

Synthesizing Mobile Games

with Combinators

A Major Qualifying Project Report:

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

Joseph Blackman

Dean Kiourtsis

Bailey Sheridan

Date: March 17, 2017

Professor George Heineman, Advisor

1

Table of Contents
Table of Contents 1

Abstract 2

Introduction 3

Background 3
2.1 Logic Specification Languages 3
2.2 Combinatory Logic Synthesis and the Inhabitation Problem 7
2.3 Scala Implementation of CLS 11
2.4 Kombat Solitaire 13
2.5 Ionic Framework 14

Methodology 15
3.1 Codebase 15
3.2 Source Control 17
3.3 Domain Model 18

Results 18
4.1 Combinators and Kinding 18
4.2 Games 23
4.3 Tutorial 30

Evaluation 30

Future Work 31

References 33

Appendix A: Table of Combinators 35

Appendix B: Tutorial of Process 38

2

Abstract

Developers rarely create entire software systems from scratch, instead they use resources

provided by other developers such as software frameworks. Software frameworks are reusable

code environments designed for specific tasks[1]. For example, the Ionic framework was designed

for creating platform-independent mobile applications[2]. Learning to use a framework takes a

long time, and not all of its nuances may be immediately apparent through documentation and

code examples. Our project sets out to reduce the amount of time and effort required to use the

Ionic framework to create mobile puzzle games. We used combinators to successfully synthesize

several games and produce a library of Ionic components to expedite the Ionic mobile game

creation process.

3

Introduction
One of the dreams of computer science is to automatically generate a complete working

software program from a simple logical specification. Despite decades of research, this problem

still does not have a clear solution. The difficulty of this problem may be due to its overall

complexity, a lack of computing power, or the amount of effort required for current logical

specification languages. In this project we attempt to automatically generate code for an Ionic

mobile application with the use of Combinatory Logic Synthesis (CLS).

Background

2.1 Logic Specification Languages

Logic Specification is a powerful tool for programmers since it allows one to model and

formally prove code to be correct with regards to a given specification. One of the earliest such

languages is Hoare Logic[3]. Hoare Logic works as follows: Given a program in initial state P ,
after executing a command c , the program ends in state Q [4]. This is called a Hoare Triple,

traditionally written as {P} c {Q} . Within the context of programming, P and Q represent a

state of memory, and c a block of code. An example of a Hoare Triple for a variable assignment:

{X=1} Y=X {Y=1}

Figure 1: Hoare Triple 1

In English, this says “If the program starts with X as 1, then running Y=X means the program

will end with Y equal to 1.”[4] It is worth noting that the initial state can be made stronger, and

the final state weaker, and the triple is still correct. Thus

{X=1 ⋀ Z=5} Y=X {Y>0}

Figure 2: Hoare Triple 2
is a logical continuation of Hoare Triple 1. In English, this says “If the program starts with X as

4

1 and Z as 5, then running Y=X will cause the program to end with Y greater than 0.” Obviously,

Z has no bearing on the code, and specifying Y=1 is more strict than Y > 0. This triple can be

rewritten as

{X=1 ⋀ Z=5} → {X=1} Y=X {Y=1} → {Y>0}

Figure 3: Hoare Triple 3
where the implication arrow (→) represents a simplification of state.

However, there are other control structures in programming than simple assignment

statements, and these require more complex logic. if statements are the simplest kind of

branching logic, and their representation is fairly simple. Consider the following code:

if (X > 3) {
Y = X;

} else {
Y = X+3;

}

Figure 4: Simple IF statement
At the end of execution, Y will be greater than 3 as long as X was initially greater than 0.

Therefore, we can prove the Hoare Triple {X>0} c {Y>3} :

5

 H1. {X > 0}
L1. if (X > 3) {

 H2. {X > 0 ⋀ X > 3}
L2. Y = X;

 H3a. {Y > 0 ⋀ Y > 3} →
H3b. {Y > 3}

L3. } else {

H4a. {X > 0 ⋀ X <= 3} →
H4b. {X + 3 > 3 ⋀ X + 3 <= 6}

L4. Y = X + 3;

 H5a. {Y > 3 ⋀ Y <= 6} →
H5b. {Y > 3}

L5. }

 H6. {Y > 3}
Figure 5: Proof of Hoare Triple

First, note that there are many extra states in this code. By adding in intermediate code

states, each individual triple can be validated, and thus the entire execution can be validated.

Second, consider the two triples {H1} L1 {H2} and {H1} L3 {H4a} :

{X > 0} if (X > 3) {X > 0 ⋀ X > 3}
{X > 0} else {X > 0 ⋀ X <= 3}

Figure 6: Hoare Triples 4 and 5
Each of these represents a branch in the if statement. H2 is the state if the condition is true, so it

contains the initial state and the condition. H4a is the state if false, so it contains the negation of

the condition. Finally, H3b and H5b must match H6 for this proof to be valid.

The last kind of control structure is loops. Loops are similar to if statements, except that

when the condition is true, a loop will execute and then evaluate the condition again. Thus, the

6

syntax is very similar, except that the state after the loop executes must be the same as state

before execution. We call this state the loop invariant, and finding a statement of this is crucial

to finding a formal proof for a loop. Here is a simple loop which takes some initial X=m, Y=0

and ends with X=0, Y=m . In this code, after each loop iteration the sum of X+Y is always a

constant, so this is our loop invariant.

H1a. {X = m ⋀ Y = 0} →
H1b. {X + Y = m}

L1. while (X != 0) {

 H2a. {X != 0 ⋀ X + Y = m} →
H2b. {X + (Y + 1) = m + 1}

L2. Y = Y + 1;

 H3a. {X + Y = m + 1} →
H3b. {(X - 1) + Y = m}

L3. X = X - 1;

 H4. {X + Y = m}
L4. }

 H5a. {X + Y = m ⋀ X = 0} →
H5b. {Y = m ⋀ X = 0}

Figure 7: Hoare Logic loop invariant 1
Again, this proof is mostly comprised of assignments, but observe that the loop invariant

is present throughout the code, particularly in H1b , H2a , and H4 , so that not only is {H1b} L1
{H2a} a valid triple, but {H4} L1 {H2a} is as well. Finally, when we exit the loop, our loop

invariant is still true, and we can also assume the inverse of our looping condition, which proves

the final state.

Let us consider one last example of Hoare logic, again using a while loop. This example

computes Y=m! given an initial X=m :

7

H1a. {X = m} →
H1b. {1 = m! / X!}

L1. int Y = 1;

 H2. {Y = m! / X!}
L2. while (X != 0) {

 H3a. {Y = m! / X! ⋀ X != 0} →
H3b. {Y * X = (m! * X) / X!} →
H3c. {Y * X = m! / (X - 1)!}

L3. Y = Y * X;

 H4. {Y = m! / (X - 1)!}
L4. X = X - 1;

 H5. {Y = m! / X!}
L5. }

 H6a. {Y = m! / X! ⋀ X = 0} →
H6b. {Y = m!}

Figure 8: Hoare Logic loop invariant 2
Let us walk through the execution. The code is fairly straightforward, it multiplies Y

repeatedly by X , as X decreases, so Y = m * (m-1) * (m-2) * … * 2 * 1 = m! . To

prove its correctness, we start off with our initial X=m (H1a) and make a mathematical

rearrangement. Next, we initialize Y , and get our loop invariant (H2). As we enter the while loop,

we assume the condition is true (H3a) and simplify (H3b , H3c). We multiply Y by the current

value of X to reach H4 , then decrease X by 1 to reach H5 and re-obtain our loop invariant.

Finally, we assume the loop condition to be false (H6a) and simplify to find that Y = m!

(H6b).
As one works more with Hoare Logic, two things become clear: First, proving the

correctness of code forces the programmer to have a deep understanding of it, and second,

creating and verifying such proofs takes a considerable amount of time.

8

2.2 Combinatory Logic Synthesis and the Inhabitation Problem

There is an inherent difficulty in using Hoare Logic as a means of proving code

correctness. Other systems like Linear Temporal Logic[5], Büchi Automata[6], and Kripke

Structures[7] still place a great burden on engineers by forcing them to logically specify each and

every line of code or functional implementation. One strategy for dealing with this complexity is

to analyze the program in smaller, more manageable modules which are assembled to form a

proof of the entire system. This strategy is the theory behind Combinatory Logic Synthesis[8].

Combinatory Logic Synthesis is a type-based approach to code synthesis. Formally typed

blocks of code, called combinators , are automatically combined using an inhabitation algorithm

to form a final product[8]. Much like Hoare Logic, each combinator starts with an input type,

contains a block of code, and exits with another type. For example, consider a Java program

which takes in a list and returns its largest element. Such a program might be broken up into

three combinators, one to input the list, one to sort it, and one to return the largest element:

9

InputList : True → list ∩ unsorted {
 Scanner input = new Scanner(System.in);
 String line = input.nextLine();
 Scanner parser = new Scanner(line).useDelimiter("[,\\s]+");
 ArrayList<Integer> list = new ArrayList<Integer>();
 while (parser.hasNextInt()) {
 list.add(parser.nextInt());
 }
}
BubbleSort : list ∩ unsorted → list ∩ sorted {
 for (int i=0; i<list.size(); i++) {
 for (int j=0; j<list.size()-1; j++) {
 if (list.get(j) < list.get(j+1)) {
 int val = list.get(j);
 list.set(j, list.get(j+1));
 list.set(j+1, val);
 }
 }
 }
}
PrintList : list ∩ sorted → print {
 System.out.println("Sorted list: " + list);
 System.out.println("Largest value: " + list.get(0));
}

Figure 9: List Sorting Combinators
To generate Java code which satisfies this specification, we ask CLS to generate an

object of type print . There is only one function that generates this, PrintList , and it takes

as input list ∩ sorted , so CLS searches for that type. It finds only one valid combinator,

BubbleSort , which takes a list ∩ unsorted as input, and CLS searches for this.

Finally, it finds InputList , which has no required input, so the execution traces back

InputList → BubbleSort → PrintList , merges the contents of these functions and

10

generates the final program.[9]

One advantage CLS has over Hoare Logic is the ease of updating code. In Hoare Logic,

implementing a new sorting algorithm would require a full formal proof of that code, which

might demand updates to other branches in the logic. In CLS, this is as simple as writing another

combinator:

InsertionSort : list ∩ unsorted → list ∩ sorted {
 for (int i=1; i<list.size(); i++) {
 int j = i;
 while (j > 0 && list.get(j-1) < list.get(j)) {
 int val = list.get(j);
 list.set(j, list.get(j-1));
 list.set(j-1, val);
 j--;
 }
 }
}

Figure 10: Insertion Sort Combinators
When the inhabitation code runs, it looks for functions that generate list ∩ sorted ,

finds two valid paths and generates two complete programs: one using bubble sort, and another

using insertion sort.

Another benefit of combinators is renaming variables. In the above examples, the input

variable is named list . Not only is this generally not a good name, it also doesn’t specify

anything about its contents. Using CLS, we can change this variable’s name to be in a

combinator:

11

ListName : listName { prices }
InputList2 : listName → list ∩ unsorted {
 Scanner input = new Scanner(System.in);
 String line = input.nextLine();
 Scanner parser = new Scanner(line).useDelimiter("[,\\s]+");
 ArrayList<Integer> [listName] = new ArrayList<Integer>();
 while (parser.hasNextInt()) {
 [listName].add(parser.nextInt());
 }
}
BubbleSort : listName → list ∩ unsorted → list ∩ sorted {
 for (int i=0; i<[listName].size(); i++) {
 for (int j=0; j<[listName].size()-1; j++) {
 if ([listName].get(j) < [listName].get(j+1)) {
 int val = [listName].get(j);
 [listName].set(j, [listName].get(j+1));
 [listName].set(j+1, val);
 }
 }
 }
}
PrintList : listName → list ∩ sorted → print {
 System.out.println("Sorted list: " + [listName]);
 System.out.println("Largest value: " + [listName].get(0));
}

Figure 11: Value Replacing Combinator Example

The generated code will replace [listName] with a value from a combinator, in this

case the ListName combinator. We can easily change this variable’s name, and the change will

automatically propagate to all of the combinators that need it.

However, CLS does not protect against poor programing. Here is a combinator which

randomizes the order of the list:

12

BogoSort : list ∩ unsorted → list ∩ sorted {
 Random r = new Random();
 for (int i=0; i<list.size()-1; i++) {
 int j = r.nextInt(list.size()-i)+i;
 int val = list.get(j);
 list.set(j, list.get(i));
 list.set(i, val);
 }
}

Figure 12: Combinator with incorrect code

This code does not check if the list is sorted afterward. Thus, the final program will not

necessarily print out the largest element, since the combinator will rarely sort the list properly.

The root issue here is that the type of the combinator is incorrect, it should be list ∩
unsorted → list ∩ unsorted . As opposed to a full formal specification, CLS relies on

the programmer to correctly type their code fragments.

2.3 Scala Implementation of CLS

Our project is based on a Scala implementation by Jan Bessai. Combinators are defined

natively as Scala objects and the inhabitation algorithm runs natively[9]. The Scala

implementation differs from the Java one in complexity. The Java system uses Abstract Syntax

Trees[9] which provide more power and flexibility when assembling and manipulating Java

source code. In contrast, the Scala implementation is only capable of concatenating strings.

However, this is sufficient for these simple examples. Here’s the sorting combinator in Scala,

which returns working Java code:

13

@combinator object BubbleSort {
 def apply(listName:String) : String = {
 return s"""
 for (int i=0; i<$listName.size(); i++) {
 for (int j=0; j<$listName.size()-1; j++) {
 if ($listName.get(j) < $listName.get(j+1)) {
 int val = $listName.get(j);
 $listName.set(j, $listName.get(j+1));
 $listName.set(j+1, val);
 }
 }
 }
 """
 }
 val semanticType:Type = 'listName =>: 'list :&: 'unsorted =>:
'list :&: 'sorted
}

Figure 13: Scala Sorting Combinator

Mostly, this looks the same as the Java combinators, with the key difference being that

parameters, such as the name of the list, are also declared within the apply() statement.

The Scala system also allows the user to create classes, which look identical to

combinators, except that the type can be specified later. In our code, we created generic classes

to handle different languages, one for HTML and another for JavaScript. Here is an example of

same sorting code, created with a class:

14

class GenericSort(inputType:Type, outputType:Type, listName:String) {
 def apply() : String = {
 s"""
 for (int i=0; i<$listName.size(); i++) {
 for (int j=0; j<$listName.size()-1; j++) {
 if ($listName.get(j) < $listName.get(j+1)) {
 int val = $listName.get(j);
 $listName.set(j, $listName.get(j+1));
 $listName.set(j+1, val);
 }
 }
 }
 """
 }
 val semanticType:Type = 'listName =>: inputType =>: outputType
}
@combinator object BubbleSort extends GenericSort('list :&: 'unsorted, 'list :&:
'sorted)

Figure 14: Combinator object example
Implementing combinators and classes through Scala CLS is reasonably straightforward,

and for our project is just as powerful as the Java system. Furthermore, as long as the

combinators are typed correctly, the system has the same level of probability as Hoare Logic,

without the complexity and fragility.

2.4 Kombat Solitaire

The Kombat Solitaire framework is an object-oriented framework for developing variants

of solitaire. It contains sixty-seven thousand lines of code with the goal of generating dozens to

hundreds of solitaire variants[10]. Typically, creating a solitaire variation from this framework is

difficult due to its complexity, and the amount of knowledge required to work with it. In

particular, the ability to implement features, such as rules and win conditions, requires in depth

15

experience with the framework. Rather than asking users to learn the framework, Heineman and

Hoxha combine the Kombat Solitaire framework with CLS to simplify the process of creating a

solitaire variation with the framework. This ensures that the resulting code is correct, and

readable to anyone familiar with the framework.

Starting from the original Kombat Solitaire tutorial, Heineman and Hoxha created a

repository of combinators necessary for implementing a solitaire variation. From this point, they

selected different abstractions from the framework to extract into CLS combinators. These

combinators are used to build a solitaire variation.

WinRule type : (alpha.gameType ∩ pilerule ∩ homePile) →

 (alpha.gameType ∩ winrule)
WinRule term : {
 λ piles. {letbox NumPiles = {piles} in {
 box["
 boolean won = true;
 for (int i = 0; i < " NumPiles "; i++) {
 if (fieldHomePiles[i].count() != 13) {
 won = false;
 }
 }
 if (won) { return true; }
 "]
 }}
}

Figure 15: Kombat Solitaire WinRule Combinator
In the above example, the WinRule combinator contains the code to check if the game

is in a winning state. The specific type will place this block of code into the correct location in

the game, and the precise code is provided by the programmer. This system allows for easy,

configurable creation of solitaire games, analogous to the purpose of this MQP which is simple

creation of Ionic apps.

16

2.5 Ionic Framework

Our goal for the project was to reduce or eliminate the need for a programmer to learn a

software framework. Our framework of choice was the Ionic framework, with which we've

created mobile games. We selected Ionic as a framework because of its ease of use: it is

platform-independent, requires little setup, and can be quickly tested in a browser. Ionic apps can

be deployed to iOS and Android, as the underlying system uses Node.js, relying on libraries such

as Angular.js and Cordova[2]. At the time we began, Ionic v2 was in beta and there was not yet a

stable release, so we worked with Ionic v1 instead.

The file structure for an Ionic application is represented by the following tree. The base

directory for this tree is in a folder named www. Our game code resides in the top level js folder

(all JavaScript code), the top level templates folder (all HTML code) and the top level css folder.

The top level img folder would contain any images for our games if we used any. The lib folder

and its subfolders contain any source packages and modules required for Ionic to run.

├───css
├───img
├───js
├───lib
│ ├───angular
│ ├───angular-animate
│ ├───angular-mocks
│ ├───angular-sanitize
│ ├───angular-ui-router
│ │ ├───api
│ │ ├───release
│ │ └───src
│ ├───ionic
│ │ ├───css
│ │ ├───fonts
│ │ ├───js
│ │ │ ├───angular
│ │ │ └───angular-ui
│ │ └───scss
│ │ └───ionicons
│ └───ngCordova
│ └───dist
└───templates

17

Methodology

3.1 Codebase

Our first step was to learn about the technologies involved in creating an Ionic app, which

mainly consists of JavaScript and HTML5. Using these, we created a skeleton app with a main

menu, options, level select, and individual levels. We also implemented a SQLite database to

save level status in between sessions, and wrote a sample game for testing the app. We separated

the code into combinators and wrote a CLS program with Scala to automate its creation. The first

step was to convert the output of the CLS program into an Ionic application using Java. Next, we

wrote our combinators to pair the file contents with their locations. At this point the program was

able to successfully synthesize and run our sample game. After we could generate end-to-end

code, each of us made our own puzzle game: Hangman, Lights Out, and Word Mastermind.

Since our combinator code uses only string concatenation, the CLS file became

excessively long. In order to shorten this file and simplify our code, we took advantage of

templating to move large strings to other files. Due to the Scala based toolset we were using,

Twirl was the templating language of choice[11]. This is because Twirl uses the Play framework,

which works with Java and Scala without any additional setup. We extracted all of our

JavaScript, HTML, and CSS files into Twirl templates, which can be called from our Scala code

and rendered into strings, allowing them to be concatenated with the rest of our inhabited code.

Using Twirl greatly increased the readability of our CLS code by extracting all of the game code

into files.

Each Twirl template is written in the file format name .scala. type where name is

some identifying filename and type is the file extension, such as .js or .html . Twirl was

able to support .js and .html natively, but not the .css files. We solved this by using the

.xml template format for the .css files. Since neither .css nor .xml files are interpreted,

they are functionally equivalent.

Some of our templates are simple blocks of code, but others are configurable via input

variables. Typed parameters can be passed into Twirl templates when rendered, and expressed in

the code with the @ symbol. Our variables were mostly strings and functions, but some of the

18

templating uses the @for syntax, which creates loops within the code. Additionally, the Scala

types for the rendered templates use the Twirl Play types since they will correctly interpret

escape sequences.

One of the issues we experienced with Scala was generating each game's unique pages,

while still generating shared files such as the main page and level select. We resolved this issue

by associating every page with a game via kinding, a CLS directive. Thus, combinators which

were game-sensitive would reference the kinding and generate code for a specific game when

running the inhabitation. For example, although the main page is shared between all games, it

takes in the the game type to specify the game's title when the inhabitation is run.

While working on this project it was helpful to occasionally integrate Scala features into

the base software. This was particularly helpful when we implemented Ionic framework

elements by using complex types and built in Scala functions like mkString() . This allowed

us to keep the end user result simple while still allowing complex and configurable systems. We

also used string interpolation for the Ionic framework components, making these sections more

readable. In general, working with Scala as a language rather than as another framework helped

to keep our code readable and streamlined.

As an example, our SQL combinator did not originally include Scala features, but was

modified to include a Scala Map object for ease of use. At first, the SQL combinator had static

and unmodifiable columns. In order to make this more configurable, we modified the SQL

columns to be represented by a Scala Map object. This allows users to add, remove, and access

new columns in the database at will.

3.2 Source Control

We used Github for source control throughout the project. Our repository began with the

master branch, where we experimented with the Ionic framework, and created our initial

games. This branch contains only Ionic code, and continues to serve as a testing ground. This

branch implements all of our games in parallel so that we can switch between them easily. Each

game has its own JavaScript and HTML files, and we can render each game by changing the file

reference in app.js , states.js , and controllers.js . The Ionic code can be run with

19

ionic serve from anywhere in the project, and Ionic will start the current game. Nothing in

this branch is written in Scala nor implements CLS.

After we were satisfied with our games, we created a new branch called sbt . We

extracted all of the code into combinators to be generated by CLS. Instead of keeping all the

games in parallel, each game has its own set of combinators, and can be rendered by changing

the inhabitation request. The sbt branch does not contain any pure Ionic code, all of it is

extracted into combinators and Twirl templates. Some core Ionic code is still present in this

branch, such as the style sheets and icons.

The cls_sbt folder contains our Scala code, our Java file handler, and Twirl templates.

The main directory of this branch contains automated run scripts which launch sbt, compile and

run the CLS inhabitation, and then calls ionic serve . The full process takes from 30 to 120

seconds, depending on computer architecture, so the batch file helps to streamline this process.

We created a new branch as a tutorial for our framework. This branch showcases the

process of creating a new game, Nim. We created this branch based on our commits from

initially writing this game, and created a companion text tutorial. While creating this game, we

tracked our thoughts, order, and amount of time to complete each step.

3.3 Domain Model

Games created by our framework are made with a specific domain model in mind. We

cannot claim to synthesize every type of mobile game since the possibilities are endless. Instead,

our framework assists with creating only certain kinds of mobile games. It supports only mobile

games that have a main menu, options, and level select screen. Players enter the game through

the main menu, and can then access the level select or options. From the level select screen,

players can access individual levels. Each level keeps an internal state which represents partial

progress through the level, success, or failure. A player can exit a level, and return later the same

state they left it in. Similarly, completing a level will mark it in the level select.

We chose to create puzzle games to test our framework, but theoretically any genre of

game with state based levels can be implemented using our system. For example, one such usage

would be flash cards, with each level containing a different card. However, this has no partial

20

state which results in it being a poor test case. The state is saved into a SQLite database, with

columns modified by combinators, so the table could be used for many other purposes.

Results

4.1 Combinators and Kinding

The completed CLS Scala repository contains a total of 51 different combinators and is

able to build 6 unique apps. In order to allow the generation of multiple games, a kinding must

be included with the repository.

val gameVar = Variable("gameName")
lazy val kinding =
 Kinding(gameVar)
 .addOption('mastermind)
 .addOption('hangman)
 .addOption('lightsout)
 .addOption('dummy)
 .addOption('monster)
 .addOption('nim)

Figure 16: Kinding example
A kinding simply allows a number of different types to be accessed from one variable.

The code above allows gameVar to stand for any of our games. This simplifies the entire game

creation process as a majority of the combinators don't operate differently for different games. In

order to add another game to the kinding, the programmer must simply append

.addOption(' gameName) , where gameName is the name of the game being added.

There are a number of different styles of combinators, each with having a different

method of use and overall purpose. Below is a list of examples and descriptions for each type of

combinator used in our software.

21

4.1.1 Static Value Combinators

@combinator object ScriptList {
 def apply(): Array[String] = {
 return Array("sql", "states", "controllers", "game")
 }
 val semanticType:Type = 'scriptList
}

Figure 17: ScriptList Combinator
The static value combinators are the simplest. These combinators keep track of values

that are universally used in the Ionic application. The combinator above keeps track of the scripts

that must be included in the Ionic application, so that the list can be reused multiple times

throughout our code.

4.1.2 Title Combinators

class Title(game:Symbol, title:String) {
 def apply() : String = {
 return title
 }
 val semanticType:Type = game :&: 'gameTitle
}
@combinator object HangmanTitle extends Title('hangman, "Hangman")
@combinator object DummyTitle extends Title('dummy, "Dummy")

Figure 18: Title Combinator Objects
The title combinators keep track of the title names of the games. Unlike the static value

combinators, title combinators are made by extending the Title class with values for the game

type and the game's name. The game type must be one of the ones present in the gameVar

kinding.

22

4.1.3 Function Combinators

type buttonType = (String, String, String) => Html
@combinator object Button {
 def apply(): buttonType = {
 return (callback:String, text:String, color:String) =>
 new Html(s"""<button class="button button-$color
levelBtn" ng-click="$callback()">$text</button>""")
 }
 val semanticType:Type = 'button
}

Figure 19: Button Combinator
The function combinators produce functions for use in other combinators. The purpose of

these combinators is to generate Ionic components in an HTML template with ease. In the

example above, the function created simply substitutes three strings into the HTML for an Ionic

button, and then labels the resulting string as HTML code.

4.1.4 Twirl Rendering Combinators

@combinator object HangmanHTML {
 def apply(button:buttonType): String = {
 return html.html.hangman.render(button).toString()
 }
 val semanticType:Type = 'button =>: 'hangman :&: 'html
}

Figure 20: HangmanHTML Combinator
The twirl render combinators can take other combinators as input. In general, the inputs

for these combinators are functions or strings to be used when rendering the template. These

combinators are used to convert a template HTML, JS, or CSS file into a string with Twirl. They

are necessary since the base template code, which is written by the programmer, must be

modified before it can be used in an Ionic app. In the above example, the combinator takes the

23

button combinator as an input argument and uses it when rendering the hangman HTML file.

Other instances of the twirl render combinator take in strings as input, or even no input.

4.1.5 Final HTML and JavaScript Combinators

@combinator object GameHTML {
 def apply(contents:String): String = {
 return html.html.game.render(contents).toString()
 }
 val semanticType:Type = gameVar :&: 'html =>: gameVar :&:
'gameHtml
}

Figure 21: GameHTML Combinator
The final HTML and JavaScript combinators produce code for the finished Ionic app.

Each of these combinators takes in a string, and returns a finished string which contains an entire

file. Depending on the file being created, the renderer will read a different Twirl template. In the

above example, the combinator takes in a string with the type gameVar :&: 'html , and uses

it to render the game HTML page with a string of type gameVar :&: 'gameHtml . The

resulting string represents an Ionic-ready HTML file containing the code from an HTML render

combinator.

24

4.1.6 File Binding Combinators

class Bind(inputType:Type, filePath:String){
 def apply(expr:String) : Tuple = {
 return new Tuple(expr, filePath)
 }
 val semanticType:Type = inputType =>: 'BoundFile :&: inputType
:&: gameVar
}
@combinator object Bind5 extends Bind('gameHtml :&: gameVar,
"www/templates/game.html")

Figure 22: Bind Combinator Objects
The file bind combinators are the last set of combinators used when building an app.

These take the HTML, JS, and CSS strings from the final HTML and JavaScript combinators,

then bind them into a tuple along with the destination of the corresponding file. In the above

example, the combinator takes the combinators with type 'gameHtml :&: gameVar , which

contains the game HTML code, and groups it with the file location

www/templates/game.html . The tuples from these combinators are used to place files

where Ionic expects them to be, and populate them with the proper code.

4.2 Games

Each of us created our own game to learn the Ionic framework, and to have some code to

convert into combinators by looking for similarities shared between the games. Here is a

summary of each of our games, along with some of the difficulties presented in their

implementation.

25

4.2.1 Hangman

In Hangman, the player is asked to guess an English word letter by letter. Each time they

guess a correct letter, all instances of that letter are revealed at their locations in the word. In our

implementation, after seven incorrect guesses the player loses the game, and their progress is

reset. Each level contains a different word for the player to guess, with later levels having more

challenging words.

Players guess a letters one at a time via a text box in the level. Due to an engine

limitation, the enter key does not function for submitting a guess, and the player must click on

the guess button. This button is generated via our button combinator. This combinator takes three

inputs: a callback function to be called when the button is pressed, the text displayed on the

button, and the button color. On the screen are blank boxes with invisible letters to indicate how

long the word for the level is. When the player guesses a letter, a function checks all of the

guessable letters in those boxes for that level and checks for matches. Any instance of the

guessed letter is made visible, and after each guess there is a check to see if the amount of

revealed letters matched the length of the word to see if the player has won.

The biggest challenge of writing this game was correctly revealing letters. Each letter

reveal location had to be associated with the level it was on as well as what letter would be

revealed there. The final solution involved getting all of the elements that had the level number

and the "guessable" keyword in its class name. When a letter is guessed, the "discovered"

keyword is added to its location and it is ignored in further searches.

Hangman uses the Button combinator and the Title combinator, as well as two

combinators that generate the JavaScript and the HTML for the game. It shares other

combinators with the other games, such as generating the main menu and level select.

26

@combinator object HangmanJS extends RenderJS('hangman :&: 'js,
js.js.hangman.render())

@combinator object HangmanHTML {
 def apply(button:buttonType): String = {
 return html.html.hangman.render(button).toString()
 }
 val semanticType:Type = 'button =>: 'hangman :&: 'html
}

@combinator object HangmanTitle extends Title('hangman, "Hangman")

Figure 23: Hangman Combinators

27

4.2.2 Word Mastermind

Word Mastermind is word guessing game where the player tries to guess a hidden word.

Much like mastermind, if the guessed word shares letters with the secret word, the number of

shared letters will be revealed. Unlike mastermind, the position of the shared letters is not

revealed. Additionally, guesses must be proper English words, not random collections of letters.

Thus, the challenge lies in figuring out which letters in the guessed word are matching, and

trying to anagram them into real words.

Implementing this game posed a few challenges, particularly verifying that the input

strings are valid words. Initially, we pulled words from an online dictionary, but due to security

restrictions of Javascript, this list was not accessible without explicit user permission. Next, we

tried using a local dictionary file, but once again Javascript is not allowed to directly access the

file system, so this list was refactored into a script so that it could be loaded.

28

@combinator object MastermindJS extends RenderJS('mastermind :&: 'js,
js.js.mastermind.render())

@combinator object MastermindHTML {
 def apply(button:buttonType): String = {
 return html.html.mastermind.render(button).toString()
 }
 val semanticType:Type = 'button =>: 'mastermind :&: 'html
}

@combinator object MastermindTitle extends Title('mastermind,
"Mastermind")

Figure 24: Mastermind Combinators

4.2.3 Lights Out

The goal of the Lights Out puzzle is to turn all buttons (lights) into the gray (off) state.

For each move the player flips the status of a light and its four adjacent neighbors. Each level has

a different pattern of lights, with more complicated levels requiring more moves to complete.

The main challenge with writing the Lights Out puzzle was setting up the partial state

saving with the database. We added a level state column to the SQL database and modify the

SQL combinators to account for the change. This led us to use a Scala Map object to represent

database columns, making the database more configurable.

29

@combinator object LightsOutJS extends RenderJS('lightsout :&: 'js,
js.js.lightsout.render())

@combinator object LightsOutHTML {
 def apply(): String = {
 return html.html.lightsout.render().toString()
 }
 val semanticType:Type = 'lightsout :&: 'html
}

@combinator object LightsOutTitle extends Title('lightsout, "Lights
Out")

Figure 25: Lights Out Combinators

30

4.2.4 Nim

Nim is a game where two players take turns removing matches from piles. On their turn,

each player can remove as many matches as they want from the pile, and the player who removes

the last match wins. In Javascript, piles are represented with sliders, and removing matches is

done by sliding the slider down. Later levels increase the number of piles and the number of

matches in each pile.

Since this game requires two players, in our implementation we provide an AI to play

against. Since nim is a solved game, and the winning move from any position can be calculated,

the AI will occasionally make a random move instead of the optimal one. Thus, the challenge in

implementing this game was entirely in coding the AI, and ironing out bugs in the decision

making process.

31

@combinator object NimJS extends RenderJS('nim :&: 'js,
js.js.nim.render())

@combinator object NimHTML {
 def apply(range:rangeType): String = {
 return html.html.nim.render(range).toString()
 }
 val semanticType:Type = 'range =>: 'nim :&: 'html
}

@combinator object NimTitle extends Title('nim, "Nim")

Figure 26: Nim Combinators

4.3 Tutorial

Much of the setup and learning process for creating a game with combinators was

confusing and complicated. We have condensed hours of bug fixing into a streamlined tutorial

for our users to follow. This tutorial walks through game creation from start to finish to show

users how simple it is to make their own game with the game of Nim (Appendix B).

The tutorial files contain minimal code, only enough to run our dummy game. The first

step of the tutorial is copying the dummy files and combinators and changing the names to

reflect the new game, Nim. From there, the user should write the HTML for the game. In our

example, Nim, this also uses a combinator to add in Ionic range elements. Next, the user should

implement the game logic in the JavaScript template file. The tutorial mentions a few provided

functions in the game.js file as well as some optional functions the user can write that will be

called automatically by our framework. Optional functions available are

initializeLevel() , beforeLeave() , onWin() , onLose() , and

restartLevel() , which will be called at appropriate times within the game.js code. Within

the user's own JavaScript code, they can also call the provided game.js functions

$scope.restart() and $scope.completeLevel() , the latter of which takes in a

boolean argument indicating if the level completed in a win or a loss. Of course, the user can also

32

define as many functions as they would like to further customize the functionality and flow of

their game.

Evaluation
After all of this tweaking and fine tuning, we are left with our final CLS program. This

final product was evaluated using the original criterion: percentage of code generated by

combinators and the total number of combinators.

Our main criteria is the percentage of code that can be generated by the CLS when given

an arbitrary puzzle app. When generating one of the existing test games, CLS generates 100% of

the code to make a working Ionic app. The results of running the program is the generation of

blank Ionic app files and 11 CLS generated files, of which three are generic and eight are app

specific or app sensitive. These files are all that are necessary to run the Ionic app for the

specified game. These results have considerably passed the original goal of generating at least

80% of the code with CLS.

Another important factor for evaluating the project is the number of combinators used to

generate the final product. With larger numbers of combinators, the CLS inhabitation algorithm

will take a longer time to run. Our code contains a total of 51 combinators. (Appendix A) Of

these, 18 are game specific combinators shared between six games. The remaining 33 are generic

and used in some way for all of the games we created. Twelve of those generic combinators are

used to bind our game files with the file paths they belong on, and five are for creating generic

Ionic components. The rest create the files Ionic requires to run an application.

Another metric for evaluating our code is to consider how challenging this process would

be without it. Generating Ionic apps from scratch requires a large amount of background

knowledge with the framework, but so does our system. However, if a user is familiar with both

systems, then writing a new app with combinators will require less code but more time, if only

due to having to compile the code through Scala.

Even though we are successfully able to generate 100% of an Ionic game, we did not

eliminate the need to read documentation and program properly. Our included tutorial will

greatly reduce the time taken to create an Ionic app following our domain model, but anyone

33

who wants to add to our combinator repository will still need to fundamentally understand how

combinators work. The system will fail if combinators are implemented with the wrong types.

Future Work
We used Ionic version 1 for our project during the beta period of Ionic version 2. We

chose not to use v2 because it was more reliable to use a stable version. Towards the end of our

project, Ionic v2 was officially released, so one avenue for future work would be to update our

codebase to use v2 instead. This new version of Ionic has many new features that might appeal to

anyone using our code. The task of converting the project to use Ionic v2 would not be complex.

The structure of our combinators will remain the same, while the code in the Twirl templates

should update to the Ionic v2 standards. Additionally, the combinators we have which provide

specific Ionic components will need revising.

There is also room for expansion with regards to our domain model. We created our

combinator library specifically for puzzle games, but future developers may want to create other

kinds of Ionic apps, or alter our current model to create a wider variety of mobile games. More

general future work also includes creating a combinator library for a different framework other

than Ionic, but that would be an entirely new project.

Within our own domain model there is still work to do. Future programmers can add

more combinators to expand upon the model. We currently have one kind of layout each for the

main menu, level select, and options screen. Each of those screens can be expanded to be chosen

from multiple layouts through combinators. More options can also be added to the options screen

as well, similar to the way we added more columns to our SQL table.

34

References

[1] Fayad, M. and Schmidt, D., “Object-Oriented Frameworks”, Guest editorial,

Communications of the ACM, special issue on Object-oriented Frameworks, 40(10), Oct.

1997.

[2] Drifty (2016). Welcome to Ionic - Ionic Framework. Retrieved from

http://ionicframework.com/docs/guide/preface.html

[3] Hoare, C.A.R (1969). An Axiomatic Basis for Computer Programming. Retrieved from

http://web.archive.org/web/20160304013345/http://www.spatial.maine.edu/~worboys/pr

ocesses/hoare%20axiomatic.pdf

[4] Pierce, B (2016). Hoare. Retrieved from

http://www.cis.upenn.edu/~bcpierce/sf/current/Hoare.html

[5] Stanford (1998). Linear-time Temporal Logic.

http://www-step.stanford.edu/tutorial/temporal-logic/temporal-logic.html

[6] Mukund, M. (1996). Finite-state Automata on Infinite Inputs.

http://www.imsc.res.in/~madhavan/papers/pdf/tcs-96-2.pdf

[7] Kripke, Saul A. (1963) Semantical Analysis of Modal Logic

http://fitelson.org/142/kripke_1.pdf

[8] Rehof, J. (2013). Towards Combinatory Logic Synthesis. Retrieved from

http://www-seal.cs.tu-dortmund.de/seal/downloads/rehof/research_papers/Beat13rehof.pd

f

http://www-seal.cs.tu-dortmund.de/seal/downloads/rehof/research_papers/Beat13rehof.pdf
http://glossary.computing.society.informs.org/notes/Klee-Minty.pdf
http://web.archive.org/web/20160304013345/http://www.spatial.maine.edu/~worboys/processes/hoare%20axiomatic.pdf
http://web.archive.org/web/20160304013345/http://www.spatial.maine.edu/~worboys/processes/hoare%20axiomatic.pdf
http://www.cis.upenn.edu/~bcpierce/sf/current/Hoare.html
http://www.imsc.res.in/~madhavan/papers/pdf/tcs-96-2.pdf
http://www-seal.cs.tu-dortmund.de/seal/downloads/rehof/research_papers/Beat13rehof.pdf
http://www-step.stanford.edu/tutorial/temporal-logic/temporal-logic.html
http://fitelson.org/142/kripke_1.pdf
http://ionicframework.com/docs/guide/preface.html

35

[9] Submitted by Düdder, Rehof, Bessai, Heineman (2017).

http://web.cs.wpi.edu/~heineman/tmp/icfp.pdf

[10] Heineman, G., Hoxha, A., Düdder, B., & Rehof, J. (2015). Towards migrating

object-oriented frameworks to enable synthesis of product line members. Proceedings of

the 19th International Conference on Software Product Line, 56-60. Retrieved from

http://doi.acm.org/10.1145/2791060.2791076

[11] Play (2017). The template engine.

https://www.playframework.com/documentation/2.5.x/ScalaTemplates

http://doi.acm.org/10.1145/2791060.2791076
https://www.playframework.com/documentation/2.5.x/ScalaTemplates
http://web.cs.wpi.edu/~heineman/tmp/icfp.pdf
http://doi.acm.org/10.1145/2791060.2791076

36

Appendix A: Table of Combinators

 Combinator Name Use

1 MastermindHTML Mastermind

2 HangmanHTML Hangman

3 LightsOutHTML LightsOut

4 FrankensteinHTML Frankenstein

5 NimHTML Nim

6 DummyHTML Dummy

7 GameHTML Generic

8 MastermindJS Mastermind

9 HangmanJS Hangman

10 LightsOutJS LightsOut

11 FrankensteinJS Frankenstein

12 NimJS Nim

13 DummyJS Dummy

14 GameJs Generic

15 MastermindTitle Mastermind

16 HangmanTitle Hangman

17 LightsOutTitle LightsOut

18 FrankensteinTitle Frankenstein

19 NimTitle Nim

20 DummyTitle Dummy

21 MainPage Generic

22 LevelList Generic

23 SQLColumns Generic

24 ScriptList Generic

37

25 StateList Generic

26 IndexHTML Generic

27 AppJs Generic

28 CSS Generic

29 States Generic

30 Controllers Generic

31 SQL Generic

32 Dictionary Generic

33 LevelSelect Generic

34 Settings Generic

35 BindMainPage Generic, extends Bind

36 BindHTML Generic, extends Bind

37 BindJS Generic, extends Bind

38 BindAppJS Generic, extends Bind

39 BindCtrlJS Generic, extends Bind

40 BindSqlJS Generic, extends Bind

41 BindDict Generic, extends Bind

42 BindGameHTML Generic, extends Bind

43 BindGameJS Generic, extends Bind

44 BindLevelSelect Generic, extends Bind

45 BindSettings Generic, extends Bind

46 BindCSS Generic, extends Bind

47 Button Generic Ionic component

48 Toggle Generic Ionic component

49 Range Generic Ionic component

50 Checkboxes Generic Ionic component

38

51 RadioButtons Generic Ionic component

39

Appendix B: Tutorial

This tutorial will guide you through making a puzzle app for Nim
(https://en.wikipedia.org/wiki/Nim). It will teach you all the necessary steps to create an Ionic
puzzle app using the cls-sbt software.

Setup:

Prior to using this software, you need to install and setup all of the required software.
You will also need to clone the tutorial github branch. Both can be found here:
https://github.com/Launchpad-MQP/Ionic-Strawman/tree/tutorial.
You will also need Google Chrome to view the generated Ionic application.

In addition, each step is linked to commits for the start and end of the step. We
recommend that you pull from the starting commit, and compare your code with the changes in
the ending commit.

Step 1: Copy the dummy game
Estim. time: 30 minutes
Starting commit: 063de6dc3d8dd1ccfc9552cd4aeaec6553a95179
Ending commit: 180d4d1fad5ee8ed532a0204bd626a2d23238b15

1) In order to start, we will want the bare minimum combinators and files. The result will
look nearly identical to the dummy example in the tutorial branch.

2) Add your game name type to the kinding with .addOption(' gameName) . This will
be 'nim in our example. All of your combinators need to share this name.
.addOption('nim)

3) Create an empty .twirl.js file in the templates directory.
4) Create an empty .twirl.html file in the templates directory.
5) Create combinator for the game name.

@combinator object NimTitle extends Title('nim, "Nim")

6) Create combinator to render the HTML templates.

@combinator object NimHTML {
 def apply(): String = {

https://github.com/Launchpad-MQP/Ionic-Strawman/tree/tutorial
https://github.com/Launchpad-MQP/Ionic-Strawman/tree/tutorial
https://en.wikipedia.org/wiki/Nim

40

 return
html.html.nim.render().toString()
 }
 val semanticType:Type = 'nim :&: 'html
}

7) Create combinator to render the JavaScript.

@combinator object NimJS extends RenderJS('nim :&: 'js, js.js.nim.render())

8) Change query so that we generate your game.

val reply = reflectedRepository.inhabit[Tuple] ('BoundFile :&: 'nim)
9) Run the run.bat or run.sh and confirm that the following files are created properly.

settings.html, level_select.html, style.css,
controllers.js, app.js, states.js, index.html, game.html,
sql.js, game.js, main.html

10) If Ionic doesn't automatically open the app in a web browser, you can view your app at
localhost:8100

Step 2: Write the HTML
Estim. time: dependent on game. (120 minutes for nim example)
Starting commit: 180d4d1fad5ee8ed532a0204bd626a2d23238b15
Ending commit: 48f6682d5d0e25c42fdd9d51dc4b0f9ac8edd753

1) The next step to creating your Ionic puzzle app is creating the HTML page for game
levels. This page will serve as the skeleton of a level's visual components which can be
modified per level by using JavaScript.

2) There are a number of tools at your disposal for implementing Ionic framework
components. In this example we will be using a range slider.

a) We must include the range combinator as an input to the HTML combinator.

@combinator object NimHTML {
 def apply(range:rangeType): String = {
 return html.html.nim.render(range).toString()
 }

41

 val semanticType:Type = 'range =>: 'nim :&: 'html
}

b) We can now use the function from the rangeType combinator in the HTML

template. Other details and helpful combinators can be found near the top of
AppCreator.scala .

c) Note that {{levelNum}} can be used to reference the level number. It is
important to use this when naming components as the HTML is simply hidden
when not in a level. This style can also be used to reference any JavaScript
variable defined in $scope .

d) AngularJS can be used for any features not covered by a combinator.
3) For our nim app HTML, we will use five sliders separated by divs. The completed

HTML is as follows.

@(range:(String, String, String, String, String, String, String) => Html)
<div class="row">
 @range("0", "1", "", "", "slider_{{levelNum}}_0", "test.blah0", "callback")
</div><div class="row">
 @range("0", "1", "", "", "slider_{{levelNum}}_1", "test.blah1", "callback")
</div><div class="row">
 @range("0", "1", "", "", "slider_{{levelNum}}_2", "test.blah2", "callback")
</div><div class="row">
 @range("0", "1", "", "", "slider_{{levelNum}}_3", "test.blah3", "callback")
</div><div class="row">
 @range("0", "1", "", "", "slider_{{levelNum}}_4", "test.blah4", "callback")
</div>

4) If you run run.bat or run.sh now, your level should be properly populated with

sliders.

Step 3a: Basic JavaScript
Estim. time: dependent on game. (150 minutes for nim example)
Starting commit: 48f6682d5d0e25c42fdd9d51dc4b0f9ac8edd753
Ending commit: 15e4c8d680d44e21058152e6b6f344f585a93485

1) Now that you have a visual component to the level, you need to write the code and logic
that will run the puzzle. This will all be done in JavaScript.

2) There are several features that you may want to use in your JavaScript.

42

a) Use $scope. variableName for global variables and functions.
b) $stateParams.levelNum holds the current level number, starting at 0.
c) $scope.completeLevel(boolean) is used to end a level when it is

completed. boolean should be true if the player was successful, or false if they
failed.

d) Create initializeLevel() , restartLevel() , and/or
beforeLeave() functions for extra functionality.

3) For nim, we need to set the pile sizes (represented by slider size) on initialization and
when the player makes a move. We use DOM manipulation for the latter task.

function setSlider(i) {
 var value = $scope.sliders[i]
 var slider =
document.getElementsByName('slider_'+$scope.levelNum+'_'+i)[0]
 slider.max = value
 slider.value = value
}

$scope.initializeLevel = function() {
 $scope.sliders = [1, 2, 3, 4, 5]

 for (var i=0; i<$scope.sliders.length; i++) {
 setSlider(i)
 }
}

4) If you run the sbt software now, your sliders should initialize properly. Do not worry if

they all appear the same size, this is changed later.

Step 3b: Win Condition
Estim. time: dependent on game. (30 minutes for nim example)
Starting commit: 15e4c8d680d44e21058152e6b6f344f585a93485
Ending commit: f24bbfeb302fb909bc03cb6ef19ed24017448be8

1) We must now implement the callback function, a function we referenced when creating
the HTML, and a completion test.

2) In order for the sliders to be able use the callback function, we must define the function in
$scope .

3) We must call $scope.completeLevel() when the level is completed.

43

4) The added code can be seen below:

$scope.callback = function(slider) {
 var i = parseInt(slider.split('_')[2])
 var slider = document.getElementsByName('slider_'+$scope.levelNum+'_'+i)[0]
 var value = parseInt(slider.value)
 if ($scope.sliders[i] == value) {
 return // User didn't change the slider
 } else {
 $scope.sliders[i] = value
 }
 setSlider(i)

 if ($scope.checkComplete()) {
 $scope.completeLevel(true)
 }
}

$scope.checkComplete = function() {
 for (var i=0; i<$scope.sliders.length; i++) {
 if ($scope.sliders[i] != 0) {
 return false
 }
 }
 return true
}

Step 3c: AI and Final Polish
Estim. time: dependent on game. (30 minutes for nim example)
Starting commit: f24bbfeb302fb909bc03cb6ef19ed24017448be8
Ending commit: 47036d34d51392c7388abbb36e5113bde8596ad4

1) From here on, everything you implement is up to you. We will be implementing an AI
player to add some challenge to the game, as well as some graphical polish for the sliders.

2) The style change is modification to the setSlider() function; we change the slider
width and display the size of the slider.

function setSlider(i) {
 var value = $scope.sliders[i]

44

 var slider =
document.getElementsByName('slider_'+$scope.levelNum+'_'+i)[0]
 slider.max = value
 slider.value = value
 var div = slider.parentElement
 div.style.width = 100 * value / $scope.max + "%"
 var rightIcon = div.getElementsByTagName('i')[1]
 rightIcon.innerHTML = value
}

3) Feel free to implement your own AI; in this tutorial we implement an optimal AI that will

occasionally make mistakes.

