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Abstract 

In this thesis, we introduce, construct, and test novel miniaturized antennas for microwave 

imaging. We also present the corresponding osteoporosis screening and detection results 

which are based on deep learning.  

Microwave Imaging is an emerging medical imaging technology with potential benefits in 

physical size, complexity, and cost when compared to traditional solutions. There is potential 

to further optimize the cost of a diagnostic solution by reducing image resolution and relying 

on signal processing techniques to make up the difference. The required image resolution 

depends on the application in question. Additionally, for generic imaging, there is potential to 

increase image resolution using smaller antennas and higher operating frequencies that can 

be realized using more efficient on-body antennas 

A point-to-point transmission setup has been used to measure subjects to determine if they 

are osteoporotic or healthy. This setup is safe, easy to use, and compact when compared to 

the standard, x-ray-based imaging modality for osteoporosis. Two dichotomous diagnostic 

tests were performed using the subset of the study participants who could be conclusively 

classified as osteoporotic, osteopenic, or healthy. The first test investigated an integral-based 

classifier that achieved a Youden’s J index of 81.5%. The second test investigated the use of 

a perceptron neural network classifier that produced a Youden’s J of approximately 83%. The 

neural network achieved 94% specificity, making it more suitable for pre-screening potentially 

osteoporotic patients compared to the less specific integral classifier. 

The dual antiphase patch antenna used for osteoporosis detection is inherently more efficient 

at radiating into the body than contemporary on-body dipole or single-patch antennas. A 

miniature, 2.4 GHz, version of the dual antiphase patch antenna has been developed using 

computer simulation, fabricated, and tested for viability in a theoretical high-resolution brain-

imaging setup. The balun and matching circuitry have been condensed into the antenna’s 

PCB (Printed Circuit Board). The effect of surface waves was also factored into the design 

consideration, while maximizing the detected signal’s SNR. 
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Results for Defense 

I defend 

1. Novel neural network classifier (topology, training, and verification) for microwave 

imaging of healthy vs osteoporotic bone based on wrist testing results. 

2. Design, construction, and testing of a novel miniaturized antenna for microwave 

imaging:  a 2.4 GHz dual antiphase antenna. 
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Chapter 1. Introduction 

Microwave imaging is a set of emerging and affordable medical imaging techniques that use 

electromagnetic waves in a variety of configurations to determine information pertaining to 

the interior of an object. For the purposes of this document, the object in question is the 

human body. This thesis will investigate the properties of dual-antiphase antennas and how 

their properties address some of the challenges associated with performing microwave 

imaging on the human body.  

One advantage of microwave imaging is its low cost and affordability as compared to CT 

(computer tomography), MRI (magnetic resonance imaging), and other human body imaging 

modalities such as positron emission tomography (PET), etc. The notable exception is 

ultrasonic imaging, which is also inexpensive when compared to traditional imaging 

modalities. The major disadvantage is its low resolution and inability of deeper penetration at 

higher frequencies, which are also disadvantages shared by microwave imagers. Unlike 

ultrasonic imagers, microwave imagers can measure dielectric properties of tissues (dielectric 

constant and conductivity), which is impossible with any other method. 

1.1. Definition of Microwave Imaging 

Microwave imaging is the practice of transmitting microwave-length radio waves into an object 

and using the reflected and/or transmitted signals to determine properties of the interior of 

the object. Typically, microwave imaging refers to microwave tomography: the practice of 

creating a map of material layers differentiated by their dielectric properties. However, 

microwave imaging also includes less sophisticated techniques. 

Initial inquiries into what is now known as microwave imaging began in the late 1970s when 

Jacobi, Larsen, et al. immersed two antennas in water with various tissue samples between 

them [1], [2]. This was the first published experiment in which active electromagnetic stimulus 

was applied to a sample to measure scattering [2], though prior to this some passive 

measurement of various samples had been performed [3]. This experiment forms the basis 

of current microwave imaging: sending electromagnetic waves into a sample and observing 

the scattering of the wave to determine properties of the sample. 

Practical microwave imaging of biological samples has been challenged by the high 

attenuation of electromagnetic waves in biological tissue and the dielectric mismatch between 
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the media surrounding the antenna and the sample itself. To address this, recent studies 

have placed different media between the microwave antennas and the biological sample, 

including but not limited to air [4], tuned-dielectric rubber [5], and the biological sample itself 

[6]. Additionally, antennas have been designed specifically for direct contact with and 

transmission through biological samples. The dual-antiphase patch antenna is one of these 

designs [7], [8]. 

Additionally, microwave imaging suffers from a penetration versus precision trade-off. 

Wavelength is inversely proportional to frequency and directly proportional to the size of 

physical features the imager can detect. Conversely, attenuation of the electromagnetic wave 

over distance inside the body is inversely proportional to frequency and, therefore, directly 

proportional to wavelength. 

1.2. Microwave Imaging Application: Stroke 

A stroke occurs when the blood supply to some or all regions of the brain is interrupted. This 

can be due to a clogged artery, known as an ischemic stroke, or due to a ruptured artery, 

which causes a hemorrhagic stroke [9]. Diagnosis of strokes through accurate imaging 

technologies is common practice and is generally accomplished by MRI (magnetic resonance 

imaging) or CT (computerized X-ray tomography) [10]. Further, post-operative monitoring has 

been strongly correlated with reduced short-term “death or disability,” among said stroke 

patients [11] because some treatments are effective against one type of stroke, yet they make 

the other type worse. These conventional imaging technologies, however, have some 

drawbacks for post-operative monitoring of stroke patients. Chiefly among these drawbacks 

are the “portability, cost and harmful effects,” [10] associated with these systems. CT and 

MRI machines are expensive enough that most locations do not have enough machines to 

provide continuous monitoring to more than a couple of patients. Both are room-scale 

machines that require the patient to lie down on a moving platform positioned by the operator. 

Finally, CT is X-ray based and therefore not suitable for long-term use due to the 

accumulation of ionizing radiation. For contrast, ultrasonic monitoring can speed up 

thrombosis of ischemic strokes but can sometimes exacerbate hemorrhagic strokes or cause 

bleeding elsewhere in the brain, depending on its frequency [12]. 

Microwave imaging, by comparison, does not have these drawbacks. It lacks the large power 

requirements and room-scale electromagnet that MRI relies upon, and microwaves are non-
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ionizing, as they are below visible frequencies. Lower power requirements and fewer large, 

expensive, or specialty parts offer a potential cost savings as well. It is equally suitable to 

ischemic and hemorrhagic strokes and does not risk further damage to the body. 

Microwave stroke detection relies on the difference in dielectric properties between the pooled 

or clotted blood and the surrounding brain tissue. When the transmitted electromagnetic wave 

encounters this boundary, it scatters. By monitoring different locations on the outside of the 

head and using knowledge of the dielectric properties of the tissues, the location the 

scattering occurred can be reconstructed [2], [4], [10]. Performing this process repeatedly 

with different directions for the incident wave produces a boundary of the built-up blood, 

whether the stroke is ischemic or hemorrhagic [10]. 

Some developmental products for microwave imaging based stroke detection include the 

MedField MD-100 Strokefinder [13], the EMTensor BrainScanner [14], and the EMVision [15]. 

Notable recent academic work includes a fixed 3-D array [10] using antennas with a 

specialized graphite-rubber matching medium [5] to improve performance made by Dr. 

Vipiana and her group from Politecnico di Torino. Additionally, a group at the University of 

Queensland built a 2-D array and used it to demonstrate their polar sensitivity encoding for 

faster processing of tomography data [16], as well as a flexible 3-D array [17]. Finally, a group 

at the City University of Hong Kong built a differentially fed magneto-electric dipole antenna 

that utilizes a liquid matching solution to achieve coupling to the body [18]. 

1.3. Microwave Imaging Application: Osteoporosis 

Osteoporosis is a degradation of trabecular bone, which makes up the inner core of human 

bones [19]. This degradation can subsequently lead to bone fractures, particularly at the hip 

and spine. The World Health Organization (WHO) has defined individuals at risk for these 

fractures based on their areal Bone Mineral Density (aBMD, g/cm2) relative to that of a normal 

young adult, as measured by Dual-energy X-ray Absorptiometry (DXA). Some shortcomings 

of DXA include exposing patients to small ionizing radiation doses of up to 0.86 mrem [20]; 

the surrounding soft tissues can introduce relevant measurement errors [21], [22]; bone 

mineral density (BMD) measurements are affected by variations in bone size [23], [24]; and 

measurements of cortical and trabecular bone cannot be separated [25]. Additionally, fracture 

predictions based on aBMD are neither sensitive nor specific [26], [27], [28], [29], [30]. 
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Therefore, quantitative ultrasound measurement techniques, which correlate well with DXA 

[31], can be improved upon. 

Microwave or radiofrequency imaging of (heel) bone was first introduced by Dr. Keith Paulsen 

and his research group at Dartmouth College in the early 2010s as an alternative non-ionizing 

diagnostic method to assess bone health [4], [32], [33], [34], [35]. Due to the well-known 

complexity and poor spatial resolution of the standard microwave imaging setup [36], [37] 

used in these studies, no clinically applicable results have been generated to date. However, 

the underlying physical idea of this method is simple and powerful. In osteoporosis, bone 

mass decreases and pore size increases. The lost bone mass is replaced by a mixture of 

yellow bone marrow. Such substantial changes in physical properties must alter 

electromagnetic tissue properties [38], [39] and must generate a significantly different 

radiofrequency (RF) channel through the bone. It may therefore be sufficient to track an 

integral measure of radio wave propagation along the path through the bone [6] instead of 

restoring the complete permittivity map, as attempted previously [4], [32] [33] [34] [35]. A 

comparison of the setups for these two methods is shown in Fig. 1. 

 

Fig. 1. (a) typical microwave imaging setup [37], (b) author’s point-to-point transmission setup for 
measuring bone density at the wrist [6]. 

1.4. Microwave Imaging Application: Breast Cancer Detection 

Breast cancer is a general term for any cancerous growth that occurs in the breasts [40]. 

Recently, it has been established that these cancerous growths have different dielectric 

properties from the surrounding tissue [41], [42], [43], [44], [45], [46], [47], [48], [49], [50], 

a) Transmit antenna

Receive antenna

2 cm

2 cm

b)
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though the magnitude of the differences is strongly dependent on the type of tissue 

surrounding the tumor [51], [46], [47]. X-ray mammography is the standard technology for 

breast cancer detection, though ultrasound, MRI, and PET (Positron Emission Tomography) 

solutions also have been investigated [51]. Mammograms expose patients to regular doses 

of x-rays, which are a form of ionizing radiation. Additionally, they typically take a two-

dimensional scan and therefore require some positioning of the subject which can be difficult 

or unpleasant. Finally, there are scenarios, chiefly in non-fatty tissue, in which the 

mammogram does not always provide meaningful distinction between the malignant tissue 

and the surrounding tissue [51], [52]. Ultrasound is safe but suffers from low resolution. In 

general, it has trouble differentiating between malignant and benign tumors [51], [53]. MRI is 

known to have high sensitivity but varying specificity in this application [53]. Its cost serves to 

keep it away from screening work. PET detects positrons emitted when a radioactive mixture 

is processed by the breast cells. This allows early detection at the expense of radiation 

exposure and low resolution [51].  

Dr. Hagness and her group at the University of Wisconsin have explored multiple setups for 

both passive and active microwave imaging to detect breast cancer [46], [47], [54], [55], [56]. 

Dr. Paulsen, Dr. Meaney and their associates at Dartmouth College have performed multiple 

experiments on microwave tomography of the breasts [57], [58], [59], [60]. Dr. Zhurbenko, Dr. 

Krozer and their collaborators investigated a three-dimensional microwave imaging system 

[37], which is shown in Fig. 1a. 

1.5. Advantages of Microwave Imaging 

Compared to traditional imaging techniques, microwave imaging requires less sensor 

hardware and comparatively few moving parts. Moreover, despite their design complexity, 

antennas are simple to fabricate when compared to magnetic excitors or X-ray sensors. All 

of these factors contribute to a much lower cost of production for microwave imaging 

equipment when compared to MRI, CT, or PET. Microwave antenna coupling is less volatile 

and is relatively simple to do. Additionally, the ultrasound imaging methods cannot resolve 

electric properties of the human tissues, which allows microwave imagers higher possible 

accuracy of diagnosis for a comparable image resolution. 

The measurement hardware and stimulus generators used by microwave sensors remain 

complex but are comparable in size to control packages for other sensing technologies. Due 
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to the small size of the antennas, this control hardware often constitutes the bulk of a given 

microwave imaging system’s physical size. Such setups [6] are small and portable compared 

to traditional imaging machines for the same task. Additionally, thanks to the popularity of 

radio communications, parts for microwave imaging systems are readily available off-the-

shelf. This further improves the cost-to-performance for commercial microwave imaging 

devices when compared to other sensing modalities. Further, microwave imaging does not 

expose patients to ionizing radiation or strong magnetic fields. It can be used more frequently 

and with less preparation and caution than MRI or CT. As far as absorbed power goes, the 

device described in [6] transmits with less power than a typical cell phone. 

1.6. Examples of Antennas for Microwave Imaging 

The following three antenna types described below are examples of different approaches to 

solving or circumventing the problems inherent to microwave imaging. First, the magneto-

electric dipole antenna separates the axes of the magnetic and electric resonators to limit the 

strength of skin-surface-propagating electromagnetic waves (surface waves) and uses a 

liquid intermediary solution to match the antenna to the body. Second, the brick-shaped 

antenna seeks to solve the problem of mismatch and conformality using a flexible solid 

medium. Third, the dual-antiphase patch antenna eschews an intermediary matching medium 

and instead seeks to achieve a superior direct-coupled transmission through the body using 

antiphase resonators with an unconventional feed structure. 

Magneto-Electric Dipole Antennas 

The magneto-electric dipole antenna discussed here is a permutation of the standard 

magneto-electric dipole antenna [61]. It is a dielectric-matched antenna with a focus on 

directing all transmitted power into the body. The name of the antenna is derived from the 

separation of the magnetic and electric dipoles due to the three-dimensional L-shape of each 

radiator. The antenna has, “two horizontal patches performing as a half-wavelength electric 

dipole and two vertically oriented quarter-wavelength shorted patches together with a portion 

of the ground plane between them performing as a magnetic dipole,” [18]. These elements 

are immersed in a commercial matching liquid and backed by a cavity reflector that serves a 

dual role to contain the matching liquid. The antenna is also packaged with an impedance 

transformer, implemented using the interior layers of the mounting PCB to produce a coaxial 

arrangement, known as a substrate-integrated coaxial line (SICL) [18].  
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Compared to other contemporary antennas, the magneto-electric dipole antenna is not 

susceptible to surface-waves. Almost all of the radiated power is directed into the body, and 

any surface-waves travel in the subsurface skin layers instead of the outside surface of the 

skin. Additionally, it demonstrates wide-band performance between 0.4 and 2.3 GHz [18]. 

Brick-Shaped Antennas 

The brick-shaped antenna is an evolution of the dielectric-matched antenna concept with a 

focus on real-world usability. Instead of using a liquid dielectric, the brick-shaped antenna 

employs a block of graphite-saturated rubber to match the radiator to the body [5]. The 

authors note that while the graphite powder does provide the required permittivity, it also 

increases conductivity, though the authors observe that the new conductivity is similar to 

conductivities of contemporary liquid matching solutions [5], [62]. 

Compared to liquid-matched antennas the brick-shaped antenna is minimal maintenance and 

easily repositionable while maintaining a good match between the antenna and the body. It 

can be placed in orientations that are difficult for liquid antennas, and the flexible rubber 

deforms to provide full contact between the brick and the body’s contours [63], [64]. 

The underlying antenna element is a triangular planar monopole with a “trimmed back-placed 

ground plane,” [5]. It is strip-line-fed and matched on the feed side by a distributed matching 

network [5]. 

Dual-Antiphase Patch Antennas 

Dual-antiphase patch antennas are an evolution of antennas designed for direct contact with 

the human body, with the goal of penetrating the signal into the body. Other antennas built 

for this purpose include broadband monopole and dipole antennas [54], [65], [37], [66], [67], 

[55], [68], [69], small arrays [54], [65], [37], [66], [67], [55], and multi-band single-patch 

antennas [56], [70]. These antennas typically suffer, “from a lower transmission coefficient” 

[6] through any significant quantity of living tissue.  

The dual-antiphase patch antenna addresses this shortcoming by changing the interactions 

between the waves in the antenna and in the skin. This change is achieved due to the 

construction of the dual antiphase patch antenna: instead of two dipole wings, the dual 

antiphase patch antenna consists of two entirely separate antennas, in close proximity to 

each other and fed in antiphase as shown in Fig. 2, via a 180° power splitter. A similar 
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antiphase feeding mechanism for two dipole wings is known as the Dyson balun [71], 

[72], [73]. 

 

Fig. 2. Dual-antiphase patch antenna [7]. 

Utilizing two separate antennas driven in antiphase increases the distance current must travel 

through the body to short between the two radiators, therefore increasing the penetration of 

the incident wave into the body. 

Given a distributed resistance/capacitance approximation of body tissue, Fig. 3 illustrates the 

dual antiphase antenna concept. Fig. 3a illustrates the path between two wings of a single 

on-body dipole with the feed in the middle. On the other hand, Fig. 3b shows the approximate 

path of the subsurface currents when the two independent patch antennas are fed in 

antiphase. Despite their relative proximity, these two antennas are necessarily spaced farther 

apart than the wings of the dipole antenna (from Fig. 3a). In the dual-antiphase configuration, 

the antenna electric current has its maximum at the centerline of every patch, far away from 

the feed. When fed in antiphase, the electric field penetrates the body well due to the longer 

current shorting path in the body. This improves the coupling of the near surface of the body 

to the antenna, thereby allowing current to radiate into the body with similar efficiency to the 

current on the metal parts of both patch antennas. 

Typical singular on-body loop or dipole antennas, by contrast, are less efficient when in 

contact with the relatively conductive body, due to the small physical length of the shorting 

path between the feeds. In the worst case, this short can prevent the majority of the antenna 

body from such an antenna from being excited.  

Numerical simulations and empirical measurements confirm that dual-antiphase antennas 

that work well on living tissue do not, in general, work well in air even near said tissue. Gaps 
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less than 1 mm have proven serviceable in practice [6] especially when populated by a thin 

insulator instead of air, though best performance is achieved by direct coupling to the skin. 

 

Fig. 3. Dual-antiphase patch antenna theory of operation and comparison of subsurface current 
paths [7]. (a) Conventional center-fed on-body dipole antenna arrangement: high currents near 
the feed can be shorted by the body in the immediate feed vicinity, (b) Dual-antiphase patch 
antenna: currents attempting to travel through the body subsurface from one feed to another take 
a longer path through the body due to spacing of two antennas. Those oscillating currents 
simultaneously radiate into the body. 
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Chapter 2. Dual Antiphase Patch Antenna Design and Application in the 

UHF Band [6] 

This chapter discusses the wrist tester device, its data, and the initial inquiries into 

classification of the results as background for the use of machine learning for the same task, 

presented in the next chapter. The osteoporosis screening device is based on the hypothesis 

that it may be sufficient to track an integral measure of radio wave propagation along the path 

through the bone instead of restoring the complete permittivity map of the bone and the 

surrounding tissues, as attempted previously [4], [32], [33], [34], [35]. 

To do so, the device operate on a transmission path through the body that is mostly composed 

of bone. The wrist was the readily accessible point at that satisfied this requirement. The 

authors used their proposed dual-antiphase patch antenna [8]. They measured radio wave 

propagation through the wrist and compared their results with osteoporotic and osteopenic 

(low bone density) conditions established via DXA and through a history of bone fracture.  

Essentially, the device is equivalent to two low-power cellphones placed on both sides of the 

wrist with one transmitting and the other receiving. The radiofrequency (RF) signal goes 

through the bone and mimics its properties. The RF setup radiates into the wrist 0.1 W of RF 

power in the 0-2 GHz band, which is significantly less than the radiated power of a typical 

cellphone (between 0.6 W and 3 W) operating in the same frequency band. 

2.1. Device Concept 

The device concept is illustrated in Fig. 4a. Two dual antiphase patch antennas (Fig. 4b), 

described in the text below, are placed on both flat sides of the wrist close to the position of 

the ulnar head under an applied controlled pressure of 1 kg force. The radiofrequency signal 

in the 0 – 2GHz band travels from the transmit antenna through bone, cartilage, and soft 

tissue to the received antenna while being attenuated and scattered. The total amount of 

attenuation and scattering is measured via the microwave transmission coefficient 𝑆21(𝑓) and 

is correlated to osteopenic and osteoporotic conditions. The antenna width across the wrist 

is 2 cm; the antenna length along the wrist is 5 cm; facilitating continuous contact between 

the two surfaces. 
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Fig. 4. (a) – Idealized diagram illustrating antenna placement on both sides of a human wrist. (b) 
– Transmit and receive dual antiphase patch antennas with individual lumped-component 
matching networks (green isolation) designed for the present chapter. Antenna length (along the 
wrist) is 5 cm; antenna width (across the wrist) is 1.8 cm. [6] 

2.2. On-Body Antenna Design 

Dedicated antennas for radiating into the body or receiving from the body are located on the 

skin surface. In the initial device prototypes, single slotted patch antennas [74], [75] or printed 

dipoles attached to the wrist were employed. Both antenna types suffered from a lower 

transmission coefficient through the wrist. To overcome this, a new antenna configuration 

known as the dual antiphase patch antenna (shown in Fig. 5a as Configuration A) was 

designed and optimized [8]. This new configuration resembles an array of two patch antenna 

radiators in echelon, with the patches facing toward the body. However, the probe (or 

microstrip) feeds are located on the opposite sides of the patches. Most importantly, the 

individual antennas are fed in antiphase using a 180º power splitter. 

The two antiphase patch radiators provide a greater penetration depth and transmitted signal 

into the body than a single antenna or two adjacent patch antennas in phase. To demonstrate 

this, Fig. 5 presents simulation results for the radiated electric field of four representative 

antenna configurations. These results are obtained at 915 MHz simulation frequency with the 

commercial FEM software ANSYS HFSS Electronics Desktop 2019R1. The wrist is modeled 

as a brick with a height of 6 cm, an average relative dielectric constant 𝜀𝑟 = 30, and an 

average conductivity 𝜎 = 0.1 S/m. The 3.25 mm thick substrate (FR4 or a low-loss Rogers 

laminate) has the size of 50 × 20 mm. The two radiators are fed in antiphase, with a port 

power of 0.05 W each. Both ports are matched to 10 − 𝑗5 ohm. The antenna indicates both 

parallel and series resonances, which are closely spaced. 

Transmit antenna

Receive antenna

a) b)

5 cm

2 cm

2 cm

Distal radius Ulna
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Fig. 5. Four representative antenna configurations (configuration A fed in antiphase or phase and 
configuration B fed in antiphase or phase, respectively). Out-of-phase antenna array concept (b, 
e) is compared to the standard in-phase directional antenna array concept (c, f). Electric field 
magnitude is shown given 0.05 W of power per individual antenna radiator port at 915 MHz. The 
dual antiphase patch antenna in (a) has been selected. [6] 

While Fig. 5b shows the magnitude of the electric field for antiphase feeding, Fig. 5c is the 

same result but for the in-phase feed. In the former case, the signal propagates into the body 

and is strong. In the latter case, the signal is significantly absorbed in the vicinity of the 

antenna and is mostly directed outwards, i.e. into air. For comparison purposes, Fig. 5e and 

Fig. 5f show the same results but when the two individual patch antennas are in echelon as 

in Fig. 5d (Configuration B). The antiphase feeding again causes strong transmission, but it 

is weaker than that of Configuration A (Fig. 5b). Furthermore, the beam is not entirely 

symmetric. 
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When matched to 10 − 𝑗5 ohm prior to the power splitter, the dual antiphase patch antenna 

in configuration A from Fig. 5a indicates a sufficiently large impedance bandwidth shown in 

Fig. 6. The band is centered approximately around 800-900 MHz and holds for different 

values of both the dielectric constant and the conductivity of the tissue. Therefore, 

Configuration A from Fig. 5a was selected as the on-body dual antiphase patch antenna 

prototype. 

Numerical simulations indicate that the antenna performance quickly deteriorates when a gap 

between the antenna and the body reaches or exceeds 1 mm. Therefore, in the ideal setting, 

this gap should be either minimized or a direct ohmic contact with body surface should be 

maintained with the assistance of a gel. The authors suggest minimizing the gap by applying 

a controlled pressure to the antenna attached to the body, negating the need for a gel. 

 

Fig. 6. Simulated reflection coefficient magnitude in dB, |𝑆11(𝑓)|𝑑𝐵, of the dual antiphase patch 
antenna from Fig. 5a as a function of frequency loaded with different values of average tissue 
permittivity/conductivity. Matching to characteristic impedance of 10 − 𝑗5 𝛺 is assumed. [6] 

2.3. Simulation with Realistic Human Phantom 

The anatomically accurate computational human model VHP-Female [76], derived from the 

Visible Human Project (VHP) of the U.S. National Library of Medicine, has been used for the 

simulations of a realistic, inhomogeneous wrist model described below. The VHP-Female 

model characterizes a 60-year-old Caucasian female subject with a height of 162 cm as 

measured from top of the scalp to the average center of both heels. The body mass of the 

model is 88 kg, resulted in a computed Body Mass Index of 33.5 (moderately obese). The 

model has separate anatomical skin and fat layers of variable thicknesses and has been 
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augmented with electromagnetic tissue properties from the IT’IS Database [39] in the 

frequency range from 10 MHz to 100 GHz. 

A wrist model from the VHP-Female with 10 individual tissue sub-compartments has been 

isolated, augmented with the antenna models from Fig. 5a, and simulated at 915 MHz using 

the FEM based software ANSYS HFSS Electronics Desktop 2019R1 with seven adaptive 

mesh refinement passes, and a given input power of 1 W into each radiator of the dual 

antiphase patch antenna on bottom of the wrist, mimicking the transmitter (TX) setup. The 

receiver (RX) arrangement includes an identical dual antiphase patch antenna on top of the 

wrist. The model configuration is shown in Fig. 7a.  

Simulation results are shown in Fig. 7b and Fig. 7c, respectively. Fig. 7b demonstrates 

distribution of the Poynting vector across the wrist cross-section with the lower threshold of 

0.1 W/m2. Simulation results reveal that the majority of the radiated power propagates through 

the center of the wrist and through the bone marrow toward the receiver antenna. A 

vanishingly small power flow is observed close to the perimeter of the wrist. This is a 

consequence of the dual antiphase patch antenna design described in the previous section. 

The effects of both wave diffraction and of the associated surface waves around the wrist 

thus appear to be negligibly small, as seen in Fig. 7b. Additionally, Fig. 7c shows the 

distribution of the complex magnitude of the total electric field through the wrist cross-section 

with the most significant transmitted field observed for cortical and trabecular bone. Similar 

results have been obtained at 600 MHz and 1200 MHz, respectively. 

This simulation model does not account for anisotropy of trabecular bone since the authors 

were unable to find the anisotropic dielectric material properties for the given frequency 

bands. The authors also mention the lack of data on dielectric radiofrequency properties of 

the osteoporotic bone in the literature. Trabecular or cancellous bone forms the inner part of 

the medullary cavity in short and flat bones. In trabecular bone, the anisotropic calcified tissue 

is arranged in the form of plates or struts called trabeculae, approximately 200 µm thick, 

creating numerous interconnected cavities [77]. These cavities are filled with bone marrow. 

In osteopenic/osteoporotic bone, the trabecular bone matrix is partially replaced by a soft fatty 

tissue. Correlation of mechanical anisotropy with dielectric bone properties has been 

discussed in [78]. Also note that the isotropic dielectric data given in [39] were obtained with 

animals in vivo and in vitro, and therefore cannot be considered as perfectly accurate for the 
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human wrist. For instance, [78] reports rather different values of the dielectric constant for 

human trabecular bone. Additional relevant research on bone dielectric properties was 

performed in [35], [78], [79], [80]. 

 

Fig. 7. (a) – Computational model configuration. The RX dual patch antenna is on top of the wrist; 
the TX antenna is on its bottom. (b) – Distribution of the Poynting vector through the wrist cross-
section with the lower threshold of 0.1 W/m2 and the upper threshold of 3000 W/m2 or 0.3 W/cm2. 
The majority of the radiated power propagates through the center of the wrist and through the 
bone marrow toward the receiver antenna while a vanishingly small power flow is observed close 
to the perimeter of the wrist. (c) –Distribution of the complex magnitude of the total electric field 
through the wrist cross-section. [6] 

2.4. Device Construction and Measurement Sequence 

The prototype for the radiofrequency wrist tester device is shown in Fig. 8. It includes a 

transparent plastic enclosure, a movable top frame (using two stepper motors with a 

microcontroller connected to the pressure sensors), two 2×1 antenna arrays described 

previously, and four pressure sensors. Wrist measurements are performed when a controlled 

pressure of 1 kg of force is applied. The authors increase the measurement repeatability and 

accuracy of the device by incorporating a pressure-controlled, solid, and precisely adjustable 

wrist support. This allows the authors to precisely control pressure during antenna attachment 

to the wrist. The testbed in Fig. 8 includes the following major components:  

b) c)

a)
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- Movable top with four pressure sensors (FlexiForce® ESS301) connected to a 

microcontroller and a 2×1 receiver antenna array with a 180 power splitter (ZFSCJ-2-4-

S, Mini-Circuits). The pressure sensors and the array use a flexible support to enable 

better adjustment to various wrist sizes. 

- Fixed bottom with the identical embedded (and replaceable) 2×1 transmit antenna array 

printed on 128 mil FR4 and another 180 power splitter; two cables from the splitter are 

wired together. 

- Supporting frame, which could potentially measure wrist thickness after applying pressure 

from top. 

 

Fig. 8. Microwave setup with transmitting/receiving dual antiphase patch antennas (each 
comprising of two closely spaced patch antennas fed in antiphase), gear motors, pressure 
sensors, and a microcontroller. [6] 

Measurements are performed by putting the wrist inside the device holder horizontally at a 

prescribed position of the ulnar head. The device top moves down and stops automatically 

when the applied pressure reaches 1 kg of force (3-7 sec), irrespective of wrist diameter. 

Measurements of reflection and transmission coefficients 𝑆11(𝑓), 𝑆21(𝑓) after the 180 deg 

power splitters as functions of frequency are performed in less than 0.5 seconds. The device 

top is then raised to its original position in 3-7 sec. The entire measurement sequence 
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requires about 20-30 sec. Left and right wrist circumferences are separately measured and 

recorded at a position just under the ulnar head. 

Electronics and patient safety are addressed by both the low power of the system and the 

construction therein. All wiring connections are sealed, and all exposed electronics are 

isolated. There are two replaceable external fuses (7 V 3 A). For additional biological isolation, 

subjects could choose to wear a thin, disposable plastic glove to prevent any contact with the 

device. The device is periodically cleaned with alcohol swabs. 

From the point of view of electromagnetic safety, the present device is equivalent to two low-

power cellphones placed on either side of the wrist: one is transmitting, and another is 

receiving. The device introduces minimum radiofrequency energy into the wrist (0.1 W total 

power over a maximum time duration of 0.5 min). Such power is 6-30 times less than the 

power of a cellphone and is 10,000-100,000 times less than the power of an MRI radio-

frequency coil. The U. S. Department of Health and Human Services, Food and Drug 

Administration, Center for Devices and Radiological Health, Division of Biomedical Physics 

accepts guidelines of the International Commission on Non-Ionizing Radiation Protection 

(ICNIRP) [81]. These guidelines state that the general-exposure local Specific Absorption 

Rate (SAR) should be less than 0.08 W/kg at 915 MHz [81], which is the center operating 

frequency of the device. The corresponding numerical simulation study performed with the 

commercial FEM software ANSYS Electronics Desktop 2019R1 and a CAD VHP-Female 

version 3.0 full-body computational human model [76] revealed that this condition is satisfied 

with a 10x safety margin.  

In the research study reported below, the antennas have been connected to a portable 

Keysight FieldFox N9914A network analyzer to investigate and test the entire frequency band 

from 30 kHz to 2 GHz and to establish the most sensitive region(s) of operation. The typical 

operation setup is shown in Fig. 9 on the next page. 

2.5. De-embedding Transmission and Reflection Coefficients  

Since the radiofrequency device is contained in a protective enclosure, the S-parameters 

cannot be calibrated and measured directly at the power splitter ports. The microwave device 

was therefore calibrated along with the cables running to the network analyzer. This leads to 

oscillatory behavior of both 𝑆11(𝑓) and 𝑆21(𝑓). To eliminate these spurious oscillations, de-
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embedding was performed after measuring S-parameters for each cable. For this purpose, 

the MATLAB RF Toolbox™ from MathWorks, Inc. was employed (function deembedsparams). 

 

Fig. 9. Experimental setup connected to portable Keysight FieldFox N9914A network analyzer 
and performing measurements. Measurements of reflection and transmission coefficients 𝑆11(𝑓), 
𝑆21(𝑓) as functions of frequency are performed in less than 0.5 seconds. The device top is then 

raised to its original position (3-7 sec). [6] 

2.6. Pilot Study 

After receiving Institutional Review Board (IRB) approval through Worcester Polytechnic 

Institute, the written informed consent from 72 subjects (ranging from 23-94 years old, 58 

female, 14 male, 3 African American, 4 Hispanic, 64 Caucasian, cf. Appendix A) was obtained 

to participate in this study. All measurements were further performed in accordance with the 

relevant IRB guidelines and regulations. 

Given a common fear of ionizing radiation, especially among elderly subjects, the authors did 

not enforce or require any extra DXA measurements. For every subject the following 

parameters were recorded: 

- Reflection coefficient 𝑆11(𝑓) (both magnitude and phase) from right and left wrists for the 

bottom antenna configuration after the 180 deg power splitter in the frequency range from 

30 kHz to 2 GHz. 

- Transmission coefficient 𝑆21(𝑓) (both magnitude and phase) between the two antennas 

after the 180 deg power splitters and through right and left wrists, respectively, in the 

frequency range from 30 kHz to 2 GHz. 
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- Age, weight, height, left wrist circumference, and right wrist circumference. 

- Family history of osteoporosis and history of bone fracture according to a verbal 

statement. 

Initially, all subjects with de-identified data have been subdivided into five preliminary 

categories detailed in Appendix A: 

1. Category 1 (healthy young adults, 23-30 years old). Unknown bone density but young 

age (≤30). 5 subjects in total (2 female, 3 male). 

2. Category 2 (low risk factor category, 42-94 years old). Unknown bone density (no DXA 

data) but (all together): no history of bone fractures, no medication, and no family history 

of bone fracture/osteoporosis. 32 subjects in total (24 female, 8 male). These clinical 

risk factors can have a larger impact on fracture risk than one standard deviation decline 

in bone density [82], [83]. Therefore, we feel comfortable considering them at low risk 

without explicit BMD information. 

3. Category 3 (unknown risk factor category, 44-77 years old). Unknown bone density 

(no DXA data) but at least one of the following: family history of osteoporosis, low BMI, 

history of bone fractures, women after menopause. 12 subjects in total (10 female, 2 

male). 

4. Category 4 (osteopenia or low bone density, 55-90 years old). Confirmed osteopenic 

bone density (T-score between – 1.0 and –2.4) according to the most recent DXA exam 

(obtained within the last year) and prescribed medications such as various 

calcium/magnesium supplements (600-1000 mg). 18 subjects in total (17 female, 1 

male). 

5. Category 5 (osteoporosis, 55-86 years old). Confirmed osteoporotic bone density (T-

score of –2.5 or below) according to the most recent DXA exam (obtained within the last 

year) and prescribed medications such as bisphosphonates. 5 Subjects in total (5 

female, 0 male). 

2.7. Subject Selection for Dichotomous Diagnostic Test (Osteogenic/Osteoporotic vs 

Healthy) 

In the interest of performing an unbiased study, we eliminated Category 3 (unknown risk 

factor category). As a result, we ended up with two groups (60 subjects in total) suitable for 

binary classification: 
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1. Group 1 osteopenic/osteoporotic (Categories 4 and 5 together, 55-90 years old, mean 

77.5/STD 10.1). T-score of –1.0 or below according to the most recent DXA exam and 

prescribed medications. 23 subjects in total (22 female, 1 male). 

2. Group 2 healthy (Categories 1 and 2 together: low risk category, 23-94 years old, mean 

60.2/STD 16.6). Unknown bone density (no DXA data) but young adults or (all together): 

no history of bone fractures, no medication, and no family history of osteoporosis. 37 

subjects in total (26 female, 11 male). 

A single binary statistic (the Youden's J statistic) was then applied to these two groups to 

capture the performance of a dichotomous diagnostic test. 

2.8. Data Processing for Entire Frequency Band – Transmission through the wrist 

Fig. 10a shows the normalized transmission coefficient magnitude between the two antennas 

through left and right wrists in the 0-2 GHz frequency band for all 60 subjects selected for the 

dichotomous diagnostic test as described previously. Normalization means that we divide 

|𝑆21(𝑓)| by BMI and multiply it by subject age, that is 𝐴𝑔𝑒 ∙ |𝑆21(𝑓)| / BMI. Red color 

corresponds to Group 1 while blue color corresponds to Group 2. One hundred and twenty 

frequency curves in total are shown in the figure.  

The osteoporotic and osteopenic subjects more consistently indicate higher normalized 

transmission coefficients, while the healthy subjects more consistently indicate lower 

normalized transmission coefficients. In other words, the osteoporotic and osteopenic wrists 

become relatively more transparent to radio frequency signals. However, some curves in Fig. 

10 locally overlap. An integral measure of the transmission coefficient may therefore be the 

best differentiator. Notably, the data for five young healthy subjects highlighted in magenta in 

Fig. 10b indicate the smallest “transparency” while the data for five osteoporotic subjects (T-

score of –2.5 or below) highlighted in magenta in Fig. 10c indicate the nearly highest 

“transparency”.  
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Fig. 10. (a) – Transmission 
coefficient |𝑆21(𝑓)| between the 
two antennas and through left and 
right wrists divided by BMI and 
multiplied by age in the frequency 
range 0-2 GHz for all subjects 
from Group 1 (osteopenic and 
osteoporotic) and Group 2 
(healthy). Red corresponds to 
Group 1 while blue corresponds to 
Group 1. 120 frequency curves in 
total are shown in the figure. (b) – 
The same as in (a) but with the 
data for five young adults 
highlighted in magenta. (c) – The 
same as in (a) but with the data for 
five osteoporotic subjects (T 
score below – 2.5) highlighted in 
magenta. [6] 
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2.9. Index Functions 

Bone density presumably correlates with BMI and approximately inversely with age; 

osteoporosis mostly occurs in elderly women with a low BMI. Since the cohort mostly includes 

women, the authors could neglect the sex variable. Thus, for comparison purposes, the 

authors introduce a simple “natural” indicator, 𝐷0, of osteoporosis/osteopenia for the study 

participants in the form of the ratio of two clinical risk factors: 

 

𝐷0 =
𝐴𝑔𝑒

𝐵𝑀𝐼
 (1) 

 

which does not require any measurements but should already approximately differentiate 

osteoporotic/osteopenic and healthy persons, respectively. Healthy conditions correspond to 

lower values of 𝐷0. Indictor 𝐷0 will be normalized to its maximum value, that is 

 

𝐷0 → 𝐷0/max (𝐷0) (2) 

 

Now, the authors introduce the primary differentiator (index) in the form 

𝐷1 =
𝐴𝑔𝑒

𝐵𝑀𝐼
× ∫ |𝑆21(𝑓)|𝑑𝑓

𝑓𝑈

𝑓𝐿

 (3) 

 

which additionally includes an integral of the transmission coefficient 𝑆21(𝑓) from Fig. 6 over 

a certain frequency band from 𝑓𝐿 to 𝑓𝑈. Indicator 𝐷1 is obtained by averaging the data for both 

wrists. Indictor 𝐷1 is also normalized to its maximum value as 

 

𝐷1 → 𝐷1/max (𝐷1) (4) 

 

Following the observations of Fig. 10, the authors suggest that indicator 𝐷1 would better 

differentiate osteoporotic/osteopenic and healthy conditions, respectively, than indicator 𝐷0.  
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2.10. Data Processing for a Narrow Frequency Band of 0.1 GHz 

Using the network analyzer for RF data acquisition and obtaining the entire spectrum in Fig. 

10 is costly. Low-cost power meters with the center frequency from 0.5 to 1 GHz operating 

over the band of 0.1 GHz could be designed and/or purchased. Therefore, we restrict 

ourselves to a smaller frequency band in Eq. (3). We assume that the integration bandwidth 

is given by 

 

𝑓𝑈 − 𝑓𝐿 = 0.1 GHz (5) 

 

We chose the center frequency of the band in such a way as to provide the best performance. 

To do so, we move the integration window with the width of 0.1 GHz in Fig. 10 from left to 

right. Then, we select such window positions where the ROC area and Youden's J index for 

the ROC (receiver operating characteristic) curve are maximized as shown in Fig. 11. 

2.11. Youden's J index for Eq. (3). Finding optimum frequency band 

Fig. 11a shows the maximum value of Youden's J index for each center frequency of the 

band. Here, an average absolute transmission coefficient |𝑆21(𝑓)| for both wrists of the 

subject is employed. The maximum value of Youden's J index corresponds to the optimum 

value of the empirical device calibration threshold or cutoff 𝑇. Threshold 𝑇 differentiates the 

two states: 

 

𝑂𝑠𝑡𝑒𝑜𝑝𝑒𝑛𝑖𝑐/𝑂𝑠𝑡𝑒𝑜𝑝𝑜𝑟𝑜𝑡𝑖𝑐    𝐷1 > 𝑇 (6a) 

 

𝐻𝑒𝑎𝑙𝑡ℎ𝑦     𝐷1 ≤ 𝑇 (6b) 

 

The most favorable frequency band is indicated by a vertical bar in Fig. 11, from 890 MHz to 

920 MHz. The horizontal line in Fig. 11a-c shows Youden's J index for indicator 𝐷0 given by 

Eq. (1). The global maximum value of Youden's J index for indicator 𝐷1 achieved over the 

band from 890 to 920 MHz is 0.815 or 81.5%. The global maximum value of Youden's J index 

for indicator 𝐷0 is 0.615 or 61.5%. The difference in these values reflects supplementary 

useful information obtained from radiofrequency data. 
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Fig. 11. (a) – Maximum Youden's J index for every center frequency of the moving 0.1 GHz band 
using the index given by Eq. (3). Average transmission coefficient for both wrists is used. (b) – 
The same as in (a) but only the transmission coefficient for the left wrist is used. (c) – The same 
as in (a) but only the transmission coefficient for right wrist is used. The most favorable band 
position indicated by a vertical bar is from 890 to 920 MHz. The straight horizontal line in (a – c) 
shows Youden's J index for the simple indicator 𝐷0 given by Eq. (1). (d) – Sensitivity (red) and 
specificity (blue) corresponding to the band 890-920 MHz in (a). Both are given as functions of 
the device threshold value 𝑇 in Eqs. (6). (e), (f) – the same as in (d) but only the transmission 
coefficient for the left or right wrist, respectively, is used. [6] 
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Fig. 11b shows the same result as in Fig. 11a but when only the transmission coefficient for 

the left wrist of every subject is used. Similarly, Fig. 11c uses the data for the right wrist only. 

The inclusion of information from both wrists leads to a more useful result than the information 

obtained from a single wrist, by measure of Youden’s J. 

2.12. Sensitivity and Specificity for the Optimum Frequency Band  

Both sensitivity (red) and specificity (blue) are shown in Fig. 11d at the band center frequency 

of 900 MHz corresponding to the global maximum of Youden’s J index in Fig. 11a. The x-axis 

is the device calibration threshold value 𝑇 in Eqs. (6). One observes that we simultaneously 

reach the sensitivity of 87% and the specificity of 87% or better when the device is calibrated 

with the threshold value 0.44 ≤ 𝑇 ≤ 0.49 in Eqs. (6). This corresponds to the calibration 

threshold tolerance of ±3%. Fig. 11e shows the same result as in Fig. 11d but when only the 

transmission coefficient for the left wrist of every subject is used; Fig. 11f uses the data for 

the right wrist only. The information from both wrists is evidently more beneficial than the 

information obtained from one single wrist. 

For the present binary classifier, sensitivity for five severely osteoporotic subjects (T-score of 

–2.5 or below, indicated with magenta color in Fig. 10c) is 100%. Similarly, specificity for five 

young healthy adults (indicated with magenta color in Fig. 10b) is also 100%. 

2.13. Improvement of antenna matching 

The simplified numerical model of the human wrist used in antenna optimization does not 

consider realistic wrist composition, variations in tissue properties at different frequencies or 

tissue anisotropy. Therefore, we were unable to properly match antennas over the entire 

targeted frequency band from approximately 200 MHz to 2 GHz. Instead, an “average” 

matching to 10 − 𝑗5 ohm was used. This is not entirely adequate (as shown by Fig. 12) and 

is a subject of possible improvement. 

Matching an on-body antenna coupled with a power splitter (beamformer) over the wide 

frequency band (~200 MHz – 2 GHz or 10:1 in the present case) is a difficult task. Instead of 

performing further numerical simulations, the authors explored unmatched antennas to 

determine if useful data could be produced without explicitly matching the antenna at any 

given frequency, in the process accepting a decrease in transmitted power. 
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Fig. 12. (a) – Reflection (red) and transmission (blue) coefficients before normalization in dB for 
a typical osteoporotic subject (Group 1) for every wrist separately. (b) – The same coefficients for 
a typical healthy subject (Group 2). The right wrist typically indicates a lower transmission 
coefficient. [6] 

2.14. Effect of surrounding tissue 

As indicated already in Fig. 3a, the device measures an integral estimate of radio frequency 

propagation through the wrist. This integral estimate involves not only bone but also cartilage 

and soft tissues surrounding bone. Nevertheless, this estimate correlates quite well with both 

the clinical risk factors and the subsequent DXA data as shown in the present chapter. This 

is likely because a significant portion of the radio frequency signal path in Fig. 3a still passes 

through trabecular bone (as demonstrated in Fig. 7).  

Another point is the small thickness of the fat layer around the wrist, perhaps the smallest 

when compared with other body regions. This small fat layer thickness does not support 

multipath (signal propagation along the fat layer [84] instead of through the bone). 

Furthermore, the wrist composition is less significantly affected by age. In [85], skin thickness 

and subcutaneous fat thickness were measured on the back of the hand near the wrist 

between the second and third metacarpal and above the third metacarpal bone. The average 

values for young adults were 0.5 and 0.6 mm, respectively. With aging, the average skin 

thickness did not change significantly while the average subcutaneous fat thickness 

decreased by approximately 30% (from 0.6 to 0.4 mm) [85]. This is in contrast to other parts 

of the body where fat accumulation with age may be very significant [86].Finally, an additional 
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factor might involve accompanying changes in cartilage properties and muscular tissue 

properties which may be specific for the osteopenic/osteoporotic subjects.  

2.15. Effect of wave diffraction around the wrist, surface waves 

The effects of both wave diffraction and the associated surface waves around the wrist have 

been found to be small for the present antenna setup at 900 MHz as well as at 600 and 1200 

MHz. The corresponding simulation results shown in Fig. 7 reveal that, for the dual antiphase 

patch antenna setup, the bulk of the radiated power propagates through the center of the 

wrist and the bone marrow toward the receiver antenna while a vanishingly small power flow 

is observed close to the perimeter of the wrist. 

The ripples in Fig. 10 are due to non-adequate antenna matching over the entire frequency 

band for a variety of different subjects. The proof of this is given in Fig. 12 where the ripples 

of S21 correlate with the ripples of S11 (a local minimum of S11 corresponds to a local 

maximum of S21) all the way up to at least 1 GHz. 

An antenna backlobe observed in Fig. 7c has been found to provide a minimum multipath 

effect that is below noise floor. The proof uses experiments with the RX antenna somewhat 

lifted up above the wrist. In every tested case, the corresponding transmission coefficient was 

below -50 dB over the entire band. This value was selected as the noise floor. Only when the 

TX antenna was pressed against the wrist were the reported transmission coefficients on the 

order of 20 to 40 dB observed. 

2.16. Results for male and female subjects 

The selected study groups were composed primarily of women (representative of the patient 

population that gets osteoporosis). However, results for one osteoporotic male subject and 

eleven control male subjects were also compiled. The separate results for the two genders 

are as follows:  

- For female subjects: sensitivity of 86% and the specificity of 85% when the device is 

calibrated with the threshold value 0.44 ≤ 𝑇 ≤ 0.49 in Eqs. (6). 

- For male subjects: sensitivity 100% and specificity of 90% when the device is calibrated 

with the threshold value 0.44 ≤ 𝑇 ≤ 0.49 in Eqs. (6). 
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2.17. Results for healthy young subjects 

We have intentionally included the young healthy adults into control to demonstrate a 100% 

specificity for this subgroup. If we were to exclude them, nearly the same results for sensitivity 

and specificity (approximately 87%) would be obtained. However, the control group will now 

have a higher mean age of 65.3 with STD of 10.9. 

2.18. Radio frequency data adds supplementary information to clinical risk factors 

The index function used in this chapter is not the radiofrequency transmission coefficient 

alone, but the transmission coefficient multiplied by age and divided by BMI. The inclusion of 

these two clinical risk factors increases both sensitivity and specificity. At the same time, the 

inclusion of radiofrequency transmission data adds useful supplementary information to the 

clinical risk factors. This is best seen in Fig. 11 where such an inclusion increases the 

Youden’s index by 20% (from 61.5% to 81.5%) when the frequency band from 890 to 920 

MHz is considered. Non-normalized data for the sole transmission coefficient are discussed 

in more detail in Section Chapter 3. Using Neural Networks to Improve Diagnosis from Wrist 

Tester on page 43.  

2.19. How much supplementary information is contained in “effective” wrist thickness? 

The index function used in this chapter does not involve the wrist thickness or its 

circumference. On the other hand, the transmission coefficient clearly increases for a thinner 

(more likely osteopenic/osteoporotic) wrist and decreases for a thicker (more likely healthy) 

wrist. One may therefore suggest that the bulk of added radiofrequency information is simply 

the “effective” (from the viewpoint of radiofrequency propagation) overall wrist thickness, 

which may be considered as another added clinical risk factor.  

While this is partially true, the radiofrequency measurements still provide more useful 

information than the simple mechanical measurement of the wrist thickness or its 

circumference. The first proof is given in Fig. 13. This is a replica of Fig. 11a where we 

additionally plot the Youden’s index for the natural indicator 𝐷0 from Eq. (1) modified by the 

mechanical measurements of the wrist circumference (mean of both wrists was taken), which 

were performed for ever subject, that is 
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𝐷0mod =
𝐴𝑔𝑒

𝐵𝑀𝐼 ∙ 𝑤𝑟𝑖𝑠𝑡 𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒
 (7) 

 

One observes that the performance of 𝐷0 improves but the radiofrequency data remain more 

informative in the frequency band from 600 to 1600 MHz where the antenna matching is the 

best. 

 

Fig. 13. Blue - maximum Youden's J index for every center frequency of the moving 0.1 GHz band 
using the index given by Eq. (3) with radiofrequency measurements. Average transmission 
coefficient for both wrists is used. Straight horizontal lines show Youden's J index for the simple 
indicator 𝐷0 given by Eq. (1) and its modification 𝐷0𝑚𝑜𝑑 from Eq. (7). [6] 

 

The second proof is given in Fig. 14, the non-normalized data for the sole linear transmission 

coefficient but multiplied by the wrist thickness (more precisely – by the wrist circumference). 

This is done to undo the effect of the mechanical thickness, assuming approximately linear 

with distance radiofrequency damping. The differentiation between healthy and 

osteopenic/osteoporotic groups becomes poorer, but it is still in place. 

Three fourths of the measured information have not been used for data processing in the 

present chapter. The non-processed data include phase information for both transmission 
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and reflection coefficients and the amplitude information for the reflection coefficient. Our 

study indicates that some classifiable phase variations may be observed for the phase of the 

transmission coefficient. More advanced machine learning algorithms might perhaps help to 

solve this problem. 

 

 

Fig. 14. Magnitude of non-normalized transmission coefficient 𝑆21(𝑓) multiplied by wrist 
circumference (and normalized by maximum circumference). Subjects from Group 1 
(osteopenic/osteoporotic) are marked red and subjects from Group 2 (healthy control) are marked 
blue. Total 120 curves are shown in the plot. [6] 

2.20. Osteoporosis Detection in Other Body Compartments 

The authors have undertaken preliminary efforts in applying this technology to other body 

compartments. Osteoporosis is most often problematic in the hip and the spine, and the 

authors have chosen to recreate the setup used here on the wrist, but on a subject’s hip. 

Preliminary investigation reveals that such a device is possible, though the hip has challenges 

that are not significant at the wrist. Additional details are covered in Appendix B on page 88. 

At the time of writing, the authors have not investigated applying this technology to the spine. 

The spine’s location inside the body does not lend itself to application of the 1-pixel imaging 
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technique described in this chapter due to surface-propagating waves and the directivity of 

the antennas. 

Dual antiphase antennas produce waves that propagate along the surface of the skin. These 

waves are large compared to those that propagate through the body and arrive at the receiver 

faster due to traveling through air instead of the lossy human body. To minimize the effect of 

these waves, this study has placed the antennas on opposite sides of a comparatively thin 

but wide body compartment, so the surface waves must travel a longer distance compared 

to the penetrating waves. 

Unless these surface waves can be addressed, dual antiphase antennas and most other on-

body antennas cannot be reliably placed adjacent to one another without phased-array 

processing to separate the surface wave from the penetrating wave. Addressing these 

surface waves will be the subject of another work. 

2.21. Summary 

In this chapter, a potentially low-cost, through-transmission radiofrequency device to detect 

low bone density conditions was designed, constructed, and tested. The device uses novel 

on-body antennas (dual antiphase patch antennas) connected to both sides of the human 

wrist under controlled applied pressure. It was observed that osteopenic and osteoporotic 

subjects more consistently indicate higher normalized transmission coefficients, while 

reduced risk subjects more consistently indicate lower normalized transmission coefficients, 

either normalized or not.  

A pilot study with 72 subjects has been performed. For the dichotomous diagnostic test, we 

have selected 60 study participants (23-94 years old, 48 female, 12 male) who could be 

positively differentiated between the osteopenic/osteoporotic and healthy complementary 

states, respectively. The osteopenic state was determined based on a DXA T-score between 

–1 and –2.5; and the osteoporotic state was determined based on a DXA T-score below –

2.5. No DXA measurements have been performed for healthy subjects but all subjects from 

this category passed all of the following clinical risk-factor tests: no history of bone fractures, 

no medication, and no family history of bone fracture/osteoporosis The band-limited integral 

of the transmission coefficient averaged for both wrists multiplied by age and divided by BMI 

has been used as an index.  
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Youden's J statistic was applied for center band frequencies in the range from 890 to 920 

MHz. For a 100 MHz wide frequency band, the maximum Youden's J index is 81.5%. Both 

the sensitivity and specificity simultaneously reach 87% given the calibration device threshold 

tolerance of ±3%. At the same time, sensitivity for severely osteoporotic subjects (DXA T-

score of –2.5 or below) is 100% while specificity for young healthy adults is also 100%. 

The authors’ approach correlates well with the available DXA measurements and has the 

potential for screening patients at risk for fragility fractures. The inclusion of radiofrequency 

transmission data adds significant supplementary information to the available clinical risk 

factors. 
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Chapter 3. Using Neural Networks to Improve Diagnosis from Wrist 

Tester 

This chapter covers the first primary contribution: the use of a neural network to classify 

subjects as healthy or osteoporotic based on data collected by the device described in the 

previous chapter. The perceptron-style neural network was first published in 1957 by Frank 

Rosenblatt [87]. Since then, neural networks have proven beneficial in the analysis of 

complex datasets involving frequency spectra [88], [89], [90]. Additionally, the diagnosis of 

osteoporosis using neural networks is not unprecedented [91], [92], [93], [94]. Prior works 

using neural networks to predict osteoporosis diagnosis focus on the aggregation of data from 

multiple diagnostics such as DXA and X-ray imaging [91], [93], [94], and the aggregation of 

risk factors [91], [92], [93]. 

In the present pilot study, we have included additionally collected subject data (7 new 

subjects) as compared to the previous chapter and have employed a neural network 

approach to process the previously obtained and new data. We hypothesize that the 

incorporation of a neural network classifier will significantly improve the predictive power of 

the presented system compared to the initial method based on a simple threshold binary 

classifier approach. The data collected from the device is an entire frequency spectrum of a 

complex scalar propagation coefficient through the wrist (𝑆21(𝑓)). A neural network classifier 

sorts the spectra from different subjects as osteopenic or healthy. The network is trained 

using one subset of the collected data and validated with a separate subset. The neural 

network provides a binary predictor based on the spectrum it is given, as to whether the 

subject is healthy or osteopenic/osteoporotic. 

3.1. Differences Between Breast Cancer and Osteoporosis Application 

Several studies applying neural networks to the problem of breast cancer detection exist, but 

their methods are not directly applicable to osteoporosis detection using the present data. In 

most breast cancer detection applications, the problem is both detection and location of the 

tumor, whereas in the present study we focus only on the detection of osteoporosis [95], [96], 

[97], [98]. This limitation of scope is due to the imaging device itself, from the previous chapter, 

produces a single spatial “pixel” rather than a full 2-D or 3-D tomographic reconstruction of 

the wrist in the manner of many breast cancer detection studies. This, in turn, changes the 
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type of neural networks that are appropriate for the application. Breast cancer detection 

neural networks work similarly to image classification neural networks in that they are typically 

made of at least two stages: one stage to reduce the data from its original form into a set of 

features, and another stage to perform classification and/or location based on these features 

[95], [97], [98]. Each of these stages can have multiple layers. By contrast, the osteoporosis 

data needs no dimensionality reduction. Appendix C shows that some of the techniques that 

work well for breast cancer detection do not work well for the osteoporosis data. 

3.2. Radiofrequency Measurement Device 

Fig. 15a shows the arrangement of the two antennas transmitting through the wrist. These 

two antennas, Fig. 15b, are placed on the superior and inferior flat sides of the wrist adjacent 

to the position of the ulnar head. They are held in place with 1 kg of force during the recording 

of the measurements. The radiofrequency signal travels from the transmit antenna, through 

skin, bone, cartilage, and soft tissue to arrive at the receive antenna. Each of these layers 

provides some degree of attenuation and scattering; in the wrist, bone is significant compared 

to other body compartments. A network analyzer, Fig. 15c, measures the transmission 

coefficient 𝑆21(𝑓) over the 300 kHz to 2 GHz range. This transmission coefficient is correlated 

to osteopenic and osteoporotic conditions. Details of the design of the system have been 

presented in the previous chapter [6]. 

 
Fig. 15. (a) – Idealized diagram illustrating antenna placement on both sides of a human wrist. (b) 
– Transmit and receive dual antiphase patch antennas with individual lumped-component 
matching networks. (c) – Wrist tester device demonstration. Antenna length (along the wrist) is 5 
cm; antenna width (across the wrist) is 1.8 cm. The antennas are fed in antiphase by a portable 
network analyzer and positioned by a lead screw for consistent 5 psi of pressure during 
measurement. 
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3.3. Data Collection 

After receiving Institutional Review Board (IRB) approval (IRB-19-0123) through Worcester 

Polytechnic Institute on Oct. 1, 2018, written informed consent was obtained from 80 subjects 

to participate in this pilot study (age range 23-94 years old, 60 female, 20 male). All 

measurements were further performed following the relevant IRB guidelines and regulations. 

72 subjects were measured in the previous section [6], and 8 new subjects were added for 

this chapter. From 80 subjects, we selected 67 subjects suitable for a dichotomous diagnostic 

set: 

Group 1 (Osteopenic/Osteoporotic): 27 subjects (24 female, 3 male). Subjects were 

characterized by a T-score less than -1 taken within one year. Subjects with a T-score less 

than -2.4 were considered osteoporotic while other subjects were considered osteopenic. 

Subjects aged from 55 to 90 years with a mean of 77.5 and a standard age deviation of 10.1 

years. 

Group 2 (Healthy): 40 subjects (26 female, 14 male). Subjects in this group did not 

necessarily have a known T-score, but instead were characterized by having none of the 

following risk factors: a history of bone fractures, medication for bone-related diseases, a 

family history of bone fractures, and/or osteoporosis. Subjects aged from 23 to 94 years with 

a mean of 60.2 and a standard age deviation of 16.6 years. It is noteworthy that these clinical 

risk factors can have a larger impact on fracture risk than one standard deviation decline in 

bone density [82], [83]. Therefore, we are comfortable considering them at low risk without 

explicit BMD information. 

Location on the body of DXA tests and ongoing medications were not considered when 

assigning subjects to the groups. 

Each subject’s data consists of their wrists’ circumferences in cm and four 201-point spectra: 

the transmission coefficient (𝑆21) and the reflection coefficient (𝑆11) for both left and right 

wrists. Fig. 16A shows the magnitude of the transmission coefficient, |𝑆21(𝑓)| for 201 

frequency sampling points between 300 kHz and 2.0 GHz. Group 1 is plotted in red, and 

Group 2 is plotted in blue. Fig. 16B has seven young subjects (age 44 and below) highlighted 

in magenta. Fig. 16C has five osteoporotic subjects with a DXA T-score below -2.4 highlighted 

in magenta. 
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Fig. 16. (a) – Transmission coefficient |𝑆21(𝑓)| between the two antennas and through left and 
right wrists the frequency range 0-2 GHz for all subjects from Group 1 (osteopenic/osteoporotic) 
and Group 2 (healthy). The red color corresponds to Group 1 while the blue color corresponds to 
Group 2. 160 frequency curves (both arms for all 80 subjects) in total are shown in the figure. (b) 
– The same as in a) but with the data for seven young adults highlighted in magenta. (c) – The 
same as in a) but with the data for five osteoporotic subjects (T score below – 2.5) highlighted in 
magenta. 
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The network analyzer recorded each spectrum as two components: magnitude and phase. 

For use with the neural network, the magnitude and phase were combined to give the 

complex number representation (real and imaginary component for each point) of each 

spectrum.  

An additional set of data was created by normalizing the raw data described in the paragraphs 

above by risk factors of osteoporosis. The normalization factor was the subject’s age divided 

by their body mass index, as used in Eq. 8 below to calculate the normalized 𝑆21 spectrum. 

𝑆21𝑁 = 𝐷0𝑆21 =
𝐴𝑔𝑒

𝐵𝑀𝐼
𝑆21 (8) 

3.4. The Perceptron 

The original perceptron is a statical model to approximate the behavior of an animal or human 

neuron or set of neurons [87] which was implemented as a standalone electrical circuit [99], 

which was derived from the work of McCulloch and Pitts during the second world war [100]. 

In the context of modern machine learning for classification, the definition narrows to the 

combination of a weight and bias with some sort of activation function. The weight and bias 

are trainable, meaning that the back propagation training algorithm increases or decreases 

their values based on whether the classification result was correct for a given member of the 

training data set. While linear perceptrons have been investigated, modern networks use the 

activation function encourages their result to saturate, thereby giving an output that is closer 

to binary than would be achievable with just weights and biases. On its own, the perceptron 

can only solve linearly separable problems. Cascaded chains of perceptrons, however, can 

solve more complex problems, such as classifying data reliably despite class overlap. 
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3.5. Neural Network Topology 

The neural network used to generate the 

binary classifier was a multilayered 

network based on a Multi-Layer 

Perceptron (MLP) classifier implemented 

using the MATLAB Deep Learning 

Toolbox™ (MathWorks, Inc, Natick, MA, 

USA). Fig. 17 shows a flow diagram of this 

neural network. A featureinput layer 

read in the spectrum. The first 50% 

dropout layer, dropout_2, prevented 

overfitting of the first fully-connected layer 

(fc_2) by setting each feature to 0 with a 

50% probability. fc_2 had unit learn rate 

factors for all weights and biases, its 

weights were L2 normalized, and its 

biases were not. Its weights were 

initialized using Glorot’s algorithm [101] 

and its biases were initialized to 0.  reduced the number of features according to Eq. 9, where 

𝑁𝑖𝑛 is the number of input features (equal to the number of points in the spectrum for this 

layer) and 𝑁𝑜𝑢𝑡 is the number of neurons and output features from the layer. 

𝑁𝑜𝑢𝑡 = nint(𝑁𝑖𝑛 10⁄ ), 201 ≤ 𝑁𝑖𝑛 ≤ 806 (9) 

A relu activation function separated the first and second layers and the second 50% dropout 

layer, dropout_1, prevented the second fully-connected layer from overfitting. This layer, 

fc_1, reduces the number of features from 𝑁𝑜𝑢𝑡 to 2. fc_1’s learn rate factors and L2 

normalization settings were identical to fc_2’s. Those two features are compared using a 

softmax function to determine the predicted classification (Group 1 or Group 2) for the 

subject. All non-mentioned parameters were left at their default values. 

The final size of the vector presented to the neural networks depended on how the arms of 

the subject were being combined. The longest was 806 features when the complex arm 

 

Fig. 17. MLP classification neural network flow 
diagram featuring two fully connected layers. 
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spectra (402 features each) and both wrist circumferences were concatenated. The shortest, 

at 201 points, was made from a single spectrum (magnitude or phase). 

3.6. Training, Validation, and Classification 

Three methods of combining the spectra from the left and the right arms to generate a single 

diagnosis for the subject were attempted. First, the left and right arm spectra were averaged 

before being processed by the neural network. Second, the left and right arm spectra were 

concatenated to form a double-length spectrum. Third, each arm’s spectrum was presented 

separately to the neural network and the results were combined manually during 

postprocessing. Neural networks were trained for all combinations of data features using all 

three arm combination methods. 

These neural networks were trained using the same parameters regardless of their number 

of input features. All networks were trained for 1000 epochs. To evaluate the overall 

usefulness of a specific configuration of input data, the neural networks were analyzed using 

a leave-one-out cross-validation scheme. Under this scheme, the subjects were randomly 

distributed between 7 subsets while maintaining roughly proportional numbers of Group 1 to 

Group 2 for either 9 or 10 subjects in each subset. The neural network would then be trained 

7 times using each subset as the validation data once while all 6 other subsets were used as 

training data. Therefore, each input data configuration resulted in 7 trained neural networks 

of identical size each with a different validation data set. The mean of the resulting 

sensitivities, specificities, and accuracies from these 7 networks was used to characterize the 

performance of that input data configuration. Another series of tests using 10 subsets (6 or 7 

subjects each) was attempted but did not yield results significantly different from the 7-subset 

tests. 

The case wherein the two arms of each subject were presented separately to the neural 

network required an extra step after classification before the performance could be evaluated 

on a subject-by-subject basis. If both arms of a subject yielded the same classification, that 

classification was accepted. In the case of a conflict, the arms’ results were combined using 

each of four schemes: keep left, keep right, keep osteoporotic, keep healthy. In addition to 

the recombined results, the statistics were also computed as if each arm belonged to a 

separate subject. 
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3.7. Results for Non-Normalized Data 

Complex spectra produced the best results for raw data; magnitude spectra results are given 

for reference comparison. Combined magnitude and phase or phase-only number formats 

did not produce results worth including. Additionally, concatenating the arm spectra did not 

produce results worthy of inclusion. Using only the left or right arm of a subject produced 

results similar to those when the arms’ spectra were averaged. 

Table 1: Statistics for neural networks trained from raw (non-normalized) transmission data. The 
first 4 rows refer to networks trained using 134 subjects with 1 arm each while the last 4 rows 
refer to neural networks trained using the mean of the left and right arm spectra for each of the 
67 subjects. Both cases were investigated with and without a feature for the subject’s wrist 
circumference concatenated to the end of the spectrum. 

Features Subjects Circumference Format Sensitivity Specificity Accuracy Youden’s J 

L&R arms’ 

spectra as 

separate 

‘subjects’ 

134 

Concatenated 
Complex 0.827 0.940 0.898 0.768 

Magnitude  0.780 0.917 0.867 0.696 

None 
Complex 0.798 0.940 0.889 0.738 

Magnitude 0.780 0.929 0.875 0.708 

Mean of 

arm 

spectra 

67 

Concatenated 
Complex  0.690 0.905 0.824 0.595 

Magnitude 0.631 0.929 0.817 0.560 

None 
Complex 0.690 0.905 0.824 0.595 

Magnitude 0.631 0.905 0.803 0.536 

 

Table 1 shows the results of training the neural network using the output of the device directly. 

The only pre-processing involved in this data was done to put the complex data into the 

appropriate numerical representation – magnitude and/or phase versus complex number. 

3.8. Results for Normalized Data 

Table 2 shows the results of training the neural network using the data that was normalized 

according to Eq. 8. First, the complex data was converted to the appropriate numerical 

representation – magnitude and/or phase versus complex number – then Eq. 8 was applied 

to generate the values for the neural network. 

Additionally, Fig. 18 shows a comparison of methods for recombining the classification results 

from the 134 single-armed ‘subjects’ from the highlighted row in Table 2 back into the 67 

subjects that originated them. The same operation was also run using the data from Table 1 

and similar performance was observed. 
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Table 2: Statistics for neural networks trained from transmission data that was normalized 
according to Eq. 8. The first 4 rows refer to networks trained using 134 subjects with 1 arm each 
while the last 4 rows refer to neural networks trained using the mean of the left and right arm 
spectra for each subject. Both cases were investigated with and without a feature for the subject’s 
wrist circumference concatenated to the end of the spectrum. 

Features Subjects Circumference Format Sensitivity Specificity Accuracy Youden’s J 

L&R arms’ 

spectra as 

separate 

‘subjects’ 

134 

Concatenated 
Complex 0.804 0.940 0.890 0.744 

Magnitude  0.804 0.917 0.875 0.720 

None 
Complex 0.804 0.964 0.904 0.768 

Magnitude 0.780 0.917 0.867 0.696 

Mean of 

arm 

spectra 

67 

Concatenated 
Complex  0.810 0.929 0.884 0.738 

Magnitude 0.845 0.905 0.883 0.750 

None 
Complex 0.762 0.952 0.883 0.714 

Magnitude 0.798 0.905 0.867 0.702 

 

 

Fig. 18. Comparison of methods for recombining 134 single-arm subjects to provide one 
classification per subject. ‘Separate’ statistics are for the 167 single-arm ‘subjects’ while the other 
bar sets are sorted by what measurement was kept in case of a mismatch between the 
classification of the left and right arms’ data. ‘Left’ and ‘Right’ resolved mismatches by taking the 
result from the left or right arm, respectively. ‘Osteo’ classified all mismatched subjects as Group 
1 and ‘Healthy’ classified all mismatches as Group 2.  
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In this pilot study, we have found that a neural network trained with the complex frequency 

spectrum of radio wave propagation through the wrist and with the wrist circumference may 

serve as a promising predictor tool for detecting osteopenic/osteoporotic conditions on the 

wrist. Other studies have shown a strong correlation between bone density measurements in 

the arms, hip, and spine [102], [103]. Raw non-normalized data for the transmission 

coefficient through both wrists have been used as an input, without any normalization. This 

is in stark contrast to our initial study [6], where the processed data included the risk factors 

as well. In [6], a simple threshold binary classifier was used, which is essentially equivalent 

to checking the area under the entire frequency curve in Fig. 16 for every subject. 

3.9. Limitations of the Study 

All subjects in Group 1 had a DXA exam within 1 year of measurement, but the location of 

that exam and any following medications were not considered. Most Group 1 subjects were 

70 years or older. 

• Subjects in Group 2 did not necessarily undergo a DXA measurement. Additionally, 

fracture data since our measurements were taken is not available for the majority of Group 

2.  Many of the subjects in Group 2 were young adults, age 18-25. 

• 13 subjects were not categorizable into Group 1 or Group 2 by all of their metrics 

simultaneously and were not considered for this chapter. For example, an elderly subject 

without a DXA exam in the past year. 

• The study considers the same single configuration of the measurement apparatus applied 

to two single body compartments (wrists). 

Due to the lack of DXA measurements for many subjects in Group 2, we state only a partial 

similarity between our classification and DXA measurements. Incomplete fracture histories 

for Group 2 between the time of measurement and time of writing prevent any conclusions 

based on fracture history. Similarly, the lack of a T-Score for the healthy subjects precludes 

the training of a regression network and therefore this study is limited to simple classification 

without the ability to provide a confidence estimate. A further study with new data would be 

required to provide the data necessary to train a regression network to provide positive and 

negative predictive values. 

Age differences between subjects can influence fat and muscle composition as well as bone 

composition, which could affect the classification. Different body compartments are 
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composed of different amounts of fat, bone, and muscle so techniques that work well in one 

(for example the wrist, which is mostly bone) may not be directly applicable (as of today) to 

other more complex areas, such as the hip or spine. Because Group 2 had 10 more subjects 

than Group 1, sensitivity for a given trial is not as precise as specificity. We have used leave-

one-out cross-validation to reduce the effects of this in our overall results. 

This chapter only discussed results from a two-layer perceptron classifier working only with 

experimentally collected data. Additional experiments with other types of machine learning, 

including methods by which to reduce the number of features needed for classification, and 

data augmentation techniques are discussed in Appendix C on page 99. These results were 

omitted because they are only partially complete. Regardless, some limited conclusions may 

still be drawn from them, hence their inclusion. In brief, the data augmentation suggests that 

the performance of the classifier observed in this chapter can be improved by the collection 

and usage of additional data. Further, the PCA and feature selection proved not to be capable 

of producing results better than those from the perceptron network, though the corresponding 

visualizations offer some explanation as to why classification of this data is a nontrivial 

problem. 

3.10. Fractures in Group 1 

BMD data by DXA correlate with fracture risk but the correlation is not strong. To investigate 

this conclusion further, we collected data on fractures for subjects in Group 1 

(osteopenic/osteoporotic). Except for one subject who deceased, two out of the 27 have 

experienced fractures over the last three years; one of those subjects experienced a fracture 

twice. All three cases were hip fractures. Four other elderly subjects in that group experienced 

falls without bone fractures over the last three years. 

3.11. Discussion of Non-Normalized Data 

The trained neural network provides sensitivity and specificity values of ~83% and 94%, 

respectively. The specificity compares favorably to the sensitivity and specificity provided by 

the inclusion of risk factors (both 87%), presented in Chapter 2. Dual Antiphase Patch 

Antenna Design and Application in the UHF Band  [6]. The increase in the specificity obtained 

in the present chapter is a significant advantage due to the increased correctness when 

predicting the healthy condition, thereby improving utility for prescreening. 
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The improvement of the specificity is likely due to the use of the entire frequency information 

from Fig. 16. Neither the single integral over the entire frequency band nor a visual inspection 

of the multiple spectrum peaks can extract this additional information. On the other hand, the 

neural network classifier extracts additional useful features directly from the complex 

spectrum. These could be related to the relative positions and the relative peak values of 

several dominant spikes in Fig. 16. 

The inclusion of the phase data by the neural network serves to increase its sensitivity 

compared to a network trained using only magnitude data. Further inclusion of wrist 

circumference increases both sensitivity and specificity by around 2% in most cases. This is 

likely due to wrist circumference being related to wrist fat content. 

3.12. Discussion of Normalized Data 

When the neural network is applied to the normalized dataset (which includes other risk 

factors from Section Chapter 2, a slight improvement is obtained. Normalizing the data 

provides a ~3% increase in overall accuracy and Youden’s index. This boost is only observed 

in data sets that do not include the wrist circumference; datasets including the wrist 

circumference exhibit a loss of performance. It appears, therefore, that inclusion of additional 

risk factors will be complementary to the ability of the transmission data to reliably differentiate 

between healthy and diseases patients. Networks trained from normalized data perform 

better without the inclusion of wrist circumference data, likely because the normalization and 

wrist circumference data perform the same role of predicting wrist fat content and/or bone 

size. No normalization techniques other than the one presented in Eq. 8 were investigated. 

3.13. Discussion of MLP Network Performance 

Compared to more traditional machine learning techniques, specifically feature selection and 

principal component analysis, the MLP network proved more capable of successfully 

classifying the data despite its overlapping nature. Details of this comparison are provided in 

Appendix C on page 99. However, the MLP network did not provide any information that was 

useful for reducing the dimensionality of the classification problem without losing precision of 

the classification, beyond the lack of need for reflection data. Insignificance of reflection data 

is likely due to the dominant component of reflection coming from the antenna-skin boundary, 

rather than the tendon-bone boundary. To obtain useful information from the reflection 
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coefficient, some time-gating or time-aware signal processing would likely be needed. The 

current experimental setup does not have this capability. 

3.14. Number Representations’ Effect on Classification Results 

For both the normalized and non-normalized datasets, data using the complex-number format 

for the scattering parameters provided increased sensitivity and specificity compared to data 

that used the magnitude-angle format. This is due to the stochastic gradient descent 

algorithm’s preference for all of its feature data to be on the same scale. We avoided the 

traditional approach here of normalizing all of our data on a given interval due to a desire to 

keep the data set easily expandable. Because of this, magnitude-angle representation puts 

the magnitude and phase features (two features for a given frequency point) on dramatically 

different scales: magnitude on the scale of 0 to 0.12 and phase angle on the scale of -180 to 

180 degrees (or, less egregiously, − 𝜋 2⁄  to 𝜋 2⁄ ). The complex number format, on the other 

hand, scales both the real and imaginary part (recorded as two separate real-valued features 

for each frequency point) roughly according to the magnitude, thereby achieving consistent 

scaling without the need for normalization. 

3.15. Summary 

The present chapter reported the application of a neural network classifier to the processing 

of previously collected data on very-low-power radiofrequency propagation through the wrist 

to detect osteoporotic/osteopenic conditions. Our approach categorizes the data obtained for 

two dichotomic groups. Group 1 included 27 osteoporotic/osteopenic subjects with low BMD 

(DXA T score below - 1) measured within one year. Group 2 included 40 healthy and mostly 

young subjects without major clinical risk factors such as a (family) history of bone fracture.  

We process the complex radiofrequency spectrum from 30 kHz to 2 GHz. Instead of 

averaging data for both wrists, we are processing them independently along with the wrist 

circumference and then combine the results, which greatly increases the sensitivity. 

Measurements along with data processing require less than 1 min. Neural network classifiers 

can identify and use characteristics of the data not readily apparent to the human eye to 

increase the specificity of predictions. The neural network classifier used in this chapter is a 

multilayer perceptron with two fully connected layers implemented with the help of MATLAB 

Deep Learning Toolbox™. It was trained using the leave-one-out approach as described in 
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the Materials and Methods section. Additional machine learning experiments are located in 

Appendix C on page 99. 

For the two dichotomic groups, the neural network classifier of the radiofrequency spectrum 

reports a sensitivity of 83% and a specificity of 94%. These results are obtained without the 

inclusion of any additional clinical risk factors. Given that other recent studies have shown a 

strong correlation between bone density measurements in the arms, hip, and spine [102], 

[103], the radio transmission data may be usable on their own as a predictor of bone density. 

Our approach has the potential for screening patients at risk for fragility fractures in the office, 

given the ease of implementation, small device size, and low costs associated with both the 

technique and the equipment. 
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Chapter 4. Miniaturized Dual Antiphase Patch Antennas for Microwave 

Imaging of Bone and Other Tissues 

This chapter discusses the second primary contribution: design and construction of a 

miniaturized dual antiphase patch antenna for use in a dense microwave imaging array. The 

proposed antenna is a very low profile 2.4 GHz microwave imaging dual anti-phase patch 

antenna with linear polarization, coupled directly to the skin via a pressure fit. A distinct 

advantage of the 2.4 GHz band is its popularity in the commercial and medical spaces, and 

higher spatial resolution. On the other hand, there is also a disadvantage due to its higher 

propagation loss. 

There have been a number of miniaturized RF devices and accessories developed for 2.4 

GHz. In this chapter, a dual anti-phase patch antenna configuration [104], [6] , tuned to 2.4 

GHz, is fabricated on a PCB substrate. Both antenna feeds are combined through a 180-

degree hybrid, which is also integrated into the PCB. As a result, only one signal port, at the 

output of the hybrid combiner, is required to establish the anti-phase property from the user 

interface perspective. 

 

Fig. 19. Microwave imaging helmet with positions for multiple small antennas, fitted to a plastic 
head mock-up. Only two of the positions are populated with antennas in the figure. 
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A key benefit of a miniaturized antenna element is to establish an array of multiple elements. 

The smaller the element size, the more elements may be implemented, such as in Fig. 19. 

The design of the antenna array will be the subject of a future work, but Appendix D on page 

108 discusses the design of the array controller board that accompanied these antennas. In 

the case of head imaging, antennas may be arrayed around the scalp of a patient [105], [106]. 

The increase in the number of elements may be beneficial from an image resolution point of 

view, at the expense of calibration and post-processing resources. Patch antennas inherently 

excite surface waves, which may also affect its adjacent radiating element to create signal 

leakage. Therefore, suppressing surface wave is critical to improve the signal to noise ratio 

of the detected image signals in this setup. 

4.1. Antenna Design and Modelling 

The antennas were first modelled numerically using Ansys Electronics Desktop 2021R2 

HFSS (Ansys, Inc. Canonsburg, PA, USA). These models included the design of the 

resonator, the design of the 180-degree hybrid power splitter, and impedance-matching 

circuitry. A three-layer PCB was designed to incorporate patch antenna resonators and other 

discrete radio-frequency components. The goal is to create the smallest footprint as the 

building block of a microwave imaging antenna array. The specifications from the HFSS 

model were used to fabricate the antennas. Once the antennas were assembled, their 

performance was evaluated with on-phantom and in-vivo measurements. 

The resonators in this chapter were adapted from the previous design for lower-frequency 

dual-antiphase patch antenna used for osteoporosis detection, discussed in the previous 

sections [6], [7]. A high-level dual-antiphase antenna concept was shown in Fig. 3b on page 

19. 

Whereas previous antennas, such as Fig. 20a, operated around 0.6-0.9 GHz [8], the 

antennas in this chapter were designed to operate at the 2.4 GHz ISM (Industrial, Scientific, 

and Medical) band [107]. To provide a proper capacitive loading to the antenna, a human 

body model is essential to the analysis. The human body model used throughout this chapter 

was the VHP-Female model, which has 249 distinct anatomical structures modelled [108]. A 

variety of resonator configurations were investigated then optimized by their size, 

electromagnetic penetration into the body, and the antenna’s efficiency. The simulation setup 

is shown in Fig. 21. 
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Fig. 20. (a) – Previous dual antiphase patch antenna (1) design with external matching networks 
(3) and balun (2) [7], (b) – present antenna with integrated matching networks and balun, and 
MMCX connector, both patches are on the far side. 

 

Fig. 21. Antennas placed on the temples the VHP-Female CAD model [108] for simulation in 
Ansys HFSS. The temples were chosen due to the natural lack of hair and relative distance across 
the head between the two positions. 

The antennas presented in this chapter include a power splitter and matching circuitry in 

addition to the patch radiators, see Fig. 20b. Power splitting was accomplished by a 

LDM182G4505EC015 balun (Murata Manufacturing Co. Kyoto, JP). The two 50 Ω outputs 
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from the balun were each coupled to their respective resonator elements by an L-topology 

matching network. 

4.2. Fabrication and Assembly 

The dimensions from the HFSS simulation were transferred manually to Altium Designer 

(Altium Ltd. Chatswood, NSW, AU). The final 4-layer PCB layout was performed in Altium 

Designer with co-simulation in HFSS. The final dimensions of the antennas are shown in Fig. 

22, which shows annotated renders from Ansys HFSS of the antenna as built. It features an 

MMCX connector for its feed. The inductors were 1.5 nH and the capacitor were 1.5 pF, all 

in 0402 packages. 

The PCB was fabricated using three copper layers above, below and inside a low loss 

laminate, FR408HR, from Isola. A coaxial cable was soldered to the pads to measure the 

reflection coefficient of the resonator and determine the final values for the matching network 

components. 

 

Fig. 22. Dimensions of the antenna as built. The board was finished to 62 mil (thou) thickness 
including all dielectric, copper, and mask layers. All other controlling dimensions were in 
millimeters. 
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4.3. Phantom Preparation 

The phantom-measurements were performed on a phantom derived from subject 110411 

from the Human Connectome Project [109]. The Computer Aided Design (CAD) model in Fig. 

23b was generated from the data in [110]. The partial shells were printed from Polylactic Acid 

(PLA) and painted yellow. Holes were cut with the diameter of the hole equal to the antenna’s 

diagonal. These holes were then covered by nitrile patches. Two phantoms were built: one 

with a single hole at the top of the head and one with four holes, paired left/right and 

front/back, shown in Fig. 23a. The phantom shell was filled with the 38% Triton X-100 to 62% 

water mixture with 5.2 g/L of salt adapted from [5], [111]. 

Reflection measurements were taken with multiple polarizations, moving the antennas 

randomly by 1-2 mm between measurements. Transmission measurements were only taken 

with the antennas co-polarized, measuring across the phantom either left to right or front to 

back. Again, the antennas’ positions were perturbed by 1-2 mm between measurements. 

 

Fig. 23. (a) – Physical phantom with multiple antennas, (b) – Simulated phantom with multiple 
antennas 

Data were collected using an HP8722ET vector network analyzer (VNA) with intermediate 

frequency resolution bandwidth (IFRBW) setting of 30 Hz, and output power of -5 dBm. 

Magnitude and phase data were collected for each measurement. The VNA was calibrated 

to a plane 3 inches before the antenna at an SMA connector. The 3 inches between the 

antenna and the plane were covered by a 50 Ω SMA-F to MMCX-F coaxial adapter cable. 
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4.4. Efficiency 

An in vivo experiment with human heads from subjects was undertaken to assess the 

effectiveness of the proposed antiphase patch antenna assembly’s radiation penetration into 

the human body. All human experiments were approved by the Institutional Review Board 

(WPI IRB 18-0310), and the Nelly model was used as the simulation subject. Phantom subject 

110411 was also employed as a test vehicle in both simulation and measurement to further 

correlate the analysis (Fig. 23). Throughout this section, the antenna is loaded by a human 

body or conductive phantom because the present antennas exhibit negligible transmission in 

their design band when in air or free space.  

Efficiency was tested using the human body CAD model in Ansys HFSS. The total radiation 

efficiency of the antenna was measured at 39.15% of incident power. This included power 

delivered to the body, to the receiver, and to the radiation boundary. Notably, 38.44% of 

incident power was delivered to and dissipated in the body. 

4.5. Phantom Measurements vs. In Vivo Human Measurements 

Both a human subject and a phantom subject were used in measurement for the 

comparison’s sake. Due to the sensitivity of the antenna’s capacitive loading against the 

human tissue, the measured S-parameters may vary from one capture to the next. Three 

sampled measurements were averaged to demonstrate its statistical reflection and 

transmission. The comparison between the human head and the phantom subject 

measurement indicates a close agreement, as shown in Fig. 24, especially in the targeted 

band of 2.3-2.5 GHz. The VNA configuration and calibration used on the human subject was 

identical to the configuration used for the phantom (see Section 4.3). 
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Fig. 24. Comparison between reflection and transmission measurements (|𝑆11| and |𝑆21|) on the 
phantom and on a human head, averaged across 2 measurements for one subject. 

4.6. Phantom Measurements vs. Simulations 

Fig. 25 illustrates 𝑆11 and 𝑆21 on phantom subject 110411 in both measurements and 

simulations. The measured line for the phantom was generated by averaging two sets of 

measurements. 

Reflection coefficients 𝑆11 from both simulation and measurement indicate low resonance 

characteristic. It is common for miniaturized antennas. In terms of 𝑆21, there is decent 

agreement in that the delta between the simulation and the measurement is within 10 dB 

across the band of interest (between 2.3 and 2.5 GHz).  

The connectors, the cable and the balun all have 50 Ω characteristic impedances. Even the 

microstrip line on the PCB from the connector to the balun, less than 5 mm in length and less 

than 1/20th of a wavelength, has a 50 Ω characteristic impedance. Therefore, it is expected 

that calibration at the MMCX connector (instead of 3 inches earlier at the SMA connector) 

would yield only a marginal improvement in agreement between the measured and simulated 

results. 
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Fig. 25. Comparison between simulation and the average of two measurements of S-parameters 
(|𝑆11| and |𝑆21|) for the phantom. 

4.7. In Vivo Human Head Measurements vs. Simulations 

Both simulations and measurements were conducted on the human head to validate the 

experiment. The VHP-Female model [108] was used as the simulation subject, physical 

validation was performed on a human subject (Fig. 26). Fig. 27 shows the experimental 

configuration of the antenna placed on the side of the human subject’s head. That figure does 

not include the acrylic blocks used to hold the antenna to the subject’s head at a constant 

pressure. The VNA configuration and calibration used on the human subject was identical to 

the configuration used for the phantom (see Section 4.3). 
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Fig. 26. Comparison between simulated and measured results for the VHP-Female model [108] 
and the average of two measurements on one in-vivo subject. 

 

Fig. 27. Antenna positioned on the subject’s temple to measure reflection. An identical antenna 
was placed on the opposite temple to measure transmission. 
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4.8. Simulated Electric Field Patterns Around Phantom and Human Head 

Fig. 28 shows a representative comparison of the distribution of the E-field between the 

phantom (A, C) and the head (B, D) in the vicinity of the antenna. All simulations were 

performed in Ansys ED 2021R2. One distinct feature of the E-field distribution is the clear 

presence of surface waves. To take advantage of the received signals scattered from the 

targeted tissue, it is critically important to characterize the contribution of the surface waves 

and to assure that it is not the 𝑆21’s dominant path. 

 

Fig. 28. (a) – Simulation setup for the phantom, coronal plane. (b) – Simulation setup for VHP-
Female [108], coronal plane. (c) – Average electric field strength, |𝑬|, in the coronal plane of the 
phantom. (d) – Average electric field strength, |𝑬|, in the coronal plane of the VHP-Female model 
[108]. 

4.9. Discussion of Results 

This chapter has produced a miniaturized, unitized dual antiphase patch antenna that is 

smaller than the existing on-body antennas known to the authors, some of which are listed in 

Table 3 on the next page. The present design uses an oversized ground plane, giving it the 
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potential for further miniaturization without significant loss of performance. Using these 

antennas, a theoretical microwave imaging device can achieve higher spatial resolution 

compared to devices using larger antennas due to the difference in density of the arrays. 

Compared to contemporary on-body antennas operating at 2.4 GHz, the antenna presented 

in this chapter is smaller and has more potential for further size reduction without loss of 

performance, as shown in Fig. 29 on the next page. This may be accomplished by decreasing 

the annular width of the ground plane around the resonators and replacing the MMCX jack 

with an integral coaxial cable or other small-footprint coaxial interface. The bowtie, by 

comparison, uses all the available space on its PCB and the other antennas from Table 3 are 

significantly larger. 

Table 3: Contemporary Microwave Imaging Antenna Sizes and Bands 

Antenna Length Width Band 

Flexible Single Patch [112] 56.7 mm 49.2 mm 2.3-2.5 GHz 

UWB Loaded Box [69] 105 mm 45 mm 0.75-2.5 GHz 

On Body Vivaldi [113] 77 mm 60 mm 2.0-10 GHz 

On Body Bowtie [114] 18 mm 18 mm 0.75-4.0 GHz 

Dual Antiphase Patch 18.5 mm 10 mm 2.4-2.5 GHz 

4.10. Limitations 

One problem with the present antenna design is the appearance of surface waves clearly 

seen in Fig. 28 on the previous page, especially for the realistic human head model. For small 

antennas, those waves are likely unavoidable when no extra means are used to suppress 

them. Such means may include an enclosing antenna cavity, using perpendicular 

polarizations for nearby antenna radiators, using temporal waveforms (e.g., radio frequency 

pulses), and using different absorbing materials. Those means are presently under 

investigation. 

Mismatch between the measured and simulated results can be attributed to multiple factors. 

For example, the VHP-Female model [108] used in the simulations was generated based on 

a middle-aged, obese female. The measurements, on the other hand, were performed on a 

young-adult, healthy-weight male. In the case of the measurements on the phantom, some 

small air bubbles could be present in the gel solution which could slightly affect its properties. 
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Additionally, the real phantom was painted inside and out with yellow spray paint, which was 

not accounted for in the simulation model. That said, it is not expected that accounting for 

these differences in the simulated model may not improve the results, because the difference 

between measured and simulated data for both the phantom and the human is of almost the 

same magnitude. This means that the majority of the observed error is unlikely to be derived 

from the fidelity of the model in either case and improvements to the model, for example a 

male CAD model, likely would not yield more than a marginal improvement in agreement 

between simulated and measured data. 

 

Fig. 29. Size comparison between (a) – ultra-wideband loaded box antenna [69], (b) – on body 
bowtie antenna [114], and (c) – the miniature dual antiphase patch antenna presented in this 
chapter. The miniature dual antiphase patch antenna has potential for size reduction via removal 
of excess ground plane and the installation of a more compact connector assembly. 
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The two biggest sources of loss were power reflected out the input (46.11% of incident) and 

power dissipated in the balun (11.57%). The high reflected power is likely due to the mismatch 

remaining in the matching networks. The matching accuracy is constrained by the precision 

of the matching capacitor and inductor, as well as their error with respect to their nominal 

values. The inductor in particular is on the small end of physically-realizable wire-wound 

inductor values, and is the cause of some amount of reflection. 

4.11. Summary 

A small low-profile on-body antiphase patch antenna operating from 2.3 to 2.5 GHz was 

designed, constructed, and evaluated numerically and experimentally using both phantom 

and human subjects. The electric field pattern, transmission, and reflection were measured 

experimentally and showed approximate agreement, though agreement between the 

simulations and measurements could be improved with more physically accurate models. By 

properly damping the surface waves, the detected signal’s SNR may be improved further. 

The experimental results demonstrate that this antenna configuration may be a viable 

candidate for MI applications targeting relatively narrowband dense antenna arrays. 
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Appendix A. Prior Art Study Subject Roster 

Table 4 Study roster (from left to right): subject number, category score (1-5), age, weight, height, 
sex, left wrist circumference, and right wrist circumference. 

Subject # 
Osteo 

Category Age Weight [lbs] Height [ft] Sex 
L. Wrist 
Circ. [in] 

R. Wrist 
Circ. [in] 

1 5 55 130 5 1/3 f 5 3/8 5 5/8 

2 5 81 140 5 1/6 f 6 3/4 6 1/2 

3 5 74 168 5 4/7 f 6 3/4 7 1/8 

4 5 80 139 5 f 8 8 

5 5 86 130 4 1/2 f 5 5 1/4 

6 4 55 145 5 1/2 f 6 6 1/8 

7 4 80 170 5 1/3 m 7 7 

8 4 85 153 5 f 5 3/4 5 3/4 

9 4 56 138 5 3/7 f 6 3/8 6 1/2 

10 4 83 128 5 f 5 3/4 6 1/2 

11 4 82 188 5 f 7 7 

12 4 69 177 5 3/7 f 7 1/4 7 1/4 

13 4 84 140 5 1/6 f 6 3/4 7 

14 4 88 138 5 f 6 6 

15 4 79 158 4 5/6 f 6 5/8 6 5/8 

16 4 76 180 5 1/6 f 8 1/4 8 1/4 

17 4 84 150 5 f 5 3/4 5 3/4 

18 4 90 134 4 3/4 f 6 1/2 6 1/4 

19 4 87 180 5 1/6 f 7 3/8 7 1/2 

20 4 80 115 4 5/6 f 5 3/4 6 

21 4 79 148 5 1/6 f 6 1/4 7 

22 4 78 172 5 f 7 1/2 7 3/4 

23 4 72 150 5 1/3 f 5 3/4 6 

24 3 56 190 5 1/3 f 6 1/2 6 3/4 

25 3 50 155 5 3/7 f 5 1/2 5 3/4 

26 3 55 170 5 1/2 f 6 1/4 6 1/4 

27 3 58 110 5 1/4 f 5 3/8 5 1/2 

28 3 54 145 5 2/3 f 6 1/4 6 1/4 

29 3 75 155 5 3/4 m 7 7 1/8 

30 3 64 150 5 4/5 m 6 4/5 7 

31 3 77 125 5 1/3 f 6 6 

32 3 44 120 5 1/4 f 5 1/4 5 3/4 

33 3 57 145 5 1/3 f 6 3/8 6 1/4 

34 3 56 190 5 1/2 m 7 3/4 8 

35 3 44 139 5 3/7 f 6 1/4 6 1/4 

36 2 42 156 5 f 6 6 

37 2 51 160 5 1/6 f 5 3/8 5 3/4 

38 2 50 175 5 3/4 m 6 3/4 6 3/4 

39 2 60 160 5 f 7 7 
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40 2 62 186 5 1/2 m 7 1/2 7 1/2 

41 2 63 142 5 1/4 f 6 1/2 6 1/2 

42 2 47 218 5 5/6 m 7 3/4 7 3/4 

43 2 71 163 5 4/7 f 6 7/8 7 

44 2 58 200 5 3/4 m 7 7 1/4 

45 2 69 190 5 2/3 m 7 1/4 7 

46 2 79 189 5 2/3 f 7 3/4 7 1/2 

47 2 74 179 5 1/3 f 7 7/8 7 5/8 

48 2 82 188 5 f 7 7 

49 2 86 165 5 1/2 f 6 5/8 6 3/4 

50 2 67 217 5 1/3 f 7 1/4 7 1/2 

51 2 72 180 5 1/4 f 7 1/2 8 

52 2 72 185 5 3/7 f 7 1/4 7 1/4 

53 2 78 142 5 f 7 1/4 7 1/4 

54 2 69 191 5 f 7 1/4 7 3/8 

55 2 72 159 5 f 7 7 

56 2 72 170 5 1/2 f 7 1/2 8 1/8 

57 2 78 201 5 1/6 f 8 1/8 8 1/4 

58 2 62 180 5 1/4 f 7 3/8 7 1/2 

59 2 80 175 5 f 7 6 5/8 

60 2 72 190 5 3/7 f 7 1/8 7 1/8 

61 2 70 182 5 f 7 1/2 7 5/8 

62 2 69 182 5 1/4 f 7 1/2 7 1/2 

63 2 81 150 5 f 6 3/8 6 5/8 

64 2 94 156 4 2/3 f 6 3/4 6 7/8 

65 2 60 152 5 1/6 f 5 1/4 5 1/4 

66 2 60 220 5 1/6 m 7 3/4 7 1/2 

67 2 65 180 5 5/6 m 6 3/4 6 7/8 

68 1 28 152 5 1/3 f 6 3/4 6 1/2 

69 1 29 256 5 3/4 m 8 8 1/4 

70 1 30 198 5 3/4 m 7 1/4 7 

71 1 23 185 5 5/6 m 6 7/8 6 5/8 

72 1 26 124 5 1/3 f 6 6 
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Appendix B. Modeling and Experimental Results for Microwave Imaging 

of a Hip with Emphasis on the Femoral Neck 

This study consists of a set of simulations to determine field propagation inside the body 

validated by in vivo experimental measurements under the same conditions. The simulations 

produced models that included reflection coefficient 𝑆11 and transmission coefficient 𝑆21 in 

addition to the fields. These 𝑆-parameters can be measured in a physical setup using a 

network analyzer. The simulations and physical measurements were performed with the 

same antennas [8]. Additional simulations were performed with different antennas to 

investigate wideband measurements; these were not verified experimentally. The simulation 

results were analyzed primarily based on the electric field and Poynting vector. 

This study was divided into two parts: first, a set of in vivo measurements using real antennas 

and second, a set of simulations using a corresponding human body model. The 

measurements were taken with Institutional Review Board (IRB) approval (IRB-19-0123) 

through Worcester Polytechnic Institute. The same human subject was used for all in vivo 

measurements. 

B.1. Experimental Hardware 

The antennas featured in this study are dual antiphase patch antennas [8] built using copper 

on FR4. Two sets of antennas, shown in Fig. 30, were investigated. 

Set A (resonators: 2.0 cm x 1.4 cm, ground-plane: 5.0 cm x 1.9 cm) connected to matching 

networks that match them to 675 MHz. Matching networks were built with lumped 

components and applied at the antenna feeds, after the 180° power splitter (Mini-Circuits® 

ZFSCJ-2-232-S+, 5 MHz to 2.3 GHz).  

Set B (resonators: 2.5 cm x 1.6 cm, ground-plane: 3.0 cm x 8.0 cm) were not matched to any 

particular frequency. The antenna feeds connected directly to the 180° power splitter (Mini-

Circuits® ZFRSC-183-S+, DC to 1.8 GHz).  

Both antennas had 0.5 cm spacing between the resonators. The antennas were connected 

to a Keysight FieldFox N9914A network analyzer. The network analyzer transmitted at -15 

dBm over a frequency range of 30 kHz to 2 GHz at 401 points. The magnitude in dB and 
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phase in degrees of 𝑆11 and 𝑆21 were saved to a CSV-file. The measurements were each a 

single frequency sweep. 

 

Fig. 30. Comparison of size between antennas from Set B (top) and from Set A (bottom). The left 
two are the physical antennas and the right two are the corresponding CAD models. The spacing 
between patches in both antennas is 0.5 cm. Antennas in Set A had resonators of 2 cm x 1.4 cm 
and a ground-plane of 5 cm x 1.9 cm. Antennas in Set B had resonators of 2.5 cm x 1.6 cm and 
a ground-plane of 3 cm x 8 cm. The antennas were fed from the back, the solder joints in the 
figure are the feeds. 

B.2. Measurement Sites 

To test the viability of various sites for measuring transmission through the femoral neck, we 

first checked using both sets of antennas to determine if meaningful transmission could occur 

given the positions of the antennas. The exact positions investigated are shown in Fig. 31. 

The positions investigated were: 

1. On the side of the body, positioned over the greater trochanter. 

2. On the side of the body, positioned next the iliac crest. The antenna in this position 

was rotated in the plane of the drawing in Fig. 31 to investigate different polarizations. 

The orientation shown in the figure (vertically aligned with the body and the antenna 

in position 1) was considered 0°, and rotation angles were measured toward the front 

of the body (clockwise on the right side, counterclockwise on the left side).  

3. On the front of the body, positioned over the anterior superior iliac spine. 

4. On the rear of the body, positioned over the top edge of the gluteus maximus. 

5. On the front of the body, positioned horizontally in the same horizontal plane as the 

greater trochanter. 

On the rear of the body, positioned horizontally and below the gluteus maximus. 
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Fig. 31. A) Front (coronal plane) view of the right side of the body with antenna positions by 
number. B) Right side (sagittal plane) view of the body with antenna positions noted by number. 
In both, the skin profile, right pelvis, and right femur are shown in addition to the antennas. 
Antennas were pushed against the body such that gaps, such as the one near position 4, were 
not present during the measurement. The antenna in position 4 was located over the posterior 
iliac crest. 

Measurements were taken between two of the positions. The antennas were held to the body 

by the subject being measured, by pressing on the center of the ground plane of each 

antenna. This ensured deformation of the body so that the total length of the antenna was 

contacting skin. The positions that were not in use for a given measurement did not have 

antennas present. All position combinations measured were measured with both Set A and 

Set B antennas. 

B.3. Simulated Antenna Positioning and Human Body Model 

Antenna positions on the simulated body model were the same as those on the in vivo model 

and are shown in Fig. 32. The base CAD model is the Ansys male human model. It was 

chosen to match the in vivo subject, who is male. 
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Fig. 32. a) Front (coronal plane) view of the right side of the CAD model with antenna positions 
by number. b) Right side (sagittal plane) view of the CAD model with antenna positions noted by 
number. In both, the wireframe body shell, right pelvis, and right femur are shown in addition to 
the antennas. The body shell was flattened or Boolean-subtracted using the antenna’s shape to 
eliminate gaps and ensure good coupling at each position. The apparent difference in location of 
position 4 is due to perspective of the drawing in Fig. 31. 

The CAD model includes the full body with bones, muscles, and fat modelled throughout. 

Some skin layers and fat deposits are represented in aggregate by a volume with the average 

electric properties of the human body. Cartilage in joints, such as the hip joint, is not modelled 

by default. We investigated the effects of cartilage by producing a new shell using the area 

between the femur and pelvis making up the ball joint. This new volume was between 3 to 10 

mm thick due mostly to the large-triangle tessellation of the bones’ shells. In addition, two 

outer skin shells were added with properties derived from the VHP-Female v.5.0 model [108]. 

B.4. Software Modelling of Matched Antennas 

The matching networks were modelled in Ansys using S-Parameter measurements of the 

physical matching networks. The matching networks’ measurements were taken over the 
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same frequency range (30 kHz to 2 GHz) and with the same resolution (401 points) as the in 

vivo transmission measurements. However, they were taken at 0 dBm and averaged across 

8 sweeps, whereas the in vivo measurements were taken at a lower power (-15 dBm, see 

above) and with only a single frequency sweep. The input ports were all 50 Ω characteristic 

impedance, identical to the physical network analyzer. The 180° power splitters were 

modelled with an ideal splitter model. Fig. 33 shows a typical simulation configuration for a 

single antenna at position 1 compared to a physical measurement at the same site. 

 

Fig. 33. Comparison of reflection coefficient magnitude |𝑆11| for the simulated antenna (red) and 
the in-vivo antenna (dashed black). This figure additionally shows the configuration of the 
matching and power splitting circuits in HFSS for the simulated curve. Both the simulated and 
measured curves were produced from antennas at position 1. 

B.5. In Vivo Measurement Results 

The positions shown in Fig. 31 are positions between which transmission was achieved. 

Additional sites were measured, including one between sites 4 and 6 through the center of 

the gluteus maximus, but no meaningful signal was received. Fig. 34 shows the transmission 

coefficient for a selection of antenna position pairs using Set A, while Fig. 35 shows the 

transmission coefficient for the same position pairs using Set B. 
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Fig. 34. Comparison of transmission coefficient 𝑆21 when using antennas from Set A for three 
propagation paths: First, position 1 to position 2, a semicircular path through the compartment. 
Second, position 5 to position 6, a straight path through the upper femur. Third, position 3 to 
position 4, a straight path through the upper pelvis. 

 

Fig. 35. Comparison of transmission coefficient 𝑆21 when using antennas from Set B for three 
propagation paths: First, position 1 to position 2, a semicircular path through the compartment. 
Second, position 5 to position 6, a straight path through the upper femur. Third, position 3 to 
position 4, a straight path through the upper pelvis. 
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In addition to the measurements shown in the figures, transmission from position 1 to position 

2 was measured with varying polarizations achieved by rotating the position 2 antenna in 45° 

increments. For Set A, the highest average transmission over the bandwidth of the antenna 

transmission was seen at 45° of rotation while the lowest at 135°. Set B was less consistent 

but showed similar results: minimum transmission at 270° and maximum at either 45° (on the 

left side of the body) or 135° (on the right side). Overall, Set B showed less change in 𝑆21 

over various angles of rotation than Set A, potentially due to noise. Set A showed differences 

of 𝑆21 at the same frequency within the passband of the antenna with different polarizations 

up to 20 dB, while Set B showed differences up to only 10 dB. Lying down during the 

measurement process decreased this variation by about half. Table 5 shows the maximum 

measured magnitude of the transmission coefficient for each orientation tested, for both sets 

of antennas. 

Table 5: Maximum transmission coefficient magnitude |𝑆21| for various relative polarizations using 
both sets of antennas on the right leg. Measured from position 1 to position 2. 

 Set A, Right Leg Set B, Right Leg 

Angle, degrees 𝑓, MHz |𝑆21|, dB 𝑓, MHz |𝑆21|, dB 

0 (co-polarized) 615.0 -38.663 10.0 -12.254 

45 635.0 -29.127 10.0 -12.066 

90 (cross-polarized) 695.0 -42.658 10.0 -13.860 

135 705.0 -39.581 10.0 -11.955 

180 (co-polarized) 705.0 -37.817 10.0 -12.741 

225 600.0 -36.861 10.0 -12.891 

270 (cross-polarized) 710.0 -39.151 10.0 -14.000 

315 705.0 -37.694 10.0 -12.057 

 

B.6. Simulation Results 

First, the relative agreement between the simulated and measured results is characterized 

by Fig. 36, in which there are resonances at approximately the same frequencies in the 

measured and simulated environments, but the simulated environment experiences 

significantly more attenuation on transmission than the measured environment. 
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Fig. 36. Comparison of transmission coefficient 𝑆21 when using antennas from Set A for three 
propagation paths: First (red): position 1 to position 2, a semicircular path through the 
compartment. Second (blue): position 5 to position 6, a straight path through the upper femur. 
Third (green): position 3 to position 4, a straight path through the upper pelvis. The dashed lines 

are the measured in-vivo |𝑆21| (also seen in Fig. 34) and the solid lines are simulated. 

Next, the propagation paths of the waves were observed using animated electric field plots 

in various observation planes and 3-D Poynting vector plots in the bones and the body. At 

higher frequencies, a surface-propagating wave is present, as seen in Fig. 37. The Poynting 

vector plots in the femur and pelvis for the three transmission configurations in Figs. Fig. 34, 

Fig. 35, and Fig. 36 are shown in Fig. 38. 

 

Fig. 37. Electric field magnitude in the sagittal plane at different frequency bands. a) is 60 MHz, 
b) is 550 MHz, and c) is 715 GHz. All three are snapshots from animations, taken at a phase of 
60°. The vertical surface-propagating wave is present in b) and c) but not in a). The antennas for 
these measurements are the Set A antennas, located at position 1. 

In addition to the results shown in the figures, simulations were performed with a dielectric 

“belt” between the transmitting and receiving antennas to attenuate the surface wave. The 
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effect was not strong enough to reduce the magnitude of the surface wave to a level 

comparable to that of the wave propagating through the bone. 

 

Fig. 38: Poynting vector distribution in the femur and pelvis for three antenna position pairs: a) 
transmission from position 1 to position 2, b) transmission from position 3 to position 4, and c) 
transmission from position 4 to position 5. Poynting vector magnitude is represented by color, 
warmer is larger. 

B.7. Limitations 

This study only considered the strongest component of the received wave. Simulations 

suggest that this component likely propagates through skin, fat, and muscle when the 

antennas are on the same side of the body compartment. The same simulations also suggest 

propagation occurs through the bone and this second component will accrue some phase 

shift (delay) relative to the one that propagates through the soft tissue. 

This study performed in vivo measurements on only one subject, a 26-year-old male, who is 

not at significant risk of osteoporosis according to standard risk factors. 

In vivo spectra were determined from a single frequency sweep; therefore, noise contents in 

the spectra are more significant than had the measurements been performed using averaging 

of multiple sweeps. 

Matched (Set A) and unmatched (Set B) antennas are not identical and have different 

resonant frequencies. Set A had a bandwidth of about 230 MHz, centered on about 675 MHz 

(when matched) and Set B had a bandwidth of about 420 MHz, centered on about 215 MHz. 
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B.8. Validation of Simulation Using In Vivo Measurement Results 

While the measured and simulated results are not a perfect match, the resonant frequencies 

are collocated in the two spectra for the same antenna set and positions. Some of the 

difference in transmission coefficient magnitude between the measured and simulated 

spectra is due to differences between the model and the physical subject. These differences 

include the level of detail of the CAD model, and differences in physical shape between the 

CAD model and the subject. 

B.9. Propagation Paths and Antenna Position 

To achieve transmission through the bone, antennas should be placed on the opposite sides 

of the body compartment. If placed on the same side of the body compartment, the surface 

wave has the shortest path between the two antennas and thereby dominates the received 

signal. Direct transmission across a body compartment, contrarily, puts the shortest path 

between the antennas through the bone at the center of the compartment, and the Poynting 

vector for such a setup is the largest at the center of the compartment [6]. This is illustrated 

in Fig. 38, where the distribution in part C shows more even transmission through the femoral 

neck than part A. Part C’s antennas are transmitting across the compartment while part A’s 

transmit in a u-shape, starting and ending on the same side of the compartment. 

B.10. Frequency Choice and Propagation Through Bone 

It is common knowledge that lower frequencies provide better human body penetration but 

lower spatial resolution in microwave imaging. Our simulations have confirmed this, but we 

also note that in this application we can consider frequencies that are lower than traditionally 

considered for microwave imaging of the human body, due to the independence of this 

approach from spatial features. Therefore, a frequency of operation closer to 60 MHz with a 

reduced surface wave is preferable in this application to a higher frequency. Any waveguide-

like effects from higher-frequency waves propagating through bones are overshadowed by 

the lack of penetration to reach the bones in the first place, and by the large surface-

propagating waves produced by these high frequencies. 

Further investigation revealed that waveguide-like effects can be observed for electric field 

propagation in fatty tissue, though these are best observed at higher frequencies. This 

increases the difficulty of properly placing antennas such that the primary received 

component is the component that passed through the bone and is therefore useful for the 
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diagnosis. These effects can be limited by decreasing the thickness of the outer fat layer in 

the subject’s body. Because this isn’t generally viable, the authors also note that a phased 

antenna array and phase-aware signal processing may be used to eliminate these effects, as 

the fat-layer path propagates the electric field noticeably faster compared to the central (bone) 

path. It may also be possible to build a system with a time delay on the receiver that blocks 

the faster signal from the fat layer but accepts the slower signal from the central path, thereby 

avoiding the need for a phased array and the associated hardware and processing. 
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Appendix C. Additional Exploration of Machine Learning Techniques for 

Osteoporosis Detection 

This project had two aims: first, to use data augmentation techniques on the existing data to 

investigate its effect on the trained classifier(s) and, second, to use dimension-reduction 

techniques to better understand which features are most important to classification. 

The motivation for the first aim was simply to increase the sensitivity and specificity of the 

classifier compared to one trained with only real data. The motivation for the dimension 

reduction was primarily to aid in design efficiency: by targeting certain frequencies and 

ignoring others the measurement hardware can be made much cheaper.  Secondarily, 

reducing the number of features could help with visualization and could theoretically speed 

the training of a classifier without losing much sensitivity or specificity. 

C.1. Base Data 

All the data used in this study was collected for previous studies with IRB approval (IRB-19-

0123) through Worcester Polytechnic Institute on Oct. 1, 2018.  The data consisted of 80 

subjects total (age range 23-94 years old, 60 females, 20 males) shown in Fig. 16 on page 

46, of which 66 were suitable for a dichotomous diagnostic test [104]. Suitability was 

determined by clinical risk factors of osteoporosis: if a subject was easily classifiable as 

osteoporotic or healthy from their clinical risk factors alone or had an available DXA T-score 

from the past year, that subject was suitable for the test.  Subjects whose clinical risk factors 

were split some indicating healthy and some indicating osteoporosis who did not have an 

available T-score were considered unknown and discarded from the test. These subjects 

were split into the same two groups from [104]: 

Group 1 (Osteopenic/Osteoporotic): 25 subjects (24 female, 1 male). Subjects were 

characterized by a T-score less than -1 taken within one year. Subjects with a T-score less 

than -2.4 were considered osteoporotic while other subjects were considered osteopenic. 

Group 2 (Healthy): 41 subjects (25 female, 16 male). Subjects in this group did not 

necessarily have a known T-score, but instead were characterized by having none of the 

following risk factors: a history of bone fractures, medication for bone-related diseases, a 

family history of bone fractures, and/or osteoporosis. 
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Each arm from each base subject was considered as a separate subject for this study, so the 

base dataset contained 132 subjects, each with a single arm’s worth of data. Each arm 

consisted of 403 features, 402 of which were frequency points (real and imaginary) and one 

was wrist circumference. 

C.2. Data Augmentation 

The goal of the data augmentation was to provide some noise to the spectra without losing 

their class-defining characteristics.  Because of simulations done for [6], we believe the 

difference between classes will likely manifest in the form of resonant frequency shift, as 

shown in Fig. 6 on page 23. 

Adding a large amount of noise, especially uniform noise, to the spectra would risk losing 

these resonance shifts. On the other hand, not adding enough noise encourages overfitting 

by not differentiating the new spectra significantly from the old spectra.  To address this, I 

added two separate Gaussian random variables as noise sources when generating the 

augmented data.   

The first was added to each data value and had a small standard deviation, relative to the 

standard deviation of each feature. To apply this to any subject 𝜉, I took the transmission 

coefficient spectrum for that subject 𝑆21(𝜉, 𝑓) and added it to the random variable Φ. 

𝑆21
′ (𝜉, 𝑓) = 𝑆21(𝜉, 𝑓) +

𝜎(𝑓)

50
𝛷(𝜉, 𝑓) (1B) 

Where Φ is a normally distributed (Gaussian, zero-mean, unit-variance) random value, then 

multiplied by the variance of the feature 𝜎(𝑓) it was being added to.  Unique values of Φ are 

generated for every combination 𝜉 and 𝑓.  To reduce the chances of losing critical information, 

this value was divided by 50. 

To add more variability without losing critical information, we can also add a per-subject bias.  

Because this is applied uniformly across all features for a given subject, its variance can be 

larger without effecting the critical part of the data. To do this, we modify the result from Eqn. 

1B as follows: 

𝑆21
′′ (𝜉, 𝑓) = 𝑆21

′ (𝜉, 𝑓) +
𝜎(𝜉)

5
𝛩(𝜉) (2B) 
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Where Θ(ξ) is another normally distributed random value that is the same for all features for 

a given subject and 𝜎(𝜉) is the standard deviation of feature values for the subject. Eqn. 2B 

describes the full process to create an augmented subject. 

 
Fig. 39. Base data subject (solid red) compared to the two augmented data subjects that were 
based on it (dashed grey and dotted blue). 

The augmented data, shown in Fig. 39, should therefore have some variability for all features 

compared to the base data, but should also carry a more significant per-subject bias. Wrist 

circumferences were not modified when generating augmented subjects, as they were 

rounded to the nearest quarter inch and had a small range of possible values. 

Two augmented subjects were generated from each base subject, therefore the augmented 

data set contained 396 subjects.  The base data was a subset of the augmented data. 

C.3. Principal Component Analysis 

Principal Component Analysis (PCA) transforms the feature space to one that has rank 

consistency, with each subsequent component contributing less to the overall diagnosis than 
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the last. This allows us to easily drop features that do not contribute much to the classification, 

as they are consistent across all the data. The downside of this approach is that the resulting 

principal components lose their physical meaning: they are no-longer related to frequency 

values. 

The MATLAB® Statistics and Machine Learning Toolbox™, MathWorks Inc., Natick MA, 

includes a function to perform unsupervised PCA with various options for solvers and initial 

conditions.  I performed two sets of PCA using the Singular Value Decomposition (SVD) 

algorithm: one with each feature weighted according to its variance, and one with each feature 

weighted uniformly.  In both cases, I scaled the data so that each feature covered the interval 

[0,1] and the PCA function biased the input features to be zero-mean before performing PCA. 

For the variance based PCA, I orthonormalized the resulting coefficient matrix using Eqn. 3B. 

𝐶⊥ = [𝐼 𝜎(𝑓)]−1𝐶 (3B) 

Where 𝐶 is the non-orthogonal coefficient matrix, 𝐼 is the identity matrix, 𝜎(𝑓) is the standard 

deviation for each feature and 𝐶⊥ is the orthonormalized coefficients matrix. This was not 

necessary for the uniform-weighting, as its coefficient matrix was already orthonormal. 

The PCA function directly produced the coefficient matrix, the scores (or feature values in the 

PCA space) matrix, and the explained variance fraction of each principal component. I 

performed both kinds of PCA (variance-weighted and uniform-weighted) on both the base 

dataset and the augmented dataset. 

C.4. Feature Selection 

My goal with feature selection was to achieve similar results to PCA without losing the 

physical meaning of the features. The end goal of this would be to streamline the design of 

the measurement hardware so as to not measure components that don’t contribute to 

classification and make the apparatus more cost-efficient in the process. 

I performed feature selection using two functions from the MATLAB® Statistics and Machine 

Learning Toolbox™. One performed feature selection based on the covariance, 𝜒2, and the 

other used the Minimum Redundancy Maximum Relevance (MRMR) algorithm [115]. 

When using the 𝜒2 method, the algorithm binned continuous predictors into 10 bins, the 

weights for each feature were all initialized to 1, and the prior probabilities for each class were 
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determined from the class frequencies across the dataset in question.  When using MRMR, 

the weights for each feature were all initialized to 1, and the prior probabilities for each class 

were determined from the class frequencies across the dataset in question. 

Both feature selection functions had two outputs: an index vector that would sort the features 

by order of importance, and the predictor scores which provide a measure of how important 

the algorithm thought each predictor was. Notably, the 𝜒2 algorithm can produce scores of 

infinity while the MRMR algorithm cannot. Features with non-finite scores were grouped in 

arbitrary order at the start of the index vector and were considered most important. 

Because neither feature selection algorithm produced an explained-variance statistic, I 

generated an approximation using the ratio of the score to the sum of all scores as shown in 

Eqn. 4. 

𝐸(𝑓) =
𝑠𝑓

∑ 𝑠𝑖
𝑁
𝑖=1

 (3B) 

Where 𝐸(𝑓) is the explained variance fraction for feature 𝑓 where 1 ≤ 𝑓 ≤ 𝑁 and 𝑁 is the 

number of features. I performed feature selection on both the base dataset and the 

augmented dataset using both methods. 

C.5. Training and Validation 

In addition to the PCA and feature selection, I also applied the 2-layer perceptron network 

from [104] to the augmented data. What I intended to do and what I did for training the network 

ended up being different. I intended to perform 10-fold cross-validation and retain an 11th fold 

as the test data, to be evaluated on each of the 10 trained classifiers. What I ended up doing 

was performing 10-fold cross-validation with 11 folds, such that one fold never took its turn 

as validation data. This fold was the one intended to be the test data. Different from my 

previous approach [104] to k-fold cross-validation, wherein I wrote my own code to divide the 

data into folds, I used the library function cvpartition. 

Otherwise, the training process was identical to the training process from [104]. All networks 

were trained using an ADAM [116] solver and a mini-batch size of 27 for 1000 epochs and 

were evaluated by sensitivity, specificity, and accuracy. This study concentrates on accuracy 

instead of Youden’s J because accuracy is more commonly used in machine learning, which 

is the context of this paper. Youden’s J is more commonly used in medical contexts. 
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When training the neural network based on the PCA and feature selection results, the 

networks were trained on the minimum number of components to achieve 95% explained 

variance. 

C.6. PCA Results 

The two PCA methods produced results that are visually indistinguishable from each other. 

As shown in Fig. 40, the PCA succeeded in capturing most of the variance of the spectra in 

the first few components, but unfortunately this did not lead to clear separation of classes in 

Fig. 41. 

 
Fig. 40. Principal component explained variance by component (bars) and total explained 
variance (line) for the 6 most-significant components. Base data, Uniform weights method. 

Applying PCA to the augmented data yielded much the same results as the base data. It is 

notable, however, that the variance-weighted PCA for the augmented data picked up extra 

spread along the third principal component compared to the uniform weights method and 

either method for the base data. The first two components remained essentially identical. 
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Fig. 41. Plot of the subjects’ scores using the first two principal components. Green is Group 2 
(Healthy), and red is Group 1 (Osteoporotic). Base data, uniform weights method. 

Applying PCA to the augmented data yielded much the same results as the base data. It is 

notable, however, that the variance-weighted PCA for the augmented data picked up extra 

spread along the third principal component compared to the uniform weights method and 

either method for the base data. The first two components remained essentially identical. 

For the base data, the first 5 components were sufficient to represent 95% of the variance of 

the original spectra by both methods. 

For the augmented data, the first 6 components were sufficient to represent 95% of the 

variance of the original spectra by both methods. 

C.7. Feature Selection Results 

Feature selection using the 𝜒2 method produced predictor importance scores that were 

mostly linear with the predictor rank. MRMR, however, produced importance scores that 

underwent exponential decay as predictor rank increased. I didn’t have any non-finite 

predictor importance scores. There was no clear trend among the features that were selected. 

In three of the four cases, wrist circumference was in the top 15 features, but 𝜒2 on the 

augmented data didn’t value it as highly as the other methods did. For the base data, using 

the 𝜒2 method, 93 features were needed to explain 95% of the total score.  Using the MRMR 
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method, 210 features were needed for the same percentage of the total score. For the 

augmented data, using the 𝜒2 method, 99 features were needed to explain 95% of the total 

score.  Using the MRMR method, 162 features were needed for the same percentage of the 

total score. 

C.8. MLP Classifier Results 

The cross-validation results for the neural networks trained from the base data and the 

PCA/feature selection derived from the base data are shown in Table 6. 

Table 6: Base data derived (132 subjects) classifier performance for various feature 
arrangements. 

 Accuracy Sensitivity Specificity 

Base 0.810606 0.68 0.892857 

PCA Uniform 0.754837 0.40 0.975000 

PCA Variance 0.720513 0.29 0.985714 

F.S. 𝝌𝟐 0.654138 0.11 0.987500 

F.S. MRMR 0.802273 0.55 0.958929 

The cross-validation results for the neural networks trained from the augmented data and the 

PCA/feature selection derived from the augmented data are shown in Table 7. 

Table 7: Augmented data derived (132 subjects) classifier performance for various feature 
arrangements. 

 Accuracy Sensitivity Specificity 

Augmented 0.872696 0.73022 0.960079 

PCA Uni. 0.75642 0.364835 0.995455 

PCA Var. 0.758985 0.387363 0.986364 

F.S. 𝝌𝟐 0.689344 0.181319 1 

F.S. MRMR 0.794792 0.473077 0.991107 

Performing each round of cross-validation on the base data took about 5 minutes, while it 

took about 15 minutes for the augmented data. 
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C.9. Limitations 

Because I decided to do 10-fold cross-validation instead of 7-fold and ended up doing sort-

of-11-fold cross-validation, the results for the neural network classifier are not directly 

comparable to those presented in [104]. The origin of this awkward sort-of-10-fold cross-

validation is my misreading of the MATLAB documentation and a lack of time in which to fix 

it. Additionally, this is not an exhaustive comparison between the number of features and the 

explained variance. The PCA-based data might yield significantly better results given enough 

components to explain 99% or 99.9% of the variance. 

Unlike [104], subjects have not been recombined into their original individuals. This is a 

limitation from the medical perspective, but not from the machine learning perspective. 

C.10. Dimension Reduction 

PCA proved extremely effective at reducing dimensionality of the data, going from 403 

features per subject to 5 or 6 features per subject. Unfortunately, the unsupervised PCA that 

I had chosen did not prove comparatively effective at identifying components relevant to the 

actual classification of the data, and the results from the neural network classifier trained with 

this data reflects this. Additionally, performing PCA on the augmented data lost all benefit the 

augmentation had on the accuracy of the classifier. 

By contrast, feature selection was not particularly effective at reducing dimensionality.  The 

𝜒2 method proved ineffective overall, likely due to the large number of features in these 

datasets. The MRMR method, however, proved highly effective, retaining most of the 

accuracy of the base dataset (within 1-2%) while halving or quartering the number of features. 

Again, performing feature selection on the augmented data only hurt the results. 

Possible future work would include the investigation of the effects of applying data 

augmentation after the PCA or feature selection has occurred to get the best of both worlds. 

C.11. MLP Classifier 

Despite the classifier used in this experiment not being directly comparable to the one used 

in [104], the results here still show that a network of that topology with the given data will 

benefit greatly from data augmentation, increasing accuracy by 6%. 



108 
 

Appendix D. Design of Antenna Array Switchboard for Microwave Imaging 

The miniaturized 2.4 GHz dual antiphase patch antennas described in Chapter 4 on page 57 

were designed as part of a novel 3D conformal array-based microwave imaging system, 

specifically designed for imaging of the brain. To use this antenna array, either a switchboard 

or a phased array controller was needed. Due to the complexity of a phased array controller 

and the relative simplicity of a switchboard, the switchboard was selected as the most 

expedient option to control the array. When comparing discrete RF switches, splitters, and 

combiners to the same functional units in PCB mountable form, the PCB mountable 

components proved cost effective. Further, building a custom PCB allowed minimization of 

size of the controller and minimization of length of the connections between devices that make 

up the controller. For these reasons, we elected to design and build a fully custom 8-antenna 

array switchboard PCB instead of building it out of discrete RF blocks and coaxial cables. 

Table 8: Price comparison of the two individual parts with the greatest price difference between 
their PCB and Discrete versions. Mini-Circuits, (Brooklyn, NY, USA) parts with roughly equivalent 
specifications are shown [117].  

Part Type Discrete Cost (Part #) Board Mount Cost (Part #) 

DC – 3 GHz Absorptive 
SPDT Switch 

$68.94 (ZX80-DR230-S+) $3.39 (HSWA2-30DR+) 

700 MHz – 2.7 GHz 8-way 
splitter/combiner 

$402.44 (ZN8PD-272SMP+) $114.94 (SEPS-8-272+) 

Additional overhead costs are expected for both methods, though in general board 

manufacturing is expected to cost much more than parts for the discrete unit’s assembly. 

Altogether, both methods are expected to yield similar final price tags. Due to this expectation, 

the advantages of the PCB method in size and customizability led us to choose that method 

to build the controller. 

D.1. Constraints 

To make the controller useful for controlling two arrays (transmitting and receiving) 

simultaneously, it was determined to need a minimum of eight controllable antennas. The 

controller needed to be able to work on its own, or when connected to a personal computer. 

It needed batteries on board to limit the number of cables, easing setup and allowing the array 

controller to be physically mounted on the subject’s head with the array, but it would also be 

convenient if it may be powered by an offboard source for testing and debugging. Each of the 
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antennas needed to be able to connect to transmit, receive, or neither, in case an imaging 

pattern did not use all connected antennas simultaneously.  

D.2. System Design 

The switches were chosen as HSWA2-30DR+ from Mini-Circuits and the power splitter and 

combiner were chosen as SEPS-8-272+ again from Mini-Circuits.  

 

Fig. 42. Abbreviated block diagram of the core of the antenna switchboard. Each antenna is 
connected to its own switch, which can connect that antenna to either the splitter, the combiner, 
or simply ground the antenna through a 50 Ω load. The splitter and combiner connect off-board 
to a network analyzer. Only four of the eight antennas are shown in the diagram. 

The board would have an onboard linear regulator, MCP1703T-3002 (Microchip Technology, 

Chandler, AZ, USA) to ensure the most consistent 3.0V supply possible to the switches. 

Autonomous control and interface with a PC would happen via an Arduino Nano Every 

(Arduino S.r.l., Partita, IVA). The Arduino Nano Every has a sufficient clock speed to handle 

the switching requirements and boasts castellated pins, allowing it to be soldered directly to 

the controller board to minimize its profile. The controller would have an onboard battery, an 
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offboard power connector, and the ability to run from the 5 V USB supply from the Arduino. 

Switching between these operating modes would be configured with pin jumpers. 

D.3. Board Design 

The circuits and boards were designed using Altium Designer to meet Advanced Circuits’ 

(Aurora, CO, USA) standard board specification for 4-layer boards. This included the 

substrate material (FR-4), the copper thickness (1 oz/ in2), via depth (through all layers), and 

the pad finish (solder), as well as some cosmetic constraints [118]. The board shape was 

decided to be octagonal to minimize the profile of the board and better conform to the shape 

of the top of the head, where it was expected to be mounted. The octagon shape also allowed 

each antenna to be connected via an edge launch connector from its own edge of the PCB. 

The network analyzer would connect via vertical connectors from the center of the board. The 

two inner layers of the board would be ground planes while the two outer layers would be 

signal layers. All microstrip lines and vias on RF traces would be matched to 50 Ohms using 

a combination of Altium’s built in impedance calculator and Saturn PCB Toolkit (Saturn PCB 

Design, Inc, DeBary, FL, USA). The top layer of the board mounted all of the RF switches, 

the splitter and combiner, and the vertical SMA connectors. The bottom layer mounted the 

Arduino, battery, and regulator circuitry. All RF traces were length-matched, which is to say 

the traces connecting the splitter to the switches were one length and the traces connecting 

the combiner to the switches were another length. Where possible, all RF traces also had the 

same number of vias inline, up to a maximum of two. A minimum of 30 mil spacing was 

maintained between RF traces and any adjacent metal on the same layer, to ensure the 

dominant coupling would be to the ground plane (spaced about 10 mil away on an interior 

layer). Copper pours were used around the switches and connectors to improve isolation 

between pins, as recommended by the datasheet [119]. Tapers were added to all RF pads 

using Altium designer’s automatic taper generator. Low-speed traces, such as the switch 

control traces and the power traces were separated from RF traces by a minimum of 30 mil 

but were allowed to be within 10 mil of each other. Power traces were sized to allow 2 A of 

current with a temperature increase of 10 °C, while non-RF signal traces were sized to the 

same width as the RF traces. Fig. 43 shows the full layout of the switchboard, except for the 

ground planes on the two interior layers. 
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Fig. 43. Array switchboard board layout diagram. Top (red), bottom (blue) and traces on interior 
copper layer 2 (neon green) are shown. Interior copper layer 1 (dark green) is a ground plane and 
is not shown. Interior layer 2 is a ground plane except where traces are shown, this ground plane 
is not included in the figure. Top and bottom silkscreen markings are shown in dark green and 
dark yellow, respectively. Vias and through-hole pads are shown in grey. 


