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Abstract 

Understanding how anthropogenic disturbances affect plant–pollinator systems at the 

individual and population level has important implications for the conservation of biodiversity 

and ecosystem functioning. At the individual level, previous laboratory studies show that 

anthropogenic disturbances such as pesticides and pathogens, which have been implicated in the 

rapid global decline of pollinators, can impair behavioral processes needed for pollinators to 

adaptively exploit floral resources and effectively transfer pollen among plants. However, the 

potential for sublethal stressor effects on pollinator-plant interactions at the individual level to 

scale up into changes to the dynamics of plant and pollinator populations at the system level 

remains unclear. To address this question, we developed an empirically parameterized agent-

based model of a bumblebee pollination system called SimBee to test for effects of stressor-

induced decreases in the memory capacity and information processing speed of individual 

foragers on bee abundance, plant diversity, and bee–plant system stability over 20 virtual 

seasons. Modeling of a simple pollination network of a bumblebee and four co-flowering bee-

pollinated plant species indicated that bee decline and plant species extinction events could occur 

when only 25% of the forager population showed cognitive impairment. Higher percentages of 

impairment caused 50% bee loss in just five virtual seasons and system-wide extinction events in 

less than 20 virtual seasons under some conditions. Plant species extinctions occurred regardless 

of bee population size, indicating that stressor-induced changes to pollinator behavior alone 

could drive species loss from plant communities. These findings indicate that sublethal stressor 

effects on pollinator behavioral mechanisms, although seemingly insignificant at the level of 

individuals, have the cumulative potential in principle to degrade plant–pollinator species 

interactions at the system level. 
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 Understanding the mechanisms behind bumblebee behavioral response to change is key 

to improving our ability to model and predict how pollinators respond to rapid human-induced 

change. Building on the work done with the SimBee model, we implement models of individual 

memory and decision-making to test behavioral response to simulated scenarios of rapid change. 

Characterizing the behavioral response to change variability of environments, probability of 

reward, and frequency of change provide insight into the role of memory and recency effects in 

adaptive decision-making. In environments with variation, memory provides an adaptive 

advantage to foraging bumblebees and models of decision-making that utilize memory 

outperform memory-less strategies. Our tests indicate that recency bias is a possible mechanism 

that allows bumblebees to adaptively respond to changing and variable environments when new 

information must be acted upon quickly. 

 While we establish a foundation for exploring and modeling bumblebee behavior and 

decisions in plant-pollinator systems at the individual level, improving data collection on the 

dynamics of plant-pollinator interactions at the population level is critical for conservation 

efforts. Since long-term controlled experimental studies are difficult to execute, we utilize the 

citizen science Beecology project to lay foundational work for the automated classification of 

bumblebee behaviors in videos. Recent advances in deep learning have made rapid and accurate 

behavior classification of human behaviors possible, but these advances have not been applied to 

bumblebees. We address this by first creating a dataset of bumblebee action video clips using 

videos submitted by citizen scientists. The dataset was then used to train and test a two-stream 

convolutional network (TSN) to test the viability of using deep learning techniques for 

automated bumblebee behavioral classification. Our work highlights the need for a more robust 

dataset that can facilitate the use of deep learning architectures.  
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Preface 

Growing up in Phoenix, Arizona, my parents started a tradition of driving up to Sedona for 

Thanksgiving. Situated further North and higher in elevation, the air in Sedona would be cool 

and crisp, a welcome change from the heat of Phoenix. Southwest of the striking Cathedral Rock 

formation along Oak creek is Crescent Moon Ranch, a property maintained as a historic site by 

The Forest Service. The water wheel sits unmoving next to a field of dry, brown grass under the 

clear blue sky, lending a sense of timelessness that leaves one wondering if the scene would look 

different ten years ago or ten years hence. The creek tells a different story, as leaves change 

colors and fall into the cold rushing water, carrying away detritus and revealing an unobstructed 

view of Cathedral Rock. There is no official path over Oak creek there – the last concrete 

crossing having been washed away long ago – but locals often build stone stepping-stones to 

replicate the original function of red rock crossing. Some years the stepping-stones stand strong 

against the current, letting visitors cross the creek without getting a toe wet, while other years the 

creek swallows the rocks and makes crossing a risky adventure. For me, the yearly visits 

provided a snapshot of a place that seemed frozen in time. The sky was always clear and blue, 

the grass always brown and dry, the creek always strong and cold. Yet, I could see the change 

that was always happening, from the falling leaves to the new stepping-stones every year. No 

single photo can capture this sense of change, but many photos taken year after year can 

transform static information into a story of dynamic change.  

If I look at a photo of Cathedral Rock from Crescent Moon Ranch, I know far more 

information than a single photo contains. I know that the trees and grass change over the seasons, 

I know the creek rises and falls, I know the insects and animals grow and reproduce, and I know 

the visitors come and go. Studying a location for long enough lets us extract enough details and 
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patterns to imagine how it changes when we are not there to observe it as well as what it may 

look like in the future. A timelapse – a sequence of photos taken from the same location – can 

approximate this knowledge in a way that can be shared with others who have never witnessed it 

themselves. By breaking down a constantly changing and dynamic location into discrete 

snapshots, we can summarize the details and patterns we witness in a way that can be shared 

with others. But what if we want to share more than a single location? How can we share a large 

area, a dynamic experience, or a changing phenomenon? 

The details and patterns that describe how something changes, what something looked 

like in the past, and what we think it will look like in the future can all be recorded and 

documented in a construct called a model. Models are a way we can share in-depth knowledge of 

complex events with those who have never experienced them. Like a series of pictures, models 

are simpler than what they represent but capture the key details and patterns that others need to 

understand what they are looking at. Despite approximations and idealizations that are pale 

imitations of the true experience, models let us share important patterns and predictions of the 

past and future in ways that let other people understand and relate to a phenomenon that they 

would otherwise not comprehend. 

 

  



 6 

Introduction 

Global bumblebee decline is a phenomenon that needs to be understood and shared. Countless 

researchers have worked to determine the details and patterns of bumblebee decline, from the 

way stressors like pesticides and disease affect bumblebees to ways land use can promote or 

handicap local pollinators. Despite the extensive body of research on bumblebees, existing 

models have proven to be insufficient to adequately understand and communicate the 

phenomenon as global bumblebee decline continues1. The work described here uses a three-

pronged approach to advance efforts to understand, model, and communicate bumblebee decline 

with a multi-faceted and interdisciplinary approach.  

The first prong of this research seeks to understand how anthropogenic disturbances 

affecting plant-pollinator systems at the individual level can result in population-level decline. In 

particular, previous laboratory studies have established that pesticides and pathogens that do not 

out-right kill pollinators can impair behavioral processes needed for them to adaptively exploit 

floral resources. While these stressors are implicated in global pollinator decline, it is unclear 

how these sublethal stressor effects on pollinator-plant interactions at the individual level can 

scale up to alter the dynamics of wild plant and pollinator populations. To address this question, 

we develop an agent-based model called SimBee to simulate the effects of pesticides and 

pathogens on bumblebee-plant interactions at the individual level. These stressors are known to 

impair memory and processing speed in laboratory studies, so we designed and empirically 

parameterized SimBee to reproduce the effects of those impairments. The model then scales up 

those individual effects into population-level patterns over relevant temporal scales. We use 

SimBee to test several scenarios regarding the effects of stressor-induced decreases in memory 

capacity and processing speed on bee and plant abundance. These findings demonstrate that 
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sublethal stressor effects on individual pollinators and plants can have a cumulative effect on 

plant-pollinator interactions at the population level. Agent-based models are best-suited for 

capturing these individual-level details in ways that can explain population-level patterns. 

The second prong builds from the SimBee model developed previously to investigate and 

model how bumblebees respond to change. Bees can encounter several different types of change 

in their environment, and better characterizing how they use memory and decision-making skills 

to respond to these changes is important for understanding how bees can adapt to human-induced 

change and furthering our ability to model bees at the individual level. Specifically, we explore 

how bumblebees respond and adapt to a change in the variation of resources, change in the 

probability of reward, and changes in the frequency of change in their environment. While the 

underlying role of memory in response to change – as well as variation – are not well understood 

in bumblebees, the topic has been explored in human psychology. We design three scenarios 

based on experiments from human psychology for investigating bumblebee response to change 

in three different ways and simulate results using the SimBee model. The results demonstrate 

that memory and complex decision-making strategies can provide adaptive benefits in some 

scenarios, and the tested models provide insight into future directions for studying the bumblebee 

response to change. 

Finally, the third prong explores deep learning modeling techniques to address current 

challenges with collecting behavioral information for conservation efforts. Deep learning models 

for human action classification are continually advancing and demonstrate a high degree of 

accuracy when tested on a diverse range of human behaviors. Capturing bumblebee behaviors 

from videos using deep learning models would greatly benefit conservation efforts since the 

analysis of publicly submitted videos is a serious bottleneck in executing large-scale studies of 
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pollinator decline. While honeybees (Apis mellifera) are managed for agricultural purposes, 

bumblebees (genus Bombus) are wild native pollinators in the United States and difficult to 

document on a large scale. However, deep learning models for action classification are rarely 

applied to non-human organisms and there is currently no open-source dataset or behavior 

classification system for bumblebees. The Beecology Project2 is a citizen-science driven project 

that aims to collect ecological data on native pollinators, and user-submitted videos enable the 

creation of a dataset for training deep learning models. In this work, we use bumblebee video 

data to train and test an established two-stream convolutional network model for bumblebee 

behavior classification. The results show that advances in human behavior classification can be 

applied to bumblebee behaviors and provide insight for future work on this topic. 

 

Bumblebees 

Bumblebees are members of the genus Bombus, which includes approximately 260 wild species 

spread across most of the world, 47 of which are found in North America1. Most bumblebees are 

eusocial insects that form colonies with a single queen, but some species are solitary3. They are 

round and covered in soft hair that gives them a ‘fuzzy’ appearance4. Bumblebees act as natural 

pollinators while they gather nectar and pollen from flowering plants, and their use of buzz-

pollination - a type of vibration that helps shake pollen from flowers – is key to the efficient 

pollination of plants such as berries and tomatoes5. While bumblebees are commonly confused 

with the western honeybee (Apis mellifera) by the general public, honeybees and bumblebees are 

different in numerous ways and research on one cannot necessarily be generalized to the other4. 

When studying bumblebee populations, it is important to note that bumblebees are annual 

social insects and have a distinctly different lifecycle than honeybees (see Figure 1 for a 
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summary of the bumblebee lifecycle)6. Queens emerge from hibernation in the spring and found 

individual colonies. Once the first workers hatch, they help establish the colony and forage for 

nectar and pollen to support population growth. Towards the end of the colony cycle in the late 

summer, the colony transitions from producing workers to producing reproductives (males and 

gynes). After mating, the young queens go into hibernation while the founding queen, workers, 

and males all die. Queens that survive hibernation give rise the next generation in the following 

spring7. 

 

Figure 1: Summary of the bumblebee lifecycle. Credit to Rachel Blakely for the image. 

Due to the annual lifecycle, bumblebees do not remain in the same location from year to year nor 

do they maintain large stores of honey like honeybee colonies8. While some of these differences 

make bumblebees a poor choice for modern agricultural practices, many species of bumblebees 

are incredibly important pollinators for key crops5,9,10. In fact, certain plants such as tomatoes 

and cranberries rely almost exclusively on bumblebees for pollination and cannot be efficiently 

pollinated by honeybees9. Bumblebee visitation also enhances the yield of many other crops11. 

Mating 

Food 
collection 

Nesting 

Hibernation 
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Additionally, most wild plants are pollinated by different species of bumblebees5. Due to the 

interconnected nature of pollinator-plant networks, eliminating bumblebee species from 

pollination networks likely leads to serious decline with respect to plant diversity12,13. Thus, the 

conservation of bumblebee species is important for biodiversity and economic reasons. 

 

Bumblebee Decline 

Over the past decade, wild pollinators have declined in abundance, species richness, and 

geographic distribution at an alarming rate worldwide14,15. A great deal of progress has been 

made in evaluating the extinction risk of bumblebee species, but there are still many unknowns 

regarding the distribution and decline of different species in various regions (See Figure 2). 

Although the cause of these declines is unknown, human-introduced stressors such as pesticides, 

disease, habitat loss, and climate change have all been identified as potential contributing 

factors11. Given that many wildlife species depend on animal-pollinated plants for food, shelter, 

and nesting habitat, pollinator loss has the potential to significantly degrade the function and 

diversity of terrestrial ecosystems. Indeed, abundance and diversity of flowering plants have 

declined in parallel with their pollinators in many locations16, suggesting that these cascading 

negative effects might be well underway. A critical step in the conservation and restoration of 

wild pollination systems is understanding how anthropogenic stressors affect the dynamics of 

plant-pollinator interactions over different levels of biological organization and over ecologically 

relevant temporal scales. However, such data are often difficult to obtain due to the significant 

logistical challenges associated with conducting long-term controlled experimental studies of 

natural systems17,18.  
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Figure 2: Global map of International Union for Conservation of Nature (IUCN) Bumblebee Specialist Group regions (color-
coded in shades of red), each displaying a pie chart indicating proportions of the different Red List threat categories assessed for 
the bumblebee species of a given region. Percentages refer to the fraction of IUCN-assessed species designated as Threatened. 
At time of publication, 154 species total have been described for Europe, North America, Mesoamerica, and South America, and 
150 species have been IUCN assessed, of which 36 (24%) are currently listed as threatened. Note that regional species totals are 
not mutually exclusive since some species occupy multiple regions. Taken from Global Trends in Bumble Bee Health1. 

 

Sublethal Stressor Effects of Pesticides & Pathogens 

Neonicotinoid-based pesticides were originally assumed to be toxic to pest insects but relatively 

harmless towards pollinating insects such as honeybees and bumblebees19–22. This was supported 

by studies showing that field-realistic exposure of bees to neonicotinoids in nectar and pollen of 

seed-treated crops is unlikely to cause lethal effects23. While neonicotinoids are unlikely to cause 

direct mortality in the field, numerous studies in the past decade have demonstrated that 

neonicotinoid use has indirect (sublethal) effects on bees24–27.  

A sublethal effect is generally defined as a stressor-induced change to an individual’s 

physiology or behavior that does not cause direct mortality25,28. Neonicotinoids work by binding 
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to nicotinic acetylcholine receptors in the synaptic membrane of insect neurons, resulting in 

overactivation and the eventual death of the neuron1. There is a substantial amount of empirical 

evidence that chronic exposure to neonicotinoids can decrease foraging success in bee pollinators 

through impairments to underlying cognitive mechanisms27,29–33,33–37. For example, Stanley et al. 

(2015)38 showed that 50% of bumblebees (B. terrestris) could not remember the reward 

properties of available flowers 24 hours after chronic exposure to a field-realistic dose of a 

neonicotinoid pesticide. However, pesticides are not the only source of sublethal stressors for 

bumblebees. The prevalence and diversity of bumblebee pathogens has greatly increased over 

the past decade, and the increased expose to pathogenic organisms is thought to be a contributing 

factor to bumblebee decline39,40. In another bumblebee species (B. impatiens), Mobley and 

Gegear (2018)39 found that individuals with an activated immune system took 40% longer to 

make foraging decisions than controls, significantly reducing the rate of reward delivery to the 

colony. Numerous other studies have demonstrated that sublethal effects can impair the ability of 

bees to forage, learn and remember flower locations, and negatively impact the growth of 

colonies23,41–50. Despite the growing body of evidence that the sublethal effects of pesticides and 

pathogens have a serious long-term impact on the cognitive abilities and reproduction of 

bumblebees, the indirect nature of sublethal effects makes it unclear if such changes to 

cognition-based behavior at the individual level are sufficient to drive the observed global 

population decline. While a recent large-scale study in avian species concluded that the increase 

in neonicotinoid use led to statistically significant reductions in bird biodiversity51, there is no 

similar large-scale study of bumblebee biodiversity. A critical step in the conservation and 

restoration of wild pollination systems is understanding how anthropogenic stressors affect the 

dynamics of plant-pollinator interactions over different levels of biological organization and over 
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ecologically relevant temporal scales. However, such data are often difficult to obtain due to the 

significant logistical challenges associated with conducting long-term controlled experimental 

studies of natural systems17,18.  

 

Pollinator-Plant Dynamics 

The long history of coevolution between flowering plants and pollinators such as bumblebees 

has resulted in a complex web of interactions that make both partners dependent on one 

another52–55. This partnership between plants and pollinators is based on mutualistic interactions 

driven by selfish interest16,54–56. Plants provide nectar and pollen to reward visiting pollinators, 

who in return sustain plant reproduction by vectoring pollen to conspecific flowers52,55. From the 

perspective of a pollinator, a field full of flowers is a rich marketplace where numerous floral 

species offer nectar and pollen rewards. However, foraging for these rewards is not a trivial task.  

 In the context of bumblebees and plant-pollinator interactions, there are several 

challenges that foraging pollinators face while searching for resources. First, foragers may 

encounter spatial variation in the location of resources in the local environment;57–61 foragers 

may find no resources in one area or multiple resources in another. Second, foragers also 

experience temporal variation in resources. For example, plants go in and out of bloom at 

different times during the year and this also changes what resources are available to 

foragers53,53,62,63. These changes fall under phenology, the periodically recurring patterns of 

growth and development of plants and animal behavior during the year64. Finally, bumblebees 

must navigate these challenges to determine which of the many available resources is most 

rewarding. Limits of time and energy require foragers to make economic decisions to ensure a 

net gain of resources52. In bumblebees, resource collection is strongly correlated with colony 
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fitness65,66. Other factors include the ease of handling, the presence of distractions, and 

competition from other pollinators. Foragers must consider all these variables to successfully 

utilize the floral marketplace. 

From the plant’s perspective, pollinators are greedy customers that unwittingly become 

biotic gene dispersers. Pollinators that stick to the same floral species assist plant reproduction 

while pollinators that switch species can impair the reproductive potential of the plants they 

visit54,59,67,68. In order to attract and retain these customers, flowering plants have evolved a 

number of traits to attract or deter specific pollinators52,55,61,69. While visual displays, olfactory 

cues, and physical shape certainly play an important role, the most important strategy plants 

employ is providing the best nectar and pollen rewards in the market61,70–73. Consequently, 

visiting foragers that were initially attracted by visual or olfactory stimulus learn to associate 

these cues with the nectar and pollen rewards provided. 

 

 Memory in Bumblebees 

While the complex behaviors of groups of eusocial insects have long been recognized, the 

behavioral complexity of the individuals has often been ignored or dismissed. The study of 

cognition in insects broadly seeks to understand the mechanisms by which insects acquire, process, 

store, and act on external stimuli74–76. Tests for associative learning, sensory integration, and 

choice behavior are the most common methods for determining the presence of cognition, as higher 

level capabilities such as concept learning, cognitive maps, and metacognition can be difficult to 

demonstrate in insects74,75,77,78.  

Eusocial bees of the Apidae family are excellent systems for studying how learning and 

memory occurs and its ecological consequences for a multitude of reasons. Bees forage in complex 
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and dynamic environments where they regularly visit plants that vary in their floral traits and 

reward composition. Individual foragers must assess observed and experienced differences, as well 

as rapidly form associations between floral features and rewards54,71,79–84. Additionally, both 

individual foragers and colonies vary in their stimuli (odor and color) preferences and cognitive 

abilities66,82,85–87. These variations in preferences and learning have implications for colony-level 

fitness as well as the fitness of mutualistic partners. Rapid learning of floral cues is strongly 

correlated with improved foraging efficiency66. In a study on colony learning speed, the slowest 

learning colonies brought in 40% less nectar than the fastest learning colonies66. Suboptimal 

learning may lead to pollen transfer between two different plant species that incurs a reproductive 

cost to the receiving plant (heterospecific pollen transfer)66,66,82,88. Unfortunately, learning and 

memory can be challenging to quantify in field populations since restraining and testing individual 

bumblebees is nearly impossible in the wild. Experiments must be carefully designed to properly 

measure interspecific or intraspecific variation in cognitive performance89–91. Due to numerous 

confounding variables, the vast majority of experiments on cognition occur in lab settings on three 

commercially available social species: the honeybee (Apis mellifera) and the bumblebees (Bombus 

impatiens and Bombus terrestris)92. Unfortunately, most of these studies focus on A. mellifera and 

there are large gaps in knowledge when it comes to cognition in bumblebee species. Modeling 

bumblebee memory and decision-making is paramount for addressing this knowledge gap in 

understanding how and why bumblebees respond to changing stimuli. 

The ability of organisms to recall past information/associations and apply it to decision-

making is generally attributed to some form of working memory. Working memory refers to the 

temporary storage of information in connection with the performance of other cognitive tasks93. 

The size and duration of working memory is considered a crucial component of intelligence in 
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mammals and insects75,94–96. There exist two primary paradigms for testing working memory in 

bees: 1) the conditioning of the proboscis extension response (PER) in restrained bees and (2) the 

training of the approach flight toward a visual target in free-flying bees. In PER, harnessed bees 

are trained to associate a floral trait with a sucrose reward – the extension of the proboscis indicates 

that the bee has ‘learned’ the association97–99. In flight tests, free-flying bees are pretrained to fly 

toward the training/test destination by associating the presence of a visual clue with a sucrose 

reward – both decision-making and memory can be tested by varying the location of correct and 

incorrect visual clues95,99. The results from experimental studies using these paradigms are 

important for understanding how bees learn and maintain information over short periods of time. 

However, there is a gap between experimental studies of and models of bumblebee working 

memory and decision-making. 

 

Agent-Based Modeling 

Agent-based modeling (ABM) is a powerful and widely used tool for simulating complex systems 

of autonomous agents in a variety of disciplines, such as ecology100–102, social sciences103, and 

economics104. ABMs are widely used in ecology as a complementary approach to conducting 

studies of complex natural biological systems such as those involving interactions between 

predators and prey105 or pollinators and plants106–108. Unlike traditional differential equation-based 

models, ABMs are designed to investigate how the impact of individual variation in particular 

characteristics can influence processes at greater levels of organization. The model functions as a 

system of behavioral rules that model the biology of individuals utilizing information from lab and 

field studies. The results of interactions between individuals with unique histories aggregate at the 

population level to produce novel system patterns. While the concept of ABMs is not new, the 
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recent surge in popularity over the past decade has produced a wide variety of models and 

approaches. 

Eusocial bumblebees – species with an advanced level of social organization where a single 

female or caste produces offspring and non-reproductive individuals care for the young - are 

especially suitable for ABMs due to their independent foraging behavior17,109–111. While honeybee 

scouts and foragers communicate with each other about sites where nectar and pollen are available 

using the well-known dance language, bumblebees do not92. Although bumblebees can obtain 

information that floral resources are available from the pheromone signals of foragers returning to 

the nest, they ultimately make independent decisions in the field based on their individual 

experience of the floral environment8,112–115. This independent decision-making makes individual 

bumblebee foragers ideal candidates for ABM. 

 

Models in Bumblebee Research 

There are several examples of ABMs in bumblebee research that use individual parameters and 

behaviors to investigate population level patterns. One extremely relevant example is BEE-

STEWARD’s116 Bumble-BEEHAVE100 model component, an agent-based systems model for 

simulating bumblebee populations in agricultural settings. While it incorporates numerous aspects 

of pollinator-plant interactions, the general-purpose nature of the model makes it difficult to ask 

in-depth questions about the sub-lethal effects of pesticides and pathogens on working memory. 

The Bumble-BEEHAVE model simulates the effect of colony-level pesticide exposure with 

reproduction depression, killing 26% of queens that emerge from hibernation each year100. Their 

approach uses cohorts of foragers with a single memory and decision-making process for the entire 

cohort. It also does not address the sub-lethal effects of pesticides on memory, nor is it possible to 
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investigate the effects of partial colony exposure to pesticides. Another agent-based model - 

EcoSimInGrid - implements adaptive memory for pollinators but does not include cognitive 

impairment from stressors15,27,31,33,33,117. It is also primarily focused on plant population dynamics 

and does not include the effect of pollinator-plant interactions on pollinator population 

dynamics109. BeeNestABM is an agent-based model of bumblebee that models the spread of 

pesticides within a nest118. This model uses bumblebee activity and movement data to simulate 

how the behaviors of bees exposed to pesticides affect overall colony fitness. Beyond the agent-

based models described here, there also other equation-based models of note. 

There are several existing models that take a traditional mathematical approach to 

bumblebee population modeling. The earliest model covered here, Bryden et al. (2013), used a 

system of differential equations to model the sublethal effects of pesticides on bumblebee colony 

size119. Their model incorporated sublethal effects by increasing the mortality rate of impaired 

bees. Cresswell (2017)23 uses a Markov matrix model to simulate the effects of pesticides and 

predation on bumblebee colonies. These simulations were compared to existing studies to 

determine if a reduction in workers due to pesticides could explain observed population decline.  

Next, the Banks et al. (2017) model established a much more detailed delay differential 

equation (DDE) population model of bumblebee colonies120. The model incorporates both resource 

abundance (nectar and pollen) as well as the changing populations of queens, workers, males and 

gynes in the colony. Although this DDE model did not feature the effects of pesticides, it served 

as the foundation for their next model (Banks et al. 2020121) specifically designed to model the 

sublethal effects of pesticides on populations. This more recent model adds larval development as 

well as a combination of lethal pesticide effects on workers and sublethal effects via reduced 

foraging abilities and brood sizes. Although the DDE model clearly demonstrates that mortality 
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and reduced resources due to pesticides negatively affect colony size, it lacks mechanistic 

explanations for how sublethal effects result in reduced resource intake. Overall, an individual-

level approach is needed to explore why sublethal pesticide impairments may negatively impact 

bumblebee populations over longer temporal scales. 

Other bumblebee-focused models simulate the effects of landscape and floral resources on 

bumblebee populations. Both Olsson et al. (2015) and Haussler et al. (2017) aim to predict the 

effects of landscape use on bumblebee flower visitation rates. These models are especially useful 

for farmers and agricultural studies to determine land-use practices that benefit wild bumblebees. 

Crone and Williams (2016)111 aims to predict the impact of floral resources on colony growth and 

makes the case that increasing the availability of floral resources does increase queen production 

in real landscapes. These models are important for conservation efforts but do not address the 

effects of pesticides on bumblebee decline. See Table 1 for a detailed comparison of the models 

mentioned in this section. 
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Details of Bumblebee models 

Table 1: Comparison of the aims, processes, and output captured by different bumblebee models. ‘+’ indicates something is explicitly included in the model, (+) means only implicitly included or the authors state that this could be simulated. 

Comparator Biernaskie et al. (2009)122 Qu et al. (2013)109 Bryden et al. 
(2013)119 

Olsson et al. 
(2015)110 

Crone & Williams 
(2016)111 

Cresswell (2017)23 Banks et al. (2017)120 Haussler et al. 
(2017)123 

Becher et al. (2018)100 Versypt et al. (2018)118 Banks et al. 2020 

Model Name Bumblebees Learn to Forage 
Like Bayesians 

EcoSimInGrid SLS Model Central Place 
Foraging (CPF) 
model 

Colony Growth model Demographic Matrix 
model 

DDE Population 
Dynamics model 

Pollinator Land-
Management model 

Bumble-BEEHAVE BeeNestABM DDE Toxicology 
Population model 

Type of model Optimal Foraging model ABM, Reinforcement 
Learning 

Differential 
Equations 

Distance decay Statistical, Differential 
equations 

Matrix based 
demographic models 

Delay Differential 
Equations 

Process-based ABM, Monte Carlo ABM Delay Differential 
Equations 

Model aims to predict: When bumblebees leave a patch 
of resources 

Effects of shared 
pollination services 
on plant communities 

Impact of sublethal 
stress 

Effect of landscape 
on flower visit rate 
and bee fitness 

Impact of floral 
resources on colony 
growth and queen 
production 

Colony demography 
and impact of 
pesticide and 
predation 

Impact of many stressors 
on multiple colony 
growth 

Effect of landscape on 
flower visit rate 

Impact of many stressors on 
individual, colony, population, 
and community - with 
mapping 

The localized responses of 
bumblebees to sublethal 
exposures of neonicotinoids 
in the hive. 

Lethal and sublethal 
effects of pesticides 
affect population 
outcome 

Main outputs Giving-up times on exhausted 
patches 

Flower visit rates, 
flower success and 
diversity, pollinator 
behavior 

Colony size, survival Nest fitness, flower 
visit rates 

Colony size and mass, 
queen productions, 
survival 

Colony size, 
reproduction, 
survival 

Colony size and 
composition, queen and 
male production, stores, 
survival 

Number of colonies, 
survival, flower visit 
rates 

Behavior, number of colonies, 
size and composition, stores, 
queens, and males, production, 
survival, flower visits 

Spatial location in hive over 
time 

Cumulative 
reproductive output 
(males and gynes) 

Scale (grid size / map size) Infinite series of patches 500 * 500 cells 25 m / 3km 
    

25 m / 3 km 25 m / 5 km 25 cm x 20 cm  

Time Seconds 1 year time steps Continuous 
 

Discrete, 15 weeks 1 day steps, 40 days Continuous, 120 days 
  

2 Hz time step, 5-60 minutes 
total 

1 day steps, 100 days 

Environment Patches of flowers Agricultural field 
       

Bumblebee Nest  
 

 
         

 

Organizational level:  
         

 

Individual Behavior + + (+) 
     

+ (queens only) +  

Energy/nectar consumption + 
  

+ 
  

+ 
 

+ 
 

+ 

Flower pollination  + 
        

 

Colony level  
 

(w) 
 

Colony founding 
queens, offspring 
queens, males; mass 

Workers, males, 
offspring queens 

Colony founding queens, 
larvae, workers, males, 
offspring queens; nectar 
and pollen stores 

Colony founding 
queens, offspring 
queens, workers 

Colony founding queens, eggs, 
larvae, pupae, workers, males, 
offspring queens; nectar, 
pollen 

 
First brood of 
workers, larvae, males 
and gynes. 
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Flower lifecycle  + 
     

+ + 
 

 

Bee lifecycle  
     

+ 
 

+ 
 

+ 

Foraging behavior + + 
      

+ 
 

+ 
 

 
         

 

Stressors:  
         

 

Foraging availability  + 
 

+ + 
 

+ + + 
 

 

Nest site availability  
  

+ 
   

+ + 
 

 

Pathogens/Parasites  
 

(+) 
     

(+) 
 

 

Predation  
  

(+) 
 

+ 
  

+ 
 

 

Pesticides (lethal)  
 

+ 
  

+ 
  

+ 
 

+ 

Pesticides (sub-lethal)  
        

+ + 

Weather/Climate  
       

(+) 
 

 

Competition  
       

+ 
 

 
 

 
         

 

Testing  
         

 

Sensitivity analysis  
   

+ 
 

+ 
 

+ 
 

+ 

Real-world 
comparison/verification 

+ + + 
 

+ + (+) (+) + 
 

 

Memory Model Bees remember past rewards Reinforcement 
Learning 

No memory Bees don't make 
decisions 

Bees don't make 
decisions 

Bees don't make 
decisions 

  
Bees remember every patch 
they visit. Foragers choose 
based on time to collect a 
pollen load or max energetic 
efficiency for nectar. 

Bee movement is 
determined by bee density. 

No individual level 
behavior 
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Using Citizen Science to Improve Conservation Efforts 

Bumblebee population decline is just one of many current environmental challenges of enormous 

scale and complexity for the field of conservation biology. Understanding how anthropogenic 

stressors affect the dynamics of plant-pollinator interactions over different levels of biological 

organization and over ecologically relevant temporal scales is critical for the conservation and 

restoration of wild pollination systems13,5. While long-term controlled experimental studies are 

difficult to execute, citizen science provides an alternative approach to gathering such data and 

disseminating scientific knowledge to the public.  

Although citizen science is often used in many different contexts and meanings, in 

research terminology it represents the practice of engaging the public in a scientific project to 

produce reliable data and information124. Citizen science projects typically involve a large 

number of people involved in the data collection driven by scientific questions and hypotheses 

developed by professional scientists Unlike experimental studies, citizen science data is often 

easier to collect than to validate125,126. Despite this, recent studies have demonstrated that citizen 

science can improve conservation efforts by building scientific knowledge, informing policy 

formulation, and inspiring public action124. Indeed, the nature of citizen science makes public 

engagement a key component of such projects in ways that traditional methods of scientific 

dissemination have difficulty replicating. Due to the value of citizen-gathered data and 

engagement, citizen science has become a key component in understanding and combating 

ecological change. 

An example of an ongoing citizen science project is the Beecology Project2. This project 

seeks to gather critical ecological information for bumblebee conservation by recruiting citizen 

scientists to gather and submit data on native pollinator species. The Beecology Project develops 
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and runs an online tool for submitting pollinator information as well as several online 

visualization tools for educational and conservation-related purposes. Importantly, the online 

tools allow the general public to submit image and video records of local pollinators to a public 

database that provides valuable information to researchers and conservationists. 

In order to improve the utilization of citizen science data, the field of conservation 

ecology is in need of better methods for analyzing and validating data submitted by the general 

public125–127. In particular, sustaining the collection of high-quality data can be difficult when the 

expertise required to properly identify and log information is uncommon in the general 

population128. For example, properly identifying on of the 21 species of bumblebees present on 

the East coast of the United States generally takes extensive practice, even for professional 

scientists. While identification guides can help decrease false identifications, errors in data 

collection persist and must be corrected manually by experts. More complex data - such as 

observed behaviors in bumblebees – are extremely valuable in conservation research but present 

equally serious problems with data collection and validation. The relative lack of experts 

compared to the population of citizens capable of submitting information presents a significant 

bottleneck in the validation and utilization of publicly gathered data. 
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Chapter 2: SimBee ODD 

The work presented in this chapter is published in Volume 35, Issue 5 of Conservation Biology 

as supplementary information and is reproduced below.  

Gegear, R. J*., Heath, K. N*. & Ryder, E. F. Modeling scale up of anthropogenic impacts from 

individual pollinator behavior to pollination systems. Conservation Biology 35, 1519–1529 

(2021). 

 

The model description follows the ODD (Overview, Design concepts, Details) protocol, a 

standard format for describing individual-based models129. SimBee was implemented in 

NetLogo130, version 6.0.4. The ODD was written by Kevin Heath and edited by Robert Gegear 

and Elizabeth Ryder. 

 

1. Purpose & Patterns 

The purpose of the SimBee model is to explore how sublethal effects of stressors on bumblebees 

at the individual level ‘scale up’ to impact the structure and diversity of the bumblebee 

pollination system. The model uses an individual agent-based approach to simulate wild 

bumblebees foraging for nectar and pollinating plants in a spatially explicit landscape. Starting 

with initial populations of bumblebees and plants, we model the behavior of individual foragers 

and the effect they have on plant pollination over multiple seasons. Population dynamics for both 

bumblebees and plants result from the amount of nectar reward collected over a season and the 

 

* These authors contributed equally to this work 
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number of seeds produced for each species of plant. The model interface is shown below (Figure 

3). 

 

 

Figure 3: Screenshot of the model interface. On the right are plots that display information about agents in the simulation. On 
the top left are trackers for the most common elements of the model. The green area is a spatial representation of the 
environment. Controls for setting up and running the simulation are located to the right of the environment. Below the 
environment are sliders that control variables in the model that should be specified by the user. 

 

 

To show that our model is realistic enough for its purpose, we evaluated its ability to reproduce 

three key patterns found in natural systems (see Chapter 3: Modeling scale up of anthropogenic 

impacts from individual pollinator behavior to pollination systems Results, and Appendix S1: 

Validation of Model Assumptions): 

Pattern 1: Working memory should enable bees to adaptively exploit flowers under highly 

variable reward conditions.  
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Pattern 2: Plant reproductive success should depend on the type of pollen transferred among 

flowers (determined by flower choice behavior of bees) and the amount of pollen transferred 

(determined by the number of bees in the system). 

Pattern 3: Bees should exhibit ‘floral constancy’, which is the propensity to make ‘like-like 

moves’, that is, visit flowers of the same species of plant in sequence67.  

 

2. Entities, State Variables, and Scales 

The SimBee model has three agents: the bee, the plant, and the colony. Bee agents actively 

explore the environment and visit plants to collect nectar and pollen. Plant agents are stationary 

and keep track of seeds that are produced after pollination by visiting bees. The colony agent 

holds the nectar that bee agents collect and produces new bees based on that amount each season. 

A. Bumblebees 

We implemented bumblebees using the NetLogo breed [bees bee]. Each bee represents a single 

adult forager. Bees primarily vary in memory (how many past visits they can recall) as well as 

several other individual traits. Additionally, bees belong to a species defined by the colony they 

belong to. There is only one colony in this version of the model, but the framework for two 

colonies is included. The relevant variables for the bee agent can be found in Table 2. 

B. Plants 

Plants are implemented in NetLogo as breed [plants plant]. There can be no more than a single 

plant in each patch. Every plant belongs to one of four species that differ in color. Plant species 

can vary in reward. The SimBee model uses uniform random distributions to determine the 

reward a plant contains when it is visited. See Table 3 for specific variables and values. In 

addition, every plant starts the season with a set number of potential seeds that can only be 
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fertilized by pollen (detailed later) from the same species. Pollen from a different species blocks 

the fertilization of a potential seed. 

C. Colony 

Colonies are implemented as NetLogo breed [colonies colony]. Each colony can represent either 

a single colony of bees or a population of bees of the same species. The colony records the total 

nectar collected by bees over the course of a season. Since the associated paper only tests 

experiments with a single colony, the multiple colony feature is disabled for this version of the 

model. See Table 4 for colony-specific variables. 

D. Environment 

I. Grid Cells 

The NetLogo world (the visual representation of the model landscape) is made of a grid of 161 x 

161 cells (referred to as patches in NetLogo). The real dimensions of a grid cell vary with the 

landscape simulated and there is not necessarily a direct translation between cells and meters. 

See Table 5 for environment and other general variables. 

 

II. Time 

Each time unit (tick) is on the order of a second, approximately the amount of time it takes a bee 

to make a decision. This small-scale time interval allows us to capture the benefits and costs of 

individual decisions. Since our model is focused on individual-level decisions of pollinators, we 

only model time periods when the pollinators could be foraging. Consequently, we do not 

implement a day/night cycle or weather that could prevent foraging. Due to the small scale, it is 

not feasible to run the model for an entire season, so we use 6,600 ticks as a virtual season. The 

impairments we model at the individual level, decreased memory capacity and processing speed, 
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persist throughout a season, so it is expected that our simulated virtual season captures the 

impact of the behavior over a full season. 

 

Table 2: Bee Variables 

Bee Variables Description Range Default Value 

bees-start-with-sample? 

Should bees immediately sample after 
leaving the colony at the beginning of 
the season? TRUE / FALSE TRUE 

constant-bees? 
Population of each colony remains 
constant between seasons TRUE / FALSE FALSE 

delay-max 

Maximum number of ticks a bee will 
wait before leaving its colony at the 
beginning of the season 0-200 100 

nectar-per-reproductive 
Amount of nectar required to produce a 
new bee for the next season 0-1000 181.5 

bee-nectar-max 
Maximum units of reward a bee can hold 
before needing to return to the colony 0-200 80 

colony-1-add-time-on-plant-for-
impaired1 

Additional number of ticks a bee from 
colony 1 impaired by pesticides must 
spend on plants 0-100 0 

colony-1-handling-time-species-1 

Number of ticks it takes bees from 
colony 1 to gather reward from a plant of 
species 1 0-100 5 

colony-1-handling-time-species-2 

Number of ticks it takes bees from 
colony 1 to gather reward from a plant of 
species 2 0-100 5 

colony-1-handling-time-species-3 

Number of ticks it takes bees from 
colony 1 to gather reward from a plant of 
species 3 0-100 5 

colony-1-handling-time-species-4 

Number of ticks it takes bees from 
colony 1 to gather reward from a plant of 
species 4 0-100 5 

colony-1-impaired-memory-size 
Number of past visits a bee from colony 
1 impaired by pesticides can remember 0-20 1 

colony-1-normal-memory-size 
Number of past visits a bee from colony 
1 can remember 0-20 10 

colony-1-number-of-bees Initial number of bees in colony 1 0-100 100 

 

1 As mentioned above, only one colony is implemented in this version of the model. Colony-2 is intended for future 
use. 
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colony-1-percent-susceptible 
Proportion of bees in colony 1 
susceptible to pesticides 0-1 0 

colony-1-pref-increase 
Percent increase in preference for bees in 
colony 1 for a species of plant 0-1 0 

colony-1-preference 
Species of plant that bees from colony 1 
show preference for 1-4 None 

colony-1-close-enough 

On a scale from 0 to 1, what percent 
difference in reward can bees from 
colony 1 distinguish? 0-1 0.1 

colony-1-all-knowing 

The bees from colony 1 calculate the 
mean reward for each species of plant 
from the past sliding-window-size 
number of visits to each species. They 
use this value instead of the values in 
memory to make decisions. TRUE / FALSE FALSE 

 

Table 3: Plant Variables 

Variable Name Description Range Default Value 

constant-plants? 
Population of each species of plant 
remains constant between seasons TRUE / FALSE FALSE 

use-normal-distribution? 

If instant-refill? is TRUE, should 
plant rewards refill based on a 
standard normal distribution (TRUE) 
or uniform random distribution 
(FALSE)? TRUE / FALSE FALSE 

species-1-max 

Maximum reward value for species 1 
when drawn from a uniform 
distribution 0-5 0.5 

species-2-max 

Maximum reward value for species 2 
when drawn from a uniform 
distribution 0-5 0.48 

species-3-max 

Maximum reward value for species 3 
when drawn from a uniform 
distribution 0-5 0.46 

species-4-max 

Maximum reward value for species 4 
when drawn from a uniform 
distribution 0-5 0.44 

species-1-min 

Minimum reward value for species 1 
when drawn from a uniform 
distribution 0-5 0.4 

species-2-min 

Minimum reward value for species 2 
when drawn from a uniform 
distribution 0-5 0.38 

species-3-min 

Minimum reward value for species 3 
when drawn from a uniform 
distribution 0-5 0.36 
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species-4-min 

Minimum reward value for species 4 
when drawn from a uniform 
distribution 0-5 0.34 

nectar-max-1 
Maximum reward plants of species 1 
can hold 0-5 5 

nectar-max-2 
Maximum reward plants of species 2 
can hold 0-5 5 

nectar-max-3 
Maximum reward plants of species 3 
can hold 0-5 5 

nectar-max-4 
Maximum reward plants of species 4 
can hold 0-5 5 

percent-pesticide Proportion of plants with pesticide 0-1 0 

seed-success 
Percentage of seeds that become 
plants next season 0-1 0.1 

start-nectar-content 
Initial reward content of plants at the 
start of a season 0-5 0 

start-num-species-1 
Initial number of plants of species 1 
at the start of a simulation 0-20000 1620 

start-num-species-2 
Initial number of plants of species 2 
at the start of a simulation 0-20000 1620 

start-num-species-3 
Initial number of plants of species 3 
at the start of a simulation 0-20000 1620 

start-num-species-4 
Initial number of plants of species 4 
at the start of a simulation 0-20000 1620 

plant-grid? 
Setup plant in a uniform grid. This 
disregards starting seed numbers TRUE / FALSE FALSE 

plant-limit 
Maximum number of plants allowed 
in the field 0-25921 25921 

plant-mortality-rate 

Proportion of plants from each 
species that die at the end of every 
season 0-1 0.2 

plant-seeds 
Number of potential seeds every 
plant begins a season with 0-100 6 

 

Table 4: Colony Variables 

Variable Name Description Range Default Value 

bee-pop Number of bees in the colony 0-200 100 

colony-nectar-content 
Amount of nectar reward stored in 
the colony !"! 0 
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Table 5: General Variables 

General Variables Description Range Default Value 

plot-things? Plot graphs? TRUE / FALSE TRUE 

trace? Draw the paths of each bee? TRUE / FALSE FALSE 

season-length Number of ticks in a season 0-100000 6600 

stop-on-season? 
The simulation pauses at the end of 
the current season TRUE / FALSE FALSE 

 

3. Process Overview & Scheduling 

A. Conceptual Overview 

A conceptual overview of SimBee is shown in Figure 4. At the beginning of the first season, 

individual bees are placed randomly in the environment and begin foraging on plants of each 

species (sampling mode). One plant per species (if present) is visited per field-of-view. Bees 

store plant species and nectar reward from each visited plant in working memory as individuals 

move from plant to plant. Once working memory capacity is reached, each new species-reward 

association eliminates the oldest association. Plants can vary in their reward values and 

consequently, bees must use reward information stored in working memory to accurately assess 

the overall reward quality of available species. After completion of sampling mode, bees use 

information present in working memory to decide which plants in their field of view to visit in 

order to maximize reward delivery to the colony (foraging mode). Unlike the sampling mode, 

only one plant is visited within each field of view. Since bees continuously update reward 

information in working memory as they visit plants, they have the flexibility to change foraging 

choices if plant availability or average reward changes. Bees also periodically enter sampling 

mode in order to acquire reward information on species not visited during the foraging period.  
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Figure 4: The SimBee system. Bumblebee foragers leave the colony and enter Sampling mode for approximately 10 floral visits 

(red lines). The red shaded area in the ‘View Available Species’ diamond shows the visual range or ‘field-of-view’ of an 
individual forager. Foragers sample flowers of different species from the field-of-view, and store reward and species information 
in working memory for 100 ticks. Foragers then enter Foraging mode (blue lines), where they visit flowers in the field-of-view 
with the highest reward based on working memory values, which are updated with each visit. After 2000 ticks, they return to 
Sampling mode, and the cycle continues to the end of the season. Each flower visit made by bees has a reproductive consequence 
for the plant (seed/no seed produced) that is based on their foraging history (pollen collected from conspecific and heterospecific 
plants). At the end of the season, colony reward stores and seed totals are used to determine bee and plant abundances at the 
beginning of the next season, respectively. 

  

In addition to collecting nectar rewards, bees also pick up and deposit pollen as they move from 

plant to plant. Thus, visits made by foraging bees have reproductive consequences for plants. 

Deposition of a conspecific pollen grain results in fertilization and the production of a seed while 

deposition of a heterospecific pollen grain prevents the plant from receiving a conspecific grain 

(stigma blockage) and therefore prevents the production of a seed. The likelihood of a pollen 

grain being deposited on a plant is determined in a probabilistic manner following an exponential 

decay function (detailed below). Lastly, bees return to the colony when full of nectar and deposit 

the nectar and pollen they collected. 
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B. Timestep Update 

In each time step, each individual bee updates its status and performs an action. Typically, the 

bee moves towards a plant or collects the reward from a plant. This is described in further detail 

in the bee sub-models section. 

 

Plants update only when visited by a bee. At the beginning of an interaction with a bee, the plant 

updates its reward and pollination status. The plant continues to update its reward status each 

tick while the interaction takes place. 

 

The colony updates only when visited by a bee. It takes one tick to transfer the collected reward 

from the bee to the colony. 

 

C. Seasonal Update  

At the end of the season, unless the bee population size is being held constant, the amount of 

reward contained in the colony is converted into new foragers that comprise the population the 

following year. Unless the number of plants is being held constant, the number of new plants in 

the subsequent season is calculated based on the number of seeds produced for each plant. 

 

4. Design Concepts: 

A. Basic Principles 

This agent-based model consists of two primary agents, the bee and the plant. Each bee agent 

represents an individual and independent bumblebee forager. Each plant agent represents a plant 
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with a single flower. Since each plant has only one flower with the potential to produce 6 seeds, 

the terms ‘flower’, and ‘plant’ are interchangeable. 

Foraging decisions by bee agents seek to maximize nectar reward intake using the agent’s 

memory of food sources. The decisions of each bee agent have a unique impact on the 

reproductive success of the plant agents it visits. Meanwhile, nectar rewards provided by plant 

agents influence foraging decisions by bee agents. We hypothesize that exposure to sub-lethal 

amounts of pesticides affects either the memory capacity or the processing speed of bee agents, 

which in turn will affect bee behavior. The model allows us to test whether impacts of pesticides 

on the behavior of individual bee agents has long term effects on bee and plant populations over 

time.  

 

B. Emergence 

Patterns can emerge at both the individual and the population level. At the individual level, 

patterns emerge in the activities of bees and their foraging decisions; for instance, floral 

constancy tends to emerge in individual bees even when all flower species are equally rewarding 

on average, due to memory capacity limitations and reward variability. At the population level, 

patterns emerge in the growth and decline of bee and plant populations based on foraging and 

pollination success. Different patterns emerge when bee agent memory is perturbed. For 

instance, feedback between changes in bee and plant populations over multiple seasons can lead 

to changing patterns of plant diversity. 
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C. Adaptation 

Bee agents remember the reward and species of past visits to plants. They use these memories to 

determine which species of plant agents to visit at their current location. In addition, bees 

periodically sample their environment, which allows them to gather information on plant species 

they may not have visited recently. Thus, individual bees can adapt their decisions to a changing 

environment. 

 

D. Objectives 

Foraging decisions by bee agents seek to maximize nectar reward intake using the agents’ 

memory of food sources. 

 

Sampling by bee agents aims to improve the accuracy of the bee’s memory of the environment 

by making sure all plant species’ rewards are assessed periodically. 

 

E. Learning 

Foraging bee agents remember the rewards of past visits and average these to determine the most 

rewarding species of plant. The greater the memory capacity of a bee, the more visits it will 

remember and the more accurate the averages will be. Therefore, the more memory a bee has, 

the better its prediction of the local environment will be, assuming a stable environment within a 

season. 
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F. Sensing 

Bees perceive the surrounding environment in a radius of 5 patches and an arc of 117 degrees in 

front of them that we refer to as the field-of-view. They can identify the species of plants and 

whether or not they are occupied by other bees. Inherent in this implementation is the assumption 

that bees can always identify plant agents regardless of any bee impairments. Bees also perceive 

time and require a set number of ticks to extract rewards from plants; this can be adjusted to 

represent impairments to processing speed. 

 

G. Interaction 

Bees interact with colonies only to deposit nectar reward and must be located on the same patch 

to interact. Bees and plants interact directly. When a bee travels to a plant, the bee can ‘land’ on 

the plant and extract a nectar reward from it. This interaction also results in the conspecific or 

heterospecific transfer of pollen. Bees also interact indirectly with other bees by blocking them 

from visiting the same plant. 

 

H. Stochasticity 

Generally, agents are processed in a random order. The following processes also contain some 

degree of stochasticity, as described in section 7 submodels: 

● Plant location 
● Plant mortality 
● Plant reward quantity 
● Plant seed success 
● Bee starting location 
● Bee movement orientation 

● Bee foraging 

● Bee sampling 



 

 37 

 

I. Collectives 

Bees belong to a certain population that deposits accumulated nectar rewards at a single colony. 

Every bee in a population is a forager, since we do not model reproductives. The colony uses the 

cumulative reward over a season to produce new bees for the next season.  

 

Plants belong to a species that shares the same color, shape, and nectar reward distribution. 

Plants contain potential seeds and produce species-specific pollen. Conspecific pollen transfer 

results in production of a seed that can produce a plant of the same species. 

 

J. Observation 

The interface shows a map of the modelled landscape, as well as the location of plants, bees, and 

colonies. Plots provide a number of outputs such as population size, numbers of seeds produced, 

average nectar reward, nectar collected, etc. Additional output can be recorded through the built-

in Behaviorspace. 

 

5. Initialization 

SimBee is initialized by the function setup. This function clears all agents and global variables, 

calls additional functions to initialize the environment and agents, and resets the time step to 0. 

Next, the colony is initialized and placed in the environment by a function called setup-colonies 

at the center of the grid (coordinate 0,0). Afterwards, bees are created by the function setup-bees. 

This function creates bees for each colony in the environment and initializes bee-specific 

variables. Plants are initialized after bees using the setup-plants-random function. Setup-plants-
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random places plants in random empty patches following a random uniform distribution. Lastly, 

the function setup-seasonal-globals initializes season-specific global variables used for 

population-level statistics and visualization. 

A simulation starts at the beginning of the spring season with an initial number of 

bumblebee foragers and seeds. The appropriate number of patches are chosen at random on the 

environmental grid and filled with one plant each. Bees are also randomly distributed around the 

environmental grid and set to sampling mode. Default values of all state variables are shown in 

the tables above. 

 

6. Input Data 

The model does not include any input data. 

 

7. Submodels 

A. Model Parameters 

Model parameters such as handling time, nectar reward amounts, flower handling times, etc. are 

based on experimentally observed data for species of bumblebees and plants commonly found in 

the Eastern United States. The user can change many of these values via sliders to determine 

realistic values for other desired scenarios. Refer to Table S5 for the model variables used for 

each scenario in the associated publication. 

 

Table 6: Model variable values for each Scenario Observer (output) variables 

General Variables Description Scenario 1 Scenario 2 Scenario 3 

season-length Number of ticks in a season 6600 6600 6600 
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Colony Variables Description Scenario 1 Scenario 2 Scenario 3 

number-of-colonies Number of bee colonies 1 1 1 

bee-nectar-max2 
Maximum units of reward a bee can hold 
before needing to return to the colony 80 80 80 

max-rand-visit-chance 
Probability of a bee with zero memory 
visiting a plant when available 1 1 1 

     

Bee Variables Description Scenario 1 Scenario 2 Scenario 3 

constant-bees? 
Population of each hive remains constant 
between seasons FALSE TRUE FALSE 

nectar-per-
reproductive3 

Amount of nectar required to produce a 
new bee for the next seasons 402 329 329 

colony-1-add-time-on-
plant-for-impaired4 

Additional number of ticks a bee from 
colony 1 impaired by pesticides must 
spend on plants 0,1,2 0,1,2 0,1,2 

colony-1-impaired-
memory-size 

Number of past visits a bee from colony 1 
impaired by pesticides can remember 0 0 0 

colony-1-normal-
memory-size 

Number of past visits a bee from colony 1 
can remember 10 10 10 

colony-1-number-of-
bees Number of bees in colony 1 100 100 100 

colony-1-percent-
susceptible 

Proportion of bees in colony 1 susceptible 
to pesticides 

0, 0.25, 0.5, 
0.75, 1 

0, 0.25, 0.5, 
0.75, 1 

0, 0.25, 0.5, 
0.75, 1 

colony-1-close-enough 

On a scale from 0 to 1, what percent 
difference in reward can bees from colony 
1 distinguish? 0.07 0.04 0.04 

     

Sampling Variables Description Scenario 1 Scenario 2 Scenario 3 

intra-sample-duration5 
Number of ticks all bees sample for 
during a sampling bout 100 100 100 

use-uniform-random-
sampling 

Should the time of the second sampling 
bout of all bees be drawn from a uniform 
random distribution? FALSE FALSE FALSE 

 

2 Unpublished data in figure S5 informed our choice of 80 units of nectar per foraging trip for a single bee. 
3Data collected indicate that there is a linear correlation between resource intake and number of reproductive 
individuals produced131. 
4 Immune impairments to bumblebees can cause a 40% reduction in foraging efficiency through reduced cognitive 
flexibility and reward intake rates39. 
5 Heinrich demonstrates that bumblebees periodically sample their environment to optimize their foraging 
behavior79,132. 
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resample-deviation 

The standard deviation of values drawn 
for the number of ticks between sampling 
bouts 0 0 0 

resample-rate6 
The mean number of ticks between 
sampling bouts 2000 2000 2000 

sample-duration-
deviation 

The standard deviation of values drawn 
for the duration of sampling bouts 0 0 0 

     

Plant Variables Description Scenario 1 Scenario 2 Scenario 3 

constant-plants? 
Population of each species of plant 
remains constant between seasons TRUE FALSE TRUE 

instant-refill?7 
Instantly regenerate reward in plants 
when visited by a bee TRUE TRUE TRUE 

use-normal-
distribution? 

If instant-refill? is TRUE, should plant 
rewards refill based on a standard normal 
distribution (TRUE) or uniform random 
distribution (FALSE)? FALSE FALSE FALSE 

max-18 
Maximum reward value for species 1 
when drawn from a uniform distribution 0.95 0.68 0.68 

max-2 
Maximum reward value for species 2 
when drawn from a uniform distribution 0.85 0.68 0.68 

max-3 
Maximum reward value for species 3 
when drawn from a uniform distribution 0.5 0.68 0.68 

max-4 
Maximum reward value for species 4 
when drawn from a uniform distribution 1 0.68 0.68 

min-1 
Minimum reward value for species 1 
when drawn from a uniform distribution 0.45 0.48 0.48 

min-2 
Minimum reward value for species 2 
when drawn from a uniform distribution 0.35 0.48 0.48 

min-3 
Minimum reward value for species 3 
when drawn from a uniform distribution 0.5 0.48 0.48 

min-4 
Minimum reward value for species 4 
when drawn from a uniform distribution 0 0.48 0.48 

percent-pesticide Proportion of plants with pesticide 1 1 1 

seed-success9 
Percentage of seeds that become plants 
next season NA 0.4 0.4 

start-num-species-1 
Initial number of plants of species 1 at the 
start of a simulation 4000 1000 1000 

 

6 The resample-rate was chosen based on the season length such that bees resample their environment three times 
during the virtual season. This was based on Heinrich 197979 and Mobley & Gegear 201839. 
7 Bee-adapted species of plants quickly replenish a small amount of concentrated nectar133. 
8 Plants vary in reward and secretion rate. The values we use for min and max reward fall into the ranges suggested 
by Castellanos et al. 2002133. 
9 We use the lower-bound of 40% survival from Metz et al. 2010134. 
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start-num-species-2 
Initial number of plants of species 2 at the 
start of a simulation 4000 1000 1000 

start-num-species-3 
Initial number of plants of species 3 at the 
start of a simulation 4000 1000 1000 

start-num-species-4 
Initial number of plants of species 4 at the 
start of a simulation 4000 1000 1000 

plant-limit10 
Maximum number of plants allowed in 
the field 25900 25900 25900 

plant-mortality-rate11 
Proportion of plants from each species 
that die at the end of every season 0 1 1 

plant-seeds12 
Number of seeds every plant begins a 
season with NA 6 6 

     

Pollen Variables Description Scenario 1 Scenario 2 Scenario 3 

pollen-model13 
Specifies the model for pollen fall-off / 
decay once it is collected by bees exponential exponential exponential 

pollen-grains-
transferred14,15 

Number of pollen grains a bee picks up 
from a plant during a single visit 40 40 40 

exp-decay-rate16 Value for the exponential decay model 0.7 0.7 0.7 

 

B. Colony Agent 

As with real bumblebees, colony agents store all floral rewards collected by bee agents. Bee 

agents spend one time-unit in the colony between foraging bouts and deliver rewards determined 

by bee-nectar-max. At the end of a season, the colony agent converts its total reward content into 

new bee agents for the next season with a conversion rate set by nectar-per-reproductive. The 

colony does not use any reward during the season. 

 

10 The plant-limit is based on the spatial limitations of the virtual environment and is not reflective of a specific 
foraging environment. 
11 In our simulations plants with a 0% mortality rate are considered perennial while plants with a 100% mortality 
rate represent annuals. 
12 The number of seeds per flower can vary dramatically by species. We believe six seeds is reasonable131. 
13 Pollen model identified in Rademaker et al. 199768. 
14 Pollen pick-up informed by Cane JH, Dunne R. 2014135 and Castellanos et al. 2003136. 
15 Total pollen produced by plants varies by species and was informed by Mondal & Mandal 1998137. 
16 Pollen deposition and loss informed by Cane & Dunne 2014135. 
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C. Bee Submodels 

I. Field of view 

Individuals have a visual range for plant detection that has a radius of 5 patches and an arc of 

117 degrees (see Figure 4). This corresponds to a view of approximately 25 patches or 0.096% of 

the simulated environment. Thus, individuals have the potential to detect and make decisions on 

a maximum of 25 plants at a time.  

 

II. Memory 

All individuals have both working memory (information storage and processing from seconds to 

minutes timeframes) and long-term memory (information storage from days to weeks). We 

assume that individuals remember that they obtained reward from all four plant species in the 

past as well as the location of the colony and their relative position to it at all times (long-term 

memory). In our model, we store this long-term information as individual parameters that do not 

change over the life of the bee. We also assume that individuals use working memory while 

foraging to store reward information associated with each flower visit and to decide on which 

plant species to visit to maximize reward delivery to the colony. As it relates to foraging bees, 

we define working memory as the ability to remember reward values associated with flowers 

visited in the recent past (seconds to minutes). Working memory is structured as a list of reward-

plant species pairs, with 20 being the maximum number of pairs in the list (max-memory-length). 

In the model, this is implemented as a list of tuples called visited-memory. A memory capacity of 

10 was used for the scenarios in the associated work. Each individual starts a season with an 

empty memory list and continues to add reward-species pairs with each visit. Once the working 
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memory capacity is reached, each new reward-species pair added to the list deletes the oldest 

memory from the list. Floral reward information in working memory is maintained between 

foraging bouts. An individual bee agent with a working memory capacity of 0 (no memory) 

randomly selects one flower in its field-of-view to visit when in foraging mode. 

 

III. Plant handling time 

Handling time is the time individual bee agents spend in contact with the plant while collecting a 

reward. Plant handling times range from 5 to 7 time-units. For all simulations the baseline plant 

handling time, regardless of reward level, is 5 units. Additional time spent handling plants is 

used to simulate stressor-induced cognitive impairments in information processing speed. 

 

IV. Movement 

The bee agent follows several movement rules. The bee will always have one of three 

destinations: a plant, a colony, or a new field-of-view. The agent moves directly towards its 

destination moves directly to its destination, either by moving the side-length of one patch per 

tick, or, if the center of the destination patch is less than one patch-length away, to that center. If 

the agent cannot find a flower for its destination, it rotates randomly within a 60º arc and sets its 

destination to be the furthest patch at the edge of its field of view. Additionally, if an agent 

reaches the edge of the simulated environment, it will randomly turn until it is no longer facing 

the edge. 

When a bee agent is full of nectar and sets its destination to be the colony, the agent takes 

one tick to teleport to the colony rather than traversing the distance at one patch per tick. After 

depositing the nectar (an action that takes one tick), the bee agent takes one tick to teleport to its 
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previous position in the environment. These movements are performed by ‘teleporting’ so that 

essentially no time is spent traveling to and from the colony. We implemented this to remove the 

effect of long travel time due to starting location. 

 

V. Sampling mode 

In order to acquire and update information on the reward properties of available plant species, 

individuals periodically (at the beginning of each season and every 2,000 ticks thereafter) sample 

plants of each plant species in its field-of-view for 100 ticks. Such sampling behavior enables 

foragers to detect any changes in the quality and availability of plant resources, which is a key 

component of adaptive foraging under variable resource conditions138. While sampling plants, a 

bee will visit one of each species of plant in its field-of-view, chosen at random, before creating a 

new field of view and repeating the process (Figure 5). If there are no plants in its field-of-view, 

then the bee will travel to the edge of its field-of-view and search again. Consecutive field-of-

views are also spatially separated from one another so that available flowers in consecutive field-

of-views are different. See Table 7 for sampling-specific variables and Table 6 for the values 

used in our experiments. 
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Figure 5: Example of an individual bee in sampling mode after leaving the colony. The red patches represent each consecutive 

field-of-view of the bee.  

 

Table 7: Sampling Variables 

Sampling Variables Description Range Default 

usesampling? 
Should all bees regularly sample the 
environment? TRUE / FALSE TRUE 

intra-sample-duration 
Number of ticks all bees sample for 
during a sampling bout 0-2000 100 

num-plants-to-sample 
Number of plants of each species to 
sample within a single field of view 0-10 1 

use-uniform-random-sampling 

Should the time of the second 
sampling bout of all bees be drawn 
from a uniform random distribution? TRUE / FALSE TRUE 

resample-deviation 

The standard deviation of values 
drawn for the number of ticks 
between sampling bouts 0-100 0 

resample-rate 
The mean number of ticks between 
sampling bouts 0-50000 1000 

sample-duration-deviation 

The standard deviation of values 
drawn for the duration of sampling 
bouts 0-100 0 
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VI. Foraging mode  

According to optimal foraging theory, individuals should make foraging decisions that maximize 

their rate of reward intake given information139,140. Bumblebees base their decisions on a 

combination of reward, handling time, and traveling time. In our model, we chose to use a 

simpler decision algorithm that relies only on a bee’s memory of plant rewards to determine the 

probability of a visit. The bumblebee begins foraging mode by determining which plant species 

in its field-of-view to visit based on its memory of the environment (Figure 4). It then chooses a 

plant of that species based on a decision algorithm (Decision-Making) and travels to it (Figure 

6). Once the bee reaches the plant, it lands on the plant and extracts a nectar reward from it; this 

process requires several ticks. The bee also transfers pollen (Pollen Pickup and Loss, Pollen 

Deposition). The bee then updates its memory list by adding the nectar reward value and plant 

species pair corresponding to this visit and repeats the process using a new field-of-view from its 

current location on the plant.  

In some cases, the bee may choose not to visit any plants in its field-of-view (see 

Decision-Making). In that case, the bee travels to the edge of its current field-of-view and creates 

a new field-of-view at that location. 
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Figure 6: Example of an individual bee in foraging mode. The red patches represent each consecutive field-of-view of the bee. 
Each new field-of-view is generated from the plant that the bee visits in its current field of view, or from the edge of the previous 
field-of-view if no plant is chosen to visit. 

 

VII. Choose-Plant 

According to optimal foraging theory, individuals should adopt plant choice patterns that 

maximize their rate of reward intake139,140. In highly variable reward environments, this ability 

depends on the amount of past reward information stored in memory - more individual values 

yield a more accurate estimate of average floral rewards at the species level. SimBee therefore 

uses a memory-based algorithm to determine the probability of visiting all plant species in view. 

Foragers use a memory-based algorithm to determine the probability of visiting each 

plant species for a given field-of-view. The plant species determined to have the greatest reward 
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are always taken if present. If not, then the forager will visit the plant species in the field-of-view 

offering the highest average reward, with a probability based on its reward relative to the ‘best’ 

species. To avoid placing too much weight on outlier rewards, median rather than mean reward 

values in memory are used. Each step of the algorithm is detailed below. 

 

Step 1: Calculate median reward for each plant species in working memory.  

Let the length of memory be n and the number of plant species be S. Let each visit to a species be 

!! where " = 1,2, … , ( and the corresponding reward be )" where *	 = 	1 (most recent value in 

memory), 2,… , , (oldest value in memory). Let the median reward value for each species be )̃! 

for "	 = 	1, … , (.  

 

Step 2: Determine probability of visitation.  

Let .! be the scaled median reward: 

.! =
)̃! 	
∑ )̃! 	
#
$

	for	" = 1,… , ( 

Equation 1 

Let Probability of visitation (34!) be defined as 

34! =
.!

max.!
	for	" = 1,… , ( 

Equation 2 

If the bee has no memory of a species, reward is treated as zero and the ensuing probability of 

visiting that species will also be zero. 

 

Step 3: Determine plant species with the highest reward quality. 
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The plant species with the highest 34! 	is placed on the list 89!:%. If the 34! of another plant 

species falls within a predetermined probability range called Close Enough (ce) then that species 

is also added to 89!:% (i.e. the normalized values are considered to be the same).  

 

Step 4: Select a plant 

All plant species in the field-of-view are stored in a list called Species in View ((<). The 

probability of visiting plant species in (< is determined by  

3<! =
.!

max.! 	
>?)	4@@	"	",	(<	

Equation 3 

As with 34!, if the bee has no memory of the species " then 3<! = 	0. The plant species with the 

highest 3<! and the species with 3<! > 3	<! − D9 are then stored in a list called 89!:&. If a plant 

species in 89!:& is also in 89!:% (meaning it is one of the best species available based on current 

values in working memory), then one plant of that plant species is randomly chosen from the 

field-of-view. If a plant species in 89!:& is not in 89!:%, then one flower of that species will be 

chosen with the probability 34!. 

Note that if all species in the field-of-view are view are not currently in 89!:& and 89!:%, 

then the probability of visitation is zero. That is, if a species is not in a bee’s working memory, 

the bee will not visit that species again until it next enters sampling mode. 

If no plant species is chosen to visit, then the bee chooses a destination at the edge of its 

current field-of-view and moves toward that destination rather than toward a chosen plant. 

 

After the bee reaches its chosen destination, a new field-of-view is determined. Steps 1-4 are 

repeated for all subsequent field-of-views in foraging mode. 
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VIII. Reproduction 

At the end of the season, the amount of reward contained in the colony is converted into new 

foragers that comprise the population the following year. See Table 2 for the reward-to-bee 

conversion factors used in different experiments. We assume that all energetic demands of 

individual foragers are being met; thus, all floral rewards contained in the colony are used to 

determine its reproductive output. 

 

D. Plant Sub-models 

I. Plant Distribution 

At the beginning of each season, plants from up to four plant species are randomly placed on 

empty patches on the environmental grid. For seasons 2-20, if the sum of seed totals for all plant 

species is greater than the number of empty patches, then the model will discard all excess seeds 

in proportion to the number generated for each species. 

 

II. Plant Reward 

Reward distributions of all plant species follow a uniform distribution bounded by a specified 

minimum and maximum value. Rewards are completely drained during a bee visit and instantly 

refilled with a value randomly drawn from the distribution upon bee arrival; thus, each plant has 

a floral reward that changes around the fixed average reward for that species with each bee visit.  
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III. Pollen Transfer 

Bees pick up 40 pollen grains per floral visit and deposit all pollen in the colony every time they 

return from a foraging run (pollen levels on the forager are reset to 0). During a foraging run, 

bees deposit pollen on flowers as a function of the pollen load they are carrying. The dynamics 

of pollen deposition on a sequence of flowers follows the exponential decay model reported in 

previous field studies68.  

The pollinator loses pollen grains it acquired previously as a function of the pollen it is 

carrying. Pollen load is re-calculated independently for each species after each floral visit. If we 

let <' be the number of visits since the pollinator last visited plant species E, and @!,' is the pollen 

load from plant species E on the pollinator for visit ", then the pollen load for plant species E for 

visit " + 1 is calculated as: 

@!)$,' =	 @!,' ∗ 	9
*+,∗&!. 

Equation 4 

where 0	 < 	)	 < 1 is a constant value. For our experiments, we chose r = 0.7 such that the 

pollen load from one visit to a specific species will approach zero after five visits to other 

species. Thus, after five visits, total pollen grains on a pollinator reaches an equilibrium value. 

See Table 8 for a detailed list of the variables used. Refer to Table 6 for the values used in our 

experiments. 

 

Table 8: Pollen Variables 

Pollen Variables Description Range Default 

pollen-model 
Specifies the model for pollen fall-off 
/ decay once it is collected by bees 

Constant, Linear, 
Exponential exponential 

pollen-grains-transferred 
Number of pollen grains a bee picks 
up from a plant during a single visit 0-100 40 

exp-decay-rate Value for the exponential decay 0-1 0.7 
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model 

 

IV. Reproduction 

Each plant has the potential to produce six seeds. Deposition of conspecific pollen results in the 

production of a seed (pollination), while deposition of heterospecific pollen results in the 

elimination of an empty seed slot (stigma blockage). The probability of a pollination event is 

equal to the proportion of the conspecific pollen carried by the bee when it lands on the flower.  

3)?I4I"@":.	?>	J?@@",4:"?, = @!/L @"

#

"/$
	

Equation 5 

When all six seed slots of a plant have been used up, pollen deposition and pickup processes 

continue without seed production. 

 

V. Determination of population size 

At the end of the season, unless the plant population is being held constant, 40% of the total 

number of seeds produced are randomly selected and placed in the environment to start the next 

season (a 60% seed mortality rate). Plants are randomly re-positioned at the beginning of each 

season to control for any effects of plant distribution on bee foraging patterns. The size of the 

environment limits the max number of plants (flowers) in the system to 25921 individuals. 
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8. Supporting Data 

Figure 7: Unpublished results from lab experiments show that bumblebee Bombus impatiens foragers return to the hive with 
approximately 80 mg of reward per trip. 

 

Methods 

Experimental Setup: Bombus impatiens colonies were obtained from Biobest Biological Systems 

Canada (Leamington, ON) and connected to a small flight cage (325 X 240 X 221cm) with a gated 

tube constructed from wire mesh, thus enabling control over the number of bees entering the cage. 

The cage was illuminated by two Ultra SunTM 6500K (ZooMed Laboratories Inc., San Luis 

Obispo, USA) and two Sylvania GRO-LUX fluorescent lights. Prior to experiments, foragers 

collected 30% sucrose solution from several feeders placed in the center of the cage. All foragers 

within a colony were marked for identification with different color combinations of acrylic paint. 

Colonies were directly supplied with pollen ad libitum to facilitate nectar foraging during 

experiments.  

Flowers and test array: Artificial flower types (herein referred to as ‘flowers’) were 

constructed by removing the cap from clear 1.5mL Eppendorf centrifuge tube and fixing a 3cm 

(diameter) circular collar made of white CreatologyTM foam (Michaels Stores, Inc.) around the 

entrance of the tube. Flowers were presented to bees in an array consisted of a horizontal 120 X 
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80 X 5cm Styrofoam block covered a color print of natural foliage. At total of 96 holes were drilled 

in the block to hold artificial flowers, which were distributed 12 rows of 8 (12 cm apart within 

rows and 6 cm between rows) with adjacent rows offset by half the distance between flowers in 

each row. Each flower contained 2 uL of 30% sucrose solution deposited at the base of the tube.  

Data collection and analysis: Marked foragers were digitally recorded for two foraging trips on 

the test array. Only one forager was tested at a time. Flowers visited by foragers were checked to 

ensure that they had been drained and then immediately refilled with 2 uL of 30% sucrose 

solution, which occurred once the forager had entered the tube of the subsequent flower. A total 

of 20 bees from 4 colonies (5 bees per colony) were tested in this way. The volume of test 

solution collected per foraging trip (number of flowers visited X volume of solution per flower) 

was determined from the digital recordings of each forager. The volumes of the two foraging 

trips were averaged to yield a single value for each forager.  
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Chapter 3: Modeling scale up of anthropogenic impacts from individual 

pollinator behavior to pollination systems 

 

The work presented in this chapter was published in Volume 35, Issue 5 of Conservation Biology 

and is partially reproduced below.  

Gegear, R. J*., Heath, K. N*. & Ryder, E. F. Modeling scale up of anthropogenic impacts from 

individual pollinator behavior to pollination systems. Conservation Biology 35, 1519–1529 

(2021). 

The research that led to this publication was a collaborative effort between members of the 

Ryder lab at Worcester Polytechnic Institute and the Gegear lab at UMass Dartmouth. Robert 

Gegear provided expertise in ecology and bumblebee research as well as designing research 

questions. Kevin Heath designed, documented, and validated the SimBee model, and generated 

data for all scenarios considered in the manuscript. Elizabeth Ryder also designed research 

questions and edited drafts of the manuscript. All authors analyzed data generated and reviewed 

and approved the final version of the manuscript.  

Abstract 

Understanding how anthropogenic disturbances affect plant–pollinator systems has important 

implications for the conservation of biodiversity and ecosystem functioning. Previous laboratory 

studies show that pesticides and pathogens, which have been implicated in the rapid global 

 

* These authors contributed equally to this work 
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decline of pollinators over recent years, can impair behavioral processes needed for pollinators to 

adaptively exploit floral resources and effectively transfer pollen among plants. However, the 

potential for these sublethal stressor effects on pollinator-plant interactions at the individual level 

to scale up into changes to the dynamics of wild plant and pollinator populations at the system 

level remains unclear. We developed an empirically parameterized agent-based model of a 

bumblebee pollination system called SimBee to test for effects of stressor-induced decreases in 

the memory capacity and information processing speed of individual foragers on bee abundance 

(scenario 1), plant diversity (scenario 2), and bee–plant system stability (scenario 3) over 20 

virtual seasons. Modeling of a simple pollination network of a bumblebee and four co-flowering 

bee-pollinated plant species indicated that bee decline and plant species extinction events could 

occur when only 25% of the forager population showed cognitive impairment. Higher 

percentages of impairment caused 50% bee loss in just five virtual seasons and system-wide 

extinction events in less than 20 virtual seasons under some conditions. Plant species extinctions 

occurred regardless of bee population size, indicating that stressor-induced changes to pollinator 

behavior alone could drive species loss from plant communities. These findings indicate that 

sublethal stressor effects on pollinator behavioral mechanisms, although seemingly insignificant 

at the level of individuals, have the cumulative potential in principle to degrade plant–pollinator 

species interactions at the system level. Our work highlights the importance of an agent-based 

modeling approach for the identification and mitigation of anthropogenic impacts on plant–

pollinator systems. 
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Methods 

Model Overview 

We used the NetLogo130 platform to create SimBee, a virtual bumblebee pollination system. 

Individual virtual bees store floral reward information about different plant species in working 

memory. Bees use this information to adaptively and rapidly collect resources for the colony 

(bee fitness) under highly variable floral resource conditions, transferring pollen among four co-

flowering plant species in the process (plant fitness) over multiple virtual seasons. Bee–flower 

interactions at the individual level thus dictate the population dynamics and diversity of the 

system. Full details of SimBee are provided in Chapter 2: SimBee ODD, following the ODD 

protocol129,141,142, including references for parameterization of the model. See the publication 

Appendix S3 for the model code. 

 

Bees 

Bees move through the virtual environment visiting and collecting rewards from flowers in 

consecutive field of views (FOVs) (approximately 0.096% of the simulated foraging 

environment). For each virtual season, bees begin in sampling mode, where they randomly visit 

one flower of each plant species present in each FOV. Bees update their memory by storing the 

floral reward collected and plant species identity for each visit (memory capacity = 10 reward–

species pairs). Bees next enter foraging mode and visit what they decide is the most rewarding 

flower species in each FOV. The probability of a visit is based on the average reward values for 

each plant species in memory (details of the decision-making algorithm in Chapter 2: SimBee 

ODD). As bees forage, information is updated in memory. Once capacity is reached, each new 

value pair replaces the oldest pair. Bees alternate between sampling and foraging modes for the 
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rest of the virtual season (5% sampling mode, 95% foraging mode). Each bee collects 80 units of 

nectar reward per foraging bout and deposits all rewards (nectar and pollen) in the colony 

between bouts. Total reward in the colony at the end of the season determines the size of the bee 

population the following virtual season, unless bee populations are held constant. Bees with 

impaired memory capacity fail to store information in memory; therefore, they randomly select 

one flower from each FOV to visit. Bees with decreased information processing speed take 40% 

longer per flower visit. 

 

Plants 

Reward levels of each virtual plant species follow a uniform distribution bounded by a specified 

minimum and maximum value. Upon bee arrival at the flower, reward is replenished with an 

amount randomly drawn from the distribution; thus, each plant has a floral reward that varies 

around the fixed average reward for that species. Bees pick up 40 grains of pollen per flower 

visit and deposit them during subsequent flower visits following the exponential decay function 

in Rademaker et al. (1997)68. Each plant has the potential to produce one seed per bee visit up to 

a maximum of six seeds per plant. Deposition of conspecific pollen results in the production of a 

seed (pollination), whereas deposition of heterospecific pollen results in the elimination of an 

empty seed slot (stigma blockage). The probability of a pollination event is equal to the 

proportion of the conspecific pollen carried by the bee when it lands on the flower. At the end of 

each virtual season, a random selection of 40% of total seeds produced by plants determines 

population size for each plant species during the next virtual season, unless plant populations are 

held constant. 
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Model design assumptions 

The SimBee system was designed to include only elements essential to address our central 

question of whether stressor induced changes to forager behavior can scale up from the 

individual to the system level. Consequently, we did not include known lethal and sublethal 

stressor effects on other aspects of the bumblebee life cycle, which would only increase 

deleterious effects on our bee–plant system. We abstracted the critical features of individual bee–

plant interactions into key model processes governing forager behavior, memory, decision-

making, and pollen transfer. The most important design concept in the model is the ability of 

foragers to use memory to adapt their behavior to maximize fitness in a varying floral 

environment. We assumed that bees remember receiving floral rewards from each plant species 

in the past, but rely on information stored in working memory to obtain and act on current 

average reward values associated with each species. Although our virtual season does not 

currently include natural seasonal effects, such as floral blooms, it does allow for testing of 

different kinds of variation in floral environments that might arise during a real-world season, 

such as equal or unequal average floral rewards and plant species abundances. We also assumed 

that sublethal stressor effects influence individual bee–plant interactions over the entire virtual 

season and between virtual seasons. We believe this is a reasonable assumption because nectar 

and pollen contaminated with pesticides is stored in the colony for long periods, thereby 

providing a route of oral exposure to new foragers over the colony cycle15; pathogens can be 

passed between cohorts throughout colony development143; acute exposure to pesticides and 

infection can permanently impair bee cognitive abilities37,39; and pesticides and high infection 

rates can persist in foraging environments for multiple seasons144–147. 

 

Table 9: Experimental model scenarios to test stressor effects on bee abundance, plant diversity, or system stability 
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Scenario 

 
Initial 
no. of 
bees 

Initial no. 
of plants/ 
species 

Mean plant 
rewards 
 (min, max) 

No. of bees 
over virtual 
seasons 

No. of plants 
over virtual 
seasons 

1. Bee 
abundance 

100 4000 Sp 1 0.7(0.45,0.95) 
Sp 2 0.6 (0.35,0.85) 

Sp 3 0.5 (0.5,0.5) 
Sp 4 0.5 (0.0,1.0) 

changes based 
on rewards 

gathered 

constant 

2. Plant 

Diversity 
 

100 1000 All species 

0.58 (0.48, 0.68) 

Constant changes 

based on 
seeds 

produced 

3. System 

Stability 

100 1000 All species 

0.58 (0.48, 0.68) 

changes based 

on rewards 
gathered 

changes 

based on 
seeds 

produced 

 

 

System patterns in the SimBee model 

To consider our model realistic enough for its purpose, we confirmed that emergent patterns 

resulting from individual bee-plant interactions matched those present in natural systems 

(Appendix S1: Validation of Model Assumptions). Virtual bees used floral reward information 

stored in memory to make foraging decisions that were adaptive for the colony (Appendix S1: 

Validation of Model Assumptions). Bee foraging (pollen transfer) patterns had a direct effect on 

plant reproductive success. In addition, we found that virtual bees with normal memory exhibited 

floral constancy, just as real bees do67, making like–like floral moves in more than half of their 

floral visits, even when all four floral species were equally rewarding. In contrast, bees lacking 

memory visited floral species at random, with a consequent reduction in seed production 

(Appendix S1: Validation of Model Assumptions). Thus, plant reproductive success depended as 

expected on bee foraging behavior. 
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Experimental Scenarios 

We investigated effects of stressor-induced changes to bee cognition and foraging behavior on 

bee abundance and plant diversity under three ecologically relevant model scenarios (Table 9). 

The degree of each type of cognitive or behavioral impairment in foragers was based on previous 

laboratory work35–37,39 and included either an inability to remember the reward properties of 

available flowers (decreased memory capacity) or a 40% delay in the amount of time required to 

process information (decreased information processing speed). For each experiment within a 

scenario, forager populations contained 0%, 25%, 50%, 75%, or 100% of cognitively impaired 

individuals, which reflects the range of frequencies of impaired individuals in previous studies 

on sublethal effects of pesticide and pathogen exposure on bumblebees. Each type of cognitive 

impairment was tested separately for each scenario. The starting populations were 100 

bumblebees and either 4000 (scenario 1) or 1000 (scenarios 2 and 3) individuals of each plant 

species. For each experiment, we ran 100 replicates over 20 virtual seasons. Specific model 

variable settings used in each scenario are provided in Chapter 2. 

 

Effects on bee abundance only (Scenario 1) 

We tested for sublethal stressor effects on bee populations when plant abundance and diversity 

were held constant (Table 9, bee abundance scenario). This scenario simulated an ecological 

condition in which bee foraging decisions had a minimal influence on the persistence of plant 

populations. Each plant species was assigned a different mean reward level so that foragers 

specializing on the species with the greatest mean reward maximized reward intake by the 

colony. 
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Effects on plant diversity only (Scenario 2) 

We tested for sublethal stressor effects on plant diversity when bee (pollinator) abundance was 

held constant (Table 9, plant diversity scenario). This scenario simulated an ecological condition 

in which stressor exposure altered bee foraging behavior, but not to an extent that reduced bee 

abundance. Plant population size in this scenario depended directly on the foraging decisions of 

bees (i.e., degree of conspecific and heterospecific pollen transfer). To allow increases in plant 

numbers over time and persistence of all plant species, we reduced initial plant population sizes 

and assigned the same mean (min, max) floral reward level to all species. 

 

Effects on system stability (Scenario 3) 

We tested for sublethal stressor effects on the integrity of the entire system by allowing bee and 

plant populations to change over time in response to one another (Table 9, system stability 

scenario). This scenario simulated an ecological condition in which stressor effects on one side 

of the interaction (the pollinator, in this case) had the potential to influence population dynamics 

on both sides via their mutual feedback. Starting bee and plant population sizes and floral reward 

properties were the same as for scenario 2. 

 

Results 

Simulated effects of sublethal stressors on bee abundance (Scenario 1) 

 

Under the control condition (0% impaired bees), bee population size increased slightly over 20 

virtual seasons when plant populations were held constant (Figure 8). Bee population decline 
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was observed when even 25% of the forager population had decreased memory capacity (Figure 

8a) or decreased processing speed (Figure 8b), and the rate and magnitude of decline increased 

with an increase in the percentage of impaired individuals in the foraging population. For 

example, population decreases for bees with impaired memory capacity ranged from 26% (25% 

impaired) to 73% (100% impaired) after 10 virtual seasons. Slightly greater declines were 

observed when a percentage of bees had decreased processing speed; population decreases 

ranged from 33% (25% impairment) to 83% (100% impairment) over the same period. 

 

 

Figure 8: Model simulations of sublethal stressor effects on bee population size with constant plant abundance and diversity 
(scenario 1). Mean (SD) number of bees in the system over 20 virtual seasons under decreasing (a) memory capacity and (b) 
processing speed (impaired, cognitive impairment; error bars, SD). One hundred simulations were run for each experimental 
condition. 

 

Figure 2

(a)

(b)
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Simulated effects of sublethal stressors on plant diversity (Scenario 2) 

Under control conditions, a constant forager population of 100 unimpaired individuals 

maintained populations of all four plant species for 20 generations (Figure 9). Plant diversity 

decreased as the percentage of the bee pollinator population with decreased memory capacity 

increased (Figure 9a) due to increases in interspecific pollen transfer. Pollinator population 

impairment frequencies of 75% and 100% had the greatest effect on plant diversity over 20 

virtual seasons and drove the complete loss of three out of four plant species for most simulation 

runs. The particular plant species lost was random because mean floral reward was the same for 

all species. Species loss resulted from small differences in plant species populations that arose 

stochastically and were amplified when impaired bees visited species at random over multiple 

virtual seasons. Thus, temporally, the dynamics of plant diversity loss followed a sigmoidal 

rather than linear function for all levels of bee impairment; all four plant species were maintained 

for the first six virtual seasons followed by a period of rapid species loss in the subsequent seven 

virtual seasons. In contrast, reductions in processing speed had a minimal effect on plant 

diversity (Figure 9b). The probability of losing a plant species in a mixed plant community 

therefore differed depending on the type and frequency of behavioral change in the pollinator 

population. 

 

Simulated effects of sublethal stressors on system stability (Scenario 3) 

Under the control condition over 20 virtual seasons (0% of bees impaired), bee abundance 

increased, plant populations reached system carrying capacity, and plant diversity was 

maintained (Figure 10). For sublethal stressors affecting memory capacity (Figure 10a–c), bee 

and plant populations increased for all but the experiments with 100% impaired bees. However, 
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as the proportion of impaired bees increased, so did heterospecific pollen transfer, resulting in 

reduced seed set and the eventual loss of plant species (Figure 10c). Under the 50% impaired 

condition, heterospecific pollen transfer increases alone were sufficient to drive the loss of at 

least one plant species in the 20 virtual seasons; most simulation runs showed a loss of two 

species. Loss of one or more species gave other species a better chance to be correctly pollinated 

by chance by memory-impaired bees; thus, overall plant population levels often reached the 

carrying capacity of the system, but with much less species diversity. Under 75% and 100% bee 

impairment conditions, all simulation runs ended with either a single plant species or complete 

system collapse. 

For sublethal stressors decreasing information processing speed (Figure 10d–f), bee 

population size increased at a slower rate relative to the control at impairment frequencies of 

25%, and effects on plant abundance and diversity were small. However, bee abundance 

decreased in the 50% impaired condition (Figure 10d), causing a corresponding decrease in plant 

populations and a loss of plant diversity (Figure 10e and Figure 10f) over time. Thus, unlike 

experimental runs involving decreased memory capacity, plant species declined due to the lack 

of bee pollinators in the system (pollen limitation) rather than reduced pollen transfer efficiency. 

Such negative feedback effects were much greater in the 75% and 100% impairment conditions 

and led to the eventual crash of the entire system in some simulation runs. 
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Figure 9: Model simulations of sublethal stressor effects on plant diversity with constant bee population size (scenario 2). 
Proportion of simulation runs with 4, 3, 2, 1, or 0 plants species remaining at the end of each season: 0–100% of the bee 
population with (a) decreased memory capacity and (b) decreased processing speed. One hundred simulations were run for each 
experimental condition. 
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Figure 10: Model simulations of sublethal stressor effects on bee–plant population dynamics (scenario 3). Mean (SD) of (a) 
number of bees and (b) number of rewarding flowers in the system over 20 seasons under decreasing memory capacity; (c) 
proportion of simulation runs with 4, 3, 2, 1, or 0 plants species after 20 seasons under decreasing memory capacity; (d) mean 
(SD) number of bees and (e) rewarding flowers in the system over 20 seasons under decreasing processing speed; and (f) 
proportion of simulation runs with 4, 3, 2, 1, or 0 plant species remaining at the end of 20 seasons under decreasing processing 

speed. (One hundred simulation runs for each experimental condition; carrying capacity, 25,921 plants [which provided an 
upper bound on bee abundance]). Test populations contained 0%, 25%, 50%, 75%, or 100% of foragers with cognitive 
impairment. 

 

Discussion 

Pollinator foraging decisions play an important role in maintaining the integrity of pollination 

systems. Past studies have shown that acute and sublethal exposure to a wide range of pesticides 

can impair the ability of pollinators to make adaptive decisions37. However, the vast majority of 
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these studies have been on restrained individuals in a laboratory setting (e.g., the proboscis 

extension reflex paradigm), making the conservation implications of sublethal pesticide effects 

on plant-pollinator dynamics in the wild difficult to ascertain. Similarly, there is substantial 

evidence that pathogenic infection can impair pollinator decision-making35 and in doing so 

reduce colony resource acquisition by increasing the amount of time required for foragers to 

process floral information36,39. Using an ABM approach, we found that sublethal effects on 

pollinator decision-making processes at the magnitude and exposure frequency reported in these 

previous studies have the potential to scale up and drive the decline and loss of bee species from 

plant–pollinator systems. Because our model is of a simplified pollination system, we cannot use 

it to make numerically precise predictions; however, our results are consistent with time frames 

for declines reported for natural pollinator populations. In addition, our study is the first, to our 

knowledge, to demonstrate that anthropogenic impacts on pollinator decision-making have the 

potential to drive the loss of species from plant communities without a parallel decrease in 

pollinator abundance. 

 

Bee population effects 

Our simulations indicated that the impact of decreased memory capacity and information 

processing speed of bumblebee foragers on rates of population decline varied with the proportion 

of affected individuals in the population and with floral resource conditions. For example, 

forager memory impairment caused populations to decline rapidly when average reward level 

differed among available plant species (scenario 1), but population numbers actually increased 

when reward level was the same among species (scenario 3) at forager impairment prevalence of 

75% or less. This finding was not unexpected, given that memory provided foragers with a clear 
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adaptive advantage in scenario 1 (colony reward intake was greatest when foragers specialized 

on the most rewarding flowers) but not in scenario 3 (random foraging yielded the greatest 

energetic return). Decreased memory capacity did, however, drive bee decline in scenario 3 

under the 100% forager impairment condition due to the increase in heterospecific pollen 

transfer, which drove the decline and eventual loss of plant species (floral resource availability). 

In contrast, decreased information processing speed (i.e., longer decision and flower-handling 

times) drove bee decline under both floral resource conditions. Thus, sublethal stressors could 

drive bee population decline in foraging habitats where memory demands are low or even absent, 

such as agricultural and urban landscapes dominated by a single plant species, if anthropogenic 

stressors with effects on information processing speed are present. Given that pesticides146 and 

pathogens144,145 known to impair bee cognition are both present in such landscapes, this is a 

reasonable possibility.  

Our findings, in combination with the results of previous studies, indicated that sublethal 

stressor effects on bee cognition and behavior pose a significant threat to the abundance and 

diversity of wild bees. Past studies have shown that infection rates in wild bumblebees can be as 

high as 82% for naturally occurring pathogens such as Crithidia bombi145 and as high as 40% for 

non-native pathogens such as Nosema ceranae148. Studies of wild bee populations in agricultural 

areas also show sublethal concentrations of insecticides such as clothianidin, thiamethoxam, and 

bifenthrin in 24–46% of individuals149. Our model represents a closed ecosystem with a 

simplified virtual season; thus, exact predictions of expected rate of decline for a particular 

species in the real world were not possible. However, the model predicted that cognitively 

impaired foragers at these frequencies would cause a 50% reduction in bee abundance in 4–6 

years, which is consistent with declines reported for the endangered rusty patched bumblebee 
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(Bombus affinis) and other bumblebee species at risk in North America14. It is important to note 

that we used cognitive impairment levels based on data for a limited number of common, 

managed bumblebee species (B. impatiens and B. terrestris), which are likely to be less sensitive 

to sublethal stressors than wild species at risk. More comparative data on how the magnitude of 

stressor-induced decreases in cognitive performance varies among bumblebee species are needed 

to test this possibility. The incorporation of multispecies data on stressor-induced behavioral 

changes into our model could also be used to investigate how anthropogenic disturbances alter 

competition in pollinator communities, ultimately causing loss of some species and dominance 

of others150. Further development of our model to investigate how other forms of anthropogenic 

disturbance, such as habitat modification and fragmentation, affect the foraging success of bees 

and other pollinators could also accelerate conservation efforts to identify, protect, and restore 

threatened species. 

 

Plant community effects 

In addition to driving pollinator decline, our results showed that changes to pollinator behavior 

caused by stressor-induced cognitive impairment could have profound negative effects on the 

structure and diversity of flowering plant communities by affecting either the quality or quantity 

of pollen transferred among individual plants. In scenarios 2 and 3 under control conditions, 

populations of all four plant species were stable over 20 virtual seasons because individual bees 

exhibited floral constancy (i.e., individual foragers temporarily specialize on flowers of one plant 

species despite the availability of equally rewarding flowers of other plant species67. Flower 

constancy increases plant reproductive success by reducing heterospecific pollen transfer. 
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Our results indicated that even a marginal stressor-induced decrease in flower constancy 

due to impairment of memory capacity was sufficient to cause the decline and loss of species 

from plant communities in scenarios 2 and 3 (Figure 9a and Figure 10a,c). In contrast, a decrease 

in information processing speed had no effect on bee constancy levels and therefore had no 

effect on plant abundance and diversity in scenario 2 (Figure 9b). Decreased processing speed 

resulted in plant species loss in scenario 3 (Figure 10d–f); however, it was driven by the decline 

of bee populations (pollen quantity) rather than flower constancy (pollen quality). Previous 

modeling approaches to plant species extinctions in pollination networks were based on the 

assumption that pollinator loss is necessary to initiate plant extinction events151,152. However, we 

found that changes to pollinator behavior alone could cause the loss of plant species even when 

pollinator populations remained stable (Figure 9a) or even increased over time (Figure 10a–c). In 

fact, we found behaviorally driven single and multiple species extinction events in plants 

occurred in as few as seven virtual seasons and coextinction events (bees and plants) occurred in 

as few as nine virtual seasons. 

Based on these results, we expect the greatest risk of plant extinction due to changes in 

pollinator behavior to occur in mixed plant communities containing species with high levels of 

pollinator specificity, reproductive dependence on animal pollination, and demographic 

dependence on seed production56. From the perspective of biodiversity conservation, changes to 

pollinator behavior resulting in reduced pollination efficiency can negatively affect secondary 

wildlife consumers through reductions in the availability of seeds and fruit even when plant 

species have a low dependence on pollinators or can compensate for decreased seed 

production153,154. Interestingly, when plant species diversity in our model dropped to just one or 

two species due to memory capacity impairment, populations of bees and those plant species 
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began to increase because of the reduced chance of heterospecific pollen transfer. Thus, 

pollinator behavior can provide a better proxy for plant extinction risk than pollinator abundance 

in some cases and therefore must be considered when developing effective conservation and 

management strategies for threatened pollination systems. 

 

ABM and the conservation of plant–pollinator systems 

Our findings highlight the importance of using an ABM approach to understand how 

anthropogenic disturbance influences the structure and dynamics of pollination networks through 

changes to pollinator behavior. Mathematical network models often use the degree of 

interactions among species to predict extinction scenarios12. However, it is well documented that 

the behavior of individuals within a species is often far more specialized than the average 

behavior over the population155. For example, flower constancy in bumblebees is observed at the 

level of individuals, even in generalist species59,156. In our virtual system, flower constancy was 

an emergent property resulting from interactions between memory limitations in bees and floral 

resource variability among plants. Failing to account for the behavior of individuals can result in 

underestimates of the likelihood of extinction of a species157,158. More recent stochastic 

extinction models recognize that interaction strengths can vary and that plant–pollinator 

mutualisms are more important in predicting species loss than interaction strength alone151,152. 

Although network models have become increasingly complex and small scale, they still lack the 

fundamental individual mechanisms that determine the tipping points between population 

persistence and decline101. However, network models include data that are critically relevant to 

extinction prediction. In fact, inclusion of field data on variation in floral preference among 

bumblebee species and mating strategies among plant species in natural systems, as well as 
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seasonal variations in pollinator and plant populations, will be an important future step toward 

improving the ability of our model to predict the long-term effects of anthropogenic disturbance 

on biodiversity and ecosystem health. 
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Chapter 4: Response to Change & Memory Dynamics in Bumblebees 

Introduction 

How do bumblebees convert recent experiences into decisions? Do bees simply use the most 

recent decision to make a choice? Do they ‘average’ recent outcomes to approximate an expected 

value, or do they remember probabilities of reward? Do they prioritize recent outcomes more 

heavily as uncertainty increases? How do bees manage information and expectations in dynamic 

and variable environments? Understanding how bumblebees utilize experiences is key to 

predicting their ability to adapt in rapidly changing environments. 

It is well-established that bumblebees must constantly learn about their environment, 

form associations, and make discriminations as they forage for resources during their limited 

life-cyle52,58,159,160. Food sources in nature vary both temporally and spatially, making the ability 

to keep track of a variable and/or changing environment critical for decisions as to when and 

where to forage72,160. In a changing environment where the most rewarding option changes over 

time, the ability to recognize change in the environment and update associations based on new 

information is adaptive159. In a variable environment where the probability of receiving a reward 

from an option is uncertain, bees must use memory to determine which option is actually the 

most profitable choice58. How bees achieve this with a small and relatively simple brain is 

extensively debated83,161,162. Memory plays an important role, as evidenced by decreased 

foraging abilities when memory is impaired38,39. However, the link between memory and 

decision-making in foraging bumblebees is not fully understood. Making decisions based on past 

experiences is detrimental in a rapidly changing environment where old memories are no longer 

reflective of the present environment but making decisions based on only the most recent 

experiences in a highly variable environment will result in suboptimal decisions due to an 
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inaccurate estimate of the environment. While limiting the use of memory could be advantageous 

in changing environments, the same limitations could hinder foragers in variable 

environments163. Since bees can encounter both variable and changing environments in the wild, 

they must develop ways of adapting to both types of conditions. Characterizing how bumblebees 

can adapt to rapidly-changing and variable environments can provide insight into the reasons 

why some bumblebees adapt quickly to human-induced environmental change164 (HIREC) while 

others fail to adapt11,18,164.  

 

Behavioral Flexibility 

While memory dynamics and decision-making are different from behavioral flexibility, it is 

important to understand previous research on behavioral flexibility when considering the 

cognitive abilities of bumblebees. Bees are often the subject of research in animal cognition due 

to their aptitude for complex cognitive tasks92,165. The term “behavioral flexibility” is often used 

interchangeably with “cognitive flexibility” to describe the ability of individuals to adapt to 

certain environmental conditions52,166,167. However, such a definition is too general to be helpful 

in describing the cognitive abilities of bumblebees and resulted in considerable debate around the 

meaning of the term and how it can be tested168,169. Instead, I focus on a subset of the definition 

rooted in psychology: the ability of individuals to make decisions influenced by various 

schedules of rewards168,170. Reward schedules where the probability of receiving a reward is 

uncertain but consistent simulate variable environments while reward schedules where options 

are swapped simulate changing environments. How individual bumblebees adapt to changes in 

rewards may be informative for predicting both their successes and exposures to risk caused by 

human-induced rapid environmental change171–173. While the behavioral flexibility of 



 

 76 

bumblebees and their decision-making abilities are well documented and have even inspired 

novel algorithmic approaches to problems in engineering174,175, the link between observed 

behavioral flexibility and the underlying strategies and mechanisms of bumblebee decision-

making and memory remains elusive. 

In a traditional laboratory context, a bumblebee is considered behaviorally flexible if it 

can successfully learn new information while influenced by past information159. A popular 

framework for measuring such flexibility in individuals is the reversal learning experimental 

paradigm170,176,177. In reversal learning, an individual is trained on a particular discrimination test 

– a task where an individual learns to distinguish between two options - and then, once a 

criterion level of accuracy is reached, the contingencies are changed or reversed178. For example, 

a bumblebee may be presented with a blue and an orange test tube and is trained such that the 

blue tube contains a sucrose reward while the orange tube contains no reward. This scenario is 

repeated until the bee reaches a predetermined level of accuracy in choosing the rewarding-

colored tube. After the bee reaches the performance criterion, the relationship is reversed such 

that the orange tube is rewarding while the blue tube is not. A bee that displays high behavioral 

flexibility is one that takes few trials to reach the performance criterion by reversing the 

previously reinforced behavior. This experimental paradigm tests associative learning, a process 

often considered simple but requiring relatively complex neural circuitry162,179. Such measures of 

behavioral flexibility have historically been useful in examining the mechanisms of learning and 

memory74,97,180 and thus represent a useful avenue for investigating those mechanisms through 

simulation modeling. 

Although reversal learning is useful for exploring behavioral responses, such experiments 

typically do not include variability in rewards, or the possibility of an option being rewarding 



 

 77 

only with a certain probability (partial reinforcement). Here, we draw inspiration from human 

psychology using experiments on decisions from experience. In these experiments, the human 

subject is given a binary choice task and receives feedback about their choice181–183. In some 

versions, one option changes the probability of reward over time while the other option provides 

a ‘safe’ but low guaranteed reward (safe vs risky). In other versions, one option has a higher 

expected outcome than the other, but neither option provides a reward with 100% probability 

(risky vs risky). Halfway through the experiment, the options switch, requiring participants to 

adapt their choices in order to maximize their outcome184. Both versions of decisions from 

experience experiments test how individuals adapt to change, but recent work demonstrates that 

risk preferences and the direction of change influence adaption to change in the safe vs risky 

version of these experiments. Specifically, individuals were more likely to switch away from a 

highly rewarding risky option that became less rewarding than they were to switch to a risky 

option that became more rewarding181. Comparisons with a similar risky vs risky experiment 

showed that the effect of the direction of changed disappeared when the riskiness of both options 

was the same, demonstrating that risk aversion – the preference for more consistent but less 

rewarding options – can influence an individual’s response to change184. Experiments with risky 

options can isolate potential mechanisms for change from the effects of risk aversion. 

 These experiments with human subjects have identified several potential mechanisms 

that are involved in the detection of and adaptation to change181. The over-reliance on initial 

experiences – often referred to as stickiness – occurs when a subject fails to recognize that 

rewards have changed and continues to make the same decisions. While this can be beneficial in 

certain highly variable environments that do not change overall, this stickiness effect is often 

seen as detrimental for adaption to change. In contrast, the over-reliance on the most recent 
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experiences – recency – is a form of cognitive bias that favors recent experiences over old ones. 

Individuals influenced by recency bias make decisions that ignore long-term patterns, something 

that is disadvantageous in predictable environments but beneficial in rapidly changing 

environments where old patterns may no longer be relevant181,182. Overall, human subjects 

usually demonstrate difficulty adapting to change and tend to over-value initial experiences. 

Additionally, altering probabilistic reward schedules can also answer questions about the 

effects of partial reinforcement in bumblebees. If reversals require unlearning of initial 

responses, partial reinforcement should result in bees learning the reversal faster. However, 

similar experiments in rats found that partial reinforcement led to a weaker learned response, 

with rats taking much longer to reverse their initial preferences when the reward schedule 

frequency was not 100%/0%185,186. Learning how bumblebees respond to partial reinforcement is 

useful for understanding how past and present experiences influence decision-making. 

 

Past Efforts to Elucidate Bumblebee Strategies and Memory 

A survey of the literature regarding bumblebee decision-making reveals a variety of theoretical 

models. These models range anywhere from simple rule-based models such as “Win-Stay Lose-

Switch” (WSLS) to Optimal Foraging. I cover these models in detail in a later section, but 

generally most existing models either use statistical calculations of profitability (optimal 

foraging, optimal diet, and Bayesian derived models)139,187–189, or use simple heuristics that 

replicate observed behavior190,191. These models are validated through comparison with 

laboratory or field observations of bumblebee behavior and demonstrate that bumblebees do 

have the behavioral flexibility to adapt to changes in their environment. However, they do not 

help us understand how bumblebees adapt to more realistic environments, where rewards may be 
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variable as well as changing over time. To better understand how bumblebee memory functions 

mechanistically, we wanted to determine whether some combination of memory capacity and 

decision-making strategy might be optimal for these more complex and realistic environments. 

None of the models mentioned in Table 1 allow us to simulate foraging behavior in variable and 

changing environments, so we consider how we can consider the role of memory and decision-

making in these environments using the previously established SimBee model. 

Modeling memory in an accurate way is important for mechanistic models. While optimal 

foraging models can reproduce foraging behavior under certain conditions, researchers recognize 

that bumblebees are not optimal foragers and make choices that are inconsistent with optimal 

foraging models that assume global knowledge of the environment31,58,138. Indeed, more recent 

research recognizes that the limited working memory of bumblebees result in suboptimal 

choices188. Based on studies of risk-sensitive foraging, it is known that bumblebees can recognize 

changes in their environment and switch their foraging strategy58. However, bumblebees are 

clearly not optimal foragers and exhibit a delay before switching away from non-rewarding 

flowers. This delay is a key indicator of how much foraging bees weigh their old memories of their 

environment against new memories.  

Despite the evidence that bumblebee memory and decision-making is influenced by limited 

memory, existing agent-based mechanistic models do not consider the memory limitations. In the 

past 10 years, only two relevant ABMs have been published: Qu et. al 2013 and Becher et. al 

2018100,109. The Qu 2013 model implements reinforcement learning for its agents to inform patch-

based decisions but does not limit the memory of bees. The Becher 2018 ABM does not consider 

individual bumblebee memory and treats foragers as cohorts of bees that make decisions at the 

patch level. These models are summarized in Table 10. Other memory models can be found that 
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are not covered here, but they lack memory components and methods of detecting change in the 

environment. The lack of a mechanistic model for individual bumblebee memory and decision-

making is a serious knowledge-gap that needs to be filled. 

To address the knowledge gap in bumblebee memory and decision-making, we extend 

SimBee to simulate how bumblebees with different models of memory and decision-making 

forage in changing and variable environments. We expand on existing work with reversal 

learning experiments with bumblebees and decision from experience experiments with humans 

by designing three experimental scenarios to investigate behavioral responses to three different 

types of change. Based on the decision from experience experiments described earlier, we use 

similar paradigms to determine what decision-making strategies bumblebees use, as well as what 

memory capacity enables adaption to change. To evaluate these questions, we compare the 

simulated behavior of different models of memory and decision-making to preliminary data, as 

well as determining which models result in optimal performance.  

 

Table 10: A collection of memory models found in the literature that can be applied to bumblebee behavior. 

Paper Memory Model Decision-Making Strategy 
Bélisle and Cresswell, 
1997192 

Sliding Memory model Markov Chain Probabilities 

Zhang and Hui, 2014188 Optimal diet model with 
memory component 

Maximize reward/time based with knowledge 
limited to past experiences. 

Zhang et. al 200595 Exponential Decay Probability of recalling the correct decision 
decreases exponentially 

Qu et. al 2013109 Reinforcement Learning Maximize expected value 
Becher et. al 2018100 Optimal foraging Maximize fitness 
Keasar 2002193 Rescorla-Wagner Linear 

Learning Rule 
Maximize expected value 
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Bumblebee Strategies 

To determine what memory dynamics and capacity might best explain bumblebee decision-

making behavior in scenarios with both change and variability, we considered a number of 

models derived from past literature and describe common approaches below. 

 

Optimal Foraging 

Researchers have been working on models of bumblebee memory and decision-making since the 

1970s. Most of these early approaches focused on mathematically determining the optimal 

behavior of a bumblebee forager through predator-prey models. The predator-prey model assumes 

an environment with randomly distributed prey of various types. Each prey type has an associated 

handling time, reward, and encounter rate. When the predator encounters prey, it must decide 

between spending time to handle the prey or continue searching. If the predator knows these values 

for every prey type in the environment, it can make the optimal decision to either accept or reject 

the prey. When applied to pollinators, the forager becomes the predator seeking to extract nectar 

rewards from stationary plants. The idea that natural selection would favor foraging strategies that 

maximize reward per time (or minimize effort per reward) gave birth to optimal foraging theory, 

an early mathematical model of foraging behavior139,140. This model is based on the key 

assumption that animals forage in a way that maximizes their fitness, hence the name optimal 

foraging theory194. The fitness of an individual is measured by some currency that is usually in the 

form of energy / time. While there are numerous forms of the optimal foraging model depending 

on the exact scenario, the maximization function almost always appears in the form: 

!"#$	$"&	'#&"	()	"$"'*+	*#,$ = 	!"#$	"$"'*+	*#,$". −!"#$	"$"'*+	01"$&	*#&ℎ"',$*3,4"	01"$&	&'#5"6,$* + 3,4"	01"$&	*#&ℎ"',$*  

Equation 6 
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Given perfect knowledge of the environment, this function can be used to determine the optimal 

decision for a foraging bumblebee. Some studies found that in the wild, bumblebees can match the 

predicted behavior of the optimal foraging model in terms of distance traveled and direction of 

departure chosen140,194; however, validating such models in the field based on energy maximization 

was not feasible. Eventually, more detailed studies determined that the disconnect between the 

complexity of natural environments and the assumptions made in the optimal foraging model 

indicated that more complex models of decision-making were needed140. While the optimal 

foraging model is still used as an elegant model for optimized behavior given energy and time 

constraints, real bumblebees almost never match these optimal behaviors. While we still assume 

foragers aim to maximize their energy intake, for these reasons and to avoid the complexity of 

adding travel and gathering time to SimBee, we do not consider optimal foraging related models 

in this research. 

 

Heuristics 

Heuristics are simple models that allow individuals to quickly determine a feasible solution 

while ignoring some of the available information195–197. A key characteristic of heuristic 

approaches is that they seek an acceptable solution and not the optimal one which is associated 

with more complex models of decision-making198. Compared to more complex models, heuristic 

models are advantageous in terms of reduced time, information, and energy required for a 

decision while achieving similar accuracy to their counterparts. On the other hand, heuristics 

inherently introduce systematic errors, biases, and deviations from the optimal solution198,199. 

Compared to memoryless models, heuristics represent a vast improvement over random 

decision-making with a relatively low added cost of information. This provides a class of models 
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that fit the suboptimal but sufficient results often seen in human and animal behavioral studies200. 

A key component of heuristic models is the limited memory. Only considering a small number of 

past experiences is the central component of heuristics that make them suboptimal models but 

more accurate representations of decision-making. As discussed in chapter 1, bumblebee 

memory – like human memory – is known to be limited, and we believe decision-making models 

should reflect this. We include several heuristics chosen from a study on human decisions from 

experience as potential models for bumblebee decision-making201. The heuristics are described in 

Table 11. It is important to note that while these heuristics have been used in controlled studies, 

some, such as the lexicographic model, may not translate well to real-world experiences where 

rewards are variable and continuous without modification. 

 

Weighted Memory Models 

The idea that old experiences are given less weight than new experiences when making decisions 

has spurred debate in many areas related to cognition176. In human psychology, this idea is often 

referred to as the “forgetting curve”, a non-linear function that relates the probability of memory 

retention to the delay between acquisition and use202. While the forgetting curve has been a 

central question to human psychology for a very long time, there is lack of consensus over the 

correct form and parameterization of the function203. Despite this uncertainty, there does seem to 

be general agreement that the general expression for the forgetting curve should be: 

M(:) = 4 + (1 − 4) × I × 3(:) 

Where R(t) is the probability of retention, P(t) is a nonlinear function where P(0) = 1 and P(t) 

approaches zero for large values of t, and the parameters a and b are bounded between zero and 
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one. As the nature of the forgetting curve can vary drastically depending on the form of P(t), the 

form of the forgetting curve is often chosen based on the scenario being modeled.  

Drawing inspiration from the previous collaboration on vehicular communication (see Appendix 

S2: Bumblebee-Inspired Vehicular Communication Algorithms), we simplify this general 

equation by letting a=0 and b=1 and using either a logarithmic function or exponential function 

for P(t). Therefore we can derive an exponential forgetting curve as: 

M(:) = 9+∝1 

Equation 7 

And a logarithmic forgetting curve as: 

M(:) =	∝ ln : 

Equation 8 

If we consider R(t) as the weight of memory in calculating a weighted mean, we can use these 

equations to generate decisions based on past experiences. As long as 0 < a < 1, then older 

memories receive less weight than newer memories. Thus, we transform the general forgetting 

curve into a weighted memory model. Both models weight the oldest memory the least and the 

newest memory the most but differ in how they weight memories in between as shown in Figure 

11. 
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Figure 11: The weights of the exponential and logarithmic memory models plotted as a function of memory recency. 

The exponential and logarithmic weighted memory models provide a more complex 

decision-making algorithm than the common heuristics discussed previously. This level of 

complexity may be required to optimally exploit certain complex environments and provide an 

additional comparison for modeling bumblebee decision-making. 

 

Reinforcement Learning 

Reinforcement learning (RL) is learning how to maximize a numerical reward for a given 

situation. Through trial and error, the learner must discover which actions yield the most reward. 

The key aspect of RL is the trade-off between exploration and exploitation. To maximize reward 

gain, a reinforcement learning agent must prefer actions that it has found to be effective in the 

past. However, to discover those actions the agent must also try actions it has not selected 

recently. The dilemma is that neither exploration nor exploitation can be used exclusively 

without failing to maximize the reward gained. The fact that RL incorporates this dilemma 

makes this type of problem-solving method popular in a variety of fields. In Ecology, a special 
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case of RL is often referred to as the Rescorla-Wagner learning rule204 and has been used to 

model bumblebee decisions in a two-armed bandit experiment193. In a multi-armed bandit 

situation, a bee must choose between multiple flower options to visit when the profitability of 

those options is not known in advance. Similar to bees foraging in a field, the bees in this type of 

experiment face the same exploration-exploitation dilemma as they attempt to maximize their 

reward intake. The general form of the Rescorla-Wagner learning rule is referred to in 

psychology as the delta learning rule181,205,206, in reference to updating expectations based on the 

difference between the previous expectation and current reward. The delta learning rule has been 

used extensively in modeling experience-based decision-making tasks181,207 and takes the general 

form:  

 

!!,# = !!,#$% + $!,#%('! − !!,#$%) 
Equation 9 

Here, the expected value ! of an option j on trial t is the sum of the previous trial ! adjusted by 

the prediction error )' − R',1+$, which is the difference between the reward received on trial t and 

the expected reward after trial t-1. The adjustment is controlled by the updating parameter % that 

ranges between 0 and 1, where values close to 0 indicate weak recency effects and values close 

to 1 indicate strong recency effects. Consequently, the α parameter here serves the same 

function as the α parameter in the weighted memory models discussed previously. The	$ 

parameter ensures that the delta rule only updates the expected value of the chosen option; the 

values of the unchosen options are unchanged until they are selected.  

The decision in the RL delta learning rule model is implemented by a softmax choice rule 

with the single inverse-temperature parameterθ:  
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Equation 10 

Values where 0 < U < 1 will generate probability distributions that are more concentrated 

around the smallest input values (promoting exploration), while values of θ greater than 1 will 

create probability distributions concentrated around the larger input values (promoting 

exploitation). As U → 	∞, softmax converges to argmax.  

 

Methods 

Proposed Memory Models 

Table 11 summarizes the different rules, heuristics, memory models, and strategies we 

implement in SimBee to determine which produces optimal bumblebee behavior in terms of 

reward gathered in specific environments. These strategies are designed for scenarios that are 

experimentally feasible so that future work can compare experimental results to the optimized 

behavior. These strategies can also be compared to experimental data to determine which 

strategy generates the most similar behavior. 

 

Table 11: Memory models implemented in SimBee. These decision-making strategies are possible explanations for how foraging 
bumblebees use past experiences to make decisions and adapt to changing environments. 

MODEL DESCRIPTION 

WIN-STAY LOSE-
SWITCH208 (WSLS) 

Step 1: If the previous decision returned a positive outcome, 
choose the same option. Otherwise choose a different option 

randomly. 
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BASELINE Step 1: Calculate the arithmetic mean of all experienced outcomes 
within an option  

Step 2: Choose the option with the higher mean 

BETTER THAN 
AVERAGE201 

Step 1: Calculate the grand average of all experienced outcomes 
from all options. 

Step 2: For each option, count the number of outcomes equal to or 
above the grand average. 

Step 3: Choose the option with the highest number of such 
outcomes 

LEXICOGRAPHIC201 Step 1: Determine the most frequently experienced outcome of 
each option. 

Step 2a: Choose the option with the highest most frequent 
outcome. 

Step 2b: If both are equal, determine the second most frequent 
outcome of each option, and select the option with the highest 

(second most frequent) outcome. Proceed until a decision is 
reached 

TALLYING201 Step 1: Give a tally mark to the option with (a) the higher 
minimum gain, (b) the higher maximum gain, (c) the lower 

experienced frequency of the minimum gain, and (d) the higher 
experienced frequency of the maximum gain. 

Step 2: Choose the option with the higher number of tally marks  

LOGARITHMIC Step 1: Calculate the weighted mean of all outcomes within an 

option, where the weights follow a natural logarithmic function 
based on the time of occurrence of each outcome. 

Step 2: Choose the option with the higher mean 

EXPONENTIAL Step 1: Calculate the weighted mean of all outcomes within an 
option, where the weights follow an exponential function 

Step 2: Choose the option with the higher mean 

REINFORCEMENT 
LEARNING (RLDELTA) 

Step 1: After choosing an option, update the expect value of the 
option based on the difference between the expected outcome and 

actual outcome.  
Step 2: Choose an option based on the weighted probability 

distribution of expected values using a softmax function (See 
Equation 10). 
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Modifications & Additions to SimBee 

Split Memory 

In the published version of SimBee, memory is structured as a list of reward-plant species pairs, 

with 20 being the maximum number of pairs in the list (max-memory-length). This is 

implemented as a list of tuples called visited-memory, which we classify as a single-memory 

structure. However, the degree to which past memories interfere with new memories – especially 

those with different associations – is unknown209,210. To address this knowledge gap, we 

implement an alternative memory structure henceforth referred to as split-memory. Instead of a 

single list of tuples, split-memory consists of a separate list of reward values for each species of 

plant present in the simulation. An example of this with two species of plants is shown in Figure 

12. 

 

 

Figure 12: Example of split-memory in SimBee. Experiences from each plant species are stored in a separate list rather than all 
together in a single list of tuples. 

Like the original implementation of memory in SimBee, once memory capacity is reached, each 

new reward added to the matching species list removes the oldest memory from that list. In all 

other regards, split-memory functions the same as single-memory. 

 

 Sampling 

Sampling mode in SimBee was a time-based behavior where bee agents sampled plants for 100 

ticks at regular intervals. However, we do not consider sampling for the scenarios discussed in 

Reward 

Old New 

Reward 
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this chapter. The timeframe for these experiments is short enough and options limited such that 

sampling behavior as described in Chapter 3 should not occur. We remove the periodic sampling 

behavior and only ensure that virtual bees have their memories filled with reward outcomes of 

one for each option at the beginning of the foraging run, indicating to the bees that both options 

are equally rewarding. 

 

Choose-Plant 

Numerous alterations were made to the first two steps of the choose-plant function to 

accommodate the implementation of new heuristics and memory-based decision-making 

modules. 

 

Reinforcement Learning 

The RLDelta option under the interface chooser ‘bee-memory-model’ requires several deviations 

from other memory-based decision-making models. First, the memory size of the bee agent is set 

to one, as only the current expected values are saved for each plant species. Second, 

reinforcement learning is the only memory model that utilizes the bee-softmax-theta parameter, 

which must have a value. Finally, the choose-plant function follows a different set of steps to 

determine the correct choice, as explained below: 

 

Step 1: Calculate expected values for the reward of each plant species. 

Bee agents only store the expected value R' for each species of plant E in memory. After 

collecting a reward )' for a plant, the bee updates the expected value in memory. The updating 

process after visit < can be summarized as follows: 
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!!,& = !!,&$% + %('! − !!,&$%) 

Equation 11 

Alpha (%) is either set by the user or varied between 0 and 1 for parameter 

estimation. 

 

Step 2: Determine action probability for each species. 

The expected values R' for each species of plant in view are converted into action probabilities 

using the softmax function with temperature parameter U as follows: 

3(Sℎ?"D9 = E) = 	
923!
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Equation 12 

Where k is the number of plant species in view. 

 

Step 3: Choose species to visit. 

Given the probability distribution calculated in the previous step, randomly select a species of 

plant to visit. The probability of each option being picked is proportional to the weight given by 

the probability distribution. The process then continues as outlined in the SimBee ODD at step 4. 

 

Heuristics 

Bee agents using heuristics to make decisions utilize the heuristic-decision function to 

evaluate experiences in memory and return the correct choice. Each heuristic has its own helper 

function for ease of use. 
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Plant Reward 

In the published SimBee model, plant rewards are generated from a uniform-random distribution 

with a min and max value specified by the user. To address other research questions, three 

additional methods for plant reward generation are implemented in the SimBee model as 

described below. 

 

Sequential 

The sequential refill method allows the user to specify a sequence of one or more reward values 

for each plant species. Sequential visits to a specific plant species will result in the rewards 

specified by the list provided, in that exact order. Once the list is exhausted, the sequence of 

rewards repeats indefinitely. This implementation is designed to mimic rewards in laboratory 

experiments. 

 

Bounded Normal Distribution 

The bounded normal distribution method returns a reward generated by a standard normal 

distribution given a user specified mean and standard deviation. Values outside of the user-

defined lower and upper bounds are discarded and another value is generated until a value that 

falls within the bounds is returned. Negative values can be generated if the lower-bound is less 

than zero, but negative reward values will not be accepted by bee agents. 

 

Probability of Refill 

For the probability of refill method, the user specifies a reward value using the plant-probability-

refill input and a value between zero and one inclusive for each plant species. These are 
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independent probabilities of a visit to each plant species returning the reward specified in plant-

probability-refill; otherwise, the plant returns a reward of zero. 

 

Reverse-environment 

The function reverse-environment is designed for simulating reversal learning scenarios. When a 

user-specified number of visits are recorded, this function is called to switch the reward 

schedules of plants in the simulated environment. Using the same reward schedule setup as 

specified by the user in the interface, the reward schedules for plant species 1 and 2 are swapped, 

and the reward schedules for plant species 3 and 4 are swapped. The plants are then asked to 

regenerate their existing rewards. This guarantees that any subsequent visits will experience the 

reversed reward schedule. 

 

Fitting memory models / Parameter Estimation 

Parameter estimation in NetLogo simulations was done using the BehaviorSearch tool designed 

by Stonedahl and Wilensky211. BehaviorSearch is an open-source cross-platform tool that 

provides several search algorithms and search-space representations/encodings and can be used 

to explore the parameter space of any ABM written in the NetLogo language. For comparisons 

with experimental data, the objective function was designed as the mean-squared error (MSE) 

between the experimental data and simulated data for the choices of a single bee agent in blocks 

of twenty visits. If experimental data was not used, the objective function maximized the amount 

of reward collected by an individual bee at the end of the simulated run. In both cases, the 

measure of fitness was collected at the final step. The genetic algorithm approach with default 

parameters was used with a MixedTypeChromosome encoding due the mixed data types of the 
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model parameters211. The mean fitness of 100 replicates was used during each step of the 

process. Parameters that were optimized are summarized in Table 12. 

 

Table 12: Summary of parameters that are optimized using BehaviorSearch in each scenario. Not all parameters are used for 
every model; for instance, RLDelta does not optimize memory size but is the only model to use softmax theta. WSLS and Random 
Choice do not require parameter estimation as they do not utilize memory size, memory alpha, or softmax theta. 

PARAMETER DESCRIPTION RANGE 
MEMORY MODEL Which memory model the 

bee uses. 
See Table 11 for all memory 
models implemented in 

SimBee 
MEMORY SIZE Memory capacity of the bee, 

specifically the number of 
experiences for each species 

of plan the bee stores. 

Heuristics and weighted 

memory models: [3,10]  
WSLS and Random: NA 

RLDelta: 1 
MEMORY ALPHA Parameter in Weighted 

Memory models and RLDelta 
for recency bias. 

Weighted memory models 

and RLDelta: [0,1] in 
increments of 0.05 

SOFTMAX THETA Temperature parameter for 
RLDelta softmax function. 

RLDelta: [0, 100] 
(continuous range) 

 

While the range of these parameters were limited primarily by their implementations, the range 

for the memory size parameter was chosen based on memory model implementation and realistic 

values. The lower limit of three was chosen due to heuristics such as lexicographic that rely on 

the frequency of outcomes to determine decisions. To maintain the same parameter space for 

comparisons between memory models, this lower limit was applied to all models. The upper 

limit of ten is based on the findings of reasonable upper limits for memory capacity in Chapter 3: 

Modeling scale up of anthropogenic impacts from individual pollinator behavior to pollination 

systems. 
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Scenarios 

In the natural environment of bumblebees, the ability to quickly adapt to changes provides a 

clear advantage to individual pollinators. To improve our understanding of the underlying 

strategies and mechanisms of bumblebee decision-making, I simulate three sets of ecologically 

relevant scenarios that explore behavioral adaptation to change. In each scenario, individual 

simulations consist of one bee agent placed in an 80 x 80 patch virtual field with two species of 

plants uniformly distributed throughout. Each scenario also tests the eight different memory 

models found in Table 11 (scenario 1 does not test WSLS since each option always provides a 

reward). Simulated bees are initialized with full memories indicating that both plant choices are 

rewarding, in the same way that bees are trained in laboratory experiments to know that options 

are rewarding. For each experiment, BehaviorSearch was used for parameter estimation where 

the objective function was averaged over 100 model runs. Simulating the theoretical behavior of 

bees using different strategies can help identify key differences that can be used to inform 

laboratory experiments.  

 

Scenario 1: Response to Environmental Variation 

Here we test bumblebee response to novel variation in their environment. This scenario simulates 

an ecological condition in which bees foraging in a static environment are exposed to novel 

variation in floral resources. In this scenario, bees initially forage in an environment where two 

options provide equal and constant reward. Bees then forage in a new environment where the 

same two options provide equally variable rewards. As discussed previously, a bee tested in an 

environment with one constant and one variable reward demonstrates suboptimal tracking, likely 
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due to varying levels of risk-aversion58. This approach is designed to avoid simply testing risk 

aversion and can help identify how bees prioritize recent experiences when exposed to variation.  

This experiment was designed to isolate any behavioral response to change in variability 

without changing the average rewards in the environment and executed by members of the 

Gegear lab. Bees were first individually trained on separate arrays, each with one of two colors 

of artificial flowers, orange or blue. Then, bees were allowed to forage on a constant 

environment array with both colors of artificial flowers where the amount of reward in each test 

tube was a constant 5ml of 25% sucrose solution. Bees were allowed to forage on the array until 

they returned to the hive. Next, the array was altered to be a variable environment such that half 

of each color of artificial flower contained 5µl of 10% sucrose and the other half of each color 

contained 5µl of 40% sucrose. Individual bees were then tested on the array until they returned to 

the hive. The color and reward of each visit by a bee was recorded. The first 80 visits of the 

training and testing foraging runs for eight individual bumblebees were used for consistency 

(some, but not all bees made visits beyond the first 80). See Table 13 for a summary of this 

experimental setup. The original experimental data included a total of three test environments 

recorded as separate foraging runs. The last two runs were not included for further analysis since 

the focus of this experiment is the difference in behavior of bees between the training and test 

environment. 

 

Scenario 2: Response to Variation in Reward Probability 

In this scenario, we test bumblebee response to variation in reward probability. While scenario 1 

tested response to variation between environments, here we examine variability and change in 

rewards. This experiment simulates an ecological condition where a change in resources requires 
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bumblebees to reverse learned associations. Experiments in human psychology where reward 

probabilities are reversed have identified varying levels of stickiness – slowly adapting to change 

– and recency – quickly adapting to change in individuals181,184,212. Altering reward frequency 

can provide novel insight into the biases present in bumblebee decisions-making. Additionally, 

altering probabilistic reward schedules can also answer questions about the effects of partial 

reinforcement in bumblebees. Investigating bumblebee’s response to variation in reward is 

important for furthering our understanding of bee decision-making and the role of memory in 

adapting to change. 

 

Scenario 3: Response to Variation in the Frequency of Change 

Can bees adapt to rapid change, and how? When change is infrequent in a variable environment, 

memory provides an adaptive advantage in determining the most profitable decision. However, 

when change is extremely frequent a strong recency bias is crucial for an adaptive response171,184. 

This scenario tests bumblebee response to environmental change as the frequency of change 

varies. We explore the limits of memory in adaptive behavior by increasing the frequency of 

reward schedule reversals in reversal learning experiments. Modeling bumblebee decision-

making is important for clarifying how individual bees treat early and later experiences when 

forming decisions. Elucidating how bees weigh recent memories is an important step in 

understanding how individuals can successfully adapt to changing environments.  
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Results 

Response to Environmental Variation 

We first consider how bumblebees respond in general to the variability of rewards in their 

environment. The data from this experiment (see Table 13) was summarized as the proportion of 

visits to orange flowers in blocks of twenty visits and averaged over the eight bees tested in the 

experiment.  

Table 13: Experimental scenario of changing variability in reward. The values refer to the percent sucrose of the 5µl solution in 
a test tube. Two species of plants are represented by the blue and orange coloring. Bees forage on the training environment for 
80 visits, then forage in the test environment for an additional 80 visits. 

Probability of Reward 

Training Environment Testing Environment 

Blue Orange Blue Orange 

25% 25% 10% / 40% 10% / 40% 

 

These results are plotted below in Figure 13. In the simulated version of this experiment, 

individual bee agents initially sampled the constant environment until their memory was full. 

They then foraged for 80 visits, at which point the simulation changed to the variable 

environment. After an additional 80 visits in the variable environment, the visitation choices and 

total reward collected were saved for analysis. 
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Figure 13: Experimental data generated by Rob Gegear’s lab. The plot shows visitation choices of 8 bees summarized into 
groups of 20 visits for a total of 80 visits per environment The x-axis shows blocks of visits and the y-axis shows the proportion of 
visits where the orange flower was chosen. Visits in the constant environment (reward of 25% sucrose) is shown in orange, and 
visits in the variable environment (10% or 40% sucrose) is show in blue). Each point represents the mean proportion of visits to 
orange flowers, with the bars representing the standard deviation. 

Although the experimental data demonstrates no clear statistical trend, the training and 

test environment seem to have different overall pattern in choice and variation. In particular, 

variation increases when bees switch environments indicating that there may be a response to 

change. However, given the limited sample size it is difficult to determine the true source of the 

observed variation. We proceeded to simulate the expected behavior of bumblebees with 

differing memory models to determine if the pattern of choice behavior matches the simulated 

bees. Parameter estimation was used to determine the optimal set of parameters that best 

matched the observed experimental behavior for each memory model.  

Training Environment 

Testing Environment 
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Figure 14: A) Simulated bumblebees with different memory models fit to the experimental constant environment data in Figure 
13. Experimental data is plotted in green. Error bars represent standard deviation. B) Simulated bumblebees with different 
memory models fit the experimental variable environment data in Figure 13. Fitting was accomplished using BehaviorSearch. 

Regardless of memory model, the simulations predicted random choices between the two 

available species of plants during the constant training scenario (Figure 14A). While we 

observed decreasing variation throughout the foraging runs of experimental bees, the simulated 

bees did not produce a similar change in variation.  

A 

B 
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Next, we considered the test environment where there is variation in reward but the same 

average reward. In the experimental bees, we observe some change in choice behavior over the 

foraging period. While we observed more variation in the simulated choice than in the virtual 

training environment, the overall pattern of random choice remains (Figure 14B). Every memory 

model produces similar behavior that does not match the observed experimental data. 

 

Conclusions 

While the goal of this scenario was to determine how bumblebees respond to the introduction of 

variation in their environment and determine decision-making strategies, the experimental and 

simulated results are inconclusive. Each memory model tested in this scenario predicts similar 

choice behavior of equal visitation making it difficult to differentiate models. Additional 

experimental data is required to determine if bumblebees change their behavior in response to 

variation. In the future, a more complex experimental setup may be required to study the 

response to variation. 

 

Response to Variation in the Probability of Reward 

The second scenario we consider is the effect of variation and change in reward probability on 

bumblebee behavior. This simulates an ecological condition in which floral resources are both 

variable, and rapidly change. This condition is modeled by extending the reversal learning 

paradigm beyond the traditional 100% chance-of-reward/0% chance-of-reward setup. Instead of 

having one option always be rewarding and the other option never rewarding, we test new 

reward schedules where options have an 80%/20% and 60%/40% probability of being rewarding. 

These alternative reward schedules make it more difficult to identify a change in the environment 
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and therefore we hypothesize this environment should require a complex strategy to optimally 

exploit. Table 14 summarizes the three different simulation setups for this scenario. Additionally, 

this experimental setup has not been fully tested in a lab setting so we use the SimBee model to 

simulate the scenario, optimizing the nectar reward gained by bees using various memory models 

rather than fitting behavior to laboratory data. These simulations can help us make predictions 

and inform future experiments. 

 

Table 14: Simulated scenarios with changing reward probabilities. The values refer to the probability of bees receiving a reward 
– the reward stays the same throughout the scenarios. Two species of plants are represented by the blue and orange coloring. 
After 80 visits the reward schedules are reversed, and bees are allowed to forage for an additional 80 visits. 

 
Probability of Reward 

  Before reversal After reversal 

  Blue Orange Blue Orange 

A 100% 0% 0% 100% 

B 80% 20% 20% 80% 

C 60% 40% 40% 60% 

 

Each individual simulation starts with a bee agent with memory indicated that both 

species of plants are equally rewarding. The environment is initialized to have one plant species 

be the most likely to be rewarding, and the other species is the least likely to be rewarding. The 

environment does not change until the bees make 80 visits to plants, at which point the reward 

schedules reverse. Then the bees continue for another 80 visits. After another 80 visits, the 

simulation ends, and the fitness of the bee is measured as the total reward collected. Parameter 

estimation was used to determine the optimal set of parameters for each memory model. The 
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results in Figure 15 show the optimal performance of bees using different memory models in this 

simulated scenario.  

 

 

Figure 15: Fitness of optimized models for simulated experiments. ‘+’ indicate the model with the highest fitness (total reward 
collected).  

The 100%/0% reversal learning simulations demonstrates that near-optimal performance 

can be achieved with almost any memory model we tested. While the simple Win-Stay-Lose-

Switch (WSLS) strategy performs the best, all the other optimized strategies except random 

choice collect near the maximum amount of reward from the environment. In the 80%/20% 

environment, WSLS actually performs worse than other strategies while reinforcement learning 

(RLDelta) achieves the best results. Since there is a difference in fitness between WSLS and 

other strategies, experimental approaches may be able to conclude if bees are using a memory-

based strategy or not. Figure 16 provides a closer look at the 80%/20% environment and the 

number of correct choices the bee makes during the experiment summarized in blocks of 10 

visits. The correct choices demonstrate a clear difference between the WSLS strategy and the 
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other strategies tested in this scenario. In a traditional reversal learning experiment, the number 

of correct visits after a reversal would drop drastically before gradually increasing. In this case, 

using choices is a better method than overall fitness for identifying differences in behavior due to 

memory models.

 

Figure 16: Decision strategy performance with mean and standard deviation (left) and Correct Choices per Block of 10 Visits 
(right) for the 80%/20% environment. Fitness is measured as total reward collected. Dotted line shows the timing of the change 

in reward probabilities for the two species of plants 

Lastly, the 60%/40% environment shows relatively similar performance between the 

tested strategies. Although the heuristic Better than Average achieves the highest fitness, 

differentiating between strategies would be difficult in an experimental setting based on the 

theoretical performance in the simulated scenario. 
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Figure 17: Memory capacity of optimized models. Memory capacity is one of the parameters determined through parameter 
estimation as listed in Table 12. 

We also investigate the importance of memory capacity in the optimized strategies tested 

in this scenario (Figure 17). Across the three reward schedules, the exponential memory model 

required the largest memory capacity. Notably, the alpha values for the exponential model were 

also relatively low, indicating that both newer and older memories were being utilized (see Table 

15). In contrast the Better than Average, Tallying, and Baseline strategies were optimized at 

much lower memory capacities indicating that a short memory works better than a long memory 

for these models. The Lexicographic and Logarithmic strategies increased memory capacity as 

environmental complexity increased. Since the memory capacity of bumblebees in the reversal 

learning paradigm is unknown, we cannot yet use these results to improve the accuracy of our 

simulated predictions; however, the parameterization of memory capacity can help determine 

which strategies are more likely to work with realistic memory limitations. In particular, the fact 

that Lexicographic and Better than Average strategies performs similarly to the more complex 
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Exponential and Logarithmic weighted memory models while using less memory suggests those 

strategies might be better representations of the actual bumblebee decision-making mechanism. 

 

Conclusions 

The results of the simulations exploring the effect of variation in reward magnitude make it clear 

that more complex scenarios are needed to test memory and decision-making strategies in 

bumblebees. In the 100%/0% traditional reversal learning experiment, Win-Stay Lose-Switch is 

the best strategy and memory is not an adaptive trait. In contrast, the 80%/20% experiment may 

provide additional insight as memory is adaptive in that environment. Bees in laboratory 

experiments tend to follow patterns similar to the heuristics and memory models where they 

learn to visit the most rewarding option almost exclusively and take time to reverse preferences, 

and not patterns similar to those demonstrated by WSLS159. However, possible insight is limited 

since the memory-based strategies resulted in similar performance (results summarized in Table 

15). An experiment focused on the number of visits a bee needs to reverse preferences with 

different memory models could better characterize the behavior of memory models. Overall, 

experiments studying bumblebee memory and decision-making need sufficiently complex 

environments to differentiate the performance of memory-based strategies. 

 

Table 15: Results for the top four decision-making strategies and memory models for the reward magnitude scenario. See Table 
24 in Appendix S3 for the results of all models. 

fitness memory size 
memory 
model 

memory 
alpha softmax theta env 

120.6 NA 
Win-Stay-
Lose-Switch NA NA 100_0 

119.64 9 exponential 0.7 NA 100_0 

119.64 1 RLDelta 0.25 50.5547 100_0 
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119.2 3 
Better than 
average NA NA 100_0 

92.4 1 RLDelta 0.65 99.4151 80_20 

92.34 9 exponential 0.25 NA 80_20 

91.56 6 baseline NA NA 80_20 

82.56 NA 
Win-Stay-
Lose-Switch NA NA 80_20 

68.68 6 

Better than 

average NA NA 60_40 

68.62 10 exponential 0.05 NA 60_40 

67.42 1 RLDelta 0.85 18.3484 60_40 

64.86 NA 

Win-Stay-

Lose-Switch NA NA 60_40 

 

Response to Variation in the Frequency of Change 

The third scenario we simulate with the SimBee model explores the effect of variation in the 

frequency of change in the environment on bumblebee decision-making. Since memory is not 

adaptive in the traditional 100%/0% reward schedule, we use the 80%/20% reward schedule 

from scenario 2 as the base for this scenario. Rather than change the magnitude of reward 

variation, we instead alter the number of visits between reversals. These experiments are 

summarized in Table 16. 

 

Table 16: Experimental design for scenario 3, frequency of change in the environment. The 80%/20% reward schedule remains 

consistent, but the number of visits between reversals decreases. We run each simulation for the same number of total visits, so 
bees in simulations with fewer visits between reversals experience more environmental changes. 

 
Frequency of Reversal 

  Probability of Reward 
 

  Blue Orange Visits between reversals 

A 80% 20% 60 

B 80% 20% 40 
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C 80% 20% 20 

 

Simulations are run for the same duration, 300 visits. Thus bees experience four reversals in 

experiment A, seven reversals in experiment B, and fourteen reversals in experiment C. 

Similar to the previous scenarios, parameter estimation was used to determine the optimal 

set of parameters for each memory model in the given environment. The results in Figure 18 

show the optimal performance of bees using different memory models in this simulated scenario. 

As expected in the 60-visit scenario, RLDelta is still the best performing strategy, much like the 

results of scenario 2. While the fitness of the models appears to increase with model complexity, 

the largest jump in fitness occurs between the WSLS and Lexicographic strategy. The other 

optimized memory models return somewhat similar fitness values. In the 40-visit environment 

where the frequency of environmental change is increased, the trend of fitness increasing with 

complexity is stronger. This indicates that the ability to place more decision-making weight on 

recent experiences, whether through recency bias by adjusting alpha or smaller memory capacity, 

provides an advantage in rapidly changing environments. Lastly, in the 20-visit environment the 

best performing strategy is the Logarithmic weighted memory model, but RLDelta and WSLS 

achieve a nearly similar fitness. The presence of WSLS in the top three strategies suggests that 

memory is not adaptive in such a rapidly changing environment. 
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Figure 18: Results for simulations on the frequency of change in the environment. ‘+’ indicate the model with the highest fitness. 

For additional insight into the performance of the memory models, we investigate the 

memory capacity of the optimized models in this scenario (Figure 19). As the frequency of 

reversals increases, the optimized memory capacity decreases towards the minimum value of 

three across the board. These results strongly suggest that memory is a hindrance as the 

frequency of change increases, and bumblebees would likely avoid using complex decision-

making strategies. 
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Figure 19: Memory capacity of the optimized memory models in scenario 3. The value of three is the minimum memory capacity 
allowed; optimized models with a memory capacity of three indicate that additional memory capacity beyond three does not 
benefit bee fitness. 

 

Conclusions 

The analysis of simulation results for this scenario reveals two key trends. First, that increased 

memory model complexity generally resulted in better fitness when the environment rapidly 

changed in initial trials with 60 or 40 visits between changes. The RLDelta strategy was most 

often the optimal strategy, and the weighted memory models were the next best performing 

models in the 40-visit environment. Second, increased memory capacity does not seem adaptive 

when the environment changes extremely rapidly as in the 20-visit scenario. Instead, heavily 

weighting the most recent experiences correlated the strongest with high fitness in that 

environment. Importantly, simple strategies like WSLS can achieve such results just as well as 

RLDelta. Overall, the results suggest that experiments investigating the frequency of change 
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highlight that memory is not always adaptive. The fitness and parameters of the optimized 

models are summarized in Table 17. 

 

Table 17: Results for the top four decision-making strategies and memory models for the frequency of change scenario. See Table 
25 in Appendix S3 for the results of all models. 

Fitness Memory size Memory model Memory alpha Softmax theta Visits / reversal 

225.76 1 RLDelta 0.8 73.0256 60 visits 

222.12 3 baseline 0.5 NA 60 visits 

219.2 10 ln 0.65 NA 60 visits 

205.6667 NA 
Win-Stay-Lose-
Switch NA NA 60 visits 

218.32 1 RLDelta 0.85 25.6951 40 visits 

217.52 3 exponential 0.65 NA 40 visits 

211.84 3 baseline NA NA 40 visits 

202.3 NA 
Win-Stay-Lose-
Switch NA NA 40 visits 

202.92 3 ln 0.7 NA 20 visits 

202.76 1 RLDelta 0.95 46.5936 20 visits 

200.3333 NA 
Win-Stay-Lose-
Switch NA NA 20 visits 

192.72 3 Lexicographic NA NA 20 visits 
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Discussion & Future Work 

 This work uses agent-based modeling to improve our understanding of memory and decision-

making in bumblebees by testing various strategies and generating predictions for expected 

behavior. The first scenario investigated response to a change in reward variability. Experimental 

results showed an increase in the variability of decisions made when bees were first introduced 

to the variable environment, indicating that bees might respond to change by visiting different 

options. However, the memory and decision-making models we tested using SimBee did not 

reproduce this increase in variation. It is possible that this response to change is not captured by 

recency bias and memory capacity parameters, and an additional mechanism is needed to 

properly model this response. Future directions could include identifying what mechanism 

underlies this response. Other approaches could include using different metrics, such as correct 

visits after reversals.  

Furthermore, if in the future enough bumblebees were tested to quantitatively measure 

changes in the variation of choices, it could be possible to fit the simulated models to the 

variation in choices rather than the mean. Such an approach may help determine if the observed 

behavior fits any of the existing models of decision-making. Alternatively, since the primary 

subject of interest is the response to change, one could also model the change in choice behavior 

during the transition between environments. If one considers random choice for two blocks of 

visits as the accuracy criterion for learning the environment, one could use the number of visits 

until bees return to visiting both options equally as the time until recovery. The number of visits 

until recovery (equal rates of visitation to both options) would represent how quickly bees to 

adapt to the variable environment. This could then be used to design an objective function to fit 
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simulated models to the experimental data. However, given the existing experimental data it is 

unclear whether the bees would reach the accuracy criterion in the variable environment. 

Otherwise, one possible explanation for the inconclusive findings is that the bees did not 

treat the variable test environment as a continuation of the previous training environment and 

instead behaved as though they were entering a novel environment with no assumptions about 

the rewards of the available options. This could explain the increase in variation and could be 

tested by adding a third novel option to the test environment to determine if the bees are utilizing 

experiences from the training environment or sampling a new environment. If bees are using 

their memory to make decisions, we would expect them to continue visiting the options they 

know are rewarding, while bees that are sampling would make multiple visits to the novel option 

to assess its reward. 

The second scenario explored the response to changing the probability of reward in a 

reversal learning experiment. Bumblebees have successfully reversed preferences in reversal 

learning experiments with one option always rewarding and one option never rewarding, but our 

modification of the reward probabilities in reversal learning has not been tested in bumblebees. 

The results of our simulations demonstrate that the 100%/0% reward schedule in reversal 

learning is insufficient to distinguish between simple rule-based strategies like WSLS and more 

complex memory models. This finding reflects the difficulty of drawing conclusions about 

decision-making and memory from similar reversal learning experiments. Since it is likely that 

many different models would fit existing reversal learning experimental data that use the same 

reward schedule, it would be challenging to narrow down which decision-making strategies and 

associated memory capacities are the best fits. Increasing the complexity of the environment to 

an 80%/20% reward schedule reveals differences in fitness between theoretical decision-making 
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strategies but differences in choice behavior between WSLS and other models is clearer. Here, 

the differences in decision-making were clear in the choices made immediately after the reversal. 

Weighted memory models and reinforcement learning can reproduce the effects of recency bias 

in bumblebee behaviors in ways that are not captured by simpler models since memory is an 

adaptive trait in the 80%/20% scenario. Testing the 80%/20% scenario in a laboratory would 

help validate these observed differences and provide data for determining a range of potential 

values for memory capacity. Future modeling work could also explore the sensitivity of the 

memory and recency parameters in more depth, as the BehaviorSearch parameter optimization 

does not explore suboptimal parameter value combinations in a robust way. However, the 

models tested in this scenario all predict that bees learn to reverse their preferences relatively 

quickly which is something that has not been observed in similar experiments with rats185,186. 

Specifically, experiments testing the effect reward probability on rat learning found that rats only 

reversed their initial learned preference when reward was guaranteed (100%) and otherwise 

failed to learn the reversal. Additional laboratory experiments would be helpful to determine if 

these predictions about partial reinforcement are also observed in bumblebees, or if bumblebees 

exhibit radically different behavior. If bees do not behave as predicted by our simulations, more 

complex models may be needed to accurately reproduce bumblebee responses to variation in 

reward probabilities. 

Future directions for expanding on scenario two should include identifying experiments 

where differences in memory and decision-making produce markedly different behavior. 

Drawing inspiration from human psychology, experiments where rewards change gradually over 

time may provide the desired complexity. Konstantinidis et al. (2020)181 designed an experiment 

where the probability of reward either increased or decreased over time and fit participant 
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choices to several learning models including reinforcement learning. Doing so helped the 

researchers identify ‘adaptive’ and ‘non-adaptive’ individuals that exhibited different behaviors, 

as well and identifying the importance of recency in adaption to change. Testing bees in an 

environment where probability of reward for the best option decreases over time would provide 

useful insight into how strongly bees are influenced by initial experiences and could provide the 

complexity needed to separate decision-making strategies. Alternative ways of adding 

complexity to experiment testing decisions from experience include non-monotonic change – 

periodic change for example – and increasing the number of options to choose from. However, 

the increasing complexity of these scenarios does present challenges for experimental 

implementation. Overall, there are many possible variations for future experiments where 

simulations could provide useful predictions before laboratory tests are attempted. 

In scenario three, we consider how bumblebees respond to increasingly frequent 

environmental change. The results of our simulation confirm that memory is key to optimally 

exploiting an environment with infrequent changes while memory is not adaptive for exploiting 

rapidly changing environments. How can bees adapt to both frequent and infrequent 

environmental change? Models such RLDelta and the logarithmic weighted memory model are 

flexible enough that bees can achieve high levels of performance in both the 60-visit serial 

reversal environment and the 20-visit serial reversal environment, indicating that recency bias is 

a possible mechanism for explaining how bumblebees can adapt to changing environments. The 

ability of bumblebees to alter their recency bias to fit their environment and the similarity of 

weighted memory models could explain why bumblebee behavior appears to match many 

different models and strategies in the literature.  
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Finally, the theoretical models implemented and tested in chapter four are only a small 

subset of possible models. Variations on Win-Stay Lose-Switch such as ‘deliberative-decisive’190 

where several unrewarding visits are needed to trigger a switch in preference may also serve as 

useful comparisons along with other heuristics201 used in human psychology. Other versions of 

reinforcement learning are also used in human psychology, such as the decay learning rule where 

unchosen options are also discounted181. The current SimBee model does not have a decay 

parameter option, but future extensions could implement this. Furthermore, other models such as 

Bayesian decision models, optimal diet models, and contextual models (where individuals 

change strategies based on environmental context clues) could be added as comparisons for a 

more comprehensive study of decision-making in bumblebees.  
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Chapter 5: Deep Learning Behavioral Classification of Bumblebee 

Videos 

Introduction 

As digital cameras and video content has become ubiquitous in human society, the need for 

accurate behavior classification in videos has driven rapid advances in research on video action 

recognition of human behaviors. Behavior recognition consists of identifying some behavior 

from a series of observations, a task that has traditionally been very challenging. While the 

classification of actions from a sequence of image frames seems like an extension of image 

classification, progress in video behavior analysis has been slower due to several complicating 

factors. Video analysis requires not only spatial information but also temporal context across 

multiple frames. The consequence of retaining this information for videos of substantial length is 

huge computational costs213,214. Additionally, the process of collecting, annotating, and storing 

videos is more difficult than for single images, resulting in fewer and smaller datasets. 

Initial approaches used specially designed features and frameworks to capture specific 

human-based actions215. Augmented by markers or tags, these early models could identify human 

motions given controlled conditions but failed to generalize well with unscripted videos. 

Additionally, these manual approaches were time-consuming to train on the ever-increasing 

amount of video data available. Advances in machine learning over the past decade have resulted 

in an explosion of network architectures and applications. Different techniques such as optical 

flow, Hidden Markov Models (HMM), and more recently deep learning have been applied to 

behavior recognition with varying success215–222. 

Despite the inherent difficulty of the task, there have been several novel approaches to 

the problem. In general, these methods fall into two main groups: methods using hand-crafted 
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motion features and deep learning methods213. In hand-crafted methods, some interesting 

features are obtained from the raw pixels of the video frames and used to perform the 

recognition. This approach offers several advantages, namely that the features of the model are 

explicitly known, and customized features require relatively little data to train. However, hand-

crafted features are usually not robust and often fail when used on data with more variability than 

the training set215. 

In contrast deep learning methods learn features through their network, reducing the 

difficulty of feature extraction but increasing the data requirements. Due to this, deep learning 

methods tend to work better on complex problems and can be more easily generalized to new 

problems as long as data is available. As large video datasets have become available, deep 

learning methods have become the recent focus of behavior recognition research. 

 

Video Action/Behavior Datasets 

There are many large-scale annotated datasets for human video action recognition. Most consist 

of videos obtained from YouTube or movies and are created by breaking videos into clips and 

using resources such as Amazon’s Mechanical Turk to add appropriate class labels223. Some 

datasets such as HMDB51224 and UCF101225 have a single label per short clip, while others like 

ActivityNet226 and AVA227 have multiple actions per video, with annotated start and end times. 

Datasets with temporal annotations are designed to enable temporal action recognition within 

videos, and some datasets take this further by adding boundary boxes within videos for spatio-

temporal action recognition. However, adding spatio-temporal annotations greatly increases the 

complexity and cost of creating such datasets, making the existing ones extremely valuable. 

Although the dataset Moments In Time (MIT) has single-class non-temporal annotations, it is 
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notable for intentionally including animals, objects, and natural phenomena in addition to 

people228. These human-oriented action recognition datasets are summarized in Table 18. While 

datasets for other organisms such as mice and flies exist, they are rarely designed for public use. 

Table 18: Summary of public datasets for human action recognition.  

DATASET YEAR # OF 
SAMPLES 

ACTION 
CLASSES 

LABEL TYPE 
(# LABELS 
PER CLIP) 

TEMPORAL 
ANNOTATIONS 

HMDB51224 2011 7K 51 Single No 
UCF101225 2012 13.3K 101 Single No 

ACTIVITYNET226 2015 28K 200 Multi Yes 
YOUTUBE8M229 2016 8M 3862 Multi Yes 

AVA227 2017 385K 80 Multi Yes 
KINETICS400 2017 306K 400 Single No 

MIT228 2018 1M 339 Single No 

 

Intuitively, video behavior understanding needs information about motion. This is 

achieved using optical flow, the relative motion of objects, surfaces, and edges within a visual 

scene. Optical flow provides more information than the original RGB image because it combines 

frames to provide orthogonal information. In doing so, it effectively removes static background 

and displays movement information, creating a simpler learning problem (See Figure 20).  

  

Figure 20: Visualization of optical flow. Left is the original RGB image and right is the estimated optical flow. Color of optical 

flow indicates the directions of motion, and the color-coding scheme is shown in top right. Taken from Zhu et al. 2020223. 

Two-stream networks extend the use of optical flow by using RGB data as input for the 

spatial network (or stream) to learn visual appearance, and optical flow data as input for the 
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temporal network to learn motion information. While this approached initially worked well with 

very short clips, initial two-stream networks had difficulties capturing longer temporal 

information230. Temporal Segment Networks (TSN) was the first to combine the two-stream 

architecture with video sampling to achieve video-level behavior recognition. It achieves this by 

dividing videos into several segments uniformly distributed along the temporal dimension. It 

then samples from each segment and forwards them through the network. An aggregated 

consensus is determined from the output of each segment for each stream, which is then fused 

for a final consensus. TSN achieved a then record accuracy of 94% on the UCF101 dataset and 

inspired many other models (See Figure 21)223. TSN was also used for video behavior 

classification of pigs and achieved 98.99% accuracy231.  

 

 

Figure 21: A chronological overview of recent representative work in video action recognition. TSN, circled in red, is the 

network used in this work. Image taken from Zhu et al. 2020223. 

Since TSN, there have been several noteworthy deep learning models that have advanced 

the field of video behavior recognition. I3D232 was the first model to bypass the computationally 

intensive step of pre-computing optical flow using 3D convolutional neural networks by pre-

initializing the weights for optical flow from older models. Temporal Shift Module (TSM)233 
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performs temporal modeling without 3D convolution or optical flow by shifting parts of its 

channels along the temporal dimensions, thus achieving temporal information without optical 

flow. VideoLSTM234 (not shown in Figure 21) takes this one step farther by using a specific type 

of recurrent neural network called LSTM to achieve the same temporal information as TSM with 

additional attention maps for action localization. VideoLSTM can both classify and localize 

actions from only an action class label.  

While the state of deep learning video behavior classification models has thus made 

numerous advances since TSN, these advances have in part been enabled by increasingly large 

and complex datasets. Additionally, while the implementation of TSN has been redesigned and 

documented for public use through the MMAction2 Toolbox235, more recent models such as 

TSM and videoLSTM have not received the same treatment so far. Considering the ease-of-

implementation, lack of large-scale bumblebee datasets, and proven track-record on non-human 

organisms, we focus our efforts on using TSN for video behavior classification. 

 

Non-human Behavior 

While deep learning methods have recently begun to achieve high levels of accuracy (>90%) in 

classifying human behavior, the same is not generally true for non-human behaviors. Unlike 

action recognition in humans where an action such as “running” looks similar for most 

individuals, animal behaviors are more specialized. Consequently, methods using hand-crafted 

features can work well for the organism they are designed and trained on – especially in 

controlled environments when the subject is always at the same angle – but do not generalize or 

transfer to other species. Experiments testing the generalizability of I3D (a deep learning method 

proposed shortly after TSN) demonstrate this issue; while I3D reached an accuracy of 80.9% on 
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HMDB-51 and 98% on UCF-101, it only reached 36% accuracy when tested on a dataset with 

thirty-two animal categories236. It is clear that animal behavior is a complex topic that must be 

approached one species at a time for the best results. 

 Although advances with deep learning models do not seem to transfer generally to 

different animals, researcher have seen far greater success when focusing on a single species. A 

study using TSN to detect pig behaviors found that the network was able to recognize pig 

feeding, lying, walking, scratching, and mounting behaviors with an average of 98.99% 

accuracy. A similar study on fox behaviors achieved a mean average precision of 99.91% when 

classifying the behaviors of multiple foxes237. However, these studies used datasets created by 

filming larger animals in closed environments with controlled lighting, ensuring low variance in 

video quality. Furthermore, the deep learning models in these studies could successfully localize 

individuals, something that does not seem to always hold true when studying smaller insects. 

While approaches for classifying insect behavior exist, they generally rely on markers for 

identification44,238–240. This works well in laboratory studies where markers can be placed on 

insects but is less useful for studying the behavior of wild organisms. It seems likely that deep 

learning methods can achieve some level of success in classifying bumblebee behaviors without 

markers and hand-crafted features, but deep learning models such as TSN have not been tested 

on real-world datasets, in part because generating such datasets is a time-consuming process. 

 

Bumblebee Behaviors 

For eusocial insects such as bumblebees, the gathering of nectar and pollen is critical for the 

growth and maintenance of the colony241. Nectar is the primary source of energy for the queen 

and the workers, while pollen supplies protein for developing larvae68,242,243. Since the collection 
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of nectar and pollen varies temporally for bumblebees in a colony, knowledge of the behaviors 

exhibited by bumblebees can provide important insights into the health and lifecycle of wild 

colonies without physically examining them65,111. Specifically, newly established colonies grow 

by producing new cohorts of workers while established colonies switch to only making males 

and new queens. Once a colony switches, it ceases to produce new workers244. Tracking the 

behavior of foraging bumblebees can provide indicators of this shift before the demographics of 

the hive change120. Behavior information can also provide insight into task specialization in 

colonies245–247. Overall, behavioral information at all levels can help improve our understanding 

of bumblebee individuals and colonies. 

Although there are many different behaviors to consider when studying bumblebees, we 

focus on five behaviors that are likely to be present and identifiable in videos submitted by the 

citizen scientists. Additionally, the number of behavioral classes is also limited by the ease of 

identification. The behaviors included in the dataset for this work are nectar foraging, pollen 

foraging, flight, approaching a flower, and departing a flower.  

 

Nectar Foraging 

Nectar foraging is one of the primary foraging behaviors of bumblebees. For most foragers, this 

action involves extending the probiscis deep into a flower to check for the presence of nectar (see 

Video 1). If nectar is present, the forager my spend an extended amount of time in the same 

position while it extracts all available nectar from the flower. This behavior of keeping the head 

still as the forager probes a flower for nectar contrasts with pollen foraging, where the bee does 

not remain still. Some bumblebee species use an alternate behavior known as nectar robbing, in 
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which the bee feeds on nectar by biting a hole in the base of the flower248. However, these bees 

are not present in the dataset used here. 

 

Video 1: Clip of a Bombus impatiens female gathering nectar from a flower. 

 

Pollen Foraging 

Pollen gathering is an important activity for foragers, as pollen provides the protein necessary for 

a growing colony. Bumblebees collect pollen by shaking it loose from flowers and letting it stick 

to their furry bodies59. They then groom themselves and wipe the pollen onto stiff hairs on their 

hind legs or abdomen, often referred to as pollen baskets. Once a forager’s pollen baskets are 

full, the forager returns to the hive and deposits the pollen. This behavior can be identified by a 

forager’s rapid movements meant to dislodge pollen from the flower and is shown in Video 2 

below. 
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Video 2: Clip of a Bombus impatiens female gathering pollen from a flower. The pollen baskets can be observed on the bee’s 
hind legs. 

 

Flight 

Flight is a behavior of foraging bumblebees that correlates with pollination activity249. The 

ability to track bees as they move from flower to flower is useful in behavioral contexts, and 

most extended videos of bumblebees include flight (see Video 3). Since flight behavior is often 

present in submitted videos and is distinctly different from nectar and pollen foraging, behavioral 

classification of flight serves as an important step for deep learning models. 
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Video 3: Clip of a Bombus vagans female flying between flowers. 

 

Approach 

The behavior of a bumblebee approaching a flower (from flight) has a strong temporal component (see 

 

Video 4). ‘Approach’, and its corollary ‘departure’ both involve a transition from one behavior – 

nectar/pollen foraging – to another – flight. Additionally, the timeframe of this behavior is much 
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shorter than other behaviors. Correctly classifying such behaviors can help provide temporal 

information that improves the accuracy of other behavior classifications. 

 

 

Video 4: Clip of a Bombus vagans female approaching a flower. 

 

Departure 

Similar to ‘approach’, the ‘departure’ behavior always occurs after foraging and before flight. 

Correctly classifying this behavior can help provide temporal information that improves the 

accuracy of other behavior classifications. Video 5 shows an example of a bumblebee departing 

from a flower.  
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Video 5:Clip of a Bombus impatiens female departing from a flower. 

 

Using Citizen Science Data 

It is important to address the challenge of accelerating the validation of citizen-generated data by 

utilizing modern deep-learning methods to automate behavior classification of bumblebee 

videos. While the manual analysis of videos is impractical, recent advances in video behavior 

classification of human behaviors have demonstrated incredible success in accurately classifying 

a wide range of behaviors from amateur videos213,225,228,250. Specifically, multi-steam LSTMs 

have achieved over 95% accuracy on large video datasets such as UCF101225, HMDB51224, 

ActivityNet226, and others. However, it is unclear how well such deep-learning architectures and 

networks transfer to bumblebees, in part due to the lack of annotated video data for bumblebees. 

For this research, we use the two-stream convolutional neural network architecture proposed as 

TSN251 in 2016 because the authors have developed a toolbox235 for applying their work to new 

datasets and these tools have been successfully used in automated video behavior recognition of 

pigs231. Using citizen science videos of bumblebees to create a novel behavior recognition 
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dataset, we retrain TSN for bumblebee behavior classification and present the preliminary results 

below. 

 

Beecology Dataset 

The data for this work comes from the Beecology Project, a collaboration to develop and 

maintain an accessible method for citizen scientists to contribute field observations of native 

pollinators. At the time of inception, this dataset included 434 user-submitted videos. The 

majority of these – 374 videos to be precise – record nectar gathering behavior, while the 

remaining 60 are pollen gathering. Most bumblebees featured in these videos were impatiens 

(181) and vagans (124). Additionally, most of these bumblebees were females/workers (331), 

with 92 males, and two queens recorded. Across the dataset, bumblebees visited a total of 88 

different plant species. See Table 19 for the specific parameters of these videos.  

 

Table 19: Specific parameters of the bumblebee behavior dataset. 

Item Parameter 
Behavior class 5 
Behavior name Nectar, Pollen, Departure, Flight, Approach 

Resolution 320 x 240 
Frame rate 25 fps 

Video Mean Duration 7 seconds 
Storage format AVI 

 

Methods 

Data Processing 

From the original 434 videos, 237 were selected for further annotation. Each video was 

converted into frames and manually split into different behaviors. These clips were labeled in the 

format v_X_gY_cZ_sA_dB_fC_hD.avi where X=Behavior, Y=group #, Z=clip #, A=bee 
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species, B=bee gender, C=flower genus, D=flower species. Repeated behaviors from the same 

original video were identified by incrementing the clip number.  

The 237 processed videos were then divided into a training set and test set in a 70%/30% 

split. The training set was further divided by a 70%/30% split into a new training set and 

validation set for an overall 50/20/30 training-validation-testing split (see Table 20). 

 

Table 20: Summary statistics of the 50%/20%/30% training-validation-testing split of the 237 processed videos. 

Training 

Behavior Count 

Pollen 17 
Nectar 41 

Flight 19 
Departure 27 

Approach 13 
Total 117 

 
Validation 

Behavior Count 
Pollen 7 

Nectar 18 
Flight 8 

Departure 11 
Approach 5 

Total 49 

 

Testing 

Behavior Count 
Pollen 10 

Nectar 25 
Flight 11 

Departure 17 
Approach 8 

Total 71 

 

The motion information in the videos is very important for behavior recognition, and the 

optical flow can incorporate motion information such as the direction and speed of a moving 

target. The OpenCV implementation of the TVL1 optical flow algorithm was used to generate 
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optical flow values in the horizontal and vertical directions for all clips using the same process as 

the original TSN model252. The RGB images were used as the input of the spatial convolution 

network (first stream) and the optical flow was used as the input of the temporal convolution 

network (second stream). The results of the two streams are fused together to obtain the video 

behavior classification. 

 

 

Figure 22: Temporal segment network: One input clip is divided into three segments and a short snippet is randomly selected 

from each segment. The class scores of different snippets are fused by a segmental consensus function to yield segmental 
consensus, which is a video-level prediction. Predictions from both modalities are then fused to produce the final prediction. 
ConvNets on all snippets share parameters. Architecture based off of TSNs: Towards Good Practices for Deep Action 

Recognition251. ResNet50 diagram taken from “Understanding and visualizing ResNets”253. 

 

Baseline Model 

To better characterize the Beecology dataset, the ‘most frequent’ classification strategy is used to 

generate a baseline for more complex models. For this dataset, the ‘most frequent’ strategy 

always classifies a clip as nectar foraging. When fit and tested using the data splits shown before, 

this produces an accuracy of 35.2% (see Table 21). Based on these initial tests, more complex 
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methods should produce higher levels of accuracy. If the level of accuracy remains similar to the 

baseline strategy, that method may not be capable of classifying the existing Beecology data. 

 

Table 21: Classification statistics for the ‘most frequent’ baseline strategy. The baseline accuracy is 0.352. 

 
PRECISION RECALL F1-SCORE SUPPORT 

NECTAR 0.35211268 1 0.52083333 25 
POLLEN 0 0 0 10 
APPROACH 0 0 0 8 
DEPARTURE 0 0 0 17 
FLIGHT 0 0 0 11 
ACCURACY 0.35211268 0.35211268 0.35211268 0.35211268 
MACRO 
AVG 

0.07042254 0.2 0.10416667 71 

WEIGHTED 
AVG 

0.12398334 0.35211268 0.18339202 71 

 

 

Experimental Parameter Settings 

The network weights for the TSN model were initialized using the pre-trained ResNet50 network 

from ImageNet254. The learning and momentum policies were varied during experiments to 

determine optimal parameters. The optimization method was stochastic gradient descent. For 

both networks, the dropout ratio was 0.4 and total epochs were 75. During training, the number 

of snippets (segments taken from a single clip, refer to Figure 22) was 3.  

 

Experimental Environment 

The model experiments were all conducted on the Worcester Polytechnic Institute (WPI) Turing 

server. Each experiment was run using either a V100 or A100 NVIDIA GPU depending on 

availability. The server runs Red Hat Enterprise Linux 7.3, and the core software included 
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CUDA 11.1.0, cuDNN 8.1.1, OpenCV 4.2.0, and pytorch 1.9.0. Denseflow was used to generate 

the optical flow of videos255. 

 

Preliminary Results 

The training dataset was used as input into the TSN networks while the learning rate and 

momentum policies were varied. The top 1 accuracy - the proportion of clips for which the 

predicted action class matches the true action class - and mean class accuracy – the average 

accuracy of the predicted action class for all action classes - were evaluated using the validation 

dataset every five epochs. After training was complete, the best model was evaluated on the test 

dataset. For RGB spatial network, the best test top 1 accuracy achieved was 38.77%. The optical 

flow temporal network achieved a much higher accuracy on the test set at 57.75% top 1 

accuracy. These experiments are summarized in Table 22 for the RBG network and Table 23 for 

the optical flow network. Considering the effect changing the learning rate, it appears that a 

relatively small learning rate is beneficial for the initial training of the model. Overall it seems 

like most learning occurs in the early training iterations, so an initially small learning rate 

provides better results than altering momentum policies. 
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  Table 23: M
odel perform

ance for the optical flow network during training and testing. 
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The change curve of the loss functions and accuracy rate of the TSN networks helps 

visualize the results of training over time. For the RGB network, the loss (a representation of the 

error between the predicted and actual action classes for training data) rapidly decreases at the 

start of training before quickly leveling off (Figure 23), a behavior that can be associated with a 

well-fitting model. However, the overall low accuracy (Figure 24) indicates that the RGB 

network is unable to properly predict the correct class given the dataset. The loss curve for the 

Optical Flow network (Figure 23) on the other hand does not demonstrate that the model is 

fitting the data, although it achieves an overall higher accuracy than the RGB network (Figure 

24). Both accuracy curves reach their peak early in training, indicating that additional training is 

not helpful for improving accuracy. 

 

 

Figure 23: RGB and Optical Flow network loss function during training. The loss function is cross entropy loss. 
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Figure 24: Top 1 accuracy during training for RGB and Optical Flow networks. 
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Discussion & Future Work 

These experiments outline the initial approach to applying advances in video behavior 

classification of human subjects to bumblebees. Specifically, this work established an initial 

dataset for deep learning models to train on bumblebee-specific behaviors. A total of 237 videos 

of five action classes were annotated for use in model training, validation, and testing. According 

to the preliminary results, the low accuracy of both network models in TSN indicate that further 

work is needed before automated behavior recognition can be used for bumblebee conservation 

efforts. Importantly, the temporal network component did achieve higher accuracy of 57.75% 

than the baseline accuracy of 35.2%. The spatial network on the other hand barely improved on 

the baseline accuracy with a top 1 accuracy of 38.77%. These experiments highlight the need for 

a more robust and balanced dataset that can facilitate the use of deep learning architectures. 

As discussed earlier, automating the behavioral classification of bumblebee videos has 

numerous benefits for bumblebee conservation. Continuing to improve behavior classification 

for bumblebees is important for conservation efforts and can be approached from several 

directions. The first, and perhaps most obvious source of improvement is the bumblebee 

behavior dataset itself. As Beecology users continue to submit videos, the potential scale of an 

annotated dataset increases. While modern deep learning approaches require far less data than 

older approaches, models still require sufficient data to learn novel behaviors. At 237 video clips, 

the current dataset is small for a novel problem and would certainly benefit from additional 

annotated videos. Furthermore, augmenting the annotations with start and end times can produce 

a dataset useful for training temporal models that require less data. This would be useful both for 

utilizing more recently developed deep learning architectures as well as enabling benchmark 

comparisons with datasets like AVA and ActivityNet. Besides augmenting the bumblebee 
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dataset, next steps could address the current imbalance in data for behavioral classes. Currently, 

nectar foraging makes up most of the existing videos. While resampling from such a small 

original dataset can certainly cause overfitting issues, rebalancing the dataset once more videos 

are added should improve the training of models. 

Additional improvements to the bumblebee video behavior classification process can be 

made with additional resources. A dedicated VM or hardware setup could allow for the use of a 

docker image that avoids issues that occur with using a shared remote server. Not needing to 

identify different software configurations when software is updated for graphic cards are 

replaced would significantly speed up progress. Long term improvements could include training 

TSN from scratch on a bumblebee dataset rather than initializing weights from previous models. 

Using weights from previous models is generally a useful time-saving strategy as training a 

model from scratch is very computationally intensive. However, existing model weights are 

based on human datasets, and it is unknown how well models of human behavior transfer to 

bumblebee behavior. 

  



 

 139 

Chapter 6: References 
1. Cameron, S. A. & Sadd, B. M. Global Trends in Bumble Bee Health. Annual Review of 

Entomology 65, 209–232 (2020). 
2. The Beecology Project. https://beecology.wpi.edu/website/home. 
3. Cardinal, S. & Danforth, B. N. The Antiquity and Evolutionary History of Social Behavior in 

Bees. PLoS One 6, e21086 (2011). 
4. Honeybees vs bumblebees | Bumblebee Conservation Trust. 

https://web.archive.org/web/20150228004017/http://bumblebeeconservation.org/about-
bees/faqs/honeybees-vs-bumblebees (2015). 

5. Parrey, A. H. et al. Role of Bumblebees (Hymenoptera: Apidae) in Pollination of High Land 
Ecosystems: A Review. Agricultural Reviews (2021). 

6. Gurel, F., Gosterit, A. & Eren, Ö. Life-cycle and foraging patterns of native Bombus 
terrestris (L.) (Hymenoptera, Apidae) in the Mediterranean region. Insect. Soc. 55, 123–128 
(2008). 

7. Lifecycle - Bumblebee Conservation Trust. 
https://www.bumblebeeconservation.org/lifecycle/. 

8. Dornhaus, A. & Chittka, L. Bumble bees (Bombus terrestris) store both food and information 
in honeypots. Behav Ecol 16, 661–666 (2005). 

9. Nayak, R. K., Rana, K., Bairwa, V. K. & Bharthi, V. D. A review on role of bumblebee 
pollination in fruits and vegetables. 7. 

10. Steffan‐Dewenter, I. & Westphal, C. The interplay of pollinator diversity, pollination 
services and landscape change. Journal of Applied Ecology 45, 737–741 (2008). 

11. Goulson, D., Lye, G. C. & Darvill, B. Decline and Conservation of Bumble Bees. Annual 
Review of Entomology 53, 191–208 (2008). 

12. Landi, P., Minoarivelo, H. O., Brännström, Å., Hui, C. & Dieckmann, U. Complexity and 
stability of ecological networks: a review of the theory. Population Ecology 60, 319–345 
(2018). 

13. Memmott, J., Craze, P. G., Waser, N. M. & Price, M. V. Global warming and the disruption 
of plant–pollinator interactions. Ecology Letters 10, 710–717 (2007). 

14. Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. PNAS 
108, 662–667 (2011). 

15. Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Bee declines driven by combined 
stress from parasites, pesticides, and lack of flowers. Science 347, 1255957 (2015). 

16. Biesmeijer, J. C. et al. Parallel Declines in Pollinators and Insect-Pollinated Plants in Britain 
and the Netherlands. Science 313, 351–354 (2006). 

17. Becher, M. A., Osborne, J. L., Thorbek, P., Kennedy, P. J. & Grimm, V. REVIEW: Towards 
a systems approach for understanding honeybee decline: a stocktaking and synthesis of 
existing models. Journal of Applied Ecology 50, 868–880 (2013). 

18. Henry, M. et al. Predictive systems models can help elucidate bee declines driven by 
multiple combined stressors. Apidologie 48, 328–339 (2017). 

19. Tapparo, A. et al. Assessment of the Environmental Exposure of Honeybees to Particulate 
Matter Containing Neonicotinoid Insecticides Coming from Corn Coated Seeds. Environ. 
Sci. Technol. 46, 2592–2599 (2012). 

20. Blacquière, T., Smagghe, G., van Gestel, C. A. M. & Mommaerts, V. Neonicotinoids in 
bees: a review on concentrations, side-effects and risk assessment. Ecotoxicology 21, 973–
992 (2012). 



 

 140 

21. Lundin, O., Rundlöf, M., Smith, H. G., Fries, I. & Bommarco, R. Neonicotinoid Insecticides 
and Their Impacts on Bees: A Systematic Review of Research Approaches and Identification 
of Knowledge Gaps. PLOS ONE 10, e0136928 (2015). 

22. Wood, S. C., Kozii, I. V., Koziy, R. V., Epp, T. & Simko, E. Comparative chronic toxicity of 
three neonicotinoids on New Zealand packaged honey bees. PLOS ONE 13, e0190517 
(2018). 

23. Cresswell, J. E. A demographic approach to evaluating the impact of stressors on bumble bee 
colonies. Ecological Entomology 42, 221–229 (2017). 

24. Czerwinski, M. & Sadd, B. Detrimental interactions of neonicotinoid pesticide exposure and 
bumblebee immunity. (2017). 

25. Bryden, J., Gill, R. J., Mitton, R. A. A., Raine, N. E. & Jansen, V. A. A. Chronic sublethal 
stress causes bee colony failure. Ecology Letters 16, 1463–1469. 

26. Mobley, M. W. Examining the Potential Threat of Pesticide and Pathogen Exposure on Wild 
Bumble Bees: Proposed Lethal and Sublethal Mechanisms Contributing to Pollinator 
Decline. 274 (2017). 

27. Piiroinen, S. & Goulson, D. Chronic neonicotinoid pesticide exposure and parasite stress 
differentially affects learning in honeybees and bumblebees. Proceedings of the Royal 
Society B: Biological Sciences 283, 20160246 (2016). 

28. van der Sluijs, J. P. et al. Neonicotinoids, bee disorders and the sustainability of pollinator 
services. Current Opinion in Environmental Sustainability 5, 293–305 (2013). 

29. Yang, E. C., Chuang, Y. C., Chen, Y. L. & Chang, L. H. Abnormal Foraging Behavior 
Induced by Sublethal Dosage of Imidacloprid in the Honey Bee (Hymenoptera: Apidae). 
Journal of Economic Entomology 101, 1743–1748 (2008). 

30. Han, P., Niu, C.-Y., Lei, C.-L., Cui, J.-J. & Desneux, N. Quantification of toxins in a 
Cry1Ac + CpTI cotton cultivar and its potential effects on the honey bee Apis mellifera L. 
Ecotoxicology 19, 1452–1459 (2010). 

31. Mommaerts, V. et al. Risk assessment for side-effects of neonicotinoids against bumblebees 
with and without impairing foraging behavior. Ecotoxicology 19, 207 (2009). 

32. Henry, M. et al. A Common Pesticide Decreases Foraging Success and Survival in Honey 
Bees. Science 336, 348–350 (2012). 

33. Wright, G. A., Softley, S. & Earnshaw, H. Low doses of neonicotinoid pesticides in food 
rewards impair short-term olfactory memory in foraging-age honeybees. Scientific Reports 5, 
(2015). 

34. Otterstatter, M. C., Gegear, R. J., Colla, S. R. & Thomson, J. D. Effects of parasitic mites 
and protozoa on the flower constancy and foraging rate of bumble bees. Behav Ecol 
Sociobiol 58, 383–389 (2005). 

35. Riddell, C. E. & Mallon, E. B. Insect psychoneuroimmunology: Immune response reduces 
learning in protein starved bumblebees (Bombus terrestris). Brain, Behavior, and Immunity 
20, 135–138 (2006). 

36. Gegear, R. J., Otterstatter, M. C. & Thomson, J. D. Bumble-bee foragers infected by a gut 
parasite have an impaired ability to utilize floral information. Proceedings of the Royal 
Society B: Biological Sciences (2006) doi:10.1098/rspb.2005.3423. 

37. Siviter, H., Koricheva, J., Brown, M. J. F. & Leadbeater, E. Quantifying the impact of 
pesticides on learning and memory in bees. Journal of Applied Ecology 55, 2812–2821 
(2018). 



 

 141 

38. Stanley, D. A., Smith, K. E. & Raine, N. E. Bumblebee learning and memory is impaired by 
chronic exposure to a neonicotinoid pesticide. Scientific Reports 5, (2015). 

39. Mobley, M. W. & Gegear, R. J. Immune-cognitive system connectivity reduces bumblebee 
foraging success in complex multisensory floral environments. Scientific Reports 8, 5953 
(2018). 

40. Gómez‐Moracho, T., Heeb, P. & Lihoreau, M. Effects of parasites and pathogens on bee 
cognition. Ecological Entomology 42, 51–64 (2017). 

41. Decourtye, A. et al. Imidacloprid impairs memory and brain metabolism in the honeybee 
(Apis mellifera L.). Pesticide Biochemistry and Physiology 78, 83–92 (2004). 

42. Laycock, I., Lenthall, K. M., Barratt, A. T. & Cresswell, J. E. Effects of imidacloprid, a 
neonicotinoid pesticide, on reproduction in worker bumble bees (Bombus terrestris). 
Ecotoxicology 21, 1937–1945 (2012). 

43. Rumkee, J. C. O., Becher, M. A., Thorbek, P. & Osborne, J. L. Modeling Effects of 
Honeybee Behaviors on the Distribution of Pesticide in Nectar within a Hive and Resultant 
in-Hive Exposure. Environ. Sci. Technol. 51, 6908–6917 (2017). 

44. Schneider, C. W., Tautz, J., Grünewald, B. & Fuchs, S. RFID Tracking of Sublethal Effects 
of Two Neonicotinoid Insecticides on the Foraging Behavior of Apis mellifera. PLOS ONE 
7, e30023 (2012). 

45. Tirado, W. R., Simon, G., Johnston, P. & Boer, P. Bees in decline Greenpeace Research 
Laboratories Technical Report (Review) 01/2013. 48 (2013). 

46. Whitehorn, P. R., O’Connor, S., Wackers, F. L. & Goulson, D. Neonicotinoid Pesticide 
Reduces Bumble Bee Colony Growth and Queen Production. Science 336, 351–352 (2012). 

47. Willis Chan, D. S. & Raine, N. E. Population decline in a ground-nesting solitary squash bee 
(Eucera pruinosa) following exposure to a neonicotinoid insecticide treated crop (Cucurbita 
pepo). Sci Rep 11, 4241 (2021). 

48. Sargent, C. et al. Acute Imidacloprid Exposure Alters Mitochondrial Function in Bumblebee 
Flight Muscle and Brain. Frontiers in Insect Science 1, (2021). 

49. Tasman, K., Rands, S. A. & Hodge, J. J. L. The Neonicotinoid Insecticide Imidacloprid 
Disrupts Bumblebee Foraging Rhythms and Sleep. iScience 23, (2020). 

50. Goulson, D. Neonicotinoids impact bumblebee colony fitness in the field; a reanalysis of the 
UK’s Food & Environment Research Agency 2012 experiment. PeerJ 3, e854 (2015). 

51. Li, Y., Miao, R. & Khanna, M. Neonicotinoids and decline in bird biodiversity in the United 
States. Nat Sustain 3, 1027–1035 (2020). 

52. Chittka, L. & Thomson, J. D. Cognitive Ecology of Pollination: Animal Behaviour and 
Floral Evolution. (Cambridge University Press, 2001). 

53. Elzinga, J. A. et al. Time after time: flowering phenology and biotic interactions. Trends in 
Ecology & Evolution 22, 432–439 (2007). 

54. Chittka, L., Thomson, J. D. & Waser, N. M. Flower Constancy, Insect Psychology, and Plant 
Evolution. Naturwissenschaften 86, 361–377 (1999). 

55. Bronstein, J. L., Alarcón, R. & Geber, M. The evolution of plant–insect mutualisms. New 
Phytologist 172, 412–428 (2006). 

56. Bond, W. J., Lawton, J. H. & May, R. M. Do mutualisms matter? Assessing the impact of 
pollinator and disperser disruption on plant extinction. Philosophical Transactions of the 
Royal Society of London. Series B: Biological Sciences 344, 83–90 (1994). 

57. Berec, L. Mixed encounters, limited perception and optimal foraging. Bull. Math. Biol. 62, 
849–868 (2000). 



 

 142 

58. Dunlap, A. S., Papaj, D. R. & Dornhaus, A. Sampling and tracking a changing environment: 
persistence and reward in the foraging decisions of bumblebees. Interface Focus 7, 
20160149 (2017). 

59. Goulson, D. Foraging strategies of insects for gathering nectar and pollen, and implications 
for plant ecology and evolution. Perspectives in Plant Ecology, Evolution and Systematics 2, 
185–209 (1999). 

60. Raine, N. E. & Chittka, L. The Adaptive Significance of Sensory Bias in a Foraging Context: 
Floral Colour Preferences in the Bumblebee Bombus terrestris. PLOS ONE 2, e556 (2007). 

61. Chittka, L. & Raine, N. E. Recognition of flowers by pollinators. Current Opinion in Plant 
Biology 9, 428–435 (2006). 

62. Bartomeus, I. et al. Climate-associated phenological advances in bee pollinators and bee-
pollinated plants. PNAS 108, 20645–20649 (2011). 

63. Dall, S. R. X., Giraldeau, L.-A., Olsson, O., McNamara, J. M. & Stephens, D. W. 
Information and its use by animals in evolutionary ecology. Trends in Ecology & Evolution 
20, 187–193 (2005). 

64. Piao, S. et al. Plant phenology and global climate change: Current progresses and challenges. 
Global Change Biology 25, 1922–1940 (2019). 

65. Hendriksma, H. P., Toth, A. L. & Shafir, S. Individual and Colony Level Foraging Decisions 
of Bumble Bees and Honey Bees in Relation to Balancing of Nutrient Needs. Front. Ecol. 
Evol. 7, (2019). 

66. Raine, N. E. & Chittka, L. The correlation of learning speed and natural foraging success in 
bumble-bees. Proc Biol Sci 275, 803–808 (2008). 

67. Waser, N. M. Flower Constancy: Definition, Cause, and Measurement. The American 
Naturalist 127, (1986). 

68. Rademaker, M. C. J., De Jong, T. J. & Klinkhamer, P. G. L. Pollen Dynamics of Bumble-
Bee Visitation on Echium vulgare. Functional Ecology 11, 554–563 (1997). 

69. Midgley, J. J. et al. How important is biotic pollination and dispersal to the success of the 
angiosperms? Philosophical Transactions of the Royal Society of London. Series B: 
Biological Sciences 333, 209–215 (1991). 

70. Baracchi, D. Cognitive ecology of pollinators and the main determinants of foraging 
plasticity. Current Zoology 65, 421–424 (2019). 

71. Spaethe, J., Tautz, J. & Chittka, L. Visual constraints in foraging bumblebees: Flower size 
and color affect search time and flight behavior. PNAS 98, 3898–3903 (2001). 

72. Goulson, D. et al. Choosing rewarding flowers; perceptual limitations and innate preferences 
influence decision making in bumblebees and honeybees. Behav Ecol Sociobiol 61, 1523–
1529 (2007). 

73. Keasar, T., Motro, U. & Shmida, A. Temporal reward variability promotes sampling of a 
new flower type by bumblebees. Animal Behaviour 86, 747–753 (2013). 

74. Shettleworth, S. J. Cognition, Evolution, and Behavior. 2 (1998). 
75. Giurfa, M. Cognition with few neurons: higher-order learning in insects. Trends in 

Neurosciences 36, 285–294 (2013). 
76. Webb, B. Cognition in insects. Phil. Trans. R. Soc. B 367, 2715–2722 (2012). 
77. Menzel, R. The honeybee as a model for understanding the basis of cognition. Nat Rev 

Neurosci 13, 758–768 (2012). 
78. Menzel, R. & Giurfa, M. Dimensions of Cognition in an Insect, the Honeybee. Behavioral 

and Cognitive Neuroscience Reviews (2006). 



 

 143 

79. Heinrich, B. Resource Heterogeneity and Patterns of Movement in Foraging Bumblebees. 
Oecologia 40, 235–245 (1979). 

80. Allen, T., Cameron, S., McGinley, R. & Heinrich, B. The Role of Workers and New Queens 
in the Ergonomics of a Bumblebee Colony (Hymenoptera: Apoidea). Journal of the Kansas 
Entomological Society 51, 329–342 (1978). 

81. Willmer, P. G. & Stone, G. N. Advances in the Study of Behavior. (Elsevier, 2005). 
82. Raine, N. E. & Chittka, L. Flower Constancy and Memory Dynamics in Bumblebees 

(Hymenoptera: Apidae: Bombus). 21 (2006). 
83. Menzel, R. Searching for the Memory Trace in a Mini-Brain, the Honeybee. Learning & 

Memory 8, 53–62 (2001). 
84. Briscoe, A. D. & Chittka, L. The Evolution of Color Vision in Insects. Annual Review of 

Entomology 46, 471–510 (2001). 
85. Scheiner, R., Page, R. E. & Erber, J. The Effects of Genotype, Foraging Role, and Sucrose 

Responsiveness on the Tactile Learning Performance of Honey Bees (Apis mellifera L.). 
Neurobiology of Learning and Memory 76, 138–150 (2001). 

86. Ings, T. C. & Chittka, L. Predator crypsis enhances behaviourally mediated indirect effects 
on plants by altering bumblebee foraging preferences. Proc Biol Sci 276, 2031–2036 (2009). 

87. Ings, T. C., Raine, N. E. & Chittka, L. A population comparison of the strength and 
persistence of innate colour preference and learning speed in the bumblebee Bombus 
terrestris. 2009. 

88. Muth, F., Cooper, T. R., Bonilla, R. F. & Leonard, A. S. A novel protocol for studying bee 
cognition in the wild. Methods in Ecology and Evolution 9, 78–87 (2017). 

89. Morand-Ferron, J., Hamblin, S., Cole, E. F., Aplin, L. M. & Quinn, J. L. Taking the Operant 
Paradigm into the Field: Associative Learning in Wild Great Tits. PLOS ONE 10, e0133821 
(2015). 

90. Morand‐Ferron, J., Cole, E. F. & Quinn, J. L. Studying the evolutionary ecology of cognition 
in the wild: a review of practical and conceptual challenges. Biological Reviews 91, 367–389 
(2016). 

91. Rowe, C. & Healy, S. D. Measuring variation in cognition. Behav Ecol 25, 1287–1292 
(2014). 

92. Giurfa, M. Behavioral and neural analysis of associative learning in the honeybee: a taste 
from the magic well. J Comp Physiol A 193, 801–824 (2007). 

93. Baddeley, A. D. Working Memory. Philosophical Transactions of the Royal Society of 
London. Series B, Biological Sciences 302, 311–324 (1983). 

94. Matzel, L. D. & Kolata, S. Selective attention, working memory, and animal intelligence. 
Neuroscience & Biobehavioral Reviews 34, 23–30 (2010). 

95. Zhang, S., Bock, F., Si, A., Tautz, J. & Srinivasan, M. V. Visual working memory in 
decision making by honey bees. PNAS 102, 5250–5255 (2005). 

96. Vandierendonck, A. Role of Working Memory in Task Switching. PSYCHOL BELG 52, 229 
(2012). 

97. Bitterman, M. E., Menzel, R., Fietz, A. & Schäfer, S. Classical conditioning of proboscis 
extension in honeybees (Apis mellifera). Journal of Comparative Psychology 97, 107–119 
(1983). 

98. Takeda, K. Classical conditioned response in the honey bee. Journal of Insect Physiology 6, 
168–179 (1961). 

99. Menzel, R. Memory dynamics in the honeybee. J Comp Physiol A 185, 323–340 (1999). 



 

 144 

100. Becher, M. A. et al. Bumble-BEEHAVE: A systems model for exploring multifactorial 
causes of bumblebee decline at individual, colony, population and community level. Journal 
of Applied Ecology 0, (2018). 

101. DeAngelis, D. L. & Grimm, V. Individual-based models in ecology after four decades. 
F1000Prime Rep 6, (2014). 

102. Mortensen, L. O., Chudzinska, M. E., Slabbekoorn, H. & Thomsen, F. Agent-based 
models to investigate sound impact on marine animals: bridging the gap between effects on 
individual behaviour and population level consequences. Oikos 130, 1074–1086 (2021). 

103. Retzlaff, C. O., Ziefle, M. & Calero Valdez, A. The History of Agent-Based Modeling 
in the Social Sciences. in Digital Human Modeling and Applications in Health, Safety, 
Ergonomics and Risk Management. Human Body, Motion and Behavior (ed. Duffy, V. G.) 
304–319 (Springer International Publishing, 2021). doi:10.1007/978-3-030-77817-0_22. 

104. Tesfatsion, L. Agent-Based Computational Economics: Growing Economies From the 
Bottom Up. Artificial Life 8, 55–82 (2002). 

105. McLane, A. J., Semeniuk, C., McDermid, G. J. & Marceau, D. J. The role of agent-based 
models in wildlife ecology and management. Ecological Modelling 222, 1544–1556 (2011). 

106. Stillman, R. A., Railsback, S. F., Giske, J., Berger, U. & Grimm, V. Making Predictions 
in a Changing World: The Benefits of Individual-Based Ecology. BioScience 65, 140–150 
(2015). 

107. Grimm, V. & Berger, U. Structural realism, emergence, and predictions in next-
generation ecological modelling: Synthesis from a special issue. Ecological Modelling 326, 
177–187 (2016). 

108. Grimm, V. & Railsback, S. F. Pattern-oriented modelling: a ‘multi-scope’ for predictive 
systems ecology. Phil. Trans. R. Soc. B 367, 298–310 (2012). 

109. Qu, H., Seifan, T., Tielbörger, K. & Seifan, M. A spatially explicit agent-based 
simulation platform for investigating effects of shared pollination service on ecological 
communities. Simulation Modelling Practice and Theory 37, 107–124 (2013). 

110. Olsson, O., Bolin, A., Smith, H. G. & Lonsdorf, E. V. Modeling pollinating bee visitation 
rates in heterogeneous landscapes from foraging theory. Ecological Modelling 316, 133–143 
(2015). 

111. Crone, E. E. & Williams, N. M. Bumble bee colony dynamics: quantifying the 
importance of land use and floral resources for colony growth and queen production. 
Ecology Letters 19, 460–468 (2016). 

112. Dornhaus, A. & Chittka, L. Food alert in bumblebees (Bombus terrestris): possible 
mechanisms and evolutionary implications. (2001). 

113. Dornhaus, A. & Chittka, L. Information flow and regulation of foraging activityin 
bumble bees (Bombus spp.). Apidologie 35, 183–192 (2004). 

114. Saleh, N., Ohashi, K., Thomson, J. D. & Chittka, L. Facultative use of the repellent scent 
mark in foraging bumblebees: complex versus simple flowers. Animal Behaviour 71, 847–
854 (2006). 

115. Molet, M., Chittka, L. & Raine, N. E. How floral odours are learned inside the 
bumblebee (Bombus terrestris) nest. Naturwissenschaften 96, 213–219 (2009). 

116. Twiston-Davies, G., Becher, M. A. & Osborne, J. L. BEE-STEWARD: A research and 
decision-support software for effective land management to promote bumblebee populations. 
Methods in Ecology and Evolution 12, 1809–1815 (2021). 



 

 145 

117. Samuelson, E. E. W., Chen-Wishart, Z. P., Gill, R. J. & Leadbeater, E. Effect of acute 
pesticide exposure on bee spatial working memory using an analogue of the radial-arm maze. 
Scientific Reports 6, srep38957 (2016). 

118. Versypt, A., Crall, J. & Dey, B. BeeNestABM: An open-source agent-based model of 
spatiotemporal distribution of bumblebees in nests. Journal of Open Source Software 3, 718 
(2018). 

119. Bryden, J., Gill, R. J., Mitton, R. A. A., Raine, N. E. & Jansen, V. A. A. Chronic 
sublethal stress causes bee colony failure. Ecology Letters 16, 1463–1469 (2013). 

120. Banks, H. T. et al. Modeling bumble bee population dynamics with delay differential 
equations. Ecological Modelling 351, 14–23 (2017). 

121. Banks, J. E., Banks, H. T., Myers, N., Laubmeier, A. N. & Bommarco, R. Lethal and 
sublethal effects of toxicants on bumble bee populations: a modelling approach. 
Ecotoxicology 29, 237–245 (2020). 

122. Biernaskie, J. M., Walker, S. C. & Gegear, R. J. Bumblebees Learn to Forage like 
Bayesians. The American Naturalist 174, 413–423 (2009). 

123. Häussler, J., Sahlin, U., Baey, C., Smith, H. G. & Clough, Y. Pollinator population size 
and pollination ecosystem service responses to enhancing floral and nesting resources. 
Ecology and Evolution 7, 1898–1908 (2016). 

124. McKinley, D. C. et al. Citizen science can improve conservation science, natural resource 
management, and environmental protection. Biological Conservation 208, 15–28 (2017). 

125. Ballard, H. L. et al. Contributions to conservation outcomes by natural history museum-
led citizen science: Examining evidence and next steps. Biological Conservation 208, 87–97 
(2017). 

126. Bonney, R. et al. Next Steps for Citizen Science. Science 343, 1436–1437 (2014). 
127. Conrad, C. C. & Hilchey, K. G. A review of citizen science and community-based 

environmental monitoring: issues and opportunities. Environmental Monitoring and 
Assessment 176, 273–291 (2011). 

128. Falk, S. et al. Evaluating the ability of citizen scientists to identify bumblebee (Bombus) 
species. PLoS ONE 14, e0218614 (2019). 

129. Grimm, V. et al. The ODD Protocol for Describing Agent-Based and Other Simulation 
Models: A Second Update to Improve Clarity, Replication, and Structural Realism. JASSS 
23, 7 (2020). 

130. Wilensky, U. NetLogo. http://ccl.northwestern.edu/netlogo/ (1999). 
131. Vaudo, A. D., Farrell, L. M., Patch, H. M., Grozinger, C. M. & Tooker, J. F. Consistent 

pollen nutritional intake drives bumble bee (Bombus impatiens) colony growth and 
reproduction across different habitats. Ecology and Evolution 8, 5765–5776 (2018). 

132. Heinrich, B. The Foraging Specializations of Individual Bumblebees. Ecological 
Monographs 46, 105–128 (1976). 

133. Castellanos, M. C., Wilson, P. & Thomson, J. D. Dynamic nectar replenishment in 
flowers of Penstemon (Scrophulariaceae). American Journal of Botany 89, 111–118 (2002). 

134. Metz, J. et al. Plant survival in relation to seed size along environmental gradients: a 
long-term study from semi-arid and Mediterranean annual plant communities. Journal of 
Ecology 98, 697–704 (2010). 

135. Cane, J. H. & Dunne, R. Generalist Bees Pollinate Red-flowered Penstemon eatonii: 
Duality in the Hummingbird Pollination Syndrome. amid 171, 365–370 (2014). 



 

 146 

136. Castellanos, M. C., Wilson, P. & Thomson, J. D. Pollen Transfer by Hummingbirds and 
Bumblebees, and the Divergence of Pollination Modes in Penstemon. Evolution 57, 2742–
2752 (2003). 

137. Mondal, A. K. & Mandal, S. Pollen production in some terrestrial angiosperms. Current 
Science 74, 906–910 (1998). 

138. Dunlap, A. S. & Stephens, D. W. Tracking a changing environment: optimal sampling, 
adaptive memory and overnight effects. Behavioural Processes 89, 86–94 (2012). 

139. Charnov, E. L. Optimal foraging, the marginal value theorem. Theoretical Population 
Biology 9, 129–136 (1976). 

140. Pyke, G. H. Optimal foraging theory: a critical review. Annual review of ecology and 
systematics 15, 523–575 (1984). 

141. Grimm, V. et al. A standard protocol for describing individual-based and agent-based 
models. Ecological Modelling 198, 115–126 (2006). 

142. Grimm, V. et al. The ODD protocol: A review and first update. Ecological Modelling 
221, 2760–2768 (2010). 

143. Folly, A. J., Koch, H., Stevenson, P. C. & Brown, M. J. F. Larvae act as a transient 
transmission hub for the prevalent bumblebee parasite Crithidia bombi. Journal of 
Invertebrate Pathology 148, 81–85 (2017). 

144. Colla, S. R., Otterstatter, M. C., Gegear, R. J. & Thomson, J. D. Plight of the bumble bee: 
Pathogen spillover from commercial to wild populations. Biological Conservation 129, 461–
467 (2006). 

145. Gillespie, S. Factors affecting parasite prevalence among wild bumblebees. Ecological 
Entomology 35, 737–747 (2010). 

146. Goulson, D. REVIEW: An overview of the environmental risks posed by neonicotinoid 
insecticides. Journal of Applied Ecology 50, 977–987 (2013). 

147. Krupke, C. H., Hunt, G. J., Eitzer, B. D., Andino, G. & Given, K. Multiple Routes of 
Pesticide Exposure for Honey Bees Living Near Agricultural Fields. PLOS ONE 7, e29268 
(2012). 

148. Dolezal, A. G. et al. Honey Bee Viruses in Wild Bees: Viral Prevalence, Loads, and 
Experimental Inoculation. PLOS ONE 11, e0166190 (2016). 

149. Hladik, M. L., Main, A. R. & Goulson, D. Environmental Risks and Challenges 
Associated with Neonicotinoid Insecticides. Environ. Sci. Technol. 52, 3329–3335 (2018). 

150. Banaszak-Cibicka, W. & Żmihorski, M. Wild bees along an urban gradient: winners and 
losers. J Insect Conserv 16, 331–343 (2012). 

151. Traveset, A., Tur, C. & Eguíluz, V. M. Plant survival and keystone pollinator species in 
stochastic coextinction models: role of intrinsic dependence on animal-pollination. Sci Rep 7, 
6915 (2017). 

152. Vieira, M. C. & Almeida‐Neto, M. A simple stochastic model for complex coextinctions 
in mutualistic networks: robustness decreases with connectance. Ecology Letters 18, 144–
152 (2015). 

153. Newton, I. The recent declines of farmland bird populations in Britain: an appraisal of 
causal factors and conservation actions. Ibis 146, 579–600 (2004). 

154. Titulaer, M. et al. Molecular analysis of stomach contents reveals important grass seeds 
in the winter diet of Baird’s and Grasshopper sparrows, two declining grassland bird species. 
PLOS ONE 12, e0189695 (2017). 



 

 147 

155. Tur, C., Vigalondo, B., Trøjelsgaard, K., Olesen, J. M. & Traveset, A. Downscaling 
pollen-transport networks to the level of individuals. J Anim Ecol 83, 306–317 (2014). 

156. Gegear, R. J. & Laverty, T. M. Flower constancy in bumblebees: a test of the trait 
variability hypothesis. Animal Behaviour 69, 939–949 (2005). 

157. Ellner, S. P., Ng, W. H. & Myers, C. R. Individual Specialization and Multihost 
Epidemics: Disease Spread in Plant-Pollinator Networks. The American Naturalist E000–
E000 (2020) doi:10.1086/708272. 

158. Morán‐López, T. et al. Can network metrics predict vulnerability and species roles in 
bird‐dispersed plant communities? Not without behaviour. Ecol Lett 23, 348–358 (2020). 

159. Strang, C. G. & Sherry, D. F. Serial reversal learning in bumblebees (Bombus impatiens). 
Anim Cogn 17, 723–734 (2014). 

160. Maharaj, G., Horack, P., Yoder, M. & Dunlap, A. S. Influence of preexisting preference 
for color on sampling and tracking behavior in bumble bees. Behav Ecol 30, 150–158 
(2019). 

161. Chittka, L. & Niven, J. Are Bigger Brains Better? Current Biology 19, R995–R1008 
(2009). 

162. Chittka, L. Bee cognition. Current Biology 27, R1049–R1053 (2017). 
163. Greggers, U. & Menzel, R. Memory Dynamics and Foraging Strategies of Honeybees. 

Behavioral Ecology and Sociobiology 32, 17–29 (1993). 
164. Sih, A., Trimmer, P. C. & Ehlman, S. M. A conceptual framework for understanding 

behavioral responses to HIREC. Current Opinion in Behavioral Sciences 12, 109–114 
(2016). 

165. Perry, C. J., Barron, A. B. & Chittka, L. The frontiers of insect cognition. Current 
Opinion in Behavioral Sciences 16, 111–118 (2017). 

166. Ragozzino, M. E. The Contribution of the Medial Prefrontal Cortex, Orbitofrontal 
Cortex, and Dorsomedial Striatum to Behavioral Flexibility. Annals of the New York 
Academy of Sciences 1121, 355–375 (2007). 

167. Coppens, C. M., de Boer, S. F. & Koolhaas, J. M. Coping styles and behavioural 
flexibility: towards underlying mechanisms. Philosophical Transactions of the Royal Society 
B: Biological Sciences 365, 4021–4028 (2010). 

168. Lea, S. E. G., Chow, P. K. Y., Leaver, L. A. & McLaren, I. P. L. Behavioral flexibility: A 
review, a model, and some exploratory tests. Learn Behav 48, 173–187 (2020). 

169. Strang, C. Behavioural Flexibility in Bumblebees (Bombus impatiens). 165. 
170. Audet, J.-N. & Lefebvre, L. What’s flexible in behavioral flexibility? Behavioral Ecology 

28, 943–947 (2017). 
171. Sih, A. Understanding variation in behavioural responses to human-induced rapid 

environmental change: a conceptual overview. Animal Behaviour 85, 1077–1088 (2013). 
172. Sih, A., Ferrari, M. C. O. & Harris, D. J. Evolution and behavioural responses to human-

induced rapid environmental change. Evolutionary Applications 4, 367–387 (2011). 
173. Hethcoat, M. G. & Chalfoun, A. D. Towards a mechanistic understanding of human-

induced rapid environmental change: a case study linking energy development, nest 
predation and predators. Journal of Applied Ecology 52, 1492–1499 (2015). 

174. Gill, K. S. et al. Experimental Test-Bed for Bumblebee-Inspired Channel Selection in an 
Ad-Hoc Network. in 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall) 1–5 
(2018). doi:10.1109/VTCFall.2018.8690978. 



 

 148 

175. Hwang, J., Bose, N., Nguyen, H. D. & Williams, G. Acoustic Search and Detection of Oil 
Plumes Using an Autonomous Underwater Vehicle. Journal of Marine Science and 
Engineering 8, 618 (2020). 

176. Tello-Ramos, M. C., Branch, C. L., Kozlovsky, D. Y., Pitera, A. M. & Pravosudov, V. V. 
Spatial memory and cognitive flexibility trade-offs: to be or not to be flexible, that is the 
question. Animal Behaviour 147, 129–136 (2019). 

177. Sherry, D. F. & Strang, C. G. Contrasting styles in cognition and behaviour in 
bumblebees and honeybees. Behavioural Processes 117, 59–69 (2015). 

178. Bond, A. B., Kamil, A. C. & Balda, R. P. Serial reversal learning and the evolution of 
behavioral flexibility in three species of North American corvids (Gymnorhinus 
cyanocephalus, Nucifraga columbiana, Aphelocoma californica). Journal of Comparative 
Psychology 121, 372–379 (2007). 

179. Giurfa, M. Learning and cognition in insects. WIREs Cognitive Science 6, 383–395 
(2015). 

180. Mackintosh, N. J. & Cauty, A. Spatial reversal learning in rats, pigeons, and goldfish. 
Psychon Sci 22, 281–282 (1971). 

181. Konstantinidis, E., Harman, J. L. & Gonzalez, C. Patterns of choice adaptation in 
dynamic risky environments. Preprint at https://doi.org/10.31234/osf.io/f34qb (2020). 

182. Lejarraga, T., Lejarraga, J. & Gonzalez, C. Decisions from experience: How groups and 
individuals adapt to change. Mem Cogn 42, 1384–1397 (2014). 

183. Hertwig, R., Barron, G., Weber, E. U. & Erev, I. Decisions from Experience and the 
Effect of Rare Events in Risky Choice. Psychol Sci 15, 534–539 (2004). 

184. McCormick, E. N., Cheyette, S. J. & Gonzalez, C. Choice adaptation to changing 
environments: trends, feedback, and observability of change. Mem Cogn (2022) 
doi:10.3758/s13421-022-01313-2. 

185. Brunswik, E. Probability as a determiner of rat behavior. Journal of Experimental 
Psychology 25, 175–197 (1939). 

186. Lloyd, K. & Leslie, D. S. Context-dependent decision-making: a simple Bayesian model. 
Journal of The Royal Society Interface 10, 20130069 (2013). 

187. Pulliam, H. R. On the Theory of Optimal Diets. The American Naturalist 108, 59–74 
(1974). 

188. Zhang, F. & Hui, C. Recent experience-driven behaviour optimizes foraging. Animal 
Behaviour 88, 13–19 (2014). 

189. McNamara, J. & Houston, A. The application of statistical decision theory to animal 
behaviour. Journal of Theoretical Biology 85, 673–690 (1980). 

190. Dyer, A. G., Dorin, A., Reinhardt, V., Garcia, J. E. & Rosa, M. G. P. Bee reverse-
learning behavior and intra-colony differences: Simulations based on behavioral experiments 
reveal benefits of diversity. Ecological Modelling 277, 119–131 (2014). 

191. MaBouDi, H., Solvi, C. & Chittka, L. Bumblebees Learn a Relational Rule but Switch to 
a Win-Stay/Lose-Switch Heuristic After Extensive Training. Front Behav Neurosci 14, 137 
(2020). 

192. Bélisle, C. & Cresswell, J. The effects of a limited memory capacity on foraging 
behavior. Theoretical population biology 52, 78–90 (1997). 

193. Keasar, T., Rashkovich, E., Cohen, D. & Shmida, A. Bees in two-armed bandit 
situations: foraging choices and possible decision mechanisms. Behavioral Ecology 13, 757–
765 (2002). 



 

 149 

194. Pyke, G. H. Optimal foraging: Movement patterns of bumblebees between 
inflorescences. Theoretical Population Biology 13, 72–98 (1978). 

195. Gigerenzer, G. & Todd, P. M. Simple heuristics that make us smart. (Oxford University 
Press, 1999). 

196. Bílek, J., Nedoma, J. & Jirásek, M. REPRESENTATIVENESS HEURISTICS: A 
LITERATURE REVIEW OF ITS IMPACTS ON THE QUALITY OF DECISION-
MAKING. 10. 

197. Buckmann, M. & Şimşek, Ö. Decision Heuristics for Comparison:How Good Are They? 
in Proceedings of the NIPS 2016 Workshop on Imperfect Decision Makers 1–11 (PMLR, 
2017). 

198. Why Heuristics Work - Gerd Gigerenzer, 2008. 
https://journals.sagepub.com/doi/10.1111/j.1745-6916.2008.00058.x. 

199. Heuristics: The Foundations of Adaptive Behavior. (Oxford University Press, 2011). 
doi:10.1093/acprof:oso/9780199744282.001.0001. 

200. Hutchinson, J. M. C. & Gigerenzer, G. Simple heuristics and rules of thumb: Where 
psychologists and behavioural biologists might meet. Behavioural Processes 69, 97–124 
(2005). 

201. Hau, R., Pleskac, T. J., Kiefer, J. & Hertwig, R. The description–experience gap in risky 
choice: the role of sample size and experienced probabilities. Journal of Behavioral Decision 
Making 21, 493–518 (2008). 

202. Averell, L. & Heathcote, A. The form of the forgetting curve and the fate of memories. 
Journal of Mathematical Psychology 55, 25–35 (2011). 

203. Wixted, J. T. & Ebbesen, E. B. Genuine power curves in forgetting: A quantitative 
analysis of individual subject forgetting functions. Memory & Cognition 25, 731–739 (1997). 

204. Rescorla, R. & Wagner, A. A theory of Pavlovian conditioning: Variations in the 
effectiveness of reinforcement and non-reinforcement (1972) Classical Conditioning II: 
Current Research and Theory. Current Research and Theory 64–99 (1998). 

205. Niv, Y., Joel, D., Meilijson, I. & Ruppin, E. Evolution of Reinforcement Learning in 
Uncertain Environments: A Simple Explanation for Complex Foraging Behaviors. 20. 

206. Frankenhuis, W. E., Panchanathan, K. & Barto, A. G. Enriching behavioral ecology with 
reinforcement learning methods. Behavioural Processes 161, 94–100 (2019). 

207. Yechiam, E. & Busemeyer, J. R. Comparison of basic assumptions embedded in learning 
models for experience-based decision making. Psychonomic Bulletin & Review 12, 387–402 
(2005). 

208. MaBouDi, H., Solvi, C. & Chittka, L. Bumblebees Learn a Relational Rule but Switch to 
a Win-Stay/Lose-Switch Heuristic After Extensive Training. Front. Behav. Neurosci. 14, 
(2020). 

209. Chittka, L. Sensorimotor learning in bumblebees: long-term retention and reversal 
training. undefined (1998). 

210. Worden, B. D., Skemp, A. K. & Papaj, D. R. Learning in two contexts: the effects of 
interference and body size in bumblebees. Journal of Experimental Biology 208, 2045–2053 
(2005). 

211. Stonedahl, F. & Wilensky, U. Finding Forms of Flocking: Evolutionary Search in ABM 
Parameter-Spaces. in Multi-Agent-Based Simulation XI (eds. Bosse, T., Geller, A. & Jonker, 
C. M.) 61–75 (Springer, 2011). doi:10.1007/978-3-642-18345-4_5. 



 

 150 

212. rakow, T. & Miler, K. Doomed to repeat the successes of the past: History is best 
forgotten for repeated choices with nonstationary payoffs. Memory & Cognition 37, 985–
1000 (2009). 

213. Rodríguez-Moreno, I., Martínez-Otzeta, J. M., Sierra, B., Rodriguez, I. & Jauregi, E. 
Video Activity Recognition: State-of-the-Art. Sensors 19, 3160 (2019). 

214. Guo, Y. et al. Deep learning for visual understanding: A review. Neurocomputing 187, 
27–48 (2016). 

215. Herath, S., Harandi, M. & Porikli, F. Going deeper into action recognition: A survey. 
Image and Vision Computing 60, 4–21 (2017). 

216. Guo, K., Ishwar, P. & Konrad, J. Action Recognition Using Sparse Representation on 
Covariance Manifolds of Optical Flow. in 2010 7th IEEE International Conference on 
Advanced Video and Signal Based Surveillance 188–195 (2010). 
doi:10.1109/AVSS.2010.71. 

217. Kumar, S. S. & John, M. Human activity recognition using optical flow based feature set. 
in 2016 IEEE International Carnahan Conference on Security Technology (ICCST) 1–5 
(2016). doi:10.1109/CCST.2016.7815694. 

218. Feng Niu & Abdel-Mottaleb, M. HMM-Based Segmentation and Recognition of Human 
Activities from Video Sequences. in 2005 IEEE International Conference on Multimedia 
and Expo 804–807 (2005). doi:10.1109/ICME.2005.1521545. 

219. Raman, N. & Maybank, S. J. Activity recognition using a supervised non-parametric 
hierarchical HMM. Neurocomputing 199, 163–177 (2016). 

220. Núñez, J. C., Cabido, R., Pantrigo, J. J., Montemayor, A. S. & Vélez, J. F. Convolutional 
Neural Networks and Long Short-Term Memory for skeleton-based human activity and hand 
gesture recognition. Pattern Recognition 76, 80–94 (2018). 

221. Sadanand, S. & Corso, J. J. Action bank: A high-level representation of activity in video. 
in 2012 IEEE Conference on Computer Vision and Pattern Recognition 1234–1241 (2012). 
doi:10.1109/CVPR.2012.6247806. 

222. Ng, J. Y.-H. & Davis, L. S. Temporal Difference Networks for Video Action 
Recognition. in 2018 IEEE Winter Conference on Applications of Computer Vision (WACV) 
1587–1596 (2018). doi:10.1109/WACV.2018.00176. 

223. Zhu, Y. et al. A Comprehensive Study of Deep Video Action Recognition. 
arXiv:2012.06567 [cs] (2020). 

224. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T. & Serre, T. HMDB: A large video 
database for human motion recognition. in 2011 International Conference on Computer 
Vision 2556–2563 (2011). doi:10.1109/ICCV.2011.6126543. 

225. Soomro, K., Zamir, A. R. & Shah, M. UCF101: A Dataset of 101 Human Actions Classes 
From Videos in The Wild. (2012) doi:10.48550/ARXIV.1212.0402. 

226. Heilbron, F. C., Escorcia, V., Ghanem, B. & Niebles, J. C. ActivityNet: A large-scale 
video benchmark for human activity understanding. in 2015 IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR) 961–970 (IEEE, 2015). 
doi:10.1109/CVPR.2015.7298698. 

227. Gu, C. et al. AVA: A Video Dataset of Spatio-Temporally Localized Atomic Visual 
Actions. in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition 6047–
6056 (2018). doi:10.1109/CVPR.2018.00633. 



 

 151 

228. Monfort, M. et al. Moments in Time Dataset: one million videos for event understanding. 
IEEE Transactions on Pattern Analysis and Machine Intelligence 1–1 (2019) 
doi:10.1109/TPAMI.2019.2901464. 

229. Abu-El-Haija, S. et al. YouTube-8M: A Large-Scale Video Classification Benchmark. 
Preprint at http://arxiv.org/abs/1609.08675 (2016). 

230. Simonyan, K. & Zisserman, A. Two-Stream Convolutional Networks for Action 
Recognition in Videos. in NIPS (2014). 

231. Zhang, K., Li, D., Huang, J. & Chen, Y. Automated Video Behavior Recognition of Pigs 
Using Two-Stream Convolutional Networks. Sensors 20, 1085 (2020). 

232. Carreira, J. & Zisserman, A. Quo Vadis, Action Recognition? A New Model and the 
Kinetics Dataset. in 2017 IEEE Conference on Computer Vision and Pattern Recognition 
(CVPR) 4724–4733 (2017). doi:10.1109/CVPR.2017.502. 

233. Lin, J., Gan, C. & Han, S. TSM: Temporal Shift Module for Efficient Video 
Understanding. in 2019 IEEE/CVF International Conference on Computer Vision (ICCV) 
7082–7092 (2019). doi:10.1109/ICCV.2019.00718. 

234. Li, Z., Gavrilyuk, K., Gavves, E., Jain, M. & Snoek, C. G. M. VideoLSTM convolves, 
attends and flows for action recognition. Computer Vision and Image Understanding 166, 
41–50 (2018). 

235. Contributors, Mma. OpenMMLab’s Next Generation Video Understanding Toolbox and 
Benchmark. https://github.com/open-mmlab/mmaction2 (2020). 

236. Li, W., Swetha, S. & Shah, D. M. Wildlife Action Recognition using Deep Learning. 3. 
237. Schütz, A. K. et al. Computer Vision for Detection of Body Posture and Behavior of Red 

Foxes. Animals 12, 233 (2022). 
238. Sclocco, A., Ong, S. J. Y., Aung, S. Y. P. & Teseo, S. Integrating real-time data analysis 

into automatic tracking of social insect behavior. 
http://biorxiv.org/lookup/doi/10.1101/2020.11.03.366195 (2020) 
doi:10.1101/2020.11.03.366195. 

239. Rossetti, B. J., Dynes, T., Brosi, B., Roode, J. C. de & Kong, J. GRAPHITE: A graphical 
environment for scalable in situ video tracking of moving insects. Methods in Ecology and 
Evolution 9, 956–964 (2018). 

240. Woodgate, J. L., Makinson, J. C., Lim, K. S., Reynolds, A. M. & Chittka, L. Life-Long 
Radar Tracking of Bumblebees. PLOS ONE 11, e0160333 (2016). 

241. Michener, C. D. The Bees of the World. (JHU Press, 2000). 
242. Goulson, D. Foraging strategies of insects for gathering nectar and pollen, and 

implications for plant ecology and evolution. Perspectives in Plant Ecology, Evolution and 
Systematics 2, 185–209 (1999). 

243. Konzmann, S. & Lunau, K. Divergent Rules for Pollen and Nectar Foraging Bumblebees 
– A Laboratory Study with Artificial Flowers Offering Diluted Nectar Substitute and Pollen 
Surrogate. PLOS ONE 9, e91900 (2014). 

244. Goulson, D. et al. Effects of land use at a landscape scale on bumblebee nest density and 
survival. Journal of Applied Ecology 47, 1207–1215 (2010). 

245. Bolnick, D. I. et al. The Ecology of Individuals: Incidence and Implications of Individual 
Specialization. The American Naturalist 161, 1–28 (2003). 

246. Smith, A. R., Graystock, P. & Hughes, W. O. H. Specialization on pollen or nectar in 
bumblebee foragers is not associated with ovary size, lipid reserves or sensory tuning. PeerJ 
4, e2599 (2016). 



 

 152 

247. Chittka, L. & Thomson, J. D. Sensori-motor learning and its relevance for task 
specialization in bumble bees. Behav Ecol Sociobiol 41, 385–398 (1997). 

248. Maloof, J. E. The effects of a bumble bee nectar robber on plant reproductive success and 
pollinator behavior. American Journal of Botany 88, 1960–1965 (2001). 

249. Miller-Struttmann, N. E., Heise, D., Schul, J., Geib, J. C. & Galen, C. Flight of the 
bumble bee: Buzzes predict pollination services. PLOS ONE 12, e0179273 (2017). 

250. Ke, S.-R. et al. A Review on Video-Based Human Activity Recognition. Computers 2, 
88–131 (2013). 

251. Wang, L. et al. Temporal Segment Networks: Towards Good Practices for Deep Action 
Recognition. in ECCV (2016). doi:10.1007/978-3-319-46484-8_2. 

252. Zach, C., Pock, T. & Bischof, H. A Duality Based Approach for Realtime TV-L1 Optical 
Flow. in Pattern Recognition (eds. Hamprecht, F. A., Schnörr, C. & Jähne, B.) 214–223 
(Springer, 2007). doi:10.1007/978-3-540-74936-3_22. 

253. Ruiz, P. Understanding and visualizing ResNets. Medium 
https://towardsdatascience.com/understanding-and-visualizing-resnets-442284831be8 
(2019). 

254. Deng, J. et al. ImageNet: A large-scale hierarchical image database. in 2009 IEEE 
Conference on Computer Vision and Pattern Recognition 248–255 (2009). 
doi:10.1109/CVPR.2009.5206848. 

255. Wang, S. et al. denseflow. (2020). 
 
  



 

 153 

Appendix 

S1: Validation of Model Assumptions 

Do bees respond adaptively under variable floral reward conditions? 

One major assumption of SimBee is that working memory enables bees to adaptively exploit 

flowers under highly variable reward conditions. To test this assumption, we randomly placed 

4000 plants of each of four species (Sp1-4) in the environment with the following reward 

properties: reward mean and range for Sp 1=0.7(0.45,0.95); Sp 2=0.6 (0.35,0.85); Sp 3=0.5 

(0.5,0.5), Sp 4=0.5 (0.0,1.0) (Scenario 1 condition, see Table 9). Individual bees were allowed to 

forage under these floral conditions for one sampling and foraging cycle (approximately 100 

flower visits) either with the ability to remember reward values of the previous 0 flower visits 

(no memory condition) or 10 flower visits (memory condition). Figure 25a shows the proportion 

of visits to the plant species offering the greatest average reward (Sp1) for bees in each group. As 

expected, bees with memory quickly learned the identity of the plant species offering the greatest 

average reward and chose that species with high frequency compared with the baseline random 

choices of the bees without memory. Note that accuracy jumped when bees with memory entered 

foraging mode (at about 100 time units), and increased as bees filled their memory with more 

rewarding flowers. Because of the limited capacity of working memory and the variability of the 

floral rewards in the system, bees did not have ‘complete’ knowledge of floral reward properties 

of plant species and therefore did not exclusively visit the most rewarding species (Sp 1); in 

addition, Sp1 would not always be present in a bee’s field-of-view. Memory also increased the 

amount of floral reward collected by bees over time (Figure 25b), demonstrating that memory is 

an adaptive trait in our system.  
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Figure 25: Memory enables bees to make adaptive choices under variable floral reward conditions. Individual bees were allowed 
to choose among four plant species with different mean reward values over one sampling and foraging cycle. (a) Proportion of 
bee visits to the plant species with the greatest average reward. Initial visits were made with bees in sampling mode (not utilizing 
memory). Dotted line shows the expected proportion of visits to the most rewarding (correct) flower type assuming random 
choice. (b) Amount of reward collected by bees with the ability to remember reward values of the previous 0 (no memory) or 10 
flower visits (memory). N=100 simulation runs for each memory condition. Mean+/- SD 

 

 

Does plant reproductive success reflect bee foraging patterns? 

Another major assumption of SimBee is that plant reproductive success depends on the type of 

pollen transferred among flowers (determined by flower choice behavior of bees) and amount of 

pollen transferred (determined by the number of bees in the system). To test these assumptions, 

we randomly placed 4000 plants of each of four species (Sp1-4) in the environment. Flowers of 

all species offered the same average reward (mean (range) = 0.58 (0.48, 0.68)). Each plant 

started the season with 6 empty slots that can either produce a seed (receive conspecific pollen) 

or be prevented from doing so in the future (receive heterospecific pollen; blocked slot) after 

each bee visit.  

  To test for effects of pollen limitation (fewer bees in the system) on seed production, all 

individuals were assigned a memory capacity of 1 and were allowed to forage in the following 

A B 
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population sizes: 20, 50, 100, 200 individuals. Data were collected in foraging mode only. A 

memory capacity of 1 results in each individual bee always visiting only a single plant species. 

On average, all floral species were visited by approximately equal numbers of bees. 

Consequently, no slots were blocked for any species, and all seed production depended on the 

number of individual bees in the system. Results showed that seed production increased with bee 

population size (Figure 26a), indicating that plant reproductive success is limited by the amount 

of pollen transferred by bees. 100 bees were sufficient to almost completely fill all plant slots 

under these conditions.  

To test the effects of flower choice behavior, bees were next assigned with one of the 

following memory capacities: remembered the previous 0 (no memory), 1, 5, 10, and 20 flower 

visits. Given the floral resource conditions, bees with a greater memory capacity are expected to 

switch between flowers of different plant species more frequently because they are better able to 

determine that average reward level is the same among plant species. Consequently, increased 

memory capacity is also expected to be associated with reduced seed production due to the 

associated increase in interspecific pollen transfer. Bees with 0 memory are expected to switch 

randomly among species, and thus should switch species for 75% of visits, providing a baseline 

for expected seed production. A bee population of 100 was used for each memory capacity. Data 

for bees and plants were generated in foraging mode only, over one season. We recorded the 

frequency of bee movements between flowers of the same species, or ‘like-like’ moves, which 

provides a direct measure of pollination efficiency when the number of bees is not limiting (i.e., 

seed production is based solely on the foraging decisions of bees). As expected, seed production 

increased with frequency of like-like moves by bees (Figure 26b), indicating that the foraging 

decisions of bees have a direct effect on plant fitness.  
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Figure 26: Plant reproductive success depends on availability of bumblebee pollinators and their foraging choices. (a) 
Proportion of empty and fertilized (seed produced) seed slots at the end of the season as a function of bee population size. All 
bees had a memory capacity of 1 and therefore did not move pollen between different species; seed slots were always either 
empty or fertilized, and never blocked. (b) End of season seed production as a function of moves between flowers of the same 
species (like-like moves) for bees with different memory capacities. Bee population size was 100. Numbers above each point 
correspond to bee memory capacity. N=100 simulation runs for each experimental condition. 
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S2: Bumblebee-Inspired Vehicular Communication Algorithms 

 The challenge of adapting to changing and dynamic environments is not unique to 

pollinators. Modern vehicles also communicate with each other on the road using a limited range 

of wireless frequencies. As vehicle-to-vehicle (V2V) communication increases with vehicle 

density, spectrum scarcity issues are expected to emerge. A potential solution to this issue is to 

leverage underutilized wireless spectrum elsewhere, such as in the digital television spectrum 

band, using an approach called Vehicular Dynamic Spectrum Access (VDSA) [3], [4]. The 

fundamental idea behind DSA is to use unoccupied channels without interfering with the 

licensed users, i.e., primary users (PUs), of the frequency bands. However, channel occupancy 

and interference levels vary widely over time, creating a dynamic environment that is difficult to 

exploit. Channel energy – a combined measure of in-band and out-of-band interference – is a 

measure similar but inverse to nectar rewards in a floral environment. While the challenge of 

VDSA may be relatively novel in the electrical engineering field, there are numerous parallels 

between the wireless environment and the natural environment of pollinators such as 

bumblebees.  

Models of bumblebee decision-making can provide a framework for VDSA based on the 

adaptive behavioral responses of pollinators in a complex and variable environment. In this 

context, the challenge of minimizing channel energy for each vehicle’s communication contains 

many direct parallels to bumblebees maximizing their nectar intake while foraging. Figure 27 

summarizes these comparisons and serves a foundation for the collaborative work with the 

Wyglinski lab at WPI. This collaboration resulted in the works listed below. These were written 

by Kuldeep Gill. Kevin Heath helped translate bumblebee algorithms into vehicular 

communications. 
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Gill, K. S. et al. Memory Matters: Bumblebee Behavioral Models for Vehicle-to-Vehicle 

Communications. IEEE Access 6, 25437–25447 (2018). 
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Figure 27: The memory-based channel selection algorithm from bee (top) and vehicle (bottom) perspectives. Similar to each 
bumblebee, each vehicle is equipped with memory to store channel (floral) reward information, which is then used to select the 
channel (floral species) with the highest reward quality out of those available in sampling interval. During the transmission 
interval, the vehicles (bumblebees) use their current channels for communication (forage on current species) while 
simultaneously tracking the change in the reward level. The vehicles switch to a better channel (floral species) based on their 
memory if the current channel level drops to a lower value. Vehicles alternate between sampling (TSample) and transmission 
(TTransmit) periods to track changes in a time-varying noisy resource environment. 
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S3: Simulation Results for Response to Change & Memory Dynamics in 

Bumblebees 

Scenario 2 

 
Table 24: Results for all decision-making strategies and memory models for the reward probability scenario. 

fitness memory size memory model memory 
alpha 

softmax theta env 

120.6 NA Win-Stay-Lose-Switch NA NA 100_0 
119.64 9 exponential 0.7 NA 100_0 
119.64 1 RLDelta 0.25 50.5547 100_0 
119.46 5 ln 0.25 NA 100_0 
119.2 3 Better than average NA NA 100_0 

118.98 4 baseline NA NA 100_0 
118.64 3 Tallying NA NA 100_0 
116.24 3 Lexicographic NA NA 100_0 
60.04 NA Random NA NA 100_0 
92.4 1 RLDelta 0.65 99.4151 80_20 

92.34 9 exponential 0.25 NA 80_20 
91.56 6 baseline NA NA 80_20 
91.4 5 Lexicographic NA NA 80_20 

90.88 4 Better than average NA NA 80_20 
90.1 6 ln 0.9 NA 80_20 

88.98 3 Tallying NA NA 80_20 
82.56 NA Win-Stay-Lose-Switch NA NA 80_20 
60.29 NA Random NA NA 80_20 
68.68 6 Better than average NA NA 60_40 
68.62 10 exponential 0.05 NA 60_40 
68.02 3 baseline NA NA 60_40 
67.42 1 RLDelta 0.85 18.3484 60_40 
66.9 9 Lexicographic NA NA 60_40 

66.86 3 Tallying NA NA 60_40 
66.04 9 ln 0.75 NA 60_40 
64.86 NA Win-Stay-Lose-Switch NA NA 60_40 
60.45 NA Random NA NA 60_40 
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Scenario 3 

Table 25: Full results for the decision-making strategies and memory models for the frequency of change scenario. 

fitness memory size memory model memory 
alpha 

softmax theta env 

225.76 1 RLDelta 0.8 73.0256 60 visits 
222.12 3 baseline NA NA 60 visits 
221.2 3 Better than average NA NA 60 visits 

220.72 3 Tallying NA NA 60 visits 
219.2 10 ln 0.65 NA 60 visits 

217.72 9 exponential 0.75 NA 60 visits 
216 7 Lexicographic NA NA 60 visits 

205.67 NA Win-Stay-Lose-
Switch 

NA NA 60 visits 

148.97 NA Random NA NA 60 visits 
218.32 1 RLDelta 0.85 25.6951 40 visits 
217.52 3 exponential 0.65 NA 40 visits 
217.44 3 ln 0.15 NA 40 visits 
211.84 3 baseline NA NA 40 visits 
208.48 3 Tallying NA NA 40 visits 
204.76 3 Better than average NA NA 40 visits 
203.32 5 Lexicographic NA NA 40 visits 
202.3 NA Win-Stay-Lose-

Switch 
NA NA 40 visits 

149.37 NA Random NA NA 40 visits 
202.92 3 ln 0.7 NA 20 visits 
202.76 1 RLDelta 0.95 46.5936 20 visits 
200.33 NA Win-Stay-Lose-

Switch 
NA NA 20 visits 

192.72 3 Lexicographic NA NA 20 visits 
189.84 3 exponential 0.9 NA 20 visits 
185.96 3 Better than average NA NA 20 visits 
183.2 3 Tallying NA NA 20 visits 

170.05 4 baseline NA NA 20 visits 
150.27 NA Random NA NA 20 visits 

 
 


