
Updating XML Views Of Relational Data

by

Mukesh Mulchandani

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Computer Science

by

May 2003

APPROVED:

Professor Elke Rundensteiner, Major Thesis Advisor

Professor George Heineman, Thesis Reader

Professor Micha Hofri, Head of Department

Abstract

XML has emerged as the standard data format for Internet-based business ap-

plications. In many bussiness settings, a relational database management sys-

tem(RDBMS) will serve as the storage manager for data from XML documents.

In such a system, once the XML data is shredded and loaded into the storage sys-

tem, XML queries posed against these (now virtual) XML documents are processed

by translating them as much as possible into SQL queries against the underlying re-

lational storage. Clearly, in order to support full database functionalities over XML

data, we must allow users not only to query but also to specify updates on XML

documents. Today while the XML query language XQuery is being standardized by

W3C, no syntax for updating XML documents is included in this language proposal

as of now.

In this thesis, we have developed techniques for supporting translation of XML

updates on XML views of relational data into SQL updates on the underlying re-

lations. These techniques are based on techniques for supporting translation of

updates on object-based views of relational data into SQL updates on underlying

relations [TBW91]. The system has been implemented as a part of XML Manage-

ment System, called Rainbow, that is being developed at the Worcester Polytechnic

Institute (WPI). We have used XQuery as XML query language and Oracle as the

backend relational store for implementation of the system. Experimental studies

show that incremental XML updates supported by our system is a better choice

than complete reload of XML documents under a variety of system settings.

Acknowledgements

I would like to express my gratitute to my advisor Prof. Elke Rundensteiner

for constantly guiding me during my work. I am thankful to her for giving enough

consideration to my ideas and views and for her continous support in my research.

I am also thankful to Prof. George Heineman for being reader of my thesis and

for his input on improving my work. I also extend my special thanks to Xin Zhang

for his continous support on techincal issues and to other members of Database Sys-

tems Research Group for helping me in various way during my collaboration with

them. I thank all my friends and colleagues at Worcester Polytechnic Institute for

making my stay here a memorable moment of my life.

I dedicate this work to my parents and family members who made me capable

of achieving such heights and to my girl friend whose unconditional love and moral

support helped me throughout my stay at WPI.

i

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 State of the Art of XML Management Systems 2

1.3 Research Issues . 4

1.4 Our Approach . 6

1.5 Contributions of this Thesis . 8

2 Background 10

2.1 XML and XML Schemas . 10

2.2 Running Example . 12

2.3 The XQuery Language . 12

2.4 XML Views Of Relational Data . 14

2.5 XQuery Updates . 16

3 Rainbow System 20

3.1 Rainbow Query Engine . 20

3.1.1 Architecture. 21

3.1.2 XAT Operators . 23

3.1.3 XQuery Translation . 23

3.2 Rainbow Update Manager . 26

3.2.1 Architecture of Enhanced Rainbow Query Engine 26

3.2.2 XAT Update Algebra . 29

ii

4 View Analyzer 32

4.1 Assumptions And Restrictions . 32

4.1.1 Restrictions on the View Definition 33

4.1.2 Assumptions on Type of Updates 35

4.2 The Structural Model . 37

4.3 Analysis of the View XAT . 42

5 Update Decomposer 48

5.1 Decomposition of Updates . 49

5.2 Delete Update Decomposition . 52

5.3 Insert Update Decompostion . 56

5.4 Replace Update Decomposition . 58

6 Update Translator 66

6.1 Update Translation Algorithms . 67

6.1.1 Translation of Complete Delete Updates 68

6.1.2 Translation of Complete Insert Updates 69

6.1.3 Translation of Complete Replace Updates 70

6.2 Example Walkthrough . 71

6.3 Extending Update Tuples . 72

7 SQL Update Generator and SQL Execution 75

7.1 SQL Generation . 75

7.2 Update Execution . 77

8 Experimental Evaluation 79

8.1 Test Data . 80

8.2 Performance of Rainbow Modules . 80

8.3 Comparison between XML Update Types 83

8.4 Incremental Update Versus Reloading 85

iii

9 Related Work 87

10 Conclusions and Future Work 90

10.1 Summary . 90

10.2 Contributions . 91

10.3 Future Work . 92

iv

List of Figures

1.1 Approach . 8

2.1 Example of DTD and XML Document 13

2.2 XQuery Expression over XML Document in Figure 2.1 14

2.3 Result of XQuery Expression in Figure 2.2 14

2.4 Relational Tables in Database . 16

2.5 Default View of Relations Shown in Figure 2.4 16

2.6 Mapping Query Issued on XML View Shown in Figure 2.5 17

2.7 Mapping View as a Result of Mapping Query Shown in Figure 2.6 . . 17

2.8 XQuery Language Extensions to Support XML Updates. 18

2.9 Insert Update Issued on XML View Shown in Figure 2.7 19

2.10 Result of Insert Update Shown in Figure 2.9 19

3.1 Architecture of Rainbow System. 21

3.2 Architecture of Rainbow Query Engine. 22

3.3 XQuery for Constructing a Virtual View. 23

3.4 XQuery to Query over View Shown in Figure 3.3. 23

3.5 XAT for View Query Shown in figure 3.3. 24

3.6 XAT for User Query Shown in Figure 3.4. 24

3.7 View XAT After Decorrelation. 25

3.8 User XAT After Decorrelation. 25

3.9 XAT as a Result of Merging XATs Shown in Figure 3.7 and Figure 3.8. 26

v

3.10 XAT as a Result of Rewriting of XAT Shown in Figure 3.9 using

Rewrite Rules Discussed in [ZPR02b]. 27

3.11 Architecture of Rainbow Query Engine with Update Manager. 28

4.1 Relational Tables in Database . 34

4.2 XML View (with Aggregation) of Relations Shown in Figure 4.1 . . . 34

4.3 Relational Tables in Database . 34

4.4 XML View (with External Dependency) of Relations Shown in Figure

4.3 . 34

4.5 XML Virtual View . 37

4.6 Example of Complete Update Queries Issued on XML View Shown

in Figure 4.5 . 37

4.7 Relational Tables in Database . 41

4.8 Virtual View of Relations Shown in Figure 4.7 41

4.9 XML Algebra Tree for View Query 43

4.10 Algorithm to Search for a Relation in Navigate Operator 44

4.11 Algorithm to Search for Pivot Relation 45

5.1 Algroithm for Decomposition of XML Update. 50

5.2 Algorithm for Extracting Information from a Node. 51

5.3 XAT for Delete Query Shown in Figure 4.6. 53

5.4 XAT as Result of Rewriting XAT Obtained After Merging XATs

Shown in Figure 4.9, Figure 5.3. 54

5.5 XAT for Complete Insert Update Shown in Figure 4.6. 62

5.6 XAT as a result of rewriting XAT obtained after merging XATs shown

in Figure 4.9 and Figure 5.5. 63

5.7 Example of Complete Replace Update Query Issued on the XML

View Shown in Figure 4.5. 63

5.8 XAT for Complete Replace Update Shown in Figure 5.7. 64

vi

5.9 XAT as Result of Rewriting XAT Obtained After Merging XATs

Shown in Figure 4.9 and Figure 5.8. 65

8.1 XQuery used to define a ’Very Simple’ View 80

8.2 XQuery used to define a ’Simple’ View. 80

8.3 XQuery used to define a ’Complex’ View. 81

8.4 XQuery used to define a ’Very Complex’ View. 81

8.5 Performance of Rainbow Modules in case of Delete update, fixed

fanout = 800. 82

8.6 Performance of Rainbow Modules in case of Insert update, fixed

fanout = 800. 82

8.7 Performance of Rainbow Modules in case of Replace update, fixed

fanout = 800. 82

8.8 Performance of Rainbow Modules in case of Delete update, fixed

fanout = 800. 82

8.9 Performance of Rainbow Modules in case of Insert update, fixed

fanout = 800. 83

8.10 Performance of Rainbow Modules in case of Replace update, fixed

fanout = 800. 83

8.11 Performance Comparison of XML Update Types, Complex view, fixed

fanout = 800. 84

8.12 Fixed vs Variable Cost of XML Updates, Complex view, fixed fanout

= 800. 84

8.13 Cost Comparison of XML Update Types, Complex view, variable

fanout. 84

8.14 Reloading Vs Incremental Updates, Complex view, variable fanout. . 84

8.15 Execution time for Delete Update, Complex view, fixed fanout = 800. 86

8.16 Reloading Vs Incremental Delete, Complex view, fixed fanout = 800. 86

vii

List of Tables

3.1 XML XAT Operators. 30

3.2 Special XAT Operators. 30

3.3 SQL XAT Operators. 30

3.4 XML Update Operators. 31

5.1 Node Types and Information they carry. 61

6.1 Data Type of Attributes and Values Generated for them. 73

viii

Chapter 1

Introduction

1.1 Motivation

Over the past few years, there has been a tremendous surge in the interest in XML

as a universal queryable representation of data. This has in part been boosted by

the growth of web and e-commerce applications in the context of which XML has

emerged as the de-facto standard for information interchange [W3C98b]. Today

nearly every major vendor of a data management tool, be it Oracle [Ora] or IBM

[IBM], has added support for importing, storing and viewing XML data over their

relational engine. XML publishing capabilities, that is, the use of XML for format-

ting the result of SQL queries, have been added to the latest releases of relational

database systems by Oracle [Ora], IBM [IBM] and Microsoft [Mic]. At the same

time, due to the maturity of query optimization techniques and the high query per-

formance offered by Relational Database query engines, use of Relational Database

Management Systems (RDBMS) as a store for XML data has been put forth as a

promising direction for XML data management.

Concurrently, considerable research has been carried out to show different ap-

proaches for mapping XML data into the relational data model [DFS99, FK99,

SHT+99, ZMLR01]. All of these approaches propose different algorithms for shred-

1

ding XML documents so to be able to store them in relational tables. The effi-

ciency of the re-construction of the XML documents from data stored in relations

as well as XML query processing in general depends in part upon the level of shred-

ding of the XML documents introduced by the mapping. Thus the choice of an

effective and flexible mapping to store XML documents in relations has been rec-

ognized as an important issue. The issue of translating XML queries into SQL

statements and reconstructing XML query results is now beginning to also be tack-

led [CKS+00, FTS00]. Ultimately it is expected that the relational database engines

will provide standardized and integrated support for querying and publishing XML

views of databases using a unified model, namely XML views specified by a standard

XML query language such as XQuery [W3C01]. The XML query language working

group of The World Wide Web Consortium (W3C) is dedicated to standardizing

this query language and its capabilities.

The next immediate step to offering full-fledged XML-based database support is

to support not only queries but also updates over XML documents, irrespective of

the underlying storage medium chosen to manage the XML data. This now is the

focus of this thesis work.

1.2 State of the Art of XML Management Sys-

tems

While there has been a lot of work to solve the problem of mapping XML docu-

ments into and out of relational databases, less research has been done to date on

supporting queries or updates on XML documents stored in a relational database.

For XML views of relational data, work has appeared in the literature on querying

XML views of relational data [SKS+01]. [SKS+01] proposes a method to translate

XML queries to SQL in order to evaluate XML queries against XML data stored in

2

relational database but doesn’t support any kind of updates that a user might want

to express over the XML data.

Little work has been published on updating XML views of relational data [ZMLR01,

TIHW01]. [ZMLR01] proposes update primitives and their implementation, which

can be used to extend an XML query language, provided there is a way to break

down the update queries into the update primitives. [TIHW01] specifies extensions

to the XML query language XQuery to support data updates over XML documents.

[TIHW01] proposes different trigger-based solutions to update the XML data stored

in relational databases. They assume however that they already have the knowledge

of which tables are to be updated and how and also how other tables that might

be affected as a result of these updates. They do not focus on the issue of how to

translate XML updates through XML views into the correct SQL updates, which is

an essential part for executing XML updates against XML data stored in relational

databases and which is addressed by this thesis work.

A few XML algebra have been proposed till date [ZR02, GVD+01]. Both [ZR02]

and [GVD+01] introduce an algebraic framework for expressing and evaluating

queries over XML data. They also define equivalence rules for algebra rewrites,

which can be used for the optimization of queries expressed over XML data. [GVD+01]

does not focus on the issue of querying XML views of the relational data whereas

Rainbow system [ZMC+02] does.

This thesis work offers update support for XML (virtual) views of relational

data. It exploits the knowledge available in the form of the mapping query, of

how a particular XML view was constructed, to translate any XML updates on

the view to updates on the underlying relations. For this translation, this thesis

work employs XML algebra and various XML algebra rewrite rules along with other

decomposition strategies to decompose an XML update into updates on individual

3

relations storing the XML data to be executed against the relational database. Our

approach of updating XML views of relational data is based on Keller’s approach

[TBW91] of updating object-based views of relational data.

1.3 Research Issues

Since XML documents are semi-structured and have hierarchical relationships be-

tween the elements of the documents, updating of XML views is not straightforward.

The complex structure of the XML views build on top of flat relational data poses

several issues to be addressed for the translation of XML updates into updates on

underlying relational tables. Below are the issues that need to addressed to solve

the problem of updating XML views :

1. XML query language to support XML updates: The XML query lan-

guage standard by World Wide Web Consortium(W3C) - XQuery [W3C01]

does not have support for XML updates. Also, at the time we started this

work, there was no other XML query language that can support XML updates

yet. Hence as first step towards addressing the problem of XML updates, we

have designed language support for issuing XML updates on XML documents.

[TIHW01] has proposed extensions to XQuery for XML updates support but

there is no prototype of a system available that supports updates on XML

documents to date.

2. Which XML views are updatable: Due to many XML model char-

acteristics of XML documents, XML views fall in a different category than

traditional relational views. XML views can perhaps more closely be com-

pared to object views of relational data [Bar90]. Not all XML views can be

updated. A clear distinction needs to established between views that can be

updated and those that cannot be updated un-ambiguously. Restrictions on

4

defining an XML view that would qualify this view as an updatable XML view

need to be identified.

3. Determining impact on underlying data storage: Given a view defi-

nition in XQuery, how can we extract any information about the underlying

relations that may be relevant for update propagation? Typically, this view

query should be analyzed to determine the possible impact of any future up-

date query on the underlying data relations. This knowledge of the underlying

relations extracted from the view definition and stored once for each view then

can help in the decomposition and translation of XML updates into SQL up-

dates on the underlying relational data.

4. Decomposing XML update query: Elements in an XML view can be

complex, possibly nested several levels deep. To carry out our update on these

XML views having complex elements, each XML update needs to decomposed

into updates against individual relations underneath the XML view. One

needs to know what it takes to be able to decompose an XML update into SQL

updates on the underlying relations and whether all the required information

can be extracted from the XML view definition and the XML update, both

expressed in the XML query language.

5. Translation of relational updates: Decomposition of an XML update into

updates on the underlying relations will merely give rise to the same kind

of updates on the underlying relations (e.g., a Delete on a view decomposes

into Delete operations on the underlying relations). But carrying out the

same update may not neccessarily result in the desired effect intended by the

XML view update. An update on a relational table underneath the view is

extraneous if the update on the view can be realised without the extrane-

ous update. Minimum changes (without any extraneous updates) should be

done to the underlying relations to achieve the effect intended by the view

5

update. Also taking global integrity of the database into consideration, de-

pending upon the interrelationships between the underlying relations, an XML

Delete operation might get translated into a relational Replace or Insert on

certain relations. Thus correct translation of relational updates is impor-

tant. Work has appeared in the literature on correct translation of updates

[Kel85, Kel86, A. 86, DB82, Mas84, TBW91].

6. Performance: Performance of such an approach from the point of view of

time, storage requirements and other factors should be accessed. Also a per-

formance comparison of the proposed approach with other approaches such as

the trigger based approach of carrying out updates on the relational system

as discussed in [TIHW01] should be made.

1.4 Our Approach

The problem of updating XML views is similar to the traditional problem of updat-

ing relational views of relational data and can perhaps more closely be compared to

the problem of updating object views of relational data. The problem of updating

views was addressed in the relational context [DB82, Mas84, Kel85, Kel86, A. 86].

Updating of XML views comes with new challenges beyond those of relational views

since it has to address the mismatch between the two distinct data models (the XML

flexible hierarchical view model and the flat relational base model) and between the

two query and update languages (XQuery FLWU updates on the XML view ver-

sus SQL queries on the base). Issues of updating object views of relational data

have been addressed in the literature[TBW91]. This work also states limitations

on the definition of views that are updatable. These limitations on views help in

translating an update on a view, without ambiguity, into updates on the underlying

relations. Though the solution to updating object views of relational data takes into

consideration the hierarchy of complex objects defined on top of relational data, it

6

does neither deal with an inter-object hierarchy nor with the ordering of siblings as

found in XML views.

Figure 1.1 shows the approach we have adopted for carrying out the updates on

XML views of relational data. As shown in the figure there are 8 different steps

that are performed to propagate a given XML update to the underlying relations.

The grey boxes shown in Figure 1.1 are the steps that are performed individually

on the view query and the update query except that Analysis of View XAT is

only performed on the view query. Only during this step all semantic information

about the underlying schema such as the names of the underlying relations, keys,

relationships among the underlying relations, etc. is gathered and stored in our

system for use in later steps of the process. For the view query, these steps are

performed only once at the time of the definition of the view. As opposed to the

view query that goes through the initial steps only at the time of view definition,

each update query goes through all steps of the approach except for Analysis of

View XAT step. Below we discuss in brief the steps of the approach.

During the first step, called The Generation of XATs, the XML algebra tree of

the query is generated for the view query and update query. Then the two XATs

are decorrelated and optimized. After decorrelation the two trees are merged during

the Merging of the Two XATs step so that the update can be issued against the

view constructed over the relational data. During the Computation Pushdown step

the merged XAT is rewritten using several rewrite rules in order to push all SQL

computation down to the bottom of the tree. The XML update is then decomposed

into its relational update counterparts on the underlying relations. This is done

during the Decomposition of the XML Update step. Then translation of those up-

dates is carried out to give rise to the final updates that will be carried out on the

corresponding relations. Semantic information is gathered during the analysis of

the view step to be used later steps of update translation. Finally these translated

7

Start

Analysis of
View XAT

SI

Decorrelation of
XAT

Generation of
XAT

Merging of
Two XATs

Computation
Pushdown

Decomposition of
XML Update

Translation of
Updates

Execution of
Updates on RDB Stop

Semantic

Information

View
Query

Update
Query

View XAT Update XAT

Update XAT

View XAT

View XAT

XAT

XAT

Relational Updates

SQL Statements

Figure 1.1: Approach

updates are executed on the underlying relations so that the intended effect of the

update on the view has indeed been realised when the view is reconstructed from

the modified relational data.

1.5 Contributions of this Thesis

Below is the list of contributions of my thesis work :

1. XQuery support for XML updates, including XQuery language extensions and

Rainbow XML algebra extensions.

2. Framework for correct propagation of XML updates to the underlying relations

through XML views expressed by XQuery.

• Application of object-based view updating strategy to XML views.

• First solution for updating XML views.

8

3. Implementation of the system as a proof of concept and incorporation into the

XML Data Management System, called Rainbow.

4. Experimental evaluation to support my solution.

9

Chapter 2

Background

We now review the technical background needed for this work, in particular, the

XML and DTD data model and XML query language. We also introduce a language

extension for XQuery to support XML updates, and briefly introduce the concept

of XML views of relational data.

2.1 XML and XML Schemas

XML (Extensible Markup Language) [W3C98b] is currently used both for defining

document markup (and thus information modeling) and for data exchange. XML

documents are composed of character data and nested tags used to document the

semantics of the embedded text. Tags can be used freely in an XML document (as

long as their use conforms to XML specification) or can be used in accordance with

the document type definitions (DTDs) [W3C98a] or XML Schema [W3Cb] which

define the types for a class of documents. An XML document that conforms to a

DTD or XML Schema is called a valid XML document.

A DTD or XML Schema is used to define the allowable structure of elements (i.e.,

it defines allowable tags and tag structure) in a valid XML document. A DTD can

10

include four kinds of declarations: element type, attribute-list, notation and entity.

An element type declaration is analogous to a data type definition; it names an ele-

ment and defines the allowable content and structure. An element may contain only

other elements (called element content) or may contain any mix of other elements

and text, which is represented as PCDATA (called mixed content). An EMPTY

element type declaration is used to name an element type without content (it can

be used for example to define a placeholder for attributes). Finally an element type

can be declared with content ANY meaning the type (content and structure) of the

element is arbitrary.

Attribute-list declarations define the attributes of an element type. The decla-

ration includes attribute names, default values and types, such as CDATA, NOTA-

TION, ENTITY, etc. Two special types of attributes ID and IDREF are used to

define references between elements. An ID attribute is used to uniquely identify an

element; an IDREF attribute can be used to reference that element, and an IDREFS

attribute can refer to multiple elements.

XML Schema [W3Cb], which is also used to define the allowable structure of

elements for a given application or application domain in a valid XML document

uses XML document syntax. Declarations in XML Schema can have richer and

more complex internal structures than declarations in DTDs. Schema designers

can take advantage of XML’s containment hierarchies to add extra information

where appropriate. XML Schemas also provide an improved data typing system.

They provide data-oriented data types in addition to the more document-oriented

data types that XML 1.0 DTDs [W3Ca] support, making XML more suitable for

data interchange applications. Built-in data types include strings, booleans, and

time values. The XML Schema draft [W3Cb] provides a mechanism for generating

additional data types. Besides, XML Schema supports namespaces and the notion

11

of keys to uniquely identify elements in an XML document. More information on

XML Schemas can be found in [W3Cb].

2.2 Running Example

Figure 2.1 depicts a running example of a DTD and a conforming XML document

of a simple online book store application. As we can see, one bib element contains

several books and each book in turn contains a title, one or more authors or editors, a

publisher and a price element. Each book also has a year attribute which is required.

The element author is composed of first and last elements which are of PCDATA

type whereas each editor element is composed of first, last and affiliation. The

later three again are of PCDATA type. The XML document in Figure 2.1 contains

two books from the year 1994 and the year 2000, having one and three authors

respectively.

2.3 The XQuery Language

XQuery [W3C01] uses the type system of XML Schema and is a W3C working draft

by W3C XML: Query Working Group (http://www.w3.org). XQuery is a query

language designed to query XML data and is derived from Quilt [CRF00] which

is in turn derived from Xpath [W3C00], XML-QL [DFF+99], SQL, OQL, Lorel

[AQM+97] and YATL [CJS99].

Example 1 The query for getting the title of all the books published in or before

the year 2000 and the total number of such books in the bibliograpy document bib.xml

corresponds to the XQuery expression shown in Figure 2.2.

From Figure 2.2, we can see that XQuery expressions are FLWR expressions. A

FLWR expression is composed of FOR, LET, WHERE and RETURN clauses. A

12

<?xml version="1.0"?>
<!DOCTYPE bib [
<!ELEMENT bib (book*)>
<!ELEMENT book (title, (author+ | editor+), publisher, price)>
<!ATTLIST book year CDATA #REQUIRED >
<!ELEMENT author (last, first)>
<!ELEMENT editor (last, first, affiliation)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT last (#PCDATA)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT affiliation (#PCDATA)>
<!ELEMENT publisher (#PCDATA)>
<!ELEMENT price (#PCDATA)>
]>

<bib>
<book year="1994">

<title>TCP/IP Illustrated</title>
<author><last>Stevens</last><first>W.</first></author>
<publisher>Addison-Wesley</publisher>
<price> 65.95</price>

</book>
<book year="2000">

<title>Data on the Web</title>
<author><last>Abiteboul</last><first>Serge</first></author>
<author><last>Buneman</last><first>Peter</first></author>
<author><last>Suciu</last><first>Dan</first></author>
<publisher>Morgan Kaufmann Publishers</publisher>
<price> 39.95</price>

</book>
</bib>

Figure 2.1: Example of DTD and XML Document

FOR-clause is used for iteration. Each FOR iteration will bind one or more vari-

ables, e.g., $book. A LET-clause will bind variables without iteration, e.g., $titles

as shown in Figure 2.2. The variables bound in the FOR and LET clauses will be fil-

tered by the predicates specified in the WHERE clause. For example, the WHERE

clause ”$book/@year <= 2000” in the XQuery expression in Figure 2.2 removes

all the bindings from the $book set that do not have an attribute year with the

value less than or equal to 2000. The RETURN clause generates the output of the

FLWR expression. For example the xpath $book/title in our example will gener-

ate a title element for the title of each book.

A FLWR expression uses the abbreviated syntax of XPath [W3C00] for navi-

13

<books>
FOR $book IN document(“bib.xml”)/book
LET $titles = $book/title

WHERE $book/@year <= 2000
RETURN

$book/title
<total>count($titles)</total>

</books>

Figure 2.2: XQuery Expression over XML Docu-
ment in Figure 2.1

<books>
<title>TCP/IP Illustrated</title>
<title>Data on the Web</title>
<total>1</total>

</books>

Figure 2.3: Result of XQuery Ex-
pression in Figure 2.2

gating through the document. For example $book/title in Figure 2.2 is an XPath

expression. An element constructor in a RETURN clause consists of a start tag

and an end tag. For example, <books>......</books> in Figure 2.2 will wrap the

query result into a new XML element. The expected result when the XQuery ex-

pression in Figure 2.2 is executed over the XML document in Figure 2.1 is depicted

in Figure 2.3.

2.4 XML Views Of Relational Data

One important use of an XML query language is to wrap data stored in relational

databases using an XML wrapper. There can be several ways in which this access

might be accomplished but the most obvious is allowing this access through XML

views. XML views can be defined on top of relational data. These views can then

be queried using some XML query language such as XQuery [W3C01]. In this sec-

tion we discuss this mechanism of defining XML views on top of relational data as

adapted in XPERANTO [CKS+00] and also in Rainbow [ZR01].

The basic XML view is called a Default XML View in which each table in the

relational database is represented as one XML document. One way to represent a

database table as an XML document is to let the table be represented as a docu-

14

ment element, and each row (tuple) inside the table to be represented by a nested

sub-element also called a tuple-element. Inside the tuple-elements, each attribute

value of this type is in turn represented by a nested sub-element labeled by the name

of the respective column.

Representing each table as an XML document will give rise to several documents

which, at times, might not be desirable. Hence several tables can be put together

into a single XML document to represent the complete database as shown in Figure

2.5. As we can see from Figures 2.4 and 2.5 each table forms a child element of the

main DB element rather than forming an XML document of its own. Figure 2.4

shows three relational tables :

• Books(bookid, title, year)

• Authors(first, last, bookid)

• Prices(title, source, price)

Figure 2.4 also shows the default XML view of the three tables. In real world

applications the user might not be interested in knowing the source and particular

storage structure of the XML documents (in this case the relational tables). Hence

a default XML view which explicitly models the fact of how many tables exist in the

database would be confusing to an end user. Hence in order to provide further levels

of abstraction, it is advisable to define a user-specific view on top of this rigorous

default XML view of relational data. The latter can in some sense be viewed as a

physical XML Schema. In XML management systems such as Rainbow [ZR01] that

provide a bridge between XML and relational technologies these XML views are

called virtual views. Users interact with these views as if they were working with

a pure XML system. Hence the fact that these views are XML views of relational

data should be as transparent to the end user as possible. Such virtual views can

15

be defined on top of the Default XML View using XQuery expressions, then called

Mapping Queries (queries that map relational data to XML views). Figure 2.7

illustrates one such virtual view. Figure 2.6 shows the mapping query that defines

the virtual view on top of the default XML view from Figure 2.5.

2NaughtonPeter

1SavitchMichael

BookIdLastFirst

1999JAVA Complete
Reference

2

2000Data Structures1

YearTitleBookid

65.00Ebay.comJAVA Complete
Reference

54.00Amazon.comData Structures

PriceSourceTitle

Prices

Authors

Books

Figure 2.4: Relational Tables in Database

<DB>
<books>

<row>
<bookid>1</bookid>
<title>Data Structures</title>
<year>2000</year>

</row>
………….

</books>
<authors>

<row>
<first>Michael</first>
<last>Savitch</last>
<bookid>1</bookid>

</row>
………….

</authors>
<prices>

<row>
<title>Data Structures</title>
<source>Amazon.com</source>
<price>54.00</price>

</row>
……………

</prices>
</DB>

Figure 2.5: Default View of Relations
Shown in Figure 2.4

2.5 XQuery Updates

In this section we describe an extension to the XQuery language syntax to support

XML updates. We follow the basic set of operations proposed in [TIHW01]. Below

we discuss language extensions using the grammar in general. We also give specific

examples to show use of language extensions for specifying updates. As proposed

in [TIHW01]. we extend XQuery with a FOR...LET....WHERE.....UPDATE

16

<books>
FOR $book IN document("default.xml")/books/Row,

$author IN document("default.xml")/authors/Row,
$price IN document("default.xml")/prices/Row

WHERE $book/bookid = $author/bookid
AND $price/book_title = $book/title

RETURN
<book>

$book/bookid,
$book/title,
$book/year,
$price/source,
$price/price,
<author>

$author/first,
$author/last

</author>
</book>

</books>

Mapping Query

Figure 2.6: Mapping Query Issued on
XML View Shown in Figure 2.5

<books>
<book>

<bookid>1</bookid>
<title>Data Structures</title>
<year>2000</year>
<source>Amazon.com</source>
<price>54.00</price>
<author>

<first>Michael</first>
<last>Savitch</last>

</author>
</book>
<book>

<bookid>2</bookid>
<title>Java Complete Reference</title>
<year>1999</year>
<source>Ebay.com</source>
<price>65.00</price>
<author>

<first>Peter</first>
<last>Naughton</last>

</author>
</book>

</books>

Virtual View

Figure 2.7: Mapping View as a Result of
Mapping Query Shown in Figure 2.6

structure of updates as shown in Figure 2.8. Within the UPDATE clause, a se-

quence of sub-operations are specified.

As shown in Figure 2.8, the nested FOR....WHERE clause allows one to spec-

ify an XPath expression to be matched and to be bound to $binding, as well as a

set of predicates that may restrict this binding. A nested update operation may be

performed over any of the bindings from the outer scope or the FOR clause. If mul-

tiple updateOps are specified, they are performed consecutively for each iteration

of the variable binding. Figure 2.9 shows an example of the Insert update.

The FLWR expression in Figure 2.9 inserts a new book element into the (virtual)

view shown in Figure 2.7. The FOR clause of the expression binds $root to the root

of the document which is the books element. The UPDATE clause of the expression

17

FOR $binding1 IN Xpath-expr,…..
LET $binding := Xpath-expr,…
WHERE predicate1,…..
updateOp,……

Where updateOp is defined in EBNF as :

UPDATE $binding {subOp {, subOp}* } and subOp is :

DELETE $child |
RENAME $child To new_name |
INSERT ($bind [BEFORE | AFTER $child]

| new_attribute(name, value)
| new_ref(name, value)
| content [BEFORE | AFTER $child]) |

REPLACE $child WITH (new_attribute(name, value)
| new_ref(name, value)
| content) |

FOR $sub_binding IN Xpath-subexpr,…..
WHERE predicate1,………. updateOp.

Figure 2.8: XQuery Language Extensions to Support XML Updates.

specifies that the $root is to be updated by inserting a new book element that is

created within the INSERT clause. The result we expect to see when this XQuery

update is issued on the virtual XML view in Figure 2.7 is shown in Figure 2.10.

18

FOR $root IN document(“books.xml")
UPDATE $root{

INSERT <book>
<bookid>”3”</bookid>,
<title>”My New Book”</title>,
<year>”2003”</year>,
<source>”Ebay.com”</source>,
<price>”54.50”</price>,
<author>

<first>”John”</first>,
<last>”Doe”</last>

</author>
</book>

}

Insert Update

Figure 2.9: Insert Update Issued on XML
View Shown in Figure 2.7

<books>
<book>

<bookid>1</bookid>
<title>Data Structures</title>
<year>2000</year>
<source>Amazon.com</source>
<price>54.00</price>
<author>

<first>Michael</first>
<last>Savitch</last>

</author>
</book>
<book>

<bookid>2</bookid>
<title>Java Complete Reference</title>
<year>1999</year>
<source>Ebay.com</source>
<price>65.00</price>
<author>

<first>Peter</first>
<last>Naughton</last>

</author>
</book>
<book>

<bookid>3</bookid>,
<title>My New Book</title>,
<year>2003</year>,
<source>Ebay.com</source>,
<price>54.50</price>,
<author>

<first>John</first>,
<last>Doe</last>

</author>
</book>

</books>

Virtual View

Figure 2.10: Result of Insert Update
Shown in Figure 2.9

19

Chapter 3

Rainbow System

Rainbow is an XML Management System being developed at Worcester Polytech-

nic Institute (WPI). Rainbow has been designed for storage, retrieval, and querying

of XML documents based on relational database technology. The goal is to equip

Rainbow with a flexible mapping mechanism that not only allows for a wide va-

riety of mapping XML documents into appropriate relational schemata, but also

explicitly models and manages the chosen mapping via a metadata model [CR02].

This metadata driven mapping model then in turn can be exploited by Rainbow for

accomplishing database management services such as loading, extracting, updating

and querying. Figure 3.1 shows the complete architecture of the Rainbow system.

The system uses strategy designed and implemented for XQuery to SQL query

translation. It is being fully implemented using XQuery as XML query language

and Oracle as backend relational store.

3.1 Rainbow Query Engine

The Rainbow Query Engine is the core part of the Rainbow system. All XML

queries or XML updates are submitted to this module for execution. Below we

discuss the architecture of the query engine, the XAT algebra used by the engine

20

X
M

L
Q

ue
ry

E

ng
in

e

L
oa

di
ng

M
an

ag
erM
ap

pi
ng

 M
an

ag
er

XML SchemaXML

Metadata
Repository

XML
Repository

Loader
Schema
Creator

Generic
Loading

Reverser

Mapping
View

Query/Update
Processor

SQL

Relational Engine

Query
Result

XML
Publishing

XML Query XML

User

DBA

Sub
System

Data

Process

Legend
XML Update

Instantiation

Schema Specific
Loading

XML Algebra Tree

Figure 3.1: Architecture of Rainbow System.

and the XQuery-to-SQL translation mechanism adopted by the query engine for the

execution of XQueries but not XML updates.

3.1.1 Architecture.

Figure 3.2 depicts the architecture of the Rainbow Query Engine. The architecture

shown depicts the engine capable of only executing XQueries issued on the virtual

views of relational data but not XML updates. The architecture of the Rainbow

engine enhanced to support XML updates will be shown in following sections.

As shown in Figure 3.2, the query engine uses the Kweelt Parser [A. 00] to

parse XQuery expressions. The parsed tree generated by the Kweelt Parser is fed

to XAT Generator where the parsed tree is analysed and the XML Algebra Tree

(XAT) for the XQuery expression is generated. XAT is generated for both the

user query as well as the mapping query. The generated XATs are then given to

XAT Decorrelator which decorrelates the given XATs to unnest XQuery expressions.

21

XAT Merger

SQL Generator

RDBMS

XAT

XAT

User Query

XQuery

SQL

Kweelt
XQuery
Parser

XAT
Executor

User Query Results in XML

Tuples

XAT Rewriter

XAT

XAT

Mapping Query

XAT
Generator

XML View
Manager

Parsed
Tree

Mapping Query

Default Schema

XAT Decorrelator

XAT

XAT

Figure 3.2: Architecture of Rainbow Query Engine.

After decorrelation, the two XATs are merged by the XAT Merger and the output

is a final merged XAT that specifies the user XML query on top of the XML view

construction. The merged tree is then sent to the XAT Rewriter for rewriting

the XML Algebra Tree so as to push as much computation down to the bottom

of the tree. This allows most of the computation to be pushed down into SQL

while the top part of the XAT then contains XML specific construction operators.

The SQL Generator generates SQL from the bottom portion of XAT. This SQL

is then executed against the underlying relational database by the XAT Executor.

The tuples returned by the SQL engine are then tagged into XML elements using

construction information from XML specific operators at the top in XAT. The results

in form of an XML document is then returned to the user.

22

3.1.2 XAT Operators

XML operators (as shown in Table 3.1) are used to represent the XML document

related operations, e.g., navigation and construction. SQL operators (as shown in

Table 3.3) correspond to the relational complete portion of the algebra. Special

operators (as shown in Table 3.2) include operators used temporarily in different

phases of optimization and operators shared by the class of XML and of SQL op-

erators. Each table describes the operator’s name, its symbol, its parameters, the

notion of the output columns, and its sources of data and subqueries, with their

description. We show only the relevant operators in this section. For the complete

list of the XAT operators, please refer to [ZR02].

3.1.3 XQuery Translation

Rainbow’s query engine uses the XML algebra, introduced in Section 3.1.2, for

optimization and execution of queries. Below we briefly describe some of the

steps invoved in the XQuery to SQL translation procedure which include gener-

ation,decorrelation, merging and rewriting of XATs. For more general discussion

and walk through steps of XQuery translation please refer to [ZPR02a].

<prices>
FOR $book IN document(“dxv.xml”)/book/row,

$store IN document(“dxv.xml”)/store/row,
$prices IN document(“dxv.xml”)/prices/row

WHERE $book/bid = $prices/bid AND
$source/sid = $prices/sid

RETURN
<book>

$book/title,
$store/source,
$prices/price

</book>
</prices>

Figure 3.3: XQuery for Constructing a
Virtual View.

<result> { FOR $t IN
distinct(document(“prices.xml”)/book/title)

RETURN
<booktitle>

$t/text ()
</booktitle>

</result>

Figure 3.4: XQuery to Query over
View Shown in Figure 3.3.

Generation, Decorrelation and Merging of XATs Figure 3.3 depicts the view

23

query that is used to construct the XML view using the default XML view con-

structed from relational data. Whereas Figure 3.4 depicts the user query issued to

query XML view for distinct book titles. A separate XAT is generated for each

query using the XML algebra discussed in section 3.1.2. Figure 3.5 and figure 3.6

show the XATs generated from the view query and user query respectively. The

two trees after decorrelation are shown in Figure 3.7 and Figure 3.8 and XAT after

merging view XAT and query XAT is shown in Figure 3.9.

Φ����������	

��	�

������
����	�������
��
��	�

��������	�
��

φ�������������
�����

��������

���

�����������	� ���	�� ���	�! ��������
��	�

��������	�
�!

φ�!�������
����
�����

��������

��������	�
�"

φ�"�������
�����
�����
�

��������
�

Φ����������
��	#

Φ�����
������
��	$

σ��	#%��	$�&'(���)%��	*

Φ�����
������
��)

Φ�����
�����
��	*

Φ�����
����+��

��	��

Φ�����
�������

��	�!

ε��	�
10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24: 16:

25:

26:

27:

28:

29:

30:

Figure 3.5: XAT for View Query Shown in figure
3.3.

Φ����������
	
��

���������	
����������
	
��

�����	�������
��

φ	
���������
��

�����

���

��

���������	
�� ���

�������
	
��

φ�����

�
	
��

ε	
��
1:

2:

3:

4:

5:

6:

7:

8:

9:

�	
�	��33:

Figure 3.6: XAT for User
Query Shown in Figure
3.4.

Rewriting of merged XAT Rewriting in Rainbow refers to the process of eval-

uating equivalence rules on an XML algebra tree to optimize the tree for efficiency

and create a version of the tree where SQL queries can easily be generated. The

administrator can choose from several possible rule application heuristics to opti-

mize the tree, otherwise default heuristics are chosen. Below several commonly used

rewrite rules in Rainbow are listed.

φ(x1, path):x2[φ(y1, path):y2[T]] → φ(y1, path):y2[φ(x1, path):x2[T]] (x1 != y2)

φ(x1, path):x2[σ(c)[T]]→ σ(c)[φ(x1, path):x2[T]]

φ(x1, path):x2[×[T1, T2]] → ×[T1, φ(x1, path):x2[t2]] (if x1 in DM(T2))

φ(x1, path):x2[×[T1, T2]] → ×[φ(x1, path):x2[T1], T2] (if x1 in DM(T1))

These rules state that Navigate operators can be pushed through all operators until

a dependency on its child operator arises.

24

Φ����������	

��	�

������
����	�������
��
��	�

��������	�
��

φ�������������
�����

×

���

�����������	� ���	�� ���	�! ��������
��	�

��������	�
�!

φ�!�������
����
�����

×

��������	�
�"

φ�"�������
�����
�����
�

Φ����������
��	#

Φ�����
������
��	$

σ��	#%��	$�&'(���)%��	*

Φ�����
������
��)

Φ�����
�����
��	*

Φ�����
����+��

��	��

Φ�����
�������

��	�!

ε��	�10:

11:

12:

22:

23:

24:

25:

26:

27:

28:

29:

30:

14:

15: 17:

18:

20:

21:

31:

32:

Figure 3.7: View XAT After Decorrelation.

Φ����������
	
��

���������	
����������	
��

���

��

���������	
������

�������	
��

�����	�������
��

φ	
� ���������

φ�����

�	
�

ε	
��1:

2:

3:

5:

6:

7:

8:

9:

�����	
�33:

Figure 3.8: User XAT
After Decorrelation.

Furthermore, during the push down process, redundant operators may be can-

celed out. As discussed earlier, several heuristics can be chosen to rewrite XAT into

the normalised form where all XML operators are on the top and all SQL-doable

are at the bottom. Rewrite heuristics include removal of the construction of in-

termediate XML fragments, canceling of duplicate navigate operators, computation

pushdown, and propagating renames. The order in which the heuristics are applied

can affect the resulting tree. Figure 3.10 shows rewritten XAT for our example. For

detailed discussion of the rewrite heuristics of Rainbow please refer [ZPR02b].

25

Φ����������
	
��

���������	
�����������
	
��

���

��

���������	
�������

�������
	
��

ρ	
��
��

φ	
�����������

φ�����

�	
��

ε	
��1:

2:

3:

5:

6:

7:

8:

9:

δ ��33:

Φ��

��������
	
���

� ��	���	
�!�� ��	���
	
��

"#$�%&�'�(
��

φ������

���
)��

�

×

���

��

����	
�����	
�����	
��������

��
	
�!

"#$�%&�'�(
��

φ�������
����
)���
��

×

"#$�%&�'�(
��

φ����� ��	����
)� ��	��

Φ��

�����$
	
�*

Φ� ��	������$
	
�+

Φ� ��	������$
	
�,

Φ���
������$
	
�-

Φ���
�����
��	�
	
���

Φ� ��	���� ��	�
	
���

11:

12:

22:

23:

24:

25:

27:

28:

29:

30:

14:

15: 17:

18:

20:

21:

31:

32:

σ	
�*.	
�+��/0�	
�,.	
�-26:

User Query View Query

Figure 3.9: XAT as a Result of Merging XATs Shown in Figure 3.7 and Figure 3.8.

3.2 Rainbow Update Manager

As pointed out in earlier sections, the Rainbow Update Manager is the part of the

Rainbow Query Engine responsible for handling any XML updates entering the sys-

tem. The Rainbow Update Manager has been closely integrated with the Rainbow

Query Engine by extending several modules of the query engine and adding other

modules to extend query engines functionality to handle XML updates as well. Be-

low we discuss the architecture of the modified Rainbow Query Engine with emphasis

on modules specifically added to handle XML updates by this thesis. In the follow-

ing subsections, we also discuss the update-specific XAT algebra for the Rainbow

system and briefly introduce the overall update translation process.

3.2.1 Architecture of Enhanced Rainbow Query Engine

Figure 3.11 depicts the architecture of the modified Rainbow Query Engine. The

architecture shown is of the engine now capable of executing an XQuery expression

used for querying and also updating virtual views of relational data.

26

Φ����������	

��

�������	�
��

φ������������������

� ��	����	��

�������	�
��

φ���������
���������

� ��	����	�

�������	�
�

φ� ���!���
������!���
�

Φ���������
��	�

Φ�!���
�����
��	�

Φ�!���
�����
��	�

Φ�����
����
��	�

Φ�����
����"��

��	��

Φ�!���
���!���

��	��

Φ�����
��#$
��	�

%&�
�"	��'��	�&��
�"	�'
��	

())

%&�������	
'�*��	�+�&��������	
'
��	�

ε��	

27:

28:

29:

30:

14:

15:

17:

18:

20:

21:

31:

32:

23:

24:

25:

1:

2:

3:

8:

9:

δ ��33:

Figure 3.10: XAT as a Result of Rewriting of XAT Shown in Figure 3.9 using
Rewrite Rules Discussed in [ZPR02b].

As shown in Figure 3.11, the Update Manager still uses most of the previous

components of the query engine for generation, decorrelation and merging of XATs

as well as for rewriting of the merged XAT. The Kweelt Parser has been extended

to parse XQuery update expressions and the output now is a parsed query tree or

parsed update tree depending on whether the input is a query or an update expres-

sion. At the same time, the XAT Generator has been extended to generate XAT

update nodes which will be discussed in following subsections. Thus an XQuery up-

date expression will eventually lead to an XAT with update operators as the output

of the XAT Generator. The XAT representing the mapping query, also called the

27

XAT Rewrite

View Composer

RDBMS

User Update

View Analyzer

Update
Decomposer XAT

Update
Translator

Single Table
Updates

Table
Relationships

Multiple SQL updates

SQL Node
Generation

User Query

SQL

XAT
Executor

User Query Results in XML

XAT

XAT

XAT

XAT

XAT
Generator

SI

Kweelt
XQuery
ParserMapping

Query

Default Schema

Mapping Query

XML View
Manager

Update Parser

XAT

Parsed Tree

Specific to Update Manager

Figure 3.11: Architecture of Rainbow Query Engine with Update Manager.

view XAT, is generated as discussed earlier. This view XAT is then fed to the View

Analyzer which processes this XAT to extract information about the underlying

relations and relationships between the relations. The View Analyser is discussed

in detail in Chapter 4. This kind of analysis is done only once for each view at

view definition time and information gathered is stored in the system as shown in

Figure 3.11. Once the XQuery update comes into the system, it goes through the

process of generation, decorrelation and merging of XATs after which the merged

tree is submitted to the XAT Rewriter for computation pushdown. After compu-

tation pushdown, the XAT is passed to the Update Decomposer which decomposes

the XML update represented by the update tree into relational updates against in-

dividual base relations. These updates are then sent to the Update Translator which

also uses the information gathered at view definition time and any other semantic

information available to translate these updates using algorithms designed for trans-

lation of updates on view-objects of relational data [TBW91]. The SQL Generator

and Executor then generates SQL updates and executes them against underlying

relations in the relational database.

28

3.2.2 XAT Update Algebra

XML update operators as shown in Table 3.4 are used to represent the XML docu-

ment related updates using Delete, Insert, Replace and Rename update primitives.

As described earlier for operators in Table 3.1, the table describes the operator’s

name, its symbol, its parameters, the notion of output columns, and its sources of

data and subqueries along with their description. The table shows the complete

list of update operators supported by the Update Manager in the Rainbow system.

Delete and Rename operations are simple and self explanatory with only one op-

tion of parameters whereas Insert and Replace operations are complex operations

with several parameter options as indicated in Table 3.4. The effect of the update

operations is based on the chosen input parameters to the operators.

29

Operator Sym Prms. Output Data Description
Expose ε col N/A s Expose column col as XML documents or fragments.
Tagger T p col s Taggering s according to list pattern p.
Navigate φ/Φ col1, path col2 s Navigate into column col of s based on path path.
Aggregate Agg col N/A s Make a collection for each column. col is the focus column

name.

XML Union
x∪ col+ col s Union multiple columns into one.

XML Intersect
x∩ col+ col s Intersect multiple columns into one.

XML Difference
x− col+ col s Compute the difference between two columns.

Table 3.1: XML XAT Operators.
Operator Sym Prms. Output Data Description
SQLstmt SQL stmt col+ N/A Execute a SQL query statement stmt to underlying

database.
Function {F} param+ col s? XML or user defined function over optional input table with

given parameters.
Source S desc col+ N/A Identify a data source by description desc. It could be a

piece of XML fragment, an XML document, or a relational
table.

Name ρ, → col1, col2 N/A s Rename column col1 of source s into col2.
Name ρ, → ns N/A s Rename table s into new name ns.
FOR FOR col N/A s, sq FOR operator iterate over s and execute subquery sq with

the variable binding column.
IF THEN ELSE IF c N/A sq1, sq2 If condition c is true, then execute subquery sq1, else exe-

cute subquery sq2.
Merge M N/A N/A s+ Merge multiple tables into one table based on tuple order.

Table 3.2: Special XAT Operators.
Operator Sym Prms. Output Data Description
Project π col+ N/A s Project out multiple columns from input table s.
Select σ c N/A s filter input table s by condition c.
Cartesian Product × N/A N/A s1, s2 Cartesian product of the results of two input tables, s1 and

s2.
Theta Join � c col+ ls, rs Join two input tables ls and rs under condition c, and

output selected columns.

Outer Join
◦
�L,

◦
�R c col+ ls, rs Left (right) outer join two input tables ls and rs, and out-

put selected columns.
Distinct δ col+ N/A s Eliminates the duplicates in the columns col+ of input table

s by grouping.
Groupby γ col+ N/A s, sqg Making temporary groups by multiple columns from input

table s, then evaluate subquery sqg for each group, then
merge the evaluated results back.

Orderby τ col+ N/A s Sort input table s by multiple columns.
Union ∪ N/A N/A s+ Union multiple sources together.

Outer Union
◦∪ N/A N/A s+ Outer union multiple sources together.

Difference − N/A N/A ls, rs Difference between two sources.
Intersect ∩ N/A N/A s+ Intersect multiple sources.

Table 3.3: SQL XAT Operators.

30

Operator Sym Prms. Output Data Description
Delete D col1, col2 N/A s Delete child element col2 of element col1.
Insert I col1, Tag N/A s, sq Insert newly constructed element Tag into element identi-

fied by col1.
col1, Tag, B/A, col2 N/A s, sq Insert newly constructed element Tag into element identi-

fied by col1 before/after element identified by col2.
col1, fn N/A s, sq Insert new attribute or ref. defined by function fn into

element identified by col1.
col1, cont, B/A, col2 N/A s, sq Insert content cont into element identified by col1 before

or after element identified by col2.
Replace R col1, col2, Tag N/A s, sq Within element identified by col1, replace element identi-

fied by col2 with newly constructed element Tag.
col1, col2, fn N/A s, sq Within element identified by col1, replace attribute/ref.

identified by col2 with attribute/ref. defined by function
fn.

col1, col2, cont N/A s, sq Within element identified by col1, replace content identified
by col2 with content cont.

Rename Re col1, col2, name N/A s, sq Within element identified by col1, rename element identi-
fied by col2 to name.

Table 3.4: XML Update Operators.

31

Chapter 4

View Analyzer

As described in Section 1.4, the View Analyser is the module in the Update Manager

that processes the view query (view definition) to gather semantic information about

the underlying relations. Each view is processed in this manner only once at the

time of the view definition and information gathered during this analysis is stored

in the system henceforth to aid in propagating XML updates to the underlying

relational database. Before we talk about the working of this module let’s first take

a look at the formal concepts that we shall use to describe the module.

4.1 Assumptions And Restrictions

Below we discuss the assumptions and restrictions underlying the definition of views

that enable unambiguous translation of updates. We also describe our assumtions

on the type of updates. Relational views are defined to be stored database queries.

Significant restrictions are imposed on views in order to be updatable. Similarly, for

defining XML views of relational data, significant restrictions must also be imposed

on such XML views so as to be updatable.

32

4.1.1 Restrictions on the View Definition

In this section we discuss the restrictions that should be imposed on XML views of

relational data to have these views updatable. These restrictions have been discussed

in the context of relational views by [Kel86].

1. No aggregations in view definition: It is undesirable to update views that

include aggregations. For example if an element in an XML view represents

the sum of books by a particular author as shown in Figure 4.2 then a view

update request to increment the number of books by the author will require

to add an unknown (better chosen by a human) book to the Books relation

and also an extra tuple into the Authors relation with the same

bookid. A request to decrement the number of books for a particular

author would require the computer to choose a book to be deleted -

a decision best done by a human. Thus updating views that include

aggregations is not meaningful in a completely automated fashion.

Here, in this work we thus do not allow aggregations to appear in

the view definition.

2. No explicit functional dependencies in view definition: In relational

view context, in an explicit functional dependency [SSC84], one or more

of the attributes in a tuple can be computed based on the values

of some other attributes. In the context of XML views over rela-

tional data this would mean that a particular element in the XML

view can have values computed from values of one or more other

attributes of a relation. One such explicit functional dependency

is shown in Figure 4.4. Element sale price has its value computed

from the relational attribute price using a user-specified function.

An update request to change the value of sale price will not convey

any clear strategy of how the underlying attribute price should be

33

3SavitchMichael

2NaughtonPeter

1SavitchMichael

BookIdLastFirst

2001Algorithms in C++3

1999JAVA Complete
Reference

2

2000Data Structures1

YearTitleBookid

Authors

Books

Figure 4.1: Relational Tables in Database

<authors>
<author>

<first>Michael</first>
<last>Savitch</last>
<no_of_books>2</no_of_books>

</author>
<author>

<first>Peter</first>
<last>Naughton</last>
<no_of_books>1</no_of_books>

</author>
</authors>

XML view

Figure 4.2: XML View (with Aggrega-
tion) of Relations Shown in Figure 4.1

updated. Thus there is no good way of handling explicit functional

dependencies and should those be avoided for updatable views.

1999JAVA Complete
Reference

2

2000Data Structures1

YearTitleBookid

Books

60.00Ebay.comJAVA Complete
Reference

50.00Amazon.comData Structures

PriceSourceTitle

Prices

Figure 4.3: Relational Tables in Database

<books>
<book>

<bookid>1</bookid>
<title>Data Structures</title>
<sale_price>45.00</sale_price>

</book>
<book>

<bookid>2</bookid>
<title>JAVA Complete Reference</title>
<sale_price>54</sale_price>

</book>
</books>

XML view

Figure 4.4: XML View (with External De-
pendency) of Relations Shown in Figure
4.3

3. Operators : As pointed out in [Kel86], the relational operators Se-

lect, Project, and Join are more suitable than some of the other

relational operators (for example, Divide and Set Difference) for

defining updatable relational views. The Select operator extracts

tuples from a relation that satisfy a selection condition. The Project

34

operator extracts the desired attributes from each tuple in the given

input. The Join operator combines two relations and in doing so,

combines tuples with matching attribute values. To define updat-

able XML views of relational data the XML algebra counterparts

of those relational operators still continue to make more sense as

pointed out in the description of XAT operators in section 3.1.2. We

have Select and Join which achieve the similar functionality of Select

and Join in the relational algebra. One way to project elements in

an XML view is to navigate into parent elements and expose desired

sub-elements as they are and with the same name. The other way is

to extract data values of elements, tag them and then expose them.

Thus Navigate, Tagger and Expose together achieve the function-

ality of a Project operator in relational algebra. XML operators

discussed so far are sufficient for defining XML views that do not

include any aggregations or explicit functional dependencies. Hence

operators used to define XML views should be restricted to Nav-

igate, Select, Join, Tagger and Expose and these are the operator

that we will consider as well.

4.1.2 Assumptions on Type of Updates

Having discussed the constraints we impose on defining views in the previous section,

below we now state our assumptions on the type of update requests we assume will

be issued on our XML views of relational data.

1. We do not validate any updates issued on XML views, rather we assume

that the updates issued are valid updates. Valid here means that the XML

document expected as result of the execution of the issued updates will still

conform to the XML schema of the original documents assuming one had

35

been given. This means that issued updates do not change the schema of the

original view. For example, an update request on the XML view shown in

Figure 4.2 to add the age element within the author element is not valid as

the resulting view will not conform to the XML schema that does not have

the age element appearing as part of the author element.

2. Since we are dealing with XML views of relational data, the structure of the

XML view constructed of the relational data (modeled by the flat relational

data) is quite different from its relational counterpart. Hence, an update issued

on an XML view might require a schema change at the relational database even

if we follow the assumption 1 from above. One such example is renaming an

element in the XML view that represents an attribute column in the underlying

relation. Renaming this element will require renaming this attribute of the

relation and hence will result in a schema change at the relational end. We

now assume for simplicity that only those updates that result in a data change

at the relational end are issued on XML views. We do not check to verify that

indeed a particular update results only in data change at the relational end,

rather we assume that we get only ”good” update requests.

3. We consider an XML view to be defined as a collection of elements and as-

sume that updates issued are Complete Updates [TBW91] issued on the said

elements. For example as shown in Figure 4.6, an update request for the dele-

tion of a complete book element, replacement of a complete book element

with another book element, and insertion of a newly constructed complete

book element are expected. Partial updates that will update only a part of a

book element are not yet supported by our approach.

36

<books>
<book>

<bookid>1</bookid>
<title>Data Structures</title>
<year>2000</year>
<source>Amazon.com</source>
<price>54.00</price>
<author>

<first>Michael</first>
<last>Savitch</last>

</author>
</book>
<book>

<bookid>2</bookid>
<title>Java Complete Reference</title>
<year>1999</year>
<source>Ebay.com</source>
<price>65.00</price>
<author>

<first>Peter</first>
<last>Naughton</last>

</author>
</book>

</books>

XML View

Figure 4.5: XML Virtual View

Complete Delete Update

FOR $root IN document(“books.xml”)/books
LET $book := $root/book
WHERE $book/author/first = “Peter”
AND $book/author/last = “Naughton”

UPDATE $root{
DELETE $book
}

FOR $root IN document(“books.xml")/books
UPDATE $root{

INSERT <book>
<bookid>“3”</bookid>,
<title>”My New Book”</title>,
<year>”2003”</year>,
<source>”Ebay.com”</source>,
<price>”54.50”</price>,
<author>

<first>”John”</first>,
<last>”Doe”</last>

</author>
</book>

}

Complete Insert Update

Figure 4.6: Example of Complete Update
Queries Issued on XML View Shown in
Figure 4.5

4.2 The Structural Model

The structural model of a relational database is a formal semantic data model con-

structed from relations that express entity classes and form relationships, or connec-

tions, among those classes [WE80]. The structural model defines a directed-graph

representation of the database, where vertices correspond to relations and edges to

connections (relationships).

Definition 1 [TBW91] A Connection is defined by the two relations R1 and R2

being connected, and by the two subsets of attributes X1 of R1 and X2 of R2 such

that X1 and X2 have identical number of attributes and domains. R1 and R2 are

then connected through the ordered pair(X1, X2).

For two connected relations R1 and R2, two tuples t1 ∈ R1 and t2 ∈ R2 are

connected if and only if the values of the connecting attributes in t1 and t2 match.

37

The structural model defines three types of connections, according to the se-

mantics of the relationships between the two relations. Most importantly for our

purpose, the connection types carry precise integrity rules. Let K(R) and NK(R)

be the key and nonkey attributes of relation R respectively.

Definition 2 [TBW91] An ownership connection from R1 to R2 is specified by

the following criteria :

1. Every tuple in R2 must be connected to an owning tuple in R1.

2. Deletion of an owning tuple in R1 requires deletion of all tuples connected to

that tuple in R2.

3. Modification of X1 in an owning tupple of R1 requires either propagation of

the modification to attributes X2 of all owned tuples in R2 or deletion of those

tuples.

The ownership connection embodies the concept of dependency, where owned

tuples are specifically related to a single owner tuple. As a result, we must have X1

= K(R1), and X2 ⊂ K(R2). The cardinality of the ownership connection is 1:n.

Definition 3 [TBW91] A reference connection from R1 to R2 is specified by the

following criteria:

1. Every tuple in R1 must either be connected to a referenced tuple in R2 or have

null values for X1.

2. Deletion of a tuple in R2 requires either deletion of its referencing tuples in

R1 or assignment of valid or null values to attributes X1 of all the referencing

tuples in R1.

3. Modification of X2 in a referenced tuple of R2 requires any one of several pos-

sible propagations namely, either propagation of the modification to attributes

X1 of all referencing tuples in R1, assignment of null values to attributes X1

or all referencing tuples in R1, or deletion of those tuples.

38

The reference connection relates one entity (the referencing relation) to another

more abstract entity (the referenced relation). As a result, we must have X1 ⊂ K(R1)

or X1 ⊂ NK(R1), and X2 = K(R2). The cardinality of the reference connection is

n:1.

Definition 4 [TBW91] A subset connection from R1 to R2 is specified by the

following criteria:

1. Every tuple in R2 must be connected to one tuple in R1.

2. Deletion of a tuple in R1 requires deletion of the connected tuple in R2 (if the

latter exists).

3. Modification of X1 in a tuple of R1 requires either propagation of the mod-

ification to attributes X2 of its connected tuple in R2 or deletion of the R2

tuple.

Specialization of the general entity can be implemented by defining more specific

entities connected to the main one through subset relationships. As a result, we must

have X1 = K(R1) and X2 = K(R2). The cardinality of the subset connection is 0:1.

Note that m:n relationships are not modeled directly in the structural model

but can be represented using combinations of connections. Finally, if there is a

connection C (one of the above three connections) from relation R1 to relation R2,

then there is an inverse connection C−∞ from relation R2 to relation R1.

Below we give a few more definitions of the terms borrowed from the literature

[TBW91] that we shall use later to describe our approach to updating a relational

database through views which is based on Keller’s approach [TBW91].

As discussed in Section 4.1.2, we consider the XML view defined as a collection

of elements and each of these elements is analogous to an object that is constructed

from projections on one or more relations. Each element of the collection has the

same XML schema. Below we quote the formal definition of an object as defined in

[TBW91]. Let R be the domain of all relations for a given relational database. Let

39

Π denote the domain of all projections π defined on R. Let Set(Πe) designate the

domain of all finite sets of projections. In addition, a function d : Π → R such that

d(π) is the relation on which π is defined.

Definition 5 An object ω is a non-empty element of Set(π) (set of projections),

denoted by ω = {π1, π2,, πn} where πs are projections defined on R - the set of

relations. The complexity of ω is defined to be the number of projections included in

the object.

Definition 6 For each object ω, we further define a pivot relation R1 ∈ R such

that

• ∃ only one πj ∈ ω|[d(πj) = R1] ∧ [K(R1) ⊆ πj]

• K(ω) = K(R1)

• ∀k, k = 1......i, k �= j, d(πk) �= R1

The notion of pivot relation is central to the formalism. Each object is ”anchored”

on one base relation, which constitutes its core component. We extend the notion of

a relational key to an object key, such that the key of an object ω is isomorphic to the

key of its pivot relation. Hence the requirement that the key attributes be included

in the projection defined on the pivot relation. Thus each element of the collection

in the XML view has a unique identifier and like its relational counterpart, this

key permits unique identification of any instance of the given object type (XML

element). For our running example as shown in Figure ??, the relation Books

qualifies as pivot relation as its key is visible in a view element and also the key of

the Books relation is a unique identifier for the view elements.

Definition 7 The dependency island Dω of a view object ω is the maximal subtree

of the tree of projections such that (1) the root of the subtree is the pivot relation,

and (2) all directed paths starting at the pivot relation must be composed only of

40

2NaughtonPeter

1SavitchMichael

BookIdLastFirst

1999JAVA Complete
Reference

2

2000Data Structures1

YearTitleBookid

65.00Ebay.comJAVA Complete
Reference

54.00Amazon.comData Structures

PriceSourceTitle

Prices

Authors

Books

Underlying Relations

Figure 4.7: Relational Tables in Database

<books>
<book>

<bookid>1</bookid>
<title>Data Structures</title>
<year>2000</year>
<source>Amazon.com</source>
<price>54.00</price>
<author>

<first>Michael</first>
<last>Savitch</last>

</author>
</book>
<book>

<bookid>2</bookid>
<title>Java Complete Reference</title>
<year>1999</year>
<source>Ebay.com</source>
<price>65.00</price>
<author>

<first>Peter</first>
<last>Naughton</last>

</author>
</book>

</books>

XML View

Figure 4.8: Virtual View of Relations
Shown in Figure 4.7

ownership and subset connections.

Definition 8 A referencing peninsula is a relation Rj ∈ d(ω) that is directly

connected to any relation Rk of the dependency island by a reference connection.

The rationale behind the dependency island is that all the relations in the de-

pendency island belong to the same entity - the entity that is centered on the pivot

relation. As a result, any update operation on the view element should have consis-

tent repercussions throughout the components of that object’s dependency island.

Referencing peninsulas, on the other hand, must be identified because of the con-

straints of referential integrity. For elements of a view shown in Figure 4.7 relations

Books and Authors form the dependency island with the relation Books also as

the pivot relation whereas the relation Prices is a referencing peninsulas whose at-

tribute title refers to the unique attribute title of relation Books in the dependency

41

island.

4.3 Analysis of the View XAT

The view is analyzed only once when it is defined. Analysis of the view construction

to gather semantic information about the underlying relations helps to analyze the

possible impact of any update on the underlying database. It gives us a priori

knowledge of how a particular relation involved in the construction of a view may

be affected by an update issued on the view. The data collected during analysis of

the view is stored later in the system and is accessed for interpreting all updates

issued on this view. In our approach analysis of the view is done by processing

the view XAT generated from the mapping or view query. The following steps are

typically carried out while analyzing a view :

• Finding names of the underlying relations: The first and foremost step

taken is to process the view XAT to find out how many and which relations

are involved in the construction of a view. Since the view is constructed on

top of the default XML view which has attribute values for each tuple of a

relation within the Row element, the view query will always navigate into the

Row element to extract attribute values for the construction of the virtual

view. Hence the view query will navigate to the Row element via the parent of

the Row element which is named after the name of the respective table. This

navigation which is expressed as an XPath expression in an XQuery statement

is then captured by the Navigate operator in the view XAT. Hence these navi-

gate operators also carry knowledge of the underlying relations. Each navigate

operator that has a Row element as a step in its destination also carries the

name of the underlying relation. Thus knowledge of all underlying relations

can be easily extracted from the navigate nodes. Figure 4.9 depicts the XAT

of the view query for our running example. One can see that the navigate

42

operators having a Row step in their destination telling us about the underly-

ing relation too. In our example there are three underlying relations namely

Books, Authors and Prices. The algorithm for processing the navigate

operator to extract the relation names is shown in Figure 4.10.

S(“Default.xml”):S1

φ(S1, /books/row):$book

φ($book, bookid):$col1

S(“Default.xml”):S2

φ(S2, /authors/row):$author

T(<books>[$col13]</books>):$col14

Agg():$col13

×

S(“Default.xml”):S3

×

φ(S2, /prices/row):$price

φ($author, bookid):$col2

φ($price, title):$col3

φ($book, title):$col4

σ($col1=$col2 AND $col3=$col4)

φ($book,bookid):$col5

φ($book, title):$col6

φ($book,year):$col7

φ($price,source):$col8

φ($author,last):$col11

φ($price, price):$col9

φ($author, first):$col10

T (<author> [$col10], [$col11]</author>):$col12

T (<book> [$col5], [$col6], [$col7], [$col8], [$col9], [$col12]</book>):$col13

Figure 4.9: XML Algebra Tree for View Query

• Collecting meta information about the underlying relations: After

discovering names of the relations underneath the given view, next step is

to collect meta data such as keys, foreign keys, names and data types of

attributes as well as other constraints on the attributes of the relations. Re-

lational database is queried for this set of information for each underlying

relation and information is stored in a data structure, in our case a relational

table. The reason for collecting all this information is multi-folded. First,

the knowledge of keys and foreign keys of a particular relation will help as

to determine its relationship with other underlying relation which in turn will

help in identifying the dependency island and referencing peninsulas. Secondly

43

findTable(NavigateOperator nav){
If nav has destination then

If destination has ‘Row’ step then
Case 1: ‘Row’ is first step of destination

// Last step of entry point has table name
tablename = last step of entry point

Case 2: ‘Row’ is last step of destination
// Last but one step of destination has table name
tablename = last but one step of destination

Case 3: ‘Row’ is intermediate step of destination
// previous step of destination has table name
tablename = a step prior to ‘Row’ step of destination

If tablename is a variable-binding then
tablename = get actual-name from binding table.

return tablename
}

Figure 4.10: Algorithm to Search for a Relation in Navigate Operator

the knowledge of attributes and their data types will help in extending tuples

with attributes that do not appear the in view. Extending tuples is required

as partial tuples cannot be inserted into relations. Note that the decision of

values of attributes for extending tuples is application dependent.

• Identifying Pivot Relation: As discussed earlier while formally defining a

pivot relation, the intuition behind having a pivot relation for view elements is

that each element is ”anchored” to one relation. Any update on view elements

will have a direct effect on the pivot relation and other relations will be affected

indirectly depending upon their relationship with the pivot relation. As stated

in the definition, the key of the pivot relation is also the unique identifier for

view elements and hence the key of the pivot relation must be visible in the

view. Starting with this fact, now that we have knowledge of all underlying

relations and their keys, we traverse the algebra tree to find a relation whose

key is exposed in the view. Note that there might be multiple such relations

but we are looking for atleast one which is a sufficient condition for the view

to be updatable. Figure 4.11 shows the algorithm we followed to search for

44

a pivot relation. For our running example, as shown in Figure 4.9, $col5 is

exposed in the view which happens to be the bookid attribute of the table

Books. Since bookid is the key of the table Books it qualifies to be the

pivot relation for our view and table Books being the only candidate for pivot

relation becomes the pivot relation for the XML view in our example.

searchPivotRelation(){
for each underlying relation

data-structureVector = createDataStructureVector(Keys of relation)
for each leaf of the view tree

start traversing tree bottom-up from the leaf
if current node has Tagger Operator then

tag_contents = contents of Tagger
for each column name in tag_contents

if this column name is from current relation then
attribute_name = get actual name for column name from binding table
for each data-structure ds in data-structureVector

if attribute of ds is not in view and attribute_name = attribute then
mark this attribute to be in view.
if all attribute are marked to be in view then

current relation is pivot relation
return

}

class specialDataStructure{
String attribute;
boolean isInView;
String getAttribute();
void setAttribute(String);
boolean getIsInView();
void setIsInView(boolean);

}

Figure 4.11: Algorithm to Search for Pivot Relation

As shown in Figure 4.11, the view tree is traversed bottom-up starting at each

leaf. We traverse the tree bottom-up once for each underlying relation until

we find a pivot relation. While traversing we keep a vector of special data

structures (also shown in Figure 4.11) created from keys of the relation in

question. Tagger operators are of prime interest as they hold the information

of elements visible in the view. So we process each tagger operator marking

which key attributes of the relation in question are exposed in the view. Once

we find that all the key attributes of the current table are in the view, we

stop the search and record this relation as pivot relation. During this whole

45

process, we do need to decipher the names of bound columns. We also need

to trace their paths in order to know the actual names of attributes exposed

and whether the attribute belongs to the relation in question in order for it

to be considered to be the pivot relation. For this we make use of the binding

table - a hashtable which stores bindings and the XPath associated with each

binding.

• Identifying Dependency Island and Referencing Peninsulas: Rela-

tionships among the underlying relations namely ownership connections, sub-

set connections and reference connections can be identified using information

about keys and foreign keys of the relations. Definitions of these connections

as stated earlier in the section can be restated using notion of keys and foreign

keys as below:

1. Ownership Connection from relation R1 to R2 is said to exist if the

foreign key (also part of key) of relation R2 which may not be unique is

refering to the key of relation R1.

2. Subset Connection from relation R1 to R2 is said to exist if the foreign

key (also key) of the relation R2, also unique, is refering to the unique

key of relation R1.

3. Reference Connection from relation R1 to R2 is said to exist if the for-

eign key of relation R1 with null values allowed for foreign key attributes

and the foreign key not necessarily unique in R1 is refering to a key or a

unique attribute of relation R2.

Having identified the set of the underlying relations and the pivot relation

for the given XML view, each relation from the set of our underlying rela-

tions is analyzed, using the above given defintions, for having a Ownership

or Subset connection with the pivot relation. If a Ownership or Subset

46

connection exists from the pivot relation to a particular relation, then the

relation is marked to be a part of the Dependency Island. Thus the pivot rela-

tion along with any other relations having Ownership or Subset connections

with the pivot relation form the Dependency Island for a given XML view. For

our running example a Subset Connection from the relation Books to the

relation Authors exists. Hence the relation Authors falls in Dependency Is-

land. Relation Books also, being a pivot relation, is a part of the Dependency

Island.

Relations that do not qualify to be part of the Dependency Island are then

analyzed, using the above given definition of reference connection, for having

reference connection with any relation falling into the Dependency Island (i.e.,

a reference connection from a particular relation to any relation in the depen-

dency island). If such a connection exists then the relation under question

qualifies as one of many possible Referencing Peninsulas for the given XML

view. The algorithm for identifying the Dependency Island and Referencing

Peninsulas, being relatively simple, has not been discusssed here. There exists

Reference Connections between the pivot relation Books and the relation

Prices and so the relation Prices is a Referencing Peninsula in our running

example.

• Storing into the system the knowledge of Dependency Island, Ref-

erencing Peninsulas and other underlying relations: All the knowledge

about the underlying relations and their relationships, gathered in the form

of the Dependency Island and Referencing Peninsulas, is stored on persisi-

tent storage. This knowledge is then used for the translation of updates as

discussed in later chapters.

47

Chapter 5

Update Decomposer

The Update Decomposer is yet another component specific to the Update Manager

in Rainbow. This component decomposes the XML update given to it in the form

of XAT into multiple updates that are relation specific. Each of these updates is an

update on a single relation that belongs to the pool of relations that consitute the

foundation of the XML view on which original XML update is issued. The Update

Decomposer decomposes the update using the information that is available from

the XAT. This component does not know anything about the underlying relations

and relationships among them if any. It simply extracts information about the

relation names and column names available in the XAT. Thus it cannot differentiate

between relation and hence may generate multiple but different updates against one

particular relation. This kind of situation will arise in the case where the XML view

was constructed using a join of a particular relation with itself. The decision about

whether or not execution of any of these updates is necessary to reflect the effect of

the XML update on the XML view depends on rules that take into consideration

the existence of the Pivot Table, Dependency Island and Referencing Peninsulas as

discussed in earlier chapters. The Update Translator component is aware of the rules

and is the component that takes such decisions.

48

5.1 Decomposition of Updates

For the decomposition of updates, we follow a traversal strategy that traverses the

input XAT bottom up. The intuition behind the bottom up traversal is that each

distinct leaf at the bottom of the tree contains information about one relation that

was involved in the formation of the XML view. This relation, hence, is also a

candidate for being updated as a result of any update intended on the XML view.

The XML update represented by the update XAT will be decomposed into a num-

ber of relational updates equal to the number of distinct leaves of this XAT. By

traversing bottom up we are guaranteed to start with knowledge of the relation

names which we extract from a leaf and its immediate parent node. Besides, we

also collect knowledge of relational attributes to be updated within a relation and

filters, if any, on values of attributes that may qualify them to be a candidate for

the update. In the case of Insert and Replace XML updates, the new values for

attributes that will be updated are also extracted and put into the data structure

representing the relational update being constructed. Thus, a relational update is

incrementally constructed while traversing the update XAT bottom up starting at

a leaf. Also, knowledge of join conditions for joining two tables is extracted from

the Join nodes to be applied to the relational update being constructed.

Shown in Figure 5.1 is the algorithm for the traversal strategy that we follow to

construct relational updates. Figure 5.1 also shows the data structure that repre-

sents a relational update, known as Relational Update. Relational Update is designed

to keep information about the type of the update, the relation name for which the

update is being constructed and knowledge of the attributes to be updated within

the relation. Information about the attributes is stored in the form of a vector of

Update Column. Update Column is yet another data structure designed to store the

name of the attribute and its values. Of course, in case of a Delete update, the

49

vector of Update Column will be empty as complete records will be deleted from

relations and we do not care for any attributes in particular. But in case of an

Insert update each item in the vector of Update Column will store the name of the

attribute and the value (new value) that is to be inserted. Besides, the WhereClause

of the Relational Update will store all conditions applicable to the relational udpate.

If a Replace update is being constructed then each item in the vector of the Rela-

tional Column will also contain old values which are to be replaced by the new ones.

Relational Update, though being a very simple data structure, is sufficient to store

all the information required to construct a single relational update.

generateUpdate(XAT_tree, XAT_leaf){
update = new RelationalUpdate
set updateType by looking at the root of XAT_tree
node = XAT_leaf
while node != null

update = extract_information(node, update)
node = parent node

formatWhereConditions
formatOtherConditions

}

class RelationalUpdate{
Int updateType;
String tableName;
Vector updateColumn;
Vector whereClause;

}

class UpdateColumn{
String columnname;
Object oldValue;
Object newValue;

}

Figure 5.1: Algroithm for Decomposition of XML Update.

As stated in the algorithm in Figure 5.1, the update type is decided by looking at

the root node of the tree which, essentially, is the update node. Then we start with a

given leaf node and traverse up in the tree untill we reach the top of the tree. During

our traversal we keep collecting information from nodes to construct the relational

update. Again, we only care for nodes that have information required to help us

construct the relational update. We ignore all other types of nodes. In particular,

we care for Navigate, Select, Join, and Tagger nodes. Table 5.1 summarises what

50

extract_information(XAT_node, update){
if XAT_node is a Navigate node

update.tableName = get table name from node if it has one
elseif XAT_node is a Select node or a Join node

add the condition into whereClause of update
break any complex binary conditions into simple binary conditions and store the conditions

to be referred while extending tuples in case of insert and replace updates
elseif XAT_node is a Tagger node

if type of update is Insert
if the DOM pattern of element represented by the tagger matches DOM pattern of the

element to be inserted
extract names of attributes from tagger pattern
extract values of attributes from pattern of element to be inserted
fill in the updateColumn vector of update.

if type of update is Replace
if the DOM pattern of element represented by the tagger matches DOM pattern of the

replacing element
extract names of attributes from tagger pattern
extract old values by querying the relational database
extract new values from pattern of the replacing element
fill in the updateColumn vector of update

else do nothing
return update

}

Figure 5.2: Algorithm for Extracting Information from a Node.

kind of information is gathered for different types of updates from different types of

nodes. Similar details are also explained by the algorithm shown in Figure 5.2.

As shown in the algorithm for extracting information from a node in Figure 5.2,

the table name can be extracted from the navigate nodes. Refer to chapter View

Analyser for discussion on extracting the table name from a Navigate node. There

will be only one such Navigate node for each branch of the tree. If the node is

a Select or a Join node then we extract the conditions from these nodes to go as

where clauses with the relational update. These conditions are stored in raw form,

separate from relational update to aid later in extending tuples for Insert or Re-

place updates. 1 Tagger nodes carry essential information for Insert and Replace

updates. If the tagger node represents the element same as the one being inserted

1XML view might not always expose all the attributes from a relation. In such cases, when
an update is issued on an XML view we get information about only the exposed attributes of
a relation. When this XML update is translated into a relational update, each record is only
partially consisting of attributes exposed in the XML view. Relational database do not accept
partial records and so the update tuples need to be extended with values for attributes that were
not exposed in the view. How these records are extended and how the conditions from Select and
Join nodes help in extension is discussed in later chapters.

51

then we get attribute names from the pattern of the element represented by this

tagger. At the same time, corresponding values for attributes are gathered from the

pattern of the element in the update (Insert and Replace) nodes. Our assumption

that updates issued are complete and correct gives us the liberty to assume that the

pattern of topmost tagger node and the update (Insert and Replace) node exactly

match. Once we have traversed the tree from the bottom (leaf) of a branch to the

top (root) we are assured of having gathered sufficient information required for the

construction of relational update.

In following sections we discuss the decomposition of an XML update of every

kind (Delete, Insert, Replace) through examples.

5.2 Delete Update Decomposition

Decomposition of a Delete update is the simplest decomposition among the three

kinds of updates viz. Delete, Insert and Replace. As discussed earlier, the Update

Decomposer decomposes the given XML update into relational updates on rela-

tional tables underneath the XML view. The Update Decomposer does not care

about whether or not a relational update on a particular relational table is required

or necessary to bring the intended update on the XML view. It simply decomposes

the given XML update into the corresponding relational updates, one per underly-

ing relational table. Figure 2.6 shows the view definition for our running example

and Figure 4.9 shows the XAT for the given definition. This view is analyzed as

discussed in Chapter 4 and meta information (names and data types of attributes,

information about keys and foreign keys etc.) about underlying relations viz Books,

Authors and Prices is stored. Also information about the Dependency Island and

Referencing Peninsulas is extracted during the view analysis is available during the

decomposition and translation of updates.

52

Figure 5.3 shows the XAT of the complete delete update shown in Figure 4.6

which is issued on the XML view defined by the query in Figure 2.6. The update

is to delete books that have an author with first name as ’Peter’ and last name

as ’Naughton’. XAT shown in Figure 5.3 is a decorrelated XAT. For the sake of

simplicity to visualize the query, the tree has been simplified to not show irrelevant

nodes.

S(“books.xml”):S1

φ(S1, books):$root

σ($col1=“Peter” AND $col2=“Naughton”)

φ($root, book):$book

φ($author, first):$col1

φ($author, last):$col2

Delete($root, $book)

Figure 5.3: XAT for Delete Query Shown in Figure 4.6.

Following steps of our approach as shown in Figure 1.1 the two XATs are then

merged and sent for computation pushdown, also known as rewriting of XATs.

Figure 5.4 shows the XAT generated as result of rewriting. Again, the XAT has

been simplified for the sake of understandability. The lower part of the tree (below

the topmost tagger node) gives the understanding of the construction of our XML

view whereas the top part of the tree (above the topmost tagger node) represents

53

the update part. The bottom part of tree tells us that there are three distinct Source

nodes. Hence, as discussed in previous sections, the number of relational updates

that will be generated will be three. One relational update will be generated for

each branch of the tree and the relational update will be on the relational table

referenced in that particular branch. In this example, one Delete update will be

generated for each of the relational tables namely Books, Authors, Prices.

Agg():$root

×

×

σ($col1=$col2 AND $col3=$col4)

φ($book,year):$col7

φ($price,source):$col8

φ($author,last):$col11

φ($price, price):$col9

φ($author, first):$col10

T (<author> [$col10], [$col11]</author>):$col12

T (<book> [$col1], [$col3], [$col7], [$col8], [$col9], [$col12]</book>):$col13

S(“Default.xml”):S1

φ(S1, /books/row):$book

φ($book, bookid):$col1

φ($book, title):$col3

S(“Default.xml”):S2

φ(S2, /authors/row):$author

φ($author, bookid):$col2

S(“Default.xml”):S3

φ(S3, /prices/row):$price

φ($price, title):$col4

σ($col14=“ Peter” AND $col15=“Naughton”)

φ($root, book):$book

φ($book, author/first/text()):$col14

φ($book, author/last/text()):$col15

Delete($root, $book)

Figure 5.4: XAT as Result of Rewriting XAT Obtained After Merging XATs Shown
in Figure 4.9, Figure 5.3.

First and foremost, the Delete node on top of the XAT tells us that the relational

updates generated for all underlying tables will be Delete updates. We start at each

leaf of the tree one by one and traverse up the tree following parent links and

gathering information from each node as explained in Table 5.1. For this example,

first we traverse the XAT shown in Figure 5.4 bottom up starting at the left most

leaf which is a Source node S1. The Navigate node right above it gives us the name

of the relational table which is Books. The two Select nodes in the path while

54

traversing up the XAT give relevant conditions which will be used in the Where

clause of the Delete update that is being generated. At the end of the traversal of

the XAT starting at the left most leaf of XAT we will have created the following

Relational Update data structure.

Relational Update{

updateType = Delete

tableName = Books

updateColumns = null

whereClause = [$col1==$col2 AND $col3==$col4,

$col14==’Peter’ AND $col14==’Naughton’]

}

Following the algorithm to generate the update shown in Figure 5.1 the next step

is to format conditions listed in the whereClause of our data structure representing

the relational update. By formatting we mean to translate the conditions into a

format appropriate for SQL. Formatting the conditions in whereClause of the data

structure shown above results the in following data structure:

Relational Update{

updateType = Delete

tableName = Books

updateColumns = null

whereClause = [books.bookid=authors.bookid AND

books.title=prices.title,

authors.first=’Peter’ AND authors.last=’Naughton’]

}

Similarly, starting at the other two leaves of the XAT shown in Figure 5.4 we get

two more data structures representing a relational update, each on tables Authors

and Prices as shown below.

Relational Update{

updateType = Delete

tableName = Authors

updateColumns = null

whereClause = [books.bookid=authors.bookid AND

books.title=prices.title,

authors.first=’Peter’ AND authors.last=’Naughton’]

}

55

Relational Update{

updateType = Delete

tableName = Prices

updateColumns = null

whereClause = [books.bookid=authors.bookid AND

books.title=prices.title,

author.first=’Peter’ AND authors.last=’Naughton’]

}

5.3 Insert Update Decompostion

Figure 5.5 shows the XAT generated from the complete insert update shown in

Figure 4.6. This insert update is issued on the XML view having a definition shown

in Figure 2.6. The XAT generated for the view is shown in Figure 4.9. Again,

as explained in Section 5.2 the XAT for the user update and the XAT for the view

query are merged and then sent for computation pushdown, also known as rewriting.

For the Insert update the XAT as a result of rewriting of the merged XAT is shown

in figure 5.6. This rewritten XAT is then sent for update decomposition. Below is a

discussion on how an Insert XML update is decomposed into corresponding Insert

relational updates on the underlying relations.

To start decomposing the XML update we start at leaves and traverse the XAT

bottom up gathering information for Insert update from each node as per table 5.1.

Extraction of information from Navigate and Select nodes is done in a similar way

as done in the case of the Delete update. But, unlike the Delete update, the Tagger

nodes do carry important information for the Insert update. As briefed in Table 5.1,

names and values of relational attributes are extracted from the Tagger nodes. For

example, if we start at the left most leaf of the XAT shown in Figure 5.6, we come

across the topmost tagger which represents the element to be inserted into the XML

view. Since we identify it to be the element to be inserted in the XML view, we know

that this is the element that carries values for the relational attributes. Since we

know we are building an update on the relation Books we extract from the Tagger

56

node values for attributes belonging to the relation Books. So we get values for

attributes bookid, title and year as ’3’, ’My New Book’ and ’2003’ respectively.

Figure 5.1 shows the data structure representing an update column. One such data

structure is created for each of the attributes namely bookid, title and year with

their respective names, new values as values extracted from Tagger node and old

values as NULL. Old values are relevant to the Replace update as explained in the

following section. Thus, at the end of the bottom up traversal of the XAT starting

at left most leaf and after formatting the where clause conditions we will have the

following data structure created for the branch where * suggests that the entry is of

type UpdateColumn.

Relational Update{

updateType = Insert

tableName = Books

updateColumns = [bookid*, title*, year*]

whereClause = null

}

In the case of the Insert and Replace update types all the conditions that fall

in the path while traversing the rewritten XAT bottom up are broken into non-

nested binary conditions and are stored separate from the relational update. These

conditions are later referred to while extending the relational tuples to make sure

that the join conditions between the underlying relations are preserved. The last

statement of the algorithm in Figure 5.1 refers to these conditions which are to be

formatted as where clause conditions. Similar to the generation of a data structure

for relation Books as explained above, data structures representing a relational

update are generated for relations Authors and Prices as well. They are as below:

Relational Update{

updateType = Insert

tableName = Authors

updateColumns = [first*, last*]

whereClause = null

}

57

Relational Update{

updateType = Insert

tableName = Prices

updateColumns = [source*, price*]

whereClause = null

}

5.4 Replace Update Decomposition

Figure 5.8 shows the XAT generated from the complete replace update shown in

Figure 5.7. This replace update is issued on an XML view having its definition

shown in Figure 2.6. The XAT generated for the view is shown in Figure 4.9. For

the Replace update the XAT as a result of rewriting of the merged XAT is shown

in Figure 5.9. This rewritten XAT is then sent for update decomposition.

Decomposition of the Replace update is done in a similar fashion as in the case

of the Insert update the only difference being that we also need old values for the

relational attributes. Old values for some of the attributes are available from the

select conditions that appear in the XAT. For example, as seen in XAT shown

in Figure 5.9, the Select node with the condition ’$col14==’JAVA Complete

Reference’ gives us the old value for attribute title of the relation Books. Thus

an UpdateColumn will be created for attribute bookid with its name, old value as

’JAVA Complete Reference’ and new value as ’JAVA Complete Reference

Revised’. All other attributes will have old values as NULL at the time of creation

of UpdateColumns. Thus a relational update generated by the traversal of the XAT

shown in Figure 5.9 will be as shown below where * suggests that the entry is of

type UpdateColumn as defined in Figure 5.1 and + suggests that the entry also has

an old value for the attribute.

Relational Update{

updateType = Replace

tableName = Books

updateColumns = [bookid*, title*+, year+]

58

whereClause = [books.bookid=authors.bookid AND

books.title=prices.title,

books.title=’JAVA Complete Reference’]

}

Similarly relational updates generated by starting at the other two leaves of the

XAT shown in Figure 5.9 will look as shown below:

Relational Update{

updateType = Replace

tableName = Authors

updateColumns = [first*, last*]

whereClause = [books.bookid=authors.bookid AND

books.title=prices.title,

books.title=’JAVA Complete Reference’]

}

Relational Update{

updateType = Replace

tableName = Prices

updateColumns = [source*, price*]

whereClause = [books.bookid=authors.bookid AND

books.title=prices.title,

books.title=’JAVA Complete Reference’]

}

Once relational updates have been generated, using information from all the

update data structures we form an SQL query to query the relational database for

old values for the attributes. The SQL query for this particular example will look

like

SELECT books.bookid, books.title, books.year, authors.first,

authors.last, prices.source, prices.price

FROM books, authors, prices

WHERE books.bookid=authors.bookid AND books.title=prices.title

AND books.title=’JAVA Complete Reference’

Old values for relational attributes for each relational update are then filled in

from the result set of the SQL query.

59

Since all attributes of any particular relation may not be exposed in a con-

structed XML view, Insert and Replace relational updates generated by the Update

Decomposer may not represent complete tuples of a relation. And since Insert and

Update SQL statements require complete tuples being mentioned we need to extend

tuples of updates generated by Update Decomposer. How do we extend these tuples

is discussed in Chapter 6.

60

Node Type Update Type Information
Navigate Delete One Navigate node in the branch carries name of a rela-

tional table involved in formation of XML view. Current
branch of the tree will be used to gneerate relational update
on the table name extracted from this node.

Insert ”
Replace ”

Tagger Delete Tagger nodes carry information about subelements of XML
element being updated. In other words, they carry infor-
mation about attributes of relational tables involved in for-
mation of XML view. Since relational delete update does
not require attributes to be mentioned, this information is
irrelevant.

Insert If output this node is used by the update node of the tree
then this node carries values for subelements of the XML el-
ement being inserted in the view. In other words, it carries
values for attributes of relational tuples. Hence, values of
attributes for table on which the update is being generated
are extracted from this node.

Replace If output of this node is used by the update node of the
tree then this node carried values for subelements of the
replacing XML element. In other words, it carries replac-
ing values for attributes of relational tuples. Hence, values
of attributes for table on which current update is being
generated are extracted from this node.

Select/Join Delete These nodes carry conditions imposed on XML elements of
the view to qualify for the update. In other words, when
translated, these are the conditions to be imposed on re-
lational tuples to qualify for the update. Also, join condi-
tions, if any, for joining tables involved in formation of view
are available from these nodes. Hence, these conditions are
gathered to be used in Where clause of the relational up-
date being generated.

Insert Join conditions are gathered and used later during transla-
tion of updates (as exlpained in following chapters) to make
sure the Join conditions between relational tables are pre-
served for the tuples being inserted into different relational
tables.

Replace Join conditions are gathered and used later during transla-
tion of updates (as explained in following chapters) to make
sure the Join conditions between relational tables are pre-
served for the replacing tuples in different relational tables.
Also, we extract from these conditions old values for at-
tributes taking part in conditions. Old values for other
attributes are collected via SQL queries to the underlying
database. Old values for attributes are used during trans-
lation of updates (also explained in following chapters).

Table 5.1: Node Types and Information they carry.

61

S(“books.xml”):S1

φ(S1, books):$root

Insert($root, $col9)

T (<author> [$col6], [$col7]</author>):$col8

T (<book> [$col1], [$col2], [$col3], [$col4], [$col5], [$col8]</book>):$col9

T(<bookid>3</bookid>):$col1

T(<title>My New Book</title>):$col2

T(<year>2003</year>):$col3

T(<source>Ebay.com</source>):$col4

T(<last>Doe</last>):$col7

T(<price>54.50</price>):$col5

T(<first>J</first>):$col6

Figure 5.5: XAT for Complete Insert Update Shown in Figure 4.6.

62

Agg():$root

×

×

σ($col1=$col2 AND $col3=$col4)

φ($book,year):$col7

φ($price,source):$col8

φ($author,last):$col11 φ($price, price):$col9

φ($author, first):$col10

T (<author> [$col10], [$col11]</author>):$col12

T (<book> [$col1], [$col3], [$col7], [$col8], [$col9], [$col12]</book>):$col13

S(“Default.xml”):S1

φ(S1, /books/row):$book

φ($book, bookid):$col1

φ($book, title):$col3

S(“Default.xml”):S2

φ(S2, /authors/row):$author

φ($author, bookid):$col2

S(“Default.xml”):S3

φ(S3, /prices/row):$price

φ($price, title):$col4

Insert($root, $col9)

T (<book>
<bookid>3</bookid>,<title>My New Book</title>,
<year>2003</year>,<source>Ebay.com</source>,
<price>54.50</price>,
<author><first>John</first>,<last>Doe</last><author>

</book>):$col9

Figure 5.6: XAT as a result of rewriting XAT obtained after merging XATs shown
in Figure 4.9 and Figure 5.5.

FOR $root IN document(“view.xml")/books
LET $book := $root/book
WHERE $book/title = "JAVA Complete Reference"
UPDATE $root{

REPLACE $book WITH <book>
<bookid>"2"</bookid>,
<title>"JAVA Complete Reference Revised"</title>,
<year>"2001"</year>,
<source>"Ebay.com"</source>,
<price>"65.50"</price>,
<author>

<first>"Peter"</first>,
<last>"Naughton"</last>

</author>
</book>

}

Complete Replace Update

Figure 5.7: Example of Complete Replace Update Query Issued on the XML View
Shown in Figure 4.5.

63

S(“books.xml”):S1

φ(S1, books):$root

Replace($root, $book, $col10)

T (<author> [$col7], [$col8]</author>):$col9

T (<book> [$col2], [$col3], [$col4], [$col6], [$col6], [$col9]</book>):$col10

T(<bookid>2</bookid>):$col2

T(<title>JAVA Complete Reference Revised</title>):$col3

T(<year>2001</year>):$col4

T(<source>Ebay.com</source>):$col5

T(<last>Naughton</last>):$col8

T(<price>65.50</price>):$col6

T(<first>Peter</first>):$col7

φ($root, book):$book

σ($col1=“ JAVA Complete Reference”)

φ($book, title):$col1

Figure 5.8: XAT for Complete Replace Update Shown in Figure 5.7.

64

Agg():$root

×

×

σ($col1=$col2 AND $col3=$col4)

φ($book,year):$col7

φ($price,source):$col8

φ($author,last):$col11

φ($price, price):$col9

φ($author, first):$col10
T (<author> [$col10], [$col11]</author>):$col12

T (<book> [$col1], [$col3], [$col7], [$col8], [$col9], [$col12]</book>):$col13

S(“Default.xml”):S1

φ(S1, /books/row):$book

φ($book, bookid):$col1

φ($book, title):$col3

S(“Default.xml”):S2

φ(S2, /authors/row):$author

φ($author, bookid):$col2

S(“Default.xml”):S3

φ(S3, /prices/row):$price

φ($price, title):$col4

Replace($root, $book, $col9)

T (<book>
<bookid>2</bookid>,<title>JAVA Complete Reference Revised</title>,
<year>2001</year>,<source>Ebay.com</source>,
<price>65.50</price>,
<author><first>Peter</first>,<last>Naughton</last><author>

</book>):$col9

φ($root, book):$book

σ($col14=“ JAVA Complete Reference”)

φ($book, title):$col14

Figure 5.9: XAT as Result of Rewriting XAT Obtained After Merging XATs Shown
in Figure 4.9 and Figure 5.8.

65

Chapter 6

Update Translator

Update Translator is the core part of the Update Manager and that applies transla-

tion rules to the updates generated by the Update Decomposer. Update Decomposer

with its simplest logic decomposes the given XML update into corresponding rela-

tional updates on the underlying relations. Such decomposition is unrealistic and

may not always bring the right change as desired by the update. Also, this sort of

decomposition, if right, will do more changes to the underlying relational database

than the minimal changes required to be done to bring the intended effect of the

original XML update. For example, an XML update to delete a particular element

from an XML view will be decomposed into Delete updates on each of the underlying

relations. Since XML views in question are build around a pivot relation deleting

from relations that are connected to the pivot relation through ownership or subset

connection will do the minimal change to the underlying relational database. On

the other hand, deleting from every relation taking part in the formation of the view

will still bring the intended change in the XML view (when reconstructed from the

updated relations). However unnecessary changes may be done to the underlying

database. Similarly, inserting an element into the XML view will not necessarily

require inserting a tuple into every relation taking part in the formation of the view,

nor will replacing an existing element with a new one require a replacement of tuples

66

in each and every relation that contributes to the formation of the XML view. Such

rules which guarantee the right and minimal changes to the underlying database

form the translation algorithms for object views as designed by Barsalou, Keller

and others in [TBW91]. We now discuss these translation algorithms in the next

section and then nearly borrow from them to solve our problem.

6.1 Update Translation Algorithms

In their work on Updating Relational Databases through Object-Based Views [TBW91],

Keller and others designed algorithms that can be used to translate complete up-

dates on object views of relational data. Objects of views supported by their algo-

rithms are “anchored” to one base relation which consitutes its core part. Thus a

view object is a set of projections on base relations, where one of those is the pivot

relation for the object. Their notion of objects view is identical to our notion of

XML views in that each element of an XML view is made from a set of projections

on base relations and is “anchored” to one base relation. This base relation is the

pivot relation of XML elements or in general of the XML view. Also, similar to our

goal of translating a complete XML update on a given XML view into relational

updates on base relations, their goal also is to translate a given complete update on

an object view into relational updates on the underlying relations. These similari-

ties in the types of views being supported and the problem being tackled support

the argument that we can re-use their algorithms to suit our needs. The algorithms

discussed in the following subsections are taken from [TBW91] and modified to suit

the problem of translating XML updates on XML views into relational updates on

relational tables underneath.

67

6.1.1 Translation of Complete Delete Updates

The following algorithm is for the translation of complete delete requests issued over

a view-object instance which in our case is a complete XML element.

Algorithm VO-CD: The input is an request for deleting a XML element. The

output is the set of database operations that implement the request.

• Isolate the dependency island

• For each projection in the island, delete all matching tuples from the under-

lying relation

• Identify the referencing peninsulas

• For each peninsula, delete matching tuples or perform a replacement on the

foreign key of each matching tuple.

To implement the fourth step in the algorithm we set BEFORE DELETE

triggers that delete referring tuples from the peninsulas before deleting tuples from

relations in the dependency island.

This algorithm has very controlled effects on the database; the process of global

integrity maintenance can therefore be simplified to require only two operations.

First, for relations in the dependency island that have an outgoing ownership or

subset connections, the deletions must be propagated (repeatedly, if necessary) to

those owned and subset relations. Second, in addition to the referencing peninsulas

already handled, foreign-key replacements of deletions must be performed on any

relation referencing one of the relations involved in a deletion. Note that no fur-

ther propagation is needed outside of the referencing peninsulas and the referencing

relations. Maintaining global consistency becomes more complicated with multiple

views defined on the common base relations. Our system does not support global

consistency at this time.

68

6.1.2 Translation of Complete Insert Updates

The transaction for complete-insert update is rejected only if identical relational

tuples exists in relations that belong to dependency island. Inserting an XML el-

ement instance involves adding the tuples to each of element’s projections to the

underlying base relations. The fact that each tuple inserted in the database needs to

be extended with some values for the attributes that have been projected out is not

included in the translation algorithm that follows. How this operation is handled is

dependent on the application. The following sections will only discuss how we have

chosen to extend such tuples in our implementation.

Algorithm VO-CI: The input specifies a new XML element instance to be added to

the view. The output is the set of database operations that implement the request.

• Isolate the dependency island

• For each tuple in each projection of the XML element, there are three possible

cases:

CASE 1: An identical tuple exists in the database. If the current relation

belongs to the dependency island, reject the update; otherwise, do nothing.

CASE 2: The new tuple does not match the key of any tuple in the underlying

database relation. Perform an insertion.

CASE 3: The new tuple matches the key of an existing tuple, but some values

for nonkey attributes differ. If the current relation belongs to the dependency

island, reject the update; otherwise, perform replacement of the existing tuple

with the new tuple.

Following the insertion of the new XML element, we need to run a number

of checks to preserve the global consistency of the database. For all the relations

where tuples have been inserted by the algorithm VO-CI, the outside relations along

69

inverse ownership, inverse subset, and reference connections must be verified for

proper dependencies. If no tuple satisfying the suitable dependency is found in any

of those relations, one such tuple must be inserted, and the process must be applied

recursively to that new insertion. Finally, for all the relations where tuples have

been replaced, if referencing attributes are involved in the replacement, then the

referenced relations must be checked for referential integrity.

6.1.3 Translation of Complete Replace Updates

As with replacements in relational views, replacements on XML elements are more

difficult to handle than are complete insertions or deletions. Below we discuss the

algorithm for translating complete replace updates.

Algorithm VO-CR: For each base relation, go to state REPLACING if the relation

belongs to dependency island and go to state INSERTING otherwise.

• STATE REPLACING: Compare the old and new tuples in this projection.

CASE R-1: The projections match exactly. Do nothing.

CASE R-2: The projections differ but the keys match. Perform a replacement

in this projection.

CASE R-3: The projections differ and the keys differ. This case can happen

only for those projections that are part of the dependency island. Perform a

replacement in this projection.

• STATE INSERTING: Compare the old and the new tuples in this projec-

tion. There are four cases:

CASE I-1: The keys match. Go to state REPLACING.

70

CASE I-2: The keys differ and the new tuple does not exist in the database

relation. Insert new tuple in the database.

CASE I-3: The keys differ and the new tuple exists in the database. Do

nothing.

CASE I-4: The keys differ and the new tuple is in the database but some

attributes have conflicting values. Perform a replacement in this projection.

To maintain global consistency of the database, for referencing peninsulas, we

must replace the foreign key of all the tuples that were refering to any of the modified

tuples in the dependency island. Similarly, if a relation outside of the XML view

is attached to the dependency island by an ownership or subset connection, the

replacement has to be propagated to it. In all other cases, propagation of the

change outside of the island will produce only checking and insertion operations to

maintain global consistency.

6.2 Example Walkthrough

Let us try to explain the algorithms discussed in the previous sections by going over

our running example. As discussed in Chapter 4, relations Books and Authors

form a dependency island for the XML view of our running example whereas the

relation Prices is a referencing peninsula having a reference connection with the

relation Books in dependency the island. Having identified the dependency island

and referencing peninsulas for our view, the application of our translation algorithms

to the relational updates as a result of the XML update decomposition discussed in

Chapter 5 becomes straightforward. Let us take a look at the Delete case through

our example. The translation algorithms for Insert and Replace are dependent on

actual data in the base relations and hence are not discussed here.

As discussed in chapter 5 one Relational Update is generated for each of relations

Books, Authors and Prices. Following Algorithm VO-CD stated in Section

71

6.1 we know that since Books and Authors are in the dependency island we need

to delete matching tuples from these relations. Also, since Prices is a referencing

peninsula we need to delete any matching tuples from this relation or perform re-

placement of the keys. Since we choose to delete matching tuples from referencing

peninsulas using triggers in our implementation, we know that we have taken care of

deleting tuples from Prices relation. Thus applying the translation algorithm to our

Delete relational updates results in explicit Delete relational updates as illustrated

below on the relations Books and Authors and some implicit Delete relational

update on the relation Prices via triggers.

Relational Update{

updateType = Delete

tableName = Books

updateColumns = null

whereClause = [books.bookid=authors.bookid AND

books.title=prices.title,

authors.first=’Peter’ AND authors.last=’Naughton’]

}

Relational Update{

updateType = Delete

tableName = Authors

updateColumns = null

whereClause = [books.bookid=authors.bookid AND

books.title=prices.title,

authors.first=’Peter’ AND authors.last=’Naughton’]

}

6.3 Extending Update Tuples

As mentioned while discussing the algorithms for translating complete XML updates

in previous section, tuples to be inserted into the base relations should be extended

with values for attributes that were projected out. Values of these attributes can be

chosen arbitrarily from their respective sets of selecting values (which is the domain

for non-selecting attributes). Each combination of values will represent a different

algorithm for choosing values. There will be a unique algorithm to choose values

72

iff each attribute projected out (appearing in the database but not in the view)

has a set of selecting values that is a singleton (has only one element). Thus since

selection of values for attributes projected out depends on their application-specific

value-domains, extending tuples for insertion into the base relation is application-

dependent. For our implementation we chose a simple way (discussed next in the sec-

tion) of extending tuples that serves the purpose while still maintaining the database

integrity.

As discussed in Chapter 4 the relational database is queried for meta data about

the base relations. During this process, information such as names of attributes,

their data types, whether or not null values are allowed and if any attribute has the

contraint to be unique is collected for each base table. This information about base

tables is stored in a data structure called Relational Table shown below.

Relational Table{

String tableName

String[] attributeNames

Integer[] attributeTypes // Data types stored as constants

Integer[] nullsAllowed // Yes or No stored as constants

String[] keys

String[] foreignKeys

}

When it comes to extending tuples, we already have the Relational Update data

structure per base relation as defined in Chapter 5 which we compare with this

Relational Table data structure of the corresponding relation. Any attributes present

in the Relational Table but not in the Relational Update are added to the Relational

Update with their new values generated following rules shown in Table 6.1.

Data Type Null Allowed Generated Value
Character Yes NULL
Character No X
String Yes NULL
String No NULL
Number Yes NULL
Number No 99999
Date Yes NULL
Date No 1/1/2000

Table 6.1: Data Type of Attributes and Values Generated for them.

73

While extending tuples for any base relation, join and select conditions from view

definitions and select conditions from the XML update are taken into consideration

to make sure that these conditions still hold. For example, if two base relations of

XML view were joined on an attribute that was projected out then it is important to

make sure that corresponding attributes in both base relations get the same value.

74

Chapter 7

SQL Update Generator and SQL

Execution

7.1 SQL Generation

SQL generator is the simplest module of the Update Manager that generates SQL

statements from the data structures representing relational updates as introduced

in Chapter 5. Generated SQL updates are then executed in the underlying database

engine. In our implementation, the SQL Update Generator generates SQL updates

suitable for execution in the Oracle database engine. Let us look at SQL update

generation through examples. Below, we depict a data structure representing a

Delete update on the relation Books of our running example.

Relational Update{

updateType = Delete

tableName = Books

updateColumns = null

whereClause = [books.bookid=authors.bookid AND

books.title=prices.title,

authors.first=’Peter’ AND authors.last=’Naughton’]

}

75

It is evident from the data structure shown above that all the information needed

for generating the updates is available. It is simply a matter of generating strings

representing SQL statements. These generated SQL statements should be suitable

for being executed as is in the underlying database engine. The SQL Update Gen-

erator will generate the following SQL Delete statement from the data structure

shown above.

DELETE FROM Books

WHERE books.ROWID IN

(SELECT books.ROWID FROM books, authors, prices

WHERE books.bookid=authors.bookid AND

books.title=prices.title AND

authors.first=’Peter’ AND authors.last=’Naughton’)

The SQL statement shown above can now directly be submitted to the Oracle

database engine. For the Insert and Replace relational updates corresponding Insert

and Update SQL statements will be generated by the SQL Update Generator. For

example, shown below are the data structure representing an Insert update on the

relation Books and the corresponding SQL statement generated from the data

structure. Let us assume that the attributes bookid, title and year have the

values 3, ’My New Book’ and 2003 respectively.

Relational Update{

updateType = Insert

tableName = Books

updateColumns = [bookid, title, year]

whereClause = null

}

INSERT INTO Books(bookid, title, year)

VALUES(3, ’My New Book’, ’2003’)

Similarly shown below is the data structure and SQL statement pair for a Replace

Update. Let us assume that the following are old and new value pairs for the

attributes bookid, title and year respectively : (1,3), (’My Old Book’, ’My New

76

Book’) and (’2000’, ’2003).

Relational Update{

updateType = Replace

tableName = Books

updateColumns = [bookid, title, year]

whereClause = [books.bookid=authors.bookid AND

books.title=prices.title,

books.title=’My Old Book’]

}

UPDATE Books SET bookid=3, title=’My New Book’, year=’2003’

WHERE books.ROWID IN

(SELECT books.ROWID from books, authors, prices

WHERE books.bookid=authors.bookid AND

books.title=prices.title AND

books.title=’My Old Book’)

7.2 Update Execution

SQL statements generated by the SQL Update Generator are one by one sent to

the Oracle database engine using a JDBC connection. Thus the time we measure

for executing updates includes the overhead of client-server once per each update

statement. In our implementation, the execution of updates is a three step process

that includes initializing the database, executing update statements and restoring

the database, as explained below:

1. Initializing the database: Initializing the database includes disabling any

user constraints in the database. This is done because we do not know the

order of execution of updates in the sense that whether or not child tuples will

be inserted only after parent tuples have been inserted and such. To avoid

being tripped over by such constraints, we first disable all the constraints on

tables and then execute our updates. Initializing the database also includes

creating a temporary table with row-ids and filling it up with the result of

subquery that returns row-ids as seen in the case of Delete and Update SQL

77

statements above. And then the SQL statements are modified to select row-id

from this temporary table rather than executing the subquery multiple times.

2. Executing updates: Once the database has been initialized, the SQL update

statements are sent one by one to database engine using JDBC connection.

3. Restoring the database: Restoring the database includes enabling all the

constraints that had been disabled during the initialization of the database.

Also, the temporary table created while initializing the database is deleted

from the database.

After execution of updates in the database engine we expect to have made all

required changes to the relational database to bring the effect of the XML update

that was originally issued on our virtual XML view. The effect will be seen when

the XML view is recreated from the database using the same view definition.

78

Chapter 8

Experimental Evaluation

A comprehensive series of experiments was done to measure and compare the per-

formance of individual modules of the Rainbow system as well as to measure per-

formance of the Update Manager , including all of its individual modules of the

Update Manager. Besides, we also ran experiments to measure the performance of

different XML update types namely Delete, Insert and Replace in the system. We

also ran a comparison between the performance of different types of XML updates.

Experiments were also run to compare the reloading of XML documents with the in-

cremental update of XML documents done by our system. Our results confirm that

an incremental update of XML documents is always a better choice than reloading

XML documents from scratch. The Update Manager code and also Rainbow system

code were written in Java. The Update Manager translated update queries into SQL,

and used JDBC to communicate with Oracle. All experiments were done on an 500

MHz Pentium with 328 MB of main memory with Oracle installed on a machine on

other network and communication with Oracle was done over the internet. In order

to ensure consistency, each experiment consisted of set of 5 runs. Thus, each graph

point represents the average time for five runs.

79

8.1 Test Data

Experiments to test the performance of the Update Manager were done on relational

data obtained as a result of loading XML documents into the Oracle database using

XOR system [CR02] using the inline loading strategy. Our experiments were car-

ried out with XML schemas ranging from ’Simple’ to ’Very Complex’ categorized

depending upon the complexity of the schemas in terms of depth of the hierarchy

of the document. XML views were defined on relational data as a result of loading

XML documents conforming to these schemas. Figures 8.1, 8.2, 8.3 and 8.4 show

XQueries we used to define ’Very Simple’, ’Simple’, ’Complex’ and ’Very Complex’

XML views respectively. The fanout of the XML documents loaded into the re-

lational database was also taken into consideration while testing the system. The

fanout of an XML document is the average number of children per element in the

document. For example, a fanout of 800 would mean that the root of the docu-

ment has 800 children and that on average then every child has 800 children of their

own and so on. Since our system handles complete updates only we were primarily

interested in the fanout of the root of the document.

<books>
FOR $book in document("default.xml")/book/Row
RETURN

<book>
<book_iid>$book/IID</book_iid>,
<bookid>$book/book_bookid/text()</bookid>,
<title>$book/book_title/text()</title>,
<year>$book/book_year/text()</year>

</book>
</books>

Figure 8.1: XQuery used to define a
’Very Simple’ View

<authors>
FOR $authortuple IN document("default.xml")/author/row,

$booktuple IN document("default.xml")/book/row
WHERE $authortuple/PID = $booktuple/IID
RETURN

<author>
<IID>$authortuple/IID/text()</IID>,
<first>$authortuple/author_first/text()</first>,
<last>$authortuple/author_last/text()</last>,
<bookyear>$booktuple/book_year/text()</bookyear>,
<booktitle>$booktuple/book_title/text()</booktitle>

</author>
</authors>

Figure 8.2: XQuery used to define a
’Simple’ View.

8.2 Performance of Rainbow Modules

In our first experiment we compare the performance of different functional modules

of the Rainbow System. For the sake of simplicity, XML views were constructed

80

<books>
FOR $book in document("default.xml")/book/Row,

$author in document("default.xml")/author/Row,
$prices in document("default.xml")/prices/Row

WHERE $author/PID = $book/IID
AND $prices/PID = $book/IID

RETURN
<book>

<IID>$book/IID/text()</IID>,
<bookid>$book/book_bookid/text()</bookid>,
<title>$book/book_title/text()</title>,
<year>$book/book_year/text()</year>,
<source>$prices/prices_source/text()</source>,
<value>$prices/prices_value/text()</value>,
<author>

<first>$author/author_first/text()</first>,
<last>$author/author_last/text()</last>

</author>
</book>

</books>

Figure 8.3: XQuery used to define a
’Complex’ View.

<bib>
FOR $book in document("default.xml")/book/ROW,

$aname in document("default.xml")/aname/ROW,
$prices in document("default.xml")/prices/ROW

WHERE $book/book_author_IID = $aname/PID
AND $book/IID = $prices/PID

RETURN
<book>

$book/IID,
$book/PID,
<bookid>$book/book_bookid/text()</bookid>,
$book/book_title,
$book/book_author_IID,
<author>

$aname/IID,
<aname>$aname/aname_PCDATA/text()</aname>

</author>,
<prices>

$prices/IID,
<source>$prices/prices_source/text()</source>,
<currency>$prices/prices_currency/text()</currency>,
<value>$prices/prices_value/text()</value>

</prices>,
<publisher>

<pname>$book/book_publisher_pname/text()</pname>,
<location>$book/book_publisher_location/text()</location>

</publisher>,
<review>

$book/book_review/text()
</review>

</book>
</bib>

Figure 8.4: XQuery used to define a
’Very Complex’ View.

in a way as to look alike the XML documnents that were loaded in the database.

Different types of XML views were tested ranging from ’Simple’ to ’Very Complex’.

Figures 8.5, 8.6 and 8.7 depict the performance of individual modules in the case

of Delete, Insert and Replace updates respectively. As seen from the figures, the

generation of the view XAT and view analysis take more time than any other module

in the system. Thus the time for each update can be significantly decreased if

the view analysis could be done once at the time of view definition, and the view

XAT is stored persistently thereafter. Updates issued at any point in time can

then use the persistent XAT and the persistent data gathered by the analysis of

the vieww. Figures 8.8, 8.9 and 8.10 show performance of functional modules in

case of each kind of update. The Generation and Optimization module includes

the generation of the user and view XAT, merging two XATs and rewriting of the

merged XAT while the Update Translation module includes the decomposition of

XML update into SQL updates, update translation using the algorithms discussed

in Chapter 6 and execution of the SQL updates in the underlying relational database.

Charts show that the percentage of time taken by Update Translation from the total

time to do an update decreases with an increase in the complexity of the view

81

whereas the percentage of time taken by Generation and Optimization and View

Analysis increases with an increase in the complexity of the XML view. The results

are because of the fact that XATs become more complex with an increase in the

complexity of the view and hence optimization also takes more time then. Again,

as mentioned earlier, the time for each update can be significantly decreased by

persistently storing the optimized XAT for the view and the information gathered

during view analysis.

Performance of Rainbow Modules (Delete Update)

0

1000

2000

3000

4000

5000

6000

7000

8000

V Simple Simple Comlex V
Complex

View Complexity

T
im

e
(m

s)

UQGen

UQDecor

VQGen

VQDecor

Merge

View Analysis

Rewrite

Decompose

Translate

Execution

Figure 8.5: Performance of Rainbow
Modules in case of Delete update,
fixed fanout = 800.

Performance of Rainbow Modules (Insert Update)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

V Simple Simple Comlex V Complex

View Complexity

T
im

e
(m

s)

UQGen

UQDecor

VQGen

VQDecor

Merge

View Analysis

Rewrite

Decompose

Translate

Execution

Figure 8.6: Performance of Rainbow
Modules in case of Insert update,
fixed fanout = 800.

Performance of Rainbow Modules (Replace Update)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

V Simple Simple Comlex V Complex

View Complexity

T
im

e
(m

s)

UQGen

UQDecor

VQGen

VQDecor

Merge

View Analysis

Rewrite

Decompose

Translate

Execution

Figure 8.7: Performance of Rainbow
Modules in case of Replace update,
fixed fanout = 800.

Comparison of Rainbow Modules (Delete Update)

0%

20%

40%

60%

80%

100%

V Simple Simple Comlex V Complex

View Complexity

Update Trans.

View Analysis

Gen. & Opt.

Figure 8.8: Performance of Rainbow
Modules in case of Delete update,
fixed fanout = 800.

82

Comparison of Rainbow Modules (Insert Update)

0%

20%

40%

60%

80%

100%

V Simple Simple Comlex V Complex

View Complexity

Update Trans.

View Analysis

Gen. & Opt.

Figure 8.9: Performance of Rainbow
Modules in case of Insert update,
fixed fanout = 800.

Comparison of Rainbow Modules (Replace Update)

0%
10%

20%
30%

40%
50%
60%

70%
80%

90%
100%

V Simple Simple Comlex V Complex

View Complexity

Update Trans.

View Analysis

Gen. & Opt.

Figure 8.10: Performance of Rainbow
Modules in case of Replace update,
fixed fanout = 800.

8.3 Comparison between XML Update Types

Our next set of experiments was run to compare costs in terms of time for the

different XML update types. Experiments were run to delete a complete element,

insert a new complete element or replace an existing complete element with a new

complete element. Results of this first experiment is shown in Figure 8.11. We used

the definition of a Complex view. Documents with a fanout of 800 were loaded into

database using the inline loading. In other words, every relation in the relational

database that was used to form an XML view had 800 tuples each. The figure shows

performance of individual modules of the Rainbow System in case of Delete, Insert

and Replace XML updates. It is clear from the chart that the Replace update is the

most expensive of all update types. This is because as the complexity of the update

query increases from Delete to Insert to Replace so does the cost of generation of

the user XAT and the rewriting of the merged XAT. Besides, the need to extend

tuples in the case of the Insert and Replace updates makes the update translation

time for these updates higher than in the case of the Delete update. Also, the time

to find old values for relational tuples while decomposing an update in the case of

Replace makes it more expensive than an Insert update.

The chart in Figure 8.12 gives another view of the fact that the cost of the

incremental update increases from Delete to Insert to Replace update. It is clear that

83

Performance Comparison of Update Types

0

5000

10000

15000

20000

25000

Delete Insert Replace

Update Type

T
im

e
(m

s)

Execution

Translation

Descomposition

Rewriting

View Analysis

Merging

VQDecor.

VQGen.

UQDecor.

UQGen.

Figure 8.11: Performance Compari-
son of XML Update Types, Complex
view, fixed fanout = 800.

Fixed vs Variable Cost for XML Updates

0

5000

10000

15000

20000

25000

Delete Insert Replace

Update Type

T
im

e
(m

s)

Variable Cost

Fixed Cost

Figure 8.12: Fixed vs Variable Cost
of XML Updates, Complex view, fixed
fanout = 800.

the variable cost of incremental updates increases with an increase in the complexity

of the update type. It is evident from the chart that the cost of each incremental

update will reduce by at least 50 percentage if we made use of persistent storage

to store the optimized view XAT and the data gathered during the view analysis.

Namely, the fixed cost portion shown in Figure 8.12 would then be saved.

Figure 8.13 shows results of the experimental run to compare the cost of the

XML update types as we increase the size of the XML documents being loaded into

the database. In other words, increasing the size of the underlying database in terms

of the number of tuples in each relational table that took part in the formation of the

view. As expected, the cost of any update type is fairly constant with an increase in

size of the underlying database. Each update type takes roughly 15 seconds which

in this setup included both the fixed and variable costs of updates.

Cost comparison between XML Update Types

0

5000

10000

15000

20000

25000

200 400 600 800 1000 1200

File size (No. of elements/File)

T
o

ta
lT

im
e

(m
s)

DELETE

INSERT

REPLACE

Figure 8.13: Cost Comparison of
XML Update Types, Complex view,
variable fanout.

Reloading Vs Incremental Update

0

100000

200000

300000

400000

500000

600000

700000

800000

200 400 600 800 1000 1200

File size (No. of elements/File)

T
o

ta
lT

im
e

(m
s)

DELETE

INSERT

REPLACE

RELOAD

Figure 8.14: Reloading Vs Incremen-
tal Updates, Complex view, variable
fanout.

84

8.4 Incremental Update Versus Reloading

The last set of experiments compares cost of incremental updates with complete

reloading of the XML documents. Experimental results show that in almost all the

cases incremental updating of XML documents stored in a relational database is

better than reloading of XML documents. Figure 8.14 shows the time taken by dif-

ferent types of incremental updates and the time taken to reload XML documents.

The cost of loading XML documents increases with an increase in the size of the

XML documents being loaded into the relational database. The fact that the cost

of incremental updates does not increase with an increase in the size of XML docu-

ments loaded into the database makes incremental update a better choice than the

reloading of edited XML documents.

The chart shown in Figure 8.15 shows the time taken by the execution of updates

for Delete updates. The execution cost includes the time taken to disable and enable

database constraints on relevant relations before and after the execution of the delete

statements. It also includes the cost of creating temporary tables used to store the

results of subqueries referred to by delete statements. Thus with an increase in the

size of the XML documents loaded into the relational database (in other words,

with an increase in the size of relational tables) the cost of execution increases some

what with an increase in the number of elements of an XML view that are expected

to be affected by the XML update issued on this virtual XML view. Figure 8.16

shows that the total time taken by the Delete update is constant with an increase in

the number of elements expected to be affected when compared to the time taken

to reload the XML documents. It also shows that incremental update is a better

choice even when more than 50 percent of the document is expected to be affected

by the XML update.

85

Delete Update Performance

0

500

1000

1500

2000

2500

3000

3500

0 5 15 25 35 45 55

%of elements affected by the update

T
im

e
(m

s
)

Execution Time

Figure 8.15: Execution time for
Delete Update, Complex view, fixed
fanout = 800.

Incremental Delete Update vs Reloading

0

100000

200000

300000

400000

500000

0 5 15 25 35 45 55

% of elements affected by the update

T
im

e
(m

s)
Loading Time

Update Time

Figure 8.16: Reloading Vs Incremen-
tal Delete, Complex view, fixed fanout
= 800.

86

Chapter 9

Related Work

While there has been a lot of work to solve the problem of mapping XML docu-

ments into and out of relational databases, less research has been done to date on

supporting queries or updates on XML documents stored in a relational database.

For XML views of relational data, work has appeared in the literature on querying

XML views of relational data [SKS+01]. [SKS+01] proposes a method to translate

XML queries to SQL in order to evaluate XML queries against XML data stored

in a relational database but doesn’t support any kind of updates that a user might

want to express over the XML data.

Little work has been published on updating XML views of relational data [ZMLR01,

TIHW01]. [ZMLR01] proposes update primitives and their implementation, which

can be used to extend an XML query language, provided there is a way to break

down the update queries into the update primitives. [TIHW01] specifies extensions

to the XML query language XQuery to support data updates over XML documents.

[TIHW01] proposes different trigger-based solutions to update the XML data stored

in relational databases. They assume however that they already have the knowledge

of the tables that are to be updated and other tables that might be affected as a

result of these updates. Hence their solution assures completeness at the relational

side. They do not focus on the issue of how to translate XML updates through XML

87

views into the correct SQL updates, which is an essential part for executing XML

updates against XML data stored in relational databases and which is addressed

by this thesis work. [GVD+01] introduces an algebraic framework for expressing

and evaluating queries over XML data. It also defines equivalence rules for algebra

rewrites, which can be used for the optimization of queries expressed over XML

data. This work doesn’t focus on the issue of querying XML views of the relational

data.

On the other hand, a lot of work has been done on propagating updates on

relational views to the underlying relational database [DB82, Mas84, Kel85, Kel86,

A. 86]. Also some work has appeared in the literature on propagating updates on

object-views of relational data to the underlying relational database [TBW91].

[DB82] formalizes the notion of correct translatability, and derives constraints

on view definitions that ensure the existence of correct update mappings. Their the-

orems show that there are very few situations in which view updates are possible.

They impose a major restriction that a view update should always be translated

into the same type of update on the underlying relation which is not realistic in

some cases.

[Mas84] gives a semantic approach to design a view update translator for rela-

tional database systems. Their translator consists of a translator body and four

different types of semantic ambiguity solvers. They model a view definition a as

tree with the view as the root and its base relations as the leaves. They trans-

late an update issued against the root into updates against the leaves by applying

a total of ten local translation rules and a deletion and an insertion modification

rule recursively. The modification rules make it possible to update base relations

through natural join views. The translation capability in their approach depends on

88

the solvers available to the translator body and the problem solving capability they

offer. Due to ambiguities, the solvers may involve the end-users in resolving the

ambiguities. [Mas84] relaxes the restriction imposed by [DB82] that a view update

should always be translated into the same type of update on the base relations.

[Kel85, Kel86, A. 86] together consider the problem of updating databases through

views composed of selections, projections and joins in general rather than having

different translation rules for each type of join as done by [Mas84]. They present five

criteria that translations must satisfy, and provide a list of templates for translation

into database updates that satisfy the five criteria. They show that there cannot

be any other translation that satisfies the five criteria. In addition, they propose

that real world semantics can help in resolving ambiguity during translation of view

updates and that these semantics can be obtained through dialogs at view definition

time.

[TBW91] provide a mechanism for handling update operations on view objects

of relational data. Because, a typical view object encompasses multiple relations, a

view-object update request must be translated into several valid operations on the

underlying relations. Building on the above approach to update relational views

[Kel85, Kel86, A. 86] they introduce algorithms to enumerate all valid translations

of the various update operations of view objects.

89

Chapter 10

Conclusions and Future Work

10.1 Summary

Though the XML data management community has recently focused on issues re-

lated to querying XML, it is clear that the problem of expressing updates over XML

data will become prominent in the near future. An XML update language provides

a general-purpose way to express changes to any data that can be respresented in

XML - whether the data is actually stored within an XML repository or within

a relational database with an XML view. In our work on updating XML views

of relational data we have studied the problem of updating virtual XML views of

relational data. These XML views built on top of relational data are virtual since

the actual data persists within the relational database. Hence, whenever an update

is issued on a virtual XML view, it has to be propagated to the underlying rela-

tional database. In order to update XML views of relational data we face problems

introduced because of the structural differences between relational databases and

XML documents besides the challenges already known from the traditional problem

of updating relational views. Updating XML views of relational data is a problem

more analogous to updating object-based views of relational data [TBW91]. In this

work we have presented a solution to this problem by providing a set of XML up-

90

dates that can be used to do complete element updates to XML documents or views.

We have also proposed ways to decompose and translate these XML updates into

SQL updates on the underlying database. Our solution is based on Keller’s et al’s

solution of updating object-based views of relational data [TBW91].

In our work, we present the XQuery language support for expressing XML up-

dates. We also present a way of representing XML view definitions and XML up-

dates using XML Algebra Trees (XATs) based on XML algebra designed by Xin et

al [ZR02] and heuristics to optimize XQueries by rewriting XATs [ZPR02b]. In our

solution to updating XML views we have shown how to decompose and translate

given XML update into SQL updates and also a way of executing these translated

updates on underlying database to bring out the effect intended by the issued XML

update. We have presented a prototype to validate our theory and experimental

results to support it. Our experimental results show that a complete Delete update

is least expensive and a complete Replace update is the most expensive update.

Incremental update of XML views is much faster than complete reload of XML

documents in general. Also, incremental updates are a better choice than complete

reloading of XML documents even when more than 50 percent of the document is

expected to be affected by the update (Figure 8.16).

10.2 Contributions

Below we list the contributions of this thesis in the area of XML database manage-

ment systems from our work on updating XML views of relational data.

1. XQuery support for XML Updates: We have presented a language for

expressing XML updates in XQuery based on Halevy et al’s [TIHW01] pro-

posal on XQuery language support for XML updates. We present a format of

expressing complete element updates like Insert, Delete, Rename and Replace.

91

We have a prototype of our system that supports XML updates expressed in

this XQuery update language. The parser for XML updates is build on top of

the XQuery parser prototype build by [A. 00].

2. Framework for correct translation and propagation of XML updates

to underlying relations: With our solution to the problem of updating XML

views of relational data we present a framework for the correct translation and

propagation of complete XML updates to base relations. From literature we

borrow the method applied for updating object-based views of relational data

and have extended the solution to be applicable to our problem of updating

XML views of relational data. We believe that our work presents first solu-

tion to do complete updates on XML views of relational data that addresses

expressing XML updates on XML views, the decomposition and translation of

XML updates into SQL updates on the underlying database, and the execu-

tion of SQL updates on base relations. Our solution is the first solution based

on an XML algebra.

3. Implementation of the system as a proof of concept: We have a full im-

plementation of our prototype called Update Manager. We have incorporated

it into a working XML management system called Rainbow.

4. Experimental evaluation:

10.3 Future Work

While we believe that we have made a fairly comprehensive study of the problem

of updating XML views of relational data, several potential areas for future work

remain. These potential areas of future work are discussed below:

• Batch updates: Execution of relational updates one by one in the database

engine surely increases the cost of each XML update. Since there are multi-

92

ple SQL updates per XML update on the XML view, batching of relational

updates will surely increase the performance of the system. Thus from the per-

formance view point investigating how relational updates can be batched per

XML update and possibly even across XML updates batch updates becomes

a potential area of future work.

• Support for partial updates: While support for complete updates is a

substantial step towards supporting XML updates, it is evident that support

for partial updates is important and this is the next immediate step in our

area of research. This will enable users to carry out updates to only a part of

the elements of the XML view rather than deleting, inserting or replacing a

complete XML view element.

• Typechecking for updates: In our work we assume complete and correct

updates which removes the need to typecheck updates the system is subjected

to. Typechecking of updates is important as a candidate for future work.

• Ordered XML updates: Order preserving structure of XML documents

definitely demands support for ordered querying and ordered updates. In

our work we present the XQuery grammar and language support for ordered

XML updates. Providing support for ordered XML updates is thus another

important area of future work.

93

Bibliography

[A. 86] A. M. Keller. The Role of Semantics in Translating View Updates. IEEE
Transactions on Computers, 19(1):63–73, 1986.

[A. 00] A. Sahuguet. Querying XML in the New Millennium.
http://db.cis.upenn.edu/Kweelt, September 2000.

[AQM+97] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. The
Lorel Query Language for Semistructured Data. In International Journal
on Digital Libraries, 1(1), pages 68–88, April 1997.

[Bar90] T. Barsalou. View Objects for Relational Databases. Technical Report
STAN-CS-90-1310, Stanford University, Computer Science Department,
Technical Report, 1990.

[CJS99] S. Cluet, S. Jacqmin, and J. Simeon. The New YATL: Design and Speci-
fications. Technical report, INRIA, 1999.

[CKS+00] Michael J. Carey, Jerry Kiernan, Jayavel Shanmugasundaram, Eugene J.
Shekita, and Subbu N. Subramanian. XPERANTO: Middleware for Pub-
lishing Object-Relational Data as XML Documents. In The VLDB Jour-
nal, pages 646–648, 2000.

[CR02] Steffen Christ and Elke A. Rundensteiner. X-Cube: A fleXible XML
Mapping System Powered by XQuery. Technical Report WPI-CS-TR-02-
18, Worcester Polytechnic Institute, 2002.

[CRF00] D. Chamberlin, J. Robie, and D. Florescu. Quilt: An XML Query Lan-
guage for Heterogeneous Data Sources. In WebDB, pages 53–62, 2000.

[DB82] U. Dayal and P. A. Bernstein. On The Correct Translation Of Update Op-
erations on Relational Views. In ACM Transactions on Database Systems,
1982.

[DFF+99] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A Query
Language for XML. In Proceedings of the Eighth International World
Wide Web Conference (WWW-8), 1999.

[DFS99] Alin Deutsch, Mary F. Fernandez, and Dan Suciu. Storing Semistructured
Data with STORED. In Proceedings of ACM SIGMOD International Con-
ference on Management of Data, pages 431–442, Philadephia, USA, June
1999.

94

[FK99] Daniela Florescu and Donald Kossmann. Storing and Querying XML
Data Using an RDBMS. In Bulletin of the Technical Committee on Data
Engineering, pages 27–34, September 1999.

[FTS00] Mary Fernandez, Wang-Chiew Tan, and Dan Su-
ciu. SilkRoute: Trading between Relations and XML.
http://www.www9.org/w9cdrom/202/202.html, May 2000.

[GVD+01] Leonidas Galanis, Efstratios Viglas, David J. DeWitt, Jef-
frey F. Naughton, and David Maier. Following the paths of
xml data: An algebraic framework for xml query evaluation.
http://www.cs.wisc.edu/niagara/papers/algebra.pdf, 2001.

[IBM] IBM. . www.ibm.com.

[Kel85] A. M. Keller. Algorithms for translating view updates to database up-
dates for view involving selections, projections and joins. In Proceedings
of the Fourth Symposium on Principles of Database Systems, Portland,
OR, 1985.

[Kel86] A. M. Keller. Choosing a view update translator by dialog at view defini-
tion time. In Proceedings of the Twelfth International Conference on Very
Large Databases (VLDB), Kyoto, Japan, pages 467–474, 1986.

[Mas84] Yoshifumi Masunaga. A Relational database view update translation
mechanism. In Proceedings of the Tenth International Conference on Very
Large Databases (VLDB), Singapore, 1984.

[Mic] Microsoft Incorporation. . www.microsoft.com.

[Ora] Oracle. . www.oracle.com.

[SHT+99] J. Shanmugasundaram, G. He, K. Tufte, C. Zhang, D. DeWitt, and
J. Naughton. Relational Databases for Querying XML Documents: Lim-
itations and Opportunities. In Proceedings of 25th International Confer-
ence on Very Large Data Bases (VLDB’99), Edinburgh, Scotland, UK,
pages 302–314, September 1999.

[SKS+01] Jayavel Shanmugasundaram, Jerry Kiernan, Eugene Shekita, Catalina
Fan, and John Funderburk. Querying xml views of relational data. In
VLDB, 2001.

[SSC84] C. H. Papadimitriou S. S. Cosmadakis. Updates of Relational Views. In
J. ACM, Vol. 31, No. 4, 1984.

[TBW91] Niki Siambela Thierry Barasalou, A. M. Keller and Gio Wiederhold. Up-
dating Relational Databases through Object-Based Views. In ACM SIG-
MOD Conference on the Management of Data, Boulder, CO, 1991.

95

[TIHW01] I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S Weld. Updating XML.
In Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, Santa Barbara, CA, pages 413–424, May 2001.

[W3Ca] W3C. Guide to the W3C XML Specification (”XMLspec”) DTD.
http://www.w3.org/XML/1998/06/xmlspec-report.htm.

[W3Cb] W3C. XML Schema. http://www.w3.org/XML/Schema.

[W3C98a] W3C. Extensible Markup Language (XML) 1.0 – W3C Recommendation
10-February-1998. http://www.w3.org/TR/REC-xml, 1998.

[W3C98b] W3C. XMLTM . http://www.w3.org/XML, 1998.

[W3C00] W3C. XML Path Language (XPath)Version 1.0. W3C Recommendation.
http://www.w3.org/TR/xpath.html, March 2000.

[W3C01] W3C. XQuery 1.0: An XML Query Language.
http://www.w3.org/TR/xquery/, December 2001.

[WE80] G. Wiederhold and R. ElMasri. The structural model for database design.
In Entity Relationship Approach to Systems Analysis and Design, Holland,
pages 237–257, 1980.

[ZMC+02] Xin Zhang, Mukesh Mulchandani, Steffen Christ, Brian Murphy, and
Elke A. Rundensteiner. Rainbow: Mapping-Driven XQuery Processing
System. In Demo Session Proceedings of SIGMOD’02, page 614, 2002.

[ZMLR01] Xin Zhang, Gail Mitchell, Wang-Chien Lee, and Elke A. Rundensteiner.
Clock: Synchronizing Internal Relational Storage with External XML
Documents. In RIDE-DM, pages 111–118, April 2001.

[ZPR02a] Xin Zhang, Bradford Pielech, and Elke A. Rundensteiner. Honey, I
Shrunk the XQuery! — An XML Algebra Optimization Approach. In
WIDM, pages 15–22, Nov. 2002.

[ZPR02b] Xin Zhang, Bradford Pielech, and Elke A. Rundensteiner. XAT Op-
timization. Technical Report WPI-CS-TR-02-25, Worcester Polytechnic
Institute, 2002.

[ZR01] Xin Zhang and Elke A. Rundensteiner. Rainbow: Bridge over Gap of
XML and Relational. Technical report, Worcester Polytechnic Institute,
2001. in progress.

[ZR02] Xin Zhang and Elke A. Rundensteiner. XAT: XML Algebra for the Rain-
bow System. Technical Report WPI-CS-TR-02-24, Worcester Polytechnic
Institute, July 2002.

96

