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ABSTRACT 

 Methyl Tertiary-Butyl Ether (MTBE) contamination of groundwater and surface waters has become a 

relevant environmental and public safety concern in recent years.  This anthropogenic compound is now 

persistent at low concentrations in several valuable ground and surface water locations within the 

United States due largely to the widespread production of MTBE for use as a fuel oxygenate in 

conjunction with negligent underground storage practices during the 1980’s and 1990’s.  Though there 

are several treatment strategies for the remediation of MTBE spill sites, the most efficient strategy may 

be adsorption of MTBE by a packed column of silicalite-1 adsorbent.  Effective adaption of this 

technology requires cheap production of silicalite-1 sorbent packing particles on the order of 3 

millimeters diameter.  This work entails the development of a new synthesis process which results in 

sufficient in-situ crystallization of silicalite-1 aggregates within a 3 millimeter spherical amorphous silica 

gel source.  The crystal aggregates sizes can be tuned from 5 to 70 µm, depending on synthesis 

parameters, and the finished silicalite-1 aggregate particle takes the shape of the amorphous gel source.  

These aggregate particles, when containing a small amorphous core, should be suitable for packed 

adsorption column applications. 

Multiple hydrothermal synthesis experiments were performed by batch methods featuring silica gel 

spheres as the sole silica source for the batch.  Zeolite nucleation and crystal growth were demonstrated 

throughout the amorphous bead.  Synthesis parameters were optimized both for short synthesis times, 

optimal mechanical properties, and cost effectiveness.  The influence of product crystal size on particle 

hardness was also investigated.  The packing production process is sufficiently ready for supporting pilot 

scale adsorption studies. 
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I. INTRODUCTION 

 MTBE Contamination of Ground and Surface Waters in the United States 

Methyl Tertiary-Butyl Ether (MTBE) contamination of groundwater and surface waters has 

become a relevant environmental and public safety concern in recent years.  This anthropogenic 

compound is now persistent at low concentrations in several valuable ground and surface water 

locations within the United States, due largely to the widespread production of MTBE for use as a fuel 

oxygenate during the 1980’s and 1990’s.  Underground storage of oxygenated fuel blends containing 

MTBE at gasoline dispensing facilities and industrial sites throughout the US without adequate erosion 

protection or leak detection methods and equipment are partly responsible for the current 

concentrations of MTBE in American groundwater near urban areas.  Small concentrations of MTBE are 

readily detectable to human senses in potable water in the form of an unpleasant taste and odor.  

Furthermore, there is some evidence that suggests MTBE may be a chronic exposure carcinogen and 

strong evidence that MTBE is an acute exposure irritant to the nervous and respiratory systems at high 

vapor concentrations1.  MTBE poses difficulty to environmental remediation schemes because of its high 

solubility, low adsorption affinity for soil, and high resistance to biodegradation.  These characteristics 

lead to large plume sizes at point leaks and a tendency of the compound to defy the conventional 

passive natural attenuation techniques traditionally utilized in managing petroleum leaks and spills.  

Activated carbon adsorption is an acceptable treatment strategy, but activated carbon, like soil, has a 

somewhat low sorption capacity for MTBE when compared to microporous dealuminated zeolites, such 

as silicalite-1.  Due to this fact, large crystal aggregates of silicalite-1, having approximately spherical 

shapes with 3 mm average diameter, are an extremely attractive alternative technology to activated 

carbon for full scale cleanups of petroleum spills and leaks where significant MTBE concentrations are 

present. 

MTBE had been produced as early as 1979 in the United States for the purpose of increasing the 

octane number of petroleum fuels in order to reduce valve-seat wear in high compression-ratio internal 

combustion engines.2  This relatively new fuel additive found increased demand in response to the 

phase-out of tetra-ethyl lead additives starting in 1973.3  The Clean Air Act amendments passed in 1990 

set a minimum oxygen content requirement of 2.7% by weight for fuels sold for use on United States 

roadways in urban areas during winter months in order to promote complete combustion in automobile 

engines and effectively reduce domestic mobile source carbon monoxide emissions.4  As a result, 

production of MTBE was rapidly accelerated due to the fact that the fuel additive quickly became the 

most popular fuel oxygenate for achieving the oxygen requirement set forth by the Clean Air Act.2  

Production of MTBE increased steadily from under 1 billion gallons per year in 1982 to over 3 billion 

gallons per year in 1999.  Since 2002, MTBE production has declined.5  During the 1990’s reports of 

MTBE contamination of ground waters, surface waters, and municipal drinking water supplies within the 

United States were confirmed.5  Environmental legislation, ironically, had encouraged rampart 

production of a highly persistent anthropogenic chemical which subsequently had intimately 

contaminated the environmental landscape of the United States. 
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The extent of MTBE contamination of the environment and the potential for detrimental effect 

on human safety is evident from surveys of public water systems conducted by the Environmental 

Protection Agency.  Public Drinking Water System data ranging from 2000 to 2005 reports 

concentrations of MTBE above 5 µg/L detection levels in 26 public drinking water systems of some 

32,126 systems surveyed.  The mean measured MTBE concentration of systems having concentrations 

above the 5 µg/L threshold was 15.2 µg/L.  As compared to other regions, instances of MTBE 

contamination of public drinking water systems occur at higher frequency in the regions of New England, 

New York, and New Jersey.6  A study completed by the National Geological Survey demonstrated that 5% 

of the public water wells it surveyed had MTBE concentrations greater than 0.2 µg/L.  In a separate 

study, the National Geological Survey also reported that 3% of the unutilized aquifers containing potable 

water surveyed demonstrated MTBE concentrations higher than 0.2 µg/L.5  In only three decades time, 

the prolific fuel economy of the United States was responsible for introducing a new anthropogenic 

substance to groundwater in detectable quantities throughout the country.  

MTBE contamination has been traced to leakage of underground storage tanks on the premises 

of privately owned gasoline dispensing facilities and industrial sites.  In order to better prevent the most 

probable scenarios for MTBE leakage into the environment from Underground Storage Tanks, the 

Underground Storage Tank Act mandated that all privately owned Underground Storage Tank systems 

maintain overfill protection, corrosion control, and leak detection equipment.7  Recent litigation has led 

to rigorous enforcement standards for acceptable underground storage.  On November 9th, 2006 a $3.1 

million USD ruling was ordered by an EPA Administrative Law Judge for the Euclid Company due to 70 

violations of statute by underground storage tanks on 23 of the corporation’s facilities.8  While these 

government actions work to reduce further development of environmental contamination, the current 

levels of MTBE persistency in American ground and surface waters are sufficient to warrant remediation 

costs of $2 billion USD as estimated in 2005.9  These high costs are mandatory to ensure the safety of 

drinking water sources within the United States. 

MTBE destroys potable water due to a distinct odor and taste at minute concentrations.  The 

EPA has placed a warning advisory limit for concentrations above a range of 20-40 µg/L for taste and 

odor.10  There is some evidence to suggest that MTBE may be a human carcinogen over prolonged 

exposures.   A four level chronic vapor MTBE exposure study in 1997 monitored the health of Fischer 

344 rats over the course of 2 years and reported statistically significant increases in tumors of the 

kidneys and testes of male rats at the two highest levels of exposure.1  The major metabolites in the 

breakdown of MTBE in human liver tissue are tertiary butyl alcohol (TBA) and formaldehyde.11  

Formaldehyde is considered to be a probable carcinogen by the International Association for Cancer 

Research and the EPA.2  MTBE groundwater and surface water contamination could very credibly pose a 

significant risk to human health in addition to degrading the character of potable water resources within 

the United States. 

At point releases of oxygenated fuel, such as surface spillage and underground storage leaks, 

MTBE is much more mobile than other harmful monitored constituents of oxygenated fuel such as 

benzene toluene, ethylbenzene, and xylenes (collectively, BTEX).  Soil has a very low sorption capacity 

for MTBE and, due to this fact MTBE travels at a velocity very similar to that of ground water itself under 
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subsurface porous soil media.2  In addition to increased mobility as compared to other monitored 

constituents of fuel spills and leaks, MTBE also is much more resistant to biodegradation.  Due to these 

facts, spills with MTBE content show larger plume sizes than spills that are MTBE free.2  These 

characteristics of MTBE lower the performance of conventional containment and passive monitored 

natural attenuation strategies for the remediation of MTBE point source sites.12    MTBE is extremely 

soluble in water over a wide range of concentrations, and has a low Henry’s Law Coefficient.2   

Current available remediation strategies for MTBE groundwater contamination sites can be 

categorized as either in situ methods or pump and treat methods.  Both methodologies have a strong 

dependency on credible data describing the plume size and the evolution of the plume in time.12  In situ 

treatments involve containing the plume and treating the contained plume by either air sparging or 

natural attenuation.  These technologies are desirable because they eliminate the expense of pumping 

groundwater to the surface.  In the case of MTBE treatment, the low biodegradation rate and low 

Henry’s Law Constant limit the effectiveness of natural attenuation and air sparging respectively.  Air 

sparging also requires expensive treatment of the air off-gas and is not effective in treating the 

biodegradation primary breakdown product of MTBE, Tertiary Butyl Alcohol (TBA).12  Another in situ 

methodology that has been proposed is the permeable reactive barrier process13.  This strategy involves 

creating an impermeable barrier in front of the plume path with a permeable gateway filled with 

treatment catalyst.  This methodology is advantageous because it takes advantage of the natural flow of 

groundwater to drive contact between the feed stream and the catalyst.  Activated zeolite ZSM-5 has 

been suggested as a potential catalyst for the acid catalyzed breakdown of MTBE to TBA and 

methanol.13  An appropriate microbial population would be grown at the exit of the gateway to allow 

microbial degradation of the increased biodegradable catalytic products.  The zeolite also has strong 

adsorption properties for both MTBE and TBA which would allow a slower release of these contaminants 

to the exit microbial population, favorable to the microbial degradation process of the contaminants.  

No field data is available, however, to support the viability of this emerging technology in the treatment 

of MTBE.  Pump and treat methods include advanced oxidation, air stripping, and adsorption.  Advanced 

oxidation reactions involve the mineralization of MTBE to carbon dioxide and water.  Oxidation proceeds 

by reaction with hydroxyl radicals which can be generated from the UV reaction of hydrogen peroxide or 

the reaction of ozone and hydrogen peroxide.  These operations require long term storage of hydrogen 

peroxide, and hydroxyl radicals have preferred reaction kinetics with the BTEX aromatic constituency of 

petroleum products.  Air stripping groundwater pumped to the surface features the same disadvantages 

as air sparging.  A cheap and well demonstrated method of groundwater pump and treat MTBE and TBA 

remediation is adsorption by a packed tower of granular activated carbon.  There is ample field data for 

the deployment of this technology in treating MTBE leaks and spills.2  Of the treatment techniques 

available, packed adsorption towers may be the most inexpensive and practical.  

Some of the most effective acceptable remediation techniques, therefore, generally involve 

adsorption of MTBE into solid phase sorbents.12  Activated carbon is the most frequently selected 

sorbent, but silicalite-1 molecular sieve sorbents have been demonstrated to outperform activated 

carbon by as much as 50,000 µg/g of adsorbent at the low concentrations of MTBE encountered in 

groundwater remediation applications .14  Cheap production of hydrophobic molecular sieve adsorbents 
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for the purposes of removing MTBE from contaminated ground water, could, in conjunction with other 

emerging technologies, dramatically improve the most recent 2 billion dollar cost estimate for 

remediation of the natural groundwater and surface waters of the United States.  

Zeolite Structure, Nomenclature, and Properties 

The classification Zeolite was first appropriated to the naturally occurring |Na2 Ca8 (H2O)60| [Al18 

Si54 O144 ] – STI crystalline molecular sieve material, stilbite, in 1753 by the Swedish mineralogist Axel 

Fredrik Cronstedt.15 The term zeolite translates to "boiling stone", a reflection of the molecular sieve 

material's propensity for water retention and subsequent heat induced desorption of steam when 

Cronstedt fused the material in his enlightenment-age blowpipe apparatus.16  Molecular sieve materials, 

a much more modern classification, pertain to any crystalline or amorphous porous material with 

regular pore sizes that can accommodate certain guest molecular species with access to their internal 

pores while restricting other molecular species, on the basis of their size and shape.17  Zeolites, in the 

modern sense, belong to the molecular sieve class of materials, but more specifically, the composition of 

the zeolite framework, the structure that results in zeolite microporous properties, must be restricted to 

alumina and silica tetrahedral connected at the vertices.18  This strict definition allows for a surprisingly 

rich, wide spectrum of materials with properties required for strong catalytic activity and selectivity in 

such varied organic reactions as alkane cracking, dewaxing of petrol, and several isomerization and 

aromatization reactions.19  The prominent position of zeolite catalysts in the petroleum industry was 

quickly achieved after the demonstration of the alkane-cracking activity and selectivity improvements 

over alumina-silica clays in the 1960’s and the engineering achievements in zeolite synthesis by Union 

Carbide and the Mobil corporation shortly thereafter.19  In addition to revolutionizing catalysis, zeolite 

materials have also earned a place in various separation processes and ion exchange processes.16  In the 

future, engineering process achievements related into growing very large and very small crystals cheaply 

could begin a new revolution in zeolite utilization in industry and in consumer goods. 

 The Zeolite framework is composed of tetrahedral basic building units, these units feature a 

connectivity scheme with central atoms, commonly referred to as T atoms, which are either aluminum 

or silicon, and four peripheral atoms that are always oxygen.17  These basic building units may be 

assembled such that two silicon central atoms or one silicon atom and one aluminum central atom may 

share a common peripheral oxygen atom, effectively bridging the two basic building units together.  Two 

aluminum atoms, however, are energetically forbidden to form a peripheral bridge, as demonstrated by 

recent theoretical DFT cluster calculations.20  Zeolites are tectosilicates, three dimensional anionic 

networks in which every periphery oxygen atom is shared.18  Because of the wide range of bond angles 

permitted by oxygen-silicon-oxygen bonds, 129.1˚ to 180˚, these basic building units have sufficient 

license to form diverse three dimensional topologies which fall within the zeolite framework 

classification.16  Zeolite frameworks can also be seen as made up of intermediate building units, called 

composite units.  These composite units are assemblages of primary units which can be repeated in 

reoccurring patterns to fully realize periodic zeolite topologies.18 

 Composite building units range from the straightforward double 8-ring unit: two parallel planar 

eight member rings with the vertices of each ring also connecting orthogonally, to the more complex 
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three dimensional connectivity of the pentasil unit: eight five member rings connected to one other as 

to produce an eight faced polyhedron.  Such composite building units are named by IUPAC convention 

by specifying the size of the rings which make up the composite building unit by providing the number of 

vertices as the base of an exponent, and the number of faces in the unit made up by these rings as an 

exponent.  The smallest rings that make up faces of the unit are listed first, followed by each of the 

larger rings until each face of the unit is specified.17  By this convention the double 8-ring unit is named 

[4882] and the pentasil unit is named [58]. 

 Composite building units can be used to describe both the framework and pore structures that 

are characteristic of the zeolite materials.  Pores are defined as the polyhedral void spaces that are 

formed by zeolite framework structures and are the entity that provides zeolites with their molecular 

sieving character.  The faces of the pore polyhedron are called pore windows.  Pores that have at least 

one window large enough to permit entry of a molecule larger than water (a circular window diameter 

of 2 Angstrom) into the void polyhedral are defined as cavities.  Pores that fail to meet the cavity criteria 

are termed cages.  Cavities that extend infinitely in one or more directions are defined as channels.  

Channels, cavities, and cages can accommodate what are called guest species, molecules and ions small 

enough to exist within their void polyhedron, while the framework silica and alumina tetrahedron 

themselves are referred to as the host structure.17 

 It is the chemistry of the zeolite channels, cavities, and cages that define the material’s 

performance with respect to molecular sieving, ion-exchange, and catalytic selectivity.18  Zeolites with 

finely tuned channel widths have vast potential with respect to molecular sieving.19  Sorption 

performance with respect to separation factor for gases is determined by the ability to selectively 

adsorb, diffuse, and desorb from either the air swept side of a membrane separator or the recharging 

stream of a thermal or pressure programmed packed adsorption column.21  The most important 

property of these channels is their smallest pore dimension in the direction orthogonal to the direction 

of their infinite channel extension, termed the effective channel width.17  Channels are not truly 

infinitely extended, but instead their lengths are related to the macroscopic zeolite crystal size.  Larger 

crystal sizes also can provide enhanced selectivity for catalysis and separation applications.  Larger 

crystals provide longer regular channels which may offer preferred diffusion kinetics for certain guest 

species.  Due to this fact, large crystals are desirable in achieving greater catalytic selectivity in many 

organic reactions by allowing preferred products, which do not vary appreciably in size, to be separated 

from other products on the basis of their polarity.  Ultimately, zeolite pore properties dictate the 

materials performance in molecular separations. 

In addition to the geometry of pore windows, the chemical identity of the T atoms that make up 

a pore window influences the properties of zeolite materials.  Alumina tetrahedron, an aluminum (III) T-

atom with four oxygen periphery atoms, have an overall of charge (-1) while silica tetrahedron, a silicon 

(IV) T-atom with four oxygen periphery atoms, have an overall neutral charge.  Thus, alumina bridged to 

silica gives pore windows a charge imbalance feature which is normally alleviated by the presence of a 

mobile extra-framework monovalent guest cation localized within the pore.18  These localized extra-

framework cations are defined as compensating cations, and it is their chemistry that dictates the 

performance of zeolite materials in ion-exchange processes.18  Hydrogen proton compensating cations 
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are localized in a quasi-bond with the bridging peripheral oxygen atom between the silicon and 

aluminum atoms, effectively creating bridging hydroxyl groups in the zeolite pore window.22 It is this 

strong Brönsted acid site provided by these structures that catalyze SN1 type organic reaction 

mechanisms such as alkane cracking19.  The localized nature of these acidic sites, within the zeolite pore, 

make zeolite SN1 catalytic mechanisms pronouncedly selective by restricting access to the active sites to 

guest species larger than the intended reactants or products.  The chemistry and geometry of zeolite 

frameworks make them invaluable to petrochemical industry.  

Zeolite frameworks can be synthesized with wide stoichiometric variations of alumina content.  

The silicon to aluminum ratio within typical zeolite frameworks can range from 1 to arbitrarily large.  

Alumina content is important in altering the properties of zeolite pores providing for higher catalytic 

activities or providing preferred diffusivities for either polar or non-polar guest species.19  The presence 

of aluminum in a pore window leads to more active sites for organic SN1 reaction mechanisms, however 

a high density of alumina sites leads to more prominent poisoning of the sites and lower macroscopic 

acidity due to the diminishing electro negativity of the framework, thus decreasing catalytic activity23.  

With respect to sorption properties, sufficient alumina content leads to increasingly polar electric 

character of the windows of the channels that make up a zeolite pore network due to the charge 

imbalance each alumina site contributes.  These increasingly polar channels are highly hydrophilic, while, 

in contrast, dealuminated channels are highly hydrophobic, offering preferential diffusion kinetics to 

organic guest species that are large and electrically neutral.19  Water molecules are readily loaded into 

pore spaces of a wide variety of zeolites, but dealuminated species are relatively water free.18  Alumina 

content is a microstructure feature of zeolite frameworks that may be widely varied and leads to 

profound effects on zeolite properties. 

Any given state of a zeolite material may be named according to IUPAC rules.  The smallest 

repeating volume element of the periodic crystal, the unit cell, provides all of the information necessary 

for complete identification and characterization of a crystal structure and can be used to create a model 

of any arbitrary morphology.   According to convention, the zeolite is named by the stoichiometry of its 

defect-free unit cell.  First, the stoichiometry of the guest species occupying the unit cell are given in 

straight brackets, followed by the stoichiometry of the framework atoms given in bold square brackets, 

followed by a dash and the three letter code of the zeolite framework in bold.  The three letter codes for 

zeolite frameworks are abbreviations for the well known common names appropriated to each 

particular framework.  Silicalite-1 has the IUPAC designation:  

[Si80 O144]  h{3[58]} p{1[10]<100>(0.54)/1[10]<010>(.56)}-MFI. 

According to nomenclature conventions recommended for IUPAC, this name describes, in addition to 

the stoichiometry of the unit cell, that the host may be constructed from only the pentasil composite 

unit, and that the structure has two channel networks.  The first channel extends indefinitely in one 

crystallographic dimension, is composed of a double 10 ring composite unit ([10]) extending in the <100> 

crystallographic direction and has an effective width of 0.54 nm.  The second pore has a width of 0.56 

nm and also extends in one direction, the <010> direction, and is built from the 10 member composite 

unit.  The channel in the <100> traverses a sinusoidal path, while the wider channel in the <010> is a 
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straight path channel.  Silicalite-1 and ZSM-5, an aluminated MFI structure zeolite, both usually display 

coffin-shaped crystal morphology.  The crystal is typically longest in the <001> crystallographic direction.  

The figure below demonstrates silicalite-1 and ZSM-5 crystal morphology and the microstructure of their 

pores.  Zeolites, in general are defined by their guest species, alumina content of their frameworks, and 

geometry of their pores.17 

 

Figure 1:  MFI pore structure and crystal habit 

Zeolite states can be tuned with respect to alumina content and pore geometries at the time of 

synthesis by applying engineering principles to established synthesis techniques.  The all-important 

properties of the zeolite materials currently available are limited only by the ability of synthesis 

techniques to develop cheap, uniform, sustainable varied microstructure production processes. 

Zeolite Synthesis 

 Synthetic preparation of zeolite materials began in earnest in the late 1940’s based on the 

pioneering work of R.M. Barrer.  He was able to demonstrate that zeolite frameworks could be 

synthesized cheaply and easily with simple laboratory equipment.24  In 1948, Robert M. Milton’s group 

at Union Carbide Corporation initiated research into zeolite production, building on the work of Barrer, 

and as a result of their efforts, Union Carbide Corporation entered the zeolite market in 1954.  Since 

that time, Union Carbide Corporation, the Mobil Corporation and independent researchers have 

combined to develop over 80 synthetic frameworks.25  New frameworks continue to be developed in 

modern zeolite synthesis research, such as the recent mesoporous frameworks developed by the Mobil 

Corporation in 199619, although much modern zeolite synthesis research concerns itself with control of 

the crystal morphologies of established synthetic frameworks. 

In spite of the wide variety of microporous crystal structures that can be synthesized, virtually all 

zeolite synthesis procedures share the same features.  An aqua-gel solution is created within caustic 

media containing a silica source, an aluminum source when applicable, and a structure directing agent 

when applicable.  The structure directing agent is a non-framework organic base which participates in 
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complex interactions with zeolite precursors.  These interactions influence the progression of zeolite 

crystal growth sufficiently to direct the building novel frameworks.26  The aqua-gel, containing the 

charge of nutrients necessary for zeolite synthesis, is sealed in a vessel and exposed to elevated 

temperatures (usually between 60 °C-180 °C) in a batch process.  The solubility of the gel phase is higher 

than the solubility of the newly formed zeolite phase and so the resulting equilibrium between the 

amorphous gel phase, supersaturated aqueous phase, and newly formed zeolite crystal phase at high 

temperature and autogenous pressure provides the driving force for zeolite homogenous nucleation.  

Under these same conditions, subsequent crystal growth of formed nuclei competes with continued 

nucleation until all nutrients are depleted and the batch synthesis is stopped.  Due to the variety of 

parameters involved in the crystallization phenomenon batch times can vary from hours to days.27  For 

batches that include a structure directing agent, the organic base will be trapped within the pores of the 

zeolite at the time synthesis is stopped.  In that case, the resultant as-synthesized zeolite must be 

calcined—exposed to temperatures between 450-550 °C for 2-3 hours, in order to destroy the organic 

base within the pores, restoring the useful properties of the zeolite. 

A number of different silica sources can be used for hydrothermal synthesis.  For this purpose, 

colloidal silica, sodium silicate, or tetra ethyl ortho silicate (TEOS) is acceptable.  Aluminum can be 

introduced into the aqua-gel from sources such as aluminum hydroxide, alumina, or sodium aluminate.  

Structure directing agents vary depending on the framework which is to be synthesized.  Other 

parameters which can be varied to produce different zeolite frameworks and crystal sizes are the silica 

to aluminum ratio, the water content, the pH, and the presence of any cations in solution.  These 

parameters have a strong influence on not only the identity of the framework which is synthesized, but 

also on the crystal size distribution, the yield of solids, and the crystallinity of the yielded solids. 

 Current zeolite synthesis research is dominated by the need to grow very large or small crystals 

of existing zeolite frameworks, as opposed to the development of new frameworks.  A wide variety of 

applications exist for crystals at the extremes of the crystal size spectrum.  Instances of batch produced 

macroscopic particles of crystal aggregates are desirable for large scale chemical separation processes 

and catalysis processes.  There is sufficient demand for batch synthesis processes that are affordable 

and can tightly control the final morphology and crystal sizes of the aggregates of these materials, such 

as the process demonstrated in this work. 

Fixed Bed Adsorption Columns 

Macroscopic zeolite packing could be extremely useful in developing a fixed bed adsorption 

process for wastewater treatment of MTBE.  Most current adsorption columns for these applications 

feature a fixed loading of packing of granular activated carbon (GAC) within a cylindrical column 

commonly composed of lined carbon steel.28  Typical adsorption columns are 7-10 ft in diameter and 20-

40 ft tall.  The lining may be selected to suit the corrosion and abrasion resistance required for the 

wastewater application considered.  Wastewater feed is most often delivered to the bottom of the 

column and effluent is collected from the top to minimize head loss.  Over the lifetime of operation the 

column packing will become saturated with adsorbed contaminant and regeneration of the packing is 

required.  Regeneration is usually accomplished thermally by delivering the saturated packing to a multi 
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hearth furnace by screw conveying.  Furnaces containing rotating rabble arms and are usually natural 

gas fired.  Regenerated, reactivated carbon can then be redelivered to the column and another 

treatment cycle may take place.  Adsorption columns packed with granular activated carbon are an 

established technology that has obtained acceptable target treatment concentrations in municipal and 

industrial settings since the 1970’s. 

The wastewater feed in intimate contact with the solid packing allows for the mass transfer of 

contaminant from the aqueous phase to the solid adsorbent phase by sorption phenomenon.  If the 

packing has extended surface area due to a microporous framework such as silicalite-1, the contaminant 

is of a sufficiently small molecular size, and diffusion kinetics are sufficiently fast, diffusion into the 

extended internal surface area will provide dramatically higher sorption capacities as compared to non 

porous packing.  The breakthrough curve for a particular adsorption process is the plot of effluent 

concentration over time.  It is a direct measure of the lifetime of the adsorption process before 

regeneration of the packing is in order.  In a bottom to top liquid delivery adsorber configuration, 

saturation of adsorbent occurs first at the bottom of the packing and then proceeds to the top.  The 

effective continuous volume of mass transfer, the mass transfer zone, decreases while the saturated 

zone increases.   At the time that the effective zone of mass transfer reaches the top of the column, an 

inflection point occurs in the breakthrough curve.  After this point of inflection, the breakpoint, the 

effluent concentration increases rapidly to another inflection point, the exhaustion point, at which all 

driving force for mass transfer is extinguished and the concentration more slowly reaches the feed 

concentration.  The S- shaped curve that results determines the lifetime of the adsorbent process before 

the recharging operation must occur.  

It follows that column packing that could outperform activated carbon could lead to less 

instances of the expensive thermal regeneration step.  Furthermore, the use of zeolite packing to adsorb 

MTBE, could lead to the utilization of an advanced oxidation regeneration procedure29 instead of the 

overly expensive thermal regeneration step.  Less iterations of the thermal regeneration procedure or 

substitution with chemical regeneration would lead to natural gas savings as well as less operation of 

the scrubber located downstream of the furnace flue gas.  Silicalite-1 zeolite, or dealuminated ZSM-5, is 

a zeolite species which is comprised of the MFI, or Mobil Five framework.  Due to the fact that it has no 

alumina in the framework, silicalite-1 is hydrophobic and is an excellent candidate for a fixed bed MTBE 

adsorbent.  As noted already in this work, silicalite-1 was shown to outperform activated carbon in this 

role in laboratory experiments by adsorbing as much as 50,000 µg/g adsorbent more than activated 

carbon at low concentrations of MTBE .14  In order to realize full scale utilization of these laboratory 

findings, however, a variety of scale-up engineering problems must be resolved.  

In order for useful implementation of silicalite-1 packing for adsorption column applications to 

be realized, synthesis methods must be developed to produce packing on the order of millimeters as 

opposed to the powder form that it is traditionally available.  A typical large scale commercial activated 

carbon adsorption columns features a pressure drop across the bed of 35 psi with an inlet pressure of 60 

psi28.  The pressure drop across a theoretical bed can be calculated by the Ergun equation: 
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𝑓𝑝  =  
150

𝑅𝑒𝑝
 + 1.75                                                                                                                                   Equation [1] 

𝑓𝑝  =  
∆𝑝

𝐿

𝐷𝑝

𝜌𝑉𝑠
2  

𝜖3

1 − 𝜖
                                                                                                                            Equation [2] 

𝑅𝑒𝑝  =  
𝐷𝑝𝑉𝑠𝜌

 1 − 𝜖 𝜇
                                                                                                                                      Equation [3] 

 

 

The largest silicalite-1 zeolite powders have crystal sizes of 120 µm, this would lead to a 

pressure drop of 2000 psi for a column of 10 diameter and 20 ft height with typical hydraulic particle 

loading.  Increasing the particle size, by aggregating the crystals into spherical packing of 3 mm diameter 

would reduce the pressure drop to 20 psi, making the technology feasible.  For silicalite-1 packing to be 

a viable alternative to activated carbon packing, the packing must approach a 3 mm particle size.  It is 

for this reason that the subsequent laboratory scale investigation into the development of large 

spherical aggregates of silicalite-1 micro crystals has been undertaken. 
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II. EXPERIMENTAL 

Reagents: 

Silica Gel Beads: 

Silica gel beads sold by EM Industries for use as a desiccant under the trade name t.h.e.™ (“the 

highly efficient desiccant”) were used as the starting source of silica material for each synthesis 

conducted.  The gel particles have a reported value of 4 mesh particle size.  Experimental investigations 

conducted during this work revealed an average particle size of 3.1 cm diameter, a particle weight of 

0.190 g, and each particle adsorbed 37% of the particle weight in water before becoming saturated. 

Structure Directing Agent: 

Tetrapropylammonium Bromide salt obtained from Aldrich Chemical Company (Catalog number: 

22 556-8), or 40% by weight Tetrapropylammonium hydroxide (TPAOH) solution obtained from Johnson 

Matthey (Lot number: K08B04) was used as the structure directing agent in each of the synthesis 

experiments conducted. 

Other Reagents: 

A summary of all of the reagents used in this work are provided in Table 1. 

Table 1: List of Reagents 

Reagent: Obtained from: 

Ludox AS-40 Colloidal Silica Aldrich 

Sodium Silicate (Na2SiO3*5H2O), granular EM Industries 

Sodium Hydroxide (NaOH), pellets (97%) Aldrich 

Nitric Acid (HNO3), 60% by weight solution Aldrich 

Ammonium Hydroxide (NH4OH), 30% by weight solution Aldrich 

Triple exchanged and triple filtered purified water Barnstead Nanopure II 

 

Laboratory Equipment: 

All experiments were conducted in sealed 8 mL, 1.5 cm diameter Teflon-lined stainless steel, 

Morey-type autoclaves.  For the synthesis experiments conducted using the steam assisted conversion 

method, the autoclave was modified to include a stainless steel 6-mesh tray to support ten beads above 

2 mL of water.  Autoclaves were cleaned after each experiment with a warm solution of nitric acid under 

a fume hood. 

To minimize breakage of the hydrophilic silica gel beads when immersed in aqueous solution, 

care was taken to saturate each bead with water content before introduction to hydrothermal solutions.  

Saturation of the beads was accomplished by modifying an 8 L desiccator to suspend 500 beads above 
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2L of water.  A curved glass condensation shield was included above the bead plate to protect the beads 

from any liquid contact when gentle heating (100 :C) was applied to the bottom of the desiccator.   

 

All experiments were heated in an automatic controlled convection oven.  The weight of all 

component reagents of the hydrothermal solutions, as well as the weight of the starting beads and the 

finished product beads, was measured by an OHAUS Explorer™ laboratory balance last serviced on 

6/22/09 by Precision Laboratory Corp.  A 1 horsepower, 2750 rpm vacuum pump drove the vacuum 

filtration process utilized in the washing of beads after the hydrothermal treatment step.  Each bead was 

calcined in a muffle furnace at 550 °C for two hours after the hydrothermal treatment step. 

Analytical Equipment: 

X-ray diffraction experiments were performed with a Geiger-Flex 2 diffractometer and a Cu Kα x-

ray tube.  A goniometer step size of .1° and dwell time of 1 second were maintained for all experiments.  

Each bead was ground into a fine powder with a mortar and pestle before being placed on a glass 

sample holder for diffraction experiments.  Crystallization scores were assigned to each batch based on 

the ratio of the area of the large peak found at 23° 2-theta to that of a ZSM-5 powder sample obtained 

from ZEOCHEM. 

Scanning electron microscopy was accomplished with an AMRAY-2 microscope.  All pictures 

featured in this work were taken by electrons generated under a potential difference of 15 kilovolts and 

a stable emission current of 55 micro amps.  Each bead was stabilized on a brass mounting peg with 

dried carbon paint and sputter-coated at a current of 45 mA for 75 s with a gold-palladium alloy to 

ensure conductivity of the sample.  Crystal sizes were assigned by the length of the largest crystal 

dimension.  For the typical coffin-like crystal habit of silicalite-1 this dimension is the [001] 

crystallographic direction.  

Vicker’s Hardness Testing was accomplished by use a Vicker’s hardness test apparatus.  Beads 

were first mounted on a fast hardening epoxy resin to stabilize the beads during indentation, polished 

and indented to provide hardness ratings on the Vicker’s hardness scale.  

 

Zeolite Synthesis Batch Recipes: 

A number of different batch recipes were prepared over the course of this work.  The following 

table summarizes these procedures.   
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Table 2: Recipes for Silicalite-1 Batch Synthesis 

The Steam Assisted Conversion Method without Excess Silica 

Composition of Hydrothermal Solution:       

Reagent: Weight (grams) Moles Mole Fraction 

Tetrapropylammonium Hydroxide 10.8 0.053 0.056 

Water: 16.2 0.899 0.944 

        

Temperature (°C): 180     

Ratio of Silica to Structure Directing Agent within the Bead: 22.87     

The Steam Assisted Conversion Method with Excess Sodium Silicate 

Composition of Hydrothermal Solution:       

Reagent: Weight (grams) Moles Mole Fraction 

Tetrapropylammonium Hydroxide 6.8 0.033 0.055 

Sodium Silicate: 2.15 0.010 0.017 

Water: 10.2 0.566 0.928 

        

Temperature (°C): 180     

Ratio of Silica to Structure Directing Agent within the Bead: 26.06     

The Steam Assisted Conversion Method with Excess Colloidal Silica 

Composition of Hydrothermal Solution:       

Reagent: Weight (grams) Moles Mole Fraction 

Tetrapropylammonium Bromide: 6.44 0.032 0.010 

Colloidal Silica: 10.88 0.181 0.059 

Ammonium Hydroxide: 8.46 0.241 0.056 

Water: 46.86 2.60 0.851 

        

Temperature (°C): 180     

Ratio of Silica to Structure Directing Agent within the Bead: 108.9     

Hydrothermal Treatment of Silica Gel Beads 
   Composition of Hydrothermal Solution:       

Reagent: Weight (grams) Moles Mole Fraction 

Tetrapropylammonium Bromide: 5.505 0.021 0.007361908 

Sodium Hydroxide: 0.492 0.012 0.004380038 

Water: 50 2.77 0.988258054 

        

Temperature (°C) 137 to 180     

Ratio of Silica to Structure Directing Agent within the Bead: 121.8     
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Synthesis Procedure: 

In each synthesis procedure, 10 cured beads were selected for each batch.  The particle size of 

each bead was measured with the assistance of digital photography prior to any contact with the 

hydrothermal solution.  The hydrothermal solution or each batch was prepared by blending reagents in 

the proportions enumerated in Table 2.  In the case of the steam assisted conversion method, all of the 

beads from simultaneous batches were first immersed in 30mL of the solution for 24 hours in a 150 mL 

sealed polypropylene bottle prior to being sorted into units of 10, mounted as a unit above 2 mL of 

water in each autoclave, and heated.  In the case of the hydrothermal method, beads were simply 

placed in the autoclave with 5 mL of hydrothermal solution, sealed, and pre-aged for 24 hours before 

heating. 

Autoclaves were placed in a convection oven for varied durations of time.  After removal from 

the oven, each autoclave was rapidly quenched in a cold water bath before opening.  Beads were then 

removed from the autoclaves, washed with water over a vacuum filtration system, and placed in clay 

crucibles for the calcining process.  Calcining was achieved at 550°C for two hours in a muffle furnace.  

After the calcining process, product particle sizes and weights were recorded and analytical 

characterization experiments were conducted on the beads. 
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III. RESULTS AND DISCUSSION 

The conversion of silica gel beads to zeolite aggregate particles is achieved by complex 

hydrothermal mechanisms and because the particle size distribution within the bead cannot be tracked 

in situ as the synthesis proceeds, careful measurements before and after the hydrothermal steps, 

intuition, and logical rationalization are relied upon in understanding and improving the process.  The 

steam-assisted conversion methodology is a viable pathway to low cost production of silicalite-1 packing 

suitable for full scale fixed bed adsorption columns, only if the process is carefully controlled such that 

crystallization is halted by rapid quenching before the approximate last 0.008 cubic centimeters of 

amorphous silica, located at the center of the bead is converted.  If complete conversion of amorphous 

silica occurs, the resulting mechanical properties of the bead are too poor for successful scaled up utility 

in a packed fixed bed adsorption column.  The amount of amorphous silica at the core of the bead can 

be carefully tuned by the operator to strike a balance between more favorable adsorption performance 

and more favorable mechanical properties.  Tuning the amorphous content of the finished product 

requires knowledge of the crystallization vs. time curves of the system, careful control of the starting 

particle sizes of amorphous silica batch feed, and knowledge of the radial concentration profile of 

structure directing agent within the beads at the start of exposure to elevated hydrothermal 

temperature.  

 Structure directing agent within the bead must be considerably higher than concentrations 

typical to bulk solution hydrothermal synthesis due to the large silica reservoir provided by the 

amorphous silica gel housing the aqueous solvent within its macroscopic pores.  The pores vary from 5 

Angstrom to 3000 Angstrom in width and, with a large enough nutrient population of structure directing 

agent available, are suitable localizations for silicalite-1 nucleation and crystal growth mechanisms.  As 

the large feed stock of amorphous silica available to crystallization mechanisms is converted to a dense 

regular periodic phase, the higher density of the crystal phase leads to warping of the original shape of 

the silica bead.  As amorphous silica at the radial coordinates of the bead closest to the surface begin to 

undergo crystallization mechanisms before more central coordinates of the bead, it drives silica and 

structure directing agent nutrients from central starting locations into the developing crystal phase, 

which quickly evolves into a shell of densely inter-grown crystal aggregates.  Below is an SEM 

photograph of this shell of crystal aggregates at a magnification of 30X, as well as a photograph of the 

morphology of the aggregated crystals at 4000X. 
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Figure 2: Silicalite-1 crystal aggregate shell with incomplete surface coverage at 30X magnification 

 

 

Figure 3: Silicalite-1 crystal aggregates at 4000X magnification 



17 
 

The process eventually depletes the central core of the original bead of nutrients until all 

structure directing agent becomes incorporated into the crystal aggregate phase or all amorphous silica 

is converted to silicalite-1 crystals.  In the event that ample structure directing agent is available, the 

densification of the original amorphous gel bead results in a void space at the core of the macroscopic 

bead and unacceptably low yield strength of the product.  Controlling the amount of structure directing 

agent initially charged into the bead before the batch steam assisted hydrothermal treatment step of 

the packing production process is engaged may be the cheapest approach to effectively controlling the 

conversion of the amorphous bead to maximize yield strength of the product. 

 Understanding the crystal curves, or the plot of crystallization vs. time, for the silicalite-1 

hydrothermal treatment system is essential in controlling the conversion of amorphous silica for each 

batch.  The following curve summarizes the crystallization score of several hydrothermal synthesis 

experiments performed by immersing 2g of hydrated silica beads in a hydrothermal solution following 

recipe 4 and cooking for several days in a convection oven at 137°C and at autogenous pressures. 

 

 

Figure 4: Low temperature crystal curve for silicalite-1 

  

 Appreciable crystallization proceeds extremely slowly.  Cleavage of the finished, calcined beads 

revealed that the region of dense 30 micrometer crystal aggregates takes place only as a shell around 

the amorphous silica substrate.  Only after prolonged periods of time does the shell grow in thickness. 
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Figure 5: Bead with a shell of silicalite-1 aggregates covering the surface 

 

Naturally, increasing the temperature of the hydrothermal synthesis step decreases the time for 

appreciable crystallization.  Rather than directly proceeding to 180 °C, the maximum available 

temperature for operations in TEFLON™ lined autoclaves, experiments were conducted at a smaller 

temperature adjustment to 150°C to ensure that increased temperature did not have a detrimental 

effect on the quality of the product.  A second crystallization curve summarizes the benefit of operating 

the batch process at 150°C. 
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Figure 6: Intermediate temperature crystal curve for silicalite-1 

 

The resultant silicalite-1 aggregate shell x-ray diffraction patterns were indistinguishable from 

those obtained in the previous experiment, but the process was considerably faster than the low 

temperature experiments. 

The experiments conducted at 180 °C, summarized in the table below, show aberrant crystal 

habit as evidenced from the x-ray diffraction experiments, also shown below.   

 

 

Figure 7: High temperature crystal curve for silicalite-1 
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Figure 8: High Temperature silicalite-1 crystal curve additional data set 

 

 

Figure 9: Typical silicalite-1 morphology x-ray powder diffraction pattern 
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Figure 10: Silicalite-1 x-ray diffraction pattern of a high temperature experiment demonstrating 
preferred orientations 

 

  The striking feature when comparing these two x-ray diffraction patterns are the much lower 

intensities of the peaks located at 8 and 9 degrees two-theta with respect to the intensity of the peak at 

23 degrees two theta.  The first two peaks are caused by the (200) and (020) faces of the silicalite-1 

crystal habit30 and the high temperature pattern suggests an appreciable difference in habit shape and 

aspect ratio as compared to the lower temperature crystal morphologies. 

Further investigation of this phenomenon by SEM microscopy of a finished batch from the 

earliest stages of the high temperature crystallization curve reveals that instead of a typical coffin-like 

morphology, crystals nucleated and grown at this particular temperature demonstrate a more rounded 

leaf-like morphology. 
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Figure 11: High Temperature Crystal Morphology 

 

The crystal morphology suggests a hindering effect that takes place during nucleation resulting 

in the absence of the alternating (101) and (1 01) terminations that produce the coffin-like crystal faces 

seen in typical morphology as the crystals grows, as suggested by Isabel Diaz and coworkers in their 

work done synthesizing silicalite-1 with different structure directing agents.31  This higher temperature 

effect may be more of a structure directing agent concentration effect, due to increased convective 

transport of structure directing agent due to larger temperature gradients as transient heat transfer 

equilibrates within the bead during the initial stages of nucleation.  Nuclei born of this unusual 

morphology due to high concentrations of structure directing agent at birth, could in turn influence the 

morphology of subsequent nuclei born from the autocatalytic nucleation mechanism.  Supporting this 

assertion is the fact that these morphologies are observed in all of the high temperature and high 

structure directing agent synthesis experiments conducted after this experiment. 

It appears that all of the experiments discussed so far have in common the fact that structure 

directing agent is the limiting reagent.  Crystallization proceeds slowly and eventually plateaus, leaving a 

somewhat desirable amorphous silica gel core at the center of the bead with minimal void space 

separating the shell from the core.  Further experimentation was conducted at higher initial charge 

concentrations of TPAOH within the amorphous feed material.  In these experiments, the beads, 

charged with a aqueous solution of 40% by weight TPAOH, were suspended in the autoclave on a mesh 
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support above a 2mL level of water to ensure that the beads did not dry up over the course of the 

conversion at high temperature.  These experiments were conducted again at the highest temperature 

permitted for autoclave operations, but the most interesting point from these experiments is the 

evolution of the radial temperature profile inside the bead, rather than the oven temperature. 

 The charging of the batch process, the exposure of the feed amorphous silica beads to the 

TPAOH solution for 24 hours, leaves the beads with more or less a uniform concentration profile of 

structure directing agent.  Under ideal heat transfer conditions, this uniform concentration profile could 

be heated concentration-gradient-free to temperatures sufficiently high for silicalite-1 nucleation 

mechanisms to take place.  If these facts were true, a single nucleation event would take place within 

the same time frame resulting in the subsequent growth of equally-sized crystals simultaneously within 

the pores of the amorphous silica.  The end result would be a uniform bead of aggregated crystals and 

distributed void space.  Because these conditions could not be satisfied with useful feed particle sizes of 

amorphous silica, the mechanical strength of such a particle remains a mystery. 

 The high thermal resistivity of amorphous silica instead dictates that crystallization in this batch 

process initiates at the edge of the sphere and proceeds in the inward radial direction.  For 

incompressible flows within mesoporous materials, the non-linear Navier-Stokes equation is coupled 

with the enthalpy balance in a somewhat complex way due to the dependency of viscosity on 

temperature.32  The end result is the temperature-gradient-driven convection of TPAOH from positions 

near the center of the bead to outer surface of the bead as the transient heat transfer process of 

bringing all of the radial position of the bead into equilibrium proceeds sufficiently slowly.  When the 

conditions become appropriate for nucleation at the surface of the bead, these same conditions are still 

developing near the center of the bead, because of the deficiency of structure directing agent at this 

location.  As crystallization proceeds, a much stronger driving force to more fully deplete the center 

zone of structure directing agent develops in the form of the densification of the amorphous silica; 

concentration gradients rapidly develop as a result.  If, however, the batch process is halted before 

complete conversion results, the product beads have mechanical properties suitable for their intended 

application, as packed bed adsorbents. 

 Stopping the batch just before complete conversion of amorphous silica takes place in the 

excess of structure directing agent requires strict control of feed particle sizes.  Larger particles alter the 

heat transfer characteristics that are important in deciding the thickness of the first crystal aggregate 

zone that develops on the outer surface of the bead.  Naturally, due to the additional mass included 

with a larger particle of silica gel, larger beads take longer to reach complete conversion. In spite of 

having to carefully measure particle sizes, the benefit of operating with an excess of structure directing 

agent is dramatically faster crystallization curves.  Below is a summary of the operating conditions and 

crystallization curves for a synthesis procedure that made use of recipe 1. 
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Table 3: Low Silica:TPAOH experiments 

Hydrothermal 

Treatment 

Time (hours) 

Mean 

diameter of feed particles (cm) 

Std dev. 

of feed particle diameter 

Mean 
dry bead 
weight 
(g) 

Crystallinity 

of product 

5.37 3.90 0.024 0.037 0.325 

6.75 4.01 0.036 0.039 0.015 

6.9 3.87 0.028 0.038 0.767 

7.5 3.73 0.031 0.038 0.322 

7.88 3.94 0.023 0.039 0.031 

8.5 3.62 0.029 0.041 0.315 

9 3.90 0.018 0.042 0.513 

 

 

Figure 12: Low Silica:TPAOH crystallization curve 

 

While there is strong variability in the output product crystallization, this crystal curve 

demonstrates that in the present of excess structure directing agent, crystallization proceeds decidedly 

faster: high crystallinities can be achieved in seven hours as opposed to several days.  However, in spite 

of the controlled feed particle sizes, there is much variance with respect to how much crystallization 

takes place within each bead in the batch. 

The following table summarizes crystallization measurements observed over different cooking 

times and also within the same batch under a SEM.  Included are some pictures of the shell and core 

structures of the finished beads, and the measurements of the geometry of these structures as obtained 

from SPIRIT SEM imaging software pixel counts.  The average crystal size is the average of the longest 
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spatial dimension of each sampled crystal found in the aggregation zone.  The void percent is the ratio of 

the diameter of the amorphous core to the diameter of the aggregate zone minus twice the thickness. 

 Table 4: Comparison of geometrical parameters of silica gel conversion features 

Hours heated 

at 180 °C 

Feed mean 

diameter 

(cm) 

Std dev 

of feed 

diameter 

Average 

Crystal 

Size(µm) 

Diameter of 
aggregate 
zone 
(µm) 

Thickness of 

aggregate 

zone (µm) 

Void 
percent 

31 2.85 0.052 4.34 3557 143 0.99 

8 3.15 0.038 7.5 4158 67 0.99 

8 3.18 0.039 3.06 3510 216 0.83 

8 3.18 0.039 8.25 3636 162 0.88 

8 3.2 0.027 11 3718 78 0.92 

8.5 3.62 0.029 23.95 4244 105 0.85 

8.5 3.62 0.029 21.46 3982 142 0.93 

7.5 3.73 0.031 20.69 3342 138 0.99 

7.5 3.73 0.031 7.272 3838 186 0.99 

6.92 3.87 0.028 19.67 4048 163 0.97 

9 3.9 0.018 13.8 3954 415 0.75 

9 3.9 0.018 27.6 4048 653 0.99 

7.88 3.94 0.023 24.5 4410 121 0.91 

7.88 3.94 0.023 23.4 3965 40 0.99 

6.75 4.01 0.036 20.72 4049 270 0.93 

 

Of note is the fact that while the thickness of the aggregate zone varies widely, the diameter of 

the aggregated zone remains more or less the same between experiments.  This evidence supports the 

assumption that crystallization first takes place at the outer surface of the sphere and that subsequent 

nucleation and growth take place in the inward direction towards the center of the bead.  The 

observation of void space confirms that when conversion is complete the finished product will be a 

hollow sphere.  This fact cannot be experimentally confirmed, because the completely converted 

spheres are too brittle to be accurately cleaved and examined. 

Some SEM pictures are included to depict the crystallization phenomenon and how the 

geometric attributes of the crystal shell and amorphous core were determined.  The SEM pictures of the 

crystalline aggregate zone shell demonstrate decreasing crystal sizes from the surface of the sphere in 

the direction of decreasing radial coordinate from the center.  Again this evidence supports the 

assertion that the front of the nucleation activity gradually moves towards the center as crystallization 

proceeds. 
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Figure 13: The silicalite-1 aggregate shell at low magnification 

 

Figure 14: The silicalite-1 aggregate shell at 500X 
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Figure 15: The silicalite-1 shell demonstrating thickness and curvature 

 

Figure 16: A silicalite-1 shell with small crystal sizes and leaf-like morphology of aggregates 
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Figure 17: The amorphous core within the incompletely converted sphere, cleaved in half to 
demonstrate the absence of crystallization within 

 

As an alternative to timing the synthesis to retain an amorphous core, excess silica could 

theoretically be charged into the bead to allow complete retention of the shape of the sphere as 

densification proceeds.  The amount of silica that can be charged into the bead in conjunction with the 

requisite high concentration of structure directing agent is constrained by solubility limits.  The high 

concentration of TPAOH required for the experiments undertaken in this study were at the solubility 

threshold.  As Raoult’s law implies, very little solubility is available for dissolved silica.  In spite of this 

fact, a three-level experiment was performed by preparing in random order 4 experiments at each of 

three treatment levels of dissolved sodium silicate added to the solution.  The three levels were the 

addition of 1.6%, 3.2%, and 4.8% excess silica to the batch in the form of sodium silicate.  Such low 

percentages of the total silica content of the batch were selected to minimize upset of the silica:TPAOH 

ratio that had been found to be successful in promoting fast nucleation and growth of silicalite-1.  The 

results of a Levene’s test for homoscedasticity, and the subsequent ANOVA f-test to test the hypothesis 

that the mean of all three populations are equal is included below.  Either because there is too much 

inherent variance in the process to make a strong distinction between treatments; because the 12 hour 

time scale chosen was not a long enough time for any of the excess silica to be converted; or because 

the same equal small amount of dissolved sodium silicate was able to reach the pores during the 

charging process in all three treatments, changing the amount of sodium silicate did not seem to have 

an appreciable effect. 

    



29 
 

Lavene's Test 

2 Degrees of freedom between treatments 

9 Degrees of freedom within treatments 

  

  W Statistic: 0.51193 
 

  

  critical f for (5% , 2, 9): 3.065     

 

Table 5: Hypothesis testing performed on 3 level treatment experiments 

    RAW DATA Group Score: 
 Sample1 2 0.9712198 
 Sample2 2 0.346427829 
 Sample3 1 0.010919301 
 Sample4 3 1.665401414 
 Sample5 2 0.377859817 
 Sample6 1 0.329658902 
 Sample7 1 0.932846298 
 Sample8 3 1.226185524 
 Sample9 2 2.616940516 
 Sample10 3 0.777142263 
 Sample11 1 0.826305116 
 Sample12 3 0.409629784 
 

    

    Hypothesis Testing: 
   Treatment: Mid Low High 

 
0.3464278 1.665401414 0.0109193 

 
0.3778598 0.409629784 0.8263051 

 
2.6169405 0.777142263 0.9328463 

 
0.9712198 1.226185524 0.3296589 

    Group Mean: 1.078112 0.950724487 0.5249324 

Overall Mean: 0.8512563 
  SSw Calculation:       

  0.5353617 0.51076311 0.2642095 

  0.4903531 0.292783478 0.0908255 

  2.3679932 0.030130788 0.1663937 

  0.0114259   0.0381317 
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SSt Calculation: 

    0.662832273 0.7061663 

  0.2548518 0.195033976 0.0006226 

  0.2241042 0.00549289 0.0066569 

  3.1176408   0.2720638 

  0.0143913     

    ANOVA TABLE SS DOF MSS 

SS between Treatments: 0.6614849 2 0.3307425 

SS within Treatments: 4.7983718 9 0.5331524 

SS Total for all Treatments: 5.4598568 11 
 

    f statistic: 0.6203526 
  critical f for (5% , 2, 9): 3.065 
  

    Hypothesis: µ1=µ2=µ3 
  Failed to Reject the Null 

Hypothesis   
   

The mechanical properties of the silicalite-1 packing were investigated in the form of a Vicker’s 

hardness test performed on a wide range of aggregate crystal sizes.  The following chart summarizes the 

results. 
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Figure 18: Vicker's Hardness testing of various crystal sizes of synthesized silicalite-1 aggregate packing 
spheres 

As expected, smaller crystal aggregates demonstrate increased micro-hardness and greater 

resistance to micro-fracture.  These results suggest that finished aggregate beads with small crystal sizes 

and sufficient amorphous mass at the center should be suitable for use in packed column applications.  

Typical Vicker’s hardness test values are 140 for 316L stainless steel and 12 for quartz.  Cylindrical 

wafers created from grinding natural zeolite into grain sizes of 100µm, pressing into wafers at 100 MPa 

after agglomerating with polyvinyl alcohol, and thermally treating at 1150 °C were reported to have a 

Vicker’s hardness value of 80.33  The aggregates tested in this work appear to be substantially harder 

than those natural zeolite aggregates.  However, the Vicker’s hardness testing values reported here are 

not extremely accurate due to the small size of the depressions as well as the fact that there was little 

visual contrast between the aggregate sample and the mounting epoxy.  Due to this fact, the 

measurements best serve as a demonstration of the increasing relative hardness that can be achieved 

by lowering the average crystal size of the aggregates.  In spite of the admittedly low accuracy of the 

testing, the fact that none of the samples were measured as having a Vicker’s hardness value lower than 

100 is suggestive that they are sufficiently strong to be utilized in a packed column application. 
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IV. CONCLUSIONS 

Complete conversion of amorphous silica into silicalite-1 packing particles with shape retention 

has been demonstrated to be possible, but particles synthesized by this methodology suffer from such 

poor mechanical properties that they are unusable in packed bed installations.  However, fine tuning of 

the amount of unconverted amorphous silica located at the center of the bead when synthesis is halted 

before complete conversion takes place leads to silicalite-1 packing that should have sufficient 

properties to permit their use as adsorbent packing for the groundwater and surface water treatment of 

MTBE at leak and spill sites.  It may be possible to create silicalite-1 particles without appreciable void 

space and with sufficiently small crystal sizes that allow a packing composed solely of silicalite-1 material 

to withstand the demands of packed column applications.  However charging the beads simultaneously 

with the necessary silica content and structure directing agent for this approach to be feasible is an 

engineering obstacle that must first be overcome. 
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V. FUTURE WORK 

The next step in development of this particular technology is conducting pilot scale 

experimentation with the silicalite-1 aggregate packing.  Breakthrough curves are required at this scale.  

The results of pilot scale testing may lead to the need for more laboratory scale development 

experimentation. 

The robustness of this procedure for obtaining other aggregates of useful molecular sieve 

materials should be investigated.  Creating aggregates of ZSM-5 pellets which could subsequently be 

activated would be invaluable in a wide range of applications.   

Incorporation of iron into the pores could lead to a one step destruction of MTBE by catalyzing 

an advanced oxidation reaction within the zeolite pellet.  This technology could be implemented in 

pump and treat fixed bed, but due to the low oxygen content in groundwater, the attractive alternative, 

in situ advanced oxidation, would not be effective without air sparging, which would lead to further 

complications. 

This process needs further development before being ready for commercial operation, but it is a 

cheap process that has potential in the treatment of difficult to separate organic contaminants in 

wastewater. 
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