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1 Abstract

We study in this thesis an inverse problem that originates in geophysics. In this inverse

problem, a fault and a slip field have to be determined from an overdetermined Partial

Differential Equation (PDE) in half space. We achieve three main goals: first, an existence

and uniqueness theorem for this PDE in adequate functional spaces. Second, we show that

our overdetermined PDE (which reflects that in practice, geophysicists use a PDE model

and have access to boundary measurements) does make it possible to recover the fault and

the slip. Third, we show that this recovery is stable, under the assumption that the fault

must be planar.

Related questions were solved in the case of three dimensional linear elasticity [11, 9, 12]

In this thesis we use a PDE model relevant to the important cases of the anti plane strain

configuration, and the plane strain configuration.
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2 Introduction

This thesis relates to a problem in geophysics where seismic and displacements data are col-

lected by sensors and then processed using partial differential equations (PDE) models and

inverse problem formulations. The goal of the mathematical and computational processing

of this data is to determine the geometry of faults, total slip between plates, and accumulated

mechanical stress. Recently, much work has been done in the case of the three dimensional

linear elasticity model. In particular, well posedness of the forward problem and uniqueness

for the inverse problem were shown in [11], while a stability result in the case of planar faults

was achieved in [9].

In this thesis, we examine the case of a model involving the Laplace equation. This model

is also relevant to geophysics: in dimension two, it relates to the so called anti plane strain

configuration, while in dimension three, it relates to the plane strain configuration, [7].

The plane strain configuration has already attracted much attention from geophysicists and

mathematicians due to the simplicity of the formulation [3, 4]. Despite how simple this

formulation is, it still captures important physical features of strike slip seismic events [1].

The main three results of this thesis are, first, the correct functional space formulation of

the model leading to a proof of existence and uniqueness for the direct problem. The direct

problem is set up in half space with zero Neumann condition on the top plane (this models

a no force condition), the Laplace equation in this half space minus a cut, or crack, which

we will rather call a fault to emphasize the connection between our work and geophysics.

Across the fault we require the normal derivative of the solution to the PDE to be continuous

(continuity of forces), and a forcing term: the discontinuity of the solution, which models

the slip. Finally, a finite energy condition is imposed through the use of specific functional

spaces.

The second result of this thesis concerns the uniqueness of the related inverse problem: we

show that if the value of the solution to this PDE is given in a relatively open set of the top

boundary (in geophysics this is the measured data), then the PDE becomes overdetermined

and the fault and the slip can be inferred.

The third (and most challenging) result that we prove is that the determination of the ge-

ometry of this fault from these boundary measurements is actually Lipschitz stable, if it is

assumed that the geometry is planar. We plan to submit these results to a peer reviewed

journal soon.

We now introduce notations and equations used throughout this thesis. Using the standard

rectangular coordinates x = (x1, x2, x3) of R3, we define R3− to be the open half space x3 < 0.
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Let Γ be a C2 regular open surface whose closure is contained in R3− and g ∈ H1/2(Γ). Define

a unit normal of Γ (of class C1) by n̂. We will show that the boundary value problem

∆u = 0 in R3− \ Γ, (1)

∂u

∂x3

= 0 on the surface x3 = 0, (2)

∂u

∂n̂
is continuous across Γ, (3)

[u] = g ∈ H1/2(Γ) is a given jump across Γ, (4)

u = O

(
1

|x|2

)
, (5)

has a unique solution. We will prove that Γ (which in some models plays the role of a

crack) and the jump g can be uniquely determined by the value of u on any relatively open

non-empty subset W of {x3 = 0}. We will also derive a Lipchitz estimate for the Hausdorff

distance between cracks corresponding to two different sets of input data on W .

3 Preliminary Results: Elementary Differential Geom-

etry and Potential Theory

Definition 3.1. Let V be a d − 1 dimensional closed surface in Rd of class C2. For each

local chart (Uα, φα) in the atlas of V and for each y ∈ φ−1
α (Uα) we set

dS(y) = |det (A(φα(y)))|1/2 ,

where A(u) is a matrix whose ijth entry is ∂φ−1
α

∂yi
(u) · ∂φ

−1
α

∂yj
(u).

For simplicity, all surfaces considered in thesis will be of class C2.

Definition 3.2. Let D be a connected, and bounded domain of Rd with boundary ∂D. We

define the outward unit normal of ∂D at y ∈ ∂D to be

n̂(y) = ∇s(y), (6)
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where

s(x) =

−d(x, ∂D) if x ∈ D

d(x, ∂D) if x ∈ Rd \D

and d(x, ∂D) = inf
y∈∂D

d(x, y). We know that s is twice continuously differentiable in a neigh-

borhood of ∂D (see Section 2.5.6 of [6]).

Lemma 3.1. Let ∂D be the boundary of a connected, bounded, open, and C2 regular domain

D of Rd and let n̂ be the outward unit normal of ∂D. Then there is a positive constant L

such that

|n̂(x) · (x− y)| ≤ L |x− y|2 , ∀x, y ∈ ∂D.

Proof. For any x0 ∈ D, there is an r > 0 and φ ∈ C2(B(x0, r)) such that B(x0, r) ∩ ∂D =

φ−1(0) and ∇φ 6= 0. Without loss of generality, we can assume that

n̂ =
∇φ
|∇φ|

(otherwise replace φ by −φ). By Taylor’s Theorem, we know that for all x ∈ B(x0, r) and

h ∈ Rd such that x+ h ∈ B(x0, r),

φ(x+ h) = φ(x) +∇φ(x) · h+O(|h|2).

If x and x+ h are on ∂D, then φ(x+ h) = φ(x) = 0 so

∇φ(x) · h = O(|h|2).

Since B(x0, r) is compact, there is Lx0,r > 0 depending on x0 and r such that

|∇φ(x)| ≥ Lx0,r, ∀x ∈ B(x0, r).

Since ∂D is compact, we can cover ∂D by a finite number N of closed balls Lxi,ri . Thus

|∇φ(x)| ≥ L, ∀x ∈ ∂D,

where

L = max
1≤i≤N

Lxi,ri .
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Thus

n̂ · h =
∇φ
|∇φ|

· h = O(|h|2)

and Lemma 3.1 is proved.

�

Definition 3.3. Recall that the fundamental solution to the Laplace Equation in Rd is

Φ(x, y) =

−
1

2π
ln |x− y| d = 2

1

(d−2)ωd|x−y|d−2 d ≥ 3
,

where ωd is the surface area of the unit ball in Rd.

Definition 3.4. Let D be an open, connected, and bounded domain. Let ∂D be the bound-

ary of D and n̂ be the outward unit normal of ∂D. Let u be defined in a neighborhood of

∂D except possibly on ∂D. For z ∈ ∂D we define the jump in u across ∂D at z to be

[u](z) = lim
h→0+

u(z + hn̂(z))− u(z − hn̂(z)),

if this limit exists.

Lemma 3.2. Let D, and n̂ be as in the previous definition and Φ as in definition 3.3. Let

ψ be in the Sobolev space H
1
2 (∂D). Let

q(x) =

∫
∂D

∂Φ(x, y)

∂n̂(y)
ψ(y)dS(y).

Then q ∈ H1(D) and there is a constant C such that

‖q‖H1(D) ≤ C ‖ψ‖H1/2(∂D) . (7)

We skip the proof of lemma 3.2. This proof can be built based on properties of the double

layer potential for continuous densities shown in appendix A, Sobolev continuity properties

of the surface operator defined by the double layer potential ∂Φ(x,y)
∂n̂(y)

, and elliptic regularity

for PDEs.

Definition 3.5. Let Φ, D, ∂D, and n̂ be as above and let Γ be an open surface included in
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∂D. We define H̃1/2(Γ) to be the set of restrictions to Γ of functions in H1/2(Γ) supported

in Γ.

Lemma 3.3. Let D, ∂D, n̂, and Φ be as above. Let Γ be an open surface included in ∂D

and let ψ ∈ H̃1/2(Γ). Assume d = 3. Then

q(x) =

∫
Γ

∂Φ(x, y)

∂n̂(y)
ψ(y)dS(y)

is in H1(Rd \ Γ) and there is a constant C such that

‖q‖H1(Rd\Γ) ≤ C ‖ψ‖H1/2(∂D) .

Proof. This can be proved from lemma 3.2 and using the decay at infinity of Φ. �

Lemma 3.4. Let Φ, D, ∂D, and n̂ be defined as in Lemma A.3 and ψ ∈ H1/2(∂D). Then

the jump of

u(x) =

∫
∂D

∂Φ(x, y)

∂n̂(y)
ψ(y)dS(y),

in the sense of the trace theorem, is equal to ψ(x) almost everywhere.

Proof. From Section 2.5.7 of [6] we know that u ∈ H3/2
(
Rd \ ∂D

)
. Thus the inner and outer

traces of u exist by the Trace Theorem. If ψ is in C1(∂D) we know from appendix A that

the inner and outer traces are∫
∂D

∂Φ(z, y)

∂n̂(y)
ψ(y)dS(y)− 1

2
ψ(z) (8)

and ∫
∂D

∂Φ(z, y)

∂n̂(y)
ψ(y)dS(y) +

1

2
ψ(z) (9)

respectively, where z is the projection of x onto ∂D. We conclude that

[q](z) =

(∫
∂D

∂Φ(z, y)

∂n̂(y)
ψ(y)dS(y) +

1

2
ψ(z)

)
−
(∫

∂D

∂Φ(z, y)

∂n̂(y)
ψ(y)dS(y)− 1

2
ψ(z)

)
= ψ(z).

(10)

The result follows from density of C1(∂D) in H1/2(∂D). �

Lemma 3.5. Let Φ, D, ∂D, and n̂ be defined as in Lemma A.3 and let Γ be an open surface
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included in ∂D. Let ψ ∈ H̃1/2(Γ). Then the jump of

q(x) =

∫
Γ

∂Φ(x, y)

∂n̂(y)
ψ(y)dS(y)

is equal to ψ(x) almost everywhere.

Proof. This lemma follows from Lemma 3.4. �

Lemma 3.6. Let u ∈ H1
loc(R3− \ Γ). If [u] = 0 across Γ, then u ∈ H1

loc(R3−).

Proof. Suppose that u is in H1
loc(R3− \Γ) such that [u] = 0. We know that lim

h→0+
u(z+hn̂(z))

and lim
h→0−

u(z + hn̂(z)) exist in the sense of traces because u ∈ H1
loc(R3− \ Γ). As [u] = 0,

these limits are the same and lim
h→0

u(z+hn̂(z)) exists ∀z ∈ Γ. We may extend u from R3− \Γ

to R3− by setting u(z) = lim
h→0

u(z + hn̂(z)) for z ∈ Γ. Let Ω be a bounded open subset of

R3−. We may extend Γ to a surface Γ′ so that there are non-empty subsets Ω+ and Ω−

of Ω such that Ω = Ω+ ∪ Ω−, Ω+ ∩ Ω− = ∅, and ∂Ω+ ∩ ∂Ω− = Γ′ (see Figure 3). Since

u ∈ H1
loc(R3− \ Γ), ∇u is defined on Ω− and Ω+. Let n̂+ and n̂− be the unit normals of Γ

which point towards Ω− and towards Ω+ respectively. Let the outward unit normal of Γ be

defined as pointing towards Ω−. Then for ψ ∈ C∞c (Ω) we have∫
Ω

u
∂ψ

∂xi
dx =

∫
Ω+

∇ · (uψei)dx+

∫
Ω−
∇ · (uψei)dx−

∫
Ω

∂u

∂xi
ψdx.

We apply the Divergence Theorem to conclude that∫
Ω

u
∂ψ

∂xi
dx =

∫
∂Ω+

(uψei) · n̂+dS +

∫
∂Ω−

(uψei) · n̂−dS −
∫

Ω

∂u

∂xi
ψdx

Since ψ = 0 on ∂Ω, we see that∫
Ω

u
∂ψ

∂xi
dx =

∫
Γ′

(uψei) · n̂+dS +

∫
Γ′

(uψei) · n̂−dS −
∫

Ω

∂u

∂xi
ψdx

Since n̂+ and n̂− point in opposite directions, we find that n̂+ = −n̂− and∫
Ω

u
∂ψ

∂xi
dx = −

∫
Ω

∂u

∂xi
ψdx.

We see that u has a weak first order-derivatives defined on Ω. We conclude that u ∈ H1
loc(R3−)

as required. �
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Figure 1: A graph of the curve Γ after it has been extended to divide the domain Ω into two
smaller domains.

4 Norm Equivalence Lemmas

Lemma 4.1 (Hardy’s Inequality). Let f ∈ C∞c (R3). Then there is a constant C > 0 such

that ∫
R3

f 2

|x|2
≤ 4

∫
R3

|∇f |2 . (11)

Proof. First suppose that f ∈ C∞c (R3) is radial. Then f is supported in B(0, R) for some

R > 0. We know that∫
R3

f(x)2

|x|2
dx =

∫
B(0,R)

f(x)2

|x|2
dx

= 4π

∫ A

0

f(ρ)2dρ

= −4π

∫ A

0

ρ2f(ρ)f ′(ρ)dρ

≤ 2

(
4π

∫ A

0

f(ρ)2

ρ2
ρ2dρ

)1/2(
4π

∫ A

0

f ′(ρ)2ρ2dρ

)1/2

= 2

(∫
R3

f(x)2

|x|2
dx

)1/2(∫
R3

|∇f(x)|2 dx
)1/2
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We conclude that ∫
R3

f(x)2dx ≤ 4

∫
R3

|∇f(x)|2 dx.

If f is not radial, the proof is about the same after a conversion to spherical coordinates. �

Lemma 4.2. Let f : R3 → R such that f

(1+|x|2)1/2
and ∇f are in L2(R3). Then

∫
R3

|f |2

1 + |x|2
≤ 4

∫
R3

|∇f |2 .

Proof. Let h ∈ C∞(R3) such that h
(1+|x|2)1/2

and ∇h are in L2(R3). Let p ∈ C∞c (R3) such

that 0 ≤ p ≤ 1, p(x) = 1 for |x| ≤ 1, and p(x) = 0 for |x| ≥ 2. Set pn(x) = p
(
x
n

)
. Clearly

hpn ∈ C∞c (R3), so we may apply (11) to find that∫
R3

|hpn|2

|x|2
≤ 4

∫
R3

|∇(hpn)|2 .

In particular, we know that ∫
R3

|hpn|2

1 + |x|2
≤ 4

∫
R3

|∇(hpn)|2 . (12)

Clearly pn → 1, so hpn → h pointwise. We also know that

|hpn|2

1 + |x|2
≤ |h|2

1 + |x|2
∈ L1(R3)

since 0 ≤ pn ≤ 1 and h
(1+|x|2)1/2

∈ L2(R3). Thus

∫
R3

|hpn|2

1 + |x|2
→
∫
R3

|h|2

1 + |x|2
(13)

by the Dominated Convergence Theorem. We know that

∇(h(x)pn(x)) = (∇h(x))pn(x) +
1

n
(∇p)

(x
n

)
h(x)→ ∇h(x)

since pn → 1 and ∇p ∈ C∞c (R3) is bounded. As p is constant outside of {1 ≤ |x| ≤ 2},
∇pn = 0 outside of {n ≤ |x| ≤ 2n} and

|∇(hpn)| ≤ |∇h|+ 1

n
max
R3
|∇p|In≤|x|≤2n |h| .
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Since 1
n
≤ 2
|x| , ∀x ∈ {n ≤ |x| ≤ 2n}, we have

|∇(hpn)| ≤ |∇h|+ 2
1

|x|
max
R3
|∇p|In≤|x|≤2n |h|

= |∇h|+ 2
|h|
|x|

max
R3
|∇p|I|x|≥1

≤ |∇h|+ 2(2)1/2 |h|
(1 + |x|2)1/2

max
R3
|∇p|.

The first term is in L2(R3) since we assumed ∇h ∈ L2(R3) and second term is in L2(R3)

because |h|
(1+|x|2)1/2

∈ L2(R3). Thus |∇(hpn)|2 is dominated by a L1(R3) function. We also

know that ∇(hpn)→ ∇h, so ∫
R3

|∇(hpn)|2 →
∫
R3

|∇h|2 (14)

by the Dominated Convergence Theorem. Letting n → ∞ in (12), we use (13)-(14) to

conclude that ∫
R3

|h|2

1 + |x|2
≤ 4

∫
R3

|∇h|2 . (15)

Let f : R3 → R such that f

(1+|x|2)1/2
,∇f ∈ L2(R3). Set ρn = Cnp (nx), where the constants

Cn are chosen so that
∫
R3 ρn = 1. Then ρn ? f ∈ C∞(R3) and (15) implies that

∫
R3

|ρn ? f |2

1 + |x|2
≤ 4

∫
R3

|∇(ρn ? f)|2 (16)

We know that ρn ? f converges to f in L2(R3) so∥∥∥∥ f

(1 + |x|2)1/2
− ρn ? f

(1 + |x|2)1/2

∥∥∥∥
2

≤ ‖f − ρn ? f‖2

∥∥∥∥ 1

(1 + |x|2)1/2

∥∥∥∥
2

→ 0

Thus ρn?f

(1+|x|2)1/2
→ f

(1+|x|2)1/2
in L2(R3). So

∥∥∥ ρn?f

(1+|x|2)1/2

∥∥∥
2
→
∥∥∥ f

(1+|x|2)1/2

∥∥∥
2
, i.e.,

∫
R3

|ρn ? f |2

1 + |x|2
→
∫
R3

|f |2

1 + |x|2
. (17)

As ∇(ρn ? f) = ρn ?∇f → ∇f in L2(R3), ‖∇(ρn ? f)‖ → ‖∇f‖2, i.e.,∫
R3

|∇(ρn ? f)|2 →
∫
R3

|∇f |2 . (18)
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Letting n→∞ in (16), and making use of (17)-(18), we conclude that∫
R3

|f |2

1 + |x|2
≤ 4

∫
R3

|∇f |2

as required. �

Lemma 4.3. Let V(R3−) be the space of functions u defined on R3− such that ∇u and
u

(1+|x|2)1/2
are in L2(R3−). Then the following norms are equivalent on V(R3−)

‖u‖1,R3− =

(∫
R3−
|∇u|2

)1/2

+

(∫
R3−

|u|2

1 + |x|2

)1/2

,

‖u‖2,R3− =

(∫
R3−
|∇u|2

)1/2

.

Proof. Clearly ‖u‖2,R3− ≤ ‖u‖1,R3− , ∀u ∈ V(R3−)

To show that ‖u‖1,R3− and ‖u‖2,R3− are equivalent, we must find C > 0 such that

‖u‖1,R3− ≤ C ‖u‖2,R3− , ∀u ∈ V(R3−)

Let u ∈ V(R3−) and define u : R3 → R3 such that

u =

u(x1, x2, x3) if x3 ≤ 0

u(x1, x2,−x3) if x3 > 0.

Then [u] = 0 across {x3 = 0}, so u ∈ H1(R3) by Lemma 3.6. As |u|2

1+|x|2 ∈ L
2(R3−), we know

that ∫
R3

|u|2

1 + |x|2
=

∫
R3−

|u|2

1 + |x|2
+

∫
R3+

|u|2

1 + |x|2
= 2

∫
R3−

|u|2

1 + |x|2
. (19)

Similarly, ∫
R3

|∇u|2 = 2

∫
R3−
|∇u|2 . (20)

Applying Lemma 4.2 to u, we find that∫
R3

ui

1 + |x|2
≤ 4

∫
R3

|∇ui|2 (21)
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Substituting (19)-(20) into (21), we get

2

∫
R3−

u

1 + |x|2
≤ 4

(
2

∫
R3−
|∇u|2

)
,

Thus ∫
R3−

u

1 + |x|2
+

∫
R3−
|∇u|2 ≤ 5

∫
R3−
|∇u|2 .

We conclude that ‖u‖1,R3− ≤ 5 ‖u‖2,R3− and the norms ‖·‖1,R3− and ‖·‖2,R3− are equivalent.

�

Lemma 4.4. Let Γ be a C2 regular open surface whose closure is contained in R3−. Let V
be the vector space of scalar functions u defined in R3− \ Γ such that ∇u and u

(1+r2)1/2
are in

L2(R3− \ Γ). Then the following two norms are equivalent on V

‖u‖1 =

(∫
R3−\Γ

|∇u|2
)1/2

+

(∫
R3−\Γ

|u|2

1 + |x|2

)1/2

‖u‖2 =

(∫
R3−\Γ

|∇u|2
)1/2

.

Proof. Clearly ‖u‖2 ≤ ‖u‖1, so it is sufficient to show that ∃C > 0, ‖u‖1 ≤ C ‖u‖2 , ∀u ∈ V .

Arguing by contradiction, suppose that ∀C > 0, ∃u ∈ V such that ‖u‖1 > C ‖u‖2.

Then ∀n ∈ N, ∃un ∈ V such that ‖un‖1 > n ‖un‖2, i.e.,∫
R3−\Γ

|∇un|2 +

∫
R3\Γ

|un|2

1 + |x|2
> n

∫
R3−\Γ

|∇un|2 (22)

We may assume that ∫
R3−\Γ

|un|2

1 + |x|2
= 1 (23)

(otherwise divide un by
∫
R3−\Γ

|un|2

1+|x|2 ).

Let D be an open set whose boundary ∂D is regular and contains Γ. Define

qn(x) =

∫
∂D

∂Φ(x, y)

∂n̂(y)
[un(y)], x ∈ R3− \ Γ.

Let Ω be a bounded open set containing Γ whose closure is included in R3− .
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Figure 2: A sketch of the domain Ω.

Equation (22) implies that ∫
R3−\Γ

|∇un|2 <
1

n− 1
. (24)

Thus

‖∇un‖L2(Ω\Γ) ≤ ‖∇un‖L2(R3−\Γ) < 1, ∀n ≥ 2. (25)

As Ω is bounded, ∃M ∈ R such that |x| ≤M, ∀x ∈ Ω. By (23) we have

‖un‖2
L2(Ω\Γ) ≤

∫
Ω\Γ

un(x)2

1 + |x|2
(
1 +M2

)
dx

= 1 +M2.

(26)

From (25)-(26) we see that

‖un‖H1(Ω\Γ) = ‖un‖L2(Ω\Γ) + ‖∇un‖L2(Ω\Γ) < (1 +M2) + 1.

Thus un ∈ H1
loc(R3− \ Γ) and un is bounded in H1(Ω \ Γ). Hence un has a subsequence

unk which converges weakly in H1(Ω \ Γ) and strongly in L2(Ω \ Γ) by Lemma B.1 and the

Kondrachov embedding theorem. Denote the limit of unk by u. Equation (24) implies that

∇unk → 0 in L2(Ω \Γ) and ∇u = 0. Since unk converges strongly to u in L2(R3−) and ∇unk
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converges strongly to 0 = ∇u, we find that unk converges strongly to u in H1(Ω \ Γ). As

∇u = 0 on Ω \ Γ, u is constant on Ω \ Γ by Lemma B.2.

Hence unk converges strongly to a constant function u in H1(Ω \Γ). By the Trace Theorem,

[unk ]→ [u] = 0 in H1/2(∂D). Because [unk ]→ 0 in H1/2(∂D), Lemma 3.3 implies that ∇qnk
and

qnk
(1+|x|2)1/2

converge to 0 in L2(R3− \ Γ). Thus qnk → 0 in V . Since un ∈ V and qnk ∈ V ,

unk − qnk ∈ V . We know that unk − qnk ∈ H1(Ω \ Γ) by Lemma 3.3. As Lemma 3.4 implies

that [qn] = [un] across Γ, [unk−qnk ] = 0 and unk−qnk ∈ H1(Ω) by Lemma 3.6. Since R3− \Γ

contains R3−\Ω, ∇(unk−qnk) ∈ L2(R3−\Ω). Hence∇(unk−qnk) is in L2(R3−). We know that

∇qnk → 0 and ∇unk → 0 in L2(R3− \ Γ) so ‖unk − qnk‖2,R3− = ‖∇(unk − qnk)‖L2(R3−) → 0.

Thus ‖unk − qnk‖1,R3− → 0 since ‖·‖1,R3− and ‖·‖2,R3− are equivalent by Lemma 4.3. We also

know that
∥∥∥ qnk

(1+|x|2)1/2

∥∥∥
L2(R3−)

→ 0 since qnk → 0 in V . This implies that

∫
R3−Γ

|unk |
2

1 + |x|2
≤
∫
R3−

|unk − qnk |
2

1 + |x|2
+

∫
R3−

|0− qnk |
2

1 + |x|2
→ 0

which contradicts (23). We conclude that the norms ‖·‖1 and ‖·‖2 are equivalent. �

5 Existence and Uniqueness Result

Let G(x, y, n̂) be the free space Green’s function for the Laplace equation such that for any

open C2 surface Γ in R3 and any displacement u satisfying

∆u = 0 in R3 \ Γ, (27)

∂u

∂n̂
is continuous across Γ, (28)

[u] = g ∈ H1/2(Γ) is a given jump across Γ, (29)

u = O

(
1

|x|2

)
and ∇u = O

(
1

|x|3

)
uniformly as |x| → ∞, (30)

we have

u(x) =

∫
Γ

G(x, y, n̂)g(y), ∀x ∈ R3 \ Γ.

We know that G(x, y, n̂) = ∂Φ(x,y)
∂n̂(y)

. We also know that the half space Green’s Tensor is

H(x, y, n̂) = ∂Φ(x,y)
∂n̂(y)

+ ∂Φ(x,y)
∂n̂

, where x = (x1, x2,−x3). H satisfies (27) through (30) for x 6= y

16



in R3−, and in addition we have that

∂

∂x3

H(x, y, n̂) = 0,

at x3 = 0

Theorem 5.1. The problem (1)-(4) has a unique solution in V for g ∈ H̃1/2(Γ). This

solution satisfies the decay condition (5).

Proof. Define

ug(x) =

∫
∂D

∂Φ(x, y)

∂n̂(y)
g(y)dS(y), x ∈ R3− \ Γ,

Clearly ug ∈ C∞(R3− \ Γ). From Lemma 3.4 and Lemma 3.3 we know that [ug] = g across

Γ and ug ∈ H1(R3− \ Γ). Let U to be the vector space of functions u ∈ V such that [u] = 0

across Γ. Define the bilinear form

B(u, v) =

∫
R3−

(∇u · ∇v)

on V × V . By Lemma 4.4, V is a Hilbert space under the norm ‖·‖2 = B(·, ·)1/2 since V
is a Hilbert space under the norm ‖·‖1 and B(·, ·) = ‖·‖2 is equivalent to ‖·‖1. As U is a

closed subspace of V , U is also a Hilbert space under the norm ‖·‖2 = B(·, ·)1/2. Clearly

B(u, v) is bilinear, and, since ‖·‖2 = B(·, ·)1/2 defines the default norm on H, B is coercive

and continuous. Thus, by the Lax-Milgram Theorem, we know that ∃!u0 ∈ U such that

B(u0, v) = −B(ug, v), ∀v ∈ U . Hence B(u0 + ug, v) = B(u0, v) +B(ug, v) = 0, ∀v ∈ U . Set

u = u0 + ug. For v ∈ C∞c (R3− \ Γ) ⊂ U , we have∫
R3−\Γ

∇u · ∇vdx = 0, (31)

so ∆u = 0 in R3− \ Γ. Now assume that v ∈ C∞c (R3) and v is zero in a neighborhood of Γ.

By (31), ∫
{x3=0}

∂u

∂x3

v = 0.

Thus ∂u
∂x3

= 0 on {x3 = 0}. As [u0] = 0 across Γ, [ug] = g, and u = u0 + g, it follows that

[u] = g across Γ. We know that u ∈ V by construction, so u

(1+|x|2)
1/2 and ∇u are in L2(R3−).

17



For y = (y1, y2, y3) in R3− set y = (y1, y2,−y3). Next set

w(x) =

∫
Γ

[
∂Φ

∂n̂(y)
(x, y) +

∂Φ

∂n̂(y)
(x, y)

]
gdS(y), x ∈ R3− \ Γ.

It is clear that w is in V and satisfies (1)-(4). By the uniqueness of the problem (1)-(4) in

V , u = w. Given that
∂Φ

∂n̂(y)
(x, y) +

∂Φ

∂n̂(y)
(x, y) = O

(
1

|x|2

)
and

∇x

[
∂Φ

∂n̂(y)
(x, y) +

∂Φ

∂n̂(y)
(x, y)

]
= O

(
1

|x|2

)
uniformly in x

|x| , we can claim that u = O
(

1
|x|2

)
and ∇u = O

(
1
|x|3

)
uniformly in x

|x| .

�

6 Inverse Problem Result

Lemma 6.1. Let U be a open subset of R3 and U− = {x ∈ U |x3 < 0}. Then the only weak

solution to the Cauchy problem

∆u = 0 x ∈ U−, (32)

u = 0 (x1, x2, 0) ∈ ∂U, (33)

∂u

∂x3

= 0 (x1, x2, 0) ∈ ∂U, (34)

is u = 0.

Proof. Clearly u = 0 is a solution to the Cauchy problem. Set U+ = {x ∈ U |x3 > 0}. We

may extend u from U− to U = U+ ∪ U− by 0. We will call this extension v. We know that

v ∈ H1
loc(U) and (32) and v ∈ C1(U−) by elliptic regularity. We also know that ∆v = 0

weakly in U by Lemma 3.6. We apply Holmgren’s Theorem as stated in Section 2.11 of

[linear pde] to find that u = v = 0 in U . In particular, we conclude that v = 0 in U−. �

Theorem 6.1. Let Γ1 and Γ2 be two bounded open surfaces with smooth boundaries whose

closure is contained in R3−. For i = 1, 2, assume that ui solves (1)-(5) with Γi in place of

Γ and the jumps gi ∈ H1/2(Γ) in place of g. Let W be a non-empty relatively open subset of

{x3 = 0}. If u1 = u2 on W , then Γ1 = Γ2 and g1 = g2.

Proof. Suppose that u1 = u2 on W and set u = u1 − u2. Let U be an open ball centered at

the center of W which is small enough that U ∩ {x3 = 0} ⊂ W and U ∩ Γ1 ∪ Γ2 = ∅.
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Then u satisfies (32)-(34) and we apply Lemma 6.1 to u to conclude that u = 0 on U− =

U ∩ {x3 < 0}. Thus u = 0 on an open subset of R3− \ Γ1 ∪ Γ2. But u is analytic on

R3− \ Γ1 ∪ Γ2 since

ui =

∫
Γi

[
∂Φ

∂n̂(y)
(x, y) +

∂Φ

∂n̂(y)
(x, y)

]
gidS(y), x ∈ R3− \ Γ,

so u = 0 everywhere in R3− \ Γ1 ∪ Γ2. Hence u1 = u2 on R3− \ Γ1 ∪ Γ2. Arguing by

contradiction, suppose that Γ1 is not a subset of Γ2. Then ∃y ∈ Γ1 such that y /∈ Γ2.

Since Γ
C

2 is open, ∃r > 0 such that B(y, r) ⊂ Γ
C

2 . Thus B(y, r) ∩ Γ2 = ∅. Since y ∈ Γ1,

∃y0 ∈ B(y, r)∩Γ
C

2 ∩Γ1, since B(y, r)∩Γ
C

2 is an open set containing y. But supp(g1) = Γ1, so

g1 is not uniformly zero on Γ1. Thus
∫
B(y0,r)∩Γ1

[u1(y0)] 6= 0 but
∫
B(y0,r)∩Γ1

[u2(y)] = 0. This

contradicts the fact that u1 = u2 in R3− \ Γ1 ∩ Γ2. To avoid contradiction, we conclude that

Γ1 ⊂ Γ2. Switching the roles of Γ1 and Γ2, we see that Γ1 ⊃ Γ2. Since Γ1 and Γ2 are C2

open surfaces Γ1 = Γ2 whose boundaries are closed curves, implies that Γ1 = Γ2. We also

know that [u1] = [u2] across Γ1 = Γ2, so g1 = g2. �

7 Stability Results

Recall the notation

G(x, y, n̂) =
∂Φ(x, y)

∂n̂(y)
= ∇yΦ(x, y) · n.

In the rest of this thesis we extend this notation to the case of any unit vector v: we set,

G(x, y, v) = ∇yΦ(x, y) · v.
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Lemma 7.1. Let Γ be an open surface in R3 included in the plane x3 = 0 and let g ∈ C∞c (Γ).

Then g satisfies the following jump formulas across Γ.

[

∫
Γ

G(x, y, e3)g(y)dy1dy2] = g(x), (35)

[

∫
Γ

(∂y1G)(x, y, e3)g(y)dy1dy2] = −∂x1g(x), (36)

[

∫
Γ

G(x, y, e1)g(y)dy1dy2] = 0, (37)

[

∫
Γ

G(x, y, e2)g(y)dy1dy2] = 0, (38)

[

∫
Γ

(∂y3G)(x, y, e3)g(y)dy1dy2] = 0, (39)

[∂x1

∫
Γ

G(x, y, e3)g(y)dy1dy2] = ∂x1g(x), (40)

[∂x2

∫
Γ

G(x, y, e3)g(y)dy1dy2] = ∂x2g(x), (41)

[∂x3

∫
Γ

G(x, y, e3)g(y)dy1dy2] = 0. (42)

Proof. We can perform a change of variables by translation so that x = 0. By Taylor’s

Theorem, we know that

g(y1, y2) = g(0, 0) + gy1(0, 0)y1 + gy2(0, 0)y2 +O(y2
1 + y2

2). (43)

Clearly

G(x, y, e3) = ∂y3Φ(x, y) =
x3 − y3

4π |x− y|3
.

Fix ε > 0. Then we apply a change of variables v = r2 + x2
3 to find that

lim
x3→0+

∫
B(0,ε)

(G(x1, x2, x3, y, e3)−G(x1, x2,−x3, y, e3)g(0, 0)dy1dy2

= lim
x3→0+

g(0, 0)

∫ 2π

0

1dθ

∫ ε

0

x3r

2π(r2 + x2
3)3/2

dr = g(0, 0)

= lim
x3→0+

g(0, 0)

∫ x23+ε2

x23

x3

2v3/2
dv = g(0, 0)

(44)
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As
∫ 2π

0
sin(θ)dθ =

∫ 2π

0
cos(θ)dθ = 0, we know that

lim
x3→0+

∫
B(0,ε)

(G(x1, x2, x3, y, e3)−G(x1, x2,−x3, y, e3)y1gy1(0, 0)dy1dy2

= lim
x3→0+

gy1(0, 0)

∫ 2π

0

cos(θ)dθ

∫ ε

0

x3r
2

2π(r2 + x2
3)3/2

dr = 0,

(45)

lim
x3→0+

∫
B(0,ε)

(G(x1, x2, x3, y, e3)−G(x1, x2,−x3, y, e3)y2gy2(0, 0)dy1dy2

= lim
x3→0+

gy2(0, 0)

∫ 2π

0

sin(θ)dθ

∫ ε

0

x3r
2

2π(r2 + x2
3)3/2

dr = 0.

(46)

By (43)-(46), jump of the integral of G(x, y, e3)g(y) over any open ball in the y1 − y2 plane

is g(0, 0). But the open surface Γ ⊂ R2 × {0} is a union of such balls, so have shown (35).

Since g ∈ C∞c (Γ), we can apply integration parts for x /∈ Γ to find that∫
Γ

(∂y1G)(x, y, n̂)g(y)dy1dy2 = −
∫

Γ

G(x, y, n̂)(∂y1g)(y)dy1dy2.

Then we can use (35) to derive (36). We compute

G(x, y, e1) = ∂y1Φ(x, y) =
x1 − y1

4π |x− y|3/2
.

Since this is even with respect to x3 when y3 = 0, so (37) follows. Equation (38) holds by

the same argument. We know that

(∂y3G)(x, y, e3) = ∂2
y3

Φ(x, y) =
3(x3 − y3)2

4π |x− y|5
(47)

is even with respect to x3 for in the y1 − y2 plane. This implies (39). We note that

∂x1G(x1, x2, x3, y, e3) =
3(y3 − x3)(y1 − x1)

4π |x− y|5

As
∫ 2π

0
cos(θ) sin(θ)dθ =

∫ 2π

0
cos(θ)dθ = 0, we know that

lim
x3→0+

∂x1

∫
B(0,ε)

(G(x1, x2, x3, y, e3)−G(x1, x2,−x3, y, e3)) g(0, 0)

= g(0, 0)

∫ 2π

0

cos(θ)dθ

∫ ε

0

6x3r
2

4π (r2 + x2
3)

5/2
dr = 0,
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lim
x3→0+

∂x1

∫
B(0,ε)

(G(x1, x2, x3, y, e3)−G(x1, x2,−x3, y, e3)) y2gy2(0, 0)

=

∫ 2π

0

cos(θ) sin(θ)dθ

∫ ε

0

6x3r
3

4π(r2 + x2
3)5/2

dr = 0.

We can apply a change of variables v = r2 + x2
3 to get

lim
x3→0+

∂x1

∫
B(0,ε)

(G(x1, x2, x3, y, e3)−G(x1, x2,−x3, y, e3)) y1gy1(0, 0)

= lim
x3→0+

gy1(0, 0)

∫ 2π

0

cos2(θ)dθ

∫ ε

0

6x3r
3

4π(r2 + x2
3)5/2

dr

= lim
x3→0+

gy1(0, 0)(π)

∫ x23+ε2

x23

(
3x3(v − x2

3)

4πv5/2

)
dv

= lim
x3→0+

gy1(0, 0)

(∫ x23+ε2

x23

(
3x3

4v3/2
− 3x3

3

4v5/2

)
dv

)

= lim
x3→0+

gy1(0, 0)

− 3x3

2
√
v

+
x3

3

2
√
v

3

∣∣∣∣∣
x23+ε2

x23


= gy1(0, 0).

We repeat the argument used to derive (35) to conclude (40). Formula (41) follows by

symmetry. We know that for y3 = 0

∂x3G(x, y, e3) =
−3x2

3

4π |x− y|5

is even with respect to x3. This justifies (42). �

Lemma 7.2. Let Γ be as in lemma 7.1 and g ∈ H1
0 (Γ) . Then the jump formulas (35),

(37), and (38) still hold in the H1
0 (Γ) norm, while the jump formulas (36) and (39) hold as

continuous linear operations from H1
0 (Γ) to L2(Γ). The same jump formulas hold for H in

place of G.

Proof. The result follows from the density of H1
0 (Γ) in C∞c (Γ) and the smoothness of (H −

G)(x, y, n̂) for all x, y ∈ R3−. �

Lemma 7.3. Let Γ be a planar open surface in R3 (this time not necessarily included in

the plane x3 = 0) and let be g ∈ H1
0 (Γ). Let t̂ be a fixed unit vector parallel to Γ. Then g
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satisfies the following jump formulas across Γ,

[

∫
Γ

G(x, y, n̂)g(y)dS(y)] = g(x), (48)

[

∫
Γ

(
∂yG

∂t̂
)(x, y, n̂)g(y)dS(y)] = −∂t̂g(x), (49)

[

∫
Γ

G(x, y, t̂)g(y)dS(y)] = 0, (50)

[

∫
Γ

(
∂yG

∂n̂
)(x, y, n̂)g(y)dS(y)] = 0, (51)

[∂t̂

∫
Γ

G(x, y, n̂)g(y)dS(y)] = ∂t̂g(x), (52)

[∂n̂

∫
Γ

G(x, y, n̂)g(y)dS(y)] = 0. (53)

Proof. Since the fundamental solution Φ given by definition 3.3 satisfies Φ(Tx, Ty) = Φ(x, y),

for all x and y in R3 such that x 6= y where T is any rotation or translation of R3, this result

is a straightforward generalization of lemma 7.2. �

8 Lipschitz stability theorem for a fixed slip

For a closed rectangle R in the x3 = 0 plane, we define the set Γa,b,d = {(x1, x2, ax1 + bx2 +

d)|(x1, x2) ∈ R}. For any triplet m = (a, b, d) ∈ R3 we set Γm = Γa,b,d. Let B be a set of

triplets (a, b, d) such that Γa,b,d ⊂ R3−. We assume that B is a closed and bounded subset

of R3 so that

inf
m∈B

d(Γm, {x3 = 0}) > 0. (54)

We set n̂ = (−a,−b,1)√
a2+b2+1

and σm =
√
a2 + b2 + 1 to be the normal vector and surface element

of Γm. Let H1
0 (R) be the space of functions g on R with Sobolev H1

0 regularity. Let V be a

relatively open subset of {x3 = 0}. We define the operator Am : H1
0 (R)→ L2(V ) by

(Am(g))(x) =

∫
R

H(x1, x2, x3, y1, y2, ay1 + by2 + d, n̂)g(y1, y2)σmdy1dy2. (55)

Clearly Am is linear and continuous. It can also be shown that Am is compact: this can be

done by considering the set {Amg : g ∈ H1
0 (R), ‖g‖ < 1}, which is a set of equicontinuous

functions, and by an application of Ascoli’s theorem.

23



We know from Theorem 6.1 that Am is injective. We fix a non-zero h ∈ H1
0 (R) and define a

linear function φ : B → L2(V ) by

φ(m) =

(
x→

∫
R

H(x, y1, y2, ay1 + by2 + d)h(y1, y2)σmdy1dy2

)
. (56)

Due to the regularity of the Green’s function H, we know that φ in analytic in m. Theo-

rem 6.1 implies that φ is injective. We will show that the inverse of φ defined on φ(B) and

valued in B is of class C1 by applying the inverse function Theorem. As a consequence, φ−1

is Lipschitz continuous, which will yield our main stability estimate.

Theorem 8.1. Assume that the set of admissible geometries B is such that for any d < 0,

(0, 0, d) /∈ B, in other words no horizontal faults are allowed. Fix a non-zero h ∈ H1
0 (R) and

define the function φ from B to L2(V ) by (56). Then there is a positive constant C such

that

C|m−m′| ≤ ‖φ(m)− φ(m′)‖L2(V ) (57)

for all m and m′ in B.

Remark: The constant C in estimate (57) depends on the fixed slip h and on the compact

set of values of the geometry parameters B, but is otherwise independent of m and m′.

Proof. Fix m ∈ B. Arguing by contradiction, suppose that there is an m ∈ B such that

∇φ(m) does not have full rank. Then there is a non-zero vector (c1, c2, c3) such that

c1
∂

∂a
φ(m) + c2

∂

∂b
φ(m) + c3

∂

∂d
φ(m) = 0. (58)

We note that n̂σ simplifies to (−a,−b, 1). Since

H(x, y, n̂) =
∂Φ(x1, x2, x3, y)

∂n̂(y)
− ∂Φ(x1, x2,−x3, y)

∂n̂(y)

is linear in n̂, we can apply the chain rule with y3 = ay1 + by2 + d to find that

∂

∂a
H(x, y, n̂σ) =

∂y3

∂a
(∂y3H)(x, y, n̂σ) +H

(
x, y,

∂(n̂σ)

∂a

)
= y1(∂y3H)(x, y, n̂σ)−H(x, y, e1).

(59)
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Similarly,

∂

∂b
H(x, y, n̂σ) = y2(∂y3H)(x, y, n̂σ)−H(x, y, e2) (60)

and

∂

∂d
H(x, y, n̂σ) = (∂y3H)(x, y, n̂σ). (61)

Define f(y1, y2) = c1y1 + c2y2 + c3. Since h is independent of a, b, and d, we substitute

(59)-(61) into (58) to find that∫
R

(∂y3H)(x, y1, y2, ay1 + by2 + d, n̂)h(y1, y2)f(y1, y2)σdy1dy2

−
∫
R

H(x, y1, y2, ay1 + by2 + d,∇f)h(y1, y2)dy1dy2 = 0

(62)

for all x ∈ W . Set w(x) to be the left hand side of (62) where x has been extended to

R3− \ Γm. We will now show that w is zero in R3− \ Γm. Since ∂y3 and ∂xi commute, we

know from the definition of the Green’s function that w satisfies the Laplace Equation. We

also know that w is 0 on V thanks to (58). By construction of the Green’s tensor H, we

know that for any x on the plane x3 = 0, any y ∈ R3−, and any fixed vector p ∈ R3,

∂x3H(x, y, p) = 0.

Thus we can take a ∂y3 derivative and commute it with ∂x3 to obtain

∂x3∂y3H(x, y, p) = 0.

It follows that ∂x3w is also zero in W . We apply Lemma 6.1 to conclude that w = 0

everywhere in R3− \Γm. In particular, the jump of w across Γm must be zero. As mentioned

earlier, H(x, y, p) − G(x, y, p) is smooth for any x, y ∈ R3− and any fixed vector p in R3,

therefore the jump across Γm of∫
R

(∂y3G)(x, y1, y2, ay1 + by2 + d, n̂)h(y1, y2)f(y1, y2)σdy1dy2

−
∫
R

G(x, y1, y2, ay1 + by2 + d,∇f)h(y1, y2)dy1dy2

(63)

is also zero.
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Let α and β be in R and t̂ a unit vector in R3 parallel to to Γm such that,

e3 = αn̂+ βt̂.

Then (63) can be rewritten as

α

∫
R

(∂n̂G)(x, y1, y2, ay1 + by2 + d, n̂)h(y1, y2)f(y1, y2)σdy1dy2

+ β

∫
R

(∂t̂G) (x, y1, y2, ay1 + by2 + d, n̂)h(y1, y2)f(y1, y2)σdy1dy2

−
∫
R

G(x, y1, y2, ay1 + by2 + d,∇f)h(y1, y2)dy1dy2,

(64)

which again is zero for x in R3− \ Γm. We now apply lemma 7.3: to be more precise,

respectively formula (49) and (51) to the first and second terms of (64) and formulas (48)

and (50) to the third term of (64) to obtain,

− β(
∂

∂t̂
hf)− 1

σ
(∇f · n̂)h = 0 (65)

Now we recall our assumption on B, the set of admissible geometries: it is such that for any

d < 0, (0, 0, d) /∈ B, in other words no horizontal faults are allowed. It follows that β 6= 0.

As h is in H1
0 (R), equation (65) implies that h is zero: this is due to lemma 3.3 in [9]. We

conclude that we have contradicted the assumption h 6= 0 and thus ∇φ(m) has full rank, for

all m in the interior of B.

Now, since ∇φ(m) has full rank, the inverse function theorem guarantees that φ defines a

C1 diffeomorphism from an open neighborhood Um of m to its image by φ in L2(V ). As the

inverse of φ is also C1 on φ(Um), we find there is a ball B(m, εm) in R3and Cm > 0 such that

for all m′ in B(m, εm),

Cm |m−m′| ≤ ‖φ(m)− φ(m′)‖L2(V ) (66)

Arguing by contradiction, assume that estimate (57) does not hold. Then there are two

sequences pn and qn in B such that pn 6= qn and

lim
n→∞

‖φ(pn)− φ(qn)‖L2(V )

|pn − qn|
= 0. (67)

As B is compact, without loss of generality we can assume that pn converges to some m̃ in

B and qn converges to some ˜̃m in B. If m̃ = ˜̃m this contradicts (66), while if m̃ 6= ˜̃m, this

contradicts the uniqueness theorem 6.1. �
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9 Conclusion and perspectives for future work

We have shown in this thesis an existence and uniqueness theorem for our model PDE

system in half space minus a fault, a uniqueness theorem for the related inverse problem,

and a theorem regarding the stability of this inverse problem in case of planar faults. These

three theorems will be the subject of a forthcoming publication. We envision to study

in future work an extension of theorem 8.1 in the case of unknown slips, just as theorem

3.1 led to theorem in 4.1 in [9]. Eventually, it would be very interesting to work on the

computational aspects of solving this plane or anti plane fault inverse problem. In the case

of the full vector linear elasticity problem, this was done in [12] and in [10], where special

random walks techniques were designed and implemented. The advantage of performing such

a study in the plane or anti plane case would be that the related Green’s function is orders

of magnitude simpler to compute, thus it becomes easier to clearly focus on the development

of related probability distribution functions for priors and posteriors, (in particular, with an

efficient way of dealing with regularization constants, which we do not want to set equal to

some arbitrary value), and associated random walks techniques, without being encumbered

by the heavy computational cost of evaluating the Green function for that problem.

Appendices

A A proof of the jump formulas for double layer po-

tential and continuous densities

In this thesis, we need to understand and use the jump formula for double layer potentials

with densities with Sobolev regularity H
1
2 . This jump formula was stated in lemma 3.5. As

C1 is dense in H
1
2 , we first prove this formula for densities of class C1. In fact, with no

additional effort, this formula can be proved for continuous densities, which we set forth to

do. A proof of that result can be found in [5], chapter 6. We present here a simpler proof,

where for pedagogical reasons we provide ample details.

More background work is needed to cover the H
1
2 case: this can be done by studying the

Hilbert transform, using Fourier transforms, and local charts to flatten the boundary of the

surface. The H
1
2 case is beyond the scope of this thesis.

27



Lemma A.1.

lim
r→0+

∫
B(z,r)

1

|x− y|d−1
dy = 0

uniformly in x and z in Rd.

Proof. (Sketch) This is easily seen by applying the changes of variables w = y − z. �

Lemma A.2. Let Φ(x, y) be the fundamental solution to the Laplace equation and D, n̂, and

∂D be defined as in Lemma 3.1. Then

lim
r→0+

∫
∂D∩B(z,r)

∣∣∣∣∂Φ(x, y)

∂n̂(y)

∣∣∣∣ = 0

uniformly for all x and z in ∂D.

Proof. From Lemma 3.1, we know that∣∣∣∣∂Φ(x, y)

∂n̂(y)

∣∣∣∣ ≤ L |x− y|2

|x− y|d
, ∀x, y ∈ ∂D.

Thus we can apply local charts and the previous lemma to find that

lim
r→0+

∫
∂D∩B(z,r)

∣∣∣∣∂Φ(x, y)

∂n̂(y)

∣∣∣∣ = 0

uniformly in x and z in ∂D. �

Lemma A.3. Let Φ, D, ∂D, and n̂ be defined as in Lemma A.2. Then

∫
∂D

∂Φ(x, y)

∂n̂(y)
dS(y) =


−1 x ∈ D

−1
2

x ∈ ∂D

0 x ∈ Rd \D

.

Proof. For x ∈ D, we apply Green’s Representation Theorem from Section 2.3 of [linear pde

2] to u = −1 to find that

−1 =

∫
∂D

{
∂(−1)

∂n̂
(y)Φ(x, y)− (−1)

∂Φ(x, y)

∂n̂(y)

}
dS(y) =

∫
∂D

∂Φ(x, y)

∂n̂(y)
dS(y).

If x ∈ Rd \ D, y → ∂Φ(x,y)
∂n̂(y)

∈ C2(D) and we can use the Divergence Theorem to conclude
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that ∫
∂D

∂Φ(x, y)

∂n̂(y)
dS(y) =

∫
D

∆yΦ(x, y)dy = 0. (68)

Let x ∈ ∂D and fix a small r > 0. We can define a closed surface S which is piecewise C2

and globally Lipschitz by setting

S =
(
∂D ∩ (B(x, r))C

)
∪ (∂B(x, r) ∩D)

(see Figure 1). We also know that x ∈ Rd \ S so (68) with D replaced by S implies that∫
S

∂Φ(x, y)

∂n̂(y)
dS(y) = 0.

Since ∂D ∩B(x, r)C and ∂B(x, r) ∩D are disjoint we have∫
∂D∩B(x,r)C

∂Φ(x, y)

∂n̂(y)
dS(y) +

∫
∂B(x,r)∩D

∂Φ(x, y)

∂n̂(y)
dS(y) = 0. (69)

Figure 3: The set S defined as
(
∂D ∩ (B(x, r))C

)
∪ (∂B(x, r) ∩D) is shown in green

As the radius of x − y of the hypersphere ∂B(x, r) points in the opposite direction of the
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Figure 4: A local sketch of ∂D in the new coordinates

outer unit normal n̂(y), we have∫
∂B(x,r)∩D

∂Φ(x, y)

∂n̂(y)
dS(y) = −

∫
∂B(x,r)∩D

|x− y| |n̂(y)|
ωd |x− y|d

dS(y)

= − 1

ωdrd−1
|∂B(x, r) ∩D| .

. (70)

We can perform a change of coordinates by translation and rotation so that in the new

coordinates x = 0 and the outward unit normal at x is ed. Then the equation in ∂D in

B(x, r) is given by xd = φ(x1, ..., xn−1) for some function φ ∈ C2(B(0, 1)). Since x = 0, we

know that φ(0) = 0 and ∇φ(0) is parallel to ed.

We apply Taylor’s Formula for h in the plane xd = 0 to get

φ(h) = φ(0) +∇φ(0) · h+O(|h|2) = O(|h|2),

so the distance from ∂B(x, r) ∩ {xd < 0} ∩DC to xd = 0 is O(r2). Thus ∂B(x, r) ∩ {xd <
0} ∩DC is contained in the region

{
x ∈ Rd

∣∣ |x| = r, −Cr2 ≤ xd ≤ 0
}

for some C > 0. The

area of this region is O(rd), so we find that

∣∣∂B(x, r) ∩ {xd < 0} \
(
∂B(x, r) ∩ {xd < 0} ∩DC

)∣∣ = o(rd−1).
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Thus (70) implies that

lim
r→0+

∫
∂B(x,r)∩D

∂Φ(x, y)

∂n̂(y)
dS(y) = lim

r→0+

1

ωdrd−1
|∂B(x, r) ∩ {xd < 0}| = 1

2
.

We also know that ∂Φ(x,y)
∂n̂(y)

dS(y) ∈ L1(∂D) for r small enough by Lemma A.2, so

lim
r→0+

∫
∂D∩B(x,r)C

∂Φ(x, y)

∂n̂(y)
dS(y) =

∫
∂D

∂Φ(x, y)

∂n̂(y)
dS(y).

Thus (69) implies that ∫
∂D

∂Φ(x, y)

∂n̂(y)
dS(y) = −1

2
.

�

Lemma A.4. Let Φ, D, ∂D, and n̂ be defined as in Lemma A.3 and let ψ ∈ C(∂D). Then

u(x) =

∫
∂D

∂Φ(x, y)

∂n̂(y)
ψ(y)dS(y)

is continuous on ∂D.

Proof. Fix z ∈ ∂D. We will show that u is continuous at z. Fix ε > 0. From Lemma A.2

we know that there is an r > 0 such that∫
∂D∩B(z,r)

∣∣∣∣∂Φ(x, y)

∂n̂(y)

∣∣∣∣ ‖ψ‖∞ dS(y) <
ε

3
, ∀x ∈ ∂D. (71)

Let x ∈ ∂D ∩B(z, r
2
). Then

|u(x)− u(z)| ≤
∫
∂D∩B(z,r)

∣∣∣∣∂Φ(x, y)

∂n̂(y)
− ∂Φ(z, y)

∂n̂(y)

∣∣∣∣ ‖ψ‖∞ dS(y)

+

∫
∂D∩B(z,r)C

∣∣∣∣∂Φ(x, y)

∂n̂(y)
− ∂Φ(z, y)

∂n̂(y)

∣∣∣∣ ‖ψ‖∞ dS(y)

≤
∫
∂D∩B(z,r)

∣∣∣∣∂Φ(x, y)

∂n̂(y)

∣∣∣∣ ‖ψ‖∞ dS(y) +

∫
∂D∩B(z,r)

∣∣∣∣∂Φ(z, y)

∂n̂(y)

∣∣∣∣ ‖ψ‖∞ dS(y)

+

∫
∂D∩B(z,r)C

∣∣∣∣∂Φ(x, y)

∂n̂(y)
− ∂Φ(z, y)

∂n̂(y)

∣∣∣∣ ‖ψ‖∞ dS(y)

(72)

For y ∈ B(z, r)C we have |z − y| > r and |x− y| > r
2
, so Lemma 3.1 implies that there are
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constants C1 and C2 such that∣∣∣∣∂Φ(x, y)

∂n̂(y)
− ∂Φ(z, y)

∂n̂(y)

∣∣∣∣ ‖ψ‖∞ ≤ C1

|x− y|d−1
+

C1

|y − z|d−1

≤ C2

rd−1
∈ L1(∂D).

(73)

We also know that x →
∣∣∣∂Φ(x,y)
∂n̂(y)

− ∂Φ(z,y)
∂n̂(y)

∣∣∣ ‖ψ‖∞ is continuous for x ∈ B(z, r
2
), y ∈ B(z, r)C ,

so we can apply the Dominated Convergence Theorem to find that

x→
∫
∂D∩B(z,r)C

∣∣∣∂Φ(x,y)
∂n̂(y)

− ∂Φ(z,y)
∂n̂(y)

∣∣∣ ‖ψ‖∞ dS(y) is continuous onB(z, r
2
). Thus for x sufficiently

close z we have ∫
∂D∩B(z,r)C

∣∣∣∣∂Φ(x, y)

∂n̂(y)
− ∂Φ(z, y)

∂n̂(y)

∣∣∣∣ ‖ψ‖∞ dS(y) <
ε

3
(74)

Substituting (71) and (74) into (72), we conclude that |u(x)− u(z)| < ε for x sufficiently

close to z. We conclude that u is continuous on ∂D as required. �

Lemma A.5. Let Φ, D, ∂D, and n̂ be defined as in Lemma A.3 and let ψ ∈ C(∂D). Define

u(x) =

∫
∂D

∂Φ(x, y)

∂n̂(y)
ψ(y)dS(y), x ∈ D.

Then for any z ∈ ∂D we have

lim
h→0+

u(z − hn̂(z)) = −1

2
ψ(z) + u(z).

Proof. Let z ∈ ∂D and fix ε > 0. Set x = z − hn̂(z). Then we know from Lemma A.3 that

1

2
ψ(z) = ψ(z) + ψ(z)

∫
∂D

∂Φ(z, y)

∂n̂(y)
dS(y),

so∣∣∣∣u(z − hn̂(z))−
(
u(z)− 1

2
ψ(z)

)∣∣∣∣
=

∣∣∣∣u(z − hn̂(z))− u(z) + ψ(z) + ψ(z)

∫
∂D

∂Φ(z, y)

∂n̂(y)
dS(y)

∣∣∣∣
=

∣∣∣∣∫
∂D

∂Φ(x, y)

∂n̂(y)
ψ(y)dS(y)−

∫
∂D

∂Φ(z, y)

∂n̂(y)
ψ(y)dS(y) + ψ(z) + ψ(z)

∫
∂D

∂Φ(z, y)

∂n̂(y)
dS(y)

∣∣∣∣
≤
∫
∂D

∣∣∣∣∂Φ(x, y)

∂n̂(y)
− ∂Φ(z, y)

∂n̂(y)

∣∣∣∣ |ψ(y)− ψ(z)| dS(y) +

∣∣∣∣ψ(z) + ψ(z)

∫
∂D

∂Φ(x, y)

∂n̂(y)
dS(y)

∣∣∣∣ .
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For h small enough, x ∈ D, so Lemma A.3 implies that∫
∂D

∂Φ(x, y)

∂n̂(y)
dS(y) = −1

and ∣∣∣∣u(z − hn̂(z))−
(
u(z)− 1

2
ψ(z)

)∣∣∣∣ ≤ ∫
∂D

∣∣∣∣∂Φ(x, y)

∂n̂(y)
− ∂Φ(z, y)

∂n̂(y)

∣∣∣∣ |ψ(y)− ψ(z)| dS(y).

Fix r > 0. For h small enough, we have∣∣∣∣u(z − hn̂(z))−
(
u(z)− 1

2
ψ(z)

)∣∣∣∣ ≤ ∫
∂D∩B(z,r)

∣∣∣∣∂Φ(x, y)

∂n̂(y)
− ∂Φ(z, y)

∂n̂(y)

∣∣∣∣ |ψ(y)− ψ(z)| dS(y)

+

∫
∂D∩B(z,r)C

∣∣∣∣∂Φ(x, y)

∂n̂(y)
− ∂Φ(z, y)

∂n̂(y)

∣∣∣∣ |ψ(y)− ψ(z)| dS(y)

≤ max
|y−z|≤r

|ψ(y)− ψ(z)|
∫
∂D∩B(z,r)

(∣∣∣∣∂Φ(x, y)

∂n̂(y)

∣∣∣∣+

∣∣∣∣∂Φ(z, y)

∂n̂(y)

∣∣∣∣) dS(y)

+ 2 ‖ψ‖∞
∫
∂D∩B(z,r)C

∣∣∣∣∂Φ(x, y)

∂n̂(y)
− ∂Φ(z, y)

∂n̂(y)

∣∣∣∣ dS(y).

(75)

For h small enough, z−hn̂(z) ∈ D and ∂Φ(z−hn̂(z),y)
∂n̂(y)

is continuous in h for y in ∂D∩B(z, r)C .

Thus, by taking h small enough we have

2 ‖ψ‖∞
∫
∂D∩B(z,r)C

∣∣∣∣∂Φ(z − hn̂(z), y)

∂n̂(y)
− ∂Φ(z, y)

∂n̂(y)

∣∣∣∣ dS(y) <
ε

2
,

i.e.,

2 ‖ψ‖∞
∫
∂D∩B(z,r)C

∣∣∣∣∂Φ(x, y)

∂n̂(y)
− ∂Φ(z, y)

∂n̂(y)

∣∣∣∣ dS(y) <
ε

2
. (76)

We will next show that there is an h0 > 0 such that∫
∂D

∣∣∣∣∂Φ(x, y)

∂n̂(y)

∣∣∣∣ dS(y)

is uniformly bounded for h ∈ [0, h0] if x = z − hn̂(z). By Lemma 3.1 we have

|x− y|2 − 1

2

(
|z − y|2 + |x− z|2

)
=

1

2
|z − y|2 +

1

2
h2 − 2(hn̂(z) · (y − z))

≥ 1

2
|z − y|2 +

1

2
h2 − 2hL |z − y|2 .
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Thus |x− y|2 ≥ 1
2

(
|z − y|2 + |x− z|2

)
for h small enough. So we can apply Lemma 3.1

again to find that if h is small enough there is constant C1 such that∣∣∣∣∂Φ(x, y)

∂n̂(y)

∣∣∣∣ =

∣∣∣∣∣ n̂(y) · (z − y)

ωd |x− y|d
+
n̂(y) · (x− z)

ωd |x− y|d

∣∣∣∣∣
≤ L |z − y|2

ωd |x− y|d
+
|x− z|

ωd |x− y|d

≤ L |z − y|2

ωd
(

1
2
(|z − y|2 + |x− z|2)

)d/2 +
|x− z|

ωd
(

1
2
(|z − y|2 + |x− z|2)

)d/2
≤ C1

(
1

|z − y|d−2
+

|x− z|
(|z − y|2 + |x− z|2)d/2

)

For h small enough, we have∫
∂D∩B(z,r)C

∣∣∣∣∂Φ(x, y)

∂n̂(y)

∣∣∣∣ dS(y) ≤
∫
∂D

∣∣∣∣∂Φ(x, y)

∂n̂(y)

∣∣∣∣ dS(y)

≤
∫
∂D

C1

(
1

|z − y|d−2
+

|x− z|
(|z − y|2 + |x− z|2)d/2

)
dS(y).

Using local charts to map ∂D to the unit ball in Rd−1, we find that if r ≤ 1 and h is small

enough, then there are constants C ′1 and C ′2 such that∫
∂D∩B(z,r)

∣∣∣∣∂Φ(x, y)

∂n̂(y)

∣∣∣∣ dS(y) ≤ C ′1

∫ r

0

(
1

ρd−2
+

|x− z|
(ρ2 + |x− z|2)d/2

)
ρd−2dρ

≤ C ′2r + C ′2

∫ ∞
0

(
ρ
|x−z|

)d−2

((
ρ
|x−z|

)2

+ 1

)d/2 1

|x− z|
dρ

≤ C ′2 + C ′2

∫ ∞
0

λd−2

(λ2 + 1)d/2
dλ.

We also know from Lemma A.2 that there is a constant C2 such that for r small enough∫
∂D∩B(z,r)

∣∣∣∣∂Φ(z, y)

∂n̂(y)

∣∣∣∣ dS(y) ≤ C2.

Thus there is a constant C0 such that for h and r small enough we have∫
∂D∩B(z,r)

(∣∣∣∣∂Φ(x, y)

∂n̂(y)

∣∣∣∣+

∣∣∣∣∂Φ(z, y)

∂n̂(y)

∣∣∣∣) dS(y) ≤ C0.
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Since ψ is continuous on ∂D and ∂D is compact, ψ is uniformly continuous on ∂D and we

can fix an r > 0 small enough that

max
|y−z|≤r

|ψ(y)− ψ(z)| < ε

2C0

and for h small enough

max
|y−z|≤r

|ψ(y)− ψ(z)|
∫
∂D∩B(z,r)

(∣∣∣∣∂Φ(x, y)

∂n̂(y)

∣∣∣∣+

∣∣∣∣∂Φ(z, y)

∂n̂(y)

∣∣∣∣) dS(y) <
ε

2
(77)

We combine (75)-(77) to find that for h small enough∣∣∣∣u(z − hn̂(z))−
(
u(z)− 1

2
ψ(z)

)∣∣∣∣ < ε.

We conclude that

lim
h→0+

u(z − hn̂(z)) = u(z)− 1

2
ψ(z).

�

Lemma A.6. Let Φ, D, ∂D, n̂, and u be defined as in Lemma A.3 and let ψ ∈ C(∂D).

Then for any z ∈ ∂D we have

lim
h→0+

u(z + hn̂(z)) = u(z) +
1

2
ψ(z).

Proof. This result follows from an argument similar to what was used to proof of Lemma A.5.

�

Lemma A.7. Let Φ, D, ∂D, and n̂ be defined as in Lemma A.3 and let ψ ∈ C(∂D). Then

u(x) =


∫
∂D

∂Φ(x,y)
∂n̂(y)

ψ(y)dS(y) if x ∈ D∫
∂D

∂Φ(x,y)
∂n̂(y)

ψ(y)dS(y)− 1
2
ψ(x) if x ∈ ∂D.

is continuous on D.

Proof. Fix z ∈ ∂D. We will show that u is continuous at z. Let x ∈ D and h be the

distance from x to ∂D. Clearly h is smaller than |x− z|, so for x sufficiently close to z, h

is small enough that the projection w of x onto ∂D is defined (see Section 2.5.6 of [6]). By

Lemma A.5, we note that by making x close enough to z so that h is sufficiently small, we
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have |u(x)− u(w)| < ε
2
. Since |w − z| ≤ |x− z| + h ≤ 2 |x− z| and u is continuous on ∂D

by Lemma A.4, for x sufficiently close to z we have

|u(x)− u(z)| ≤ |u(x)− u(w)|+ |u(w)− u(z)| < ε.

Now fix z ∈ D. We will show that u is continuous at z. Since y → ∂Φ(x,y)
∂n̂(y)

ψ(y) is continuous

on ∂D for x ∈ D, we can apply the Dominated Convergence Theorem to find that u is

continuous at z. We conclude that u is continuous on D as required. �

Lemma A.8. Let Φ, D, ∂D, and n̂ be defined as in Lemma A.3 and let ψ ∈ C(∂D). Then

u(x) =


∫
∂D

∂Φ(x,y)
∂n̂(y)

ψ(y)dS(y) if x ∈ D∫
∂D

∂Φ(x,y)
∂n̂(y)

ψ(y)dS(y)− 1
2
ψ(x) if x ∈ ∂D∫

∂D
∂Φ(x,y)
∂n̂(y)

ψ(y)dS(y) + 1
2
ψ(x) if x ∈ Rd \D.

is continuous on Rd.

Proof. The result follows from an argument similar to what was used to prove the Lemma A.7.

�

Lemma A.9. Let Φ, D, ∂D, and n̂ be defined as in Lemma A.3 and let ψ ∈ C(∂D). Then

the jump of

u(x) =

∫
∂D

∂Φ(x, y)

∂n̂(y)
ψ(y)dS(y)

across ∂D is ψ(x).

Proof. We apply Lemma A.5 and Lemma A.6 to find that

[u](z) = lim
h→0+

u(z + hn̂(z))− u(z − hn̂(z))

= lim
h→0+

(u(z + hn̂(z))− u(z)) + lim
h→0+

(u(z)− u(z − hn̂(z)))

=
1

2
ψ(z) +

1

2
ψ(z) = ψ(z).

�
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B Classical results from functional analysis and PDE

theory needed in this thesis

We will use the following lemma to prove Lemma 4.4 where we need to show that a particular

function that is bounded in H1(Ω) has a subsequence which converges weakly in H1(Ω).

The following lemma states a well known result which holds in the more general setting of

reflexive Banach spaces, see [13]. Interestingly, a much simpler proof can be given in the

case of Hilbert spaces as shown below.

Lemma B.1. Let H be a separable Hilbert Space. Then every bounded sequence xn in H

has a weakly convergent subsequence. There is a result in Section 3.5 of [6] that proves that

every bounded sequence in a reflexive Banach space has a weakly convergent subsequence, but

this is more general that what we need.

Proof. Since H is separable, there is a sequence ym which is dense in H. We claim that for

any m ∈ N there is a subsequence xnk,m of xn such that 〈yj, xnk,m〉 converges as k → ∞,
∀j ≤ m. We will prove this by induction. We know that xn is bounded, so

∃M ∈ R, ‖xn‖ ≤M. (78)

Thus

|〈y1, xn〉| ≤ ‖y1‖ ‖xn‖ ≤ ‖y1‖M.

Hence 〈y1, xn〉 ∈ R is bounded and has a convergent subsequence 〈y1, xnk,1〉. Suppose that

there is a subsequence xnk,m of xn such that 〈yj, xnk,m〉 converges as k →∞ for j ≤ m. We

know from (78) that

∣∣〈ym+1, xnk,m〉
∣∣ ≤ ‖ym+1‖

∥∥xnk,m∥∥ ≤ ‖ym+1‖M.

Hence 〈ym+1, xnk,m〉 ∈ R is bounded and has a subsequence 〈ym+1, xnk,m+1
〉 which converges

as k → ∞. Since 〈yj, xnk,m〉 converges as k → ∞, ∀j ≤ m and its subsequence 〈yj, xnk,m+1
〉

converges as k → ∞ for j = m + 1, we find that 〈yj, xnk,m+1
〉 converges as k → ∞ for

j ≤ m + 1. We conclude that for every m ∈ N the sequence 〈yj, xn〉 has a subsequence

〈yj, xnk,m〉 which converges as k →∞, ∀j ≤ m by induction. Set xnk = xnk,k . Then 〈yj, xnk〉
converges ∀j ∈ N. Fix ε > 0 and let y ∈ H. Then

∃m ∈ N, ‖y − ym‖ < ε (79)
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by the density of the sequence ym. We also know that

∃N ∈ N, ∀j, k > N,
∣∣〈ym, xnk〉 − 〈ym, xnj〉∣∣ < ε (80)

since 〈ym, xnk〉 converges. Thus (78) implies that∣∣〈y, xnk〉 − 〈y, xnj〉∣∣ ≤ |〈y, xnk〉 − 〈ym, xnk〉|+ ∣∣〈ym, xnk〉 − 〈ym, xnj〉∣∣+
∣∣〈ym, xnj〉 − 〈y, xnj〉∣∣

≤ ‖y − ym‖ ‖xnk‖+
∣∣〈ym, xnk〉 − 〈ym, xnj〉∣∣+ ‖y − ym‖

∥∥xnj∥∥
< (ε)(M) + ε+ (ε)(M) = (2M + 1)ε.

As ε > 0 is arbitrary, we conclude that 〈y, xnk〉 ∈ R is Cauchy, so it converges. Thus we can

define a linear functional l : H → R by l(y) = lim
n→∞
〈y, xnk〉. Since |〈y, xnk〉| ≤ ‖y‖ ‖xnk‖ ≤

‖y‖M , we know that |l(y)| ≤ M ‖y‖ so l(y) is bounded. By the Riesz Representation

Theorem, ∃x ∈ H such that 〈y, x〉 = l(y) = lim
n→∞
〈y, xnk〉. We conclude that the weak limit

of xnk is x. �

If Ω be an open and connected subset of Rn, and f is a C1 function defined in Ω such that

∇f = 0, it is well known from elementary calculus that f must be constant in Ω. The issue

is how to generalize that statement for functions f in H1. The conclusion in that case may

of course only hold almost everywhere. This property is used to show Lemma 4.4 in this

thesis.

Lemma B.2. Let Ω be an open and connected subset of Rn, f ∈ H1
loc(Ω). If ∇f = 0, then

f(x) = f(y) for almost all (x, y) ∈ Ω × Ω. For any open set subset Ω1 of Ω with finite

measure we have f(x) = 1
|Ω1|

∫
Ω1
f(y)dy a.e. in Ω.

Proof. Let u ∈ C1(Ω). Set Ω′ = {x ∈ Ω|d(x,ΩC) > h} for h > 0 small enough that Ω′

is non-empty and connected. By the Fundamental Theorem of Calculus and the Cauchy

Schwartz Inequality,

|u(x+ hei)− u(x)|2 ≤ h2

∫ 1

0

∣∣∣∣ ∂u∂xi (x+ thei)

∣∣∣∣2 dt.
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Thus, by Fubini’s Theorem,∫
Ω′
|u(x+ hei)− u(x)|2 dx ≤ h2

∫
Ω′

∫ 1

0

∣∣∣∣ ∂u∂xi (x+ thei)

∣∣∣∣2 dtdx
= h2

∫ 1

0

∫
Ω′

∣∣∣∣ ∂u∂xi (x+ thei)

∣∣∣∣2 dxdt
= h2

∥∥∥∥ ∂u∂xi
∥∥∥∥2

L2(Ω′)

.

(81)

Let (y1, ..., yn) ∈ B(0, h) and x ∈ Ω′. Then x+ y ∈ Ω, so (81) implies that

|u(x+ y)− u(x)|2 =

∣∣∣∣∣
n∑
k=1

u((x+ y1e1 + ...+ yk−1ek−1) + ykek)− u(x+ y1e1 + ...+ yk−1ek−1)

∣∣∣∣∣
2

≤
n∑
k=1

y2
k ‖∇u‖

2
L2(Ω′)

= h2 ‖∇u‖2
L2(Ω′)

As C1(Ω) is dense in H1(Ω), ∃un ∈ C1(Ω) such that ‖f − un‖H1(Ω) → 0. By the converse

of the Dominated Convergence Theorem, a subsequence unk of un converges to f a.e. Since

|unk(x+ y)− unk(x)|2 ≤ h2 ‖∇unk‖
2
L2(Ω′) , ∀x ∈ Rn, ∀y ∈ B(0, h), and ∇unk → 0 in L2(Ω),

we have |f(x+ y)− f(y)| = 0 for almost all (x, y) ∈ Ω′ × B(0, h). Thus f(y) = f(x) for

almost all (x, y) ∈ Ω′ × B(x, h) (4). Set M = u(x0). Set S = {x ∈ Ω′|u(x) = M}. Since S

satisfies the open ball property by (4), S is open. We also know that S is closed in Ω′ since

it is the inverse image of the compact set {M} under the continuous function u. But Ω′ is

connected, so S = Ω′ or S = ∅. And x0 ∈ S, so S = Ω′. Thus u(x) = M on Ω′. Letting

h → 0, we find that u(x) = M on Ω. Clearly M = 1
|Ω1|

∫
Ω1
Mdy = 1

|Ω1|

∫
Ω1
u(y)dy. Thus

u(x) = 1
|Ω1|

∫
Ω1
u(y)dy, ∀x ∈ Ω. But f = u a.e., so f(x) = 1

|Ω1|

∫
Ω1
u(y)dy = 1

|Ω1|

∫
Ω1
f(y)dy

for almost all x ∈ Ω. �
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