
 1

Multi-Objective Routing Optimization for Multiple Level

Priority and Preemption in Multi-Tiered Networks

By

Jason Zane Farmer

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Master of Science

in

Electrical and Computer Engineering

By

October 19th, 2006

APPROVED:

__

Prof. David Cyganski, Major Advisor

__

Prof. Brian King

__

Prof. Wenjing Lou

 2

Abstract
This thesis explores techniques for improving the Quality of Service (QoS) driven routing

of IP traffic in a Network Centric Military Communications System within an HC3 (High

Capacity Communications Capability) tiered topology. In this specialized network

various routing algorithms, including traditional, QoS-constrained search-based, and

heuristic approaches, were evaluated. An automatic system for the probabilistic

generation of appropriate networks and traffic was created for Monte Carlo simulation of

the systems and testing of the various routing algorithms. A new algorithm we propose,

based upon a hiercharical decomposition of routes about the minimum distance routes, is

described and tested. These results provide both insight into this problem and

demonstrate the possibility of highly optimized solutions without exhaustive search.

 3

Contents
Abstract 2

Contents 3

List of Figures 5

List of Tables 7

1.0 Introduction 8

1.1 Overall Project Approach and Contributions of This Thesis 9

1.2 Summary of Outcomes 10

2.0 The Routing Problem 11

2.1 Infrastructure Network 11

2.2 Mobile Ad hoc Network (MANET) 12

2.3 Hybrid Network (HC3 Convergence Layer) 14

2.4 The Routing Problem 15

2.5 Quality of Service 19

2.6 Optimization Requirements 20

2.7 Our Approach 22

3.0 Global Multi-Objective Optimization 24

3.1 Branch and Bound 24

3.2 Search Based Algorithms 25

3.2.1 Local versus Global Search 25

3.2.2 Tabu Search 25

3.2.3 Reactive Tabu Search (RTS) 26

3.2.3.1 Adaptation of RTS for Routing Problem 26

3.2.3.2 RTS HC3 Implementation Details 27

3.3 Shortest Path Algorithms 28

3.3.1 Open Shortest Path First 28

 4

3.3.2 OSPF+ 29

3.3.3 Constrained Route Label Switched Path (Unordered) 30

3.3.4 OCRLSP (Ordered CRLSP) Routing 33

3.3.5 Dynamic Online Routing Algorithm (DORA)/(WDORA) 34

3.3.6 DORA2 34

3.3.7 Hybrid Method 39

4.0 Evaluation Method 40

4.1 SRPDP – Simple Routing Problem Description Protocol 41

4.1.1 SRPDP Structure and Entities 41

4.2 Problem Generator 43

4.3 Blocking Metric 45

4.4 Automated Graphics Generator Route_to_graph 48

4.5 Simulation Software 49

4.6 MPLS Traffic Engineering 52

4.7 Network Simulation Trace Analyzer 52

4.8 Monte Carlo Test System 53

4.9 Traffic Engineering Generator 55

4.9.1 CRLSP-Based Centralized Constrained Routing MPLS Module 55

4.10 Summary 56

5.0 Results 57

5.1 Comprehensive Performance Comparison 61

6.0 Interpretation of Results 69

7.0 Conclusions 73

7.1 “Grand Challenge” of Network Centric Warfare 73

7.2 Outcomes 74

7.3 Future Investigations 75

7.3.1 Optimality of Distributed Dynamic Routing 75

7.3.2 Ad Hoc Network Extension 75

8.0 References 77

 5

List of Figures
Figure 1.1 - HC3 Tiered Topology Illustration 8

Figure 2.1 - Simple Infrastructure Network 11

Figure 2.2 - MANET Node Movement 12

Figure 2.3 - Routing in Infrastructure Network and MANET 12

Figure 2.4 - MANET Collision Domain 13

Figure 2.5 - MANET with Two Waveforms 14

Figure 2.6 - HC3 Hybrid Network 15

Figure 2.7 - Static Shortest Paths 16

Figure 2.8 - OSPF Routing with Denied Connection 17

Figure 2.9 - Dynamically Routed Network 18

Figure 2.10 - Optimization Equation 21

Figure 3.1 - CRLSP Example Network 31

Figure 3.2 - CRLSP Pruned Network 32

Figure 3.3 - CRLSP with Additional Connection 33

Figure 3.4 - All Feasible Paths from Y to D 36

Figure 3.5 - Dijkstra’s Algorithm from Entry Node 37

Figure 3.6 - Bi-Directional Dijkstra’s Algorithm to Find Alternate Paths 38

Figure 4.1 - SRPDP Problem Sample 42

Figure 4.2 - Sample Network 44

Figure 4.3 - Graphical Blocking Metric 45

Figure 4.4 - Example of Trumping 47

Figure 4.5 - 12 x 24 Suite Performance RTS vs. CRLSP 48

Figure 4.6 - Route_to_graph Output File for graphviz 49

Figure 4.7 - graphviz Generated Network 49

Figure 4.8 - ns Simulation Visualization 51

 6

Figure 4.9 - WPI Testbed System 54

Figure 5.1 - Branch & Bound Solution 58

Figure 5.2 - 12 x 24 Suite Performance RTS vs. CRLSP 59

Figure 5.3 - 24 x 48 Suite Performance RTS vs. CRLSP 60

Figure 5.4 - 12 x 24, 100 Problems, All Algorithms 63

Figure 5.5 - 24 x 48, 100 Problems, All Algorithms 66

Figure 5.6 - 12 x 24, 5000 Problems 67

Figure 5.7 - 24 x 48, 5000 Problems 68

 7

List of Tables
Table 5.1 - Connections Satisfied 62

Table 6.1 - Execution Time and Performance Summary 71

 8

1.0 Introduction
This thesis will explore techniques for improving the Quality of Service (QoS) driven

routing of IP traffic in a Network Centric Military Communications System based upon

an HC3 (High Capacity Communications Capability) tiered topology depicted in Figure

1.1 below. The convergence layer between traditional Internet infrastructure networks

and the mobile ad hoc network is the subject of primary interest in this research.

Figure 1.1 - HC3 Tiered Topology Illustration

The QoS requirements demanded by this convergence layer network application include

call admission control, multiple levels of precedence and preemption, and strict

bandwidth and delay bounds. A mixture of traffic will be handled through the use of

Class Based Queuing (CBQ), which includes best effort TCP and QoS guaranteed

Constant Bit Rate (CBR) UDP streams.

 9

It is well known that QoS optimized routing is a computationally intractable problem and

that classic infrastructure routing algorithms deliver very poor performance in MANET

and tiered routing structures in which alternative routes with widely varying path costs

and QoS behaviors are represented. Hence, the stated goal is to find new means, based

upon multi-objective optimization, that deliver useful, timely, though necessarily sub-

optimal solutions to this important problem.

1.1 Overall Project Approach and Contributions of This Thesis

The Raytheon Company sponsored project which spawned this thesis was divided into

two components matched to the strengths of the two university teams engaged by the

sponsor. The WPI team and this thesis work were to provide means to generate network

problem models based upon Convergence Layer topologies and QoS requests with their

information. The WPI team would also provide implementations of traditional routing

techniques and state of the art variations, the performance of which would be compared

with the North Carolina A&T’s multi-objective reactive tabu search method.

The WPI team was responsible for development of the test bed and performance

assessment system as well as network simulations used to prove the feasibility of

solutions and to demonstrate dynamic routing techniques. The traditional routing

algorithm’s shortcomings will be examined, state of the art techniques implemented, and

finally all solutions will be evaluated. NCA&T were responsible for the development,

implementation, and details surrounding all of the search-based algorithms. Other WPI

project participants identified the network simulator and added extensions including

MPLS support for constraint based routing, developed the simulator frameworks, Simple

Routing Problem Description Protocol (SRPDP), the graphical network viewer, and put

in place the groundwork of the test bed environment. I continued their work with the

implementation of all of the shortest path algorithms tested in this document, developed

the blocking metric with Professor Cyganski, and implemented the evaluation tools

necessary to compare the various algorithms. In addition I created a feasibility tester for

the routing solutions, developed the distributed testing scripts for large-scale solution

finding, and served as a liaison with the NCA&T research assistant. Finally I created the

 10

implementation and techniques used in WPIDORA as an adaptation of the approach used

by the DORA algorithm.

1.2 Summary of Outcomes

As might be expected, the outcomes of this project confirmed the general wisdom

regarding the non-optimality of current QoS agnostic routing practices commonly

employed throughout the infrastructure of the Global Internet and in experimental ad hoc

networks and related convergence layer systems. Application of a high-level multi-

objective optimization (Reactive Tabu Search) revealed significant gains in high priority

connection establishment. For example, consider the outcomes of a test involving a 24

node network and 48 simultaneously-attempted connections at four levels of priority. For

any problem instance, that is, at any given time of the operation of a network, an average

of approximately 1.5 more priority 1 connections and approximately 2 more priority 2

connections were maintained. This goal was obtained but with an increased

computational cost of over 5,000 times that of CRLSP (Constrained Routing-Label

Switched Paths).

However, unexpectedly, we discovered that almost all of this performance gain could be

obtained by applying a level of global optimization significantly less complex than noted

above, with very modest computational loads. This result prompted the team to explore

the effectiveness of various tiers of optimization and to determine the critical tier at

which nearly all routing effectiveness is achieved. The important result derived from this

research is that, for HC3 problems, there is an optimization strategy that is nearly optimal

and yet can be computed at sufficient speed so as to not significantly degrade routing

execution and to allow deployment with today’s computational technology.

 11

2.0 The Routing Problem

2.1 Infrastructure Network

There are two major architectures that comprise the HC3 network. The first of these is an

infrastructure network which would be typical of many networks, and can be likened to

most any hardwired network. In an infrastructure network nodes are statically located

and the links are structurally determined, and do not change often, if at all. Each node is

connected to a series of other nodes via switches or routers and a network, and once

assembled stays static for long stretches of time. Figure 2.1 is representative of a small

network where there are a limited number of interconnections, with generally static links.

Figure 2.1 - Simple Infrastructure Network

The traffic on one link does not affect traffic on other links directly. That is to say, the

presence of traffic on one link does not preclude the presence of traffic on a second link

in the vicinity. In addition, links can operate as separate collision domains for the

purposes of forwarding best-effort traffic. Best-effort traffic on this type of network can

be routed very efficiently and effectively by using Open Shortest Path First (OSPF)

routing [MOY98], in which a given node discovers neighbor nodes using a “hello”

packet. The nodes can then use “Link-State Advertisements” to notify neighbors of their

condition, which allows the use of Dijkstra’s algorithm to determine the shortest packet

routes, where “short” is measured with respect to some predetermined metric such as link

delay.

 12

Infrastructure networks may, in the case of RF links, use several non-interfering

communication channels to connect different node pairs, or even the same node pairs. A

given communication channel is often referred to by the jargon “waveform” and

utilization of multiple waveforms implies the case of multiple non-interfering

communication channels.

2.2 Mobile Ad hoc Network (MANET)

A mobile ad hoc network (MANET) is opposite in many respects to an infrastructure

network, and is comprised of loosely organized nodes which arbitrarily enter, exit, and

move around the network dynamically. These arbitrary changes cause rapid, near

random changes to the network topology which must be addressed in the routing

considerations. Figure 2.2 illustrates how nodes can even move from one network to

another.

Figure 2.2 - MANET Node Movement

There are additional complexities that are encountered if the network should split, or

additional networks join via node movement. Some examples of routing algorithms

include ad hoc on demand distance vector (AODV), destination-sequenced distance

vectoring (DSDV) [PB94], and temporally-ordered routing algorithms (TORA) [PC97].

Figure 2.3 - Routing in Infrastructure Network and MANET

A B A B

 13

While routing is generally considered a solved problem for infrastructure topologies

supporting best effort traffic, in the form of OSPF, this is not the case for MANETs. In

the example shown above in Figure 2.3 the route from point A to B is via three

intermediate nodes. The traffic affects only those links and nodes that are in the route.

The second example on the right shows the same link in a MANET in which the signal is

rebroadcast only twice, while all nodes in the network are affected by the traffic with

regards to lost potential bandwidth utilization. This shows that a given link will also have

an influence on the bandwidth in the physical region, creating obstructions and reducing

the bandwidth on nearby links.

Figure 2.4 - MANET Collision Domain

The collision domain is also determined by geographical range rather than network links

in a MANET. Figure 2.4 above represents a MANET with spatial division multiplexing

of the collision domain. This means that the nodes transmit with a lower power,

increasing hop count, but decreasing the number of nodes subject to a given collision

domain. In the above example each node participates in up to 7 collision domains,

including its own. MANETs also can employ different waveforms for different links

having radically different data rates, latencies, packet loss rates, and maximum ranges.

B

A

 14

Figure 2.5 - MANET with Two Waveforms

Using multiple waveforms as shown in Figure 2.5 allows simultaneous transmission on

different waveforms. In this figure the nodes in red are using waveform 1, green

waveform 2, and yellow can use either waveform. This would allow for two end to end

communications to happen without interference and hence a reduction in link bandwidths

of geographically similar links. With two different waveforms, such as the example

above, two different connections could be honored through the central network

simultaneously but this freedom brings with it a much greater complexity in the routing

process.

2.3 Hybrid Network (HC3 Convergence Layer)

The hybrid network is a mixture of the two preceding architectures. The HC3 network

comprises the size, mobility, and highly connected properties of a MANET, but will

enjoy time intervals without change in the topology intermediate to that of infrastructure

networks and MANETs.

 15

Figure 2.6 - HC3 Hybrid Network

Figure 2.6 above illustrates the mixed nature of the HC3 network. The Satellites and

UAVs are infrastructure nodes in nature, while the deployed troops are representative of a

MANET. The links in the HC3 network will often process higher bandwidth and the

number of nodes generally will be smaller than in a typical full MANET. The general

topology of the HC3 network will typically route the majority of traffic through a handful

of key nodes, shown in yellow above, which will act as infrastructure gateways between

the MANET style subnets and the Infrastructure networks. There will also be various

waveforms used, each associated with specific platforms, including satellites in GEO and

LEO orbits, unmanned autonomous airborne platforms, ground force communications,

and many other possibilities.

2.4 The Routing Problem

The HC3 network topology together with demands for precedence-based access and QoS

delivery requires dynamic routing, handled on a per flow basis. This will allow the

best utilization of network resources for the highest satisfaction of user requests

consistent with QoS requirements. To demonstrate this point we will examine the

outcome of applying the Open Shortest Path First (OSPF) algorithm commonly used for

infrastructure networks.

UAVs

Satellites

Troops

Infrastructure

MANET

 16

Figure 2.7 - Static Shortest Paths

OSPF will solve for the shortest paths for every pair of nodes, a subset of which are

shown above in Figure 2.7, as part of a network routing table establishment process.

Figure 2.7 illustrates the shortest path, using hop count as a metric, from subnet Y to

node D, subnet Z to node F, and subnet W to node C. A connection that is requested

from subnet Y to node D would be routed via nodes G, F, and E as per the route that was

already established. This is shown in Figure 2.8 supposing that the request was

accompanied by a fixed 0.7 Megabit per second (Mbps) bandwidth requirement as part of

its QoS demand.

W

Z Y

X

A

B

C

D

EF

G

 17

Figure 2.8 - OSPF Routing with Denied Connection

After the establishment of the Y-D connection with a 0.7 Mbps guarantee, a second

connection request from subnet Z to node F is made for 0.8 Mbps. Since the links only

have 1 Mbps bandwidth there is only 0.3 Mbps bandwidth available through links F-E

and E-D given the OSPF route established earlier. This connection from Z to F would

attempt to reserve the route that lead through nodes D and E, but there is not enough

bandwidth available for the 0.8 Mbps connection, so it fails. If there were a dynamic

routing algorithm at work it could rapidly re-route the existing connections to

accommodate the new requests being made given that an alternative exists. Figure 2.9

below depicts such a solution.

W

Z Y

X

A

B

C

D

EF

G

0.7 Mbps

0.8 Mbps

 18

Figure 2.9 - Dynamically Routed Network

With the receipt of a Z-F connection request, the existing Y-D connection was moved to

allow the bandwidth of the F-E link to be utilized for the second connection. This

solution yielded two routes which maintained the low hop-count of the Y-D connection

by moving it through a different area of the network. If a third connection was requested

the network might again be rapidly re-routed as necessary. Furthermore, precedence of

requests must be respected in a multi-level priority network. Connection requests with a

higher priority would be granted network bandwidth preferentially, with lower priority

connections routed around them as possible and otherwise terminated, in other words,

pre-empted.

A MANET routing algorithm capable of handling waveform diversity would appear on

the surface to accommodate some level of infrastructure networking in a small network

and hence would be applicable to the Hybrid convergence layer network. But MANET

algorithms are well known to be inefficient for infrastructure networks, and a transition

must be made at some point as we approach the level of large-scale infrastructure routing

domains.

W

Z Y

X

A

B

C

D

EF

G

0.7 Mbps

0.8 Mbps

 19

Since a Hybrid network must find the best route in this time-varying subnetwork for

packets between the infrastructure and highly variable mobile ad hoc networks, it needs

quick convergence of its ad hoc-like routing.

2.5 Quality of Service

When connection requests have one or more attributes of Quality of Service (QoS) that

must be satisfied, the usual, fully local, forwarding schemes based upon a single pre-

computation of shortest paths, such as provided by OSPF, are no longer viable. At one

extreme, this is easily visualized: In highly multiply-connected networks, minimizing

“hop counts” as a metric for route pre-computation is not viable because it leads to

routing most data through the network’s center, thereby congesting any routers at the

middle and compromising most notions of QoS (low drop rate, fixed bandwidth, low

delay, etc.) Thus, it is obvious that, in contradiction to the usual goals of an OSPF or

similar routing algorithm, sometimes routing packets via longer paths may increase

throughput.

Of course, such a policy must be within the bounds of satisfying absolute QoS restraints

such as those on minimum guaranteed bandwidth and maximum allowed delay.

Furthermore, an element of QoS that enters in the context of military networks is the need

to respect the priority of connection requests. In fact, there may be multiple levels of

priority, and pre-emption of existing connections is appropriate if required to establish a

new higher priority connection. Thus, the necessary routing algorithm must be stateful,

that is, it must maintain the identity and QoS attributes of committed connections and be

able to choose routes with respect to the remaining resources, pre-empt previous

commitments when required by priority, and even re-route committed connections to

reorganize the use of resources for the purpose of increasing the number of admitted

connections.

In summary, we need a routing algorithm that will

● quickly converge after link state changes

 20

● maximize global network throughput through a global, stateful optimization

● satisfy diverse and competing QoS requirements

● guarantee QoS commitments within the context of priority based pre-emption

● fairly share available bandwidth among non-priority users

● interface with existing IP networks

● dynamically re-route existing connections when necessary to increase

admissions

Because of the several levels of competing elements of optimization and constraint, the

problem can only be optimally solved via some form of global and multi-objective

optimization. Unfortunately, it is well known that such problems are almost always

computationally intractable, being of a complexity level belonging to the class NP-

complete or harder. That is, the computational requirements for optimal solution grow at

least exponentially with problem size, and these optimization methods offer no

possibility of solution in real-time for problems of the size that comprise useful

instantiations of HC3 convergence layer sub-networks [TGP01].

2.6 Optimization Requirements

A solution to a network problem consists of a series of paths that connect the source and

destination node and meet the requirements set forth by the QoS constraints. The

optimization that is performed must strive for multiple objectives which include that

higher precedence connections are satisfied first, and if multiple paths are available

choose such that bandwidth utilization is maximized across the entire network. This is in

addition to the requirements that a path must fall within the given delay bounds, and have

at least as much bandwidth as requested. All paths must be feasible, meaning that the

utilized bandwidth of a link or node cannot exceed the total available bandwidth for that

link or node.

For the purposes of mathematical optimization the above precedence and QoS rules can

be represented as the equation shown below in Figure 2.10.

 21

Figure 2.10 - Optimization Equation

The above equation contains the information necessary to represent all of the relevant,

although simplified, aspects of the QoS connections in this context. This equation is a

simplification of a multi-objective problem of mixed integer-continuous type, but will

suffice for the current project.

For purposes of brevity, arrays of nodes, links, connection requests and paths will be

identified n, l, c, p and specific elements of these arrays denoted by ni, lj, ck, pk. Let pk be

a path linking the source and destination associated with connection request ck. The goal

is to find an optimum set of paths with source and destination nodes that match those

requested in c1, ..., cN such that the above function in Figure 2.10 is maximized. The

weights, a1, …, aM+2 must be selected such that each dominates the value of higher index

weights. This is what accounts for a priority one connection having greater influence

than several priority two connections, etc.

The function Q(ck, pk) is 1 if:

1. The forward and backward rates requested by ck can be reserved on the path pk

given the reservations made on each link in pk which is shared by another path,

2. and likewise if these bandwidth requests are not in conflict with the bandwidth

that can be provided by a node through which these links pass.

3. If the sum total delay imposed by each link in the path and by each node in the

path does not exceed the delay requested by the connection request.

The function Q is 0 otherwise [NACP06].

Continuing, M is the largest precedence index that appears among the connection

precedences. FR(pk) and BR(pk) are the forward and reverse bandwidths that have been

 22

allotted on the kth path for use by the kth connection (for which there is no lower limit in

the case of the best effort connections that make no explicit QoS requests.) The last two

terms in the above equation represent the total bandwidth allotted to each best effort

connection and the fairness with which it is distributed among them [NACP06].

It was the responsibility of the NCA&T team to formulate and implement optimization

algorithms that find local optima of this function, with the intent of finding the global

optimization or at least a local optimum near to its optimality.

2.7 Our Approach

Another worthy goal is to explore the efficacy of suboptimal approximations of full

global and multi-objective optimization. Because of the inherent complexity of such

problems, there is little hope that this or any other investigation will ever realize true

optimality in real time. However, it is not generally understood how far simple solutions

are from optimality. Likewise, previous research in multi-objective optimization has

yielded suboptimal solution processes that provided adjustable optimization algorithm

complexity – hence the question arises as to whether there is a computationally feasible

solution that comes sufficiently close to full optimization as to make this HC3 QoS

routing problem accessible. A major component of the project effort that took place at

WPI and which is the subject of this thesis, is the creation of the tools necessary to

perform this evaluation within the context of HC3 networks and solution methods that

bridge the gap between full multi-objective optimization and simple shortest path

algorithms.

 23

The elements to our approach to answer this question are outlined here:

● Define the problem such that multi-objective optimization can be applied to

the convergence layer routing problem.

● Seek a centralized and omniscient solution.

● Solution obtained assuming all information about all nodes,

connectivity, and present requests, then information is distributed to

nodes for implementation.

● Problems related to timely gathering of this information or dynamics of

passing new requests were not considered.

● Compare results with existing routing methods (OSPF, DiffServ, IntServ).

● Establish exact bounds for smaller problems to enable absolute benchmarking

of new solutions.

● Seek new distributed and dynamic routing methods.

● Build a platform for automated large scale testing of convergence layer

problems.

● Evaluate newly proposed solutions from the literature.

 24

3.0 Global Multi-Objective Optimization
In this section we will outline briefly the various forms of optimization that were utilized

or investigated in this research.

3.1 Branch and Bound

The branch and bound algorithm is capable of finding the true optimum solution of a

routing problem. On beginning this project our intention was to construct a branch and

bound solution for a subset of the network problems which would stand as an absolute

measure of the optimality of other solutions. To do this, a branch and bound routing

solver was constructed by NCA&T which operates by selecting every possible first link

in a route in the network and then selecting all choices for a next link until all feasible

solutions have been tested. As an algorithmic speed-up, partially constructed paths are

compared to a previously found best case situation. If the partially constructed path is

incapable of exceeding the optimization previously found, the branch can be abandoned

and other branches explored.

This nearly exhaustive procedure is guaranteed to find a best solution – but is

computationally infeasible for large problems. To test if it was feasible for small

problems a branch and bound implementation for network problems was constructed and

applied to hundreds of route optimization problems. After a long weekend it was

discovered that, in all but one case, it did not complete a solution within the cutoff time

which had been set to 36 hours for each problem. Thus, unfortunately, there was no

possibility of using branch and bound solutions as a baseline for comparison for any

significant number of cases. Of the 100 problems attempted only one problem finished,

and it required only 192 minutes. This particular problem was found to be a degenerate

case, where the generated network topology and generated connection requests quickly

 25

filled common links in the network and immediately starved all later connections of

bandwidth.

3.2 Search Based Algorithms

The following subsections review the work in search based algorithms performed by

North Carolina A&T. While implementation of these algorithms was outside the scope

of this thesis, the evaluation of these algorithms was central to this work.

3.2.1 Local versus Global Search

While a full global optimization is not computationally feasible, one can in general

implement an optimization procedure which includes global measures and avoids

trapping in some local optima. To sharpen this notion, a distinction between local and

global searches is necessary. A local search finds the optimal solution for a

neighborhood of the solution space. Local optima are easily found based upon a

gradient-based search in continuous parameter optimization problems and by small

variations of route paths in routing algorithms. A global search yields closer to the

optimum solutions for the entire solution space by using local search within

neighborhoods while introducing mechanisms to traverse neighborhoods. The most

difficult aspect of global search, and the most significant factor in limiting its

performance, relates to the escape from the basin of a local optimum. The search and

escape mechanisms usually depend upon meta-heuristics that are based upon some

demonstrable aspect of the problem or are based upon experimentally confirmed ad hoc

strategies.

3.2.2 Tabu Search

Tabu Search (TS) is an example of a meta-heuristic, a general recipe for coming up with

good, but not necessarily optimal, solutions to problems that are generally too complex to

solve with exact algorithms. TS searches for a solution across the entire space of feasible

solutions (a global solution). It does this by using a local search (LS) strategy that

searches sets of closely related problems for local optima. “The basic principle of TS is to

escape LS whenever it encounters a local optimum by allowing non-improving moves;

 26

cycling back to previously visited solutions is prevented by the use of memories, called

tabu lists, that record the recent history of the search …” [Gen03]. In implementing TS

for a given problem, one must devise an LS technique appropriate for that problem. The

major drawback in TS is that the tabu list size is fixed, and so it may permit moves that

result in lower-quality solutions and prohibit moves that would result in higher-quality

solutions.

3.2.3 Reactive Tabu Search (RTS)

In reactive tabu search (RTS), TS is combined with a feedback scheme that automatically

adjusts the tabu list size. In essence, RTS still maintains the structure of TS in using the

set of temporarily forbidden moves within a tabu list. What RTS provides is “a fully

automated way of adapting the size [of the tabu list] to the problem and current evolution

of the search, and an escape strategy for diversifying the search when the first mechanism

is not sufficient” [BT94]. Using a hash table, all previous solutions are recorded along

with their frequencies of occurrence. RTS, because of the escape diversification

technique and the exploitation of fast memory structures, does not require an initial

choice of the tabu list size and at the same time provides robust and efficient

convergence.

3.2.3.1 Adaptation of RTS for Routing Problem

To apply RTS to the routing problem, a number of choices and adaptations were

necessary. We summarize here the main elements of that adaptation: [CEH06]

● Set size of hash table for recording different solutions found

● Adjusted parameters to effectively search possible solutions

● Formulated initial solution for each problem to be solved based on bandwidth

available, delay constraints of routing requests, total bandwidth used for best

effort requests, and bandwidth shared among best effort requests

● Used Dijkstra’s algorithm to find possible paths

● Used Breadth First Search to find possible paths

● Formulated a fitness function to find the best weighted solution for each

problem

 27

● Quality of Service requests met, remaining bandwidth shared among best

effort users

● Adjusted weights for best effort terms to contribute more significantly to the

fitness

● Removed links for forward and reverse paths for chosen connection requests

● Adjusted tabu list size by adjusting RTS parameters

● Incorporated data structures to control repetition of partial solutions, giving

better coverage of the solution space

● Found feasible solution for each problem

An important decision in implementing a global search solution, such as RTS, is the

initial solution chosen to be the starting point of the search. In the course of the project

we tested results in which Dijkstra’s algorithm provided the initial solutions and later

used solutions provided by OCRLSP and finally the DORA algorithm (both of which are

discussed below).

3.2.3.2 RTS HC3 Implementation Details

In our implementation, requests are sorted by priority, with requests of like priority

arbitrarily ordered. For this order, best-effort requests are considered to have the lowest

priority. The initial solution is generated by allocating paths (both forward and reverse)

for the requests in the sorted order. For each path, we use Dijkstra’s shortest-path

algorithm with link bandwidths as edge labels and requested bandwidth and delay as

constraints. After a forward and reverse path is allocated for a request, the bandwidth of

each link on either of these paths is reduced by the requested bandwidth. The resulting

residual bandwidth is used for the edge labels in finding paths for the next request.

After generating an initial solution, NCA&T’s implementation of RTS will perform the

following: [CEH06]

1. Record the current solution in the hash table.

a. If the solution occurrence frequency meets the threshold value, perform an

escape (follow steps 2-5 while disregarding tabu status).

 28

2. Randomly choose one already satisfied request. Requests later in the sorted order

are more likely to be chosen than those earlier in this order.

3. Generate a move and record it in the tabu list.

a. Generate a random number between 1 and the smaller of (i) the number of

links in the forward path solution for the request and (ii) ¼ the number of

links in the network; remove that many randomly chosen links from the

forward path.

b. Follow a similar procedure to remove links from the reverse path solution.

c. Place these forward- and reverse-path links, associated with the chosen

request, into the tabu list as a record of a single move.

4. Reallocate forward and reverse paths for the chosen request (without using the

removed links).

5. Allocate forward and reverse paths for all requests following the chosen request in

the sorted order using all possible links, including those made tabu for chosen

request.

6. Repeat steps 1-5 for a specified number of iterations or until stopping criterion is

met.

Note that each iteration finds a complete feasible solution. Paths (both forward and

reverse) are allocated using Dijkstra’s shortest-path algorithm as in finding the initial

solution as described above.

3.3 Shortest Path Algorithms

3.3.1 Open Shortest Path First

Open Shortest Path First (OSPF) [MOY98] is the default algorithm in use throughout the

Internet today. It is based on use of Dijkstra’s algorithm for shortest path identification,

and develops a routing table of static shortest paths without bandwidth constraints. The

cost matrix for Dijkstra’s algorithm in our implementation used the link delays of the

unloaded network to determine path cost.

 29

However, OSPF routing alone does not satisfy the needs of a QoS supporting network.

Rather, routing must be supplemented by a reservation request and stateful admission

control system, such as IntServ. The static paths obtained via OSPF form the routes

explored for reservation. Static paths in this case mean these paths obtained when the

entire “unloaded” network is solved for shortest (lowest delay) paths between any two

points, once and only once. Then, as each connection request comes in, an IntServ

reservation system attempts the reservation of the required connection bandwidth on that

static path. If the reservation fails, the connection is not admitted and reservation of the

next connection request is attempted. This is obviously suboptimal (as will be amply

demonstrated in the results section) since no information about previous reservations is

used to attempt to find other paths than the one initially associated with the entrance/exit

node pair. Furthermore, no attempt at pre-emption of older, lower priority connections is

attempted.

3.3.2 OSPF+

OSPF+ is a variation of OSPF developed at WPI as part of this thesis work, and is a non-

standard attempt at what is called a “traffic engineered” network solution. This approach

is based upon execution of the OSPF algorithm on the unloaded network many times, but

in each case using only links that can handle some prescribed level of bandwidth. As

before, all entry and exit pairs are computed for the list of connections required. When

considering an entry/exit pair the cost matrix is pruned to only include links that can

support the requested bandwidth at a minimum. This will remove the paths that OSPF

will find which would not support the connection even on an unloaded network. With the

traffic engineering enhancement all connections would be possible on an otherwise

empty network. In effect, this implements a DiffServ network in which connections have

code-point attributes that direct connection reservation to pre-coded network paths

associated with that bandwidth grade.

As will be seen in the results, simply engineering bandwidth-graded solutions produces a

significant improvement in achievable performance as measured by total connection

 30

admissions.

This traffic engineered solution and the other traffic engineered solutions to be described

below were actually implemented via MPLS label switching in the protocol simulator

that will be described later.

3.3.3 Constrained Route Label Switched Path (Unordered)

Constrained Route Label Switched Path (CRLSP) routing algorithms have been

developed for use in conjunction with MPLS networks [AC00]. Such routing techniques

use label distribution protocols (CR-LDP) [AC01] to distribute connection specific paths

to MPLS nodes, providing a level of dynamic control that far exceeds the static nature of

OSPF and DiffServ type networks.

The variation of CRLSP we implemented uses a bandwidth and delay constrained solver

with priority pre-emption developed for MPLS networks. CRLSP will, on a per flow

basis, solve for the shortest path based upon all previously allotted bandwidth given to

higher precedence users, pre-empting others.

This algorithm uses Dijkstra’s algorithm with a cost matrix based on link delay, just as

the previously described algorithms. This diverges from OSPF by the fact that it also

uses the bandwidth available on the network at the time of the connection request rather

than the unloaded link bandwidth. In the example network shown below in Figure 3.1

there are two currently existing connections using 0.7 Mbps from subnet Y to node D and

0.2 Mbps in the reverse direction. The second connection uses 0.3 Mbps from subnet Z

to node F and 0.8 Mbps from node F to subnet Z. These asymmetric bandwidth requests

are typical of HC3 connection requests in which one direction requires a much greater

bandwidth than the other owing to client/server relationships.

 31

Figure 3.1 - CRLSP Example Network

For this case we will examine the outcome when CRLSP seeks an additional route from

subnet X to node F with 0.7 Mbps in the forward, subnet X to node F, direction and 0.2

Mbps in the reverse, node F to subnet X, direction. This connection format will be used

throughout this document: with the forward direction being from the first stated node to

the second node, and the reverse being the opposite direction.

When CRLSP seeks to route an additional connection, all links that will not support, at a

minimum, the requested bandwidth, are pruned from the network. The remaining links

are used to find the shortest delay path from the entry node to the exit node. This pruning

can be seen in Figure 3.2, below, for the forward direction.

W

Z Y

X

A

B

C

D

EF

G

0.7 Mbps Y-D
0.4 Mbps D-Y

0.8 Mbps Z-F
0.3 Mbps F-Z

 32

Figure 3.2 - CRLSP Pruned Network

While the OSPF routing algorithm would choose either X-C-E-F or X-C-A-F, neither of

these routes would work resulting in a denied connection. Using a dynamic routing

technique the feasible forward route left after the above deletions would be X-C-B-A-F, a

slightly longer route but the only route with enough bandwidth left. If the route found

exceeds the maximum delay constraint for the QoS connection the reservation will fail,

but if the path found is within the delay constraint a reservation will be tentatively made.

The reverse route will then be calculated in the same manner using the reverse bandwidth

constraint. In this case, the reverse route would be F-E-C-X which has sufficient

bandwidth for the 0.2 Mbps reverse path. Since both directions have a feasible solution,

a reservation is made for both paths at once. If either direction fails to be feasible both

reservations are aborted. The network with this additional connection is shown in Figure

3.3, below.

W

ZY

X

A

B

C

D

EF

G

0.7 Mbps Y-D
0.4 Mbps D-Y

0.8 Mbps Z-F
0.3 Mbps F-Z

 33

Figure 3.3 - CRLSP with Additional Connection

With this dynamic per flow routing algorithm more connections can be satisfied than

with static route based reservation protocols and as connections are added they are routed

around existing connections as possible. This algorithm, as stated, will not respect

precedence, however, and makes reservations based on the order in which requests were

made.

3.3.4 OCRLSP (Ordered CRLSP) Routing

Ordered CRLSP applies the CRLSP routing algorithm as described above, however, it

first orders all requests from highest to lowest priority. It then solves for available paths

beginning with the highest priority requests. When implemented in a system with

ongoing requests, this translates into the need to resolve for all current paths and the

newest request each time a request is made. Thus, OCRLSP constitutes a significant

increase in required processing from the other shortest path algorithms. It further

requires the ability to actively re-route existing connections based upon new solutions.

This latter capability is inherent in the CR-LDP protocol by which it is supported. These

costs in increased processing however support the precedence respecting and pre-emptive

behavior that is necessary in a multi-level network such as the HC3 topologies.

W

Z Y

X

A

B

C

D

EF

G

0.7 Mbps Y-D
0.4 Mbps D-Y

0.8 Mbps Z-F
0.3 Mbps F-Z

0.7 Mbps X-F

0.4 Mbps F-X

 34

3.3.5 Dynamic Online Routing Algorithm (DORA)/(WDORA)

While the benefits of search-based algorithms such as TS and RTS might be significant in

that they explore much broader opportunities for optimization than shortest path

algorithms, the larger execution time is potentially prohibitive compared to shortest-path

algorithms such as CRLSP and OCRLSP. It remains an open question with any

optimization problem as to whether a heuristic specific to that problem might not unlock

most or all of the improvement to be had by a search-based algorithm. Searching the

literature for such a heuristic algorithm revealed one which had been proposed that

“made engineering sense” and was practical with respect to processing requirements:

DORA, or Dynamic Online Routing Algorithm [BSI02]. A single evaluative study of this

approach was available [MAB05], from which it appeared that performance was

excellent for it and a newly proposed extension, WDORA.

DORA is a novel routing algorithm that places paths with reserved bandwidth evenly

across the network, which allows more future paths to be accepted in the network and

allows balancing of the traffic load. DORA was claimed to have produced results that are

at least as good as those produced by algorithms that are much more complex [BSI02].

The main goal of DORA is to avoid routing a path over links that have high potential to

be part of some other path and have low residual available bandwidth. WDORA uses the

same basic principles in route determination as DORA. The major difference is that, in

calculating routes, if there is more than one possible route to satisfy a request, the route

that has the greatest bandwidth is chosen. Hence, the term “widest” (which supplies the

“W” in “WDORA”) relates to the widest bandwidth being chosen. Its benefit is that

“WDORA selects routes having the largest residual capacities which results in routes

having a greater probability of being still feasible for future requests” [MAB05].

3.3.6 DORA2

The DORA2 algorithm developed as part of this thesis work is an adaptation of the

DORA/WDORA mindset that exploits knowledge about the network topology. An

 35

additional search is implemented in DORA2 to find alternative routes to free up the most

popular links for later use. This expansion on traditional shortest path algorithms yields

paths that are not the shortest path, but are still “short enough” to meet the QoS delay

constraints as we might like to use these if that leaves open shortest paths that might be

essential later and shouldn’t be wasted when longer paths will do. By selecting a

waypoint on the network that is not on the shortest path a conjunction of shortest paths,

which are less optimal, can be found. If additional waypoints were specified, first two,

then three, until the available number of nodes are exhausted then all possible paths

would be found. In this sense, our single waypoint solution set comprises a first order

approximation of the set of complete paths, while maintaining the computational

feasibility to run in a real-time network.

The requested connections are first ordered by priority with connections of the same

priority ordered by the time order in which they were requested. This step maintains the

preferential precedence order while respecting connections that came earlier, allowing

them to stay connected if possible. The theory behind DORA2 was that if the network

traffic were spread out across the network, and popular links were used last it would tend

to use the “outside edge” of the network before congesting the central nodes. As an

initial setup for the routing solution, the network was analyzed and each link was given a

path potential value (PPV). Given the network in Figure 3.4, all feasible paths between Y

and D are shown below. These are the paths that meet the delay constraint in the QoS

request made for this connection.

 36

Figure 3.4 - All Feasible Paths from Y to D

The path potential value is calculated as the number of times a given link is found in the

exhaustive set of possible paths for all connections. For the connection from Y to D the

path values would be given a score of 3 from Y to G. The link between G and A would

receive a PPV of 2 from this connection, similarly the link between F and E would

receive a score of 1. These scores would be summed for each link across all entry and

exit nodes that have a connection request. In this way each link will have a PPV that

represents its popularity among all connections.

The novel approach described above was used to quickly find all possible paths different

than the shortest path by a single waypoint. Given a connection request the network

would first be pruned of all links that did not meet the bandwidth requirement in a

fashion similar to what takes place with CRLSP. Dijkstra’s algorithm was then executed

twice, first using the entry node as the root of the minimum spanning tree. For the

example to follow all links will have the same delay. In Figure 3.5, it can be seen how

the shortest path from subnet Y is found to each of the nodes in the network. If a path

was found from the entry node to the exit node, Dijkstra’s algorithm was executed a

second time, with the exit node as the root of a second minimum spanning tree.

W

Z Y

X

A

B

C

D

EF

G

 37

Figure 3.5 - Dijkstra’s Algorithm from Entry Node

Using the current available bandwidth values for the forward direction, the bandwidths as

seen from subnet Y outward, Dijkstra’s algorithm is executed from node D to find the

shortest paths to alternative nodes. Figure 3.6 illustrates that the shortest path between

the entry and exit node is the same, since the bandwidths and delays were identical in

both cases. It is possible to remove from further consideration any nodes along the

shortest path, since the path to that node is always along the shortest path already

selected. This exploration of the network from both sides exposes rapidly all additional

paths different by a single waypoint.

W

Z Y

X

A

B

C

D

EF

G

 38

Figure 3.6 - Bi-Directional Dijkstra’s Algorithm to Find Alternate Paths

The other path of note is that looking at the shortest paths to node A (blue arrows) and

node C (purple arrows) will yield a final path that is identical, namely Y-G-A-C-D. This

would be pruned as well, to form only one route. In the end there are three potential

paths, Y-G-F-E-D, Y-G-A-C-D, and Y-G-A-B-C-D, for this connection pair.

While it is known that these three paths meet the bandwidth requirements, they have not

yet been tested for end-to-end delay. The next step is to determine which, if any,

potential paths meet the QoS delay requirement. To obtain the end-to-end delay just

requires adding the two values computed by Dijkstra’s algorithm for each of the two

partial paths. If this delay is within the QoS requirements, we add the route to the list of

possible routes. This procedure would then be followed a second time to determine the

reverse route as if it were a second unidirectional connection request. This split-route

technique maximizes usage of the asymmetric nature of link and connection request

bandwidths towards finding means to route as many connections as feasible. Routes with

the smallest individual PPV scores are then chosen first, with the sum of all PPVs used to

break ties.

W

Z Y

X

A

B

C

D

EF

G

 39

3.3.7 Hybrid Method

We also implemented a fusion of DORA and RTS to obtain even better results than

obtained by virtue of heuristic optimization in the vicinity of the improved starting point

found by DORA2.

 40

4.0 Evaluation Method
To evaluate the performance of these various algorithms, we undertook the development

of a software toolset comprising a test-bench based on Monte-Carlo statistical

performance evaluation. What was needed were tools to automatically generate large

numbers of routing problems that shared common characteristics of all convergence layer

networks while attributed with randomly selected topological details, connection

attributes, and QoS demands. We also sought not just to evaluate these methods in a

sterile mathematical simulation but to implement a full event-based packet-level

simulation of the routing to verify feasibility of solutions and to directly capture

performance features such as best effort traffic bandwidth utilization and delay.

In summary, we sought to generate:

● A suite of problems auto-generated with a given network complexity, fixed

node, and connection request numbers

● Probabilistically generated connection requests distributed across the QoS

priorities and best effort traffic.

● Probabilistically assigned bandwidth and delay constraints for QoS.

For every routing algorithm, the same suites are evaluated in order to avoid any

unfairness of comparison and so that we may actually compare on a problem-by-problem

basis the outcomes of the alternative solutions.

A protocol for problem representation and exchange (between the two university working

groups), and two applications to support automatic statistical evaluation were created.

These will be described in the next sections.

 41

4.1 SRPDP – Simple Routing Problem Description Protocol

Simple Routing Problem Description Protocol (SRPDP) was used to exchange

information between the members of the research team and between components of

software developed by the teams. The SRPDP reduces the description of the nodes,

links, and connections that comprise a routing problem and paths that define its solution

into a single Matlab structure of arrays with only numerical entries.

To support realistic problems, SRPDP can represent:

● multi-layered networks (many links between two nodes)

● multi-waveform networks

● asymmetric flows

● connection precedence

● mixed traffic, including QoS requesting and best effort (BE) traffic

● QoS with rate and delay constraints

● Convergence Layer architectural features

4.1.1 SRPDP Structure and Entities

A problem is comprised of a set of matrices stored in Matlab. Nodes, links, and

connections make up the problem, while a series of fields for paths hold the solutions of

the different algorithms. A final field holds calculated results for each algorithm such as

number of connection requests granted and bandwidth granted. Figure 4.1 below shows a

sample of a problem structure.

 42

Figure 4.1 - SRPDP Problem Sample

This flexible structure allows networks of much greater complexity than required to be

represented with ease. Each node has a bandwidth and processing delay, links can have

asymmetric properties, and connection requests comprise any arbitrary set of entry and

exit nodes. If additional constraints were necessary, at a later date, then the required

modification would only be a matter of adding an additional column to the relevant

matrix.

L3N1 N2 N3

N4

L1
L2 L4

L5

{4,10,500} 500 Kbps 10 ms 4

{3,5,1500} 1500 Kbps 5 ms 3

{2,5,1500} 1500 Kbps 5 ms 2

{1,10,1000}1000 Kbps 10 ms 1

Vector Rate Delay ID

{5,3,4,0,1500,1500,0,50} 0 0 50 1500 Kbps1500 Kbps N4 N3 5

{4,1,4,2,750,750,0,300} 2 0 300 750 Kbps750 Kbps N4 N1 4

{3,2,3,2,600,800,0,400} 2 0 400 800 Kbps600 Kbps N3 N2 3

{2,2,3,1,250,1000,0,350, 1 0 250 350 Kbps1000 Kbps N3 N2 2

{1,1,2,0,1500,1500,0,150}0 0 150 1500 Kbps1500 Kbps N2 N1 1

Vector WaveformCostDelayBR FR Dst Src ID

{6,3,2,1,500,10,0,450} 450 ms0 10 Kbps500 Kbps1 N2 N3 6

{5,2,3,3,800,20,0,300} 300 ms0 20 Kbps800 Kbps3 N3 N2 5

{4,1,3,2,1200,300,0,50} 50 ms0 300 Kbps1200 Kbps2 N3 N1 4

{3,1,3,2,600,15,0,400} 400 ms0 15 Kbps600 Kbps2 N3 N1 3

{2,1,3,2,600,15,0,400} 400 ms0 15 Kbps600 Kbps2 N3 N1 2

{1,1,3,1,750,10,0,300} 300 ms0 10 Kbps750 Kbps1 N3 N1 1

Vector Delay BucketBR FR Prec Dst Src ID

Nodes

Links

Connection Requests

 43

4.2 Problem Generator

To test the routing algorithms, an automatic, probabilistic problem generator was needed.

We created a random topology generator, routeprob (later updates were given the more

unwieldy name hc3_generate_problemset), to support Monte Carlo testing and

comparison of various QoS routing solutions. The topologies which are generated are

multi-tiered (hierarchical in architecture) and multi-layered (multiple links with different

attributes may connect a given pair of nodes).

The Matlab-based topology generator automatically creates network-architecture,

connection-protocol, and routing-problem description files in SRPDP format. Parameters

passed to the Matlab function allow specification of the number of nodes of each type,

number of connection requests and other relevant parameters.

The resulting networks mimic HC3 convergence-layer style networks consisting of

highly connected sub-networks (e.g., ground-based ad hoc nodes and terminals) multiply

connected by a small number of resource limited routers (e.g., satellite and UAV

resources) with access to the Global Information Network (GIN).

To generate a problem, the number of nodes and connection requests must be given.

There were two network sizes used in our testing, one with 12 nodes, and one with 24

nodes. These nodes were broken into three subnets, which were connected to one another

via satellite links. In Figure 4.2 is a representation of one such network. There are three

subnets circled in blue, with connections to the satellites in green. The trapezoid nodes

labelled 13, 14 and 15 represent satellites with the Global Information Network being the

double circle labelled as 16.

 44

Figure 4.2 - Sample Network

The link properties were generated using the built-in random function from Matlab. The

satellite link delays were uniformly random between 200 and 500 seconds. Similarly the

bandwidths were Gaussian random variables that were then rounded to the nearest

multiple of 64 Kbps between 100 and 1500 Kbps. This represents the standard

bandwidth of a voice channel as defined by the telecommunications industry, and is a

common unit of allottable bandwidth in satellite traffic allocation. The connection

request delays were also generated using the same technique with the square root of the

One of 12

end-nodes

Satellite links

3 subnets

 45

number of nodes as a multiplier. This allows for a scaling effect; as the network size

grows the tolerance for delay is similarly increased, though at a smaller rate. Bandwidths

for the connections were generated from a uniform distribution between 10 and 500 Kbps

in multiples of 64. The connections were also given a precedence, which was uniformly

random between 1 and 4, and a QoS status of either 1 or 0 with equal probability. With

this technique approximately half the connections would be QoS connections, the

remaining being best effort connections.

4.3 Blocking Metric

We shall begin with a general introduction to the means for comparison of MLPP (Multi-

Level Precedence and Pre-emption) routing algorithm outcomes that was developed

during this project. Because of the multiple levels of precedence involved, a direct

comparison of the number of overall successful QoS connections would ignore an

important component of the optimization – that high precedence connections bear

overwhelmingly more weight than low precedence connections. As will be seen, we

introduced the notion of a “trumping or blocking metric” to capture this distinction. That

is, an additional high priority solution trumps any number of lower precedence

connections.

Problem 20, 12 X 24

For any one problem, only one
solution can win, and the other
solution will show as zero across
the board due to trumping.

Figure 4.3 - Graphical Blocking Metric

 46

This notion of trumping should be clearly reflected in the metrics applied to summarize

the performance comparisons of various routing algorithms. We developed a graphical

metric depiction strategy that performs this function in an intuitive fashion. Figure 4.3

above shows the results graphically, from problem 20 of the 12 x 24 problem set,

depicting the number of connections of the highest priority by which RTS outperformed

CRLSP in this problem. Even if CRLSP generated more connections of lower priority in

this problem, these wins are trumped by the loss at the higher priority and hence are not

shown. In this case you can clearly see that the RTS solution, shown in red, had one

additional connection request granted at the priority 2 level.

We created a program hc3_generate_winloss_matrix that parses all the data from a

Monte Carlo batch execution generated by hc3_autosim and reduces it to a numerical

evaluation of the entire problem suite that describes the overall performance differences

between two or more QoS routing algorithms. The blocking metric is calculated using

the total connections granted at each priority level, and respecting priority finds how

much “better” one algorithm performed over another. These numerical comparisons

were then passed into hc3_draw_bargraph which would turn the numerical data into an

easily comparable graphical representation.

 47

• Problem #20, 12 nodes, 24 connections

4321Request Priority

01034384138RTS BW

010980138CRLSP BW

44838501280138BW Requested

0311RTS granted

0301CRLSP granted

1831Number of
Requests

RTS found 1 more 2nd

priority connection it could
make by alternative routing
of higher priority
connections

As a result, bandwidth
utilization by priority 2
traffic has increased by 384
kbps

Figure 4.4 - Example of Trumping

The table in Figure 4.4 shows the values of the numbers of connections and bandwidth

(BW) obtained for the 20th problem of the 12x24 test suite and shows that there were one

priority 1, three priority 2, eight priority 3 and one priority 4 connections requested. The

third row of the table shows that the classical routing algorithm was able to grant four of

the connections. The fourth row of the table shows that the Reactive Tabu Search

algorithm was able to find routing for an additional priority 2 connection. The final two

rows show the raw bandwidth granted. Because of the additional connection, RTS was

able to increase the overall network bandwidth utilization by 332 kbps, through an

increase of priority 2 traffic and a reduction of priority 3 traffic by 64 kbps.

 48

100 problems,
12 nodes,
24 connection requests,
approximately 12 QoS
requests

Among the 100 problems, there
were two in which CRLSP yielded
a better Solution, obtaining two
Priority 4 connections missed by
RTS.

This is shown as a loss, given RTS
was the chosen solution method.

Figure 4.5 - 12 x 24 Suite Performance RTS vs. CRLSP

When this trumping technique is applied to an entire test suite of 100 problems, we can

construct a summary figure such as Figure 4.5, and a pattern of behavior can be found.

For these 100 problems RTS was able to find 27 additional priority 1 connections. In

addition to these increased priority 1 connections RTS was able to grant connections at

the lower priorities as shown with the 37 priority 2, 10 priority 3 and one additional

priority 4. These connections were over and above whatever connections were already

granted by CRLSP, giving an indication of how much “better” one algorithm did than the

other. The algorithm on the top half of the graph is compared with the algorithm on the

bottom, and it is indicated as shown by the blue line that two priority 4 connections were

missed by RTS that were granted by CRLSP. This gives a graphical cost-benefit

comparison between any two algorithms. RTS was able to provide a benefit of all those

additional connections having missed optimizations seen by the other algorithm that

would have yielded an additional two priority 4 connections.

4.4 Automated Graphics Generator Route_to_graph

Another Matlab program was created to help visualize the networks being generated.

Route_to_graph was the name of the script that generates graphics files depicting the

 49

networks specified with SRPDP structures to aid visualization and review of problems.

The bandwidth and waveform support attributed to each link is shown. The output which

is generated is in the format required by the graphviz tool, which is an open source tool

for graph visualization available from Lucent Technologies. Route_to_graph will

generate an output file similar to that shown in Figure 4.6, which is the input to graphviz

and produces a graphical representation of the network as Figure 4.7.

Figure 4.6 - Route_to_graph Output File for graphviz

Figure 4.7 - graphviz Generated Network

4.5 Simulation Software

As described earlier, construction of an event-based simulator for the network and

protocols under study was integral to this project. Implementation of a full protocol

emulating simulator provides several benefits, which we shall present in this section.

graph G {

overlap = false;

center = 1;

edge [fontsize=10];

node [shape=circle];

1 -- 2 [label="L1" color="red" fontcolor="red" len=1.5];

2 -- 3 [label="L2" color="black" fontcolor="black" len=1.5];

2 -- 3 [label="L3" color="blue" fontcolor="blue" len=1.5];

1 -- 4 [label="L4" color="blue" fontcolor="blue" len=1.5];

3 -- 4 [label="L5" color="red" fontcolor="red" len=1.5];

 50

Written to support this testing, Matlab scripts were implemented that would match a set

of frameworks, for the network simulator ns [AC01], that were created previously in the

project by research assistants Nick Sherwood, Darius Kazemi, and Professor David

Cyganski.

A mechanism to implement rapid path specific routing needs to be supported by the

network simulator used to apply the flow-based optimization of routes obtained by the

algorithms explored in this project. Furthermore, rapid re-routing of flows without

interruption of the flows is also required. Lastly, topology information must be rapidly

collected from the network to provide necessary information for the execution of the

route optimization program. These capabilities are beyond those supported by most

segments of the Global Internet. Since the HC3 subnetwork is a relatively small network

constructed and controlled by coordinated projects, it is possible to instantiate advanced

network architectures that support the required capabilities. However, it should be

demonstrated that such an architecture exists (with support from the network

development community) and that it has border interface compatibility with existing

(OSPF) technology. In this project we implemented, tested, and validated such a

complete implementation based upon MPLS [SM00] components implemented in a

TCP/IP context using the CR-LDP protocol for topology discovery and route distribution

and CR-LSP for route optimization. This implementation is a network-ready

demonstration of an advanced instantiation of the best-of-class recommendations for the

Transformational Communications Architecture (TCA) network [AC01].

Another reason to implement a complete protocol level simulator is to check the proper

operation of the routing protocols. Though every effort was made to write error-free

software from well considered mathematical models for the optimization of network

routing problems, software will be software! By using a simulator with a long history of

testing and evaluation by the industry and universities, described and validated in

hundreds of publications, we introduced an independent test of our solutions. Ultimately,

this effort proved its worth as indeed many irregularities in the operation of proposed

routing algorithms were identified using this independent evaluation and then corrected.

 51

Finally, the protocol emulation provided means to independently validate the TCP/IP

communications with per-flow routing in an MPLS network. This was accomplished

with the equivalent of DiffServ-style class based queueing (CBQ) applied on a flow

precedence basis. This is sufficient to guarantee the bandwidth protection and delay

constraints required by the individual-flow QoS demands. Again, we were able to

demonstrate and validate this architectural approach.

We created our simulation environment based upon ns (version 2.26) with extensions to

support traffic engineering (RSVP-TE), [ACG] to support centralized QoS routing and

constraint based dynamic MPLS route discovery (MNS version 2.0), and to support

distributed QoS routing. Several required patches and other modifications of the source

code were integrated into these packages to obtain a version that would function in a

current generation Debian Linux based system. We also wrote and inserted additional

code hooks into the ns simulator for purposes of monitoring, troubleshooting and

implementing multi-precedence pre-emption processes.

Figure 4.8 - ns Simulation Visualization

Dropped best-effort

packets

Packets enroute

 52

Above in Figure 4.8 is an example of a 12 node problem being simulated. It is possible

to observe and track the packets moving through the network, and visually see that only

best-effort traffic is dropped. This is further verified by Matlab scripts that we wrote to

parse the verbose output logs that ns generated with our additional code hooks.

4.6 MPLS Traffic Engineering

The following list summarizes the capabilities possessed and techniques demonstrated by

our ns implementation and validated in this project:

● Route forwarding implemented by applying MPLS

● LSR nodes populate entire network

● CR-LDP distributes explicit solution routes with constraint based checks on

bandwidth, queue buffer allocation

● Class Based Queues separate guaranteed bandwidth data flows from best

effort flows

● Simulation checks the feasibility of the route optimization algorithms by

monitoring dropped packets and measuring actual bandwidths achieved

● Best Effort performance is directly measured

● Fail-over paths can be assigned

● Automated Flow Aggregation to reduce the number of CBQs and MPLS flow

identifiers required

Several software tools essential for this implementation and analysis were written by the

team for this project and are summarized below.

4.7 Network Simulation Trace Analyzer

The outcome of an execution of the ns simulation is a trace file, that is, a record of every

event involving the transmission or the reception of any packet at any node in the

network. It is from such enormous and detail-specific data that overall evaluations of

network performance and constraint compliance must be extracted. To do so, we wrote

several tools using Awk scripts and the Matlab system that parse these trace files and

 53

form digests of information that are directly related to dropped packets and best effort

traffic delivery information from which performance data may be generated.

4.8 Monte Carlo Test System

We created the hc3_autosim Matlab script, which automates the following tasks that are

required for every test:

● Generation of routeprob problem structures

● Execution of all routing algorithms under test (OSPF, CRLSP, RTS, etc.)

● Simulation of each solution network

● Matlab based evaluation of route feasibility

● Parsing of simulation trace data for statistics and simulated feasibility

● Generation of data structures with requests granted by each algorithm for each

request priority and a report on the bandwidth requested and granted

● Generation of numerical and graphical algorithm comparison

● Parallel execution of routing algorithms in autosim is supported by a Matlab-

based inter-computer network communications system that distributes routing

jobs by round robin scheduling to a given group of computers and gathers the

outcomes for further processing

 54

13

hc3_autosim
(Matlab)

Automated tester

hc3_generate_problemset
(Matlab)

Topology generator

hc3_find_*_solution
(Matlab)

Routing algorithms

ns/mns
(OTcl)

USC/DARPA/NSF
Network simulator

hc3_sanitycheck
(Matlab)

Constraint/feasibility checker

hc3_route_to_graph
(Matlab)

Topology to graphviz script

graphviz
(AT&T)

Graphics Interpreter

hc3_generate_winloss_matrix
(Matlab)

Blocking matrix calculator

hc3_gather_problem_statistics
(Matlab)

Collects simulation data

hc3_draw_bargraph
(Matlab)

Routing algorithms

Figure 4.9 - WPI Testbed System

 55

The completed system diagrammed in Figure 4.9 allowed parallelization by distribution

to many computers on our network and thus the utility to run evaluations of a large

number of networks to provide a measure of statically relevant results in a useful

timeframe. The use of a Matlab based feasibility checker provided near instantaneous

verification of valid routing solutions, while the event-based protocol level simulator

provided independent confirmation. This allowed for fast failure detection during

debugging and development, as well as quickly generating comparison results for

analysis in minutes, while the simulations would provide verification when they finished

execution.

4.9 Traffic Engineering Generator

We created an ns command script (in the TCL language) to instantiate fixed label

switched paths (LSPs) in an MPLS network with traffic engineering. By defining LSPs,

we are able to force packet flow to conform to optimized routes as determined by either

an external and centralized routing algorithm (such as implemented by NCA&T) or local

mechanisms such as found by distance-vector or OSPF routing algorithms.

A summary of operational capabilities and components includes:

● LDP distributes explicit solution

● Class Based Queues separate guaranteed bandwidth data flows from best

effort flows

● Flow Aggregation reduces the label burden automatically

● Simulation checks the feasibility of the route optimization algorithms

● Dynamic rerouting supported

● Capability to assign fail-over paths in future work

4.9.1 CRLSP-Based Centralized Constrained Routing MPLS Module

We created a constrained route label switch path (CRLSP) routing algorithm module for

MPLS based upon the CR-LDP (constrained route label distribution protocol). Our

implementation of CRLSP implements link-bandwidth constrained routing with

 56

admission control and bandwidth reservation with precedence-based resource

preemption. The admission control and reservation aspects emulate IntServ. Our

admission and reservation system handles each flow direction independently so that

asymmetric connection requests are appropriately allocated and refused as units if

blocked by admission control. We also implemented a centralized first-to-last priority

scheduling rule (functioning under the name OCRLSP as described above) rather than

defaulting to priority-based preemption so as to optimize route solution convergence

time, but this can be subsequently relaxed. Connectivity and resource information is

gathered dynamically via CR-LDP messages, and proposed routes are computed via a

distance-vector algorithm.

4.10 Summary

There were a great number of Matlab scripts created over the course of this project. The

development of a description language for networking problems allowed the creation of a

generator for that protocol which in turn created the need for a graphical problem

representation. In addition, numerous solution generators were created, at least one for

each algorithm tested and shown here, and several more implementations which we did

not pursue to full testing due to obvious flaws or lack of obvious advantage. The network

simulator was an invaluable tool in providing a third party verification of our work, and

was necessary to provide insight into where a bug in the solution could be located. The

full implementation details of the many generators, analyzers and simulators written for

this project can be gleaned from the source code package that was developed.

 57

5.0 Results
As indicated earlier, tests were performed using custom programs written for and

executed in the Matlab environment and using the ns simulator with MPLS modules as

modified by WPI to support CRLSP-based route optimization with constraints. Tests

were conducted for many networks, but these were restricted to be of two sizes. The

restriction to these two cases was for the purpose of exhaustively testing some cases

rather than obtaining only anecdotal results about many. The smaller network type

consisted of a 12 node, 24 connection-request problem, which on average had 12 QoS

connection requests and 12 best-effort connection requests. The larger network type

comprised a 24 node, 48 node connection-request problem which involved 24 QoS

connection requests on average. These will commonly be referred to as 12 x 24 and 24 x

48 problem sizes. The problems were generated using the randomized topology

generator, described previously, with the priorities assigned randomly during the

generation of a problem.

The one thing that is not known well about these problems is the maximum number of

connections possible (with priority respected) for a given problem, that is, the optimal

solution performance. Finding this theoretically optimum solution requires an algorithm

such as Branch and Bound, which considers all potential solution routes and hence can

identify the global optimum. Such an algorithm yields the best case solution but at a

great computational cost. Looking at the 12 x 24 problem 3 as shown below in Figure

5.1, we see that the branch and bound solution was able to find one additional priority 1,

thereby trumping all other solutions.

 58

• Branch and Bound procedure yields the
theoretical optimum at great cost

4321Request Priority

0122B&B

0141WDORA

0141DORA

0241RTS granted

0141CRLSP granted

1362Number of
Requests

•Execution time
–Prob. 3: 171 min.

B&B finds one more
priority 1 path than all
others, “trumping” all
other solutions

Figure 5.1 - Branch & Bound Solution

The cost to compute this solution was 171 minutes, impractically long in terms of real-

time network routing. Some other problems in our test set had branch and bound run

times that could be on the order of years, due to the complexity of the larger 24 x 48

networks. Since it was impossible to compute the optimum solution for each problem to

be used as a reference for performance, classical routing was used as the baseline for

comparison in the study that follows.

This optimal solution, given above, also serves to illustrate the fact that not all connection

requests can in general be fulfilled for a given problem, and hence choices must be made

among the connection requests to be granted. The routing algorithm should be designed

to choose connections with a higher priority first. Thus, making an additional priority 1

connection overrides the benefits of making any number of the other connections. That

is, high priority connection request fulfillment should trump low priority connections.

 59

12 x 24 Test Suite Performance

100 problems,
12 nodes,
24 connection requests,
approximately 12 QoS
requests

Among the 100 problems, there
were two in which CRLSP yielded
a better Solution, obtaining 2
Priority 4 connections missed by
RTS.

This is shown as a loss, given RTS
was the chosen solution method.

Figure 5.2 - 12 x 24 Suite Performance RTS vs. CRLSP

Applying the graphical blocking metric over an entire test suite, such as depicted in the

graph in Figure 5.2, allows a meaningful comparison of algorithms and summary of

performance tradeoffs. This is the graphical metric for the 12 node, 24 connection

problem for a set of 100 problems. RTS results are represented in red. This graph shows

that RTS finds a significant number of additional connections beyond those found by

CRLSP, shown in blue. Looking at the numbers above the RTS plot, it can be seen that

using RTS results in a gain of 27 priority 1, 37 priority 2, 10 priority 3 and one priority 4

with the cost being that two connections of greater priority were found by CRLSP in

some test or combination of two tests that should have been found by RTS.

Similarly, the 24 node, 48 connection problems were evaluated using the same technique

(Figure 5.3). It was expected that the benefits of using RTS over CRLSP would follow a

similar pattern with the gains being higher given the larger number of connection

attempts made.

 60

24 x 48 Test Suite Performance
100 problems,
24 nodes,
48 connection requests,
approximately 24 QoS
requests

Again there were only two
connections for which CRLSP
yielded a better solution which
was missed by RTS.

As anticipated before, larger
networks are subject to much
more benefit by improved routing
algorithms such as RTS.

Figure 5.3 - 24 x 48 Suite Performance RTS vs. CRLSP

The benefits for RTS were high, with 79 additional priority 1 connections being made.

The tradeoff for using RTS rather than CRLSP was a loss of two priority 3 connections –

a loss with no weight in the rating of performance in that these are of lower priority than

any of the connections gained.

The other consideration when choosing a routing algorithm is the performance and

computational complexity (hence computational resources) involved. Some of the

highlights in the complexity versus performance comparison of RTS and CRLSP are:

• RTS execution time for one 12 x 24 problem: 5.6 minutes

• RTS execution time for one 24 x 48 problem: 12 minutes

• CRLSP execution time for one 12 x 24 problem: 0.056 seconds

• CRLSP execution time for one 24 x 48 problem: 0.184 seconds

 61

• In 12 x 24 problems, CRLSP lags RTS by approximately 0.75 connections of any

priority per problem or 6.25% per connection request.

• In 24 x 48 problems, CRLSP lags RTS by approximately 1.40 connections of any

priority per problem or 5.83% per connection request.

The execution time for RTS was approximately linearly related to the size of the

problem. With the smaller 12 x 24 connection problems, RTS was completing in an

average of 5.6 minutes. The larger problems with approximately double the connections

to route were computed in 12 minutes on average.

CRLSP executes on average in 0.056 seconds for the smaller problems and 0.184 seconds

on the larger problems. This is dramatically faster than RTS, with slightly fewer

connections routed successfully. CRLSP performance actually lags RTS by

approximately 0.75 connections per problem or 6.25% per connection request. For the

larger problems, CRLSP lags RTS performance by 1.40 connections per problem or

5.83% per connection request on average. Why can a simple solution such as CRLSP be

this good?

Most networks pose routing problems that are not as difficult as NP-

complete: “Conditions that impact the complexity of QoS routing,” F.A.

Kuipers and P.F.A. Van Mieghem, IEEE Transactions on Networking,

August 2005, pp. 717–730.

One could argue that with a well chosen approach mapped to a specific problem, it is

possible to generate good solutions with much less complexity than a full global

optimization, and that the above result indicates that CRLSP is quite close to the

algorithm that does this for us.

5.1 Comprehensive Performance Comparison

Next, we will examine and analyze the outcomes of tests that span seven different routing

algorithms (OSPF, OSPF+, CRLDP, OCRLSP, DORA, RTS, HYBRID), two network

 62

problem sizes (12 nodes, 24 connections and 24 nodes, 48 connections) and from 100 to

5000 cases of each. In every case, each connection request was assigned a minimum

allowed bandwidth and maximum allowed delay.

The baseline with which all other algorithms were compared was OSPF, which is the

most common algorithm in use in the Internet today. When OSPF was used, the usual

shortest path routes were found for each request based upon the pre-computed

connectivity matrix and cost functions that were taken as the delay of each link.

Reservations are then attempted (in order of the randomly generated requests) based upon

remaining (previously unreserved) bandwidth. This again replicates the behavior of

today’s predominantly OSPF-based, priority-agnostic, RSVP/IntServ-based system for

QoS reservation on QoS-aware segments of the Internet.

In Table 5.1 we show the results upon applying the OSPF-with-reservations algorithm to

100 cases each of our two problem types. The total number of connections at each

priority level that were granted are given in this table.

Problem Size Priority 1 Priority 2 Priority 3 Priority 4

12/24 70 127 143 76

24/48 114 241 259 128

Table 5.1 - Connections Satisfied

The blocking metric, which will show important (that is, passing the trumping criterion

introduced earlier) improvements as various levels of optimization are introduced, is

shown in the following figures.

 63

Figure 5.4 - 12 x 24, 100 Problems, All Algorithms

There are clear increases in utilization as higher levels of optimization are introduced.

The lowest level of optimization introduced is to be found in OSPF+, which uses a

DiffServ-based approach to apply some knowledge of the network link bandwidth to

determine which of several bandwidth-qualified shortest paths to use. This additional

information regarding bandwidth increases the number of priority 1 connections by 14

for the 12 node, 24 connection problem set and, furthermore, does this at no tradeoff for

lower priority connections. At all levels, a total of 72 connections are added to the 416

established under OSPF, for an inprovement of 17.3% overall, including the very

 64

important increase of 20% more priority 1 connections. DiffServ can play an important

role in capturing improved MLPP QoS performance.

The red bar above the OSPF+ bar in the above graph represents CRLSP, which

recalculates the shortest available route for each connection based upon remaining

bandwidth. It will preempt lower priority traffic connections previously committed and

hence will route around congestion in the network to a limited degree. This increases the

number of priority 1 connections made over OSPF by 28. Thus, 40% more priority 1

connections are made, twice the improvement of OSPF+. Thus, at the cost of

maintaining global distribution of network state or, equivalently, of using a

centralized routing host, a very significant improvement over DiffServ performance

can be realized.

To read the next few graph values, one must be aware that the graphs were painted in the

order of opimization level, from lowest to highest. Thus, if a color appears to be missing,

it is under that of the next higher priority level result shown. Hence, the yellow line

indicating OCRLSP is under the purple line of RTS as is also DORA2 in the priority 1

column of the above graph.

The next level of optimization considered, Ordered CRLSP, uses some global

optimization in the form of a complete recomputation of all paths with each new

connection request to increase the effectiveness of CRLSP. OCRLSP applies sorting of

all connections to be made by precedence followed by recomputation via the CRLSP

method. It adds no additional burden to the distribution of information or centralization,

but adds to the computational burden involved with each connection establishment and to

the communication burden of having to inform the entire nework of the required routing

changes. This strategy could not be applied on a global scale but is practical for

implementation to address a HC3 convergence layer due to its small size. OCRLSP

found means to provide 52 additional priority 1 connections, an improvement of 72%,

nearly doubling the performance increase obtained by CRLSP. Thus, at a cost of

 65

greater per-route computational burden and additional inter-router communication

for each route change, yet another large performance advantage can be realized.

DORA2 is a two-pass algorithm that first solves the routing problem for each connection

without competition, gathers statistics on the usage of links, and then resolves the

problem for each connection (using priority ordering) with a metric that reflects the usual

constraint information and the statistics found in the first pass. Though not dramatic, this

does present an increase in computation over OCRLSP. As can be seen in the figure, no

advantage over OCRLSP was found at priority 1, and it fell slightly behind OCRLSP at

the priority 2 level. There appears to be no advantage to the DORA2 scheme, a two

pass solution, over OCRLSP.

RTS introduces a significantly higher level of global optimization. Using a solution found

with Dijkstra’s algorithm (the same as used by OSPF) as an initial routing solution, it

performs an extensive local optimization of local path alternatives. As can be seen in the

graphs, there is no advantage over OCRLSP for priority 1 traffic. A small improvement is

obtained at the priority 2 level. As will be seen in the concluding section, the cost of RTS

is very high compared to the preceding algorithms and is not compensated by a

significant performance improvement. There appears to be no reason to apply costly

local path exploration optimization in HC3 networks.

The final optimization technique considered is the Hybrid method. This uses the two-

pass DORA2 solution as the initialization for an RTS optimization. The notion here is

that RTS is more likely to explore the correct locale of the solution space if initialized by

an already nearly optimal solution. Results do in fact show in this case that a single

additional priority 1 connection is obtained. Hence, the Hybrid method achieves a 75.7%

improvement over OSPF for priority 1 connections versus a 74.28% improvement

obtained by OCRLSP. However, this small improvement was obtained at a cost of 3450

times greater computation time! It appears that almost all optimization in HC3

convergence layer networks is achievable at low cost with a remaining small

improvement achievable at unwarranted cost.

 66

Figure 5.5 - 24 x 48, 100 Problems, All Algorithms

 67

Figure 5.6 - 12 x 24, 5000 Problems

Several more tests were conducted to obtain evidence that our observations were

statistically sound and that they are not restricted to this specific problem size. The next

graph indicates our results by applying all but RTS and Hybrid methods to 5000

problems of the 12 x 24 size. The latter algorithms were not introduced into this test

owing to the impractical time of execution of a test of this size given their computational

burden. As can be seen, there is no qualitative difference discernable between these

results and those we have been discussing for 100 cases. There is strong evidence that

our conclusions are statistically significant.

 68

Figure 5.7 - 24 x 48, 5000 Problems

Next, we tested the behavior of these solutions with respect to network size. The

following graphs depict the trumping metric evaluations obtained upon doubling the

network size. Once again, 100 cases were executed for all algorithms, and 5000 cases for

those for which it was computationally feasible. In both of these results we see again no

qualitative differences in the overall behavior (ranking, and proportional performance

gains). Thus, our conclusions are robust with respect to problem size in the vicinity

of network sizes that might be encountered in an HC3 convergence layer network.

 69

6.0 Interpretation of Results

OSPF is the default routing algorithm used in the Internet today. It is based on use of a

static (that is, routes are assigned on the basis of network topology and assigned metrics

and not dynamically on the basis of the state of admitted connections) shortest path

algorithm with no bandwidth or delay constraints. QoS-based connection requests are

evaluated and admission is granted by a process that tests admissibility of these static

routes given the current admission state. In the following, we will denote this as a

“Stateless, Non-Preemptive, Static Routing” algorithm.

The optimal (and impractical) routing algorithm would be a “Stateful, Preemptive,

Globally Optimized” algorithm. That is, for each new connection request, it would re–

solve for the best path assignments. This solution would take into account all possible

path assignments (global) for all the currently granted connections (the connection state)

and the newly requested connection. It would then dynamically reassign paths as

necessary and pre-empt lower priority connections to optimize the blocking metric while

maintaining the bandwidth and delay constraints of the QoS parameters.

Practical multi-objective optimization involves relaxing the global nature of the optimal

solution. Our evaluation ultimately spanned a set of seven levels of optimization, ranging

from the Stateless, Non-Preemptive, Static Routing of OSPF to techniques that explore

many, but by no means all, path assignments, seeking a local optimum in the vicinity of

solutions that arise from heuristics intended to quickly identify reasonable solutions.

These heuristics involve the use of precedence-sequential optimization (that is, assign all

highest precedence paths first, followed by each lower precedence class) and two-pass

approaches in which the metrics determined by bandwidth and delay constraints are

 70

supplemented by information about the “popularity” of certain links given optimum

routing of each connection in the unoccupied network.

The algorithms which were tested, as described in the previous section, can be described

by their major routing attributes and are seen to form a hierarchical set. As listed below,

this hierarchy is

1. Stateless, Non-Preemptive, Static Routing (OSPF)

2. Stateless, Non-Preemptive, Multi-Static Routing (OSPF+)

3. Stateful, Path-Preemptive, Time-Sequential Routing (CRLSP)

4. Stateful, Preemptive, Precedence-Sequential Routing (OCRLSP)

5. Stateful, Preemptive, Two-Pass, Precedence-Sequential Routing (DORA2)

6. Stateful, Preemptive, Limited Non-Sequential Routing (RTS)

7. Stateful, Preemptive, Two-Pass, Limited Non-Sequential Routing (Hybrid)

The cost of the various levels of optimization varies greatly, with the greatest

computation costs entering upon the introduction of limited non-sequential routing, that

is, the operation of local optimization of the path assignments about the initial path

solution. Hence, there is great value in discovering the gains in routing performance to

be obtained at each level.

Table 6.1 shows the amount of time taken, in seconds, to execute a set of 100 routing

problems of the given size. Note that the variance of execution time due to local

processor conditions (background jobs) exceeded the differences in computation time of

the OSPF, OSPF+, CRLSP, and OCRLSP algorithms. Yet, as we saw in the previous

section, over this span of algorithms, nearly a doubling in successful high priority

connections established was achieved.

 71

Execution Time (100 problems) sec. Performance Summary (100 problems)

% Increase in Priorty 1 QoS Connections

Algorithm 12 / 24 24 / 48 12 / 24 24 / 48

OSPF 5.88 21.11 Baseline Baseline

OSPF+ 5.66 19.86 12.86 % 23.68 %

CRLSP 5.63 18.38 35.71 % 77.19 %

OCRLP 5.43 18.91 74.28 % 146.49 %

DORA2 26.03 107.70 75.71 % 148.25 %

RTS 34035.00 72342.00 74.29 % 146.49 %

Hybrid 18734.00 38486.00 75.71 % 148.25 %

Table 6.1 - Execution Time and Performance Summary

We will summarize the significant performance and execution time properties of these

algorithms.

DORA2 required approximately five times more computation than the preceding

algorithms but demonstrated an advantage in finding priority one connections. Other

algorithms would find additional lower priority connections, which would balance out the

total connections if not for the trumping metric. DORA2 also showed great promise as

an initialization routing solution for the Hybrid method, allowing it to find additional

routing solutions that were missed in the RTS solutions.

The RTS and Hybrid algorithms are seen to present computational burdens that are

unsupportable with today’s routing processors. But our previous results also showed that

the gains to be captured by increases in optimization are small.

Our results have shown that almost all performance advantage due to optimization in

HC3 networks is attained upon the introduction of Stateful, Preemptive, Precedence-

Sequential Routing, that is, with the use of OCRLSP, or level 4 in our hierarchy. Thus,

for a very small increase in routing complexity, results that approach the highest

 72

otherwise attained performance can be obtained. This result has immediate impact on the

design of routers for HC3 applications as it places the problem of obtaining solutions

nearly as optimal as that obtainable with impractical levels of computation for QoS

constrained routing within the realm of feasible implementation.

A question raised by this result is whether it has a theoretical basis. Very recently, a

published work demonstrated that this is indeed the case. The paper “Conditions that

impact the complexity of QoS routing” (F.A. Kuipers and P.F.A. Van Mieghem, IEEE

Transactions on Networking, August 2005, pp. 717-730) provides theoretical evidence

that most networks pose routing problems that are not as difficult as NP-complete. It

appears that our results, for HC3 topology networks, confirm this overall

observation that, while some network problems are very difficult, most are not, and

we identify the specific level of optimization needed to access the practically

achievable performance improvement.

 73

7.0 Conclusions

7.1 “Grand Challenge” of Network Centric Warfare

Upon delivering our final report presentation to our sponsor, the WPI team noted that in a

recent editorial in the IEEE Communications Magazine, the following gauntlet is cast:

From a development perspective, there is no underlying “network theory”

for multihop large-scale heterogeneous tactical mobile networks on which

to pin our network designs. We are quite literally designing networks and

components in the dark with respect to understanding how their

performance compares to a theoretical limit. There is a reluctance … to

invest in large-scale, scientifically sound (i.e., repeatable, calibrated,

scalable) experimental testbeds where real platforms are outfitted with

experimental components and a tractable assessment of their performance

is scientifically studied.

 Until these challenges are seriously addressed by the military

community, little or no real progress will be made in achieving the vision

of ubiquitous voice, video, and data being available to the war fighter in

the field.

“Network-Centric Military Communication,” Guest

Editorial, C.A. Nissen, T. Maseng, IEEE Communications

Magazine, Nov. 2005, pp. 102–104.

We further noted that this project took direct aim at the problems identified in this

challenge and made significant contributions to our knowledge about them. In doing so,

 74

we also created a suite of tools and techniques that substantially speed such investigations

as may be carried out in the future.

7.2 Outcomes

The significant outcomes of this project may be summarized as follows:

● Created a versatile, scalable, reusable testbed and simulator for evaluation and

comparison of alternative routing algorithms.

● The testbed reflects, validates and demonstrates TCA best-practice

combination of QoS routing and MPLS traffic engineering implementation.

● Created a suite of tools for the automated generation of random networks of a

given topology and link bandwidths and delay randomly assigned. Similarly,

random connection requests with priority of connections and required QoS

parameters were also drawn from given random processes. Other tools

provide for the automated execution of large scale Monte Carlo tests of these

networks and problem sets.

● Thoroughly evaluated best-of-class QoS constrained shortest-path routing

methods, multi-objective optimization methods and recent fast heuristics

against each other and the Internet-standard OSPF algorithm.

● Identified OCRLSP as viable for practical convergence routing.

● Confirmed recent theory that, while optimal QoS aware routing solutions are

in general NP-Complete and hence not practically achievable, nearly optimal

solutions are easily within reach of current processor capabilities for limited

span networks (such as the HC3 convergence layer) given acceptability of

higher communication burdens owing to the need to maintain global state

information.

 75

7.3 Future Investigations

The results of this research immediately suggest the following areas for fruitful future

research.

7.3.1 Optimality of Distributed Dynamic Routing

A paper delivered at INFOCOM (“Joint optimal scheduling and routing for maximum

network throughput,” E. Leonardi, et al., March 15, 2005) offers the following theorem:

Combined behavior of dynamic routing and scheduling algorithms based

upon link state information, with no knowledge of the average traffic

pattern can achieve the same network throughput as optimal centralized

routing and scheduling algorithms with complete information on the

traffic pattern.

If what is claimed in this paper is true and extends to the case of QoS constrained traffic,

then there would be means to achieve the same gains that we obtained in this work

through application of the OCRLSP routing algorithm without as large a communications

burden and without centralization.

This project included a small investigation of stigmergy-based distributed, dynamic route

optimization. However, it was found that current work in distributed agent-based routing

does not address QoS constraints. It appears to us that stigmergy-based QoS routing may

be a viable approach to achieve distributed dynamic routing for convergence layer

networks and other larger networks.

7.3.2 Ad Hoc Network Extension

The HC3 Convergence Layer network typically interfaces with a mobile ad hoc network.

It would be fruitful to implement an ad hoc network mobility test component for our

testbed and then investigate the possibility of extending the OCRLSP technique into the

ad hoc network itself. Ad hoc networks suffer from many of the same routing problems

as the convergence layer with respect to difficulties induced by QoS and MLPP

 76

constraints. Hence, our success at the HC3 layer offers the possibility of improved

MANET performance at a similar low routing cost.

 77

8.0 References
[ACG] Adami, D., Callergari, C., Giordano, S., Mustacchio, F., Pagano, M., and Vitucci,

F., “Overview of the RSVP-TE Network Simulator: Design and Implementation,” Dept.

of Information Engineering, University of Pisa, Italy.

[AC00] Ahn, G., and Chun, W., “Design and Implementation of MPLS Network

Simulator Supporting LDP and CR-LDP,” icon, p. 441, Eighth IEEE International

Conference on Networks (ICON’00), 2000.

[AC01] Ahn, G., and Chun, W., “Design and Implementation of MPLS Network

Simulator (MNS) Supporting QoS,” icon, p. 694, 15th International Conference on

Information Networking (ICON’01), 2001.

[BT94] Battiti, R., and Tecchiolli, G., “The Reactive Tabu Search,” OSRA Journal on

Computing, Vol. 6, No. 2, pp. 126–140, 1994.

[BSI02] Boutaba, R., Szeto, W., and Iraqi, Y., “DORA: Efficient Routing for MPLS

Traffic Engineering,” Journal of Network and Systems Management, Vol. 10, No. 3,

Sept. 2002, pp. 309–325.

[BSI02A] Boutaba, R., Szeto, W., and Iraqi, Y., “Dynamic Online Routing Algorithm for

MPLS Traffic Engineering,” Networking 2002, LNCS 2345, pp. 936–946, 2002.

[CEH06] Cyganski, D., Esterline, A., Homaifar, A., Clay, L., and Farmer, J., “Multi-

Objective Routing Control and Optimization for HC3 Networks.” Final report submitted

to Raytheon Corporation upon project completion, May, 2006.

 78

[Gen03] Gendreau, M., “An Introduction to Tabu Search,” Handbook of Metaheuristics,

Norwell, MA: Kluwer Academic Publishers, 2003. Ch. 2, pp. 37–54.

[MAB05] Maalaoui, K., Abdelfettah, B., Bonnin, J., and Tezeghdanti, M., “Performance

Evaluation of QoS Routing Algorithms,” Computer Systems and Applications, 3rd

ACS/IEEE International Conference, Cairo, Egypt, January 2005, pp. 66–69.

[MOY98] Moy, J., “OSPF Version 2,” RFC 2328, April 1998.

[NACP06] “Network Architecture and Connection Protocol – 1.1 Routing Problem

Description Language for NCAT/WPI Research.” Unpublished internal document related

to Raytheon sponsored HC3 project, May, 2006.

[PC97] Park, V., and Corson, M., “A highly adaptive distributed routing algorithm for

mobile wireless networks,” Proceedings of INFOCOM’97, April 1997, pp. 1405–1413.

[PB94] Perkins, C., and Bhagwat, P., “Highly dynamic Destination-Sequenced Distance-

Vector Routing (DSDV) for mobile computers,” Proceedings of the SIGCOMM ‘94

Conference on Communications Architectures, Protocols and Applications, August 1994,

pp. 234–244.

[SM00] Singh, A., and Mittal, G., “QoS and Traffic Engineering: MPLS, DiffServ and

Constraint Based Routing,” Project report, Department of Computer Science &

Engineering, Indian Institute of Technology, May, 2000.

[TGP01] Trimintzios, P., et al. “Engineering the Multi-Service Internet: MPLS and

IP-Based Techniques,” Proceedings of IEEE International Conference on

Telecommunications, Bucharest, Romania, June, 2001.

