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Abstract 

The purpose of this project is to develop a calculational method to quantify in a simple way the 

performance of wooden baseball bats.  The method we propose is based on the rigid body dynamics of the 

ball/bat collision, which predicts the outgoing velocity of the ball as a function of the location of the point 

of impact along the bat.  Two measures of bat performance that we propose are the maximum outgoing 

velocity of the ball, and the span of the bat along which the outgoing velocity exceeds the incoming 

velocity.  A third measure we introduce is a hybrid that accounts for both the span of the second measure 

and the size of the outgoing velocities along that span.   Interestingly, we found that the shape of the bat 

that optimizes one measure of performance is different than the shape that optimizes another.    
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Nomenclature Used 

𝑥𝑥  Location along the bat measured from the handle 

𝑥̅𝑥  Location of the center of mass in the x coordinate system 

𝑥𝑥1
∗, 𝑥𝑥2

∗ Location along the bat that the desired ball velocity is achieved in x coordinate 

𝑦𝑦  Location along the bat measured from the center of mass 

𝑦𝑦1
∗,𝑦𝑦2

∗ Location along the bat that the desired ball velocity is achieved in y coordinate 

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚  Location along the bat that maximum velocity is achieved in x and y scale 

𝑣𝑣1  Velocity of the baseball bat prior to impact 

𝑣𝑣2  Velocity of the ball prior to impact 

𝑣𝑣𝑐𝑐   Velocity of the center of mass of the bat prior to impact 

𝑣𝑣1′  Velocity of the baseball bat after impact 

𝑣𝑣2 ′  Velocity of the baseball after impact 

𝑣𝑣𝑐𝑐 ′  Velocity of the center of mass of the bat after impact 

𝑉𝑉2
∗  Desired outgoing ball velocity 

𝜌𝜌  Density of the baseball bat 

𝜔𝜔  Angular velocity of bat prior to impact 

𝜔𝜔′  Angular velocity of bat after impact 

ℎ  Distance from handle to point of rotation 

𝑚𝑚1  Mass of the baseball bat 

𝑚𝑚2  Mass of the baseball 



 

viii 

 

𝑚𝑚  Mass ratio of ball to bat 

𝐼𝐼𝑐𝑐   Moment of inertia about the center of mass of the bat 

𝐼𝐼𝑝𝑝   Moment of inertia about the center of rotation of the bat 

𝑅𝑅(𝑥𝑥)  Baseball bat radial profile as a function of x 

𝑟𝑟0  Handle diameter 

𝑏𝑏, 𝑐𝑐, 𝑑𝑑  Cubic coefficients 

𝑙𝑙  Length of the baseball bat 

𝑒𝑒   Coefficient of restitution 

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚   Maximum outing ball velocity 

𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒   Effective length 

𝑃𝑃𝐿𝐿𝐿𝐿   Large weighted performance 

𝑃𝑃𝑊𝑊   Weighted performance 
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Executive Summary 

Throughout the baseball and softball world there is plenty of discrepancy on the location 

of maximum performance along a bat. The purpose of this project is to develop a calculational 

method to quantify in a simple way the performance of wooden baseball bats in turn answering 

this question. Previous methods of calculating bat performance used measurements taken at the 

“sweet spot” of a bat, which was considered to be either the area between the nodes of the first 

and second modes of vibration or at the center of percussion. The reasoning behind these theories 

is that at these points along the bat a collision results in the least amount of vibration, thus less 

energy is wasted on vibration and more is output onto the ball.  However, bat testing agencies 

such as the NCAA found that bat manufacturers could move around the center of percussion 

which would alter the bat’s performance in the span between the nodes of the first two modes of 

vibration confirming that neither of these locations are accurate definitions of the “sweet spot” or 

spots of maximum performance.   These complications have led the NCAA and other 

organizations to turn to new testing methods in which they find the point of maximum 

performance by physically testing bat/ball collisions along the entire barrel. The method we 

propose is similar, but based on the rigid body dynamics of the ball/bat collision we can 

mathematically predict the outgoing velocity of the ball as a function of the location of the point 

of impact along the bat.  

In order to develop a model to predict outgoing ball velocity versus position along the 

profile for a given bat we used equations for the conservation of linear and angular momentum as 

well as from the definition of the coefficient of restitution. Our analysis, which can be performed 

using a few given diameter measurements from an actual bat or from a cubic radius profile, 
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outputs a curve of the outgoing velocity versus the position along the bat.  It is possible to 

compare bats using just these curves, but we developed three measures which we think are 

essential parameters that can be used for the comparison of different bat profiles. The first 

measure, called maximum velocity, is used to quantify the performance of a bat as the maximum 

attainable outgoing velocity that can be achieved, without regard to the position along the bat. 

The second measure, referred to as effective length, indicates the length along the bat within 

which the ball exit velocity is greater than or equal to some chosen velocity.  This can be seen as 

the length of the bat that is effective at producing a desired outgoing ball velocity. The third 

measure, called weighted performance, combines the information from the previous two 

measures and introduces a measure that takes both maximum and minimum velocity into 

account.     

We compare the measures introduced above for a range of bats with radial profiles given 

by a cubic equation: 

𝑅𝑅(𝑥𝑥) = 𝑟𝑟0 + 𝑐𝑐𝑥𝑥2 + 𝑑𝑑𝑥𝑥3       (1) 

The cubic profile was varied while holding the mass (33 oz.) of the bat fixed - with the 

handle diameter equal to 1 inch and the slope at the handle flat. Fixing the mass relates the 

coefficients c and d in R(x). Interestingly, we found that the maximum velocity increases with d 

while the effective length decreases. The weighted performance measure accounts for both these 

conflicting trends, and actually increases by more than 30 percent over the range of bats 

considered.    
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While holding mass fixed through varied bat profiles may seem intuitive, it is actually the 

moment of inertia about the point of rotation (known to players as swing weight) that is most 

felt.  The cubic profile was again varied, this time holding the moment of inertia of the bat fixed. 

The handle diameter was again set equal to 1 inch, and slope at the handle flat. By fixing the 

moment of inertia a new relation between the coefficients c and d in 𝑅𝑅(𝑥𝑥) was found. Notably, 

while the maximum velocity and weighted performance increase with the variation of d, mass 

and effective length decrease.  Variations in effective length are also much smaller than in the 

case of constant mass, resulting in a much a greater increase in weighted performance.  

In conclusion, when developing our three measures we were looking to find trends when 

testing profiles from different bats.  Interestingly, we found that the shape of the bat that 

optimizes one measure of performance is different than the shape that optimizes another.  When 

choosing a bat using our measures the type of player needs to be taken into account.  More 

advanced players may be looking for a higher maximum velocity, while a beginner may be 

looking for a larger effective length.  In either case the weighted performance provides a good 

compromise for either player.  Using cubic profiles with a constant mass and a constant moment 

of inertia gave us the chance to view the trends in our measures as the profile changed. Because 

it was found that the most change occurred in weighted performance followed by effective 

length, an efficient bat would have a good combination of the three measures with the most 

emphasis on weighted performance. 
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Chapter 1: Introduction 

There have been many different theories over the years regarding the performance of 

wooden baseball bats. Many people refer to the “sweet spot” of a bat as the point of maximum 

performance.  But, when asked what and where the sweet spot is you will receive a number of 

different answers. The “sweet spot” has been referred to as the center of percussion, the span of 

the bat between the nodes of the first and second modes of vibration, and the location of 

minimum hand sensation among others. The theories defining the “sweet spot” as the center of 

percussion or the location of minimum hand sensation use the reasoning that at these points there 

is the least vibration, and thus the least amount of energy being output into vibration instead of 

directly into the outgoing ball. While the theory using the nodes of the first two modes of 

vibration uses the reasoning that in this span vibrations from each of the first two modes 

essentially cancels out.   

Since there is no clear cut definition of the “sweet spot” of a bat this argument will have a 

tough time being put to rest. The purpose of this project is not to argue what the “sweet spot” is 

or to determine a bats performance in this area.  Its purpose is to develop a calculational method 

to quantify in a simple way the performance of wooden baseball bats, which could then be used 

to compare the performance of bats in the span of the bat realistically used in bat/ball collisions. 

The method we propose is based on the rigid body dynamics of the ball/bat collision, which 

predicts the outgoing velocity of the ball as a function of the location of the point of impact along 

the bat.  
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1.1      Background 
 

Many experts often refer to the sweet spot of baseball bat as the center of percussion or 

the node of the first bending mode. In the research done at Kettering University, however, the 

sweet spot is considered to be between the nodes of the first and second modes of vibration. In 

this area the vibrations given out essentially cancels each other out. At the nodes in their 

experiment, they found that there was little to no vibration occurring along the bat resulting in a 

maximum amount of energy being given to the ball. The experiment used to find the nodes of 

vibration used a bat suspended by rubber bands which was tapped by a hammer every inch along 

the barrel in order to measure a ratio of acceleration to force. Consequently, they found that a 

ball hit outside these nodes results in more vibration and less energy being given to the ball. 

Bat/ball collisions near the end of the bat tend to send the most vibration to the lower 

hand, while hits near the handle create the most in the top hand, resulting in a sharper pain in the 

top hand between the thumb and the forefinger. When comparing these vibrations it has been 

found that hits from the end of the bat cause low frequency vibration consistent with the first 

bending shape, while stinging in the top hand is a result of higher frequency vibrations consistent 

with the second bending shape. 

The first bending shape has a node, which represents a point on the bat that remains still 

while the rest of the bat is vibrating, that was found to be approximately 7.5 inches from the end 

of the barrel. Impact at a node will not excite this particular mode of vibration. The second 

bending shape has a node that was found to be approximately 4 inches from the barrel end of the 

bat. Therefore, the region between these nodes about 4-7 inches from the end of the bat is what 

many people have considered the sweet spot. This area would be considered a sweet spot 

because an impact within this region will minimally excite the first two bending modes of 
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vibration causing the bat to vibrate much less than it would outside this region. There is one 

problem with this theory though. Since the collision of the bat and ball is less than a millisecond, 

patterns of vibration are still developing after the contact is over. The different vibrations are 

determined by the profile of the bat and the conditions at both ends. Because the bat/ball 

collision is so quick the ball is no longer in contact with the bat before any of the vibration 

patterns had the opportunity to be returned from the handle. Therefore, since these vibration 

patterns weren’t given the chance to be transferred back to the ball, there would be no influence 

on the exit velocity due to the conditions at the handle. As a conclusion, the experimentation at 

Kettering University found that while the grip of a player on the bat can influence the position of 

these nodes there is no influence on the performance. 

  Since the location of the nodes of the first and second bending mode is so close to the 

Center of Percussion (COP) many people also believe that the COP is where the sweet spot is. 

The problem is that the COP shifts closer to the handle and further away from the nodes once the 

bat is put in the hands of the batter. The grip of the batter also changes the total mass and the 

moment of inertia of the system. The axis of rotation used while swinging a bat passes through 

the wrist and hands and because of the impact on these parameters due to the bat being held,  the 

impact point that may feel the best to a player will occur between the newly shifted two nodes, 

most preferring contact at the node of the fundamental vibration mode.  

The center of percussion, which is also known as the center of oscillation, is measured by 

pivoting a bat about a point on the handle 6 inches from the knob and measuring the period of 

oscillation. The COP is important because impact at that point along a bat will result in zero net 

force at the pivot point. When the ball is hit by the bat at a spot closer to the handle than the COP 

a translational force will be introduced at the pivot. While bat/ball contact closer to the end of the 
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bat than the COP, results in rotation about the bats center-of-mass. This rotation causes force in 

the opposite direction at the pivot point. Currently, many methods being used to test baseball and 

softball bat performance use a point 6-inches off the handle as the pivot point, which is then used 

in finding the COP.  

Baseball bats for NCAA and high school both use the collision efficiency 

𝑒𝑒𝐴𝐴 = 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜
𝑉𝑉𝑖𝑖𝑖𝑖

               (2) 

to determine the Ball Exit Speed Ratio (BESR) when considering the certification of baseball 

and softball bats and also to calculate the Bat Performance Factor (BPF). Collision efficiency is 

calculated by measuring the ratio of the outgoing velocities of a baseball off a bat when fired 

from a cannon, compared to the incoming velocity. For many years the BPF was used to measure 

bats performance at the point of maximum performance, which they considered to be the COP, 

of a bat in reference to the 6 inch point off the handle. But, it was later discovered that bat 

manufacturers were able to pass these tests by moving around the moment of inertia so that a bat 

could remain beneath the certain performance levels at the COP but would actually perform 

much better outside this region. As a result of this finding, all testing now finds the point of 

maximum performance by testing collisions along the entire barrel. 

In order to start our project we were able to use the past years MQP as a starting point 

and for background information on our topic. They had developed a mathematical model that 

predicts the outgoing ball velocity as a function of impact point along the bat, coefficient of 

restitution, bat density, angular swing velocity, swing geometry and bat geometry. Their model 

can be utilized to predict at what point along the bat the outgoing ball velocity is maximized, and 

the resultant velocity from an impact at this location is used as a metric for overall bat 

performance. They used a cubic function to represent the radial profile of the bat, and the bat 
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geometry was varied by substituting different boundary conditions. A relation was also 

developed that predicted bat angular velocity at the moment of impact as a function of the torque 

applied and the moment of inertia about the center of rotation. These relations were combined to 

study the effects of variable bat geometry on the overall bat performance. Using their models 

they found that the maximum allowable bat radius yielded the highest outgoing ball speed, while 

also noting that the optimal location for the maximum radius is a few inches in from the extreme 

barrel-end. 

1.2      Previous work 

 This section looks into previous work done on determining the maximum performance of 

baseball bats. There have been many different opinions about the locations of maximum 

performance and what parameters this location is associated with, and the center of percussion, 

the location of minimum hand sensation, the swing weight vs. bat weight and the bending mode 

are some of the more common ones. 

 1.2.1     Center of percussion 

Previous work done at Kettering University has explored the effect of the location of the 

center of percussion (COP) on a bats performance. Also once it was found that the COP wasn’t 

in direct correlation with the point of maximum performance, they also explored the different 

manipulations that could be made to the COP changing the performance of the bat. In the end 

they found that a bat/ball collision at the COP may feel the best, but it is not the location of 

maximum performance.  



 

6 

 

 1.2.2     Location of minimum hand sensation 

The location of minimum hand sensation comes with some disagreement. Many people 

think of this as the location of maximum performance and some argue that this spot is the 

location between the nodes of the first and second modes of vibration while others argue that it is 

the spot between the node of the first node of vibration and the COP. However, work done at 

Kettering University and the American Journal of Physics both found that either of these 

locations like the COP may feel the best to the player, but it does not have a direct correlation to 

the location of maximum performance.  

 1.2.3     Swing weight versus bat weight 

The swing weight of a bat is greatly affected by the moment of inertia. The bat weight is 

determined by weighing a bat using a scale, while the swing weight is calculated based on the 

moment of inertia. Tests done at Kettering University and by the people at the American Journal 

of Physics have shown that bats with a lower swing weight, or a lower moment of inertia, 

translate to a faster swing. But, in terms of maximum performance a lower moment of inertia 

results a less effective collision and a slower batted ball speed. In, fact they also found that often 

times the purpose of a corked bat was to lower the moment of inertia in order to increase the 

swing speed. Their testing concluded that the combination of the higher bat speed and the less 

effective collision effectively cancelled each other out.    

 1.2.4     Bending mode 

The bending mode is sometimes referred to as the location of minimum hand sensation. 

The span of the bat between the nodes of the first and second bending modes of vibration is what 

many people consider the “sweet spot.”  This region is found to be about 5-7 inches from the end 
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of the bat in most cases, and while this area does produce a minimal amount of vibration most 

batters prefer the feel of a ball hit off the node of the first bending mode of vibration. Just like 

the location of minimum hand sensation, studies at Kettering University and by the people at the 

American Journal of Physics have found that bat/ball collisions may feel the best to a player in 

this region it may not always be the spot of maximum performance.  
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Chapter 2: Measures of Efficiency 

In order to quantify the effectiveness of a baseball bat one must first gain an 

understanding of the outgoing ball velocity that can be achieved at any point along the bat.  It is 

assumed that the collision between bat and ball is instantaneous and complainer. The distance 

from the center of rotation to the handle of the bat is defined as h and the angular velocity at 

which the bat is rotating just prior to the impact is defined asω . Given that the length along the 

bat from the handle to the center of the mass is x  such that 

yxx −=                 (3) 

it can then be seen that the velocity of the bat at a given point just prior to impact is given by 

ωyvv c +=1            (4) 

Where cv  is the velocity of the center of mass of the bat given by 

𝑣𝑣𝑐𝑐 = (ℎ + 𝑥̅𝑥)𝜔𝜔      (5) 

It is important to note again that y is measured from the center of gravity x  and can, in fact, be 

negative.  

Due to the fact that the impulse forces present during this collision are much greater than 

any torque that a human could apply during impact, all forces other then impulse can be 

neglected. Now applying the conservation of linear momentum yields 

cc vmvmvmvm ′+′=+ 122122            (6) 

and the conservation of angular momentum gives 
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ωω ′+′=+ cc IyvmIyvm 2222             (7) 

where cI  is the moment of inertia of the bat about its center of gravity.   

The definition of coefficient of restitution states 

)(
)(

21

21

vv
vve

−
′−′−

=
                          (8)

 

The coefficient of restitution essentially dictates how much energy is dissipated during the 

collision, with e=1 being an ideal system in which no energy dissipation occurs.  Using equation 

(8) we can derive formulas for the post impact velocities of the bat 1v′ and the ball 2v′  as follows. 

yvv c ω′+′=′1       (9) 

 such that 

')'( ωxhvc +=′                (10) 

Combining the above equations and solving for the single term 2v′ yields 

])(1[

))(1(
22

2
22

y
I
mm

yvvem
vv

c

c

++

+−+
+=′

ω

                (11)

 

where 𝑚𝑚 = 𝑚𝑚2 𝑚𝑚1⁄  and cv is defined in (5). 

Although the resulting velocity of the bat 1v′  is not of interest to this report, having a 

formula for the outgoing velocity of the ball 2v′  is very powerful.  This formula allows for a 



 

10 

 

velocity versus position along the bat graph to be produced for any given radial profile, 

coefficient of restitution, density, incoming ball velocity, angular speed of the bat, and location 

of pivot beyond the handle of the bat. One such characteristic velocity profile is shown in Figure 

1. 

 

Figure 1: Typical Outgoing Velocity Curve 

 

Using this graph we were able to create a way in which to describe the effectiveness of a 

baseball bat by means of 3 separate measures as described below.   
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2.1      Measure 1: Maximum Outgoing Ball Velocity 

Measure 1 is simply the maximum outgoing ball velocity that can be achieved using a bat 

of the given radial profile, regardless of its location along the bat.  In essence this represents 

what is often considered the “performance” of a bat. An individual that is only concerned with 

the peak outgoing ball velocity would be most interested in this measure.  

The maximum outgoing velocity can be found by first identifying the y values that 

correspond to the minimum and maximum values of (9). This is accomplished by setting 

𝑑𝑑𝑣𝑣′2
𝑑𝑑𝑑𝑑

= 0, which yields two roots given by 

𝑦𝑦 = 1

ω [−(𝑣𝑣𝑐𝑐 − 𝑣𝑣2) ± �(𝑣𝑣𝑐𝑐 − 𝑣𝑣2)2 + 2ω (1 + m)( Ic
m1

)]                 (12) 

The root that represents a maximum value can be found by looking at which root corresponds to 

a negative concavity, or  𝑑𝑑
2𝑣𝑣2

′

𝑑𝑑𝑦𝑦2 < 0.  This leaves one root as follows 

𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 = 1

ω [−(𝑣𝑣𝑐𝑐 − 𝑣𝑣2) + �(𝑣𝑣𝑐𝑐 − 𝑣𝑣2)2 + 2ω (1 + m)( Ic
m1

)]      (13) 

 Using equation (3) we can then find the location that yields maximum outgoing ball 

velocity as it would be measured from the handle of the bat for easy measurements. 

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑥𝑥 + 1

ω [−(𝑣𝑣𝑐𝑐 − 𝑣𝑣2) + �(𝑣𝑣𝑐𝑐 − 𝑣𝑣2)2 + 2ω (1 + m)( Ic
m1

)]        (14) 

The location of maximum output velocity can then be used to determine the actual maximum 

outgoing ball velocity by substituting equation (13) into equation (11).  This yields 
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𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑣𝑣2 +
𝑚𝑚(1+𝑒𝑒)�(𝑣𝑣𝑐𝑐−𝑣𝑣2)2+ 2ω (1+m)( Ic

m 1
)

1+𝑚𝑚+� 𝑚𝑚1
𝐼𝐼𝑐𝑐ω2�[𝑣𝑣2−𝑣𝑣𝑐𝑐+�(𝑣𝑣𝑐𝑐−𝑣𝑣2)2+ 2ω (1+m)� Ic

m 1
�]2

                   (15) 

 A graphical representation of the maximum velocity can be seen in Figure 2. 

 

 

Figure 2 : Maximum Velocity 
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 Equation (15) represents a powerful method of comparing the optimum performance of 

various bat profiles.  Despite this it is not the only useful method of comparison.  It is important 

to remember that this maximum outgoing ball velocity can only be achieved at one exact 

location along the bat. In some cases a bat that is capable of producing a very high maximum 

outgoing ball velocity might also achieve extremely low velocities if the point of impact varies 

even slightly from the ideal location.  Such a bat would be extremely difficult to use, but this 

would not be reflected in the maximum velocity.  Thus, further measures are needed for a 

complete comparison to be made. 

2.2      Measure 2: Effective Length  

Measure 2, referred to as effective length, represents the length along the bat within 

which a minimum desired velocity can be achieved.  That is to say the effective length indicates 

the length of the bat that is effective at producing at least the desired velocity for the outgoing 

ball. For instance, if your goal was to find a bat with which it would be the easiest to hit the ball 

out at least as fast as it was pitched, you would be most concerned with this measure.  The 

graphical equivalent of this measure can be seen below as the length of the red line in Figure 3. 
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Figure 3: Effective Length 

 

 Given a minimum desired velocity *
2V , before calculating the effective length of the bat 

it is first necessary to find the positions on the bat at which this exact 2v′ is attained.  This can be 

done by putting the desired value into equation (11) and finding the values of y. 

])(1[

)*)(1(
22

2
2

*
2

y
I
mm
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+−+
+=

ω

          (16)
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Equation (16) can be rearranged to 

CByAy ++= 20      (17) 

where  

cIe
mvVA

)1(
*)( 12

*
2

+
−

=
         (18)

  

ω=B                        (19) 
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Solving (17) using the quadratic formula to find the roots  
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Now converting from the y to the x scale using equation (3) so that they can be easily 

measured from the handle of the bat  

)
)1(

*)((*2

)
)1()1(
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)
)1(

*)((*2

)
)1()1(

)(
)1(

*)((4

12
*

2

2
*

22
*

2
2

12
*

22

*
2

c

c
c

Ie
mvV

e
vV

em
vVvv

Ie
mvV

xx

+
−

+
−

+
+
−

++−
+
−

−+−
+=

ωω

      (25)

  

It is important to note that these two values have a lower bound of 0 and an upper bound 

of the length of the bat.   If either number is less than 0 it must be set to 0, and similarly if either 

number is greater than the length of the bat it must be set be equal to the length of the bat. 

These two values represent the locations along the bat at which the desired outgoing 

velocity can be achieved.  Knowing that these two points represent points on the left and right 

ends of a parabola with negative concavity as shown in Figure 3 it is obvious that the effective 

length of the bat is given by 

*
1

*
2 xxLeff −=      (26) 



 

17 

 

In the special case that the desired outgoing ball velocity is equal to the incoming ball 

velocity, the value of 
*

2x becomes infinite and is thus simply defined to be equal to the length of 

the bat.   Directly solving for 
*

1x , however, yields  0
0
 and it must therefore be solved using 

L’Hôpital’s Rule as follows.  Recalling definitions (18), (19), and (20) and further defining 

𝑔𝑔(a) = 𝐵𝐵 − √𝐵𝐵2 − 4𝐴𝐴𝐴𝐴                       (27) 

ℎ(𝑎𝑎) = 2𝐴𝐴                            (28) 

such that 

*
1y = 𝑔𝑔(𝑎𝑎)

ℎ(𝑎𝑎)
             (29) 

Where g(0)=0 and h(0)=0 L’Hôpital’s Rule states 

lim𝑎𝑎→0(𝑦𝑦1
∗) =

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 (0)
𝑑𝑑ℎ
𝑑𝑑𝑑𝑑 (0)

           (30) 

Which yields 

lim𝑎𝑎→0(𝑦𝑦1
∗) = 𝐶𝐶

𝐵𝐵
                (31) 

Substituting definitions (19) and (20) gives 

𝑦𝑦1
∗ = −(𝑣𝑣𝑐𝑐−𝑣𝑣2)

𝜔𝜔
               (32) 

 Equation (32) should be used along with the special case definition that 𝑦𝑦2
∗= bat length 

to find the effective length of a bat in the case where the desired outgoing ball velocity is equal 

to the incoming ball velocity. 
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2.3      Measure 3: Weighted Performance 

The third measure used in this report for the purpose of comparing wooden baseball bats 

of various radial profiles is the so called weighted performance.  This measure takes into account 

both the maximum ball exit velocity and the effective length of the bat.  In essence the weighted 

performance indicates how fast a ball can be hit within the effective length of the bat given by 

the second measure. The graphical representation of the weighted performance of a bat can be 

seen below in Figure 4 as the green shaded area.  This measure acts as a hybrid measure, taking 

into account both maximum velocity and effective length and determining the overall achievable 

performance. 
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Figure 4: Weighted Performance 

The derivation for the formula for weighted performance is quite intuitive.  First, the 

formula for the “large” weighted performance is calculated starting with equation (16) rewritten 

as follows 

𝑉𝑉2
∗ = 𝑣𝑣2 + 𝐴𝐴+𝐵𝐵𝐵𝐵

𝐶𝐶2+𝐷𝐷2𝑦𝑦2      (33) 

where 
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𝐴𝐴 = 𝑚𝑚(1 + 𝑒𝑒)(𝑣𝑣𝑐𝑐 − 𝑣𝑣2)            (34) 

𝐵𝐵 = 𝑚𝑚(1 + 𝑒𝑒)𝜔𝜔                  (35) 

𝐶𝐶2 = (1 + 𝑚𝑚)                         (36) 

𝐷𝐷2 = (𝑚𝑚2
𝐼𝐼𝑐𝑐

)            (37) 

 Now large weighted performance (𝑃𝑃𝐿𝐿𝐿𝐿) can be defined as the area under the velocity 

curve in the region defined by 𝑉𝑉2
∗.  This area is calculated using integration of the velocity 

function between the two corresponding points 𝑦𝑦2
∗ and 𝑦𝑦1

∗  

𝑃𝑃𝐿𝐿𝐿𝐿 = ∫ 𝑣𝑣2
∗ 𝑑𝑑𝑑𝑑𝑦𝑦1

∗

𝑦𝑦2
∗ = ∫ 𝑣𝑣2𝑑𝑑𝑑𝑑 +𝑦𝑦1

∗

𝑦𝑦2
∗ ∫ 𝐴𝐴

𝐶𝐶2+𝐷𝐷2𝑦𝑦2 𝑑𝑑𝑑𝑑 + ∫ 𝐵𝐵𝐵𝐵
𝐶𝐶2+𝐷𝐷2𝑦𝑦2 𝑑𝑑𝑑𝑑

𝑦𝑦1
∗

𝑦𝑦2
∗

𝑦𝑦1
∗

𝑦𝑦2
∗           (38) 

Substituting in definitions (34), (35), (36), and (37) and solving yields 

𝑃𝑃𝐿𝐿𝐿𝐿 = 𝑣𝑣2 ∗ 𝑦𝑦2
∗ +

(1+𝑒𝑒)�𝐼𝐼𝑐𝑐𝑚𝑚(𝑣𝑣𝑐𝑐−𝑣𝑣2)𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 � �𝑚𝑚1𝑦𝑦2∗

�𝐼𝐼𝑐𝑐∗√𝑚𝑚+1
�

√𝑚𝑚+1√𝑚𝑚1
+ (1+𝑒𝑒)𝐼𝐼𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (𝑚𝑚1𝑦𝑦2

∗2+𝐼𝐼𝑐𝑐+𝐼𝐼𝑐𝑐𝑚𝑚)
2𝑚𝑚1

− [𝑣𝑣2 ∗ 𝑦𝑦1
∗ +

(1+𝑒𝑒)�𝐼𝐼𝑐𝑐𝑚𝑚(𝑣𝑣𝑐𝑐−𝑣𝑣2)𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 � �𝑚𝑚1𝑦𝑦1∗

�𝐼𝐼𝑐𝑐∗√𝑚𝑚+1
�

√𝑚𝑚+1√𝑚𝑚1
+ (1+𝑒𝑒)𝐼𝐼𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (𝑚𝑚1𝑦𝑦1

∗2+𝐼𝐼𝑐𝑐+𝐼𝐼𝑐𝑐𝑚𝑚)
2𝑚𝑚1

]               (39) 

 

 Due to the way in which the large weighted performance was calculated the measure 

contains unnecessary information, namely the area calculated under the cutoff velocity 𝑉𝑉2
∗.  This 

unnecessary amount is constant for all bats using the same 𝑉𝑉2
∗ and simply inflates the measure.  

To rectify this inflation the area under 𝑉𝑉2
∗ is simply removed from the measure.  This area can be 

calculated easily as 
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𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑉𝑉2
∗ ∗ 𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒                    (40) 

Subtracting this from the large weighted performance gives the small weighted performance, or 

simply weighted performance.   

𝑃𝑃𝑤𝑤 = 𝑣𝑣2 ∗ 𝑦𝑦2
∗ +

(1+𝑒𝑒)�𝐼𝐼𝑐𝑐𝑚𝑚(𝑣𝑣𝑐𝑐−𝑣𝑣2)𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 � �𝑚𝑚1𝑦𝑦2∗

�𝐼𝐼𝑐𝑐∗√𝑚𝑚+1
�

√𝑚𝑚+1√𝑚𝑚1
+ (1+𝑒𝑒)𝐼𝐼𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (𝑚𝑚1𝑦𝑦2

∗2+𝐼𝐼𝑐𝑐+𝐼𝐼𝑐𝑐𝑚𝑚)
2𝑚𝑚1

− [𝑣𝑣2 ∗ 𝑦𝑦1
∗ +

(1+𝑒𝑒)�𝐼𝐼𝑐𝑐𝑚𝑚(𝑣𝑣𝑐𝑐−𝑣𝑣2)𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 � �𝑚𝑚1𝑦𝑦1∗

�𝐼𝐼𝑐𝑐∗√𝑚𝑚+1
�

√𝑚𝑚+1√𝑚𝑚1
+ (1+𝑒𝑒)𝐼𝐼𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (𝑚𝑚1𝑦𝑦1

∗2+𝐼𝐼𝑐𝑐+𝐼𝐼𝑐𝑐𝑚𝑚)
2𝑚𝑚1

] − 𝑣𝑣2
∗ ∗ 𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒         (41) 
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Chapter 3: Case Studies  

In order to establish a better understanding of the effect of different variables on the three 

performance measure, the team performed several case studies holding different parameters 

constant.  With the goal of being able to compare a large range of bats, we decided to use a cubic 

function to produce radial bat profiles.  This cubic took the form  

𝑅𝑅(𝑥𝑥) = 𝑟𝑟0 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑥𝑥2 + 𝑑𝑑𝑥𝑥3            (42) 

where 𝑟𝑟0is the radius at the handle of the bat, 𝑏𝑏 is the slope of the bat at the handle, and 𝑐𝑐 and 𝑑𝑑 

are cubic coefficients for 𝑥𝑥2 and 𝑥𝑥3 respectively.   

The first studies were performed on bats with a constant slope throughout their length and 

with either constant moment of inertia about the center of rotation in one case, or constant mass 

in the other case.  After completing studies on constant linear profile the cases for constant mass 

and constant moment of inertia were repeated using a cubic bat profile.  Finally, a method was 

developed for using point interpolation to input radial profile information from physical bats. 

3.1      Linear Profile: Constant Mass  

For the first case considered using this model a special subset of 𝑅𝑅(𝑥𝑥) was used such that 

the profile could be made linear.  Using a linear profile greatly reduced calculations and allowed 

us to verify the viability of our calculations and code while also attaining a course understanding 

of what results to expect.  This was easily achieved by setting the cubic coefficients 𝑐𝑐 and 𝑑𝑑 to be 

zero.  Next we held the mass of the bat fixed and found the slope variations that correspond to 

different handle diameters using the equation 
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𝑚𝑚1 = ∫ 𝜌𝜌𝜌𝜌𝑅𝑅(𝑥𝑥)2𝑙𝑙
0 𝑑𝑑𝑑𝑑                     (43) 

Where 𝑙𝑙 is the length of the bat.  After substituting and simplifying, the equation becomes 

𝑚𝑚1 = 𝜋𝜋𝜋𝜋 ∫ (𝑟𝑟0
2 + 2𝑏𝑏𝑏𝑏𝑟𝑟0 + 𝑏𝑏2𝑥𝑥2)𝑑𝑑𝑑𝑑𝑙𝑙

0                                (44) 

Performing the simple integration yields 

𝑚𝑚1 = 𝜋𝜋𝜋𝜋(𝑟𝑟0
2𝑙𝑙 + 𝑟𝑟0𝑏𝑏𝑙𝑙2 + 𝑏𝑏2𝑙𝑙3

3
)      (45) 

In this equation everything is prescribed except the slope of the radial equation 𝑏𝑏.  A substitution 

is then made for  

𝐴𝐴 = 𝜋𝜋𝜋𝜋 𝑙𝑙3

3
            (46) 

𝐵𝐵 = 𝜋𝜋𝜋𝜋𝑟𝑟0𝑙𝑙2               (47) 

𝐶𝐶 = 𝜋𝜋𝜋𝜋𝑟𝑟0
2𝑙𝑙 − 𝑚𝑚1                  (48) 

Which gives the equation  

0 = 𝐴𝐴𝑏𝑏2 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶         (49) 

This equation can be simply solved for the slope using the quadratic formula 

A
ACBBb

2
42

* −±−
=

            (50) 

Being as this formula yields two roots it must be determined which value of 𝑏𝑏 is appropriate.  In 

this case, the appropriate value of 𝑏𝑏 is the one of higher value. 
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Using these equations, the constant mass linear bat profile case was completed by 

analyzing bat profiles and the resulting measure values across a range of realistically 

manufacturable bats.  For this case the mass was held constant at 33 ounces and the length of the 

bat was held constant at 33 ounces, and the density of the bat, the rotation center of the bat, the 

coefficient of restitution, the angular velocity of the bat, the incoming velocity of the ball, and 

the mass of the ball were all held constant.  In order to be able to compare the effective length 

and weighted performance values of the different bat profiles, the cutoff velocity was also 

constant at 1,600 in/s, or approximately 90.9 mi/hr. 

The first bat profile analyzed is shown in Figure 5, and it produced a maximum velocity 

of 105.75 mi / hr, an effective length of 17.90 in, and a weighted performance of 275.24 mi * in / 

hr.  For this bat, the moment of inertia was 24,087 oz * in2.  The velocity profile along the length 

of the bat along with the effective length is shown in Figure 6 
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Figure 5: Linear Constant Mass Bat Profile a = 0 

 

Figure 6: Velocity Curve Linear Constant Mass a = 0  
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The second bat profile analyzed is shown in Figure 7, and it produced a maximum 

velocity of 102.93 mi / hr, an effective length of 18.89 in, and a weighted performance of 329.74 

mi * in / hr.  For this bat, the moment of inertia was 19,695 oz * in2.  The velocity profile along 

the length of the bat along with the effective length is shown in Figure 8. 

 

Figure 7: Linear Constant Mass Bat Profile a = 0.49555 

 

Figure 8: Velocity Curve Linear Constant Mass a = 0.49555 
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The next bat profile analyzed is shown in Figure 9, and it produced a maximum velocity 

of 98.90 mi / hr, an effective length of 19.31 in, and a weighted performance of 283.41 mi * in / 

hr.  For this bat, the moment of inertia was 13,686 oz * in2.  The velocity profile along the length 

of the bat along with the effective length is shown in Figure 10. 

 

Figure 9: Linear Constant Mass Bat Profile a = 0.9911 

 

Figure 10: Velocity Curve Linear Constant Mass a = 0.9911 
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The fourth bat profile analyzed is shown in Figure 11, and it produced a maximum 

velocity of 95.44 mi / hr, an effective length of 19.35 in, and a weighted performance of 159.83 

mi * in / hr.  For this bat, the moment of inertia was 8,819 oz * in2.  The velocity profile along 

the length of the bat along with the effective length is shown in Figure 12 

 

Figure 11: Linear Constant Mass Bat Profile a = 1.353828 

 

Figure 12: Velocity Curve Linear Constant Mass a = 1.353828 

.  
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The final bat profile analyzed is shown in Figure 13, and it produced a maximum velocity 

of 92.24 mi / hr, an effective length of 18.81 in, and a weighted performance of 31.61 mi * in / 

hr.  For this bat, the moment of inertia was 4,485 oz * in2.  The velocity profile along the length 

of the bat along with the effective length is shown in Figure 14. 

 

Figure 13: Linear Constant Mass Bat Profile a = 1.716575 

 

Figure 14: Velocity Curve Linear Constant Mass a = 1.716575 
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The results of all the bat profiles were compiled and the chart shown in Figure 15 shows 

the relationship between handle diameter and the maximum velocity performance measure.  As 

shown the relationship is almost linear, with maximum velocity decreasing as the handle 

diameter increases.  The chart shown in Figure 16 shows the relationship between the effective 

length and handle diameter.  This relationship is slightly more complicated as effective length 

reaches a peak slightly past the point of linear bats.  Since the weighted performance is a 

combination of the effective length and maximum velocity performance measures, the graph in 

Figure 16 reflects both of the relationships.  The final graph, shown in Figure 18, shows the 

relationship between moment of inertia and handle diameter.  As the handle diameter increases, 

moment of inertia decreases fairly linearly in the same manner as the maximum velocity, 

showing the relationship between the two variables.  Besides impacting the performance factors, 

the moment of inertia greatly increases the feel of the bat as moment of inertia is often referred to 

as swing weight in swinging applications.  The higher the moment of inertia, the heavier the bat 

feels to swing.  This case was done under the assumption that all bats could be swung at the same 

angular velocity in order to show the performance of the bat under the same circumstances.  

However, in real applications where swing weight will vary the velocity at which the bat can be 

swung, the moment of inertia would be a very important factor. 



 

31 

 

 

Figure 15: Maximum Velocity vs. Handle Diameter for linear constant mass bats 

 

Figure 16: Effective Length vs. Handle Diameter for linear constant mass bats 
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Figure 17: Weighted Performance vs. Handle Diameter for linear constant mass bats 

 

Figure 18: Moment of Inertia vs. Handle Diameter for linear constant mass bats 
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3.2      Linear Profile: Constant Moment of Inertia  

After completing the case of linear profile with constant mass, we decided to allow mass 

to vary, and instead use the moment of inertia about the point of rotation to relate the slope and 

handle diameter.  We felt that using this constant moment case would be beneficial in that while 

the mass of the bat would be allowed to change, the “swing weight” would remain the same.  

This swing weight is how the bat feels to the player during the swing.  Being as this case was 

also performed using a linear radial profile R(x), the cubic coefficients c and d were once again 

set to zero.    

To find the proper relationship between 𝑟𝑟0
2 and 𝑏𝑏 the equation for moment of inertia 

about the center of rotation was used as follows 

𝐼𝐼𝑝𝑝 = 𝜋𝜋𝜋𝜋∫ 𝑅𝑅(𝑥𝑥)2(ℎ + 𝑥𝑥)2 𝑑𝑑𝑑𝑑𝑙𝑙
0             (51) 

where h is the length from the handle of the bat to the center of rotation.  Substituting 𝑅𝑅(𝑥𝑥) and 

expanding yields 

𝐼𝐼𝑝𝑝 = 𝜋𝜋𝜋𝜋∫ (𝑟𝑟0
2 + 2𝑏𝑏𝑟𝑟0𝑥𝑥 + 𝑏𝑏2𝑥𝑥2)(ℎ2 + 2ℎ𝑥𝑥 + 𝑥𝑥2)𝑑𝑑𝑑𝑑𝑙𝑙

0                           (52) 

Further simplifying and grouping x terms gives the equation 

𝐼𝐼𝑝𝑝 = 𝜋𝜋𝜋𝜋� (𝑟𝑟0
2ℎ2 + (2𝑟𝑟0

2ℎ + 2𝑏𝑏𝑟𝑟0ℎ2)𝑥𝑥 + (𝑟𝑟0
2 + 4ℎ𝑏𝑏𝑟𝑟0 + 𝑏𝑏2𝑑𝑑2)𝑥𝑥2 + (2𝑏𝑏𝑟𝑟0 + 2ℎ𝑏𝑏2)𝑥𝑥3

𝑙𝑙

0

+ 𝑏𝑏2𝑥𝑥4)𝑑𝑑𝑑𝑑 

            (53) 

Performing the integration and regrouping in terms of b yields 
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0 = 𝐴𝐴𝑏𝑏2 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶                   (54) 

Where 

𝐴𝐴 = 𝜋𝜋𝜋𝜋 �ℎ
2𝑙𝑙3

3
+ ℎ𝑙𝑙4

2
+ 𝑙𝑙5

5
�             (55) 

𝐵𝐵 = 𝜋𝜋𝜋𝜋 �𝑟𝑟0ℎ2𝑙𝑙2 + 4ℎ𝑟𝑟0𝑙𝑙3

3
+ 𝑟𝑟0𝑙𝑙4

2
�       (56) 

𝐶𝐶 = −𝐼𝐼𝑝𝑝 + 𝜌𝜌𝜌𝜌 �𝑟𝑟0
2ℎ2𝑙𝑙 + 𝑟𝑟0

2ℎ𝑙𝑙2 + 𝑟𝑟0
2𝑙𝑙3

3
�            (57) 

which can be solved for b using the quadratic formula as 

𝑏𝑏 = −𝐵𝐵±√𝐵𝐵2−4𝐴𝐴𝐴𝐴
2𝐴𝐴

      (58) 

As with the case of constant mass two roots are found for b for any given 𝑟𝑟0 and the larger of 

these two values should be used. 
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The first bat profile analyzed for the constant moment linear case study is shown in 

Figure 19, and it produced a maximum velocity of 115.35 mi / hr, an effective length of 18.67 in, 

and a  weighted performance of 527.39 mi * in / hr with a mass of 18.80 oz.  The velocity profile 

along the length of the bat along with the effective length is shown in Figure 20. 

 

Figure 19: Linear Constant Moment Bat Profile a = 0 

 

Figure 20: Velocity Curve Linear Constant Moment a = 0 
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The second bat profile analyzed for the constant moment linear case study is shown in 

Figure 21, and it produced a maximum velocity of 106.24  mi / hr, an effective length of 19.25 

in, and a  weighted performance of  496.23 mi * in / hr with a mass of  24.10 oz.  The velocity 

profile along the length of the bat along with the effective length is shown in Figure 22. 

 

Figure 21: Linear Constant Moment Bat Profile a = 0.49555 

 

Figure 22: Velocity Curve Linear Constant Moment a = 0.49555 

  



 

37 

 

The third bat profile analyzed for the constant moment linear case study is shown in 

Figure 23, and it produced a maximum velocity of 98.90 mi / hr, an effective length of 19.31 in, 

and a  weighted performance of 283.22 mi * in / hr with a mass of 33.02 oz.  The velocity profile 

along the length of the bat along with the effective length is shown in Figure 24. 

 

Figure 23: Linear Constant Moment Bat Profile a = 0.9911 

 

Figure 24: Velocity Curve Linear Constant Moment a = 0.9911 
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The fourth bat profile analyzed for the constant moment linear case study is shown in 

Figure 25, and it produced a maximum velocity of 95.54 mi / hr, an effective length of 19.19 in, 

and a  weighted performance of 151.02 mi * in / hr with a mass of 41.73 oz.  The velocity profile 

along the length of the bat along with the effective length is shown in Figure 26. 

 

Figure 25: Linear Constant Moment Bat Profile a = 1.353828 

 

Figure 26: Velocity Curve Linear Constant Moment a = 1.353828 
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The final bat profile analyzed for the constant moment linear case study is shown in 

Figure 27, and it produced a maximum velocity of 93.45 mi / hr, an effective length of 18.94 in, 

and a  weighted performance of 69.52 mi * in / hr with a mass of 52.16 oz.  The velocity profile 

along the length of the bat along with the effective length is shown in Figure 28. 

 

Figure 27: Linear Constant Moment Bat Profile a = 1.716575 

 

Figure 28: Velocity Curve Linear Constant Moment a = 1.726575 
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The results of all the bat profiles were compiled and the chart shown in Figure 29 shows 

the relationship between handle diameter and the maximum velocity performance measure.  As 

shown the relationship appears to approach a limit as the handle diameter increases, with 

maximum velocity decreasing as the handle diameter increases.  The chart shown in Figure 30 

shows the relationship between the effective length and handle diameter.  This relationship is 

slightly more complicated as effective length reaches a peak at the diameter that produces a 

linear bat.  Since the weighted performance is a combination of the effective length and 

maximum velocity performance measures, the graph in Figure 31 reflects both of the 

relationships.  The final graph, shown in Figure 32, shows the relationship mass and handle 

diameter.  As the handle diameter increases, mass increases in an exponential manner, showing 

the relationship between the two variables.  The mass appears to have no impact on the other 

performance factors created, further showing that the driving factor in baseball bat performance 

is the moment of inertia, or “swing weight.”  After completing these basic linear cases that 

displayed the general relationships between the different performance factors and variables, the 

team decided that a more realistic approach was needed.  To do this, cubic profiles were 

analyzed, and are discussed in the upcoming sections. 
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Figure 29: Maximum Velocity vs. Handle Diameter for linear constant moment bats 

 

Figure 30: Effective Length vs. Handle Diameter for linear constant moment bats 
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Figure 31: Weighted Performance vs. Handle Diameter for linear constant moment bats 

 

Figure 32: Mass vs. Handle Diameter for linear constant moment bats 
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3.3      Cubic Profile: Constant Mass 

 After completing the cases of linear profile the team created a series of “realistic” 

baseball bat shapes using the complete cubic profile for 𝑅𝑅(𝑥𝑥).  In both of the following cubic 

profile cases two parameters deemed to be necessary in a “realistic” bat were used in creating the 

profiles.  These parameters were a handle diameter of 1 inch and a handle slope of 0.  This 

insures the existence of an appropriate handle for use by the player.  It can be easily shown that 

this condition for 0 slope at the handle defines the coefficient b as 0 using the derived equation 

for slope along the bat 

𝑅𝑅′(𝑥𝑥) = 𝑏𝑏 + 2𝑐𝑐𝑐𝑐 + 3𝑑𝑑𝑥𝑥2            (59) 

Which reduces 𝑅𝑅(𝑥𝑥) for these cases to  

𝑅𝑅(𝑥𝑥) = 𝑟𝑟0 + 𝑐𝑐𝑥𝑥2 + 𝑑𝑑𝑥𝑥3                                 (60) 

For the first cubic profile case the cubic coefficients c and d were related using the 

condition of constant mass.  In this way a variety of bat profiles with constant mass could be 

produced for a given range of the cubic coefficient d.  Again using the equation for mass 

𝑚𝑚1 = ∫ 𝜌𝜌𝜌𝜌𝑅𝑅(𝑥𝑥)2𝑙𝑙
0 𝑑𝑑𝑑𝑑         (61) 

Substituting 𝑅𝑅(𝑥𝑥) and expanding yields 

𝑚𝑚1 = 𝜌𝜌𝜌𝜌 ∫ (𝑟𝑟0
2 + 2𝑟𝑟0𝑐𝑐𝑥𝑥2 + 2𝑟𝑟0𝑑𝑑𝑥𝑥3 + 𝑐𝑐2𝑥𝑥4 + 2𝑐𝑐𝑐𝑐𝑥𝑥5 + 𝑑𝑑2𝑥𝑥6)𝑙𝑙

0 𝑑𝑑𝑑𝑑              (62) 

Performing the integration and grouping terms of c gives the form 

0 = 𝐴𝐴𝑐𝑐2 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶                   (63) 

where 



 

44 

 

𝐴𝐴 = 𝜋𝜋𝜋𝜋 �𝑙𝑙
5

5
�              (64) 

𝐵𝐵 = 𝜋𝜋𝜋𝜋 �2𝑟𝑟0𝑙𝑙3

3
+ 𝑑𝑑𝑙𝑙6

3
�         (65) 

𝐶𝐶 = −𝑚𝑚1 + 𝜋𝜋𝜋𝜋 �𝑟𝑟0
2𝑙𝑙 + 𝑟𝑟0𝑑𝑑𝑙𝑙4

2
+ 𝑑𝑑2𝑙𝑙7

7
�                   (66) 

Which can again be solved using the quadratic formula  

𝑐𝑐 = −𝐵𝐵±√𝐵𝐵2−4𝐴𝐴𝐴𝐴
2𝐴𝐴

                 (67) 

Once this relation had been formed we found by trial and error an appropriate range of 

values for the cubic coefficient d to be from -0.0001 to 0.  Any values of d outside this range 

produced profiles that were deemed to be “unrealistic” and were therefore excluded from this 

case. 

The first bat profile analyzed for the constant mass cubic case study is shown in Figure 

33, and it produced a maximum velocity of 101.77 mi / hr, an effective length of 18.91 in, and a  

weighted performance of 268.21 mi * in / hr with a moment of inertia of 18,140 oz * in2.  The 

velocity profile along the length of the bat along with the effective length is shown in Figure 34. 
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Figure 33: Cubic Constant Mass Bat Profile d = -0.0001 

 

Figure 34: Velocity Curve Cubic Constant Mass d = -0.0001 
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The second bat profile analyzed for the constant mass cubic case study is shown in Figure 

35, and it produced a maximum velocity of 102.61 mi / hr, an effective length of 18.84 in, and a  

weighted performance of 306.41 mi * in / hr with a moment of inertia of 19,298 oz * in2.  The 

velocity profile along the length of the bat along with the effective length is shown in Figure 36. 

 

Figure 35: Cubic Constant Mass Bat Profile d = -0.000075 

 

Figure 36: Velocity Curve Cubic Constant Mass d = -0.000075 
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The third bat profile analyzed for the constant mass cubic case study is shown in Figure 

37, and it produced a maximum velocity of 103.43 mi / hr, an effective length of 18.76 in, and a  

weighted performance of 318.00 mi * in / hr with a moment of inertia of 20,477 oz * in2.  The 

velocity profile along the length of the bat along with the effective length is shown in Figure 38. 

 

Figure 37: Cubic Constant Mass Bat Profile d = -0.00005 

 

Figure 38: Velocity Curve Cubic Constant Mass d = -0.00005 
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The fourth bat profile analyzed for the constant mass cubic case study is shown in Figure 

39, and it produced a maximum velocity of 104.24 mi / hr, an effective length of 18.66 in, and a  

weighted performance of 338.92 mi * in / hr with a moment of inertia of 21.662 oz * in2.  The 

velocity profile along the length of the bat along with the effective length is shown in Figure 40. 

 

Figure 39: Cubic Constant Mass Bat Profile d = -0.000025 

 

Figure 40: Velocity Curve Cubic Constant Mass d = -0.000025 
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The final bat profile analyzed for the constant mass cubic case study is shown in Figure 

41, and it produced a maximum velocity of 105.03 mi / hr, an effective length of 18.55 in, and a  

weighted performance of 356.40 mi * in / hr with a moment of inertia of 22,841 oz * in2.  The 

velocity profile along the length of the bat along with the effective length is shown in Figure 42. 

 

Figure 41: Cubic Constant Mass Bat Profile d = 0 

 

Figure 42: Velocity Curve Cubic Constant Mass d = 0 
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The graph in Figure 47 displays the percent change of all the performance measures 

along with the percent change of the moment of inertia.  This graph provides a synopsis of the 

data displayed in Figure 43, Figure 44, Figure 45, and Figure 46 on a common coordinate 

system.  It shows how the change maximum velocity and effective are fairly small, less than a 

five percent increase and decrease respectively.  However, it also shows that the moment of 

inertia and weighted performance both vary in relation to each other; both have a large increase 

of 26 percent and 33 percent, respectively.  These are very large increases given the constraints 

put on the bat profiles and the relatively small changes in the profile across the range of the 

parameter d.  As discussed before, the moment of inertia has a very large impact not only on the 

performance measures, but also on the feel of the bat and the ability of the player to swing the 

bat at a high enough velocity to exploit the performance advantages. 

 

Figure 43: Maximum Velocity vs. Handle Diameter for cubic constant mass bats 
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Figure 44: Effective Length vs. Handle Diameter for cubic constant mass bats 

 

Figure 45: Weighted Performance vs. Handle Diameter for cubic constant mass bats 
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Figure 46: Moment of Inertia vs. Handle Diameter for cubic constant mass bats 

 

Figure 47: Percent Change vs. Cubic Parameter d for cubic constant mass bats 
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3.4      Cubic Profile: Constant Moment of Inertia 

The final case considered by the team used a radial profile generated by a cubic equation was 

that of constant moment of inertia about the point of rotation.  As stated previously the profiles 

considered were constrained to “realistic” bats where 𝑟𝑟0 equals 0.5 inches and the slope of the 

profile at the handle is zero.  Once again, the condition of zero slope at the handle reduces the 

profile equation to 

𝑅𝑅(𝑥𝑥) = 𝑟𝑟0 + 𝑐𝑐𝑥𝑥2 + 𝑑𝑑𝑥𝑥3           (68) 

For this case the cubic coefficients c and d were related using a constant moment of inertia about 

the point of rotation, or “swing weight.”  This relationship was determined using the equation for 

moment of inertia about the point of rotation as follows 

𝐼𝐼𝑝𝑝 = 𝜋𝜋𝜋𝜋∫ 𝑅𝑅(𝑥𝑥)2(ℎ + 𝑥𝑥)2 𝑑𝑑𝑑𝑑𝑙𝑙
0                           (69) 

Substituting, expanding and grouping by x yields 

𝐼𝐼𝑝𝑝 = 𝜋𝜋𝜋𝜋�[𝑟𝑟0
2ℎ2 + 2𝑟𝑟0

2ℎ𝑥𝑥 + (2𝑟𝑟0𝑐𝑐ℎ2 + 𝑟𝑟0
2)𝑥𝑥2 + (2𝑟𝑟0𝑑𝑑ℎ2 + 4𝑟𝑟0𝑐𝑐ℎ)𝑥𝑥3

𝑙𝑙

0

+ (𝑐𝑐2ℎ2 + 2𝑟𝑟0𝑐𝑐 + 4ℎ𝑟𝑟0𝑑𝑑)𝑥𝑥4 + (2𝑐𝑐𝑐𝑐ℎ2 + 2ℎ𝑐𝑐2 + 2𝑟𝑟0𝑑𝑑)𝑥𝑥5

+ (𝑑𝑑2ℎ2 + 4ℎ𝑐𝑐𝑐𝑐 + 𝑐𝑐2)𝑥𝑥6 + (2ℎ𝑑𝑑2 + 2𝑐𝑐𝑐𝑐)𝑥𝑥7 + 𝑑𝑑2𝑥𝑥8]𝑑𝑑𝑑𝑑 

       (70) 

Next, the integration is performed and arranged to the form 

0 = 𝐴𝐴𝑐𝑐2 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶         (71) 

where  
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𝐴𝐴 = 𝜋𝜋𝜋𝜋 �ℎ
2𝑙𝑙5

5
+ ℎ𝑙𝑙6

3
+ 𝑙𝑙7

7
�            (72) 

𝐵𝐵 = 𝜋𝜋𝜋𝜋 �2𝑟𝑟0ℎ2𝑙𝑙3

3
+ 2𝑟𝑟0ℎ𝑙𝑙4

2
+ 2𝑟𝑟0𝑙𝑙5

5
+ 𝑑𝑑ℎ2𝑙𝑙6

3
+ 4𝑑𝑑ℎ𝑙𝑙7

7
+ 𝑑𝑑𝑙𝑙8

4
�            (73) 

𝐶𝐶 = 𝜋𝜋𝜋𝜋 �ℎ2𝑟𝑟0
2𝑙𝑙 + 𝑟𝑟0

2ℎ𝑙𝑙2 + 𝑟𝑟0
2𝑙𝑙3

3
+ 𝑟𝑟0𝑑𝑑ℎ2𝑙𝑙4

2
+ 4𝑟𝑟0𝑑𝑑ℎ𝑙𝑙5

5
+ 𝑟𝑟0𝑑𝑑𝑙𝑙6

3
+ ℎ2𝑑𝑑2𝑙𝑙7

7
+ 𝑑𝑑2ℎ𝑙𝑙8

4
+ 𝑑𝑑2𝑙𝑙9

9
� − 𝐼𝐼𝑝𝑝   (74) 

This equation can be solved using the quadratic formula  

𝑐𝑐 = −𝐵𝐵±√𝐵𝐵2−4𝐴𝐴𝐴𝐴
2𝐴𝐴

          (75) 

It was concluded, as with the case of cubic profile and constant mass that the appropriate 

values of d  used to create “realistic” profiles ranged from -0.0001 to 0.  In the same manner as 

used in the previous case, any values of d outside this range were discarded as “unrealistic” data. 
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The first bat profile analyzed for the constant moment cubic case study is shown in 

Figure 48, and it produced a maximum velocity of 101.22 mi / hr, an effective length of 18.77 in, 

and a weighted performance of 243.80 mi * in / hr with a mass of 36.13 oz.  The velocity profile 

along the length of the bat along with the effective length is shown in Figure 49. 

 

Figure 48: Cubic Constant Moment Bat Profile d = -0.0001 

 
Figure 49: Velocity Curve Cubic Constant Moment d = -0.0001 
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The second bat profile analyzed for the constant moment cubic case study is shown in 

Figure 50, and it produced a maximum velocity of 102.28 mi / hr, an effective length of 18.77 in, 

and a weighted performance of 279.31 mi * in / hr with a mass of 34.53 oz.  The velocity profile 

along the length of the bat along with the effective length is shown in Figure 51. 

 

Figure 50: Cubic Constant Moment Bat Profile d = -0.000075 

 
Figure 51: Velocity Curve Cubic Constant Moment d = -0.000075 
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The third bat profile analyzed for the constant moment cubic case study is shown in 

Figure 52, and it produced a maximum velocity of 103.44 mi / hr, an effective length of 18.75 in, 

and a weighted performance of 318.20 mi * in / hr with a mass of 32.98 oz.  The velocity profile 

along the length of the bat along with the effective length is shown in Figure 53. 

 

Figure 52: Cubic Constant Moment Bat Profile d = -0.00005 

 
Figure 53: Velocity Curve Cubic Constant Moment d = -0.00005 
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The fourth bat profile analyzed for the constant moment cubic case study is shown in 

Figure 54, and it produced a maximum velocity of 104.05 mi / hr, an effective length of 18.75 in, 

and a weighted performance of 360.06 mi * in / hr with a mass of 31.49 oz.  The velocity profile 

along the length of the bat along with the effective length is shown in Figure 55. 

 

Figure 54: Cubic Constant Moment Bat Profile d = -0.000025 

 
Figure 55: Velocity Curve Cubic Constant Moment d = -0.000025 
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The last bat profile analyzed for the constant moment cubic case study is shown in Figure 

56, and it produced a maximum velocity of 106.05 mi / hr, an effective length of 18.73 in, and a  

weighted performance of 404.22 mi * in / hr with a mass of 30.06 oz.  The velocity profile along 

the length of the bat along with the effective length is shown in Figure 57. 

 

Figure 56: Cubic Constant Moment Bat Profile d = 0 

 

Figure 57: Velocity Curve Cubic Constant Moment d = 0 
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The graph in Figure 58 displays the percent change of all the performance measures 

along with the percent change of the moment of inertia.  This graph provides a synopsis of the 

data displayed in Figure 59, Figure 60, Figure 61, and Figure 62 on a common coordinate 

system.  It shows how the change in maximum velocity increases approximately five percent of 

the range of the cubic parameter d.  This is almost double the change that occurred in the 

constant mass case.  The effective length for this case, shown in green on Figure 58, remains 

almost constant as shown by the lack of change, which is also different than the small decrease 

that occurred in the constant mass case.  It also shows that weighted performance varies greatly 

over the range of bat profiles; the weighted performance undergoes a growth of approximately 

65 percent over the range of d.  Over this same span, the mass decreases slightly more than 

twenty percent, and is the only variable to decrease over the sample range.  It appears from this 

sample data that the mass has no effect on the performance measures, and that the true 

determining factors are swing weight and the mass distribution along the bat.  

 

Figure 58: Maximum Velocity vs. Handle Diameter for cubic constant moment bats 
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Figure 59: Effective Length vs. Handle Diameter for cubic constant moment bats 

 

 

Figure 60: Weighted Performance vs. Handle Diameter for cubic constant moment bats 
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Figure 61: Mass vs. Handle Diameter for cubic constant moment bats 

 

Figure 62: Percent Change vs. Cubic Parameter d for cubic constant moment bats 
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3.5      General Profile: Point Interpolation 

 After successfully devising methods of comparing different ranges of theoretical baseball 

bat profiles created using the cubic expression for 𝑅𝑅(𝑥𝑥), the team created a method for inputting 

an existing bat’s profile for comparison.  While the measures listed above can be easily 

calculated for finite point radial profiles instead of continuous ones generated using a cubic 

equation, the accuracy of the results would be affected by the number of points.  In order to 

produce results of acceptable accuracy it would be necessary to take a large number of 

measurements of the bat in question.  To get around this problem, the team decided that it would 

be necessary to create a method of taking fewer data points and interpolating them into a more 

complete profile before calculating the measures presented above. 

The group began by taking 67 evenly spaced measurements of diameter for two different 

wooden baseball bats starting at the handle.  This information was then written into a spreadsheet 

so that it could be easily accessed by an interpolation program.  The first attempt used a method 

of Lagrange interpolation on all points simultaneously.  The result of this was highly erratic, and 

did not closely resemble the desired radial profile.   

Next the group broke the bat up into three distinct sections.  The first section contained 

all points that did not exceed 1.01 times the value of the first handle measurement.  The second 

group contained all points that were not below 0.99 times the measurement at the end of the 

barrel. The third group contained all values that were not characterized by the first two groups, 

which corresponded to the neck of the bat.   

Once this splicing of the diameter measurements was completed a spline interpolation 

was performed on each section of the bat individually to raise the number of data points.  These 
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new values within each section were then put back together into one complete profile.  Using 

trial and error methods the group was then able to determine the minimum number of acceptable 

raw data points that would be able to produce an appropriate profile once the interpolation 

technique had been applied.  

 Figure 63, below, shows the raw 67 data points simply drawn connected.  The Figure 64 

is the result of all 67 points spline interpolated with the raw data superimposed.  Figure 65 shows 

the result of 34 points being spline interpolated with the raw data superimposed.  Figure 66 

shows the result using 17 points, and Figure 67 shows the result using 9 points both once again 

shown with the raw data superimposed.  The measured data that corresponds to each 

interpolation can be seen in Table 1, Table 2, Table 3, and Table 4. 

The team determined that the best way to characterize a wooden baseball bat was by 

taking diameter measurements once every inch along the bat (starting at 0) and then performing 

an interpolation to bring the number of data points to an appropriate number for calculation of 

the measures of performance.  If fewer than 25 data points are taken along the bat the 

interpolated profile begins to be unacceptably impacted. 
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x (Inches) Diameter (inches)
0 1.51

0.5 1.508
1 1.506

1.5 1.299
2 1.189

2.5 1.116
3 1.041

3.5 1.005
4 0.979

4.5 0.963
5 0.944

5.5 0.931
6 0.925

6.5 0.93
7 0.927

7.5 0.932
8 0.94

8.5 0.948
9 0.957

9.5 0.967
10 0.974

10.5 0.988
11 1.002

11.5 1.028
12 1.045

12.5 1.07
13 1.085

13.5 1.11
14 1.137

14.5 1.161
15 1.189

15.5 1.218
16 1.249

16.5 1.291
17 1.33

17.5 1.372
18 1.426

18.5 1.465
19 1.506

19.5 1.557  
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20 1.6
20.5 1.66

21 1.72
21.5 1.799

22 1.845
22.5 1.899

23 1.949
23.5 2.01

24 2.052
24.5 2.092

25 2.14
25.5 2.188

26 2.234
26.5 2.271

27 2.301
27.5 2.321

28 2.349
28.5 2.376

29 2.395
29.5 2.417

30 2.429
30.5 2.439

31 2.454
31.5 2.464

32 2.473
32.5 2.494

33 2.494  

Table 1: 67 Diameter Measurements 
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x (Inches) Diameter (Inches)
0 1.51
1 1.506
2 1.189
3 1.041
4 0.979
5 0.944
6 0.925
7 0.927
8 0.94
9 0.957

10 0.974
11 1.002
12 1.045
13 1.085
14 1.137
15 1.189
16 1.249
17 1.33
18 1.426
19 1.506
20 1.6
21 1.72
22 1.845
23 1.949
24 2.052
25 2.14
26 2.234
27 2.301
28 2.349
29 2.395
30 2.429
31 2.454
32 2.473
33 2.474  

Table 2: 34 Diameter Measurements 
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x (Inches) Diameter (Inches)
0 1.51
2 1.189
4 0.979
6 0.925
8 0.94

10 0.974
12 1.045
14 1.137
16 1.249
18 1.426
20 1.6
22 1.845
24 2.052
26 2.234
28 2.349
30 2.429
32 2.473  

Table 3: 17 Diameter Measurements 

 

x (Inches) Diameter (Inches)
0 1.51
4 0.979
8 0.94

12 1.045
16 1.249
20 1.6
24 2.052
28 2.349
32 2.473  

Table 4: 9 Diameter Measurements 
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Figure 63: Raw Data 

 
Figure 64: 67 Points Interpolated superimposed over raw data 

 
Figure 65: 34 Points Interpolated superimposed over raw data 

 
Figure 66: 17 Points Interpolated superimposed over raw data 

 
Figure 67: 9 Points Interpolated superimposed over raw data 
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Chapter 4: Conclusion 
 

When developing our different cases we were looking to find trends for profiles from 

different bats.  Interestingly, we found that the shape of the bat that optimizes one measure of 

performance is different than the shape that optimizes another.  When choosing a bat using our 

measures the type of player needs to be taken into account.  More advanced players may be only 

looking for a higher maximum velocity, due to their ability to hit the ball consistently.  A 

beginner may be looking for a larger effective length because they want the best chance of 

producing at least a certain velocity.  In either case the weighted performance provides a good 

compromise for either player.   

Using cubic profiles with a constant mass and a constant moment gave us the chance to 

view the trends in our measures as the profile changed.  What we found was that while keeping 

the mass constant the values of maximum velocity and weighted performance increase with the 

cubic coefficient d, while effective length decreases. When keeping the moment constant 

maximum velocity and weighted performance increase with d, and effective length continues to 

decrease.  Because it was found that the most change occurred in weighted performance 

followed by effective length, an efficient bat would have a good combination of the three 

measures with the most emphasis on weighted performance. 

Our team also successfully produced a method of comparing existing wooden bats using 

the three measures presented in this report.  This can be done by simply taking physical 

measurements of the bat’s diameter at regular intervals and using the appropriate code attached 
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in Appendix B.  This could be used to aid players in selecting the best existing wooden baseball 

bat for their specific needs.  

The models presented within this report simplify the nature of the wooden baseball bats 

as being made of a homogeneous material.  This approach does not take into account effects such 

as varying densities created by the grain of the given wood.  Instead these models show an 

optimum case, and would benefit from future work into the addition of considerations for the real 

material properties of wood. 
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Appendix B: Matlab Code 

Measure Calculator 
close all; 
clear all; 
clc; 
  
%%this block is for user inputs, uncomment for prompts 
% a = input ('In the form of R = a + bx + cx^2 + dx^3 please input a\n'); 
% b = input ('Please input b\n'); 
% c = input ('Please input c\n'); 
% d = input ('Please input d\n'); 
% p = input('Density of the Bat\n'); 
% e = input ('Coefficient of Restitution\n'); 
% m2 = input('Mass of the Ball\n'); 
% v2 = input('Incomeing Velocity of the Ball\n'); 
% w = input('Angular Velocity of the Bat\n'); 
% l = input ('Length of the Bat\n'); 
% o = input ('Pivot to end of Bat length\n'); 
  
%%this block is for multiple runs with same values 
a = .6301; %% in 
b = .02068; 
c = 0; 
d = 0; 
p = 35*16/1728; %% lb/ft^3 to oz/in^3 
e = 0.5; 
m2 = 5;  %%oz 
v2 = 1584; %% in/s, = 90mph 
w = 110; %%rad/s 
l = 33;  %%in 
o = 1.5;  
  
  
  
m1 = 
p*pi*(l*a^2+a*b*l^2+(b^2+2*a*c)/3*l^3+1/2*(b*c+a*d)*l^4+1/5*(c^2+2*b*d)*l^5+1/3*(c*d)*l^6+d^2/7*l^7); 
xbar = 
p*pi/m1*(d^2*l^8/8+2/7*c*d*l^7+1/6*(c^2+2*b*d)*l^6+2/5*(b*c+a*d)*l^5+1/4*(b^2+2*a*c)*l^4+2/3*a*b*l^3+
a^2*l^2/2); 
Ic = p*pi*(d^2*l^9/9-1/4*d*(d*xbar-c)*l^8+1/7*(c^2-4*d*xbar*c+d^2*xbar^2+2*d*b)*l^7+1/3*(-
xbar*c^2+d*xbar^2*c+b*c+a*d-2*b*d*xbar)*l^6+1/5*(b^2+2*d*xbar^2*b-4*c*xbar*b+c^2*xbar^2+2*a*c-
4*a*d*xbar)*l^5+1/2*(-xbar*b^2+c*xbar^2*b+a*b+a*d*xbar^2-2*a*c*xbar)*l^4+1/3*(a^2+2*c*xbar^2*a-
4*b*xbar*a+b^2*xbar^2)*l^3-a*xbar*(a-b*xbar)*l^2+a^2*xbar^2*l); 
  
x = 0:0.00001:l; 
m = m2/m1; 
y = x-xbar; 
vc = w*(o+xbar); 
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v2out = v2+(m.*(1+e).*(vc-v2+w.*y))./(1+m+(m1/Ic).*y.^2); 
v2outm = v2+(m.*(1+e).*sqrt((vc-v2).^2+w.^2.*(1+m).*(Ic./m1)))./(1+m+(m1./(Ic.*w.^2)).*(v2-vc+sqrt((vc-
v2).^2+w.^2.*(1+m).*(Ic/m1))).^2); 
v2out2 = v2out./(v2); 
  
disp ('The Max Value of Vout is'); 
v2outm 
  
disp ('The Value of Vout at L is'); 
v2out(end) 
  
figure 
plot(x,v2out);  
title ( 'Vout vs. x'); 
xlabel ('Position on Bat (inches)'); 
ylabel ('Ball Exit Velocity (mph)'); 
  
figure 
plot (x/l, v2out/v2); 
title ('Vout vs. x'); 
xlabel ('Position on Bat'); 
ylabel ('Ball Exit Velocity'); 
  
figure 
plot (x, a+b.*x+c.*x.^2+d.*x.^3); 
title ( 'Bat Profile'); 
xlabel ('Position on Bat (inches)'); 
ylabel ('Radius (inches)'); 
  
vs= input ('Select Minimum Vout\n'); 
  
if(vs ~= v2) 
ys1 = (w-sqrt(w^2-4*((vs-v2)*m1/(Ic*m*(1+e))*((vs-v2)*(1+m)/(m*(1+e))-vc+v2))))/(2*(vs-
v2)*m1/(Ic*m*(1+e))); 
ys2 = (w+sqrt(w^2-4*((vs-v2)*m1/(Ic*m*(1+e))*((vs-v2)*(1+m)/(m*(1+e))-vc+v2))))/(2*(vs-
v2)*m1/(Ic*m*(1+e))); 
else 
ys1 = -(vc-v2)/w; 
ys2 = l; 
end 
  
xs1 = ys1+xbar; 
xs2 = ys2+xbar; 
  
if (xs2 > l) 
    ys2=l-xbar; 
end 
  
measure2=ys2-ys1; 
  
measure3big=v2*ys2+((1+e)*sqrt(Ic)*m*(vc-
v2)*atan((sqrt(m1)*ys2)/(sqrt(Ic)*sqrt(m+1))))/(sqrt(m+1)*sqrt(m1))+((1+e)*Ic*m*w*log(m2*ys2^2+Ic+Ic*m))/(2
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*m1)-(v2*ys1+((1+e)*sqrt(Ic)*m*(vc-
v2)*atan((sqrt(m1)*ys1)/(sqrt(Ic)*sqrt(m+1))))/(sqrt(m+1)*sqrt(m1))+((1+e)*Ic*m*w*log(m1*ys1^2+Ic+Ic*m))/(2
*m1)); 
measure3small=measure3big-vs*(xs2-xs1); 
  
disp ('The Value of measure 2 is') 
measure2 
disp ('The Value of measure 3 is') 
measure3small 

 

Code for Constant Mass Linear Profile 
close all; 
clear all; 
clc; 
  
Range=0:.01:(0.9911*2); 
  
measure1=[]; 
measure12=[]; 
measure2=[]; 
measure3=[]; 
Ic12=[]; 
  
for index = Range 
mass = 33; 
l=33; 
p = 35*16/1728; 
a = index; 
c=0;d=0; 
  
% z = p*pi*l^3; 
quada = pi*p*l^3/3; 
quadb = a*l^2*pi*p; 
quadc = l*a^2*pi*p-mass; 
  
b1 = (-quadb+sqrt(quadb^2-4*quada*quadc))/(2*quada); 
b2 = (-quadb-sqrt(quadb^2-4*quada*quadc))/(2*quada); 
  
b=max(b1,b2); 
  
e = 0.5; 
m2 = 5;  %%oz 
v2 = 1584; %% in/s, = 90mph 
w = 110; %%rad/s 
l = 33;  %%in 
o = 1.5;  
  
m1 = 
p*pi*(l*a^2+a*b*l^2+(b^2+2*a*c)/3*l^3+1/2*(b*c+a*d)*l^4+1/5*(c^2+2*b*d)*l^5+1/3*(c*d)*l^6+d^2/7*l^7); 
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xbar = 
p*pi/m1*(d^2*l^8/8+2/7*c*d*l^7+1/6*(c^2+2*b*d)*l^6+2/5*(b*c+a*d)*l^5+1/4*(b^2+2*a*c)*l^4+2/3*a*b*l^3+
a^2*l^2/2); 
Ic = p*pi*(d^2*l^9/9-1/4*d*(d*xbar-c)*l^8+1/7*(c^2-4*d*xbar*c+d^2*xbar^2+2*d*b)*l^7+1/3*(-
xbar*c^2+d*xbar^2*c+b*c+a*d-2*b*d*xbar)*l^6+1/5*(b^2+2*d*xbar^2*b-4*c*xbar*b+c^2*xbar^2+2*a*c-
4*a*d*xbar)*l^5+1/2*(-xbar*b^2+c*xbar^2*b+a*b+a*d*xbar^2-2*a*c*xbar)*l^4+1/3*(a^2+2*c*xbar^2*a-
4*b*xbar*a+b^2*xbar^2)*l^3-a*xbar*(a-b*xbar)*l^2+a^2*xbar^2*l); 
Ip=p*pi*((a^2*o^2*l+a^2*o*l^2+a^2*l^3/3)+(a*o^2*l^2+4*o*a*l^3/3+a*l^4/2)*b+(o^2*l^3/3+o*l^4/2+l^5/5)*b^
2); 
Ic12=[Ic12, Ip]; 
  
x = 0:0.00001:l; 
m = m2/m1; 
y = x-xbar; 
vc = w*(o+xbar); 
  
v2out = v2+(m.*(1+e).*(vc-v2+w.*y))./(1+m+(m1/Ic).*y.^2); 
v2outm = v2+(m.*(1+e).*sqrt((vc-v2).^2+w.^2.*(1+m).*(Ic./m1)))./(1+m+(m1./(Ic.*w.^2)).*(v2-vc+sqrt((vc-
v2).^2+w.^2.*(1+m).*(Ic/m1))).^2); 
v2out2 = v2out./(v2); 
  
measure1 = [measure1 , v2outm*0.05681818181818]; 
  
measure12 = [measure12, v2out(end)*0.05681818181818]; 
  
vs= 1600; 
  
if(vs ~= v2) 
ys1 = (w-sqrt(w^2-4*((vs-v2)*m1/(Ic*m*(1+e))*((vs-v2)*(1+m)/(m*(1+e))-vc+v2))))/(2*(vs-
v2)*m1/(Ic*m*(1+e))); 
ys2 = (w+sqrt(w^2-4*((vs-v2)*m1/(Ic*m*(1+e))*((vs-v2)*(1+m)/(m*(1+e))-vc+v2))))/(2*(vs-
v2)*m1/(Ic*m*(1+e))); 
else 
ys1 = -(vc-v2)/w; 
ys2 = l; 
end 
  
xs1 = ys1+xbar; 
xs2 = ys2+xbar; 
  
if (xs1 < 0) 
    xs1=0; 
end 
  
if (xs2 > l) 
    xs2=l; 
end 
  
  
  
measure2=[measure2 , (xs2-xs1)]; 
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measure3big=v2*ys2+((1+e)*sqrt(Ic)*m*(vc-
v2)*atan((sqrt(m1)*ys2)/(sqrt(Ic)*sqrt(m+1))))/(sqrt(m+1)*sqrt(m1))+((1+e)*Ic*m*w*log(m1*ys2^2+Ic+Ic*m))/(2
*m1)-(v2*ys1+((1+e)*sqrt(Ic)*m*(vc-
v2)*atan((sqrt(m1)*ys1)/(sqrt(Ic)*sqrt(m+1))))/(sqrt(m+1)*sqrt(m1))+((1+e)*Ic*m*w*log(m1*ys1^2+Ic+Ic*m))/(2
*m1)); 
measure3small=(measure3big-vs*(ys2-ys1))*0.05681818181818; 
  
measure3=[measure3 , measure3small]; 
end 
  
figure 
plot (Range*2, measure1); 
title ('Handle D vs Measure1'); 
xlabel ('Handle Diameter'); 
ylabel ('Measure1'); 
grid on; 
  
figure 
plot (Range*2, Ic12); 
title ('Handle D vs Ip'); 
xlabel ('Handle Diameter'); 
ylabel ('Ip'); 
grid on; 
  
  
figure 
plot (Range*2, measure12); 
title ('Handle D vs Vout at L'); 
xlabel ('Handle Diameter'); 
ylabel ('Vout at L'); 
grid on; 
  
figure 
plot (Range*2, measure2); 
title ('Handle D vs Measure2'); 
xlabel ('Handle Diameter'); 
ylabel ('Measure2'); 
grid on; 
  
figure 
plot (Range*2, measure3); 
title ('Handle D vs Measure3'); 
xlabel ('Handle Diameter'); 
ylabel ('Measure3'); 
grid on; 
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Code for Constant Moment Linear Profile 
close all; 
clear all; 
clc; 
  
measure1=[]; 
measure12=[]; 
measure2=[]; 
measure3=[]; 
mass2=[]; 
  
Range=[0:.01:(0.9911*2)]; 
  
for index = Range 
mass = 33; 
l=33; 
Ip=1.8537*10^4; 
p = 35*16/1728; 
a = index; 
o = 1.5; 
c=0; 
d=0; 
  
quada = pi*p*(((o^2)*(l^3))/3+o*(l^4)/2+(l^5)/5); 
quadb = pi*p*(a*(o^2)*(l^2)+(4*o*a*(l^3))/3+(a*(l^4))/2); 
quadc = pi*p*((a^2)*(o^2)*l+(a^2)*o*(l^2)+((a^2)*(l^3))/3)-Ip; 
  
b1 = (-quadb+sqrt(quadb^2-4*quada*quadc))/(2*quada); 
b2 = (-quadb-sqrt(quadb^2-4*quada*quadc))/(2*quada); 
  
b=max(b1,b2); 
  
e = 0.5; 
m2 = 5;  %%oz 
v2 = 1584; %% in/s, = 90mph 
w = 110; %%rad/s 
  
  
m1 = 
p*pi*(l*a^2+a*b*l^2+(b^2+2*a*c)/3*l^3+1/2*(b*c+a*d)*l^4+1/5*(c^2+2*b*d)*l^5+1/3*(c*d)*l^6+d^2/7*l^7); 
xbar = 
p*pi/m1*(d^2*l^8/8+2/7*c*d*l^7+1/6*(c^2+2*b*d)*l^6+2/5*(b*c+a*d)*l^5+1/4*(b^2+2*a*c)*l^4+2/3*a*b*l^3+
a^2*l^2/2); 
Ic = p*pi*(d^2*l^9/9-1/4*d*(d*xbar-c)*l^8+1/7*(c^2-4*d*xbar*c+d^2*xbar^2+2*d*b)*l^7+1/3*(-
xbar*c^2+d*xbar^2*c+b*c+a*d-2*b*d*xbar)*l^6+1/5*(b^2+2*d*xbar^2*b-4*c*xbar*b+c^2*xbar^2+2*a*c-
4*a*d*xbar)*l^5+1/2*(-xbar*b^2+c*xbar^2*b+a*b+a*d*xbar^2-2*a*c*xbar)*l^4+1/3*(a^2+2*c*xbar^2*a-
4*b*xbar*a+b^2*xbar^2)*l^3-a*xbar*(a-b*xbar)*l^2+a^2*xbar^2*l); 
mass2 = [mass2, m1]; 
  
x = 0:0.00001:l; 
m = m2/m1; 
y = x-xbar; 
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vc = w*(o+xbar); 
  
v2out = v2+(m.*(1+e).*(vc-v2+w.*y))./(1+m+(m1/Ic).*y.^2); 
v2outm = v2+(m.*(1+e).*sqrt((vc-v2).^2+w.^2.*(1+m).*(Ic./m1)))./(1+m+(m1./(Ic.*w.^2)).*(v2-vc+sqrt((vc-
v2).^2+w.^2.*(1+m).*(Ic/m1))).^2); 
v2out2 = v2out./(v2); 
  
  
measure1 = [measure1 , v2outm*0.05681818181818]; 
  
measure12 = [measure12, v2out(end)*0.05681818181818]; 
  
vs= 1600; 
  
if(vs ~= v2) 
ys1 = (w-sqrt(w^2-4*((vs-v2)*m1/(Ic*m*(1+e))*((vs-v2)*(1+m)/(m*(1+e))-vc+v2))))/(2*(vs-
v2)*m1/(Ic*m*(1+e))); 
ys2 = (w+sqrt(w^2-4*((vs-v2)*m1/(Ic*m*(1+e))*((vs-v2)*(1+m)/(m*(1+e))-vc+v2))))/(2*(vs-
v2)*m1/(Ic*m*(1+e))); 
else 
ys1 = -(vc-v2)/w; 
ys2 = l; 
end 
  
xs1 = ys1+xbar; 
xs2 = ys2+xbar; 
  
if (xs1 < 0) 
    xs1=0; 
end 
  
if (xs2 > l) 
    xs2=l; 
end 
  
measure2=[measure2 , (xs2-xs1)]; 
  
measure3big=v2*ys2+((1+e)*sqrt(Ic)*m*(vc-
v2)*atan((sqrt(m1)*ys2)/(sqrt(Ic)*sqrt(m+1))))/(sqrt(m+1)*sqrt(m1))+((1+e)*Ic*m*w*log(m1*ys2^2+Ic+Ic*m))/(2
*m1)-(v2*ys1+((1+e)*sqrt(Ic)*m*(vc-
v2)*atan((sqrt(m1)*ys1)/(sqrt(Ic)*sqrt(m+1))))/(sqrt(m+1)*sqrt(m1))+((1+e)*Ic*m*w*log(m1*ys1^2+Ic+Ic*m))/(2
*m1)); 
measure3small=(measure3big-vs*(ys2-ys1))*0.05681818181818; 
  
measure3=[measure3 , measure3small]; 
end 
  
figure 
plot(Range*2, mass2); 
title ('Handle D vs Mass'); 
xlabel ('Handle Diameter'); 
ylabel ('Mass'); 
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grid on; 
  
figure 
plot (Range*2, measure1); 
title ('Handle D vs Measure1'); 
xlabel ('Handle Diameter'); 
ylabel ('Measure1'); 
grid on; 
  
figure 
plot (Range*2, measure12); 
title ('Handle D vs Vout at L'); 
xlabel ('Handle Diameter'); 
ylabel ('Vout at L'); 
grid on; 
  
figure 
plot (Range*2, measure2); 
title ('Handle D vs Measure2'); 
xlabel ('Handle Diameter'); 
ylabel ('Measure2'); 
grid on; 
  
figure 
plot (Range*2, measure3); 
title ('Handle D vs Measure3'); 
xlabel ('Handle Diameter'); 
ylabel ('Measure3'); 
grid on; 
 

Code for Constant Mass Cubic Profile 
close all; 
clear all; 
clc; 
  
measure1=[]; 
measure12=[]; 
measure2=[]; 
measure3=[]; 
Ic12=[]; 
  
Range=[-0.0001:.000001:0.0001]; 
  
  
for index = Range 
mass = 33; 
l=33; 
p = 35*16/1728; 
a = .5; 
b=0; 
d=index; 
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quada = l^5/5; 
quadb = 2*a*l^3/3+d*l^6/3; 
quadc = -mass/(p*pi)+a^2*l+a*d*l^4/2+d^2*l^7/7; 
  
c1 = (-quadb+sqrt(quadb^2-4*quada*quadc))/(2*quada); 
c2 = (-quadb-sqrt(quadb^2-4*quada*quadc))/(2*quada); 
  
c=max(c1,c2); 
  
e = 0.5; 
m2 = 5;  %%oz 
v2 = 1584; %% in/s, = 90mph 
w = 110; %%rad/s 
l = 33;  %%in 
o = 1.5;  
 
m1 = 
p*pi*(l*a^2+a*b*l^2+(b^2+2*a*c)/3*l^3+1/2*(b*c+a*d)*l^4+1/5*(c^2+2*b*d)*l^5+1/3*(c*d)*l^6+d^2/7*l^7); 
xbar = 
p*pi/m1*(d^2*l^8/8+2/7*c*d*l^7+1/6*(c^2+2*b*d)*l^6+2/5*(b*c+a*d)*l^5+1/4*(b^2+2*a*c)*l^4+2/3*a*b*l^3+
a^2*l^2/2); 
Ic = p*pi*(d^2*l^9/9-1/4*d*(d*xbar-c)*l^8+1/7*(c^2-4*d*xbar*c+d^2*xbar^2+2*d*b)*l^7+1/3*(-
xbar*c^2+d*xbar^2*c+b*c+a*d-2*b*d*xbar)*l^6+1/5*(b^2+2*d*xbar^2*b-4*c*xbar*b+c^2*xbar^2+2*a*c-
4*a*d*xbar)*l^5+1/2*(-xbar*b^2+c*xbar^2*b+a*b+a*d*xbar^2-2*a*c*xbar)*l^4+1/3*(a^2+2*c*xbar^2*a-
4*b*xbar*a+b^2*xbar^2)*l^3-a*xbar*(a-b*xbar)*l^2+a^2*xbar^2*l); 
  
Ip2=p*pi*(o^2*a^2*l+(a*b*o^2+o*a^2)*l^2+(2*a*c*o^2+b^2*o^2+4*a*b*o+a^2)*l^3/3+(a*d*o^2+b*c*o^2+2*a
*c*o+b^2*o+4*b)*l^4/2+(2*b*d*o^2+c^2*o^2+4*a*d*o+4*b*c*o+2*a*c+b^2)*l^5/5+(c*d*o^2+2*b*d*o+c^2*o
+a*d+b*c)*l^6/3+(d^2*o^2+4*c*d*o+2*b*d+c^2)*l^7/7+(d^2*o+c*d)*l^8/4+d^2*l^9/9); 
  
Ic12=[Ic12, Ip2]; 
  
x = 0:0.00001:l; 
m = m2/m1; 
y = x-xbar; 
vc = w*(o+xbar); 
  
v2out = v2+(m.*(1+e).*(vc-v2+w.*y))./(1+m+(m1/Ic).*y.^2); 
v2outm = v2+(m.*(1+e).*sqrt((vc-v2).^2+w.^2.*(1+m).*(Ic./m1)))./(1+m+(m1./(Ic.*w.^2)).*(v2-vc+sqrt((vc-
v2).^2+w.^2.*(1+m).*(Ic/m1))).^2); 
v2out2 = v2out./(v2); 
  
measure1 = [measure1 , v2outm*0.05681818181818]; 
  
measure12 = [measure12, v2out(end)*0.05681818181818]; 
  
vs= 1600; 
  
if(vs ~= v2) 
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ys1 = (w-sqrt(w^2-4*((vs-v2)*m1/(Ic*m*(1+e))*((vs-v2)*(1+m)/(m*(1+e))-vc+v2))))/(2*(vs-
v2)*m1/(Ic*m*(1+e))); 
ys2 = (w+sqrt(w^2-4*((vs-v2)*m1/(Ic*m*(1+e))*((vs-v2)*(1+m)/(m*(1+e))-vc+v2))))/(2*(vs-
v2)*m1/(Ic*m*(1+e))); 
else 
ys1 = -(vc-v2)/w; 
ys2 = l; 
end 
  
xs1 = ys1+xbar; 
xs2 = ys2+xbar; 
  
if (xs1 < 0) 
    xs1=0; 
end 
  
if (xs2 > l) 
    xs2=l; 
end 
  
measure2=[measure2 , (xs2-xs1)]; 
  
measure3big=v2*ys2+((1+e)*sqrt(Ic)*m*(vc-
v2)*atan((sqrt(m1)*ys2)/(sqrt(Ic)*sqrt(m+1))))/(sqrt(m+1)*sqrt(m1))+((1+e)*Ic*m*w*log(m1*ys2^2+Ic+Ic*m))/(2
*m1)-(v2*ys1+((1+e)*sqrt(Ic)*m*(vc-
v2)*atan((sqrt(m1)*ys1)/(sqrt(Ic)*sqrt(m+1))))/(sqrt(m+1)*sqrt(m1))+((1+e)*Ic*m*w*log(m1*ys1^2+Ic+Ic*m))/(2
*m1)); 
measure3small=(measure3big-vs*(ys2-ys1))*0.05681818181818; 
  
measure3=[measure3 , measure3small]; 
end 
  
figure 
plot ( Range, measure1); 
title ('D vs Measure1'); 
xlabel ('D'); 
ylabel ('Measure1'); 
grid on; 
  
figure 
plot (Range, Ic12); 
title ('D vs Ip'); 
xlabel ('D'); 
ylabel ('Ip'); 
grid on; 
  
figure 
plot ( Range, measure12); 
title ('D vs Vout at L'); 
xlabel ('D'); 
ylabel ('Vout at L'); 
grid on; 
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figure 
plot ( Range, measure2); 
title ('D vs Measure2'); 
xlabel ('D'); 
ylabel ('Measure2'); 
grid on; 
  
figure 
plot ( Range, measure3); 
title ('D vs Measure3'); 
xlabel ('D'); 
ylabel ('Measure3'); 
grid on; 
  
  
 

Code for Constant Moment Cubic Profile 
close all; 
clear all; 
clc; 
  
measure1=[]; 
measure12=[]; 
measure2=[]; 
measure3=[]; 
mass2=[]; 
  
Range=[-0.0001:.000001:0.0001]; 
  
for index = Range 
mass = 33; 
Ip=2.01*10^4; 
l=33; 
p = 35*16/1728; 
a = .5; 
b=0; 
d=index; 
o = 1.5; 
  
quada = pi*p*(o^2*l^5/5+o*l^6/3+l^7/7); 
quadb = 
pi*p*(2*a*o^2*l^3/3+b*o^2*l^4/2+2*a*o*l^4/2+4*b*o*l^5/5+2*a*l^5/5+d*o^2*l^6/3+b*l^6/3+4*d*o*l^7/7+d*l
^8/4); 
quadc = 
pi*p*(o^2*a^2*l+(a*b*o^2+a^2*o)*l^2+(b^2*o^2+4*a*b*o+a^2)*l^3/3+(a*d*o^2+b^2*o+a*b)*l^4/2+(2*b*d*o^
2+4*a*d*o+b^2)*l^5/5+(2*b*d*o+a*d)*l^6/3+(o^2*d^2+2*b*d)*l^7/7+d^2*o*l^8/4+d^2*l^9/9)-Ip; 
  
c1 = (-quadb+sqrt(quadb^2-4*quada*quadc))/(2*quada); 
c2 = (-quadb-sqrt(quadb^2-4*quada*quadc))/(2*quada); 
  
c=max(c1,c2); 
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e = 0.5; 
m2 = 5;  %%oz 
v2 = 1584; %% in/s, = 90mph 
w = 110; %%rad/s 
  
m1 = 
p*pi*(l*a^2+a*b*l^2+(b^2+2*a*c)/3*l^3+1/2*(b*c+a*d)*l^4+1/5*(c^2+2*b*d)*l^5+1/3*(c*d)*l^6+d^2/7*l^7); 
xbar = 
p*pi/m1*(d^2*l^8/8+2/7*c*d*l^7+1/6*(c^2+2*b*d)*l^6+2/5*(b*c+a*d)*l^5+1/4*(b^2+2*a*c)*l^4+2/3*a*b*l^3+
a^2*l^2/2); 
Ic = p*pi*(d^2*l^9/9-1/4*d*(d*xbar-c)*l^8+1/7*(c^2-4*d*xbar*c+d^2*xbar^2+2*d*b)*l^7+1/3*(-
xbar*c^2+d*xbar^2*c+b*c+a*d-2*b*d*xbar)*l^6+1/5*(b^2+2*d*xbar^2*b-4*c*xbar*b+c^2*xbar^2+2*a*c-
4*a*d*xbar)*l^5+1/2*(-xbar*b^2+c*xbar^2*b+a*b+a*d*xbar^2-2*a*c*xbar)*l^4+1/3*(a^2+2*c*xbar^2*a-
4*b*xbar*a+b^2*xbar^2)*l^3-a*xbar*(a-b*xbar)*l^2+a^2*xbar^2*l); 
  
Ip2=p*pi*(o^2*a^2*l+(a*b*o^2+o*a^2)*l^2+(2*a*c*o^2+b^2*o^2+4*a*b*o+a^2)*l^3/3+(a*d*o^2+b*c*o^2+2*a
*c*o+b^2*o+4*b)*l^4/2+(2*b*d*o^2+c^2*o^2+4*a*d*o+4*b*c*o+2*a*c+b^2)*l^5/5+(c*d*o^2+2*b*d*o+c^2*o
+a*d+b*c)*l^6/3+(d^2*o^2+4*c*d*o+2*b*d+c^2)*l^7/7+(d^2*o+c*d)*l^8/4+d^2*l^9/9); 
mass2 = [mass2, m1]; 
  
x = 0:0.00001:l; 
m = m2/m1; 
y = x-xbar; 
vc = w*(o+xbar); 
  
v2out = v2+(m.*(1+e).*(vc-v2+w.*y))./(1+m+(m1/Ic).*y.^2); 
v2outm = v2+(m.*(1+e).*sqrt((vc-v2).^2+w.^2.*(1+m).*(Ic./m1)))./(1+m+(m1./(Ic.*w.^2)).*(v2-vc+sqrt((vc-
v2).^2+w.^2.*(1+m).*(Ic/m1))).^2); 
v2out2 = v2out./(v2); 
  
  
measure1 = [measure1 , v2outm*0.05681818181818]; 
  
measure12 = [measure12, v2out(end)*0.05681818181818]; 
  
vs= 1600; 
  
if(vs ~= v2) 
ys1 = (w-sqrt(w^2-4*((vs-v2)*m1/(Ic*m*(1+e))*((vs-v2)*(1+m)/(m*(1+e))-vc+v2))))/(2*(vs-
v2)*m1/(Ic*m*(1+e))); 
ys2 = (w+sqrt(w^2-4*((vs-v2)*m1/(Ic*m*(1+e))*((vs-v2)*(1+m)/(m*(1+e))-vc+v2))))/(2*(vs-
v2)*m1/(Ic*m*(1+e))); 
else 
ys1 = -(vc-v2)/w; 
ys2 = l; 
end 
  
xs1 = ys1+xbar; 
xs2 = ys2+xbar; 
  
if (xs1 < 0) 
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    xs1=0; 
end 
  
if (xs2 > l) 
    xs2=l; 
end 
  
measure2=[measure2 , (xs2-xs1)]; 
  
measure3big=v2*ys2+((1+e)*sqrt(Ic)*m*(vc-
v2)*atan((sqrt(m1)*ys2)/(sqrt(Ic)*sqrt(m+1))))/(sqrt(m+1)*sqrt(m1))+((1+e)*Ic*m*w*log(m1*ys2^2+Ic+Ic*m))/(2
*m1)-(v2*ys1+((1+e)*sqrt(Ic)*m*(vc-
v2)*atan((sqrt(m1)*ys1)/(sqrt(Ic)*sqrt(m+1))))/(sqrt(m+1)*sqrt(m1))+((1+e)*Ic*m*w*log(m1*ys1^2+Ic+Ic*m))/(2
*m1)); 
measure3small=(measure3big-vs*(ys2-ys1))*0.05681818181818; 
  
measure3=[measure3 , measure3small]; 
end 
  
figure 
plot(Range*2, mass2); 
title ('D vs Mass'); 
xlabel ('D'); 
ylabel ('Mass'); 
grid on; 
  
figure 
plot (Range*2, measure1); 
title ('D vs Measure1'); 
xlabel ('D'); 
ylabel ('Measure1'); 
grid on; 
  
figure 
plot (Range*2, measure12); 
title ('D vs Vout at L'); 
xlabel ('D'); 
ylabel ('Vout at L'); 
grid on; 
  
figure 
plot (Range*2, measure2); 
title ('D vs Measure2'); 
xlabel ('D'); 
ylabel ('Measure2'); 
grid on; 
  
figure 
plot (Range*2, measure3); 
title ('D vs Measure3'); 
xlabel ('D'); 
ylabel ('Measure3'); 
grid on; 
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Code for Real Bat Interpolated Profile 
function [x,y,newx,newy]=importbat(z) 
  
num = xlsread('bat1.xls',z); 
y=[num(:,2)./2]; 
x=[num(:,1)]; 
[newx,newy]=cut2(x,y); 
 
function [newx,newy]=cut2(x,y) 
  
subx1=[]; 
subx2=[]; 
subx3=[]; 
  
[suby1 suby2 suby3]=sub(y); 
  
subx1 = [x(1:length(suby1))]'; 
subx2 = [x(length(suby1):length([suby1,suby2])-1)]'; 
subx3 = []; 
  
[new1] = spl(subx1,suby1); 
[new2] = spl(subx2,suby2); 
[new3] = []; 
newy=[new1 new2 new3]; 
a1 = linspace(subx1(1),subx1(end),length(new1)); 
a2 = linspace(subx2(1),subx2(end),length(new2)); 
a3 = []; 
newx=[a1 a2 a3]; 
 

function [new1]=spl(subx,suby) 
cs=spline (subx, [0, suby, 0]); 
new1=ppval (cs, linspace (subx(1), subx(end), 100)); 
 

function [part1, part2, part3] = sub(x1) 
  
 part1=[]; 
 par2=[]; 
 part2=[]; 
 par3=[]; 
 part3=[]; 
  
for index = 1:length(x1) 
    if (x1(index) < 1.01*x1(1))  
        part1 = [part1, x1(index)]; 
    elseif (x1(index) < 1.01*x1(end)) 
        par2 = [par2,x1(index)]; 
    else 
        par3 = [par3,x1(index)]; 
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    end 
end 
  
 part2 = [part1(end),par2]; 
 part3 = [par2(end), par3]; 
  

Stress Analysis 
function [smax tmax] = stress (x,r,d,f) 
close all; 
y = -r:0.001:r; 
m = f.*(x-d); 
v = f; 
Ic=1./4.*pi.*r.^4; 
sigmax = -m.*y./Ic; 
sigmay = 0; 
  
t=2.*sqrt(r.^2-y.^2); 
theta=2.*acos(y./r); 
for index = 1:length(theta) 
    if (theta(index) == 0) 
     ybar(index) = r; 
     aprime(index) = 0; 
    else 
     ybar(index) = 4.*r.*(sin(.5.*theta(index))).^3./(3.*(theta(index)-sin(theta(index)))); 
     aprime(index) = r.^2.*acos(y(index)./r)-y(index).*sqrt(r.^2-y(index).^2); 
    end 
end 
q = ybar.*aprime; 
for index = 1:length(theta) 
    if (t(index) == 0) 
        tau(index) = 0; 
    else 
        tau(index) = v.*q(index)./(Ic.*t(index)); 
    end 
end 
  
%mohr's circle 
center = (sigmax-sigmay)./2; 
rmohr = sqrt(((sigmax-sigmay)./2).^2+tau.^2); 
  
tmax = rmohr; 
smax = max(center+rmohr,center-rmohr); 
  
figure 
plot (tmax,y) 
title ( 'shear max vs y'); 
  
figure 
plot (smax,y) 
title ( 'normal max vs y'); 
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