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Abstract

Since the completion of the Human Genome Project in 2003, biologists have be-

come exceptionally good at producing data. Indeed, biological data has experienced

a sustained exponential growth rate, putting effective and thorough analysis be-

yond the reach of many biologists. This thesis presents BioBridge, an interactive

visualization tool developed to bring intuitive data exploration to biologists. Bio-

Bridge is designed to work on omics style tabular data in general and thus has broad

applicability.

This work describes the design and evaluation of BioBridge’s Entity View pri-

mary visualization as well the accompanying user interface. The Entity View vi-

sualization arranges glyphs representing biological entities (e.g. genes, proteins,

metabolites) along with related text mining results to provide biological context.

Throughout development the goal has been to maximize accessibility and usability

for biologists who are not computationally inclined. Evaluations were done with

three informal case studies, one of a metabolome dataset and two of microarray

datasets.

BioBridge is a proof of concept that there is an underexploited niche in the

data analysis ecosystem for tools that prioritize accessibility and usability. The use

case studies, while anecdotal, are very encouraging. These studies indicate that

BioBridge is well suited for the task of data exploration. With further development,

BioBridge could become more flexible and usable as additional use case datasets are

explored and more feedback is gathered.
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Chapter 1

Background

1.1 Introduction

High-throughput techniques are at the heart of modern biology. Such techniques

allow tens of thousands of biological interactions to be rapidly and economically

characterized. Making sense of these interactions is critical to generating new bio-

logical discoveries. Contemporary biological problems, such as diabetes and cancer,

are likely the product of many separate entities1[32]. Tackling these problems will

require biologists to discover and pursue many insights into their data. Extracting

insights from ever larger data sets presents a challenge to trained data scientists,

and is often daunting to biologists [21].

Data exploration is a critical step in data analysis and biological data is no

exception. The human genome project ushered in the era of big data2 for biology,

putting effective exploration of biological data beyond the reach of biologists who do

1Throughout this thesis, the term entity will be used where no particular type of biological
component is intended. Genes, RNA, proteins, and metabolites are all possible entities.

2Big data is a computer science term and industry buzzword for types of data that are difficult
to work with as a result of some combination of size (Netflix’s movie recommendation matrix),
speed (“flash trading” on the stock-market), and complexity (biology!).
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not happen to be data scientists. The tool described here, BioBridge, is an attempt

to shorten the figurative distance between biologists and their data. The goal is to

provide biologists direct access to their omics style datasets, minimizing the data

processing that occurs outside of the biologist’s control and maximizing their ability

to explore and interact with their data.

To achieve these broad goals, it is informative to first consider the factors that

hinder accessibility to data for biologists. The primary factor is size; large datasets

necessitate databases, sophisticated statistics, and other sundries that are mundane

for computer scientists but alien to many biologists. Size is the root cause, but not

the first obstacle encountered by the intrepid biologist attempting to analyze their

data.

Provided a biologist selects the appropriate analysis tool for their task, chances

are they will encounter significant difficulty navigating the software dependencies,

specialized data formats, and possibly even having to compile the tool in question.

Biologists want to spend their time interpreting their data and conducting follow-up

experiments, not troubleshooting.

This thesis describes the design process and features of BioBridge. The overarch-

ing goal in developing BioBridge was to maximize accessibility and usability for the

non-computational biologist user group. Accessibility means the effort required to

import data, run BioBridge, and interpret the results. Usability means the effort re-

quired to learn to use the tool to explore a dataset. Exploration entails investigating

specific entities, verifying expected relationships, and discovering novel ones.

BioBridge is an interactive visualization tool that integrates text mining results

into a 2D layout of glyphs representing biological entities. A glyph is a graphic

that conveys one or more data values via visual attributes such as shape, size, color,

and position[36]. BioBridge utilizes profile glyphs, which are similar to bar graphs,

2



Figure 1.1: BioBridge’s primary visualization.

a)BioBridges Entity View integrates text mining results with user’s experimental
results, allowing them to rapidly locate genes (represented by glyphs) that react
similarly to experimental conditions (represented by the bars of the glyphs) and
have similar descriptive text (mapped to colored circles). Glyphs are arranged in
concentric circles around a gene of interest at the center; glyphs that are more
similar to the gene of interest are located closer to the center. b) zoomed view
of the red box in (a), the; genes Tcf19 and Mcm5 are seen to have similar glyph
profiles (with the exception of condition 1) and the terms binding, factors, and
DNA in common. Perhaps the specifics of experimental condition 1 have altered
the relationship between these two genes in a biologically interesting way. In fact,
Tcf19 is a transcription factor required for later cell cycle stages and Mcm5 is part of
the helicase machinery necessary to initiate DNA replication. c) provides a tabular
view of experimental data (positive values are up-regulated, negative values are
down-regulated) and text mining results (higher values indicate the term is more
strongly associated with the entity) used in the visualization. BioBridge is designed
to allow users to rapidly view different layouts of biological entities, searching for
underlying biological relationships mined from the text of PubMed abstracts.

except there are many of them. The primary visualization is shown in Figure 1.1.

Text mining results from PubMed abstracts are used as an approximation of known

biological functions and interactions for a given entity. The terms thus derived are
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presented within the data visualization to provide context, which helps to validate

expected relationships and evaluate possible relationships. The design process began

by considering various tasks that would be useful to biologists exploring relationships

between entities within their data and attempting to interpret the underlying biology

significance.

Evaluation of BioBridge was conducted via three case studies on evaluator pro-

vided datasets, one of metabolites and the other two of gene transcripts. User

feedback was encouraging and generally focused on usability. Evaluations of the

most recent version of BioBridge indicate that a tool such as BioBridge is most

useful to biologists at the beginning of the data exploration process.

This stage of data analysis is particularly challenging and labor intensive for the

non-computational biologist. Lacking accessible alternatives, they are often limited

to programs such as Microsoft Excel for exploring their data. The chief contribution

of this work is improving access to data exploration for non-computational biologists.

User feedback has also revealed several interesting areas for future development

efforts.

In summary, identification of functional requirements was aided by focusing on

three use case datasets, the design process of the primary visualization and sup-

porting control window was iterative and driven by user feedback, and the potential

utility of BioBridge is demonstrated by a hypothetical work flow and evident in user

feedback on the final version.

1.2 Related Work

The state of visualization in modern biology is well described in Gehlenborg et

al.’s excellent 2010 review [10]. There are many visualization tools available and
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they all face the challenge of presenting clear, meaningful, and integrated visualiza-

tions. In this context, relationships must be perceivable to be clear, reflect actual

biological processes to be meaningful, and communicate with existing resources to

be integrated. These tasks must all be addressed in the big data context of high-

throughput techniques. Given the underlying size and complexity of the biological

systems under studying, many visualizations rapidly become overwhelming, no mat-

ter how clear they are at a reasonable scale. The three challenges of clarity in the

face of complexity, maintaining biological relevance, and effectively integrating avail-

able information, shaped the design of BioBridge and provide a useful framework

for discussing related work.

However, before continuing, a slight expansion on the three concepts just in-

troduced is warranted. Since the stated intention is to produce a tool centered on

the biologist user, meaningfulness, or biological relevance and accuracy, is really

the ultimate goal. Effective integration of available biology resources is necessary

to discover biological meaning and a clear visualization is necessary to effectively

convey biological meaning. Therefore, it is natural to first discuss the types of data

sources available and how they may be used to gain biological insight.

1.2.1 Biological Data Sources

Biological databases are diverse. While the topic, data formats, and incorporated

tools vary widely, conscious effort has been made to support integrated access. There

are several generalized databases that serve as hubs to provide common terminology

for more specialized databases. BioBridge draws on the contents of KEGG3 [14, 15],

3The Kyoto Encyclopedia of Genes and Genomes(KEGG) is a frequently used resource for
understanding high-level biological functions, chiefly through pathway oriented analysis and visu-
alization.
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and the NCBI4 databases PubMed, Gene, and GEO[28]. KEGG links metabolites

to enzymes as well as directly to article abstracts in PubMed. For microarray data,

relevant experimental data are retrieved from GEO[9, 4], associated with gene entries

in NCBI’s Gene database, and then abstracts that PubMed directly links to genes

are retrieved.

1.2.2 Towards Biological Relevance

There are three broad approaches for aiding biologists in understanding biological

relationships. Network or pathway type approaches are already familiar to biol-

ogists and closely match the systems being modeled. Gene ontologies provide a

standardized language for describing biological entities and are often used in statis-

tical enrichment type analyses. Lastly, a lot of work has been done to apply text

mining and natural language processing (NLP) techniques to sources such as bio-

logical abstracts and journal articles. These three categories are not independent

of one another. For instance, text mining has been used to automatically assemble

biological pathways[34, 23] and pathway membership and gene ontology information

are frequently combined in the same analysis[8, 39].

Networks and pathways, ontologies, and text mining approaches will each be

discussed further. Some representative systems for both general data exploration

and for highly specialized biological data exploration will then be discussed.

1.2.3 Networks and Pathways

Network and pathway visualizations draw on established mathematical graph theory

and visualization practices. These kinds of visualizations were already commonly in

4The National Center for Biotechnology Information(NCBI) maintains dozens of biological
databases, many of which play central roles in their respective fields.
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Figure 1.2: Network visualization strategies in Cytoscape as presented in [10].

Cytoscape[29] supports interactive network refinement. a)This modestly sized net-
work of approximately 400 nodes is already cumbersome to work with. The network
is limited to the colored nodes in remaining views. b)Employs the same layout strat-
egy as a) with a limited subnetwork. Now one can see color and shape are being
used to highlight significant groups of nodes. These attributes are controlled by
the user. c)Employs special layout rules for nodes that are part of large complexes,
polymerase and ribosomes in this case. d)Makes the visualization even clearer by
collapsing complexes into meta-nodes; this is also user controlled.

use prior to the high-throughput era so they are already familiar to biologists. The

Gehlenborg et al. 2010 review provides characteristic examples of contemporary

network (Figure 1.2) and pathway (Figure 1.3) visualizations. Both visualizations

have two primary limitations: they do not scale well to large and complex systems

and their conventionally static nature does not convey dynamic biological processes

well.

Though similar, networks and pathways have distinct meanings in the context

of biological visualization. The most common type of network encountered is the

protein-protein interaction network. These result from high-throughput methods

7



that are typically noisy, containing both false positives and false negatives. In lay

terms, these networks contain information of the form ”protein A sticks to protein

B”, where proteins are the nodes and these sticky relationships are the edges of the

network. These relationships are undirected, if A sticks to B, then B sticks to A.

In contrast, relationships in pathways are directed; a path from A to B does not

imply a valid path from B to A. Pathways also typically reflect the consensus across

many experiments rather than the result of a single experiment. Comparing Figures

1.2 and 1.3, one can see that network visualizations tend to have a cluttered appear-

ance and pathway visualizations have a clearer structure. This is a consequence of

the differences just described.

Cytoscape is one of the most successful network visualization projects[29]. It is

open-sourced and was released in 2003. It still receives regular core updates[31] and

boasts an active plugin development community[27]. In general, Cytoscape is quite

accessible for a typical biologist; this is discussed further in the Usability section.

Figure 1.2 shows the same network at different stages of analysis. Cytoscape’s basic

functionality allows numerical data and other attributes to be mapped onto a net-

work. Cytoscape also provides several layout methods and some analysis functions.

More specialized functionality is provided by numerous plugins. Two Cytoscape

plugins warrant further discussion as they are particularly popular and tie directly

to gene ontology and text mining: BiNGO[20] and AgilentLiteratureSearch[34].
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BiNGO is the most popular plugin available for Cytoscape by a factor of three.

BiNGO employs many of the features found in other gene ontology enrichment

tools; its creators feel its main distinction is being integrated into Cytoscape[20].

This allows users to interactively construct gene list queries by selecting groups of

nodes as well as viewing the results within the context of the network. The strength

of this kind of direct interaction for rapidly forming and evaluating queries was one

of the key features that BioBridge was designed to include.

AgilentLiteratureSearch[34] (ALS) is one of the more popular plugins available

for Cytoscape. Unlike BiNGO, ALS does not help to characterize an input network

but instead forms a network as the result of a text search. For example, a user may

use a list of protein names as search input. ALS will then conduct a metasearch

using various search engines parsed for proteins that interact with the search input

and the nature of those interactions. Each node represents a protein and each edge

represents an interaction in the resulting network displayed in Cytoscape. ALS then

supports interactions with the network, such as adding output proteins to the input

search to extend the results and viewing the source text for verification. While

BioBridge does not employ this kind of sophisticated interaction mining, ALS does

demonstrate that biologically relevant information is contained in publicly available

documents such as abstracts.

1.2.4 Ontologies

Many tools that aim to integrate biological meaning utilize gene ontologies. In

general, ontologies are hierarchical categorical divisions of objects and are useful

for organizing information in large systems. In biology, the modern use of gene

ontologies began with the GO (Gene Ontology) project in 2000[2]. Gene ontolo-

gies ensure a common vocabulary is used across all organisms, allowing knowledge

10



Figure 1.4: DAVID’s ranked list summary of enrichment[8].

Ranked lists are the primary output of gene set queries in DAVID. Results are sorted by
p-value. The Annotation Cluster column indicates the source of the term being enriched.
Columns from left-to-right are: 1)the source of the annotation term 2)the term, with links
to annotation source if available 3) link to related terms (RT) 4) Bar chart of percent of
genes in query list with term 5)the count of genes in query list with term 6) percent of
genes with term 6)p-value, significance of term 7)q-value, false discovery rate.

gained from studying one organism to be transferred to other organisms. The GO

project maintains 3 ontologies: biological process, molecular function, and cellular

component.

DAVID (Database for Annotation, Visualization, and Integrated Discovery) takes

a list of genes as input and integrates biological knowledge from multiple sources

to graphically summarize enrichment of various categories within the input gene

list[8]. DAVID relies on multiple data sources of categorical descriptors of genes

to glean biological meaning. It integrates data from the Gene Ontology database

as well as additional information regarding protein domains and biochemical path-

way membership. Findings are presented to biologists primarily by ranked lists of

terms. Seen in Figure 1.4, these lists include information to foster confidence in

observations, such as annotation source, membership support, and p-value. DAVID

11



Figure 1.5: DAVID is used regularly and has become increasingly popular since
release (http://david.abcc.ncifcrf.gov/).

provides a clustered heat map5 style membership matrix and also links out to sources

such as KEGG for more specialized visualizations (pathway visualization in the case

of KEGG). DAVID has found wide acceptance among biologists, receiving a steadily

increasing number of citations per year since its release (Figure 1.5).

Though its primary visualization(ranked lists) is quite simple, DAVID embodies

the principles described in the Gehlenborg 2010 review. It is well integrated with

established resources such as Gene Ontology and KEGG, allows users to explore the

biological relevance of results, and its ranked list visualization is undeniably clear.

The input for DAVID is a list of genes of interest. Consequently, prior to using

DAVID a biologist must apply some analysis strategy to determine which genes are

interesting; this may be a challenge for a non-computational biologist. The relevance

of any results from DAVID are dependent on the quality of this input list. BioBridge

5A heat map is a common matrix visualization that uses color to represent values. After
applying clustering to the underlying matrix, the heat map reveals “hot” areas where groups of
rows have similar values in the same set of columns.

12



Figure 1.6: NetGestalt integrates GO and network data[30].

This relatively simple hypothetical network is converted to a linear model by hier-
archical clustering. a)Highly interconnected regions are joined into different levels
of clusters. These different clusters are indicated by color, the lowest level by node
color and the higher levels by colored boundaries. b)The resulting hierarchical tree
structure. c)The linearized tree visualization that is used by NetGestalt.

differs from DAVID since it removes this preprocessing burden from the biologist.

BioBridge is also intended for exploration of entire experiments whereas DAVID is

useful for validating lists of interesting genes and linking to other resources to aid

interpretation.

WebGestalt[39] has many similarities to DAVID. It also takes a list of genes as

input and integrates heterogeneous data sources such as GO and KEGG to find

enriched biological characteristics.

13



NetGestalt[30], see in Figure 1.6, is an interesting recent utilization of the GO

resource. To address the scalability issue associated with networks, it employs a

strategy in which nodes are hierarchically clustered based on their connections.

This renders the network to a linear structure divided into modular components,

which are then analyzed using GO terms. NetGestalt demonstrates the power of

integrating multiple types of data sources.

1.2.5 Text Mining

Text mining and natural language processing are areas of active development regard-

ing biological articles and abstracts. Due to the sheer amount of literature available,

computational techniques are critical in aiding human interpretation. On average,

a paper is deposited in PubMed every 2 minutes[1]. Different text mining systems

have different goals: some aim to extract formalized biological entity interactions[7],

others attempt to validate and aid in the development of curated models[26], and

some, such as PathText[16], are designed to help researchers analyze their data.

PathText is described by its creators as a “text mining integrator for biological

pathway visualizations[16].” It utilizes the full text of biology papers to automati-

cally annotate pathway models. These models are then augmented with the ability

to retrieve relevant sections of papers to selected nodes. Manual annotation is also

supported. PathText is particularly relevant since it integrates data from multiple

databases with text mining techniques modeled to a network. However, it is limited

by one of its most attractive features. Since full article text is central to its text min-

ing strategy, PathText may only be used internally due to licensing issues[16]. For

BioBridge, abstracts downloaded from PubMed are the only source of text. While

full-text may be preferable from a data mining perspective, abstracts often distill the

critical findings, are more structured, and through PubMed, are freely and easily

14



accessible. Another key difference between BioBridge and PathText is that Bio-

Bridge’s visualization is derived from user data; PathText’s pathway visualization

is drawn from established models.

1.2.6 General Exploratory Visualization

PivotSlice[40] is a generally applicable visualization system designed to reveal im-

plicit and explicit relationships between items. In a biological context, protein-

protein interactions are one type of explicit relationship. Similarly, two genes corre-

lating with one another throughout an experiment or sharing GO terms are examples

of implicit relationships. PivotSlice’s primary visualization technique (Figure 1.7)

is a 2-dimensional table of cells, where each cell contains a subset of items, split by

a different facet6 for each axis.

Within each tabular cell, items are represented as different nodes arranged

by a method the user considers meaningful. By combining attribute-derived and

user-manipulated item layouts, different types of implicit relationships are revealed.

Edges drawn between nodes reveal explicit relationships. By interactively controlling

how each axis is subsetted, how nodes are arranged, and what explicit relationships

are drawn, the user discovers various trends in the dataset.

Akin to PivotSlice, BioBridge’s similarity based layout method reveals implicit

relationships. BioBridge’s visualization of text mining results reveals additional

implicit relationships among items, although some relationships in the source text

are certainly explicit. BioBridge may benefit from employing a faceted approach to

text mining; a biologist may only wish to only see terms related to diseases or only

6The term “facet” has particular meaning in the visualization field. Each facet is an orthogonal
way of viewing the data. The three primary gene ontologies are good biological examples of facets;
cellular component, molecular function, and biological process each define different subsets of the
same genes.
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Figure 1.7: PivotSlice[40] visualization

PivotSlice utilizes facets to organize data and reveals direct relationships within
data. The dataset visualized here is of journal articles. The y-axis is split by
the keyword facet and the x-axis is split by the conference facet. 3 keywords of
interest and 3 conferences of interest have been specified. The region outlined in red
contains all articles with the keyword “Visualization Technique” that were presented
at InfoVis, CHI, or UIST. Conference is used to align the nodes into 3 vertical
groups. It is unclear what values were used for other x and y values of nodes.
Orange arrows indicate the selected node cites those papers, the single green arrow
indicates a citing paper.

terms describing cellular localization.

The INVISQUE[17] system is also generally applicable. The authors identify

INVISQUE as a sense-making system. Sense-making is a formalized way of thinking

about data exploration; people attempt to fit data into frames or mental models.

When data do not fit into an individual’s current frame, the frame is adjusted and

the data is reconsidered. INVISQUE is designed to allow users to rapidly adjust

and consider frames to better understand their data.
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INVISQUE utilizes the metaphor of arranging index cards representing journal

articles according to selected metadata attributes (Figure 1.8). For instance, the

index cards may be sorted left to right by publication date, grouped by author,

and given a vertical position according to number of citations. INVISQUE allows

the user to maintain and arrange various such views simultaneously, accompanied

by a description of each view and a scatter-plot summarizing a specified attribute.

This process is designed to be highly intuitive, visualizations are rearranged by

direct manipulation with the mouse, much the same way a user would physically

rearrange a real-world workspace to help think about a problem.

The visual elements of INVISQUE are quite different from BioBridge and yet

the two strive to support the types of tasks, namely data exploration and hypothesis

generation. Both use position and proximity to help users to understand their data.

INVISQUE allows users to control how their data are filtered and which aspects are

summarized. BioBridge would benefit from the addition of filtering functions for

entities and terms as well as quantitative summarization options.

1.2.7 Specialized Exploratory Visualization

GenAMap[6] is a visual analytics system that incorporates several different visual-

izations for genetic polymorphism association analysis (Figure 1.9). GenAMap is

relevant because it is an exploratory visualization tool developed to aid geneticists

in coping with the large amount of data association analysis produces. The basic

strategy of GenAMap is to provide an overview visualization, a heat map of genes

clustered by GO terms, that can be used to browse the dataset and make selec-

tions for generating more specialized visualizations. Each visualization can be used

to answer different types of questions. A standard gene association network view

presents the same information as the heat map in a more intuitive way, but cannot
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Figure 1.8: INVISQUE[17] sense-making system

Two index card arrangements of the same dataset of journal articles that a user
has arranged next to one another. Both views only display articles that contain the
phrase “Information Visualization”. On the left,articles are sorted by publication
date, the first 6 results are displayed in detail. On the right, articles are sorted by
number of citations; number of citations is also mapped to relative height of the
index card. Both views have a summary scatter-plot where number of citations is
the y-value. As one might expect, older articles tend to have more citations.

Figure 1.9: GenAMap for gene association analysis[6].

Via a scalable heat map visualization (top center), the user selects clustered sets
of genes, indicated by colored boxes. These sets of genes are then linked to several
domain relevant visualizations, such as gene ontology hierarchies seen bottom center
and genome position association seen bottom right.

scale as well as the heat map. An association tree view relates functional informa-

tion to genomic regions. Whereas GenAMap is specialized for genetic association

data, BioBridge is generally applicable to any tabular dataset.

Livengood, Maciejewski, Chen, and Ebert developed a system for analyzing sets
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of metabolomic data[19]. More specifically, their system aids in the comparison of

four dimensional GCxGC-MS7 datasets; the four dimensions are retention time 1,

retention time 2, mass, and intensity. This is one of the first domain specific visual-

ization system to allow multiple GCxGC-MS samples to be viewed simultaneously.

Livengood et al.’s system supports exploratory analysis by allowing the researcher

to rapidly generate different views (such as mean of sample, mean difference between

samples, and standard deviation of samples).

Though this system is clearly highly domain specific compared to BioBridge,

both systems support rapid view generation to facilitate exploration. Livengood et

al. also identify better compatibility with existing tools as a primary aim of future

work; BioBridge is already quite compatible since it has tabular data as input and

output. That said, BioBridge would still greatly benefit from directly linking to

commonly used online resources such as DAVID.

Many of the visualizations discussed so far utilize position and proximity to

help convey relationships. An interesting example of a visualization where position

and proximity are not variable options is presented in S. Oeltze et al. 2012[24]. The

authors present a visualization tool for toponome data. The toponome describes the

distribution of proteins throughout different cell types. Toponomic data consists

of binary protein presence vectors for each voxel8 derived from layered confocal

microscopy images, where hundreds of proteins are assayed in 3-dimensions in dozens

of cells simultaneously. See Figure 1.10 for an example toponome visualization.

The central task in toponomic analysis is to identify and describe the cell types

present in a given microscopic view based on which protein combinations are present

and how they are distributed. There are many thousands of possible protein com-

7GCxGC-MS separates a sample twice by gas chromatography before identifying molecular
components by mass spectrometry.

8A voxel is the 3-dimensional equivalent of a pixel.
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Figure 1.10: Toponome visualization[24]

This is a typical toponome view of a few dozen individual cells. Each color used in
this view represents a unique combination of proteins. Several different cell types are
readily visible, characterized by the type and distribution of proteins present. For
instance, monocytes are nearly entirely blue whereas T4 cells seem to characterized
by a mixture of red and yellow regions with some green spots.

binations; in practice, about 30 protein combinations are relevant to analysis. The

toponome view presented by the authors assigns a unique color to each protein

combination, then renders colored voxels accordingly. Similar visualizations have

already been used for toponome data, the authors primary contributions have been

in increasing usability and integration with other analysis tools.

Despite their obvious differences, BioBridge and this toponome visualization

system use color in a similar way, to represent similarity when entities are not

nearby one another. Both tools also support data exploration tasks by enabling

users to rapidly investigate multiple visualization settings and views.

1.2.8 Usability

Usability for biologists has emerged as a priority for data analysis tools. This can

be seen in release announcements for new tools as well as development efforts for
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older tools[3]. Explicet[25], a tool released in 2013, touts its accessibility to non-

bioinformaticians. The group goes so far as to state: “Practical use of Explicet

in several lab settings has been found to reduce requirements for personnel with

bioinformatics/computational expertise.[25]” Tools such as Cytoscape have also had

significant feature expansions focused on usability[31]. BioBridge integrates the

principles and concepts of the above and extends them.
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Chapter 2

Methods

In this section, first the supported input dataset formats are described. Next, the

basic task requirements of biological data exploration are outlined. Finally, the

design of BioBridge and how it addresses these requirements is discussed.

2.1 Input Data Requirements

BioBridge is targeted at any dataset that can be expressed in tabular form. Table

rows represent biological entities. Biological entities correspond to a particular flavor

of omics: transcribed genes for microarray or RNAseq data, proteins for proteomics,

metabolites for metabolomics, and so on. One column of entity IDs is needed as

input for text mining procedures; additional columns are for optional descriptive

text and required numeric data. These numeric data columns are used to construct

and layout glyphs; generally the numeric data represent entity behavior and function

in a series of different experimental conditions. Any supplied descriptive text is not

incorporated in the primary visualization but is available in the supporting data

table view. For descriptions of example of datasets, please see the case studies

subsection.
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Text mining is conducted outside of BioBridge. There are many parameters

that go into text mining procedures. In its simplest form, each term can be con-

sidered a binary variable; documents either contain the term or they do not. More

sophisticated approaches use techniques such as normalization according to various

parameters and methods to ensure that terms with differing suffixes are counted

together. BioBridge simply requires a table of non-negative term values for every

entity; larger term values indicate the term is more significant for the given entity.

BioBridge readily accepts comma delimited (.csv) and Microsoft Excel (.xls) files.

Comma delimited is a widespread format for exchanging dataset across applications.

Excel is ubiquitous in biology labs and many programs are capable of producing .xls

or .csv files.

2.2 Functional Requirements

The following tasks as essential for biologists attempting to interpret relationships

between biological entities:

1. Find related entities - there are two ways to begin investigating possibly

related entities:

(a) Open exploration: navigating within the dataset, rapidly querying pos-

sible relationships, and

(b) Directed search: given prior knowledge, a particular entity is thor-

oughly investigated, either as validation or to discover unexpected rela-

tionships.

2. Locate highly related entities - related entities are expected to have similar

text mining results. In an undirected process the user wants to rapidly see
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groups of entities that have a real biological relationship.

3. View term trends across dataset - rather than locating a particular entity,

the user wishes to find all entities that have a given term in common.

4. Review and combine observations - biologists may suddenly find a pre-

vious observation more interesting given a later observation or need to make

observations across multiple queries.

5. Communicate results - biologists need to be able to communicate obser-

vations to other biologists as well as transfer data to other applications they

may routinely use.

2.3 System Design

This section outlines the visualization and interaction decisions designed to address

the previously described task requirements.

BioBridge is implemented in Java[11], primarily due to Java’s platform indepen-

dence. Visualizations are realized through Processing, a free and open source graph-

ics library for Java. Excel reading and writing is accomplished by Java Excel API.

Text mining corpora are retrieved from freely available abstracts on PubMed[28]

and processed in Weka [13], an open source data mining and machine learning suite

with a Java API. Weka is a particularly attractive choice as it similarly emphasizes

usability for domain specialists over dedicated data miners. Weka provides a com-

prehensive GUI that opens up the future possibility for biologists to take control of

their own text mining input to BioBridge.

Dependency versions and websites:

1. Java 7 version 1.7.0 55 available at www.oracle.com/technetwork/java
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2. Processing version 1.5.1 available at processing.org

3. Java Excel API version 2.6.12 available at jexcelapi.sourceforge.net

4. Weka version 3.6.11 available at www.cs.waikato.ac.nz/ml/weka

In keeping with an accessibility focused design philosophy, BioBridge uses a

2-dimensional visualization. While there can be perceptual benefits to having a

3rd dimension, often obfuscation issues and interaction complications counteract

benefits gained[5]. Many of the remaining design decisions are informed by how

biologists approach data interpretation.

When interpreting experimental data, biologists are tasked with finding related

entities and hypothesizing explanations for those relationships. Relationships be-

tween entities may be direct (protein A binds to protein B), indirect (protein A

and B share substrate X), more systemic (protein A and B are both in pathway

Y), or even very general (protein A and B are associated with disease Z). Many

such relationships have been discovered and described in the biology literature and

evidence for known and novel relationships is likely present in a given dataset. In-

deed, de novo interpretation of biological datasets is dubious at best; validation by

integrating previous observations increases confidence in new findings. The primary

visualization of BioBridge aims to expose novel relationships as well as use prior

knowledge to provide context and confidence.

The primary visualization (Figure 1.1a) allows users to rapidly locate genes that

react similarly to experimental conditions (mapped to Glyphs) and have similar

descriptive text (mapped to color). Figure 1.1b shows the zoomed view of the red

box in (a). The genes Tcf19 and Mcm5 are seen to have similar glyph profiles

(with the exception of condition 1) and the terms binding, factors, and DNA in

common. Perhaps the specifics of experimental condition 1 have altered the rela-
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tionship between these two genes in a biologically interesting way. In fact, Tcf19 is

a transcription factor required for later cell cycle stages and Mcm5 is part of the

helicase machinery necessary to initiate DNA replication. Figure 1.1c provides a

tabular view of experimental data (positive values are up-regulated, negative values

are down-regulated) and text mining results (higher values indicate term is more

strongly associated with entity) used in the visualization. BioBridge is designed

to allow users to rapidly view different layouts of biological entities searching for

underlying biological relationships mined from the text of PubMed abstracts.

A control panel GUI (Figure 2.6) contains additional functions to control and

support the primary visualization. This control panel consists of four primary el-

ements: a) a menu bar that provides access to visualization functions, the most

significant of which are load, save, find entity, find term, place terms, and help; b)

keys to aid interpretation of glyphs and the term colors; c) a list of shared terms

based on user interaction with the primary visualization; d)and a dynamic table that

tracks queried entities and terms. This table displays details that are not present

in the primary visualization as well as a history of queried entities and terms. The

table and the primary visualization can both be saved to record and communicate

observations.

2.4 Primary Visualization

The primary visualization displays three types of data. It presents the input nu-

merical data as glyphs, arranging them so that similar glyphs are near one another.

The prevalence of a particular term across the entire dataset is indicated by col-

ored circles behind the glyphs. Lastly, regions where entities strongly share terms

are indicated by placing text between the relevant glyphs. All three components
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Figure 2.1: From input dataset to integrated visualization

The IDs from the input dataset are used for text mining of biological databases,
notably abstracts stored in PubMed. The numeric dimensions of the dataset are
used in glyph construction. Profile glyphs are used as they indicate positive and
negative values well. Bars outlined in red indicate outlier values. All outliers are
drawn at the same maximum bar height; this increases the ability of glyphs to
effectively convey non-outlier values. Glyphs are then assigned positions by a glyph
layout algorithm, detailed in Figure 2.3. Text mining results are used to place text
between glyphs that share terms and also to color glyph backdrops as the user
visualizes various terms across the dataset. Here, A is mapped to red and B is
mapped to green; where the two co-occur, yellow results.

of the primary visualization as well as supported interactions will be discussed in

the following paragraphs. A schematic overview of how the primary visualization is

constructed is presented in Figure 2.1.

As Figure 2.1 shows, IDs from the input dataset are used for text mining of

biological databases, notably abstracts stored in PubMed. The numeric dimensions
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of the dataset are used in glyph construction. Profile glyphs are used as they indicate

positive and negative values well. Bars outlined in red indicate outlier values. All

outliers are drawn at the same maximum bar height, either above or below the

zero line as appropriate. Treating outliers this way increases the ability of glyphs

to effectively convey non-outlier values. Glyphs are then assigned positions by a

glyph layout algorithm, overviewed in Figure 2.2 and detailed in Figure 2.3. Text

mining results are used to place text between glyphs that share terms and also

to color glyph backdrops as the user visualizes various terms across the dataset.

In Figure 2.1, “A” is mapped to red and “B” is mapped to green; where the two

co-occur, yellow results.

Profile glyphs were selected early on for use in the primary visualization. Profile

glyphs are similar to bar graphs; they are both composed of several bars whose

lengths indicate values of attributes. This allows users to make value comparisons

across several dimensions simultaneously[37]. Profile glyphs are particularly suited

for representing fold-change type data, since they clearly differentiate between pos-

itive and negative values.

Many biological datasets are expressed as fold-change values relative to a control;

all case study datasets are composed of fold-change data. Fold-change values are

calculated by dividing experimental values by a control or baseline value. Conse-

quently, 0.5 indicates an entity’s signal has decreased by half, 1.0 means it has not

changed, and 2.0 indicates a doubling. Fold-change values for experimental values

that fall below the control value range from 0 to 1 while for experimental values

greater than control, fold-change may range from 1 to infinity. This discrepancy

makes comparison between the two problematic. The common solution is to apply

a log transform, rendering a half fold decrease as the negative of a two fold increase.

This log transform of the dataset is what was used to construct profile glyphs;
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Figure 2.2: Glyph layout algorithm intuition.

The glyph layout algorithm uses a layer based strategy built around a specified root
entity at the center. a) Each layer is sorted independently. BioBridge uses a double
sorting method based on the most similar entity to the root near and the entity
most dissimilar to near, far. This increases the similarity of adjacent glyphs within
each layer (reduces the distance between values). b) Layers are populated starting
from the center. c) The net result is that glyphs are placed following the yellow line
from the root.

construction of profile glyphs from raw experimental values is shown in Figure 2.4.

The presence of outliers in the dataset was also considered. Each bar of the

profile glyph represents the value of one dimension, bars above the baseline indicate

positive values and bars below the baseline are negative. Originally the height of

each bar was normalized to the maximum absolute value of each dimension. This

created a situation where one extreme outlier could force all other values for a

particular dimension into a small range of bar heights. The solution employed was

29



Figure 2.3: Glyph layout algorithm pseudo-code.

This algorithm uses one full sort and two sub-sorts per layer to arrange glyph in
concentric circles around a specified root glyph (selected via direct interaction with
the primary visualization or indirectly in the control window) )based on glyph simi-
larity. Dissimilarity is measured by euclidean distance in this implementation. The
number of glyphs that fit per layer is calculated based on the layer’s circumference
and a parameter that sets a minimum distance between glyphs. This algorithm
results in high similarity between neighboring glyphs within layers, as well as good
similarity between layers, particularly in the direction where members of near are
placed.

Figure 2.4: Profile glyph construction.

BioBridge’s glyphs are designed to handle positive and negative values. This is
particularly useful when datasets can be expressed as the fold change from control
to experimental conditions. Typically, each experimental value is expressed relative
to an appropriate control. A log transform is then applied. This allows equal
magnitudes of under and over expression to be the negative of one another.

to calculate an outlier threshold value, 2.5 standard deviations from the mean, for

each dimension. Normalization is based on this outlier threshold rather than the
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maximum value. Only values within the outlier threshold are normalized; outliers

are assigned the maximum bar height.

Normalizing based on outlier threshold did increase the dynamic range of most

glyphs, but also could mistakenly convey high values still within the outlier threshold

as equal to possibly extreme outlier values. To prevent this kind of confusion, bars

representing outliers are outlined in red instead of the standard white. This improves

perception of extreme values across the dataset.

The visualization layout design is based on the concept that related entities will

tend to have similar numeric profiles. Many biologically related entities react simi-

larly, or at least simultaneously, to experimental conditions. For example, pathways

are broadly suppressed, or the proteins that function in a complex are transcribed

by the same transcription factor. Since entity similarity is a primary concern, posi-

tion is used to convey it. Position is a very effective graphical feature for encoding

numerical data[35]. The glyph layout algorithm is shown in Figure 2.3.

This layout algorithm uses one full sort and two sub-sorts per layer to arrange

glyphs in concentric circles around a specified root glyph (selected via direct in-

teraction with the primary visualization or indirectly in the control window) based

on glyph similarity. Dissimilarity is measured by Euclidean distance in BioBridge,

but any distance measure could easily be substituted. The number of glyphs that

fit per layer is calculated based on the layer’s circumference and a parameter that

sets a minimum distance between glyphs. This algorithm results in high similarity

between neighboring glyphs within layers, as well as good similarity between layers,

particularly in the direction where members of near are placed.

The combination of the similarity based glyph layout algorithm with the percep-

tion power of glyphs enriches the types of observations users can make. Since glyphs

convey data values for several attributes simultaneously, entire regions of the visual-
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ization can be rapidly characterized by the user. This allows for observations about

the variability within and between different regions of the dataset. When combined

with visualization of the text mining results, the user can begin hypothesizing which

biological functions are significant in the dataset.

For visualizing terms across the dataset, a shaded circle is drawn behind each

entity’s glyph. Circle shading is determined by the entity’s value for the terms being

visualized. The current implementation only supports three terms simultaneously,

each mapped to shades of red, green, or blue.

These terms are mapped directly to RGB values. For instance, if term “A” were

mapped to red, entities completely unrelated to “A” would have an R value of 0.

Likewise, the most associated entities would have an R value of 255. The remaining

entities would fall somewhere in between. With RGB coloring, red and green make

yellow, red and blue make purple, equal values of all three together make gray or

white, and so forth.

The use of RGB values is strangely suited to biology. Immunofluorescence is a

technique for visualizing cellular localization of proteins. In the images it produces,

red and green are often used to visualize these proteins; where both entities are

present, yellow is seen.

The potential for white background circles occurring when all three mapped

terms have particularly high values required a tweak in the profile glyphs. Rather

than simple white bars on a black background, white outlines with black fill are

used. The white outlines are still readily perceivable and the glyphs are no longer

lost against a white term circle.

Revealing regions of highly shared terms is accomplished by automatically query-

ing the visualization between sets of closely placed glyphs and placing a represen-

tative term where aggregate text mining scores are high (Figure 2.5a). By default,
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the query set size is 3. To be placed, terms must have a signal above a specified

threshold for all 3 instances in the query set. Only the top ranking term is placed

at a given position.

Term placement (Figure 2.5a) draws attention to regions where entities share

biological characteristics and the terms displayed give the user some sense of what

those characteristics may be. In Figure 2.5b the term “breast” appearing between

glyphs characterized by extreme experimental values may serve as an entry point for

further exploration. Indeed, querying this region returns cancer related terms such

as “tumor”, “cancer”, and “therapeutic”. Figure 2.5c shows there are still occasional

term to term overlaps in the current implementation; “repeat” and “ubiquitin”

mutually obscure one another in this case.

When prototyping term placement there was a lot of obfuscation, both due to

terms overlapping with terms and terms overlapping with glyphs. To alleviate this

issue, terms are no longer placed horizontally, but perpendicular to the radius at any

given point. This entirely relieved the term to glyph overlaps and most of the term

to term overlaps. To further reduce term to term overlaps, the radius at which each

term is drawn alternates every other term. With these changes, and the ability to

increase the threshold for term placement, the term obfuscation problem is reduced

to tolerable levels.

Direct interaction with the primary visualization is focused on supporting explo-

ration of terms beyond those displayed. Placing text mining terms between glyphs

is effective for revealing areas where glyphs possess common terms, but there is no

guarantee that the most interesting term is displayed. The introduction of the abil-

ity to specifically query within the visualization addresses this shortcoming. Results

of these user queries are output to a sorted list in the control window. Since ex-

ploring these terms is a primary task of BioBridge, queries are accomplished with a
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Figure 2.5: Primary visualization with terms placed.
a) Primary visualization with terms placed where their aggregate value is high for
the 3 nearest glyphs. b) Detail view of yellow box in a). The term “breast” appears
between glyphs characterized by some extreme values. A user query of this region
(the 3 lines explicitly indicate which glyphs are queried) returns additional cancer
related terms. c) Detail view of blue box in a). Attempts to eliminate obfuscation
have not been completely successful; “repeat” and “ubiquitin” mutually obscure one
another in this case.

single left-click of the mouse in the same area. Clicking and holding offers a preview

of which entities will be queried, allowing users to be certain they are conducting

the intended query. A user may also wish to further explore terms that define single

entities. A double-left-click accomplishes a query of the single nearest glyph.

The other set of interactions is focused on navigating the visualization. This

entails two sub-tasks: panning and zooming. A right-click and drag accomplishes

panning; this style of dragging the view around the visualization is common in

applications such as Google Maps. Zooming in and out is accomplished through

the mouse-wheel. This is a common functionality for the mouse-wheel, particularly
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when scrolling up and down is not appropriate. Thus far, no users have requested

keyboard based panning and zooming controls. Should this issue arise, solutions

that implement common keyboard navigation strategies based on the arrow keys or

WASD would need to be explored.

2.5 Control Window

The primary functions of the control window are to present details not revealed in

the primary visualization, record observations, and provide indirect interaction with

the primary visualization. These functions are fulfilled by a results list (Figure 2.6a),

a menu bar (Figure 2.6b), a term-to-color key (Figure 2.6c), and a dynamic table

(Figure 2.6d).

In practice, the term results list is the most frequently used element of the control

window. This is probably because the term results list is the element most tightly

linked to the primary visualization. It presents the results of queries and controls the

assignment of terms to colors. Query results are presented as a ranked list of terms,

with aggregated values indicated. The values do not have an inherent meaning but

are instead dependent on the text mining process. By selecting items on the list,

users may add terms to the dynamic table and visualize selected terms across the

entire dataset as colored circles.

The menu bar provides access to additional visualization functionality. Following

user expectations, File is on the far-left and includes saving, loading, and exiting

functions. Similarly, Help is on the far-right. The remaining menu items, Find,

Visualization, and Table are listed from left to right in order of anticipated fre-

quency of use. Find is used to locate specific entities or visualize specified terms.

Visualization includes functions with broad effects, such as turning term placement
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on or off and resetting the camera’s position and zoom level. The Table menu bar

item is primarily concerned with controlling what is added to the dynamic table and

removing undesired items.

In the specific case presented in Figure 2.6, the user has queried a single entity,

Crip1, and been presented with the list of terms in a). The values are listed following

the terms. Browsing this list allows the user to roughly characterize Crip1. The

terms “cysteine”, “rich”, and “intestinal” relate to the entity’s full name, Cysteine-

rich intestinal protein. The terms “myc” and “hybrid” derive from the use of myc-

tagging, a protein purification method in which hybrid proteins are created. Basic

kinds of descriptors such as these are frequently at the top of individual query results,

with more interesting functional information further down the results list. The user

may wish to use the find commands in b) either to locate an entity they expect to

be related to the terms being viewed or to add a new term that they think may be

interesting. c) tracks which terms are mapped to which color and the gradient aids

in interpretation. Any terms that have been mapped are also tracked in table d).

This table also displays precise values, both for the most recently queried glyphs

and any other previously queried glyphs. Note the most recently queried entity is

the last row and most recently mapped terms are the last three columns.

There are two types of keys included in the control window. The color key serves

two functions. It indicates which terms are currently mapped to which color and

provides an RGB color gradient to aid the user in interpreting mixed colors. The

glyph key presents an enlarged view of whichever instance is currently selected and

helps the user to remember which dimension each bar represents. Both keys only

show a current snapshot of the visualization state. In contrast, the dynamic table

serves as a record of all user queries.

The dynamic table is a standard tabular visualization that presents the data
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Figure 2.6: Control window components.
a) The sorted list of results from the previous user query. b) The menu bar provides
access to additional visualization functionality. Here the user wants to find a specific
entity in the primary visualization. Selecting Find-Entity will open a series of dialog
boxes to complete the operation. c) The color key keeps track of which terms are
currently mapped to which color and helps the user to interpret RGB gradients.
d) The dynamic table records recently queried entities and terms and precisely
represents the underlying numerical data used in glyph construction and layout.

shown in the glyphs. As the user queries entities in the primary visualization,

these entities are added as rows to the dynamic table. Any terms searched for

or visualized across the dataset are also added to the table as columns. Currently,

there is not a cap to how many columns or rows the dynamic table can grow to hold.

Consequently, the table can grow to an unmanageable size. The current solution

is to provide reset type functions that restore the table to its original number of

columns and rows. The dynamic table may also be saved at any time, allowing

review or further analysis in another program. Methods for controlling and editing

the table contents are present in the Table menu bar item.
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Chapter 3

Results and Discussion

Evaluations were conducted via three case studies. Each case study centered on

an evaluator supplied dataset of actual experiment data, one of metabolomics data

and two of microarray data. Evaluators were biology graduate students who were

near completion of their Ph.D.. Case studies were initiated at different stages of

the development process, from initial prototype to essentially completed. Each case

study entailed multiple informal observation and interview sessions at successive

stages of development. During the case studies, biologists were observed finding

expected relationships between entities as well as discovering potentially interesting

novel relationships.

After describing the use case studies and how they have shaped the development

of BioBridge, a hypothetical case study that illustrates key features of BioBridge

will be presented.
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3.1 User Studies

3.1.1 Metabolite Dataset

This case study was the first one initiated. Entities in this dataset are metabolites,

small molecules that are energy sources and building blocks for larger processes.

Entity IDs are KEGG IDs. KEGG[14] is a popular database focused on presenting

a systems view of biology, connecting genes, proteins, compounds, reactions, and

diseases. Only 200 entities out of 300 had attached KEGG IDs so the full dataset

could not be utilized. KEGG also provides relevant PubMed IDs; these were used

to generate the text mining corpus. Some additional text columns are included in

this dataset to aid interpretation by providing chemical names and sub and super

pathway membership. The numerical dimensions of this data set are measured

concentrations of metabolites in different Drosophila mutant backgrounds.

Since this was the first dataset evaluated, both the prototype visualization and

the text mining strategy employed were being tested for the first time. Even if

the visualization had been completely functional, it was clear that decisions made

during text mining dramatically impacted usefulness of the final product. My initial

approach focused on assembling the set of enzymes associated with each metabolite,

and then using the PubMed articles that KEGG provides as a reference to generate

the text corpus. This approach weighted my text mining input towards papers

focused on chemical mechanisms or purification techniques. These were not the

user’s areas of interest.

Eventually, it was discovered that directly searching PubMed for the metabolite’s

chemical name provided a more function- and interaction-rich text corpus. The

number of abstracts for each metabolite varied widely, from a handful for less studied

metabolites to thousands for ubiquitous metabolites such as glucose or ATP. This
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imbalance was addressed by normalizing based on the number of abstracts for each

metabolite, a common text mining strategy. Once I had these more suitable text

mining results, the evaluator’s interest increased noticeably. They could readily see

the observations they had already seen using other analysis tools; this increased

their confidence while using BioBridge and encouraged them to continue exploring

to find new relationships.

After several internal iterations geared towards usability, the evaluator was im-

pressed with the ease of use and speed at which they could check different metabo-

lites and verify expectations. A lot of time had already been spent analyzing this

particular dataset, laboriously going through the hard copy of an Excel worksheet

with a highlighter. In comparison, this evaluator said that BioBridge would have

made this initial overview sort of analysis faster and more enjoyable.

3.1.2 First Microarray Dataset

In both microarray case studies, entities are gene transcripts. Although gene tran-

scripts may or may not be translated into proteins, their over or under expression

is still evidence of a cellular response. This dataset had already gone through sig-

nificant preprocessing; it was limited to about 700 genes that correlated with the

experimental conditions. Entity IDs are gene symbols, which were directly input

to abstract searches in PubMed. No additional text information was provided with

this dataset. The numerical data for this data set consists of fold change values

between a non-invasive hepatocarcinoma cell line and isolated cell subpopulations

with higher metastatic activity.

This case study began with a much more developed version of BioBridge. The

first challenge encountered was a consequence of the increased dataset size. All

glyphs could no longer be expected to fit on the screen simultaneously at a useful
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size. This precipitated the addition of panning and zooming capabilities. The

evaluator for this dataset also said they had trouble finding entities as they thought

of new relationships to check. This made the addition of a Find functionality a top

priority.

As in the metabolite dataset, the first entities investigated were those the biolo-

gist thought would be interesting. Again, being able to make expected observations

made the biologist much more confident and comfortable when first exploring their

dataset. Fortunately for us, this dataset had not already been analyzed as exhaus-

tively as the metabolite dataset. As the biologist verified expected relationships,

they also discovered new entities to investigate.

These new entities of interest tended to fall in two groups: those that were al-

ready known to function in the pathway the biologist was interested in, but outside of

their specific area of study, and those with entirely separate known functions. Both

groups were interesting to the biologist. The first type often triggered a response

similar to “This makes sense because. . . ” which would reinforce the biologists un-

derstanding of entity relationships. The latter type of observation had two distinct

types of outcome. If the entity appeared isolated, i.e. did not share any terms

with surrounding entities, it would often be disregarded as coincidence. However, if

there did appear to be some underlying biological significance, they made a note to

further investigate the relevant entities outside of BioBridge.

3.1.3 Second Microarray Dataset

Preparations for this case study began after completing the previous two. As such,

this presented a prime opportunity for evaluating the completed user interface from

the perspective of a new user. Therefore, the first evaluation session began with only

a broad explanation of BioBridge’s purpose and the user was allowed to interact with
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the interface without guidance.

In general, the functionality of the control window portion of BioBridge per-

formed well. The user was able to open a dataset and begin querying it without

guidance. Some specialized functions, such as placing terms within the visualiza-

tion, were unknown to the user so they did not think to look for them. Many of the

primary visualization interactions had a similar problem. This category of interface

problems related to unknown features could probably be addressed by displaying

periodic tips or hints, perhaps only until the user demonstrates awareness of the

feature.

The biologist user for this study was more computationally inclined than the pre-

vious two. Consequently, they expressed interest in some of the aspects of BioBridge

that do not support user control at this time.

The first such issue they raised dealt with adjusting the similarity measurement

used in the glyph layout algorithm. BioBridge currently uses a Euclidean distance

measure where all dimensions are weighted equally. This biologist expressed inter-

est in different distance metrics, such as Manhattan distance, and adjusting the

weighting of the dimensions.

The other issue raised was controlling the text mining procedures. After dis-

cussing the text mining I had conducted, as described in Appendix B, this user

wanted to try various alternatives. This interest seemed to stem from general cu-

riosity and desire for more control as opposed to an identified flaw or weakness.

Most of the changes the user proposed dealt with the document retrieval portion

of the pipeline. This would be one of the impactful portions to control, but also

the most time consuming for the user to experiment with. Retrieving large sets of

abstracts from PubMed can take a few hours, compared to seconds or a few minutes

for the remainder of the pipeline. The user mainly wanted to specify PubMed search
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parameters such as species and date range.

3.2 Hypothetical Use Example

This section is intended to demonstrate how the different features of BioBridge work

together and to be representative of how evaluators approached data exploration

using BioBridge.

The dataset for this example is the first microarray dataset described. Since

observed biological relationships will be discussed in more detail here, a more de-

tailed description of the dataset follows. The experiment underlying this dataset is

attempting to identify genes related to cell migration in hepatocellular carcinomas.

Control values in this dataset are transcript expression levels in a non-metastatic

tumor cell line, BL185. Two subpopulations of cells were isolated from BL185 that

had either significantly higher in vitro migration or invasion activity, BL185-M1 and

BL185-I1 respectively.

Though the supplied dataset contained additional numerical dimensions, this

analysis will focus on BL185 vs. BL185-M1 and BL185 vs. BL185-I1, therefore

glyphs will contain only two bars. Remember, the fold change data has been log

transformed so that bars above the zero line represent increased expression and bars

below the zero line represent decreased expression.

3.2.1 Targeted Validation

As observed in use case studies, most users want to validate that particularly well

known entities are behaving as expected. However, the initial visualization is arbi-

trarily constructed around the first entity in the dataset. Therefore, the first task

is to locate an entity already thought to be interesting and revisualize the data.
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Figure 3.1: Gadd45-a centered view.
a) The visualization constructed around Gadd45-a. b) The query results for Gadd45-
a by itself. c) When Gadd45-a was selected, its ID number was automatically entered
here so the user could easily regenerate the visualization around it. Gadd45-a was
also drawn in the detail box to the right. d) Since Gadd45-a was queried, its
information was added to the dynamic table.

The protein Gadd45-a has been shown to inhibit cell migration in other cell types

and to be down-regulated in the majority of hepatocellular carcinomas[12]. This

observation, motivated Brian Lewis’ lab at the University of Massachusetts Medical

School to conduct this microarray experiment and it was coincidentally the basis

for a WPI major qualifying project by Sally Trabucco in 2010[33]. Consequently,

Gadd45-a is a natural first choice for validation.

To locate Gadd45-a, the user would use the Find Entity function located on the

Control Window’s menu bar. This is as simple as typing in the first few letters of the

gene’s symbol and selecting the desired gene from a drop down list of matches. This

circles Gadd45-a in the visualization and sets up the Visualize button to generate a
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Figure 3.2: Targeted validation of terms.
A zoomed in view of the center of Figure 3.1. The three terms “cancer”, “migration”
and “liver” are mapped to red, green, and blue, respectively. These terms were
selected by the user due to details of the biological experiment that generated the
dataset. The gene Clca6 is particularly strongly down-regulated but is unrelated to
these terms. This may prove interesting following additional research into Clca6.
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Figure 3.3: From targeted validation of entity to open exploration of terms.
The terms “brca1” and “p53” are mapped to red and green. These terms happen
to also be gene names that are prevalent in cancer biology. “p53” has a wider
distribution than “brca1”. It would be interesting to investigate the two entities
with similar expression to Gadd45-a that also have overlap of “brca1” and “p53”.
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new layout centered on Gadd45-a. Clicking Visualize generates the desired Gadd45-

a centered view, seen in Figure 3.1.

From this new view, the user can quickly see that Gadd45-a is indeed down-

regulated in both BL185-M1 and BL185-I1. In fact, it is evident that Gadd45-a is

one of the most down-regulated genes. From here, the user had several options for

moving forward.

One option is to continue their targeted approach by characterizing specific terms

across the visualization. The terms ”cancer”, ”migration”, and ”liver” are reason-

able choices. This is accomplished by using the Find Term function and selecting

different colors for each term. The resulting visualization is in Figure 3.2.

A second, more exploratory, option is to visualize terms that are related to

Gadd45-a. Two gene names, ”brca1” and ”p53” are both near the top of the term

list for Gadd45-a and they both happen to be frequently associated with cancer.

Rather than using Find Term, the user can visualize them by simply selecting them

in the results list and assigning them a color. The resulting visualization is in

Figure 3.3.

The third option is to switch entirely to a exploratory approach. This process

is characterized by rapidly querying interesting entities and testing many different

term mappings while on the lookout for interesting associations. For example, Clca6

is quite noticeable as the only entity with negative outlier values for both dimensions

(Clca6 is being hovered over in Figure 3.2 and visible in the other Gadd45-a views).

A biologist would definitely want to investigate this further. Clca6 happens to be a

member of the calcium-activated chloride channel protein superfamily. Visualizing

”calcium” and ”channel” reveals two other similar genes that have some association

with these terms, Mtm1 and Cth; it would be interesting to know why.
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3.2.2 Open Exploration

The process of open exploration may be initiated on its own, but as was just shown,

it often emerges naturally during targeted validation. One of BioBridge’s strengths

is that it creates many opportunities to make unanticipated observations that lead to

open exploration type investigations. BioBridge also allows easy switching between

open exploration and targeted validation.

Resetting BioBridge to its initial view (top of Figure 3.4), some general obser-

vations about the dataset can be made. This view happens to be centered on a

gene that is up-regulated in both BL185-M1 and BL185-I1. One can readily observe

there are handful of genes with extremely up-regulated expression, these appear near

the center as a result of their similarity to the central gene. One can also see that

expression level in BL185-M1 correlates strongly with expression level in BL185-I1.

The few cases where only one is strongly over or under expressed, may be interesting

in their own right. It is more difficult to make observations about genes that are

down-regulated since they are pushed to the outer layers of the visualization by the

glyph layout method.

Placing significant terms may aid interpretation of this view; this is accomplished

through the Place Terms function located under Visualization on the menu bar.

Without zooming in to see details, one can already say there are some regions that

tend to have significant terms and some that do not (Figure 3.4 top). For instance,

there are very few terms placed in the region characterized by strong up-regulation;

it will probably be difficult to say much about the up-regulation of these genes using

BioBridge alone. The region to the left of the center displays many terms. Zooming

in to get a better view, the word “cycle” appears often. This is interesting enough

to prompt the user to map “cycle” across the dataset (Figure 3.4 bottom).

During the process of exploring this region, the dynamic table assembles a list of
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Figure 3.4: Open exploration of terms.
Using the Place Terms function, terms have been placed wherever glyphs have
enough text mining results in common. Often, these terms form some regions where
they are noticeably dense and others where they are noticeably sparse. Only the
single strongest term is displayed so further queries are necessary. In this example
the term “cycle” is conspicuously prevalent in the indicated region. This caused the
user to visualize “cycle” across the dataset.
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Figure 3.5: From BioBridge into DAVID.
These are some of the results returned by DAVID after inputting the entities indi-
cated in Figure 3.4. Only the top two annotation clusters of six are shown. After
querying entities in BioBridge, inputting them into DAVID was done by copy-pasting
from the dynamic table.

all entities queried. This list may be saved for later use or copy-pasted into a tool

such as DAVID. In fact, inputing the 26 genes represented in this ”cycle” enriched

area into DAVID’s annotation clustering method results in 6 clusters, the top 2 of

which are presented in Figure 3.5. The most significant annotation cluster represents

about 10 of the genes present and is characterized by cell cycle and mitosis functional

terms. The p-values calculated by DAVID are certainly optimistic considering the

term “cycle” was the reason for this query. However, this does validate BioBridge’s

use of text mining since the two tools are in agreement here.

This hypothetical analysis shows that BioBridge supports both targeted valida-

tion and open exploration. The biology expert can locate entities and terms they

believe to be interesting, observing expected relationships. During this process, the
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biologist is presented with views that provide the opportunity to observe and be-

gin exploring unexpected relationships. The ability to easily switch back and forth

between targeted and open analysis is a key feature of BioBridge.
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Chapter 4

Conclusions

In this thesis, the design and evaluation of the BioBridge interactive visualization

tool was presented. It is intended to aid non-computational biologists by making

data exploration accessible and intuitive. BioBridge integrates user supplied tabular

data with text mining results and allows users to explore relationships within and

between the two. BioBridge is targeted at tabular datasets; these are extremely

common in biological data. Indeed, tabular omics-style data is already central to

biology research and additional high-throughput methods continue to be developed.

BioBridge was designed by considering the fundamental tasks biologists perform

when attempting to interpret new datasets. While the evaluated datasets fall short

of big data, they are of sufficient size that they are not readily approachable with-

out computational methods. A primary visualization window presents a similarity

based arrangement of glyphs representing biological entities along with textual in-

formation in the form of locally shared terms and as well as selected terms across all

data instances. This primary window supports direct manipulation mouse-driven

interactions for both querying and navigation. A secondary control window provides

a familiarly structured GUI to enhance data presentation and manipulation.
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Biologist users were incorporated early on in the design process and initial user

feedback on BioBridge was encouraging. BioBridge is capable of facilitating obser-

vations made using other methods as well as exposing possible novel insights missed

by less exploratory methods. Perhaps most encouraging, evaluators used words like

cool and fun to describe BioBridge. If BioBridge simply makes initial data analysis

and exploration more accessible, easier, and faster for non-data science experts, it

is a significant contribution.

There are several future avenues of improvement for BioBridge. In rough order

of priority:

1. Conducting formal evaluations to more rigorously validate design choices.

2. Streamlining the text mining pipeline, ideally to the point where a text mining

novice could make informed modifications to corpus assembly and term vector

calculation parameters.

3. Increasing integration with other analysis tools. Ideally, a user could select

groups of entities and directly analyze them in another tool such as DAVID.

This can be accomplished by copy-pasting from the dynamic table currently,

but a direct method would be ideal.

4. It should be easy to replace text mining with gene ontology or pathway mem-

bership information. Either of these could be expressed as a table of binary

memberships, allowing them to simply replace the term vector table that re-

sults from text mining as input for BioBridge. This has not been attempted

but would be useful.

5. Exploring strategies to address scalability issues via use cases of thousands of

entities and dozens of dimensions. Entity scalability could likely be increased
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with a combination of clustering and more flexible filtering. Dimensional scala-

bility will require reconsideration of glyph design and probably some algorithm

implementation improvements.

6. Developing and comparing alternative glyph layout methods for the primary

visualization. The challenge here would be spacing; equally spaced glyphs

make placing text much simpler, easier to interpret, and eliminates the pos-

sibility of glyphs obscuring one another. Additional glyph layout strategies

based on established dimensional reduction techniques, such as principal com-

ponent analysis (PCA) or multidimensional scaling (MDS), are worth consid-

ering.

7. Placing text on its own is a rudimentary solution. More sophisticated methods

such as delineating regions of term similarity warrant consideration, and if ef-

fective, would reduce the previously mentioned need for regular glyph spacing.

8. The choice of direct RGB mappings limits the visualization to 3 simultaneous

term visualizations across the dataset. More nuanced color mapping strategies

could increase this number; as could increasing the complexity of the shaded

circles to employ differently shaded pie slices or concentric circles.

Though a top priority, conducting formal evaluations is time consuming. It may

be wiser to implement some of the other improvements listed prior to investing the

time required to formally evaluate BioBridge.

In closing, BioBridge is a proof of concept for developing tools that biologists find

accessible and intuitive. The use case studies presented, while anecdotal, are very

encouraging. If maintained and updated, BioBridge could become more flexible and

usable as additional use case datasets are explored and more feedback is gathered.
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Appendix A

Supported Interactions

A.1 Primary Visualization

1. Left mouse button

(a) Single click – query 3 nearest glyphs

(b) Double click - query single nearest glyph and set as focus

(c) Click and drag - preview 3 nearest glyphs, does not query

2. Right mouse button

(a) Click and drag - move/pan camera

3. Scroll wheel

(a) spin - zoom camera in and out

A.2 Control Window

1. File
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(a) Open - opens a standard file explorer dialog to load a new dataset to an-

alyze. If loading the dataset fails, file format requirements are presented

(b) Save Image - saves the current view in the primary visualization as a .tiff

file

(c) Save Table - saves the current dynamic table as a .csv file

(d) Exit closes the program

2. Find

(a) Entity - opens a series of dialog windows for the user to specify an entity

name to locate

(b) Term - as above, but for terms

3. Visualization

(a) Place Terms – automatically queries between all adjacent sets of 3 en-

tities, placing the highest ranking term provided it is above the input

threshold

(b) Clear Terms – removes all placed terms

(c) Reset Camera – returns camera to original position, where root entity is

at center

4. Table

(a) Rows: Remove Selected – removes any rows that are currently selected

in the dynamic table

(b) Rows: Clear All – removes all rows

(c) Columns: Remove Selected - removes any columns that are currently

selected in the dynamic table
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(d) Columns: Clear All – removes all columns

5. Help

(a) General – explains the general purpose of BioBridge and the basic func-

tionality

(b) Controls – lists supported mouse actions and keyboard shortcuts

(c) Data Input Formats – describes formating requirements of the users data

and supporting term vector file
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Appendix B

Text Mining

While text mining is not part of BioBridge’s functionality, the results of text mining

are an essential input. As such, it is worth discussing relevant issues and describing

the procedures used for the case studies described in the results section. The overall

process is outlined in Figure B.1.

B.1 Document Retrieval

Retrieving relevant documents is a prerequisite for effectively performing subsequent

text mining operations. The goal is to retrieve a series of documents for each entity

to be visualized. For all datasets discussed here, this involves downloading a set of

abstracts from PubMed. Locating these abstracts can be accomplished a number

of ways. The primary strategy employed relied on PubMed’s search features and

integration with other NCBI databases. For metabolites, alternate strategies were

explored that utilized the curated list of reference articles provided by KEGG for

each metabolite. These reference articles primarily deal with compound purification

and identification; this was not the type of information the evaluator was interested

in. This highlighted the importance of carefully considering document retrieval
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Figure B.1: Text mining for BioBridge input.
Text mining consists of two stages, an initial retrieval stage and a final processing
stage. The implemented pipeline is outlined on the right in red. On the left (in
blue), are alternative application specialized or possibly user controlled text mining
routes. A specialized text mining process only has to rejoin the main pipeline as
aggregated text or a term vector table to be compatible with BioBridge.

methods.

For the microarray datasets, searching for abstracts was straightforward since

the majority of microarray probes are associated with gene symbols. Given this

list of gene symbols, the next decision to make was how to formulate PubMed

searches. After some experimentation, the Gene Name and Organism tags were used

to specifically retrieve a gene ID that ties directly to PubMed articles. There are

many other potentially relevant ways to conduct a PubMed search for text mining

input. One can imagine filtering by date, sets of organisms, or simply searching

for the gene’s symbol, to maximize results, being of interest in certain contexts.

Regardless, the result is a list of PubMed IDs that may then be downloaded from

PubMed as abstracts and assembled as a document corpus for input to the processing
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stage.

B.2 Text Processing

Once abstracts have been retrieved, the task is to convert documents of text to

numerical term vectors. After some initial processing that removes extraneous for-

matting and punctuation, the remainder of processing is done in a freely available

data mining program called Weka that is offered by the University of Waikato. Weka

may be downloaded from http://www.cs.waikato.ac.nz/ml/weka/. Installation and

usage documentation is also provided. The decision to rely on Weka was made be-

cause its GUI makes it fairly easy to start using. This makes it possible for the

text mining pipeline to be put under direct control of users at this point. While an

automated option will still be provided, the third evaluator expressed a lot of inter-

est in controlling the text mining process. The remainder of this section describes

the general text mining procedures applied to the use case datasets as well as the

reasoning behind them.

Weka provides a function for converting text to bag-of-words term vectors. Un-

like some natural language processing methods, bag-of-words does not preserve any

sentence structure or context but only tallies each occurrence of a word. There

are several parameters that may drastically affect the process of converting text to

bag-of-words. Firstly, users are unlikely to be interested in terms that occur in most

or all of the documents. Obvious examples are “the” and “and” but terms such

as “gene” are likely candidates in the biological domain. Therefore, each term is

divided by the percentage of documents it appears in. This magnifies the impact of

infrequent terms and diminishes the impact of uninteresting terms. It is also gen-

erally appropriate to discard exceptionally rare terms. While these terms may be
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important to a specific entity, they add a lot of noise to the dataset and would not

help in finding similarities among entities. Therefore, a minimum frequency thresh-

old of 5 documents was applied for keeping each term. No maximum threshold was

applied. Instead, an inverse document frequency (idf) transform was applied to

ensure overly common words had very low scores.

Normalization based on the amount of text available for a given entity was also

applied. This is because the number of articles related to each entity is highly

variable. Using the metabolite dataset to illustrate, there are many thousands of

articles that reference glucose or ATP, but most of the metabolites have fewer than

100 relevant articles. This raises two issues, there will be far more terms associated

with the over represented entities and the counts of these terms will be much higher.

This is addressed by normalizing text mining results for each entity relative to the

size of the source text.
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