment where the maintenance of source update

endures the overhead of network delay and IO costs for each maintenance query.

In this thesis work, we propose two different optimization strategies to improve

the data warehouse maintenance performance for a given set of source updates in

such a dynamic environment containing both data updates and schema changes. For

the parallel maintenance, based on the DWMS Transaction model [5], we formalize

the constraints that arise in maintaining data and schema changes concurrently. We
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propose several parallel maintenance schedulers. We also prove the correctness of

our parallel scheduling solution. For the batch processing, we propose a technique

to preprocess and generate delta changes for each source. We also propose algorithm

to adapt and maintain the data warehouse extent using these delta changes. Further

optimization of the algorithm is achieved by using shared queries for the maintenance

tasks.

Furthermore, we have designed and implemented both optimization strategies

and incorporated them into the existing DyDa/TxnWrap [5, 31] system. We have

conducted extensive experiments both on parallel and batch processing on a given

set of source updates to investigate the performance achievable under various envi-

ronment settings. Our findings include that for the parallel processing, there is 40 ∼
50% performance improvement compared to sequential processing in environments

that using single-CPU machines and the network delay is neglectable compared with

the processing time. While for batch processing, there is likely to to be a 400 ∼
500% improvement in environments where network delay is low.

6.2 Future Work

The following are possible tasks that can be done in the future:

1. Integrate these two optimization strategies. Batch processing works well when

all the source updates come from the same source, while parallel processing

prefers that the source updates are evenly distributed among all the underlying

sources. Thus in a certain level, we can switch between different optimization

stratgies. Another point is that we could apply batch processing at the first

level, and parallel processing on these grouped source updates at a higher level.

2. Using different strategies to implement the batch maintenance queries to mea-
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sure system behavior, for example, using a temporary table in the sources to

return the result instead of issuing maintenance queries. That is, efficiently

maintain the data warehouse in a environment that the sources are more co-

operative.

3. To extend the solutions to handle the situation that multiple relations exist per

source. Though we can simply think each relation as one source and still use

the same proposed solutions, the problems are how to reduce the maintenance

processes as well as the cost for those updates from the same source.

4. To incorporate the solutions in environments that multiple views are defined.

The issues of the hierarchies and constraints exist in these views have to be

considered in maintenances.

5. How the maintenance issues and their corresponding optimization strategies

be adapted to non-relational databases?
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Chapter 7

Appendix

7.1 Proof of Parallel TxnWrap Maintenances

Theorem 2 A multiversion concurrency control algorithm is correct iff each MV

history is 1SR, i.e, there exists a version order such that the multiversion serial

graph (MVSG) is acyclic [3].

Assume there are k ISs, denoted as IS1, IS2,..., ISk. We use ISi(j) to denote the

result state of ISi after having been updated by the first-step of a DWMS Transaction

with local id j in ISi. We refer to this as the jth version of ISi. In this context, we de-

note all ISs′ initial states to have version number 0. TxnID of a DWMS Transaction

is generated by the DWMS as soon as the update message arrives in the DWMS.

As mentioned in Section 3.1, TxnID is the vector timestamps which records the

latest version number of each IS when the update comes to the DWMS. We use

τ1, τ2, · · · , τi to denote TxnIDs. Similarly, we use DW(τi) to denote the result com-

mit to the DW by the DWMS Transaction with TxnID τi. And also we use DW(0)

to denote its initial state.
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As in [3], we use rτi[x] (or wτi[x]) to denote the execution of a Read (or Write)

issued by transaction Tτi on a data item x. We also use cτi to denote T ′
τi
s commit

operation. Notice that we don’t have abort for the DWMS Transactions. We use

xτi to denote the version data that used by DWMS Transaction with TxnID τi. The

order of version data can be defined as follows. xτi < xτj ⇐⇒ τi < τj , where τi, τj

are TxnIDs of corresponding DWMS Transactions.

The following is an illustrative example. Assume three DWMS Transactions

arrive in the DWMS. Tτ1 from ISm with local id 1, Tτ2 from ISn with local id 1,

and Tτ3 again from ISm with local id 2, assume 1 ≤ m,n ≤ k with k is the number

of ISs. The initial versions of the IS extents presented by their respective wrappers

are IS1(0), IS2(0), ..., ISk(0) and the inital DW extent is DW(0). Then these three

DWMS Transactions can be represented by:

1. Tτ1 = wτ1[ISm(1)]rτ1[IS1(0)] . . . rτ1[ISm(1)] . . . rτ1 [ISn(0)] . . .

rτ1[ISk(0)]wτ1[DW (τ1)]cτ1

2. Tτ2 = wτ2[ISn(1)]rτ2[IS1(0)] . . . rτ2[ISm(1)] . . . rτ2 [ISn(1)] . . .

rτ2[ISk(0)]wτ2[DW (τ2)]cτ2

3. Tτ3 = wτ3[ISm(2)]rτ3[IS1(0)] . . . rτ3[ISm(2)] . . . rτ3 [ISn(1)] . . .

rτ3[ISk(0)]wτ3[DW (τ3)]cτ3

For the serial schedule, the following is a sample history (H1) of Tτ1, Tτ2 and Tτ3:

H1=wτ1[ISm(1)]wτ2[ISn(1)]wτ3[ISm(2)]rτ1[IS1(0)] . . . rτ1[ISm(1)] . . .

rτ1[ISn(0)] . . . rτ1[ISk(0)]wτ1[DW (τ1)]cτ1rτ2[IS1(0)] . . . rτ2[ISm(1)] . . .

rτ2[ISn(1)] . . . rτ2[ISk(0)]wτ2[DW (τ2)]cτ2rτ3[IS1(0)] . . . rτ3[ISm(2)] . . .

rτ3[ISn(1)] . . . rτ3[ISk(0)]wτ3[DW (τ3)]cτ3

For the parallel schedule, we interleave the execution of the third-step of DWMS Transactions.

The following (H2) is a sample history of such schedule.
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H2=wτ1[ISm(1)]wτ2[ISn(1)]wτ3[ISm(2)] rτ1[IS1(0)] . . . rτ1[ISm(1)] . . . rτ1[ISn(0)] . . .

rτ2[IS1(0)]rτ2[ISm(1)]rτ1[ISk(0)]wτ1[DW (τ1)]cτ1 rτ3[IS1(0)] . . . rτ3[ISm(2)] . . .

rτ3[ISn(1)] . . . rτ3[ISk(0)] rτ2[ISn(1)] . . . rτ2[ISk(0)] wτ2[DW (τ2)]cτ2wτ3[DW (τ3)]cτ3

For both histories, we can construct the MVSG according to its definition [3].

That is, we add the edge Tτ1 → Tτ2 since rτ2[ISm(1)] reads the result fromwτ1[ISm(1)];

add edge Tτ2 → Tτ3 since rτ3[ISn(1)] reads the result from wτ2[ISn(1)]; add edge

Tτ1 → Tτ3 since wτ1[ISm(1)] precedes wτ3[ISm(2)]. There are no more version order

edges. Thus G is an acyclic MVSG graph in this example.

We now prove both schedules by contradiction. The DWMS keeps all arriving

update messages in a queue. At any time t, each update message in this queue

represents a DWMS Transaction. Thus, let’s denote this set of DWMS Transactions

as T=Tτ1, Tτ2, . . . , Tτk
, which τ1, τ2, . . . , τk is its corresponding TxnID.

Theorem 3 Given any DWMS Transaction set queuing in the DW, the multiver-

sion serializable graph G of any history over this set of DWMS Transactions is

acyclic. More strictly, all version order edges in G are pointing from the DWMS Transaction

Tτi with small TxnID ‘τi’ toward another DWMS Transaction Tτj with larger TxnID

‘τj’.

Proof: We prove this by contradiction.

1. Assumption: There is one version order edge, Tτi ← Tτj with TxnID τi < τj.

2. There two possible reasons to add this edge to the MVSG graph.

(a) If this edge is added by the serial graph(SG) definition [3], This can’t be

true because in TxnWrap and PTxnWrap algorithm, we always assign

TxnID only if its corresponding versions have been built.
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(b) If this edge is added by additional MVSG definition [3], then there are

only two cases to consider:

• wτj [xτj ] . . . rτk
[xτi] and xτj < xτi. This is impossible because we as-

sume the version order xτi < xτj if τi < τj .

• rτj [xτk
] . . . wτi[xτi] and xτk

< xτi. That is, Tτj reads some data item

whose version is earlier than that of the same data written by Tτi.

This is also impossible in TxnWrap and PTxnWrap because we al-

ways assign the latest version number (local id) to DWMS Transaction

in the TxnID.

3. Contradiction: Since all cases lead to contraditions, the assumption is not

correct. Thus, there is no version order edge Tτi ← Tτj with TxnID τi < τj.

So the MVSG is acyclic.
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[34] Y. Zhuge, H. Garćıa-Molina, and J. L. Wiener. The Strobe Algorithms for
Multi-Source Warehouse Consistency. In International Conference on Parallel
and Distributed Information Systems, pages 146–157, December 1996.

74


