
Wearable Honeypot

A Major Qualifying Project Report:

Submitted to the Faculty

Of

WORCESTER POLYTECHNIC INSTITUTE

By:

Andrew Leonard

Date: April 30, 2015

Approved:

Professor Krishna Venkatasubramanian, Advisor

Professor Thomas Eisenbarth, Advisor

This report represents the work of WPI undergraduate students submitted to the faculty as

evidence of completion of a degree requirement. WPI routinely publishes these reports on its

website without editorial or peer review. For more information about the projects program at

WPI, please see http://www.wpi.edu/academics/ugradstudies/project-learning.html

2

Abstract
Wearable embedded devices are in common use in the medical industry. In today’s

society security is needed in just about every electronic device. However, these devices don't yet

have many security standards. To prevent scenarios that involve unauthorized sources intruding

on a device, a honeypot could be used as a secure lightweight (in terms of resource usage)

addition to these medical devices. This project seeks to devise and implement a wearable

honeypot to add security to a BAN (Body Area Network).

3

Table of Contents
Abstract ... 2

Table of Figures .. 4

Table of Tables ... 4

1 Introduction .. 5

2 Background .. 8

2.1 Bluetooth ... 8

2.2 Honeypots ... 8

2.2.1 Honeypot Classification ... 8

3 Problem Statement ... 9

4 Motivations .. 10

5 Related Works .. 10

5.1 HoneyDroid ... 11

5.2 HoneyDroid Extension .. 13

5.3 Mobile Honeynet... 14

5.4 Mobile Communication Honeypot .. 15

6 System Model .. 16

6.1 BAN .. 16

6.2 Threat Model ... 18

7 Wearable Honeypot ... 19

7.1 Attacker Attraction Message System .. 20

7.1.1 Synthesizing Accelerometer Data .. 22

7.1.2 Message Window ... 29

7.2 Honeypot Detection Mechanisms ... 31

7.2.1 Bluetooth & Disconnection Attacks .. 32

7.2.3 Targeting BS by Spoofing Motes ... 33

7.2.4 Spoofing Basestation to Target Motes ... 38

8 Wearable Honeypot Testing and Results ... 40

8.1 Honeypot Lifetime Tests ... 41

8.1.1 Methodology .. 41

8.1.2 Results .. 41

8.2 Attack Detection ... 42

8 Conclusion ... 44

9 Future Works ... 44

9.1 Honeypot Topology Changes .. 45

9.2 Message System Extensions ... 45

9.3 Responding To Attacks ... 45

10 References .. 46

Appendix ... 49

A.1 Bluetooth Background Info .. 49

A.1.1 Device ID .. 49

A.1.2 Pairing ... 50

A.1.3 Frequency Hopping ... 51

A.1.4 Bluetooth Stack ... 51

A.1.5 Bluetooth Security ... 52

A.2 Development Issues ... 53

A.2.1 Issues with Banmqp implementation .. 53

A.2.2 Development Issues .. 53

A.2.3 Development Best Practices .. 53

A.3 PRNGs ... 54

4

A.3.1 RC4 ... 54

A.3.2 Mersenne Twister .. 55

A.3.3 TinyMT ... 56

Table of Figures
Figure 1: Wireless BAN .. 5

Figure 2: Classification of Honeypots .. 11

Figure 3: Design of HoneyDroid .. 12

Figure 4: HoneyDroid Extension .. 13

Figure 5: Mobile Communication Honeypot .. 15

Figure 6: BAN Topology .. 16

Figure 7: Types of Messages in BAN Protocol .. 17

Figure 8: BAN Communication Overview ... 18

Figure 9: Wearable Honeypot Architecture .. 20

Figure 10: Original Walking Accelerometer Data .. 23

Figure 11: Original Standing Up From Sitting Accelerometer Data .. 23

Figure 12: Original Sitting Accelerometer Data ... 24

Figure 13: Original Sitting Down Accelerometer Data .. 24

Figure 14- Modified Walking Accelerometer Data .. 27

Figure 15: Modified Standing Up Form Sitting Accelerometer Data ... 27

Figure 16: Modified Sitting Accelerometer Data.. 28

Figure 17: Modified Sitting Down Accelerometer Data ... 28

Figure 18 - Five Packets Dropped in A Row .. 30

Figure 19 - Attacker Window Insertion .. 31

Figure 20: Disconnection Attack .. 32

Figure 21: Spoofed Mote Attacks ... 34

Figure 22: Spoofed Basestation Attacks ... 38

Figure 23: Battery Testing Results.. 42

Figure 24: Bluetooth Address Format [24] ... 43

Figure 25: Bluetooth Pairing Process.. 50

Figure 26: Bluetooth Protocol Stack ... 51

Table of Tables
Table 1: Honeypot Message System Specification ... 21

Table 2: Standard Deviation ... 25

Table 3: PRNG Operation Comparison Table .. 25

Table 4: Bluetooth and Disconnection Attacks ... 32

Table 5: Spoofing Motes Already In Ban ... 34

Table 6: Spoofed Basestation Attacks .. 39

5

1 Introduction
In this modern information age, wearable embedded devices (small sensors with

microcontrollers equipped with wireless communication) have become common use in the

medical industry [10]. More recently a consumer market has developed for these kinds of

devices [9]. Wearable embedded devices connected to a basestation form a piconet (small

network) called a BAN (Body Area Network AKA Body Sensor Network). Currently, most

implementations of BANs are used by the medical industry because by attaching multiple

sensors to someone, different medical stats can be gathered and then analyzed by a doctor in the

treatment of a patient [1]. With the advent of products such as the Apple Watch, BANs are

moving into broader consumer use. With small sensors, the user can usually maintain a normal

lifestyle even with all the monitoring. A BAN is shown below in Figure 1.

Figure 1: Wireless BAN

6

The work to be presented here is built on a Bluetooth-based BAN system built on the

Shimmer platform, and utilizes a BAN-PnP application-layer protocol [19]. The BAN has a

basestation implemented as an Android app; the motes (node on sensor network) in the sensor

network are Shimmer motes running TinyOS [1]. The BAN itself already provides a measurable

hit to the performance of the motes [1]. This highlights the need for lightweight security

protocols. This BAN is ideal for the purposes of this project as it is cross platform. It only

requires a device to implement the BAN protocol on top of Bluetooth. Importantly this BAN is

plug and play and basestation firmware does not need to be updated to accommodate new motes

with previously unknown functionality [1]. Generally, these wireless devices are short ranged,

however this does not shield users from attackers. Some of these medical devices in BANs could

be harmful to the user if tampered with.

Today security is needed in just about every electronic device, however BAN devices

don't yet have many security standards. Standard security options are ill-suited to BANs because

motes run on batteries and standard security solutions don’t take this into account. Standard

security solutions include public key cryptography and block ciphers, which are great for desktop

applications that need encryption. However these require a lot of computation to encrypt and

decrypt messages. To prevent unauthorized sources from intruding on a device, a honeypot could

be used as a lightweight addition to these medical devices.

Honeypots are traps that are meant for attacker to attack. They are meant to be attacked

so that someone can detect the presence of attackers or to gain more information about what

kinds of attacks can be launched. Honeypots typically have a monitoring component. This allows

a system designer to log and recreate exploits so that they can be patched [15]. Most of the time,

when no threats are present, the honeypot requires little computation and therefore doesn’t use

much battery power. Additionally, when a threat is detected heavier weight security measures

(i.e. thorough packet sniffing and analysis) can be activated [14]. These heavier weight security

measures would produce a significant drain on battery power if they were always active.

Previous honeypots are mostly used in enterprise environments. These are typically set up

connected to web servers, but are not supposed to be used for legitimate purposes, so only

attackers interact with them.

Recently, there have been groups working on mobile honeypots, which are essentially

mobile versions (as in smart phones) of enterprise honeypots. A notable mobile honeypot,

7

HoneyDroid extensively monitors all communications in and out of the smart phone [5]. This

was extended in HoneyDroid Extension to rooted smart phones [4]. These are not good in this

case because they only apply to phones and the thorough communication analysis is battery

intensive. Other mobile honeypots throw together existing honeypots [7] (so they don’t apply to

BANs) or open up new avenues of attack by communicating with the Internet [6]. This honeypot

is a new application, however many design principles will remain the same as traditional

honeypots.

This project sought to devise and implement a Wearable Honeypot to add security to a

BAN. This honeypot system utilizes the basestation and some dedicated helper motes. They can

communicate in the open or pass secret messages through an encrypted channel. The motes

attract an attacker to interact with them by being the most active members of the BAN. The

basestation knows what every single message the helper motes send it will be. To do this the

honeypot deterministically synthesizes and streams accelerometer data. The basestation then

verifies that the messages come as expected using a robust mechanism that allows for packet loss

due to noisy networks. The helper motes also know what kinds of messages to expect from the

basestation and when it should receive certain messages and not others. Since the basestation

knows everything the helper motes will send and the helper motes know what kinds of messages

they’re supposed to receive, the honeypot is able to know when an attacker starts to interact with

it. This honeypot is one of if not the first honeypot solution for a BAN and computationally less

expensive than using standard security solutions. This solution is able to secure a BAN for a

longer period without impacting the battery life of the actual vital sensors the user has in their

BAN.

The discussion will start with background information about Bluetooth and Honeypots in

section 2. In section 3 is the problem statement. This is followed by the motivations for coming

up with a solution in section 4. Next is a discussion of the related works of mobile honeypots in

section 5. Section 6 is the system model where the BAN the Wearable Honeypot is built on and

the threat model are discussed. After that, the design of this honeypot is documented in section 7.

The testing and results will be presented in section 8. Section 9 contains the conclusions of this

project. Finally in section 10 improvements to the system and next steps are suggested.

8

2 Background

 To understand this project, a basic understanding of Bluetooth and honeypots is required.

Bluetooth is used as the means of communication within a BAN and operates at similar

frequencies to Wi-Fi [27]. This project aims to design a honeypot to detect attacks on a BAN,

which can be used to improve the security of the BAN.

2.1 Bluetooth
Bluetooth is a peer to peer communication protocol over a short range broadcast medium.

In a Bluetooth piconet there is one master and up to 7 slaves. The master initiates activities and

slaves respond to the master. To add a slave to the piconet a master must initiate pairing with a

slave. When communicating, the master hops between 7 channels and the slaves hop between

another 7 channels to send packets. Bluetooth operates in the 2.4-2.485 GHz data range [26].

Like TCP/IP, it has a stack to abstract out the hardware from the application programmer.

Bluetooth is also widely used, despite known vulnerabilities and demonstrated hacks [22].

2.2 Honeypots
A honeypot is best understood as a trap for attackers [14]. A honeypot is a system whose

main purpose is to be attacked and compromised [5]. They monitor what goes in and what goes

out of a system and are isolated, sometimes even running on a separate device. Some honeypots

act as a decoy server that tries to compromise the attack and make themselves easy targets [16].

Honeypots can log all the incoming and outgoing packets so any vulnerability can be looked

back on and analyzed for future study. There are scenarios where multiple different honeypots

are used within a system. This is referred to as a honeynet [13].

There are many advantages to a honeypot. One advantage is that a honeypot can record

illegitimate activity. They are usually encrypted environments, and don’t require known attack

signatures [15]. But like all things, the honeypot has some disadvantages too. For instance, there

are some types of honeypots that can be used to attack other systems. Also, a honeypot cannot

detect if other systems are being attacked. It only knows what is going in and out of its own

system. A honeypot may also be detected by the attacker.

2.2.1 Honeypot Classification

While there are different applications and implementations of honeypots, they fall into a

couple archetypes based upon purpose and implementation. Usually they’re either passive or

9

active. Passive honeypots collect data for analysis so exploits can become known and patched.

Active honeypots detect threats and then do something in response. Honeypots are usually high

interaction or low interaction. Low interaction honeypots recreate small subsets of a system, are

generally simple, and not resource intensive. High interaction honeypots recreate entire

subsystems resulting in higher security at the expense of maintenance costs. The extreme case of

a high interaction honeypot would be a pure honeypot. In a pure honeypot the entire system is a

honeypot, not a mix of simulated subsystems. In terms of purpose, there are two main types of

classification, enterprise and research honeypots. Research honeypots are typically passive

honeypots that collect extensive information about hacks and exploits and are generally used for

research, hence the name. The other kind is an enterprise honeypot. Typically enterprise

honeypots are low interaction, or made with multiple low interaction implementations. This is

for practicality purposes because they are easier to deploy and maintain. After all they are made

for production environments.

3 Problem Statement
 Standard security solutions involve cryptography, which can be computationally

intensive. Given that the security solution must be cross platform, security options are further

reduced to standard block ciphers or standard public key ciphers. Most available for TinyOS is

the AES block cipher. This would have to be used in an operating mode such as cipher block

chaining to be effective, not just straight encryption. This adds even more to the computational

overhead.

The challenge of this project is to develop an effective honeypot that doesn't greatly

diminish the performance of the devices in a BAN. Meanwhile it still must monitor effectively

enough to detect attacks on the BAN. Just running the BAN protocol has already affected mote

battery life [1]. The high level design goals of the Honeypot were as follows:

 Obvious enough to be an attack target, but not obviously a honeypot.

 Effectively detects attacks

 Shouldn’t be a large burden on the power requirements of the embedded sensors.

 To be specific to a Bluetooth BAN

10

4 Motivations

Mobile honeypots are a new field and BAN honeypots don't yet exist. Wearable

embedded devices do not have much security [17]. They can include modern pacemakers or

glucose meters. Thus one of the chief motivations of this project is to make these devices safe to

use [14]. Wearable embedded devices also have strict battery requirements meaning that any

security measures would have to be lightweight. In a passive state a honeypot doesn’t necessarily

require a lot of computational overhead. To make these devices safe in a practical way, the

flexibility of a honeypot is desirable; standard cryptographic routines are not desirable because

they are computationally expensive. Finally, there is a need to secure vital wearable embedded

devices to be safe to use and this will take more than just implementing standard security.

5 Related Works

Examples of enterprise Honeypots are Google Honeypot, Honeyd, Homemade honeypot,

ManTrap and BackOfficer Friendly [13]. In the new field of mobile honeypots there are

HoneyDroid, HoneyDroid Extension, Mobile Honeynet, and Mobile Communication Honeypot

to name a few. The following info graphic in Figure 7 visualizes a taxonomy and classification

of well-known honeypots and the mobile honeypots discussed in Figure 2. Some of the mobile

11

honeypots are in the early stages of design and therefore couldn’t thoroughly be classified.

Figure 2: Classification of Honeypots

For out purposes, enterprise honeypots aren’t very relevant, so the following examination of

honeypots will focus on existing mobile honeypots.

5.1 HoneyDroid
One example of a mobile honeypot is the HoneyDroid [5]. This honeypot system deals

with 4 challenges: monitoring, audit logging, containment and visibility. The monitoring issue

involved how to monitor everything occurring in the system without causing the OS to be easily

compromised [5]. The goal in monitoring is to have a system that can monitor everything such

that they can recreate the exact event. The audit logging issue is about creating a secure, reliable

storage compartment of all the logs. In containment, the honeypot has to be designed such that

the attacker is able to easily stumble into it but becomes trapped in the honeypot and isn’t able to

make any further attacks [5]. The issue with visibility is that the honeypot needs to be exposed

12

enough so that the attacker can attack it, but not so visible that it's obvious and easy to get around

[5]. The design of the HoneyDroid is shown below in Figure 3:

Figure 3: Design of HoneyDroid

In this diagram the Event Monitor is placed in between the Android OS and Android’s

own form of Event Monitor that monitors calls and signals. In HoneyDroid the Android OS is

not able to have direct access to the hardware. Instead, HoneyDroid virtualizes everything thus

allowing everything to be monitored. This also allows them to take snapshots of the system. In

this system, the Android OS has no access to the snapshots either; the virtual modem is used to

fight against malware, leading to the containment functionality [5].

The log component receives information from different areas of the system. These logs

ensure integrity through time stamps. [5]. For visibility, this honeypot is given a public IP

address. It is planned for HoneyDroid to have automatic installation and execution privileges,

and give the honeypot access to the internet and allow the honeypot to spread the google account

name associated with the honeypot. [5].

 HoneyDroid seems to be a great system to reference the wearable honeypot. Monitoring,

audit logging, containment and visibility are key components needed for the wearable honeypot

13

specific system. Specifications of where certain components are stationed may alter however the

idea of time stamping all components that enter and leave the honeypot, the ability to snapshot

system activities and the honeypot given a public IP all seems promising for the wearable

honeypot system. However, while this honeypot contains many useful properties, it simply

doesn't provide security to Bluetooth and only applies to the mobile phone, not to a BAN. Also,

the thorough packet sniffing and analysis of everything coming in and out of the system is

computationally intensive.

5.2 HoneyDroid Extension
Extending from the HoneyDroid, lack of behavioral considerations and existing security

policy on the mobile device platform became additional challenges. The lack of behavioral

considerations means mobile users desire to give up security in return for free access to

applications. This means it’s hard to take into account user actions such as rooting their phones

or installing malicious applications. The second challenge involved how certain Android

functions limited the honeypot functionality. These Android functions include things that are

able to bypass the Android security such as SMS and MMS [4]. Figure 4 bellow illustrates the

framework for this mobile honeypot.

Figure 4: HoneyDroid Extension

In this scenario, this mobile honeypot is intended for threats coming from data networks

that are connected telecommunication cells [4]. The connection for the smart mobile honeypots

comes through from telecommunication stations, Wi-Fi and Bluetooth. The smart mobile

honeypots have 2 states: state 1 records data and connects to web server to send this data; state 2

involves threat monitoring, audit logging, containment and modeling functionalities.

State 1 has a honeypot that communicates with other honeypots. Specifically when data

is being sent from the device, it goes through a honeypot which communicates with other servers

with honeypots. Then when data is being sent back the honeypot records everything coming in

[4]. State 2 is a software implementation of threat monitoring, audit logging, containment and

user’s behavioral logging requirements. Thread monitoring is responsible for monitoring data

packets going in and out of the system. When a threat is detected, it will gather data focused

14

around that attack. The audit logging will be a copy of the gathered data and will be backed up

on another server. For containment, the honeypot will isolate the attack and not let it continue on

through the network. If there was an occurrence of a fast speeding threat, the mobile device will

be cut off from the network. Another module called User Behavioral Module will be monitoring

and tracking the user’s patterns [4].

The additions to the HoneyDroid seem plausible. However, for the BAN honeypot it is

assumed the user is not interested in lowering its security and rooting their Android device.

Communicating with other honeypot devices for stronger security is also not in the scope of this

project. Like with the original HoneyDroid the thorough packet analysis is computationally

intensive. This idea may be used for future works but is not useful for the design of the BAN

honeypot.

5.3 Mobile Honeynet
The implementation of Mobile Honeynet was based on 3 main questions:

1) Is it necessary that the probe runs on a mobile device

2) Is it necessary that the honeypot runs on a mobile OS

3) To which network is the mobile honeypot connected

This system made the assumption that there is no need to have a mobile honeypot on a

smartphone [7]. Instead a Linux operating system was used for 2 reasons. One, most

smartphones use Android OS and, two, it allows you to reuse existing honeypot tools [7]. To

answer the third question, the mobile probe should connect to a real mobile network. If not, there

is a chance the attacker can detect differences.

The implementation of this mobile honeypot consisted of three other honeypots: Kippo,

Glastopf and Dionaea. Kippo is an SSH honeypot that has a trivial password. This allows the

attacker to gain access into the system. The attacker is given administrator privileges where the

attacker can execute common programs, download and install anything else they wanted. In the

background the honeypot records everything and uses it later for analysis. To prevent more

problems for the honeypot, executing newly installed programmers are prohibited.

The second honeypot, Glastopf provides uploads to web-based servers. This honeypot

monitors and watches this upload and logs everything that comes in and out of this uploaded file.

And finally, Dionaea is a honeypot that monitors all transport ports.

15

For the BAN honeypot, this honeynet system cannot be referenced. This honeynet system

regards the fact a mobile honeypot is needed and attempts to utilize other manufactured

honeypots. The manufactured honeypots don’t apply to the BAN.

5.4 Mobile Communication Honeypot

The final system had an interesting way of implementing their mobile honeypot. The

design is shown below in Figure 5 [6].

Figure 5: Mobile Communication Honeypot

As this figure shows the honeypot is broken down into four layers: access, networking

simulating wireless environment, data transmission, data analysis and system supervisor. Within

these layers mobile communication terminals, wireless link access module, data transmission

module and application processing center module [6].

 This communication honeypot cannot be referenced when designing the BAN honeypot.

Even though this system is plausible, the BAN communicates through Bluetooth and does not

require the Internet. Additionally communicating through the internet is another security

vulnerability to be aware of.

16

6 System Model

6.1 BAN

The system the honeypot is built on is a plug and play BAN protocol. The BAN consists

of a basestation (BS) and sensor nodes or motes. The topology of the BAN is shown below in

figure 6:

Figure 6: BAN Topology

The BAN was designed as a link layer protocol with these properties:

 Does not inherently rely on static message identifiers,

 Supports new sensors, motes, and commands without changes to the mote

firmware or basestation application

 Have a flexible basestation learning language that can be expanded easily through

changes to a few Grammars and

 Have a BAN platform that is flexible enough to support any type of research or

real world application.[1]

In creating this BAN protocol, a platform was needed. For a mobile device, the team

decided on the Android platform due to its wide usage across many different devices. For a

sensing platform, they decided on the Shimmer platform. Shimmer is designed specifically for

wearable applications and is used widely in medical fields. Much of Shimmer’s resources are

open source, making it useful to the goal of that protocol.

Shimmer’s sensors are separated into three groups including kinematic sensors,

biophysical sensors, and ambient sensors. Kinematic sensors record movement (i.e. velocity and

17

position), biomedical sensors record medical data (i.e. heart rate and body temperature), and

ambient sensors measure environmental properties (i.e. temperature and humidity). Shimmer

comes with the following sensor options: ECG, EMG, GSR, 9DoF, GPS, Strain Gauge, and

Accelerometer. Shimmer also includes Lab View, Matlab, Android, and Windows applications

as basestation platforms [12]. For the OS platform, Shimmer’s motes are TinyOS based. The

implementers of the BAN used TinyOS because it's a well used library that's been around for a

long time and has a large support community [1].

The protocol itself is very good for generic use. The mote has six states: Idle,

Discoverable, Paired, Connected, Command & Inquiry and Streaming. The Basestation, on the

other hand has a total of seven states: Idle, Discovery, Paired, Connected, Command & Inquiry,

Mote Data and Mote Response. As a general summary, the BAN is designed using a state

machine design pattern. Each state has one action. Some states allow a user to send commands,

request sensor data, receive sensor data, etc. Doing a different task means transitioning to a

different state. The protocol specifically forbids doing or requesting an action for a state other

than the one the mote is currently in [1]. The way this is implemented is through a set of

functions that allows the basestation to ask each mote that connects how to use it. This allows the

motes to teach the basestation all of its functionality. Thus, the basestation has no prior

knowledge of what any of the motes can do. There are only 7 different kinds of messages in the

BAN protocol, they are detailed in Figure 7:

Figure 7: Types of Messages in BAN Protocol

18

 This means that the BAN is completely extendable to include different motes without

updating the basestation. The unused message types allow the protocol itself to be extended as

well. Figure 8 illustrates the communication architecture of the BAN.

Mote

Normal BAN Communication

Master

Slave

M
o

te

Slave

M
o

te

Slave

Figure 8: BAN Communication Overview

6.2 Threat Model
In addition to the protocol there are a few more assumptions. One assumption is that the

basestation user is not the attacker as a BSN can contain important medical devices. The

basestation can only pair with motes when the user initiates pairing. It is assumed that the user

will not knowingly pair with any attacker. In addition to the system here, there are assumptions

made about an attacker.

There is an assumption that the attacker would have relatively high computational

abilities – in addition to the computational power of today's high end laptops it is relatively

cheap and simple to rent out compute time on servers from companies like Amazon. Specifically

Amazon Web Services has the Amazon Elastic Compute Cloud (Amazon EC2), which gives 750

computing hours on Linux and 750 hours on Windows server free then charges $0.105 (2 Cores

and 3.75 GiB RAM) to $1.68 an hour (32 cores and 60 GiB RAM) for compute time on compute

19

optimized servers [28]. The attacker can also spoof, launch man in the middle attacks, and has

the knowledge to decrypt encryption. Decrypting encryption is where the attacker would most

benefit from EC2 as EC2 is made for relatively short (hours, days, or months) and intense

workloads. With the short range of Bluetooth, only one adversary was assumed; however one

person can use multiple devices simulating multiple adversaries. This project did not use

Amazon EC2 to simulate the attacker. It is used here as an example of where an attacker can rent

out heavy duty compute space to crack encryption.

7 Wearable Honeypot
The Wearable Honeypot system is meant to detect threats to a BSN. The basis for the

honeypot is a message system to attract attackers to the honeypot. The message system involves

a message exchange between the BS and specialized helper motes. The BS and the motes

communicate in a pre-arranged way. This message exchange acts as bait for an attacker to pay

attention to the helper motes because it is the most active part of the BAN. Initially just like with

other motes, the basestation will ask for all information about the motes (sensors, types of data,

commands, etc.) and then initialize the honeypot message system. In this mode the BS

periodically sets and resets what the motes are sending to it. The data the mote sends back is

coordinated and known to the basestation. An attacker spoofing messages would cause the

expectations of this system to be violated. Using this approach many attacks can be detected. The

architecture of the honeypot is shown in Figure 9.

20

Figure 9: Wearable Honeypot Architecture

 Because a honeypot is meant to detect threats, as a first step in designing the honeypot

system, a threat model was developed. The threat model was an outline of all possible adversary

attacks the honeypot will be on the lookout for. By examining the Bluetooth protocol and BAN

protocol, attacks were devised. This eventually became a honeypot model when corresponding

detection information was added. However, before that is presented, it is important to understand

message system because the honeypot model depends on it.

7.1 Attacker Attraction Message System

As mentioned above, the detection mechanisms depend on a message coordination

scheme. There are two logical communication channels between the helper motes and the

basestation, a high security channel and a low security channel. The high security channel is

where the message system is coordinated by the basestation and the low security channel is for

“normal” BAN PnP communication. The high security channel is secured with the AES block

cipher in cipher block chaining (CBC) mode. This message coordination scheme relies on

simultaneously synthesizing accelerometer data on the motes and BS, which involves a PRNG

(Pseudo-random Number Generator). Over the high security channel, the basestation sends a

coordination message which tells the motes which kind of accelerometer data (sitting or walking)

to synthesize and how many data points to send back to the basestation as supposed sensor data

21

for accelerometers. This way, the basestation can know what messages to expect from motes and

when (these stream in and the average rate is monitored for sudden changes). Additionally, once

a mote receives a coordination message, it should only ever expect more of them and nothing

else. If a mote receives any other message it will send an encrypted message to the basestation

indicating that an attacker was detected. If the basestation receives any packets from helper

motes before they request data stream to be started, then this also allows attackers to be detected.

Table 1 presents packet description of the coordination message and an example mote return

packets. The basestation coordination message packet is broken down into two parts: Header and

Body. The header specifies the packet size, sequence number and Message ID (1111 1110b). The

body specifies the type and the number of accelerometer values to send as well as initializes the

PRNG. The mote packet response also contains a header and body where the header specifies

packet size, sequence number and message ID while the body specifies Sensor ID and message

value.

Table 1: Honeypot Message System Specification

Honeypot Message System Specification

BS Coordination Message Example Mote "DATA" Response Packets

// Header:

0000 0000

0001 1000 : packet size 24

0000 0000
0000 0111 : sequence number

1111 1110 : message ID

// Body
// 10 messages -- array of 10 16 bit values

0000 0001 : // Type of data, 1 for walking, 0 for sitting

0000 0010
1101 0000 : // Number of data points to send

// 4 32 bit integers to initialize PRNG

0000 0011
0100 0111

0101 0000

0101 0011 : 1
0000 0000

0110 0011

0111 0111
0010 1010 : 2

0011 1001

0110 0000
0000 0011

0110 0100 : 3

1010 0101
0111 0111

0111 1000

0000 0100 : 4

// First mote response

// Header:

0000 0000

0000 1000 : packet size 8
0000 0000

0000 1000 : sequence number

0000 0000 : message ID - mote data
// Body:

0000 0001 : Sensor ID

0110 0011
0100 0010 : Sensor data payload (message value)

// Second mote response

// Header:
0000 0000

0000 1000 : packet size 8

0000 0000
0000 1001 : sequence number

0000 0000 : message ID - mote data

// Body:
0000 0001 : Sensor ID

0110 0000

0000 0011: Sensor data payload (message value)

// Third mote response

// Header:

0000 0000
0000 1000 : packet size 8

0000 0000

0000 1010 : sequence number
0000 0000 : message ID - mote data

// Body:

0000 0001 : Sensor ID
0100 0111

0101 0000: Sensor data payload (message value)

22

In a situation where an attacker is detected, the message ID would alter to 1111 1101b and

transmit this sequence over the secure channel. With this communication mechanism, the

basestation will know when it wasn't a honeypot mote that sent the message.

7.1.1 Synthesizing Accelerometer Data

For the message system, we needed to determine a method to send false yet realistic data

to attract the attacker’s attention yet not make it obviously fake. The idea we set upon was to

synthesize real sensor data. We settled on accelerometer data as the best option for this endeavor.

There are many devices with accelerometers and it isn’t abnormal for someone to have more

than one sensor monitoring accelerometer data. After that, exactly how we synthesize it became

the next issue. Mathematically synthesizing the data is very computationally intensive, so we

decided to start with a real data bank of accelerometer values for different activities.

7.1.1.1 Real Accelerometer Data

 We found data collected and published for the purpose of activity recognition from

accelerometer data[29]. The activities were separated, graphed, and the standard deviations were

calculated in order to understand the data. The Wearable Honeypot is kept simple and uses two

main activities and two more as transitions between them. Walking and sitting are the main

activities. When transitioning from sitting to walking, one must first stand up from sitting, which

we have data for; when going from walking to sitting, one must sit down first. These provide a

couple seconds of realistic transition. There were more activities available (such as lying down,

on all fours and falling), however these activities that don’t generally happen in public. The

graph in Figure 10 present the data points for walking.

23

Figure 10: Original Walking Accelerometer Data

 Figure 10 shows a fairly consistent data set of walking accelerometer values. Towards the

end it appears that the user may have been transitioning to another activity because it doesn’t

match the general pattern in the rest of the data. While calculating the standard deviation these

values were ignored.

Figure 11: Original Standing Up From Sitting Accelerometer Data

 Figure 11 shows accelerometer values for standing up from sitting. The data in this

section is fairly regular between points, however a little past halfway through there is a major

shift downward for the X and Y. From that point on it is fairly regular again. To accommodate

for this, the graph was divided in two and two different standard deviations were calculated.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

A
cc

el
er

o
m

et
er

 D
at

a

Number of Data Points

Walking X Y Z

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73

A
cc

el
er

o
m

et
er

 D
at

a

Number of Data Points

Standing Up From Sitting X Y Z

24

Figure 12: Original Sitting Accelerometer Data

Figure 12 shows the accelerometer data from sitting. As would be expected it is very regular.

Figure 13: Original Sitting Down Accelerometer Data

Figure 13 shows the sitting down data. Due to the Y vector presenting a similar problem to

standing up from sitting down, all vectors were divided in two and two separate calculations

were made for both range and standard deviation. The smallest range and standard deviation

values for each vector were used for future calculations. Table 2 presents each activity’s vector

and their standard deviations.

-1

0

1

2

3

4

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

A
cc

el
er

o
m

et
er

 D
at

a

Number of Data Points

Sitting X Y Z

-1

0

1

2

3

4

5

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

A
cc

el
er

o
m

et
er

 D
at

a

Number of Data Points

Sitting Down X Y Z

25

Table 2: Standard Deviation

Activity Vector Standard Deviation

Walking X 0.272615

Y 0.151893

Z 0.407375

Standing Up From Sitting X 0.149059089

Y 0.109661235

Z 0.407219629

Sitting X 0.185340687

Y 0.326012929

Z 0.450997835

Sitting Down X 0.221174625

Y 0.363783609

Z 0.443966194

As one may notice, if we simply replay this data over and over, it would become obvious

that it is fake. There are some areas where data points are exaggerated. These would be most

obvious. However we interpreted those data values as noise when the test subject transitioned

from one activity to another. Using this assumption those values were ignored for the calculation

of the standard deviation for each dataset. However, even without the spikes, transmitting the

same values every 100 or so points will be obviously fake anyway. Therefore we need to modify

this data.

7.1.1.2 Pseudo-random Number Generator Selection

 Initializing the PRNG requires determining a method to randomize the accelerometer

data. Several PRNG’s were researched; three in particular: RC4, Mersenne Twister and TinyMT.

Since the quality of randomness wasn’t as important as minimized computational load and

maximizing battery efficiency, first an analysis of the number of operations (assignment,

arithmetic operations, bitwise operations such as & and bit shift) required to generate random

numbers as shown in Table 3:

Table 3: PRNG Operation Comparison Table

Attribute RC4 [31] Mersenne Twister

[32]

TinyMT [30]

State Memory Size 256 Byte + 40 Byte

key

2496 Bytes 16 bytes

Operations until 1st

number

206 + 2844 = 3050 4364 + 8112 + 20 + 1

= 12478

101 + 41 = 142

26

Operations Until 2nd

Number

3050 + 2844 = 5894 12478 + 20 = 12498 142 + 41 = 183

Operations until Nth

number

206 + 2844N

+⌊(N/40)⌋*204

4364 + 8112 + 20N +

1 + ⌊(N/624)⌋*8112

101 + 41N

As you can see, the TinyMT PRNG is a clear choice given those criterion. Additionally it

is also of high quality. It has a period of 2127, and the floating point numbers are based upon

evenly distributed 32 bit integers[30]. Pseudo-code or implementations for each is included in

the appendix. Using TinyMT, we can add small random offsets to the original Data.

7.1.1.3 Modified Accelerometer Data

Utilizing the TinyMT PRNG as well as the calculated standard deviations of each

activity’s vector, multiple randomized number is tempered to within +- one standard deviation.

TinyMT can return a floating point r such that 0 <= r < 1. Equation 1 can be used to temper r to

the desired range.

𝑟` = (𝑟 − 0.5) ∗ 𝑠𝑡𝑑 ∗ 2

Equation 1

Where std is the standard deviation and r` is the tempered result.

These tempered offsets were then added to the original dataset creating a randomized,

realistically synthesized set of data. The random offsets were needed so the same data wouldn’t

be streamed over and over, and the spikes (noise) needed to be removed because a spike every

constant number of data points is also suspicious. The graph presented in Figure 14 shows the

original walking vector (as in the magnitude of the x, y, and z), the noise cancelled vector using

the criteria described above, and the resultant randomized vector.

27

Figure 14- Modified Walking Accelerometer Data

 The resultant offset vector has more or less the same pattern as the original data, however

is clearly different than the original data. Meaning that this is plausibly walking data, and it never

repeats. Figure 15 shows the same vectors as Figure 14 for standing up from sitting.

Figure 15: Modified Standing Up Form Sitting Accelerometer Data

Like before the resultant offset vector is clearly the same type of accelerometer data, however the

data values aren’t the same and don’t repeat. Figure 16 shows the same vectors as Figure 14 for

standing up from sitting.

0

1

2

3

4

5

6
1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

Walking Original Vector Noise Canceled Vector Offset Added Vector

2.7

2.9

3.1

3.3

3.5

3.7

3.9

4.1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73

Standing Up From Sitting Original Vector Noise Canceled Vector

28

Figure 16: Modified Sitting Accelerometer Data

The sitting vector is very close, as the regular pattern from the original graph would suggest.

This zoomed in graph very tightly follows the original line (in most places, what looks like a

spike resulted from 3 offsets for X, Y and Z that were very closed to +standard deviation). This

very plausibly provides sitting data that doesn’t repeat. Figure 17 shows the same vectors as

Figure 14 for standing up from sitting.

Figure 17: Modified Sitting Down Accelerometer Data

 With this graph we can conclude the offset vector does not repeat and stays consistent

and in range within the actual activity for all activities.

3.4

3.6

3.8

4

4.2

4.4
1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

Sitting Original Vector Noise Canceled Vector Offset Added Vector

2.8

3.3

3.8

4.3

4.8

5.3Sitting Down Original Vector Noise Canceled Vector Offset Added

29

7.1.2 Message Window
 Going message by message and monitoring message by message delays doesn’t result in

a very robust detection mechanism and would be prone to many false positives and false

negatives. This is because if one packet is dropped, that is a sign there may be an attacker. There

are also many attacks that would be missed. Instead of worrying about each message individually

a message window is considered.

 For the message window there is a balance of keeping track of more messages and

therefore having more information in which to build detection mechanisms from and having

fewer messages in the window allowing for faster detection. The mote tries to send the

accelerometer data value every 250ms.

In a message window, we also have to consider the possibility of packets being lost due

to some temporary interference. With a message window of size n, k number of packets need to

be dropped before the basestation determines this to be an attacker. If we have a small window

size n and a small k, the speed at which an attacker can be detected increases. For instance, to

allow 4 packets to be dropped a window of 8 messages minimum would be needed, to be safe

use a 10 message window.

 Using this 10 message window, if 4 packets were dropped, the system would know what

that 5th packet is supposed to be when it comes in. For the purposes of the Wearable Honeypot 4

packets in a row are acceptable, but the 5th one would mean there is an attacker. Figure 18

demonstrates this idea.

30

Figure 18 - Five Packets Dropped in A Row

This message window also protects from replay attacks, as the expected value is known, so an

attacker cannot resend an old one. Within the message window the average delay is kept track of.

If, within a window, the average delay get too far from 250ms, then an attacker would be

detected. If packets are dropped, the expected delays for the missing packets are taken out from

that delay. The attacker has a small chance spoofing an expected value in the window (1/4096 –

the incoming value is a 12-bit ADC reading from an accelerometer). If, by chance, the attacker

manages the expected packet, then there is no way of detecting this. But, if the attacker sends an

unexpected packet, then an attacker would be detected. Figure 19 demonstrates this idea.

31

Figure 19 - Attacker Window Insertion

In this situation, while the real packet may have been dropped (so the spoofed packet wouldn’t

be caught on the basis of delays) the spoofed packet would then be compared with the expected

message and the attacker would be detected.

7.2 Honeypot Detection Mechanisms
The Honeypot started threat model; to determine the detection mechanisms required, first

the attacks to detect had to be known. First, the Bluetooth protocol itself was examined. This

yielded many attacks (mostly disconnection attacks) without any consideration of the BAN

protocol. Then when it came to the BAN protocol itself, there were two main attack scenarios –

spoofing the basestation and spoofing a mote already in the BAN. Given the master slave nature

of Bluetooth one cannot spoof a new mote and try to add it to the BAN, so attacks of this

principle were not considered.

32

7.2.1 Bluetooth & Disconnection Attacks

The Bluetooth protocol yields many attacks involving disconnecting the basestation from

the motes. Doing this would limit the amount of communication and leave the motes vulnerable

and able to be completely hijacked, i.e. disconnected from basestation. Then the attacker then has

the ability to pair with the mote and become its new master. The illustration in Figure 20 presents

a visual explanation of this type of attack.

Figure 20: Disconnection Attack

Table 4 details the different types of disconnection attacks with a detailed description of

how these attacks would look like. The chart also presents the methods of detecting these attacks.

Table 4: Bluetooth and Disconnection Attacks

Bluetooth and Disconnection Attacks (Type C)

Description of Attack Vectors Application

Packet/Modifications to BT

Frame

Detection Mechanism

Attacker Target

Spoofed

Mote/Spoofed

Basestation

Motes/Basestati

on

1. Bluetooth eavesdropping.

Especially moment of pairing

will compromise all Bluetooth

level security.

Best done with a Bluetooth

sniffing device like

Ubertooth[24]. However,

BT addresses are not

actually globally unique

which means you can iterate

through the common

address and find a non-

discoverable device [22].

There is generally no way to

detect eavesdropping.

33

Attacker Target
Spoofed

Mote/Basesta

tion/Other

Connected

Bluetooth devices

in BAN

2. An attack that jams all the

Bluetooth channels will cause

Bluetooth devices to think

they're disconnected and re-

initiate the pairing process. [22]

This is done by sending

signals on all available

Bluetooth frequencies.

When devices re-initiate

pairing, an attacker can pose

as both the basestation and

motes and have legitimate

parties connect to the

attacker spoofs [22]. Thus

giving a true MIMA.

Whenever a Bluetooth

device disconnects from a

basestation, its address and

the time it disconnected is

stored in a shared data

structure. If there are only 2

motes and they disconnect

within 1 sec or else if all the

motes disconnected within 2

seconds, an attack is

detected.
Attacker Target

Spoofed

Basestation
Motes in BAN

3. An attack that sends pairing

request packets over and over

without follow up.

 After entering a PIN, a

number is generated and

sent to the slave device to

initiate the pairing process.

Instantiate packet and send.

With the default Bluetooth

library on Android you can't

access the part of the

Bluetooth stack to detect

this.

Attacker Target

Spoofed Motes BaseStation

4. Buffer overrun on the

Bluetooth frame. This can

overrun the Bluetooth receive

buffer causing the app to crash.

Using Ubertooth inject a

packet that gives the wrong

size in a Bluetooth frame

[24].

With the default Bluetooth

library on Android you can't

access the part of the

Bluetooth stack to detect

this. The default library was

once vulnerable to this kind

of attack but a bug fix was

merged into the

Git repository in 2013. [25]

7.2.3 Targeting BS by Spoofing Motes

 The second kind of adversary could be an attacker that is pretending to be a mote already

in the BAN. One reason an attacker may want to do this is to confuse the basestation and send

false information around. This may cause behavior in the BAN that would be detrimental to the

user. The illustration in Figure 21 presents a visual representation of this kind of attack.

34

Mote

Attacker spoof mote responses

Mote

Address: 003C920B48F
Address: 003C920B48F

Address: 003C920B48F
Address: 003C920B48F

Figure 21: Spoofed Mote Attacks

 Table 5 outlines different attacks based on spoofing motes and their detection

mechanisms.

Table 5: Spoofing Motes Already In Ban

Spoofing Motes Already in BAN (Type B)

Description of Attack Vectors Application

Packet/Modifications to BT

Frame

Detection Mechanism

Attacker Target
Spoofed Mote Basestation

1. Buffer overrun attack on the

application packet. This means

the Bluetooth layer would be

unaffected, but when the

application packet gets handed

up it will be bigger than the

application expected and this

can overrun the buffer

allowing malicious code to be

inserted in adjacent memory to

that used by the app.

Header:
0000 0000

0001 0110 ; packet size 22

0000 0000
0000 0111 ; sequence number

0000 0101 ; message ID

Body
0000 0001 ; sensor ID

Value mappings:

0000 0011 : Size
0000 0010 : type ID 2's comp integer

0000 0000

0000 0011 ; size of value name
0100 0111 ; G

0101 0000 ; P

0101 0011 ; s
0000 0000

0000 0011 ; SIZE OF equation

0111 0111 ; x
0010 1010 ; *

0011 1001 ; 9

0000 0000
0000 0011 ; size of value units

The size of the messages are

known therefore any spoofed

message that is oversized would

be easily detectable.

35

0110 0100 ; d

0110 0101 ; e
0110 0111 ; g

0000 0000 ; null pointer beyond buffer,

byte 23
0000 0000

0000 0000

0000 0000
Attacker Target

Spoofed Motes Basestation

2. Spoof Data Inquiry response

packets, i.e. try giving data

conversion equations that

divide by 0.

Header:
0000 0000

0001 0110 ; packet size

0000 0000
0000 0111 ; sequence number

0000 0101 ; message ID

Body:
0000 0001 ; sensor ID

Value mappings:

0000 0011 : Size
0000 0010 : type ID 2's comp integer

0000 0000

0000 0011 ; size of value name
0100 0111 ; G

0101 0000 ; P

0101 0011 ; S
0000 0000

0000 0011 ; SIZE OF conversion equation
0111 0111 ; x

0010 1111 ; /

0011 0000 ; 0 – conversion equation
0000 0000

0000 0011 ; size of value units

0110 0100 ; d
0110 0101 ; e

0110 0111 ; g

Cleanse input and conversion

equations. As part of cleansing

the conversion equations make

sure to check divide by 0 and

anything besides a

mathematical expression.

Attacker Target
Spoofed Motes Basestation

3. Too many packets can make

it so a basestation is too busy

processing incoming packets

to control mote. DOS attacks

such as this are known to drain

battery life significantly. [22]

It doesn't really matter what

is in the packets themselves.

It may be a good idea to

spoof source address in the

Bluetooth frame, but that's

not necessary for the attack.

Two packets received in less

than the expected delay is

obviously an attacker because

coordinated messages only

come every previously

coordinated number of

milliseconds.

Attacker Target

Spoofed Motes Basestation

4. Attacker transmits a

message of type Mote Data

sending data that is not

plausible. This may cause bad

information to be recorded by

the Basestation.

0000 0000

0000 1000 ; packet size

0000 0000

0000 0111 ; sequence number

0000 0000 ; message ID

0000 0001; sensor ID

1111 1111 ;

1111 1111; sensor data payload

With the content of the

messages known, any such

message coming in with a

different value would be from

an attacker.

Attacker Target
Spoofed Motes Basestation

5. Attacker transmits a

message of type Mote Data

sending data that is plausibly

correct. This will cause

plausibly incorrect information

to be recorded by the BAN

0000 0000

0000 1000 ; packet size

0000 0000
0000 0111 ; sequence number

0000 0000 ; message ID

0000 0001; sensor ID
0000 0000

1010 1111; sensor data payload

With the content of the

messages known, any such

message coming in with a

different value would be from

an attacker.

36

which can have differing

consequences depending on

the device.

Attacker Target
Spoofed Mote Basestation

6. Spoof packets with

incrementing sequence

numbers in header so

basestation and mote’s

sequence numbers become out

of sync

Packet 1:

0000 0000
0000 1000 ; packet size

0000 0000

0000 0111 ; sequence number
0000 0000 ; message ID

0000 0001; sensor ID

0000 0000
1010 1111; sensor data payload

Packet 2:

0000 0000
0000 1000 ; packet size

0000 0000
0000 1000 ; sequence number

0000 0000 ; message ID

0000 0001 ; sensor ID
0000 0001

1010 1110; sensor data payload

Packet 3:
0000 0000

0000 1000 ; packet size

0000 0000
0000 1001 ; sequence number

0000 0000 ; message ID

0000 0001 ; sensor ID
0000 0001

1010 1111 ; sensor data payload

In the basestation

implementation they throw out

the sequence number.

Documentation says otherwise.

Therefore this needs to be

detected (by keeping track of

incoming sequence numbers).

Attacker Target
Spoofed Mote Basestation

7. Spoof a mote response to a

Sensor Inquiry. Giving false

information about available

sensors will cause the BAN to

malfunction.

Packet 1:

Header
0000 0000

0000 1000 ; packet size

0000 0000
0000 0111 ; sequence number

0000 0001 ; message ID

Body:
0000 0001: number of Sensors

Sensory mappings:

0000 0001 : sensor ID
0000 0011 :

0000 0010 : size of sensor name
0000 0000

0000 0100 : size of value name

0100 0111 : G
0101 1001 : Y

0101 0010 : R

0100 1111 : O - sensory name

The basestation will know what

the helper mote's response is

supposed to be. If it differs an

attack is detected.

37

Attacker Target
Spoofed Mote Basestation

8. Spoof a Command Inquiry

response packet.

Packet 1:

Header
0000 0000

0000 1000 ; packet size

0000 0000
0000 0111 ; sequence number

0000 0010 ; message ID

0000 0000 : sensor ID 0 for general
request

0000 0001 : number of commands

//Command mappings
0000 0001 : command ID

0000 0000 :

0000 0100 : size of command name
0101 0011 : S

0101 1001 : Y

0100 1110 : N
0100 0011 : C – command name

The basestation will know what

the helper mote's response is

supposed to be. If it differs an

attack is detected.

Attacker Target
Spoofed Mote Basestation

9. Spoof a Command Returns

Inquiry response packet.

Divide by 0 attacks or other

false info.

Packet 1:

Header

0000 0000
0000 1000 : packet size

0000 0000

0000 0111 : sequence number
0000 0100 : message ID

Body
0000 0000 : sensor ID 0 for general

request

0000 0001 : command ID to ask about
Value mappings:

0000 0011 : Size

0000 0010 : type ID 2's comp integer
0000 0000

0000 1011 : size of return name

0111 0011 : s
0110 0101 : e

0110 1110 : n

0111 0011 : s
0110 1001 : i

0111 0100 : t

0110 1001 : i
0111 0110 : v

0110 1001 : i

0111 0100 : t
0111 1001: y

0000 0000

0000 0011 ; SIZE OF return conversion
equation

0111 0111 ; x

0010 1111 ; /
0011 0000 ; 0 – conversion equation

0000 0000

0000 0000 : size of value units

The basestation will know what

the helper mote's response is

supposed to be. If it differs an

attack is detected.

Attacker Target
Spoofed Mote Basestation

10. Spoof a Command Params

Inquiry response packet.

Packet 1:

Header

0000 0000

0000 1000 ; packet size

0000 0000

0000 0111 ; sequence number
0000 0011 ; message ID

Body

0000 0000 : sensor ID 0 for general
request

0000 0001 : command ID to ask about

0000 0001 : number of parameters
Param mappings

0000 0010 : Parameter size

0000 0010 : Type ID 2's comp
0000 0000

0000 0111 : Size of param name

The basestation will know what

the helper mote's response is

supposed to be. If it differs an

attack is detected.

38

0111 0011 : s

0110 0101 : e
0111 0100 : t

0111 0100 : t

0110 1001 : i
0110 1110 : n

0110 0111 : g – param name

0000 0000
0000 0101 : size of restriction set

0011 0000 : 0

0010 0000 : (space)
0010 1101 : -

0010 0000 : (space)

0011 0101 : 5
0000 0000 : size of parameter units

7.2.4 Spoofing Basestation to Target Motes

A third type of adversary is if the attacker was a spoofed basestation. The basestation,

being the master in this BAN, has a lot of power and capabilities. Figure 22 presents a better

understanding of this type of attack.

Figure 22: Spoofed Basestation Attacks

Table 6 shows different attacks that can be accomplished by spoofing the basestation.

39

Table 6: Spoofed Basestation Attacks

Spoof Basestation (Type A)

Description of Attack

Vectors

Application

Packet/Modifications to BT

Frame

Detection Mechanism

Attacker Target
Spoofed

Basestation
Mote

1. Learning mote commands

and then spoofing basestation

packets to motes for them to

execute commands.

0000 0000
0000 0101 ; packet size

0000 0000

0000 0111 ; sequence number
1111 1111 ; message ID

The helper motes should never

receive a command.

Attacker Target
Spoofed

Basestation
Mote

2. Sending too many packets

can make it so a mote is too

busy processing incoming

packets to deal with

legitimate communications

with basestation. DOS

attacks such as this are

known to drain battery life

significantly. [22]

It doesn't really matter what is

in the packets themselves. It

may be a good idea to spoof

source address in the

Bluetooth frame, but that's not

necessary for the attack.

After an initialization with the

BAN PnP Protocol, the motes

should only receive coordination

messages for the message

system. These messages will be

encrypted so they will be easily

distinguishable from spoofed

packets.

Attacker Target
Spoofed

Basestation
Motes

3. Spoof packets with

incrementing sequence

numbers in header so

basestation and mote’s

sequence numbers become

out of sync.

Packet 1:

0000 0000
0000 0101 ; packet size

0000 0000
0000 0111 ; sequence number

0000 0000 ; message ID

Packet 2:
0000 0000

0000 0101 ; packet size

0000 0000
0000 1000 ; sequence number

0000 0000 ; message ID

Packet 3:
0000 0000

0000 0101 ; packet size

0000 0000
0000 1001 ; sequence number

0000 0000 ; message ID

In the current implementation

the motes ignore this field.

Documentation suggested this

field was important and used.

Therefore this needs to be

detected (by keeping track of

incoming sequence numbers).

Attacker Target
Spoofed

Basestation
Motes

4. Spoof a Sensor Inquiry.

Packet 1:

Header

0000 0000

0000 1000 ; packet size

0000 0000
0000 0111 ; sequence number

0000 0001 ; message ID

After an initialization with the

BAN PnP Protocol, the motes

should only receive message

system coordination messages.

As this is not a message system

message, the attacker would be

detected.
Attacker Target
Spoofed

Basestation
Motes

Packet 1:

Header
0000 0000

0000 1000 ; packet size

0000 0000

After an initialization with the

BAN PnP Protocol, the motes

should only receive message

40

5. Spoof a Command

Inquiry.

0000 0111 ; sequence number

0000 0010 ; message ID
0000 0000 : sensor ID 0 for general request

system coordination messages.

As this is not a message system

message, the attacker would be

detected.
Attacker Target
Spoofed

Basestation
Motes

6. Spoof a Command Params

Inquiry.

Packet 1:

Header

0000 0000
0000 1000 ; packet size

0000 0000

0000 0111 ; sequence number
0000 0011 ; message ID

0000 0000 : sensor ID 0 for general request

0000 0001 : command ID to ask about

After an initialization with the

BAN PnP Protocol, the motes

should only receive message

system coordination messages.

As this is not a message system

message, the attacker would be

detected.
Attacker Target
Spoofed

Basestation
Motes

7. Spoof a Data Inquiry.

Packet 1:

Header

0000 0000

0000 1000 ; packet size

0000 0000

0000 0111 ; sequence number
0000 0101 ; message ID

0000 0000 : sensor ID 0 for general request

After an initialization with the

BAN PnP Protocol, the motes

should only receive message

system coordination messages.

As this is not a message system

message, the attacker would be

detected.
Attacker Target
Spoofed

Basestation
Motes

8. Spoof a Command Returns

Inquiry.

Packet 1:

Header

0000 0000
0000 1000 : packet size

0000 0000

0000 0111 : sequence number
0000 0100 : message ID

0000 0000 : sensor ID 0 for general request

0000 0001 : command ID to ask about

After an initialization with the

BAN PnP Protocol, the motes

should only receive message

system coordination messages.

As this is not a message system

message, the attacker would be

detected.

With this honeypot model, all the information needed to be able to implement the

honeypot is documented.

8 Wearable Honeypot Testing and Results
To make the Wearable Honeypot worthwhile it had to meet some design goals. The first

of which is to be able to attract an attacker which was shown in the “Attacker Attraction

Message System” section. Next it has to be specific to the BAN and Bluetooth protocol which

was shown in the “Honeypot Detection Mechanisms” section. The two other design goals were

to be more efficient than standard encryption and to be able to effectively detect attackers.

41

8.1 Honeypot Lifetime Tests
 To test that the honeypot system is more efficient than standard encryption a control was

needed. AES block cipher is the most secure standard cipher available for TinyOS. This was

easily used on Android as well. Because simply encoding with the block cipher isn’t very secure,

the encryption was done in cipher block chaining mode.

8.1.1 Methodology

 As part of implementing the message system a high security channel was encrypted with

AES-128 bit in cipher block chaining mode. For a comparision of the efficiency of the honeypot,

there was also a battery test of real accelerometer data collected from the ADC which was

encrypted before sending at BAN’s default rate of 32 Hz. The Honeypot message system was

then run at the following data rates: 40 Hz, 100 Hz, 70 Hz and finally 50 Hz. The procedure for

each test was as follows:

1. Charge Mote

2. Flash mote with firmware version for the configurations above.

3. Pair motes with basestation

4. Run basestation application and add mote to BAN

5. Basestation records time when connected to BAN

6. Mote streams data until dead

7. Basestation records time when mote stops streaming

8. Basestation calculated time elapsed and outputs to screen

Each test was on the 2 motes with the largest form factor and then the results of both tests were

averaged.

8.1.2 Results

 The results of the tests as outlined in the previous section are summarized in the

following graph in figure 23.

42

Figure 23: Battery Testing Results

The graph clearly shows that the honeypot can be run almost twice as fast as the BAN normally

is before the honeypot becomes less battery efficient than the motes. One could look a this and

say that the honeypot only saves a half hour over encryption. However the encryption test was

run at 32Hz where the honeypot tests were run at much faster data rates. Additonally, the

encryption would be running on the same motes that are needed as sensors, taking away from

their operating life. The honeypot runs independently of those devices and doesn’t drain their

battery. In this way even at nearly double the default data rate the honeypot will provide security

to the system longer than encryption without impacting the battery performance of the necessary

sensor motes.

8.2 Attack Detection
 The final design goal to be met is to effectively detect attacks. For this the original plan

was to mount Bluetooth attacks. For this purpose an Ubertooth One Bluetooth testing device was

procured [24]. The Ubertooth One can channel hop to all Bluetooth channels and the version of

firmware released in summer 2014 is documented to be able to inject packets [24]. This device

was set up and packet capture with kismet was initiated. This worked in the sense that many

many Bluetooth packets were sniffed. However the packets that were sniffed were just other

43

packets in the vicinity from relatively nearby Bluetooth devices. This sort of promiscuous packet

capture mode was not able to help with mounting attacks because while it may be able to hop

around and sniff on every Bluetooth channel, it can’t sniff on all channels in the same instant.

 The Ubertooth One in addition to interfacing with Kismet has its own firmware

commands. One command is ubertooth-follow which allows the user to specify the LAP (Lower

Address Portion) and the UAP (Upper Address Portion). For some context, a diagram of a

Bluetooth address is shown in Figure 24.

Figure 24: Bluetooth Address Format [22]

This is supposed to lock on the Bluetooth device with the specified address. The software is then

supposed to calculate the NAP. One of the Bluetooth addresses in the BAN is (MSB to LSB in

HEX): 00:06:66:A0:3A:51. When running the command ubertooth-follow –uap 66 –lap

A0:3A:51 the Ubertooth tries to lock on to 00:00:66:A0:3A:51 which of course doesn’t exist.

This means it is not calculating the NAP properly. The following command was then attempted

ubertooth-follow –nap 00:06 –uap 66 –lap A0:3A:51. This command was not accepted (as

expected as –nap was not in documentation or help menu). Finally this command was attempted:

ubertooth-follow –uap 06:66 –lap A0:3A:51 and the Ubertooth attempted to lock on to

00:00:0666:A0:3A:51, which is not a valid Bluetooth address. Because of this it was technically

infeasible to launch Bluetooth attacks to really detect attackers.

 However the detection mechanisms were able to be tested another way. When it comes to

Bluetooth disconnection attack detection, this was simulated by blocking the signals from the

mote (by wrapping it in tin foil when streaming data) and the basestation realized that the mote

was being interfered with. Also, if responses to the BAN PnP requests were modified the

honeypot detected the presence of an attacker. Finally, if the wrong honeypot data message was

sent the Basestation also detected as an attacker. These results are promising and suggest that the

system does effectively detect attacks.

44

8 Conclusion

 The goal of this project was to design and implement a honeypot to add computationally

lightweight security to a BAN. The security added by the honeypot acts as an alarm system that

detects attacks. The design goals of the system were:

1. To be able to attract attackers to attack it

2. To be specific to the BAN and it’s Bluetooth communication

3. To be more efficient than standard encryption

4. To effectively detect attacks

 The first of the design goals was met with realistic, pre-determined data stream as

explained “Attacker Attraction Message System” part of the “Wearable Honeypot” section. The

second design goal was met with a detailed list of all attacks that work on the BAN protocol and

Bluetooth as shown in the “Honeypot Detection Mechanisms” part of the “Wearable Honeypot”

section. The honeypot also met its third design goal of being more efficient than standard

encryption with AES in cipher block chaining mode as shown in the “Honeypot Lifetime Tests”

part of the testing and results section. The final design goal of effectively detecting attacks

wasn’t able to be directly tested by mounting a Bluetooth attack, however tests suggest that the

detection mechanisms do work as explained in the “Attack Detection” part of the testing and

results section.

 The honeypot detects attacks in two ways. It can detect when the BAN PnP protocol

requests are tampered with as well as data stream (sensor data) tampering. It can do this because

the honeypot knows the responses to the requests and it knows exactly what sensor data values

should be being transmitted. As you can see the Wearable Honeypot has met its design goals.

9 Future Works

 The project focused on making a honeypot. There are improvements that could be done

to the design topology of the honeypot as well as to the message system. Future projects could

expand the features and detection mechanisms of the honeypot, as well as provide attacker

response. The Wearable Honeypot merely raises the alarm.

45

9.1 Honeypot Topology Changes
The honeypot could be expanded to 3 or more motes (or virtualized/spoofed motes). The

Wearable Honeypot uses 2 motes and sends many packets; if more motes are used, then each

mote can be less active and still have the same effect (2 motes transmitting 100% of the time is

the same amount of traffic as 3 motes 67% of the time). This could lighten the load of each

honeypot mote. Relatedly, each member of the BAN could be part of the honeypot meaning the

transmission load of the honeypot could be spread as much as possible. However, if that is done,

watch out for attracting the attacker towards a mote that would have very bad consequences for

the user if it’s targeted.

9.2 Message System Extensions
 The message system as it is set to transmit in a constant fashion. This rate is changeable,

but currently there isn’t a good scheduling mechanism for changing the rate dynamically. That is

the mote can take any rate, but the base station doesn’t have intelligence in setting it. An

improvement would involve a more complicated schedule of transmissions where transmission is

happening less often, but should still be able to provide the same level of security.

9.3 Responding To Attacks
 In terms of security and securing the BAN, responding to attacks would be most

important. It wasn’t necessary for the purposes of this honeypot to individually recognize

different attacks. It merely raises the alarm when an attack is detected. When responding to

attacks it may be useful to set up different flags or some data structure to individually recognize

all attacks. After detecting precisely which attack was launched, an appropriate response can be

determined. This can be through a threat level mapping, where each attack it mapped to a

security level. When the security level changes, there is different behavior in the BAN

(stronger/weaker encryption, going radio silent temporarily, more extensive logging, etc.)

Responses could also be individual to the attack, or some combination of both.

 In short, there are multiple different avenues to continue this project on. These are mainly

modifying/improving what the honeypot and responding to attacks. In particular, responding to

attacks would improve security. Whichever road future projects take, this honeypot should be a

usable foundation.

46

10 References

[1] R. Danas, D. Lally, N. Miller, J. Synnot. ”Enhancing Plug and

Play Capabilities in Body Area Network Protocols." Worcester Polytechnic Institute.

Web. 10 March 2014. <http://www.wpi.edu/Pubs/E-project/Available/E-project-031014-

160634/>.

[2] Ho, Chiung Ching, and Choo-Yee Ting. "A Conceptual Framework for Smart Mobile

Honeypots." Academia.edu. Multimedia University: Faculty of Computing and

Informatics, n.d. Web. 8 Oct. 2014.

<https://www.academia.edu/3156352/A_Conceptual_Framework_for_Smart_Mobile_

Honeypots>.

[3] Juul, Niels Christian. "The Security Hole in WAP: An Analysis of the Network and Business

Rationales Underlying a Failure." International Journal of Electronic Commerce 7.4

(2003): 73-92. JSTOR. Web. 14 Oct. 2014.

<http://www.jstor.org/stable/10.2307/27751078?ref=no-x-

route:c100b1dc45f58b201f79498b09ea5c00>.

[4] Liebergeld, Steffen, Matthias Lange, and Ravishankar Borgaonkar. "Next Generation Factory

Layouts: Research Challenges and Recent Progress." Interfaces 32.6 (2002): 58-76.

Cellpot: A Concept for Next Generation Cellular Network Honeypots. Web. 7 Oct.

2014. <http://www.internetsociety.org/sites/default/files/02_1-paper_0.pdf>.

[5] Mulliner, Collin, Steffen Liebergeld, and Matthias Lange. "Poster: HoneyDroid - Creating a

Smartphone Honeypot." Poster: HoneyDroid - Creating a Smartphone Honeypot

(2011): n. pag. Poster: HoneyDroid - Creating a Smartphone Honeypot. IEEE. Web. 8

Oct. 2014. <http://www.ieee-

security.org/TC/SP2011/posters/HoneyDroid__Creating_a_Smart_Phone_Honeypot.p

df>.

[6] Song, Yubo, Xiaoyun Zhu, Yelin Hong,, Haoyue Zhang, and Hangbo Tan. "A Mobile

Communication Honeypot Observing System." IEEE Xplore. Southeast University:

Information Science and Technology Department, 2012. Web. 7 Oct. 2014.

<http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6407408>.

[7] Wählisc, Matthias, André Vorbach, Christian Keil, Jochen Schönfelder, Thomas C. Schmidt,

and Jochen H. Schiller. "Deutsche Telekom AG Thomas C. Schmidt HAW Hamburg

47

Christian Keil." Design, Implementation and Operation of a Mobile Honeypot 1

(2013): 1-6. Arxiv. Web. 7 Oct. 2014. <http://arxiv.org/pdf/1301.7257v1.pdf>.

[8] Wählisch, Matthias, Sebastian Trapp, Christian Keil, Jochen Schönfelder, Thomas C.

Schmidt, and Jochen Schiller. "First Insights from a Mobile Honeypot." ACM

SIGCOMM Computer Communication Review 42.4 (2012): 305. Google Scholar.

Web. 9 Oct. 2014. <http://page.mi.fu-berlin.de/waehl/papers/wtkss-fimh-12.pdf>.

[9] Roose, Kevin "Here's How Apple Will Convince You to Buy a Smartwatch" NYMAG. 10

Sept. 2014. Web. < http://nymag.com/daily/intelligencer/2014/09/how-apple-will-

convince-you-to-buy-a-smartwatch.html>

[10] "CodeBlue: Wireless Sensors for Medical Care | Harvard Sensor Networks Lab," [Online].

Available: http://fiji.eecs.harvard.edu/CodeBlue.

[11] Shimmer, Shimmer User Manual.

[12] Shimmer, "Wearable Sensor Technology | Shimmer | Wearable Wireless Sensing

Technology and Solutions.," [Online]. Available: <http://www.shimmersensing.com/>

[13] Riden, Jamie, and Christian Seifert. "A Guide to Different Kinds of Honeypots." Endpoint,

Cloud, Mobile & Virtual Security Solutions. Symantec, 2 Nov. 2010. Web. 15 Oct.

2014. < http://www.symantec.com/connect/articles/guide-different-kinds-honeypots>

[14] K.K. Venkatasubramanian, C. Shue. “Adaptive Information Security in Body Sensor-

Actuator Networks.” In Proc. of 2014 Usenix Summit on Health Information

Technologies Aug 2014.

[15] Peter, Eric, and Todd Schiller. "A Practical Guide to Honeypots." A Practical Guide to

Honeypots. N.p., 15 Apr. 2008. Web. 1 Oct. 2014.

<http://www.cs.wustl.edu/~jain/cse571-09/ftp/honey.pdf >

[16] Even, Loras R. "Intrusion Detection FAQ: What Is a Honeypot?" SANS:. N.p., 12 July 2000.

Web. 17 Sept. 2014. < http://www.sans.org/security-resources/idfaq/honeypot3.php>

[17] Pietro, Roberto Di and Mancini, Luigi. "Security and privacy issues of handheld and

wearable wireless devices." ACM. Web. 8 Oct 2014.

<http://cacm.acm.org/magazines/2003/9/6721-security-and-privacy-issues-of-handheld-

and-wearable-wireless-devices/fulltext>.

[18] Jovanov, Dr. Emil. "Wireless Body Area Networks for Health Monitoring." Dr. Aleksandar

48

Milenković. University of Alabama, n.d. Web. 16 Oct. 2014.

<http://www.ece.tufts.edu/ee/194HHW/papers/milenkovic_compcomm06.pdf>

[19] R. Danas, D. Lally, N. Miller, J. Synott, C. Shue, H. Ghasemzadeh, K. K.

Venkatasubramanian, “Designing User-specific Plug-n-Play into Body Area

Networks”, In Proc. of 4th ACM MobiHoc Workshop on Pervasive Wireless

Healthcare (MobileHealth), Aug 2014.

http://delivery.acm.org/10.1145/2640000/2633655/p13-

danas.pdf?ip=130.215.17.178&id=2633655&acc=ACTIVE%20SERVICE&key=7777

116298C9657D%2E71E5F5E88B9A3E17%2E4D4702B0C3E38B35%2E4D4702B0

C3E38B35&CFID=585865375&CFTOKEN=38887012&__acm__=1413581198_df4c

72dcfd2ddc8730f3e91f652d0416

[20] "THE PURPOSE OF CRYPTOGRAPHY." An Overview of Cryptography. November 16,

2014. Accessed November 24, 2014. http://www.garykessler.net/library/crypto.html.

[21] Kuperman, Benjamin. "Prevention and Detection of Stack Buffer Overflow Attacks."

Prevention and Detection of Stack Buffer Overflow Attacks. August 12, 2005. Accessed

November 20, 2014. https://engineering.purdue.edu/~vijay/papers/2005/bo-cacm.pdf.

[22] Chai, Elaina, Ben Deardorf, and Cathy Wu. "Hacking Bluetooth." Hacking Bluetooth.

December 9, 2012. Accessed December 1, 2014.

http://css.csail.mit.edu/6.858/2012/projects/echai-bendorff-cathywu.pdf.

[23] Gratton, Dean. "The Generic Object Exchange Profile." In BLUETOOTH PROFILES: The

Definition Guide. Upper Saddle River, New Jersy: Bernard M. Goodwin, 2003.

https://books.google.com/books?id=08eByqhzJ3wC&pg=PA356&lpg=PA356&dq=bluet

ooth+disconnect+request+packet&source=bl&ots=vXcYNZBERf&sig=e3Bq_o6XspjPM

-hym4s-

mQkWGD0&hl=en&sa=X&ei=626MVLj_ArSOsQT494C4CA&ved=0CCQQ6AEwAQ

#v=onepage&q&f=false

[24] "Ubertooth One." Project Ubertooth. Accessed January 5, 2014.

http://ubertooth.sourceforge.net/hardware/one/.

[25] Dearman, Chris. "Git." Android / Platform/external/bluetooth/bluedroid /. July 2, 2013.

49

Accessed December 7, 2014.

https://android.googlesource.com/platform/external/bluetooth/bluedroid/

/f2fc54d237a24dc4db307cb56a513a8720809f95.

[26] Yen, Li-Hsing. "Introduction to Bluetooth." Introduction to Bluetooth. Accessed December

15, 2014.

[27] Bluetooth SIG. "Bluetooth Development Portal." Bluetooth Development Portal. January 1,

2014. Accessed December 15, 2014. https://developer.bluetooth.org/Pages/default.aspx.

[28] "Get Started with AWS." Amazon Web Service. January 1, 2014. Accessed December 18,

2014. http://aws.amazon.com/.

[29] Lustrek, Mitja, Bostjan Kaluza, Rok Piltaver, Jana Krivec, and Vedrana Vidulin.

"Localization Data for Posture Reconstruction." UCI Machine Learning Repository.

October 1, 2010. Accessed February 20, 2016. https://archive.ics.uci.edu/ml/machine-

learningdatabases/00196/ConfLongDemo_JSI.txt.

[30] Saito, Mutsuo Saito, and Makoto Matsumoto Matsumoto. "Tiny Mersenne Twister

(TinyMT): A Small-sized Variant of Mersenne Twister." TinyMT. January 1, 2011.

Accessed February 15, 2015. http://www.math.sci.hiroshima-u.ac.jp/~m-

mat/MT/TINYMT/index.html.

[31] Denis, Tom St Denis. "Rc4.c." Google Git. November 16, 2006. Accessed February 14, \

 2015. https://android.googlesource.com/platform/external/dropbear/ /donut-

release/libtomcrypt/src/prngs/rc4.c.

[32] Eppstein, David Eppstein. "Mersenne Twister." Pseudocode. February 12, 2015. Accessed

February 15, 2015. http://en.wikipedia.org/wiki/Mersenne_twister.

Appendix

A.1 Bluetooth Background Info

A.1.1 Device ID

Every Bluetooth device has a device ID or Bluetooth Address which is used to identify it.

The address is a 48-bit number just like an Ethernet MAC [26]. Unlike with an Ethernet MAC, a

Bluetooth address is used at all levels, not just the physical one. In a piconet all devices transmit

https://archive.ics.uci.edu/ml/machine-learningdatabases/00196/ConfLongDemo_JSI.txt
https://archive.ics.uci.edu/ml/machine-learningdatabases/00196/ConfLongDemo_JSI.txt
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/TINYMT/index.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/TINYMT/index.html

50

using the masters Bluetooth address. The Bluetooth address has 3 parts: 2 bytes for the Non-

sigificant Address Portion (NAP), 1 byte for Upper Address Portion (UAP), and 3 bytes for the

Lower Addresss Portion (LAP). They are in that order MSB to LSB. While in discoverable mode

or in use, Bluetooth addresses are always discoverable [22].

A.1.2 Pairing

Before two devices can exchange data, they must be paired. Master devices initiate

pairing by the process shown in the Figure 25.

Figure 25: Bluetooth Pairing Process

The pairing process usually usual starts at with a user entering a PIN into a UI. The PIN

is the basis for confirming the identity of the devices. After sending a PIN a number of keys are

generated for Bluetooth security. The PIN is not transmitted over the wireless channel, instead it

is used to generate a random number that becomes the basis for the authentication key. The

initialization key is used to agree upon a link key, which depends on the type of communication

desired. The link key is then used to generate the encryption key used for built in Bluetooth

security [22]. The devices are officially paired at this point.

51

A.1.3 Frequency Hopping

When a Bluetooth piconet is established from a master, there 14 channels specified for

communication. The master transmits on the seven even channels and the slaves transmit using

the seven odd channels. Devices hop channels every 625 microseconds [27]. When

communicating, the master and all the slaves user the master's device ID to determine hopping

patter and the master's clock synchronizes the hopping pattern in th epiconet. When a packet is

being transmitted, hopping halts. After one 625 microsecond cycle if the packet is transmitted,

then the frequency hops continue. Otherwise after 3 cycles if the packet is done channel hopping

resumes. The maximum transmission time of a packet is only allowed to be 5 of these cycles, at

which time frequency hopping must resume; frequency hopping may only resume after 1, 3, or 5

cyles [27].

A.1.4 Bluetooth Stack

The Bluetooth stack has 3 layers: Application, Middleware and Transport Layer. The

application layer contains all applications on a Bluetooth ready device. The Transport Layer

deals with both the physical and logical communication between two devices. The middle layer

provides Bluetooth services and decides how the application layer packets get handed to the

transport layer. This stack is depicted in Figure 26.

Application Layer

Middleware Layer

Transport Layer

Applications

Data
Internet Protocol

Service Discovery Protocol
RFCOMM

1. L2CAP
2. Link Manager

3. Baseband
4. RF

Figure 26: Bluetooth Protocol Stack

The Application layer and the Middleware layer are a set of programs that co-mingle on those

levels of the stack. For the transport layer however, L2CAP (Logical Link Control and

Adaptation) interfaces with the Link Manger which deals with the logical connection between

52

devices which sits on top of the Baseband which sits on RF both of which deal with the physical

communication. RF refers to the physical radio signals and the Baseband controls the time

domain multiplexing of the signal. The middleware layer provides services such as TCP/IP, Data

Transmission, Service Discover Protocol, and RFCOMM

A.1.5 Bluetooth Security

 Bluetooth security is meant to provide authentication, confidentiality, and authorization.

That is verify the identify of communicating devices, maintaining communication privacy, and

resource control by permissions. It uses a PIN for authorization (this is how authentication key is

generated in pairing), verifying the link key is meant to verify the identity of the communication

partner, and the encryption key is meant to keep confidentiality.

A.1.5.1 Device ID

 Bluetooth addresses are supposed to be globaly unique like Ethernet MAC addresses.

This is particularly important because Bluetooth uses a broadcast medium so the communication

target must be uniquely identified. An attacker could compile a list of Bluetooth addresses, and

use software to change their address and iterate through the list listening for packets. When it

finds an address with packets, sniffing and packet injection become possible [22]. This kind of

spoofing of an attacker's own address can be very useful because using standard Bluetooth

devices, promiscuous sniffing is not possible. This is because most Bluetooth firmware

automatically filters out packets not meant for a particular machine [22]. Even in non-

dicoverable mode Bluetooth devices will still receive packets addresses to them.

A.1.5.2 Pairing

 There are security issues with the paring process. The simplest of which is if this initial

pairing communication is eavesdropped, then an attacker would have the authentication key, the

link key, and then encryption key rendering Bluetooth level security useless. Also, PINs, which

are used for authorization and to initiate pairing, are often left to their default values, making the

security measure often useless.

A.1.5.3 Frequency Hopping & Other

 Frequency hopping provides some barrier to sniffing, but there are ways around it by

modifying firmware or with dedicated devices. Frequency jamming attack has been documented

to cause devices to re-initiate pairing allowing an attacker to have the legitimate devices pair

53

with fake ones that provide the foundation for man in the middle attacks [22]. Even with

frequency hopping piconets are susceptible to DOS attacks from inquiry scanning. Inquiry

scanning is how Bluetooth devices discover each other. Messages of this type are sent over many

frequencies.

A.2 Development Issues

A.2.1 Issues with Banmqp implementation

1. Problem: Basestation crashing when motes added to BAN because inside mote

constructor isStreaming = wasStreaming = false.

1. Fix: When variables initialized separately bug went away

1. Problem: Defined in his main menu where strings to hold sensor information that weren’t

defined in his other xml files.

1. Fix: Defined the strings

2. Problem: In his main menu there was a closing tag as well that wasn’t open on that same

row where those strings would have been displayed

1. Fix: Added the needed ending tag

3. Problem: Only had 8 sensor strings defined in the XML which means if you try to add

beyond the fourth row you hit some sort of max in the code

1. Fix: increasing max to what’s actually defined

4. Problem: NULL Items grabbed in a for each loop (if there is a null element in a data

structure, the for each construct shouldn’t process that)

1. Fix: Check for NULL in every for each loop

2. Note: There were also many null pointer exceptions pertaining to trying to process

elements in a data structure. Where the log came up null pointer checks were

placed.

A.2.2 Development Issues

1. Never edit the source code from the motes and the basestation simulataneously in the same

instance of Eclipse. This will cause Eclipse to throw tons and tons of errors.

2. On the motes whenever any configuration file is changed in any way or added to the project,

the run configuration must be redone. It will have all the same settings as before, but a new one

must be generated or the motes will not flash.

A.2.3 Development Best Practices

1. Git commit as often as possible.

2. The only simple method to get feedback from motes is the LED, use it.

3. To get feedback from the basestation application, usb connected android phones transmit

system activity over the USB, visible in Eclipse w/ ADT.

54

4. The Shimmer manual explains how to program nesC for TinyOS better than the official

documentation.

A.3 PRNGs

A.3.1 RC4

A.3.1.1 Flowchart

A.3.1.2 Source

[31]

55

A.3.2 Mersenne Twister

A.3.2.1 Flowchart

A.3.2.2 Source

// Create a length 624 array to store the state of the generator
 int[0..623] MT
 int index = 0

 // Initialize the generator from a seed
 function initialize_generator(int seed) {
 index := 0
 MT[0] := seed
 for i from 1 to 623 { // loop over each element
 MT[i] := lowest 32 bits of(1812433253 * (MT[i-1] xor (right shift by 30 bits(MT[i-1]))) + i) // 0x6c078965
 }
 }

 // Extract a tempered pseudorandom number based on the index-th value,
 // calling generate_numbers() every 624 numbers
 function extract_number() {
 if index == 0 {
 generate_numbers()
 }

56

 int y := MT[index]
 y := y xor (right shift by 11 bits(y))
 y := y xor (left shift by 7 bits(y) and (2636928640)) // 0x9d2c5680
 y := y xor (left shift by 15 bits(y) and (4022730752)) // 0xefc60000
 y := y xor (right shift by 18 bits(y))

 index := (index + 1) mod 624
 return y
 }

 // Generate an array of 624 untempered numbers
 function generate_numbers() {
 for i from 0 to 623 {
 int y := (MT[i] and 0x80000000) // bit 31 (32nd bit) of MT[i]
 + (MT[(i+1) mod 624] and 0x7fffffff) // bits 0-30 (first 31 bits) of MT[...]
 MT[i] := MT[(i + 397) mod 624] xor (right shift by 1 bit(y))
 if (y mod 2) != 0 { // y is odd
 MT[i] := MT[i] xor (2567483615) // 0x9908b0df
 }
 }
 }

[32]

A.3.3 TinyMT

A.3.3.1 Flowchart

A.3.3.2 Source
#ifndef TINYMT32_H

#define TINYMT32_H

/**

 * @file tinymt32.h

 *

 * @brief Tiny Mersenne Twister only 127 bit internal state

57

 *

 * @author Mutsuo Saito (Hiroshima University)

 * @author Makoto Matsumoto (University of Tokyo)

 *

 * Copyright (C) 2011 Mutsuo Saito, Makoto Matsumoto,

 * Hiroshima University and The University of Tokyo.

 * All rights reserved.

 *

 * The 3-clause BSD License is applied to this software, see

 * LICENSE.txt

 */

#include <stdint.h>

#include <inttypes.h>

#define TINYMT32_MEXP 127

#define TINYMT32_SH0 1

#define TINYMT32_SH1 10

#define TINYMT32_SH8 8

#define TINYMT32_MASK UINT32_C(0x7fffffff)

#define TINYMT32_MUL (1.0f / 4294967296.0f)

#if defined(__cplusplus)

extern "C" {

#endif

/**

 * tinymt32 internal state vector and parameters

 */

struct TINYMT32_T {

 uint32_t status[4];

 uint32_t mat1;

 uint32_t mat2;

 uint32_t tmat;

};

typedef struct TINYMT32_T tinymt32_t;

void tinymt32_init(tinymt32_t * random, uint32_t seed);

void tinymt32_init_by_array(tinymt32_t * random, uint32_t init_key[],

 int key_length);

#if defined(__GNUC__)

/**

 * This function always returns 127

 * @param random not used

 * @return always 127

 */

inline static int tinymt32_get_mexp(

 tinymt32_t * random __attribute__((unused))) {

 return TINYMT32_MEXP;

}

#else

inline static int tinymt32_get_mexp(tinymt32_t * random) {

 return TINYMT32_MEXP;

}

58

#endif

/**

 * This function changes internal state of tinymt32.

 * Users should not call this function directly.

 * @param random tinymt internal status

 */

inline static void tinymt32_next_state(tinymt32_t * random) {

 uint32_t x;

 uint32_t y;

 y = random->status[3];

 x = (random->status[0] & TINYMT32_MASK)

 ^ random->status[1]

 ^ random->status[2];

 x ^= (x << TINYMT32_SH0);

 y ^= (y >> TINYMT32_SH0) ^ x;

 random->status[0] = random->status[1];

 random->status[1] = random->status[2];

 random->status[2] = x ^ (y << TINYMT32_SH1);

 random->status[3] = y;

 random->status[1] ^= -((int32_t)(y & 1)) & random->mat1;

 random->status[2] ^= -((int32_t)(y & 1)) & random->mat2;

}

/**

 * This function outputs 32-bit unsigned integer from internal state.

 * Users should not call this function directly.

 * @param random tinymt internal status

 * @return 32-bit unsigned pseudorandom number

 */

inline static uint32_t tinymt32_temper(tinymt32_t * random) {

 uint32_t t0, t1;

 t0 = random->status[3];

#if defined(LINEARITY_CHECK)

 t1 = random->status[0]

 ^ (random->status[2] >> TINYMT32_SH8);

#else

 t1 = random->status[0]

 + (random->status[2] >> TINYMT32_SH8);

#endif

 t0 ^= t1;

 t0 ^= -((int32_t)(t1 & 1)) & random->tmat;

 return t0;

}

/**

 * This function outputs floating point number from internal state.

 * Users should not call this function directly.

 * @param random tinymt internal status

 * @return floating point number r (1.0 <= r < 2.0)

 */

inline static float tinymt32_temper_conv(tinymt32_t * random) {

 uint32_t t0, t1;

 union {

 uint32_t u;

59

 float f;

 } conv;

 t0 = random->status[3];

#if defined(LINEARITY_CHECK)

 t1 = random->status[0]

 ^ (random->status[2] >> TINYMT32_SH8);

#else

 t1 = random->status[0]

 + (random->status[2] >> TINYMT32_SH8);

#endif

 t0 ^= t1;

 conv.u = ((t0 ^ (-((int32_t)(t1 & 1)) & random->tmat)) >> 9)

 | UINT32_C(0x3f800000);

 return conv.f;

}

/**

 * This function outputs floating point number from internal state.

 * Users should not call this function directly.

 * @param random tinymt internal status

 * @return floating point number r (1.0 < r < 2.0)

 */

inline static float tinymt32_temper_conv_open(tinymt32_t * random) {

 uint32_t t0, t1;

 union {

 uint32_t u;

 float f;

 } conv;

 t0 = random->status[3];

#if defined(LINEARITY_CHECK)

 t1 = random->status[0]

 ^ (random->status[2] >> TINYMT32_SH8);

#else

 t1 = random->status[0]

 + (random->status[2] >> TINYMT32_SH8);

#endif

 t0 ^= t1;

 conv.u = ((t0 ^ (-((int32_t)(t1 & 1)) & random->tmat)) >> 9)

 | UINT32_C(0x3f800001);

 return conv.f;

}

/**

 * This function outputs 32-bit unsigned integer from internal state.

 * @param random tinymt internal status

 * @return 32-bit unsigned integer r (0 <= r < 2^32)

 */

inline static uint32_t tinymt32_generate_uint32(tinymt32_t * random) {

 tinymt32_next_state(random);

 return tinymt32_temper(random);

}

/**

 * This function outputs floating point number from internal state.

60

 * This function is implemented using multiplying by 1 / 2^32.

 * floating point multiplication is faster than using union trick in

 * my Intel CPU.

 * @param random tinymt internal status

 * @return floating point number r (0.0 <= r < 1.0)

 */

inline static float tinymt32_generate_float(tinymt32_t * random) {

 tinymt32_next_state(random);

 return tinymt32_temper(random) * TINYMT32_MUL;

}

/**

 * This function outputs floating point number from internal state.

 * This function is implemented using union trick.

 * @param random tinymt internal status

 * @return floating point number r (1.0 <= r < 2.0)

 */

inline static float tinymt32_generate_float12(tinymt32_t * random) {

 tinymt32_next_state(random);

 return tinymt32_temper_conv(random);

}

/**

 * This function outputs floating point number from internal state.

 * This function is implemented using union trick.

 * @param random tinymt internal status

 * @return floating point number r (0.0 <= r < 1.0)

 */

inline static float tinymt32_generate_float01(tinymt32_t * random) {

 tinymt32_next_state(random);

 return tinymt32_temper_conv(random) - 1.0f;

}

/**

 * This function outputs floating point number from internal state.

 * This function may return 1.0 and never returns 0.0.

 * @param random tinymt internal status

 * @return floating point number r (0.0 < r <= 1.0)

 */

inline static float tinymt32_generate_floatOC(tinymt32_t * random) {

 tinymt32_next_state(random);

 return 1.0f - tinymt32_generate_float(random);

}

/**

 * This function outputs floating point number from internal state.

 * This function returns neither 0.0 nor 1.0.

 * @param random tinymt internal status

 * @return floating point number r (0.0 < r < 1.0)

 */

inline static float tinymt32_generate_floatOO(tinymt32_t * random) {

 tinymt32_next_state(random);

 return tinymt32_temper_conv_open(random) - 1.0f;

}

/**

61

 * This function outputs double precision floating point number from

 * internal state. The returned value has 32-bit precision.

 * In other words, this function makes one double precision floating point

 * number from one 32-bit unsigned integer.

 * @param random tinymt internal status

 * @return floating point number r (0.0 < r <= 1.0)

 */

inline static double tinymt32_generate_32double(tinymt32_t * random) {

 tinymt32_next_state(random);

 return tinymt32_temper(random) * (1.0 / 4294967296.0);

}

#if defined(__cplusplus)

}

#endif

#endif

/**

 * @file tinymt32.c

 *

 * @brief Tiny Mersenne Twister only 127 bit internal state

 *

 * @author Mutsuo Saito (Hiroshima University)

 * @author Makoto Matsumoto (The University of Tokyo)

 *

 * Copyright (C) 2011 Mutsuo Saito, Makoto Matsumoto,

 * Hiroshima University and The University of Tokyo.

 * All rights reserved.

 *

 * The 3-clause BSD License is applied to this software, see

 * LICENSE.txt

 */

#include "tinymt32.h"

#define MIN_LOOP 8

#define PRE_LOOP 8

/**

 * This function represents a function used in the initialization

 * by init_by_array

 * @param x 32-bit integer

 * @return 32-bit integer

 */

static uint32_t ini_func1(uint32_t x) {

 return (x ^ (x >> 27)) * UINT32_C(1664525);

}

/**

 * This function represents a function used in the initialization

 * by init_by_array

 * @param x 32-bit integer

 * @return 32-bit integer

 */

static uint32_t ini_func2(uint32_t x) {

 return (x ^ (x >> 27)) * UINT32_C(1566083941);

}

62

/**

 * This function certificate the period of 2^127-1.

 * @param random tinymt state vector.

 */

static void period_certification(tinymt32_t * random) {

 if ((random->status[0] & TINYMT32_MASK) == 0 &&

 random->status[1] == 0 &&

 random->status[2] == 0 &&

 random->status[3] == 0) {

 random->status[0] = 'T';

 random->status[1] = 'I';

 random->status[2] = 'N';

 random->status[3] = 'Y';

 }

}

/**

 * This function initializes the internal state array with a 32-bit

 * unsigned integer seed.

 * @param random tinymt state vector.

 * @param seed a 32-bit unsigned integer used as a seed.

 */

void tinymt32_init(tinymt32_t * random, uint32_t seed) {

 random->status[0] = seed;

 random->status[1] = random->mat1;

 random->status[2] = random->mat2;

 random->status[3] = random->tmat;

 int i;

 for (i = 1; i < MIN_LOOP; i++) {

 random->status[i & 3] ^= i + UINT32_C(1812433253)

 * (random->status[(i - 1) & 3]

 ^ (random->status[(i - 1) & 3] >> 30));

 }

 period_certification(random);

 for (i = 0; i < PRE_LOOP; i++) {

 tinymt32_next_state(random);

 }

}

/**

 * This function initializes the internal state array,

 * with an array of 32-bit unsigned integers used as seeds

 * @param random tinymt state vector.

 * @param init_key the array of 32-bit integers, used as a seed.

 * @param key_length the length of init_key.

 */

void tinymt32_init_by_array(tinymt32_t * random, uint32_t init_key[],

 int key_length) {

 const int lag = 1;

 const int mid = 1;

 const int size = 4;

 int i, j;

 int count;

 uint32_t r;

 uint32_t * st = &random->status[0];

63

 st[0] = 0;

 st[1] = random->mat1;

 st[2] = random->mat2;

 st[3] = random->tmat;

 if (key_length + 1 > MIN_LOOP) {

 count = key_length + 1;

 } else {

 count = MIN_LOOP;

 }

 r = ini_func1(st[0] ^ st[mid % size]

 ^ st[(size - 1) % size]);

 st[mid % size] += r;

 r += key_length;

 st[(mid + lag) % size] += r;

 st[0] = r;

 count--;

 for (i = 1, j = 0; (j < count) && (j < key_length); j++) {

 r = ini_func1(st[i % size]

 ^ st[(i + mid) % size]

 ^ st[(i + size - 1) % size]);

 st[(i + mid) % size] += r;

 r += init_key[j] + i;

 st[(i + mid + lag) % size] += r;

 st[i % size] = r;

 i = (i + 1) % size;

 }

 for (; j < count; j++) {

 r = ini_func1(st[i % size]

 ^ st[(i + mid) % size]

 ^ st[(i + size - 1) % size]);

 st[(i + mid) % size] += r;

 r += i;

 st[(i + mid + lag) % size] += r;

 st[i % size] = r;

 i = (i + 1) % size;

 }

 for (j = 0; j < size; j++) {

 r = ini_func2(st[i % size]

 + st[(i + mid) % size]

 + st[(i + size - 1) % size]);

 st[(i + mid) % size] ^= r;

 r -= i;

 st[(i + mid + lag) % size] ^= r;

 st[i % size] = r;

 i = (i + 1) % size;

 }

 period_certification(random);

 for (i = 0; i < PRE_LOOP; i++) {

 tinymt32_next_state(random);

 }

}

/* This one was changed for our purposes

 * main.c

64

 */

/**

 * @file check32.c

 *

 * @brief Simple check program for tinymt32

 *

 * @author Mutsuo Saito (Hiroshima University)

 * @author Makoto Matsumoto (The University of Tokyo)

 *

 * Copyright (C) 2011 Mutsuo Saito, Makoto Matsumoto,

 * Hiroshima University and University of Tokyo.

 * All rights reserved.

 *

 * The 3-clause BSD License is applied to this software, see

 * LICENSE.txt

 */

#include <stdio.h>

#include <stdint.h>

#include <inttypes.h>

#include <stdlib.h>

#include "tinymt32.h"

int main(int argc, char * argv[]) {

 tinymt32_t tinymt;

 tinymt.mat1 = (uint32_t) 0xEFEFEFEF;

 tinymt.mat2 = (uint32_t) 0x12345678;

 tinymt.tmat = (uint32_t) 0xABCDEF12;

 uint32_t seed = 0x1321FBCA;

 tinymt32_init(&tinymt, seed);

 tinymt32_generate_floatOC(&tinymt); // float between 0 and 1;

 return 0;

}

[30]

