
Fundamental Limits of Poisson Channels in Visible Light
Communications

by

Ain-ul-Aisha

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Doctor of Philosophy

in

Electrical and Computer Engineering

by

May 2017

APPROVED:

Professor Lifeng Lai, Major Thesis Advisor

Professor Kaveh Pahlavan, Department of Electrical and Computer Engineering

Professor Yingbin Liang, Syracuse University



Abstract

Visible Light Communications (VLC) has recently emerged as a viable solution for solv-

ing the spectrum shortage problem. The idea is to use artificial light sources as medium

to communicate with portable devices. In particular, the light sources can be switched on

and off with a very high-frequency corresponding to 1s and 0s of digital communication.

The high-frequency on-off switching can be detected by electronic devices but not the

human eyes, and hence will not affect the light sources’ illumination functions.

In VLC, if a receiver is equipped with photodiodes that count the number of arriving

photons, the channels can be modeled as Poisson channels. Unlike Gaussian channels

that are suitable for radio spectrum and have been intensively investigated, Poisson chan-

nels are more challenging and are not that well understood. The goal of this thesis is

to characterize the fundamental limits of various Poisson channels that models different

scenarios in VLC.

We first focus on single user Poisson fading channels with time-varying background

lights. Our model is motivated by indoor optical wireless communication systems, in

which the noise level is affected by the strength of the background light. We study both

the single-input single-output (SISO) and the multiple-input and multiple-output (MIMO)

channels. For each channel, we consider scenarios with and without delay constraints.

For the case without a delay constraint, we characterize the optimal power allocation

scheme that maximizes the ergodic capacity. For the case with a strict delay constraint, we

characterize the optimal power allocation scheme that minimizes the outage probability.

We then extend the study to the multi-user Poisson channels and analyze the sum-rate

capacity of two-user Poisson multiple access channels (MAC). We first characterize the

sum-rate capacity of the non-symmetric Poisson MAC when each transmitter has a single



antenna. We show that, for certain channel parameters, it is optimal for a single-user

to transmit to achieve the sum-rate capacity. This is in sharp contrast to the Gaussian

MAC, in which both users must transmit, either simultaneously or at different times, in

order to achieve the sum-rate capacity. We then characterize the sum-rate capacity of the

Poisson MAC with multiple antennas at each transmitter. By converting a non-convex

optimization problem with a large number of variables into a non-convex optimization

problem with two variables, we show that the sum-rate capacity of the Poisson MAC with

multiple transmit antennas is equivalent to a properly constructed Poisson MAC with a

single antenna at each transmitter.

We further analyze the sum-rate capacity of two-user Poisson MIMO multiple-access

channels (MAC), when both the transmitters and the receiver are equipped with multiple

antennas. We first characterize the sum-rate capacity of the Poisson MAC when each

transmitter has a single antenna and the receiver has multiple antennas. We show that

similar to Poisson MISO-MAC channels, for certain channel parameters, it is optimal

for a single user to transmit to achieve the sum-rate capacity, and for certain channel

parameters, it is optimal for both users to transmit. We then characterize the sum-rate

capacity of the channel where both the transmitters and the receiver are equipped with

multiple antennas. We show that the sum-rate capacity of the Poisson MAC with multiple

transmit antennas is equivalent to a properly constructed Poisson MAC with a single

antenna at each transmitter.
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Chapter 1

Introduction

Wireless networking technology has seen rapid development and wide deployment in

the past few decades. However, one factor that is impeding the further development of

wireless networks is the scarcity of radio spectrum. As shown in Figure. 1.1, the ra-

dio spectrum is highly congested. There has been significant recent research efforts to

solve this challenge. Two of the promising emerging solutions are: i) Cognitive Radios

(CR) [1], [2], [3]; and ii) Optical Communications.

The main idea of the cognitive radios is to divide spectrum users into two cate-

gories [4], [5], [6]: primary users, which are licensed users that are authorised to use

certain channels and hence have the highest priority, and secondary users which are non-

licensed users with lower priority. These secondary users use either any channel while

keeping the interference to the primary users to an acceptable level or they use the chan-

nel when it is not being used by any primary user.

The second method being considered is to use optical communications. Among opti-

cal communications, Free Space Optics (FSO) is extremely popular but recently Visible

Light Communications (VLC) has also gained a lot of attention and is considered as a

viable alternative indoor wireless transmission technology [7], [8], [9], [10], [11].
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Figure 1.1: A Congested Radio Spectrum

Optical communication taps into a vast amount of untouched spectrum resources and

also helps in scenarios in which radio frequency (RF) does not fit well [12]. FSO uses

lasers as medium for communications, while VLC uses normal visible light as communi-

cation medium. Using lasers, communication in FSO is exceptionally directed, therefore

it is not subjected to interference from nearby transmitters and receivers. However, it

limits the communication to be point to point [13–16]. While the high dispersion of

visible light in VLC imposes the need to deal with interference between transmitters and

receivers in the range, it does not require strict point-to-point and hence is ideal for a

much larger flavor of network topologies and channel models.

The idea of VLC is to use the abundantly available artificial light sources as a way to

communicate with mobile devices. These light sources are turned on and off at such high

rate that naked eyes will not notice these fluctuations (and hence they can still be used

for illumination purpose). Photon detectors at the mobile devices, on the other hand, can

detect these fluctuations, and hence can use them for communications’ purpose.

In this thesis, we will investigate various design issues in VLC.
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1.1 Comparison between VLC and Radio Frequency Sys-

tems

Compared with RF systems, VLC enjoys several advantages [17], [18]:

1. VLC has a much larger bandwidth. The bandwidth of the available RF spectrum

is several Giga Hz, while the bandwidth of the available visible light bandwidth is

Pico Hz.

2. VLC has very little regulatory restrictions compared to that of the RF. Use of RF

equipment is restricted near sensitive devices to avoid interference, but there is no

such restriction for VLC.

3. Due to limited transmission range, VLC is more secure. Lights can be easily con-

fined in a room, while radio signal can be intercepted by attacker outside a room.

However, VLC has certain limitations as well. Such disadvantages are listed as:

1. The communication distance for VLC ranges from 1m to 100m, therefore small

communication range is the biggest disadvantage of VLC.

2. Compared to RF, VLC can not penetrate walls and other obstacles so if the receiver

is encapsulated then the sigal will not reach it.

3. VLC suffers from beam dispersion, therefore the signal reaching to the receiver

might not be strong enough and be subjected to several forms of interference.

1.2 Introduction to the Poisson Channel

There are two major types of distributions that are widely used to model wireless commu-

nication channels: Gaussian model and Poisson model. Gaussian model is typically used

3



Figure 1.2: Poisson Channel

to model RF channels. Poisson Channel, whereby the arrival of photons is recorded by

photon-sensitive devices incorporated in the receivers [19], is often used to model FSO

and VLC [20–23]. [24] discusses that in an ideal photon counting detector, the proba-

bility of observing a photon is very small over a small time interval. Consequently the

probability of observing two or more photons is even smaller and also the number of pho-

tons observed in the non-overlapping time intervals are independent of each other. These

observations lay the foundation of the conclusion that the photon counting process for a

VLC can be modeled as a Poisson counting process.

Figure 1.2 shows a standard single transmitter, single receiver Poisson channel. For a

Poisson channel, the channel output Y (t) is

Y (t) = P (SX(t) + λ) , (1.1)

where P(·) is the Poisson process, S is the channel gain and λ is the dark current that is

the physical characteristics of the photodiode present at the receiver. Poisson process is

defined by the probability of observing k photons at the receiver:

Pr{Y (t+ τ)− Y (t) = k} =
e−ΛΛk

k!
, (1.2)
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where Λ is the arrival rate obtained by:

Λ =

∫ t+τ

t

(SX(t′) + λ)dt′.

In (1.1), X(t) is the channel input that is subject to two types of constraints: maximum

power constraint and average power constraint

0 ≤ X(t) ≤ A, (1.3)

1

T

∫ T

0

X(t)dt ≤ σA, (1.4)

in which A is the maximum power allowed, σ is the average to peak power ratio and T is

the total time for transmission.

1.2.1 Gaussian Channels Vs. Poisson Channels

As mentioned above, Gaussian model is a popular choice for modeling RF channels, while

Poisson model is considered more appropriate for the VLC. Compared to the Gaussian

channel that has been extensively studied [25], the Poisson channel is less well understood

due to several technical challenges.

1. Gaussian channels are linear where the channel output is given by Y = SX + N ,

whereas Poisson channel are non-linear Y = P(SX+λ), whereP(·) is the Poisson

mapping, S is the channel gain, N is the channel noise for Gaussain channel and

λ is the dark current for the Poisson channel. Therefore Poisson channels are not

scale invariant like Gaussian channels.

2. The channel input to a Poisson channel is restricted to a positive value while the

input to the Gaussian channel can be both positive and negative.

5



3. Gaussian channels are analog input and analog output channels while the Poisson

channels are analog input digital output channels. Therefore the analysis of Poisson

channel is much more complex.

Since, a Poisson channel is considered to be more complex than a traditional Gaussian

channel, there are few approximations to make the analysis a little simpler. One such

approximation is discussed in the next section, which would aid in the further analysis

carried out in this study.

1.2.2 Capacity of a Poisson Channel

In this section, we first review existing results and techniques for the characterization of

the capacity of a Poisson channel.

In particular, Wyner [26] developed a binary approximation method that converts the

complicated continuous time continuous input discrete output Poisson channel into a dis-

crete time binary input binary output channel. It is much simpler to handle the binary

channel, and it is shown in [26] that this binary approximation does not reduce the capac-

ity.

In this binary approximation, the time is divided into intervals, each with duration ∆.

In each time interval (i− 1)∆ ≤ t ≤ i∆, the input waveform X(t) is set to be a constant,

which is equal to A with probability µ and is equal to 0 with probability 1− µ. Hence, µ

can be viewed as the duty-cycle. Therefore, to satisfy the average power constraint (1.4),

we require µ ≤ σ. Let X∆ be a binary random variable with

X∆ =


1 if X(t) = A,

0 if X(t) = 0.

(1.5)

It is clear that Pr{X∆ = 1} = 1 − Pr{X∆ = 0} = µ. At the receiver side, the receiver

6



Figure 1.3: Binary Input and Binary Output Channel

records only whether or not there is exactly one photon arriving during each time interval

(i− 1)∆ ≤ t ≤ i∆. Let Y ∆ be a binary random variable whose value is 1 if the receiver

observes one photon in the small interval ∆, and is 0 otherwise. Using (1.2), one can

easily compute the transition probabilities

Pr{Y ∆ = 1|X∆ = 0} = λ∆e−λ∆, (1.6)

Pr{Y ∆ = 1|X∆ = 1} = (SA+ λ)∆e−(λ+SA)∆.

Figure 1.3 shows the transformed binary channel. It is easy to see that the capacity of

the binary channel defined by X∆ → Y ∆ is max
0≤µ≤σ

I(X∆;Y ∆), and the normalized value

1
∆

max
0≤µ≤σ

I(X∆;Y ∆) is an achievable rate for the original Poisson channel. Remarkably,

[26] showed that this simple scheme is capacity achieving, and the capacity of the SISO

Poisson non fading channel is given by

CSISO = lim
∆→0

1

∆
max

0≤µ≤σ
I(X∆;Y ∆). (1.7)

7



Using (1.6), it was shown in [26] that

CSISO = max
0≤µ≤σ

[µ (SA+ λ) log (SA+ λ) (1.8)

+(1− µ)λ log λ− (µSA+ λ) log (µSA+ λ)] .

Intuitively, the first term in (1.8) corresponds to the case when the transmitter is on (i.e.,

X(t) = A and the Poisson arrival rate at the receiver is SA + λ), which happens with

probability µ. The second term corresponds to the case when the transmitter is off (i.e.,

X(t) = 0 and the Poisson arrival rate at the receiver is λ), which happens with probability

1 − µ. The third term corresponds to the average case (i.e., the average Poisson arrival

rate at the receiver is µSA+λ). The optimal value of µ can be easily obtained by solving

the optimization problem (1.8).

1.3 Literature Review

Recently, there have been great interests in analyzing Poisson channels. In this section,

we will briefly discuss the existing literature on the Poisson channels.

The point-to-point single-user Poisson channel has been investigated from various

perspectives, including single antenna [26–30], multiple antennas [31], fading channels [32], [33],

in continuous-time [26, 34–37] and discrete-time [38–40]. There are two major types of

fading models, that with time-varying channel gains and that with time-varying noise

(e.g., background light) levels, for Poisson fading models. These two types of models

are not equivalent and cannot be treated equivalently, because Poisson channels are not

scale-invariant. This is different from Gaussian fading channels, in which channels with

varying noise levels can be converted to channels with varying channel gains due to the

scale-invariant property.
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The first type of Poisson fading channels with time-varying channel gains have been

studied in [31, 41–43], which characterized the ergodic and outage capacities. These

studies developed useful information theoretic tools that will also be used in our the-

sis. Furthermore, [19] investigated this type of fading channels when the channel gains

are log-normal random variables. The performance of the channel in both high and low

signal to noise ratio regimes are studied based on lower and upper bounds on the chan-

nel capacity. [44] investigated the outage probabilities of several diversity schemes. [45]

studied a single-input single-output (SISO) Poisson channel with channel state informa-

tion (CSI) perfectly known at the receiver and partially known at the transmitter. The

goal is to maximize the ergodic capacity of the channel, with partial information at the

transmitter obtained by an error-free feedback link with a finite rate constraint from the

receiver to the transmitter. [46] investigated the behavior of the outage capacity for the

decode-and-forward multi-hop Poisson fading channel for FSO, where the atmospheric

turbulence contributes to the fading in the channel. This study has characterized the op-

timal power control function under different assumptions on the availability of the CSI at

the transmitter.

The second type of Poisson fading channels with time-varying noise levels have been

much less studied with only a few exceptions as we describe below. In fact, such models

arise in many practical scenarios. For instance, in indoor optical wireless communica-

tions, the noise levels at the receiver are affected by the temperature and the strength of

the background light, as the noise level increases when the temperature or the strength

of the background light increases. In addition, the noise level is higher when other light

sources are also on. [47] studies optimal power allocation for 2 fold parallel poisson

channel for constant dark current, which can be viewed as an equivalent SISO channel

with time-varying noise levels. A recent study [48] also dealt with the channel with time-

varying noise levels under an assumption that the transmitter knows the noise realization

9



at the receiver.

The Poisson channels with multiple users are not as well understood as single user

Poisson Channels. [49–51] discuss that a Poisson broadcast channel can model an opti-

cal broadcast network, where [49] investigates the conditions under which the Poisson

broadcast channel is stochastically degraded. [50] shows that the superposition coding is

optimal much beyond the parameter ranges for which the channel is degraded. The su-

perposition coding scheme is motivated by broadcast channels for which one receiver is

much stronger than the other. [52] studies the Poisson multiple-access channels when

users are equipped with a single antenna. It characterizes the sum-rate capacity and also

characterizes the capacity region. [53] also studies the Poisson multiple-access channels

and investigates the capacity region of Poisson MAC with respect to different power con-

straints. [54] considers the Poisson channel with side information at the transmitter, and

argues that knowing the times at which the spurious counts occur only causally at the

transmitter does not increase the channel capacity. Furthermore, [55] discusses Poisson

interference channel, while [56] proposes a two-user discrete time Poisson (DTP) MAC

model and proves the discreteness of sum capacity achieving distributions. [57] discusses

the discrete-time Poisson channel and shows that sum-capacity achieving distributions of

the Poisson MAC under peak amplitude constraints are discrete with a finite number of

mass points.

1.4 Summary of Contributions

In this thesis, we analyze Poisson channels that model a variety of scenarios. In particular,

we first consider Poisson channel for a single receiver and a single transmitter equipped

with single antenna each and then expanded the analysis to when both are equipped with

multiple antennas each. We then study Poisson channels when multiple users commu-
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nicate with a single receiver and each user is equipped with a single antenna. Finally,

we extend our analysis to the scenario when the users are equipped with multiple anten-

nas each. Each of these scenarios are briefly discussed below, before elaborating them

individually in subsequent chapters.

1.4.1 Single User Poisson Channel

In our research, Poisson fading channels with time-varying noise levels are studied. Our

model is clearly different from the first type of Poisson fading models studied in [19, 31,

41–46, 58] due to the non-equivalence of the two types of models as we explain above.

Our study is also different from [47], in which the model is equivalently SISO and the

study focused on the case with two channels (equivalently two noise levels), whereas here

we study the more general SISO case with arbitrary number of noise levels and MIMO

channel. Our study also differentiates from [48] in that we make a mild assumption that

only the noise level (a statistic quantity) rather than the realization of the noise is known

at the transmitter.

More specifically, we study both the SISO and MIMO channels with and without

delay constraints. Our contributions lie in a comprehensive characterization of the opti-

mal power allocation schemes to achieve the ergodic capacity (for the case with no delay

constraints) and to minimize the outage probability (for the case with delay constraints).

Here, the delay constraint is measured by the number of fading blocks after which the re-

ceiver decodes information (i.e., codewords). The delay can also be viewed as the number

of fading blocks that a codeword is allowed to span. If there is no delay constraint, then

the codeword length is allowed to be infinite, in which case we use the ergodic capacity as

the performance metric. If there is a delay constraint that requires the receiver to decode

after a finite number of blocks, then we focus on the outage probability that captures the

performance of such a scenario. For both scenarios, we assume that the transmitter knows
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the noise level. As will be clear in the sequel, this is a reasonable assumption because the

noise level here represents a statistic quantity but not the realization of the noise. Hence,

the amount of feedback needed from the receiver to the transmitter is limited. In addition,

as the noise level is affected by the background light, it can be effectively measured at the

transmitter. This can further reduce the amount of feedback necessary for the transmitter

to learn the value of the noise level.

For the case with no delay constraint, we establish the ergodic capacity, and char-

acterize the corresponding optimal power allocation scheme as a function of the noise

level that achieves the ergodic capacity. For the case with a strict delay constraint, our

goal is to minimize the probability that the instantaneous achievable rate is less than a

given threshold, i.e., the outage probability. Minimizing the outage probability directly

is very challenging. In order to solve the problem, we apply the techniques developed

in [59] to study a number of related optimization problems. From the solutions of these

optimization problems, we then characterize the optimal power allocation scheme that

minimizes the outage probability. Both problems are significantly more challenging than

the corresponding problems in the Gaussian channels.

1.4.2 Multiple User Poisson Channel - Single Receiving Antenna

We further extend our research to multi-user Poisson channels. [52] is of particular rele-

vance to our study, as it thoroughly investigates the continuous-time Poisson MAC with

each user equipped with single antenna. [52] shows that the approximation of the com-

plex continuous-time continuous-input discrete-output Poisson MAC by a discrete-time

binary-input binary-output MAC does not result in a loss in terms of the capacity re-

gion. [52] determines the sum-rate capacity of the symmetric Poisson MAC, in which

the channel gains and power constraints for all users are identical under the maximum

power constraint. Furthermore, it characterizes the boundary points on the capacity region
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of the symmetric MAC under maximum power constraint and analyzes the maximum-

throughput under peak-power and average power constraints.

In our study, we first study the single antenna non-symmetric Poisson MAC, in which

the channel gains and power constraints at the two users are not necessarily the same,

though we consider a non-fading channel model i.e. channel gain and the dark current

are not time varying. We refer to such a channel as Poisson SISO-MAC. This scenario

naturally arises in multiuser optical communications when the transmitters have different

distances to the receiver or have different transmission powers. Unfortunately, the method

used in [52] to characterize the sum-rate capacity for the symmetric case does not apply to

the non-symmetric case anymore. In particular, the method in [52] exploits the property

that the objective function involved is a Schur concave function for the symmetric Poisson

MAC. There is an interesting property of Schur concave functions where if φ(·) is a

Schur concave function, i.e. φ(x1, x2, ..., xk) ≤ φ(x̄, x̄, ..., x̄), where x̄ = (x1 + x2 +

... + xk)/K, which greatly simplifies the analysis. Hence, the multi-dimensional convex

optimization problem can be converted into a single-dimensional convex optimization

problem. However, in the non-symmetric channel, the objective function is not symmetric,

and hence is not Schur concave anymore. As a result, we resort to a different approach

from the one used in [52] to study the sum-rate capacity. More specifically, we show that

characterizing the sum-rate capacity is equivalent to solving a non-convex optimization

problem. We show that there are at most four possible candidates for the optimal solution

to this optimization problem with two candidate solutions corresponding to the cases

when only one user transmits. We further show that, for some channel parameters, it

is indeed optimal to allow only one user to transmit in order to achieve the sum-rate

capacity under the maximum power constraint. This is in sharp contrast to the Gaussian

MAC with an average power constraint, in which it is always optimal for both users to

transmit, either simultaneously or at different time, to achieve the sum-rate capacity. We
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also identify conditions under which it is optimal for both users to transmit in order to

achieve the sum-rate capacity.

We then extend the study to Poisson MAC with multiple antennas at each transmitter

and one antenna at the receiver. We refer to this as Poisson MISO-MAC. Similarly to the

Poisson SISO-MAC, the complex continuous-time continuous-input discrete-output Pois-

son MAC can be converted to a discrete-time binary-input binary-output Poisson MAC.

However, the resulting problem is much more challenging than that of the Poisson SISO-

MAC. In particular, to characterize the sum-rate capacity, we need to solve a non-convex

optimization problem with 2J1 + 2J2 variables, in which Jn is the number of antennas at

user n. Despite this challenge, we show that the optimal value obtained from this opti-

mization problem with a large number of variables is the same as that of an optimization

problem with only 2 variables. Furthermore, this reduced dimension optimization prob-

lem is equivalent to a problem arising in the Poisson SISO-MAC with properly chosen pa-

rameters. As the result, characterizing the sum-rate capacity of the Poisson MISO-MAC

is equivalent to characterizing the sum-rate capacity of a Poisson SISO-MAC. Hence, the

techniques and asymptotic analysis developed in the SISO-MAC case can be used for the

MISO-MAC case. There are two major steps in our proof. In the first step, we show

that the original optimization problem with 2J1 + 2J2 variables can be converted to a non-

convex optimization problem with J1 + J2 variables by showing and exploiting the fact

that, at the optimality, if the antenna with a smaller duty cycle is on, then the antenna with

a larger duty cycle is also on. In the second step, we show that the optimization problem

with J1 + J2 variables obtained in step 1 can be converted to an optimization problem

with only 2 variables. The key ingredient in this step is to show that, at the optimality, all

antennas at each transmitter have to be simultaneously on or off.
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1.4.3 Multiple User Poisson Channel - Multiple Receiving Antennas

We further extend the study to the case where all users are equipped with multiple anten-

nas (MIMO-MAC). Having multiple receiving antennas makes the problem considerably

more complex than that of MISO-MAC [60]. In particular, in MISO-MAC [60], although

the objective function is not convex, we are able to convert the set of nonlinear equations

corresponding to KKT conditions, which are necessary but not sufficient conditions for

optimality, into a set of linear equations along with a nonlinear but convex equation. This

special structure of KKT conditions in MISO-MAC enables us to make further analy-

sis. Unfortunately, this conversion technique developed for MISO-MAC does not work

for MIMO-MAC anymore. As the result, we need to devise new technique to analyze

MIMO-MAC. Despite this challenge, using a novel channel transformation argument, we

show that characterizing the sum-rate capacity of MIMO-MAC can be reduced to char-

acterizing the sum-rate capacity of SIMO-MAC, in which each transmitter has only one

antenna. Similar to SISO-MAC considered, the SIMO-MAC has a non-convex objective

function. After analyzing the KKT conditions for the case with two transmitters, we draw

similar conclusion that there are three optimality scenarios for achieving the sum-rate ca-

pacity: 1) when only user 1 is active and user 2 is inactive, 2) when user 2 is active and

user 1 is inactive and 3) when both users are active.

The remainder of the thesis is organized as follows. Chapter 2 presents the analysis

of a single user Poisson channel. Chapter 3 discusses the Poisson channel with multi-

ple users when the receiver is equipped with a single antenna. Chapter 4 discusses the

multiple user Poisson channel when the receiver is also equipped with multiple antennas.

Each chapter also contains the corresponding numerical analysis. Chapter 5 offers our

concluding remarks.
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Chapter 2

Single User Single Receiver

In this chapter, we consider a scenario when a single user communicates with the single

receiver and we try to characterize the capacity for such a channel model.

2.1 System Model

In this section, we introduce the model considered in this chapter. As shown in Fig-

Figure 2.1: MIMO Poisson channel with time-varying background light

ure 2.1, we consider a MIMO Poisson channel with J transmitter antennas and M re-

ceiver antennas. Let Xj(t) be the input of the jth transmitter antenna and Ym(t) be the
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doubly-stochastic Poisson process observed at the mth receiver antenna. The relationship

between them can be described as:

Ym(t) = P

(
J∑
j=1

SjmXj(t) + λm(t)

)
, (2.1)

as discussed in Chapter 1, Sjm is the channel response between the jth transmitter antenna

and mth receiver antenna, λm(t) is the dark current at the mth receiver antenna, which

signifies the background light, and P(·) is the non-linear transformation converting the

light strength to the doubly-stochastic Poisson process that records the timing and number

of photon’s arrivals. In particular, for any time interval [t, t+ τ ], the probability that there

are k photons arriving at receiver antenna m is

Pr{Ym(t+ τ)− Ym(t) = k} =
e−ΛmΛk

m

k!
, (2.2)

Λm =

∫ t+τ

t

[
J∑
j=1

SjmXj(t
′) + λm(t′)

]
dt′. (2.3)

We consider the sum power constraint, i.e. the transmitted signal Xj(t) must satisfy the

following constraints:

0 ≤ Xj(t) ≤ Aj, (2.4)

1

T

∫ T

0

J∑
j=1

Xj(t)dt ≤ σ
J∑
j=1

Aj, (2.5)

in which Aj is the maximum power allowed for antenna j and σ is the average to peak

power ratio. In our model, we assume that Sjm is constant while λm(t) is time-varying.

This model is motivated by the fact that the dark current is a physical parameter that

depends on the temperature and the background lights in the environment, which naturally

change throughout the day. We consider block fading model, in which λm(t) is fixed for
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a block of symbols and then changes to another independent value at the beginning of

the next block. Furthermore, we assume that the transmitter knows λm. This can be

justified for two reasons. Firstly, λm does not represent the realization of the noise, but is

a statistical quantity that characterizes the average behavior of the noise process. Hence,

it is reasonable that the receiver feeds back the information about λm albeit with a certain

rate limit. Secondly, λm is affected by the background light and temperature, which

can be measured at both the transmitter and the receiver. In this chapter, we assume

that the distribution of λ satisfies the following properties: (i) Pr{λ(t) > 0} = 1, (ii)

E[λ(t)] <∞, and (iii) E[λ(t) log λ(t)] <∞.

We note that the model considered here is different from the one considered in [41–

43, 45, 46, 58], in which the channel gain Sjm is time-varying while λm is fixed. This

is because the case of varying dark currents can not be converted to the case of varying

channel gain, due to the nonlinearity of the Poisson channel unlike the Gaussian channels.

However, some techniques developed in these studies are useful for solving the problems

studied in our thesis.

2.2 SISO Channel Analysis

We first study a special case with J = 1 and M = 1, namely the SISO channel, to

introduce main tools used in the MIMO case in Section 2.3. As M = J = 1, we drop the

subscripts m and n in variables in this section for notational convenience.

2.2.1 Ergodic Capacity

In this section, we characterize the ergodic capacity of the Poisson fading channel. Fol-

lowing [26], it can be shown that the input X(t) can be limited to be two levels without

loss of optimality: eitherX(t) = A orX(t) = 0. However, the probability thatX(t) = A
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can be adjusted depending on the noise level λ(t). Let µ(t) be the time-varying duty cycle

of the two-level waveform, then the average power constraint can be written as

E[µ(t)] ≤ σ. (2.6)

Using (1.8), the ergodic capacity can be characterized as

Cf
SISO = max

µ(t)
E[I(µ(t), λ(t))], (2.7)

s.t. E[µ(t)] ≤ σ, (2.8)

0 ≤ µ(t) ≤ 1, (2.9)

in which the expectation is over λ and

I(µ(t), λ(t) = µ(t) (SA+ λ(t)) log (SA+ λ(t)) + (1− µ(t))λ(t) log λ(t)

− (µ(t)SA+ λ(t)) log (µ(t)SA+ λ(t))

, µ(t)ζ(SA, λ(t))− ζ(µ(t)SA, λ(t)), (2.10)

where ζ(x, y) = (x+ y) log(x+ y)− y log y.

In the following, for notational convenience, we write µ(t) as µ. We characterize the

optimal power allocation µopt for the constrained optimization problem (2.7)-(2.9).

For 0 ≤ µ ≤ 1, we note that ∂2I(µ,λ(t))
∂µ2

is negative, which implies that I(µ, λ(t)) is a

strictly concave function of µ in the range of our interest.

To obtain the optimal power allocation solution µopt for (2.7), we first consider the

unconstrained version of (2.7) with (2.8) and (2.9) ignored. In particular, for any fading

block with a given value of λ(t), we examine the maximal rate that the channel can
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support:

rmax = max
µ

I(µ, λ(t)). (2.11)

Let µo be the corresponding maximizer. For this unconstrained problem, it is easy to

obtain that

µo =

(
1 + λ(t)

SA

)(1+
λ(t)
SA )

(
λ(t)
SA

)(λ(t)SA )
e−1 − λ(t)

SA
. (2.12)

Now, we examine (2.12) in detail. We first have the following result, which can be proved

easily.

Lemma 1.

0 ≤ µo ≤ 1. (2.13)

Proof. The proof is provided in Appendix A.1.

This result implies that µo satisfies the constraint (2.9).

In the following, we consider the constraint (2.8). We have two cases.

Case 1): If

E[µo] ≤ σ. (2.14)

In this case, µo also satisfies condition (2.8). Since I(µ, λ(t)) is a strictly concave

function of µ in the range of our interest, it is clear that µo is the maximizer for the

original problem with constraints. That is

µopt = µo and Cf
SISO = E[rmax]. (2.15)

Case 2): If

E[µo] > σ. (2.16)
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In this case, µo does not satisfy the condition (2.8). Hence µo is not the maximizer

for the problem (2.7) with the average power constraint. To obtain the optimal solution

for (2.7), we consider the Lagrangian function:

L(µ, η) = E[ψ(µ)] , E[I(µ, λ(t))− ηµ]. (2.17)

Since I(µ, λ(t)) is a strictly concave function of µ and −ηµ is a linear function of µ, we

know that ψ(µ) is a strictly concave function of µ. From the Euler-Lagrange equation:

∂ψ(µ)

∂µ
= SA

[
−
(

log

(
µ+

λ(t)

SA

)
+ 1

)
+

(
1 +

λ(t)

SA

)
log

(
1 +

λ(t)

SA

)
−λ(t)

SA
log

λ(t)

SA

]
− η

= 0,

we have

µη =

(
1 + λ(t)

SA

)(1+
λ(t)
SA )

(
λ(t)
SA

)(λ(t)SA )
e−1e

−η
SA − λ(t)

SA
. (2.18)

Now, we consider the constraint 0 ≤ µ ≤ 1. It is easy to see that µη ≤ µo for any

positive η. From Lemma 1, we know that µη ≤ 1. However, µη might be smaller than

0. If this occurs, from the fact that ψ(µ) is a strictly concave function of µ, we know that

ψ(µ) is a strictly decreasing function of µ in the range µ > 0. Hence, if µη < 0, the

constraint µ ≥ 0 implies that µopt = 0. If µη > 0, we have µopt = µη. Hence, we can

write µopt = µ+
η∗ , in which η∗ should be chosen such that E[µ+

η∗ ] = σ.

We summarize the above analysis with the following Theorem.

Theorem 2. The optimal power allocation scheme that solves (2.7) (i.e., achieves the
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ergodic capacity of the Poisson fading channel) is given by

µopt =

 µ+
η∗ if E[µo] > σ

µo if E[µo] ≤ σ
. (2.19)

2.2.2 Outage Probability

In this section, we study the scenario with a strict delay constraint. In particular, we

assume that each codeword needs to be transmitted within a fading block. Let r0 be the

target rate. Then an outage event occurs if I(µ, λ(t)) < r0. Our goal is to find the optimal

power allocation strategy that minimizes the outage probability. Hence, we solve the

following optimization problem.

Problem-1 (P1-S):

min Pr{I(µ, λ(t)) < r0}, (2.20)

s.t. E[µ] ≤ σ, (2.21)

0 ≤ µ ≤ 1. (2.22)

Again, we use µopt to denote the solution for this optimization problem.

Directly solving P1-S is challenging. Following a similar strategy as used for the

Gaussian channel [59], we first solve several related optimization problems, from which

we obtain the optimal solution for (2.20).

In the first step, we examine the maximal rate rmax, obtained in (2.11), that the channel

can support for any given value of λ(t). Following the discussion on (2.11), the optimal

duty cycle that achieves rmax is µo given in (2.12). From Lemma 1 it is clear that 0 ≤

µo ≤ 1. We now compare rmax with r0. Intuitively, for a given block with λ(t), if

rmax < r0, then we should not transmit at this fading block and save the power for the
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future use, because an outage event will occur no matter what the value of µ we choose.

On the other hand, if rmax > r0, there exist choices of µ such that the achievable rate is

larger than r0. These are the regions of interest in the second step below.

In the second step, we investigate for any given value of λ(t), what is the minimal

value of µ that achieves the target rate r0 or higher.

Problem-2 (P2-S):

min µ, (2.23)

s.t. I(µ, λ(t)) ≥ r0. (2.24)

Let µ̂ be the minimizer for P2-S. Clearly, for those values of λ(t)s such that rmax is less

than r0, P2-S does not have a solution. For other values of λ(t)s, using the solution µo

specified in (2.12), we have the following two cases:

• If rmax = r0, then µ̂ must be equal to µo.

• If rmax > r0, then the optimal power µ̂ equals µ̌ that satisfies the following equation

so as to reduce the power consumption

r0 = I(µ̌(λ), λ(t)), (2.25)

from which µ̌ can be solved easily.

With the solutions to P2-S, we can obtain the optimal solution for an unconstrained

version of P1-S. In the unconstrained version of P1-S, the average power constraint is
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ignored. It is easy to see that

µ∗(λ) =


0 if rmax < r0

µo if rmax = r0

µ̌ if rmax > r0.

(2.26)

is a solution for the unconstrained version of P1-S. It is also clear that 0 ≤ µ∗(λ) ≤ 1 due

to Lemma 1.

Now, we include the average power constraint into consideration.

Theorem 3. The optimal power allocation µopt of P1 that achieves the smallest outage

probability is characterized as follows.

If E[µ∗] ≤ σ, then µopt = µ∗.

If E[µ∗] > σ, then µopt is given by

µopt(λ) =


µ∗(λ) with probability ŵ,

0 with probability (1− ŵ),

(2.27)

where ŵ is given by

ŵ =


1 if µ∗(λ) < p∗

w∗ if µ∗(λ) = p∗

0 if µ∗(λ) > p∗,

(2.28)

with

w∗ =
σ − Σ(p∗)

Σ(p∗)− Σ(p∗)
, (2.29)
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and

p∗ = sup{p : Σ(p) < σ}, (2.30)

and

Σ(p) =

∫
R(p)

µdF (λ),

Σ(p) =

∫
R(p)

µdF (λ),

Here F (λ) is the distribution of the dark current and the regions are defined by:

R(p) = {λ ∈ R\r0 : µ < p},

R(p) = {λ ∈ R\r0 : µ ≤ p}.

Proof. The proof follows similar steps as those in [59] and [41], and is presented in

Appendix A.2.

Theorem 3 implies that if µ∗(λ) specified in (2.26) does not satisfy the average power

constraint, the optimal solution can be obtained by setting it to be equal to µ∗ with a

probability ŵ, and we should choose ŵ properly so that the average power constraint is

satisfied.

2.3 MIMO channel Analysis

For the ease of the presentation, we will present the results for M = 1 and J = 2 in

details. We will briefly discuss how to extend the results to the case with general values

of M and J in Section 2.3.4.
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2.3.1 With Constant λ

In this subsection, we will first focus on the case in which λ is a constant. Hence, the

power allocation is only among transmitters. The solution to this problem will be used to

study the general case with time-varying λ.

As discussed in Section 2.2, without loss of optimality, the input of a single antenna

Poisson channel can be limited to two levels, i.e., X(t) = A or X(t) = 0. The same

idea can be extended to the channel with two transmitter antennas and the input of each

antenna can be restricted to two levels, i.e. Xj(t) = Aj or Xj(t) = 0. Let µj be duty-

cycle of antenna j, i.e., the probability ofXj(t) = Aj . Similar to Section 2.2, the capacity

of the Poisson channel with two transmitter antennas, one receiver antenna, and a fixed

dark current level with a total power constraint is given by

CMIMO = max

µ1A1 + µ2A2 ≤ σ(A1 + A2)

0 ≤ µ1 ≤ 1

0 ≤ µ2 ≤ 1

I(µ1, µ2, λ), (2.31)

in which

I(µ1, µ2, λ) (2.32)

, (µ1 − κ) (S1A1 + λ) log (S1A1 + λ) + (µ2 − κ) (S2A2 + λ) log (S2A2 + λ)

+κ (S1A1 + S2A2 + λ) log (S1A1 + S2A2 + λ) + (1− (µ1 + µ2 − κ))λ log λ

− (µ1S1A1 + µ2S2A2 + λ) log (µ1S1A1 + µ2S2A2 + λ)

= (µ1 − κ)ζ(S1A1, λ) + (µ2 − κ)ζ(S2A2, λ)

+κζ(S1A1 + S2A2, λ)− ζ(µ1S1A1 + µ2S2A2, λ), (2.33)
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where κ is the probability with which both antenna 1 and 2 remain active. Each term

in (2.32) has the same interpretation as the corresponding formula for the single antenna

case (1.8). In particular, in (2.32), the first term corresponds to the case when only antenna

1 is active (i.e. X1(t) = A1 and the Poisson arrival rate at the receiver is S1A1 + λ),

which happens with probability µ1 − κ. The second term corresponds to the case where

only antenna 2 is active (i.e. X2(t) = A2 and the Poisson arrival rate at the receiver is

S2A2 +λ), which happens with probability µ2−κ. The third term corresponds to the case

when both antennas 1 and 2 are active (i.e. X1(t) = A1 and X2(t) = A2 and the Poisson

arrival rate at the receiver is S1A1 + S2A2 + λ), which happens with probability κ and

the fourth term corresponds to the case when both of the transmitters are off and only the

dark current is observed at the receiver. The last term corresponds to the average case (i.e.

the average Poisson arrival rate at the receiver is µ1S1A1 + µ2S2A2 + λ).

Unlike the single antenna case in (1.8), it needs a bit of work to solve the optimization

problem (2.31). First, using the property of ζ(x, y), it has been proved in [42], that if

the antenna with the smaller duty cycle is on (i.e., the antenna with the smaller value

of µn), the other antenna should also be active for the optimality. This implies that κ =

min{µ1, µ2}. Hence to calculate the optimal solution of (2.31), we consider the following

two cases:

Case 1): µ1 ≥ µ2. In this case, (2.33) can be simplified as

I(µ1 − µ2, µ2, λ) = (µ1 − µ2)ζ(S1A1, λ) (2.34)

+µ2ζ(S1A1 + S2A2, λ)

−ζ(µ1S1A1 + µ2S2A2, λ).
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Case 2): µ1 ≤ µ2. In this case, (2.33) can be simplified as

I(µ2 − µ1, µ1, λ) = (µ2 − µ1)ζ(S2A2, λ) (2.35)

+µ1ζ(S1A1 + S2A2, λ)

−ζ(µ1S1A1 + µ2S2A2, λ).

Hence, (2.31) can be written as

CMIMO = max{Cµ1≥µ2 , Cµ2≥µ1}, (2.36)

in which Cµ1≥µ2 is given by (corresponds to case 1 above)

Cµ1≥µ2 = max I(µ1 − µ2, µ2, λ) (2.37)

s.t. µ1 − µ2 ≥ 0, (2.38)

µ1 ≤ 1, (2.39)

µ2 ≥ 0, (2.40)

µ1A1 + µ2A2 ≤ σ(A1 + A2), (2.41)

and Cµ2≥µ1 corresponds to case 2 above and can be written in a similar manner.

Hence, to solve (2.31), we need to find Cµ1≥µ2 and Cµ2≥µ1 . Due to the symmetry,

one can focus on case 1 and solve (2.37), as case 2 is similar. The solution to Cµ1≥µ2

can be obtained using following steps. First, we will solve (2.37) by ignoring the total

power constraint (2.41). Then, we check whether the obtained solution satisfies the total

power constraint or not. If yes, the solution is optimal. If not, we then need to do further

calculation.

Step 1: Following the strategy outlined above, we first consider the following optimiza-
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tion problem

Cµ1≥µ2 = max I(µ1 − µ2, µ2, λ) (2.42)

s.t. µ1 − µ2 ≥ 0, (2.43)

µ1 ≤ 1, (2.44)

µ2 ≥ 0. (2.45)

To solve this problem, we further ignore (2.44) and (2.45). We will discuss at the end of

step 1 that ignoring these conditions does not affect the solution.

Setting q1 = µ1−µ2 and q2 = µ2, the Lagrangian for (2.42) with the constraint (2.43)

only is given by:

L(q1, q2, η) = I(q1, q2, λ)− ηq1.

Let (q∗1, q
∗
2, η
∗) be the optimizer, and the corresponding KKT conditions are:

∂L
∂q1

∣∣∣∣∣
q∗1 ,q

∗
2

=
∂I

∂q1

∣∣∣∣∣
q∗1 ,q

∗
2

− η∗ = 0,

∂L
∂q2

∣∣∣∣∣
q∗1 ,q

∗
2

=
∂I

∂q2

∣∣∣∣∣
q∗1 ,q

∗
2

= 0,

η∗q∗1 = 0.

After solving the KKT conditions, we conclude that x∗1 = 0 and q∗2 can be obtained

from

∂I

∂q2

∣∣∣∣∣
q∗1=0,q∗2

= λB log

(
1 +Bα(B)

1 + q∗2B

)
= 0,
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where

α(x) =
1

x

(
e−1(1 + x)(1+ 1

x
) − 1

)
, (2.46)

B =
S1A1 + S2A2

λ
. (2.47)

Hence, q∗2 = α(B).

In summary, the solution to (2.42) with only the constraint (2.43) is µ∗1 = µ∗2 = α(B).

It is easy to show that 0 ≤ α(B) ≤ 1. Hence, µ∗1 = µ∗2 = α(B) satisfy condi-

tions (2.44) and (2.45). As the result, (α(B), α(B)) is the solution to (2.42) with con-

straints (2.43), (2.44) and (2.45).

Step 2: In this step, we follow similar steps as those in [42] to check whether the

solution (α(B), α(B)) obtained in Step 1 satisfies the sum power constraint (2.41) or not.

If α(B) ≤ σ, then (α(B), α(B)) also satisfies the sum power constraint, hence is the

optimal solution to (2.37). On the other hand, if α(B) > σ, (α(B), α(B)) violates the

sum power constraint, and hence can not be the solution. In this case, the sum power

constraint is active in the optimal solution. To solve for optimality, we convert the given

problem into a single variable optimization problem: max
µ∗1

I(µ∗1) = I((1+a)(µ∗1−σ), (1+

a)σ− aµ∗1, λ), which is obtained by writing µ∗2 as function of µ∗1 using the average power

constraint µ∗1A1 + µ∗2A2 = σ(A1 + A2). Here, a = A1/A2. By simple calculations, the

optimal solution for max
µ∗1

I(µ∗1) is found out to be:

ω =
e−1

A1(S1 − S2)

(
(S1A1 + λ)(S1A1+λ)(1+a)

λλ(S1A1 + S2A2 + λ)(S1A1+S2A2+λ)a

) 1
A1(S1−S2)

(2.48)

−(1 + a)σS2A2 + λ

A1(S1 − S2)
.

Now, we check whether ω satisfies the corresponding constraint or not. If yes, ω is the
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optimal solution to I(µ∗1) (therefore, it is also optimal for (2.37)). If not, we need to

modify the solution. First, it is easy to check that I(µ∗1) is a concave function of µ∗1.

Hence, if ω < σ, we set µ∗1 = σ, which implies µ∗2 = σ. Similarly, if ω > (1 + 1/a)σ, we

set µ∗1 = (1 + 1/a)σ, which implies µ∗2 = 0.

We have the following Lemma regarding the optimal duty cycle that maximizeCµ1≥µ2 .

Lemma 4. The optimal solution to the optimization problem (2.37) is given by

(µ∗1, µ
∗
2) =



(α(B), α(B)) if α(B) ≤ σ,

(ω, (1 + a)σ − aω) if α(B) > σ and

σ ≤ ω ≤ (1 + 1/a)σ,

(σ, σ) if α(B) > σ and

ω < σ,

((1 + 1/a)σ, 0) if α(B) > σ and

ω > (1 + 1/a)σ.

We can obtainCµ2≥µ1 in a similar manner and therefore finally obtainCMIMO via (2.36).

2.3.2 Ergodic Capacity

We now study the case in which λ(t) is a time varying random variable and characterize

the ergodic capacity. We derive the optimal power allocation strategy using the results

developed Section 2.3.1. To maximize the ergodic capacity in the presence of the time-

varying dark current, we have:

Cf
MIMO = max

E[µ1(t)A1 + µ2(t)A2] ≤ σ(A1 + A2)

0 ≤ µ1(t) ≤ 1

0 ≤ µ2(t) ≤ 1

E[Φ(t)], (2.49)
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where the expectation is over random variable λ(t) and Φ(t) = I(µ1(t), µ2(t), λ(t)) and

we use (µopt1 , µopt2 ) to denote the maximizer for (2.49). We follow the same strategy

developed in the SISO case, and use a two-step approach to solve this problem.

Step 1: First, we ignore the average power constraint, and find the maximal rate that the

channel can support for any given value of λ(t).

rmax = max I(µ1, µ2, λ(t)), (2.50)

s.t. 0 ≤ µ1 ≤ 1, (2.51)

0 ≤ µ2 ≤ 1. (2.52)

We use (µo1, µ
o
2) to denote the maximizer of this problem.

As shown in Section 2.3.1, for any given value of λ(t),

max
µ1,µ2

I(µ1, µ2, λ(t)) = max {Θ1(t),Θ2(t)} ,

where Θ1(t) = max
µ1,µ2

I(µ1−µ2, µ2, λ(t)) and Θ2(t) = max
µ1,µ2

I(µ2−µ1, µ1, λ(t)). Therefore,

problem (2.50) can be split into two separate problems. Due to the symmetry, we focus

on Θ1(t) (the other case being similar), which can be written as:

max I(µ1 − µ2, µ2, λ(t)), (2.53)

s.t. µ1 ≤ 1, (2.54)

µ2 ≥ 0, (2.55)

µ1 ≥ µ2. (2.56)

For a given value of λ(t), problem (2.53) is the same as the problem (2.42). Following

the analysis of (2.42), it is clear that µ1 = µ2 = α(B(t)) is the solution to (2.53), where
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α(·) is defined in (2.46) and B(t) is defined in (2.47) with λ replaced by λ(t). Similarly,

µ1 = µ2 = α(B(t)) is also the solution to the problem Θ2(t). As the result, the solution

to the problem (2.50) is (µo1, µ
o
2) = (α(B(t)), α(B(t))).

Step 2: Now we check whether the solution (µo1, µ
o
2) obtained in Step 1 satisfies the

average power constraint or not, i.e., we check whether the following inequality holds or

not:

E[µo1A1 + µo2A2] ≤ σ(A1 + A2). (2.57)

If (2.57) holds, the optimal solution to (2.49) is (µopt1 , µopt2 ) = (µo1, µ
o
2), and Cf

MIMO =

E[rmax].

If (2.57) does not hold, then (µo1, µ
o
2) can not be the optimal solution to (2.49), as

it violates the average power constraint. Therefore, in the optimal solution, the average

power constraint is active, and hence the problem (2.49) is equivalent to:

Cf
MIMO = max

E[σ′(t)] = σ

0 ≤ σ′(t) ≤ 1

E[Ψ(t)], (2.58)

where Ψ(t) = max

µ1(t)A1 + µ2(t)A2 = σ′(t)(A1 + A2)

0 ≤ µ1(t) ≤ 1

0 ≤ µ2(t) ≤ 1

Φ(t). We note that, in the optimiza-

tion problem inside E[·], the value of λ(t) is fixed, and hence the results in Section 2.3.1

are applicable. More specifically, we use results in step 2 of Section 2.3.1, because the

sum power constraint is active here. Using the results in Section 2.3.1, we can write

the mutual information term inside E[·] as a function of σ′(t), and hence the problem is

converted into an optimization problem of σ′(t). Due to its complex form (as shown in
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Lemma 4), it is difficult to obtain an analytical form of the optimal solution. However,

one can set µ1(t) = µ2(t) and obtain a computable solution, which is optimal when σ is

large.

In summary, we have the following proposition regarding the optimal power allocation

scheme for the ergodic capacity.

Proposition 5. The optimal power allocation strategy that achieves the ergodic capacity

(namely the optimization problem in (2.49)) is given by

(µopt1 , µopt2 ) =

 (α(B(t)), α(B(t))) if E[α(B(t))] ≤ σ,

solution of (2.58) if E[α(B(t))] > σ.
(2.59)

As we can see here, when the average power constraint σ is large, we obtain the closed

form expression for the optimal allocation scheme. When σ is small, we do not have the

closed form solution as the form of the function is too complicated. Alternatively, subop-

timal solutions with good properties can be numerically computed easily as discussed in

the paragraph after (2.58).

2.3.3 Outage Probability

In this section, we consider the case with a strict delay constraint, for which the strategy

developed in Section 2.2.2 for the SISO case is useful. Let r0 be the target rate, hence an

outage event occurs if I(µ1, µ2, λ(t)) < r0. The goal is to minimize the outage probabil-

ity.

Problem-1-MIMO (P1-M):

min Pr{I(µ1, µ2, λ(t)) < r0}, (2.60)

s. t. E[µ1A1 + µ2A2] ≤ σ(A1 + A2). (2.61)
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We use (µopt1 , µopt2 ) to denote the minimizer of this problem.

Similar to the SISO case studied in Section 2.2, we first solve several related opti-

mization problems, which help to obtain the optimal solution for P1-M.

We first examine the maximal rate rmax that the channel can support for any given

value of λ(t), namely, the optimization problem (2.50). Following Step 1 in Section 2.3.2,

(µo1, µ
o
2) = (α(B(t)), α(B(t))) is the power allocation strategy that achieves rmax for each

block.

Similar to Section 2.2, we then compare rmax with r0. If rmax < r0, then the trans-

mitter should not transmit anything and save the power for the future use. If rmax = r0,

then the only choice of power control that avoids outage is the power that achieves rmax.

The interesting case is when rmax > r0. In this case, there are multiple (in fact infinitely

many) power control choices that can avoid outage. In the following, we find the minimal

sum power that avoids the outage.

Problem-2-MIMO (P2-M):

min µ1A1 + µ2A2, (2.62)

s.t. I(µ1, µ2, λ(t)) ≥ r0. (2.63)

We use (µ̂1, µ̂2) to denote the optimal solution to P2-M.

For those λ(t)s such that rmax is less than r0, P2-M does not have a solution. For

other values of λ(t)s, we consider the following two cases:

• If rmax = r0 then µ̂1 = µ̂2 = α(B(t)).

• If rmax > r0 then (µ̂1, µ̂2) = (µ̌1, µ̌2), such that (µ̌1, µ̌2) is the solution of the

following problem P2a-M.
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Problem-2a-MIMO (P2a-M):

min µ1A1 + µ2A2, (2.64)

s.t. I(µ1, µ2, λ(t)) = r0. (2.65)

To solve this problem, we consider two subproblems.

The first subproblem is:

P2a-M-sub1:

min µ1A1 + µ2A2, (2.66)

s.t. I(µ1 − µ2, µ2, λ(t)) = r0, (2.67)

µ1 ≥ µ2. (2.68)

Let (µ̃1, µ̃2) be the solution.

The second subproblem of P2a-M is

P2a-M-sub2:

min µ1A1 + µ2A2, (2.69)

s.t. I(µ2 − µ1, µ1, λ(t)) = r0, (2.70)

µ2 ≥ µ1. (2.71)

Let (µ̄1, µ̄2) be the solution. Following the similar approach in Corollary 1 of [41], the

solutions to these sub problems can be found using KKT conditions.

As I(µ1, µ2, λ) = max{I(µ1 − µ2, µ2, λ),

I(µ2 − µ1, µ1, λ)}, then from the solutions to the two subproblems P2a-M-sub1 and
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P2a-M-sub2, the optimal solution of P2a-M is given by

(µ̌1, µ̌2) =


(µ̃1, µ̃2) if µ̃1A1 + µ̃2A2 ≤ µ̄1A1 + µ̄2A2,

(µ̄1, µ̄2) otherwise.

Therefore, the solution to problem P-1M with the absence of the average power con-

straint can be written as:

(µ∗1(λ), µ∗2(λ)) =


(0, 0) if rmax(λ) < r0

(µo1, µ
o
2) if rmax(λ) = r0

(µ̌1, µ̌2) if rmax(λ) > r0

. (2.72)

Now, we check the average power constraint. Depending on whether (µ∗1, µ
∗
2) satisfies

E[µ∗1A1 + µ∗2A2] ≤ σ(A1 + A2) or not, we have the following two cases.

Case 1): E[µ∗1A1 +µ∗2A2] ≤ σ(A1 +A2). In this case, we have (µopt1 , µopt2 ) = (µ∗1, µ
∗
2).

Case 2): E[µ∗1A1 + µ∗2A2] > σ(A1 + A2). In this case, we need to modify (µ∗1, µ
∗
2) to

obtain (µopt1 , µopt2 ). Following similar arguments as in Section 2.2, we can conclude that,

if E[µ∗1A1 + µ∗2A2] > σ(A1 +A2), then the optimal solution (µopt1 , µopt2 ) of P1-M is given

by

(µopt1 , µopt2 ) =


(µ∗1, µ

∗
2) with probability ŵ

(0, 0) with probability (1− ŵ)

, (2.73)
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in which ŵ is explained in (2.28) and has the following form

ŵ =


1 if σ̄(t) < p∗

w∗ if σ̄(t) = p∗

0 if σ̄(t) > p∗

, (2.74)

where w∗ is given by (2.29), p∗ is given by (2.30) and σ̄ =
µ∗1A1+µ∗2A2

A1+A2
.

In summary, we have the following proposition regarding the optimal power allocation

strategy that minimize the outage probability.

Proposition 6. The optimal power allocation strategy that minimizes the outage proba-

bility is given by

(µopt1 , µopt2 ) =

 specified in (2.72) if E[µ∗1A1 + µ∗2A2] ≤ σ(A1 + A2),

specified in (2.73) if E[µ∗1A1 + µ∗2A2] > σ(A1 + A2).

2.3.4 Extension to General MIMO Case

For the case with an arbitrary number of transmit and receive antennas, i.e., general val-

ues of J and M , we can follow the similar steps as in the previous sections to obtain

the optimal power control policy that maximizes the ergodic capacity and the optimal

power control policy that minimizes the outage probability. In particular, for any J , if

the transmitter antenna with the smallest duty cycle is active, then the other antennas

should also be active. Hence, there are J + 1 states. As the result, the mutual information

I(µJ(t), λ(t)) has J + 1 terms, each corresponding to one state. Thus in order to obtain

the ergodic capacity, we solve

Cf
MIMO = max

E[
∑
i µi(t)Ai]≤σ

∑
i Ai

E[I(µJ(t), λ(t))], (2.75)

38



where

I(µJ(t), λ(t)) =
M∑
m=1

[
J∑
j=1

νjζ

(
j∑

k=1

SkmAk, λm(t)

)
−ζ

(
J∑
j=1

νj

j∑
k=1

SkmAk, λm(t)

)]
,

(2.76)

and when µj > µj+1, j = 1, ..., J − 1,

νj =


µj − µj+1 j = 1, ..., J − 1

µJ j = J

. (2.77)

The solution of (2.75) can be obtained following the same approach as in Section 2.3.2

by examining cases with different ordering of duty cycles.

To minimize the outage probability, we consider

min Pr{I(µJ(t), λ(t))}, (2.78)

s.t. E

[∑
i

µi(t)Ai

]
≤ σ

∑
i

Ai, (2.79)

which can be solved following the similar steps as explained in Section 2.3.3 by examin-

ing cases with different ordering of duty cycles.

2.4 Numerical Analysis

In the simulations for single transmitting user, we set M = 1, and consider two cases

respectively with J = 1 and J = 2. Furthermore, λ(t) is chosen as a uniform random

variable such that λ(t) ∼ U [1, 2]. For fair comparison between J = 1 and the J = 2 case,

we have ensured that both the total power constraints and average power constraints are

equal by setting A = 30 for J = 1 and A1 = A2 = 15 for J = 2.
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2.4.1 Ergodic Capacity

Figure 2.2: The ergodic capacity vs. A

Figure 2.2 illustrates the ergodic capacity as a function of the maximum amplitude for

both J = 1 and J = 2, for λ(t) ∼ U [1, 2]. It is evident from the figure that asA increases,

the ergodic capacity increases monotonically. If the number of antennas at the transmitter

is larger, the increment in the ergodic capacity is more evident. For comparison, in the

figure, we also plot curves for the ergodic capacity when the constant power allocation

strategy is employed (refer to the Appendix B). The figure shows that the adaptive power

allocation for multiple transmitting antennas observe a significant improvement in the

ergodic capacity when A is increased, compared to the case with constant power control

for multiple transmitting antennas and adaptive power control for a single transmitting

antenna.

Figure 2.3 further illustrates the comparison between the ergodic rate achieved with

and without adaptive power control. In this figure, we plot the rate as a function of σ for

A1 = A2 = 15, J = 2 and M = 1 when λ(t) ∼ U [0.5, 8.0]. It can be observed from

the figure that initially as σ increases, the ergodic capacity increases. But after reaching a

certain threshold point, increasing σ does not affect the ergodic capacity. This is due to the

fact that once σ is large enough, as discussed in (2.59), (α(B(t)), α(B(t))) satisfy the total

power constraint E[µ1A1 + µ2A2] ≤ σ(A1 + A2), and then the optimal power allocation
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strategy and the ergodic capacity do not depend on σ. It is shown in the figure that the

gain achieved by adaptive power allocation is more obvious when E[µ1A1 + µ2A2] ≤

σ(A1 + A2) is satisfied and for the smaller values of S. From the figure, it is clear that

when σ is small, both the adaptive and constant power control have the same rate. This

can be explained as follows. In the adaptive power control case, solving (2.48) shows that

for the given parameters, ω < 0. Therefore, from Lemma 4, we know that the optimal

power allocation strategy is (µ1, µ2) = (σ, σ), which is the same as the constant power

control case.

Figure 2.3: The ergodic capacity vs. σ for J = 2, comparing the adaptive and the constant
power allocation

Figure 2.4 illustrates the ergodic capacity as a function of the total power for both

J = 1 and J = 2 with A = 30 and A1 = A2 = 15. As the total power (i.e. σA for J = 1

and σ(A1 + A2) for J = 2) increases, the ergodic capacity also increases. As discussed

above, after reaching a certain threshold, the increase in power does not affect the ergodic

capacity.

Figure 2.5 compares the ergodic capacity of two transmitter antennas and one receiver

with one transmitter and two receiver antennas while keeping the power constraints (i.e.

total power and average power constraint) to be the same when S = 0.5. For both cases

we assume that for each receiver, the corresponding dark current is uniformly distributed
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Figure 2.4: The ergodic capacity vs. power for both multi-antenna and single-antenna
cases

in the interval [1, 2]. It is clear from the figure that the two receiver antennas case has

a better performance.This can be explained by the mutual information formulas. For

(M = 1, J = 2), when µ1 ≥ µ2, the mutual information is given by (µ1−µ2)ζ(S1A1, λ)+

µ2ζ(S1A1 + S2A2, λ) − ζ(µ1S1A1 + µ2S2A2, λ), while for (M = 2, J = 1), it is given

by: µζ(SA, λ1)− ζ(µSA, λ1) + µζ(SA, λ2)− ζ(µSA, λ2).

Figure 2.5: The ergodic capacity vs. power for M = 1, J = 2 and M = 2, J = 1

2.4.2 Outage Probability

Figure 2.6 plots the outage probability as a function of the target rate r0. For this simu-

lation, A = 30, A1 = A2 = 15 and σ = 0.03725 for both J = 1 and J = 2, for the fair

comparison between J = 1 and J = 2. It is evident from the figure that as r0 increases,
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Pout also increases. Furthermore, the outage probability for J = 1 increases more rapidly

than that of J = 2. As the figure is in logarithmic scale and log 0 is not defined, hence

the figure only shows the values when the outage probability is > 0. Figure 2.7 compares

Figure 2.6: Pout vs. r0, comparing J = 1 with J = 2

the relationship between the target rate r0 and the probability for the adaptive power al-

location and the constant power allocation when A1 = A2 = 15 and σ = 0.03725. It

shows that the outage probability of the adaptive power allocation responds gradually to

the increase in the target rate as compared to the constant power allocation where the

outage probability abruptly increases when r0 increases. This figure also shows the val-

ues of outage probability when Pout > 0. Figure 2.8 shows that as the power increases,

Figure 2.7: Pout vs. r0, comparing the adaptive power allocation with the constant power
allocation

Pout decreases and r0 = 1.2. Furthermore, we can observe that, after a certain point, the
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increase in power does not lead to further decrease in Pout. Similar to the ergodic case,

the reason for this phenomena is that once the available power is large enough, the op-

timal power allocation strategy and hence the outage probability does not depend on the

available power anymore. From the figure, we also see that when S = 0.2, the outage

probability for J = 1 is always 1. The value of Pout = 0 for S = 0.5, J = 2 when power

is larger than 2.45 and Pout = 0 for S = 0.5, J = 1, when power is larger than 3.

Figure 2.8: Pout vs. power, comparing J = 1 with J = 2

Figure 2.9 shows the improvement achieved by the multi-antenna dynamic power

allocation as compared to multi-antenna constant power allocation and shows that when

the available power increases, the adaptive power allocation scheme reduces the outage

probability more significantly as compared to the constant power allocation for A1 =

A2 = 15 and r0 = 1.2. Pout = 0 when power is larger than 2.45.

Figure 2.10 compares the outage probabilities for the cases with (M = 1, J = 2)

and (M = 2, J = 1) with S = 0.2. From the figure, it is clear that Pout is higher for

M = 1, J = 2 case than for the M = 2, J = 1, which is consistent with the mutual

information formula and the comparison in Figure 2.5. It is clear from the examples

shown above that the performance of the single user Poisson channel can be improved by

increasing the number of antennas at both transmitting and receiving user.
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Figure 2.9: Pout vs. power, comparing the adaptive power allocation with the constant
power allocation

Figure 2.10: Pout vs. r0, Comparing M = 1, J = 2 with M = 2, J = 1 with adaptive
power allocation

45



Chapter 3

Multi User Single Receiver

In this chapter, we extend the analysis to a non-fading Poisson channel where multiple

transmitting users communicate with a single receiver. In this chapter we will restrict our

analysis to the scenario where the receiver has only one antenna (the transmitters can have

either one or multiple antennas).

3.1 System Model

Figure 3.1: The Poisson MISO-MAC model.

In this section, we introduce the model considered in this chapter. As shown in the

Fig. 3.1, we consider the continuous-time two-user Poisson MISO-MAC with two users
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communicating with a single antenna receiver. For transmitter n, it is equipped with Jn

transmit antennas. LetXnj(t) be the input of the jth transmitter from nth user and Y (t) be

the doubly-stochastic Poisson process observed at the receiver antenna. The input-output

relationship can be described as:

Y (t) = P

(
2∑

n=1

Jn∑
j=1

SnjXnj(t) + λ

)
, (3.1)

in which Snj is the channel response between the jth antenna of the nth user to the re-

ceiver, λ is the dark current at receiver antenna, and P(·) is the nonlinear transformation

converting the light strength to the doubly-stochastic Poisson process that records the

timing and number of photon’s arrivals. In particular, for any time interval [t, t + τ ], the

probability that there are k photons arriving at the receiver is

Pr{Y (t+ τ)− Y (t) = k} =
e−ΛΛk

k!
, (3.2)

where

Λ =

∫ t+τ

t

[
2∑

n=1

Jn∑
j=1

SnjXnj(t
′) + λ

]
dt′. (3.3)

We consider the peak power constraint, i.e., the transmitted signal Xnj(t) must satisfy the

following constraint:

0 ≤ Xnj(t) ≤ Anj, (3.4)

where Anj is the maximum power allowed by the jth antenna of the nth transmitter. We

use µnj to denote the duty cycle of each transmitting antenna, i.e., µnj is the percentage

of time at which the jth antenna of the nth user is on. We use µ to denote the vector of all

µnjs.
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Throughout the chapter, we use the following notation:

ϕ(x) , x log(x), (3.5)

ζ(x, y) , (x+ y) log(x+ y)− y log y, (3.6)

α(x) ,
1

x

(
e−1(1 + x)(1+ 1

x) − 1
)
. (3.7)

As shown in Chapter 2, it is easy to check that 0 < α(x) < 1 for x ≥ 0.

Our goal is to characterize the sum-rate capacity of this Poisson MAC.

3.2 SISO-MAC Analysis

In this section, we focus on the special case in which each transmitter has only one an-

tenna, i.e., J1 = 1 and J2 = 1. Hence for the sake of convenience, we drop the subscript

j in this section. The techniques developed in this section will be used in the more com-

plicated setup considered in Section 3.3.

3.2.1 Optimality Conditions

It has been shown in [52] that the continuous-time continuous-input discrete-output Pois-

son MAC can be converted to a much simpler discrete-time binary-input binary-output

MAC. In particular, the input waveform can be limited to be piecewise constant wave-

forms with two levels 0 or An for the nth transmitter. Let µn be the duty cycle of the nth

transmitter (i.e., µn is the fraction of the time that transmitter n is on). It has been shown

in [52] that the sum-rate capacity is given by

(P0): CSISO−MAC
sum = max

0≤µ1,µ2≤1
IX1,X2;Y (µ1, µ2), (3.8)
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in which

IX1,X2;Y (µ1, µ2) = (1− µ1)(1− µ2)ϕ(λ) + µ1(1− µ2)ϕ(S1A1 + λ)

+(1− µ1)µ2ϕ(S2A2 + λ) + µ1µ2ϕ(S1A1 + S2A2 + λ)− ϕ(S1A1µ1 + S2A2µ2 + λ).

The optimization problem (3.8) has been solved by [52] for the symmetric case with

S1A1 = S2A2. In particular, [52] shows that the objective function IX1,X2;Y (µ1, µ2) is

a Schur concave function when S1A1 = S2A2. As the result, if (µ̂1, µ̂2) is the optimal

solution to (3.8) for the symmetric case, µ̂1 must be equal to µ̂2. Hence, the problem can

be converted into a one-dimensional optimization problem, which can be solved easily.

However, the situation for the non-symmetric case is different. In particular, if S1A1 6=

S2A2, then IX1,X2;Y (µ1, µ2) is not a Schur concave function anymore. This can be ob-

served from the fact that a Schur concave function must be a symmetric function (see

page 258 of [61]), while IX1,X2;Y (µ1, µ2) is not a symmetric function when S1A1 6=

S2A2. Therefore, the techniques developed in [52] for the symmetric case cannot be

extended to the non-symmetric case. Furthermore, for general values of SnAn and λ,

IX1,X2;Y (µ1, µ2) is not necessarily a concave function of (µ1, µ2), (see the proof in Ap-

pendix C.1). Hence, (3.8) is a non-convex optimization problem in general.

In the following, we solve this non-convex optimization problem. We start with the

necessary KKT conditions (since the problem is not convex, these conditions are not

sufficient for optimality). For convenience, we write IX1,X2;Y = I and hence the corre-

sponding Lagrangian equation is given by:

L = −I + η1(µ1 − 1)− η2µ1 + η3(µ2 − 1)− η4µ2. (3.9)
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The optimal solution (µ̂1, µ̂2) must satisfy the following KKT constraints:

∂I

∂µ1

∣∣∣
(µ̂1,µ̂2)

− η1 + η2 = 0,

∂I

∂µ2

∣∣∣
(µ̂1,µ̂2)

− η3 + η4 = 0,

η1(µ̂1 − 1) = 0,

η2µ̂1 = 0,

η3(µ̂2 − 1) = 0,

η4µ̂2 = 0,

where

∂I

∂µ1

= −(1− µ2)ϕ(λ) + (1− µ2)ϕ(S1A1 + λ)− µ2ϕ(S2A2 + λ)

+µ2ϕ(S1A1 + S2A2 + λ)− S1A1 log(S1A1µ1 + S2A2µ2 + λ)− S1A1, (3.10)

and

∂I

∂µ2

= −(1− µ1)ϕ(λ)− µ1ϕ(S1A1 + λ) + (1− µ1)ϕ(S2A2 + λ)

+µ1ϕ(S1A1 + S2A2 + λ)− S2A2 log(S1A1µ1 + S2A2µ2 + λ)− S2A2. (3.11)

In order to further analyze the above KKT conditions, we need to consider 16 cases

corresponding to different combinations of active constraints (i.e., whether ηi = 0 or not

for i = 1, · · · , 4). For example, if η1 = 0, η2 = 0, η3 6= 0, η4 = 0, then the above KKT
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conditions can be simplified to

∂I

∂µ1

∣∣∣
(µ̂1,µ̂2)

= 0,

∂I

∂µ2

∣∣∣
(µ̂1,µ̂2)

− η3 = 0,

η3(µ̂2 − 1) = 0,

from which we obtain

µ̂1 = α

(
S1A1

S2A2 + λ

)
,

µ̂2 = 1. (3.12)

Since max I(µ̂1, 0) > max I(µ̂1, 1), (3.12) is clearly not an optimal solution.

Using similar arguments, we can show that among these 16 possible combinations,

13 constraint combinations result in non-optimal solutions. We are then left with the

following three possible scenarios:

Scenario 1: η1 = 0, η2 = 0, η3 = 0, η4 = 0:

The KKT conditions are simplified to

∂I

∂µ1

∣∣∣
(µ1,µ2)

= 0, (3.13)

∂I

∂µ2

∣∣∣
(µ1,µ2)

= 0. (3.14)

This scenario corresponds to the case where both users are active. From (3.10) and (3.11),

we can see that both ∂I
∂µ1

∣∣∣
(µ1,µ2)

and ∂I
∂µ2

∣∣∣
(µ1,µ2)

are nonlinear functions of (µ1, µ2). Hence,

there can be multiple (µ1, µ2) pairs satisfying (3.13) and (3.14) simultaneously. However,

we now show that there are in fact at most 2 possible (µ1, µ2) pairs that satisfy (3.13)

and (3.14) simultaneously.

51



First, by (3.13)×S2A2− (3.14)×S1A1, we have

S2A2(−(1− µ2)ϕ(λ) + (1− µ2)ϕ(S1A1 + λ)− µ2ϕ(S2A2 + λ)

+µ2ϕ(S1A1 + S2A2 + λ) = S1A1(−(1− µ1)ϕ(λ)− µ1ϕ(S1A1 + λ)

−(1− µ1)ϕ(S2A2 + λ) + µ1ϕ(S1A1 + S2A2 + λ). (3.15)

Using (3.15), we can write µ2 in terms of µ1:

µ2 =
V

W
+
S1A1

S2A2

µ1 , f(µ1), (3.16)

where

W , ϕ(λ)− ϕ(S1A1 + λ)− ϕ(S2A2 + λ) + ϕ(S1A1 + S2A2 + λ), (3.17)

V , −ϕ(S1A1 + λ) + ϕ(λ)− S1A1

S2A2

ϕ(λ) +
S1A1

S2A2

ϕ(S2A2 + λ). (3.18)

It is clear that f(µ1) is a linear function of µ1.

Using ∂I
∂µ2

= 0, we can write µ2 in terms of µ1:

µ2 =
1

S2A2

(
exp

(
1

S2A2

(−(1− µ1)ϕ(λ)− µ1ϕ(S1A1 + λ) + (1− µ1)ϕ(S2A2 + λ)

+µ1ϕ(S1A1 + S2A2 + λ)− S2A2)

))
− S1A1µ1 + λ

S2A2

, g(µ1). (3.19)

It is easy to check that g′′(µ1) > 0, and hence g(µ1) is a strictly convex function of

µ1.
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We have just converted (3.13) and (3.14) into equivalent forms:

µ2 = f(µ1), (3.20)

µ2 = g(µ1). (3.21)

Hence, (µ1, µ2) pairs where f(µ1) and g(µ1) intersect with each other satisfy (3.13)

and (3.14) simultaneously. As f(µ1) is a linear function of µ1, while g(µ1) is a strictly

convex function of µ1, they can have at most two intersecting points as shown in Fig. 3.2.

Figure 3.2: f(µ1) and g(µ1) have at most two intersecting points.

Therefore, there can be at most two pairs of (µ1, µ2) that satisfy both conditions simul-

taneously. Let these solutions be (µ̃1, µ̃2) and (µ̃′1, µ̃
′
2). We then need to check whether

(µ̃1, µ̃2) is in [0, 1] × [0, 1] or not. If yes, we keep it. If not, then for the presentation

convenience, we replace it with (0, 0). We do the same for (µ̃′1, µ̃
′
2).

Scenario 2: η1 = 0, η2 = 0, η3 = 0, η4 6= 0:

Solving the corresponding KKT conditions, we obtain

µ̄1 = α(S1A1/λ), (3.22)

µ̄2 = 0.
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From the property of α(·), we know that 0 ≤ µ̄1 ≤ 1, and hence (µ̄1, 0) is a valid input.

This scenario corresponds to the case where only user 1 is active.

Scenario 3: η1 = 0, η2 6= 0, η3 = 0, η4 = 0:

Solving the corresponding KKT conditions, we obtain

µ∗1 = 0,

µ∗2 = α(S2A2/λ). (3.23)

Similarly, we have 0 ≤ µ∗2 ≤ 1, and hence (0, µ∗2) is a valid input. This scenario corre-

sponds to the case where only user 2 is active.

In summary, we have the following theorem.

Theorem 7. The optimal value (µ̂1, µ̂2) that achieves the sum-rate capacity for the gen-

eral Poisson MAC is given by

(µ̂1, µ̂2) =



(0, µ∗2) if I(0, µ∗2) ≥ max (I(µ̄1, 0), I(µ̃1, µ̃2), I(µ̃′1, µ̃
′
2))

(µ̄1, 0) if I(µ̄1, 0) ≥ max (I(0, µ∗2), I(µ̃1, µ̃2), I(µ̃′1, µ̃
′
2))

(µ̃′1, µ̃
′
2) if I(µ̃′1, µ̃

′
2) ≥ max (I(0, µ∗2), I(µ̄1, 0), I(µ̃1, µ̃2))

(µ̃1, µ̃2) otherwise

.(3.24)

It is interesting to note that unlike the Gaussian MAC with an average power con-

straint, it can be optimal to allow only one user to transmit in order to achieve the sum-

rate capacity in the Poisson MAC with a maximum power constraint. For example, when

S1A1 = 5, S2A2 = 50, λ = 0.5, there is no solution for (3.20) and (3.21) in the desired

range of 0 ≤ µ1 ≤ 1 and 0 ≤ µ2 ≤ 1, because (3.20) and (3.21) do not intersect (as

shown in Fig. 3.3). Hence, for such a set of parameters, it is optimal to allow only one

user (in this case, user 2) to transmit to achieve the sum-rate capacity.
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Figure 3.3: f(µ1) and g(µ1) have no intersection in 0 ≤ µ1 ≤ 1 and 0 ≤ µ2 ≤ 1, when
S1A1 = 5, S2A2 = 50, and λ = 0.5.

On the other hand, there are scenarios under which it is optimal for both users to

transmit. For example, when S1A1 = 10, S2A2 = 15, λ = 0.5, it is easy to check that it

is optimal for both users to transmit in order to achieve the sum-rate capacity.

Motivated by these observations, we further analyze (3.24) to characterize conditions

under which it is optimal to either allow one user or two users to transmit.

3.2.2 Single-User or Two-User Transmission?

In this subsection, we present conditions under which it is optimal for a single-user to

transmit and conditions under which it is optimal for two-user transmission.

We first focus on the optimality of single-user transmission. As discussed above, the

solution for two-user transmission is characterized by the intersections of (3.20) and (3.21).

The following simple proposition characterize the conditions under which (3.20) and (3.21)

do not have an intersection in the desired region [0, 1] × [0, 1] and hence two-user trans-

mission is not optimal.

Proposition 8. If g(0) < f(0) and g(1) < f(1), then single-user transmission is optimal

to achieve the sum-rate capacity.

Proof. It suffices to argue that two-user transmission is not optimal under the assumption

of the proposition. This happens when (3.20) and (3.21) do not intersect. Therefore we

55



prove that g(µ1) does not intersect with f(µ1) when g(0) < f(0) and g(1) < f(1) for

µ1 ∈ [0, 1]. For any µ1 ∈ [0, 1], we have

f(µ1)
(a)
= (1− µ1)f(0) + µ1f(1)

(b)
> (1− µ1)g(0) + µ1g(1)

(c)
> g(µ1).

Here, (a) follows from the linearity of f(·), (b) follows from the assumption g(0) < f(0)

and g(1) < f(1), and (c) follows from the strict convexity of g(·).

For any given S1A1 and S2A2 we can determine whether single-user transmission is

optimal or not by using Proposition 8. In the following, we will show that if one of the

SiAis is sufficiently large, then it is optimal for one user to transmit. As the roles of users

are symmetric, we restrict our analysis to S2A2 → ∞ as an example. We show that as

S2A2 → ∞, the conditions in Proposition 8 are satisfied and hence f(µ1) and g(µ1) do

not intersect.

Lemma 9. The functions f(µ1) and g(µ1) have the following properties:

lim
S2A2→∞

f(µ1) = lim
S2A2→∞

f(0) = lim
S2A2→∞

f(1) = 1

and

lim
S2A2→∞

g(µ1) = lim
S2A2→∞

g(1) = lim
S2A2→∞

g(0) =
1

e
.

Therefore, (3.20) and (3.21) do not intersect as S2A2 →∞.

Proof. Please refer to Appendix C.2.

Lemma 9 is illustrated in Fig. 3.4. As discussed in Scenario 1 of Section 3.2.1, (3.20)

and (3.21) do not intersect in our region of interest, and hence we replace (µ̃′1, µ̃
′
2) and
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Figure 3.4: µ2 vs. µ1 as S2A2 →∞

(µ̃1, µ̃2) by (0, 0) when S2A2 >> S1A1. This implies that either (0, µ∗2) or (µ̄1, 0) is the

possible solutions. With S2A2 >> S1A1, solving (3.24) yields (0, µ∗2) as the optimal

solution, i.e., only user 2 transmitting achieves the sum-rate capacity.

Now, we discuss the conditions under which it is optimal for both users to transmit.

In particular, the following proposition characterizes conditions under which single-user

transmission is not optimal.

Proposition 10. User 1 transmitting alone is not optimal if

α(S1A1/λ) > γ1 ,

(
1− S2A2

S1A1

)
ϕ(λ)− ϕ(S2A2 + λ) + S2A2

S1A1
ϕ(S1A1 + λ)

W
,

in which W is defined in (3.17). Similarly, user 2 transmitting alone is not optimal if

α(S2A2/λ) > γ2 ,

(
1− S1A1

S2A2

)
ϕ(λ)− ϕ(S1A1 + λ) + S1A1

S2A2
ϕ(S2A2 + λ)

W
.

Furthermore, if both conditions above are satisfied, it is optimal for both users to be

active.

Proof. To prove this proposition, we will find out conditions under which a single-user

transmission can be eliminated as a candidate for optimality. To eliminate (0, µ∗2), which

is obtained in (3.23), as a candidate for the optimal solution, we check whether ∂I
∂µ1

∣∣∣
(µ1=0,µ∗2)
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is larger than 0 or not. If it is larger than 0, then we know that (0, µ∗2) cannot be the op-

timal solution. By replacing the value of log(S2A2µ
∗
2 + λ) from the ∂I

∂µ2

∣∣∣
µ1=0,µ∗2

= 0 in

∂I
∂µ1

∣∣∣
(µ1=0,µ∗2)

= 0, we have

∂I

∂µ1

∣∣∣
(µ1=0,µ∗2)

= −(1− µ∗2)ϕ(λ) + (1− µ∗2)ϕ(S1A1 + λ)− µ∗2ϕ(S2A2 + λ)

+µ∗2ϕ(S1A1 + S2A2 + λ)− S1A1

S2A2

ϕ(S2A2 + λ)

+
S1A1

S2A2

ϕ(λ). (3.25)

Hence the condition for ∂I
∂µ1

∣∣∣
(µ1=0,µ∗2)

> 0 to hold true is µ∗2 > γ2, where γ2 = r2
W

with

r2 = (1− S1A1

S2A2
)ϕ(λ)− ϕ(S1A1 + λ) + S1A1

S2A2
ϕ(S2A2 + λ). Therefore, the case (0, µ∗2) is

not optimal if µ∗2 > γ2.

Following similar arguments, we can conclude that (µ̄1, 0), which is obtained in (3.22),

is not optimal when µ̄1 > γ1, in which γ1 = r1
W

with r1 = (1 − S2A2

S1A1
)ϕ(λ) − ϕ(S2A2 +

λ) + S2A2

S1A1
ϕ(S1A1 + λ).

If µ̄1 > γ1 and µ∗2 > γ2, two-user transmission is the optimal solution.

3.2.3 Special Case: Symmetric Channel

In this section we show that the results obtained in Section 3.2.1 can recover the results

obtained in [52] for the symmetric case. We show this using the following three steps.

Step 1: Among the four possible solutions in (3.24), we first rule out (0, µ∗2) and

(µ̄1, 0). It is easy to check that, when S1A1 = S2A2, γ1 = 0 and γ2 = 0. Hence,

as discussed in Section 3.2.2, (0, µ∗2) is not optimal, as we clearly have µ∗2 > γ2 = 0.

Similarly, (µ̄1, 0) is not optimal, as µ̄1 > γ1 = 0. Hence, scenario 2 and scenario 3 cannot

be optimal, and we are left with only scenario 1.

Step 2: We show that, if (µ1, µ2) is a solution to (3.20) and (3.21) of scenario 1, then
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µ1 must be equal to µ2. This can be easily seen by setting S1A1 = S2A2 in (3.16), which

yields µ1 = µ2.

Step 3: We show that there is a unique pair (µ1, µ2) that satisfies (3.20) and (3.21) of

scenario 1. To prove the uniqueness of the solution, as illustrated in Fig. 3.5, we show

Figure 3.5: f(µ1) and g(µ1) has a single intersecting point in the region of interest when
S1A1 = S2A2.

that g(0) > 0 = f(0) and g(1) < 1 = f(1). Since g(·) is a strictly convex function while

µ2 = µ1 is a linear function, f(µ1) and g(µ1) have a single intersecting point in the range

0 ≤ µ1 ≤ 1.

Lemma 11. If S1A1 = S2A2, g(1) < 1 and g(0) > 0.

Proof. Please refer to Appendix C.3.

Hence it can be concluded that if S1A1 = S2A2, then there is a unique solution to the

problem and at optimality µ̂1 = µ̂2. This result is consistent with the one shown in [52].

3.3 MISO-MAC Analysis

In this section, we extend the analysis to the case when the transmitters are equipped with

more than one antennas.
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3.3.1 Sum-rate Capacity of MISO-MAC

Similarly to the single-antenna case studied in Section 3.2, the continuous-time continuous-

input discrete-output Poisson MAC can be converted to discrete-time binary-input binary-

output MAC. In particular, the input waveform of each antenna can be limited to be

piecewise constant waveforms with two levels 0 or Anj for the jth antenna of the nth

transmitter. Depending on the on-off states of each antenna of user n, there are 2Jn states

at user n. In the following, we use in ∈ [1, · · · , 2Jn ] to index each of these 2Jn states

at user n. We will use Pn(in) to denote the probability that user n lies in state in and

pn , [Pn(1), · · · , Pn(2Jn)] to denote the vector of probabilities of states at user n. We

will use the binary variable bnj(in) to indicate whether the jth antenna of the nth user is

on or off at state in, i.e., bnj(in) = 1 if the jth antenna of the nth user is on for state in and

is 0 otherwise. The sum-rate achievable using (p1,p2) is given by

IXN ;Y (p1,p2) =
2J1∑
i1=1

2J2∑
i2=1

[
P1(i1)P2(i2)ζ

(
2∑

n=1

Jn∑
j=1

SnjAnjbnj(in), λ

)]

−ζ

(
2∑

n=1

Jn∑
j=1

SnjAnjµnj, λ

)
. (3.26)

It is easy to see that

µnj =
2Jn∑
in=1

Pn(in)bnj(in). (3.27)

Fig 3.6 (a) shows 4 possible states for user 2 with 2 antennas.

To characterize the sum-rate capacity, we need to solve the following optimization
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problem:

(P1): CMISO−MAC
sum = max

p1,p2

IXN ;Y (p1,p2), (3.28)

s.t 0 ≤ Pn(in) ≤ 1, in = 1, · · · , 2Jn , n = 1, 2, (3.29)
2Jn∑
in=1

Pn(in) = 1, n = 1, 2. (3.30)

Problem (P1) is a complex non-convex optimization problem with a large number of

variables. In particular, the number of variables 2J1 + 2J2 increases exponentially with

the number of antennas. The main result of this section is the following theorem.

Theorem 12. Solving problem (P1) is equivalent to solving the following problem

(P2): CMISO−MAC
sum = max

0≤µ1,µ2≤1
I(µ1, µ2), (3.31)

with

I(µ1, µ2) = (1− µ1)(1− µ2)ϕ(λ) + µ1(1− µ2)ϕ(B1 + λ) + (1− µ1)µ2ϕ(B2 + λ)

+µ1µ2ϕ(B1 +B2 + λ)− ϕ(B1µ1 +B2µ2 + λ), (3.32)

where

Bn ,
Jn∑
j=1

SnjAnj. (3.33)

Remark 1. Compared with (P1), there are only 2 variables in (P2). Although (P2) is

still a non-convex optimization problem, it has the same form as the problem (P0) solved

in Section 3.2.1 and hence all techniques and results there (e.g., the analysis on whether

single-user transmission is optimal or not) can be applied here. Intuitively, this theorem

says that the sum capacity of a MISO-MAC (with channel gains (Sn1, Sn2) and power
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constraints (An1, An2) for each transmitter n) is the same as the sum capacity of a SISO-

MAC (with channel gain Sn1An1 + Sn2An2 and power constraint 1 for each transmitter

n).

Figure 3.6: (a) Four possible states for user 2; (b) Step 1 shows, at the optimality, the
timing of antennas being on is aligned; (c) Step 2 shows, at the optimality, the duty cycles
of both antennas are the same and are aligned.

The proof of Theorem 12 has the following two major steps.

In Step-1, we prove the following proposition that simplifies the optimization problem

from (p1,p2) to µ.

Proposition 13. At the optimality, for each user, if the antenna with a smaller duty cycle

is on then all antennas with a larger duty cycle must also be on.

This proposition shows that, at the optimality, instead of being a function of (p1,p2),

the objective function can be simplified to a function of µ. As the result, the dimension of

the problem is reduced from 2J1 + 2J2 to J1 +J2. The central issue addressed here is that,

for a given µ, there are infinite number of combinations of (p1,p2) that satisfy (3.27).

The main idea is to show that, for any user n, if the antenna with a smaller duty cycle is

on, then the antenna with a larger duty cycle is also on at the optimality. As the result, at

the optimality, the value of (p1,p2) is determined by µ. Detailed proof of this proposition

can be found in Section 3.3.2. For the example shown in Figure 3.6, assuming µ21 ≥ µ22,

there are four initial states shown in Fig. 3.6 (a): only the antenna with the larger duty

cycle is on, both of the antennas are on, only the antenna with the smaller duty cycle is on
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and none of the antennas is on. We argue that a state with only the antenna having smaller

duty cycle to be on is not optimal. Hence, at the optimality, we have the scenario shown

in Fig. 3.6 (b).

In Step-2, we show the following proposition that characterizes the optimal value of

µ.

Proposition 14. At the optimality, for each user, all antennas must have the same duty

cycle and they must be on or off simultaneously.

This proposition shows that, at the optimality, the antennas of each user must have the

same duty cycle (i.e., µn1 = · · · = µnJn , µn) and are aligned. Hence, the dimension of

the problem is further reduced from J1 + J2 to 2. The main idea of this step is to show

that, at the optimality, all antennas of user n are either simultaneously on or off. Hence,

from receiver’s perspective, transmitter n can be viewed as a single antenna with power

constraint 1 and channel gain
Jn∑
j=1

SnjAnj . Step 2 is illustrated Fig. 3.6 (b) and Fig. 3.6 (c).

The proof can be found in Section 3.3.3.

In order to prove Theorem 12, Propositions 13 and 14 need to be proved. In the

following subsections, we prove these propositions in detail.

3.3.2 Proof of Proposition 13

In this subsection, we prove Proposition 13 by characterizing the optimal value of (p1,p2)

for any given µ. Hence, in this subsection, µ is fixed. More specifically, we show that, at

the optimality in the MISO-MAC, if the antenna with the smaller duty cycle is on, then

the other antenna should also be on.

From (4.22), it is clear that to optimize over (p1,p2) for a given µ, we only need to
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focus on

H ,
2J1∑
i1=1

2J2∑
i2=1

P1(i1)P2(i2)ζ

(
2∑

n=1

Jn∑
j=1

SnjAnjbnj(in), λ

)

=
2J1∑
i1=1

P1(i1)
2J2∑
i2=1

P2(i2) ζ

(
J1∑
j=1

S1jA1jb1j(i1) +

J2∑
j=1

S2jA2jb2j(i2), λ

)
︸ ︷︷ ︸

d(i1,i2)︸ ︷︷ ︸
H1(i1)

.(3.34)

We focus on finding the optimal values of p2 first. To facilitate the understanding, we

list the labeling of states of user 2 and the corresponding values of b2js in Table 3.1.

b21 b22

(i1, 1) 0 0
(i1, 2) 0 1
(i1, 3) 1 0
(i1, 4) 1 1

Table 3.1: The states of user 2 and the corresponding values of b2js.

Using the definition of ζ function in (3.6), we can easily check that

d(i1, 1) < min{d(i1, 2), d(i1, 3)} ≤ max{d(i1, 2), d(i1, 3)} < d(i1, 4),

which is simultaneously true for any value of i1. AsH1(i1) is simply a linear combination

of d(i1, i2)s, hence, for any given µ, maximizingH1(i1) is a linear programming problem,

for which we have the following (assuming µ21 ≥ µ22, the other case being similar):

1. As d(i1, 4) is the largest, P2(4) should be as large as possible. Therefore, we assign

P2(4) = µ22.

2. As µ22 has been all used, we should set P2(2) = 0.

64



3. As d(i1, 3) > d(i1, 1), we assign the remaining part of µ21 to state (i1, 3) and hence

P2(3) = µ21 − µ22.

4. For the last state related to the term d(i1, 1), allot the remaining probability. Hence

P2(1) = 1− µ21.

This assignment implies that if the antenna with a smaller duty cycle is on, the antenna

with a larger duty cycle should also be on. This is illustrated in Fig. 3.6 (b). Note that the

above arguments are true for all i1s, and hence this assignment maximizes H1(i1) for all

i1 simultaneously. Furthermore, this assignment is independent of p1.

Notice that the above discussion for J2 = 2, can be extended for J2 > 2.

Similarly, by writing

H =
2J2∑
i2=1

P2(i2)
2J1∑
i1=1

P1(i1)ζ

(
J1∑
j=1

S1jA1jb1j(i1) +

J2∑
j=1

S2jA2jb2j(i2), λ

)
,

then following the same procedure as above, we can calculate the optimal values of p1.

As the result, we know that (3.26) can be simplified to a function µ depending on

the relationships between the values of µnjs. For example, in the case of two transmitter

antennas, we have four symmetric cases, i.e. (µ11 ≥ µ12, µ21 ≥ µ22), (µ11 ≤ µ12, µ21 ≥

µ22), (µ11 ≥ µ12, µ21 ≤ µ22) and (µ11 ≤ µ12, µ21 ≤ µ22). For the case of (µ11 ≥
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µ12, µ21 ≥ µ22), IXN ;Y can be simplified to

I(µ11 − µ12, µ12, µ21 − µ22, µ22) =

(1− µ11)((1− µ21)ϕ(λ) + (µ21 − µ22)ϕ(S21A21 + λ) + µ22ϕ(B2 + λ)) +

(µ11 − µ12)((1− µ21)ϕ(S11A11 + λ) + (µ21 − µ22)ϕ(S21A21 + S11A11 + λ) + µ22ϕ(B2 + S11A11 + λ))

+µ12((1− µ21)ϕ(B1 + λ) + (µ21 − µ22)ϕ(S21A21 +B1 + λ) + µ22ϕ(B2 +B1 + λ))

−ϕ

(
2∑

n=1

Jn∑
j=1

SnjAnjµnj + λ

)
.

(3.35)

As the result, the objective function is simplified to characterizing

CMISO−MAC
sum = max (Cµ11≥µ12,µ21≥µ22 , Cµ11≤µ12,µ21≥µ22 , Cµ11≥µ12,µ21≤µ22 , Cµ11≤µ12,µ21≤µ22) ,

(3.36)

in which

(P3): Cµ11≥µ12,µ21≥µ22 = max I(µ11 − µ12, µ12, µ21 − µ22, µ22), (3.37)

s.t. 0 ≤ µ12 ≤ µ11 ≤ 1, (3.38)

0 ≤ µ22 ≤ µ21 ≤ 1. (3.39)

Other terms in (3.36) are defined in a similar manner. Due to symmetry, in the follow-

ing, we only provide details on how to solve (P3).

3.3.3 Proof of Proposition 14

In this subsection, we prove Proposition 14 by solving (P3). For the ease of calculation,

we define q1 = µ11−µ12, q2 = µ12, q3 = µ21−µ22 and q4 = µ22 and let q = [q1, q2, q3, q4].
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Then (4.35) can be re-written as

I(q) = (1− (q1 + q2))((1− (q3 + q4))ϕ(λ) + q3ϕ(S21A21 + λ) + q4ϕ(B2 + λ))

+q1((1− (q3 + q4))ϕ(S11A11 + λ) + q3ϕ(S21A21 + S11A11 + λ) + q4ϕ(B2 + S11A11 + λ))

+q2((1− (q3 + q4)ϕ(B1 + λ) + q3ϕ(S21A21 +B1 + λ) + q4ϕ(B2 +B1 + λ))

−ϕ(S11A11q1 +B1q2 + S21A21q3 +B2q4 + λ). (3.40)

Correspondingly, (P3) is equivalent to

(P4): Cµ11≥µ12,µ21≥µ22 = max I(q) (3.41)

s.t. qk ≥ 0, k = 1, · · · , 4, (3.42)

q1 + q2 ≤ 1, (3.43)

q3 + q4 ≤ 1. (3.44)

Similarly to (3.8), the objective function (3.41) is not a convex function in general. We use

the KKT conditions as necessary conditions to characterize the set of possible candidates

for the optimal solution. In the following, we consider only the constraint (3.42) explicitly.

We check (3.43) and (3.44) after obtaining the solution.

The Langrangian equation for (P4) with constraint (3.42) is given by

L = −I −
4∑

k=1

ηkqk.

The corresponding KKT conditions are:

∂I

∂qk
+ ηk = 0, k = 1, · · · , 4, (3.45)

ηkqk = 0, k = 1, · · · , 4, (3.46)
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where

∂I

∂q1

= ζ(S11A11, λ) + q3(ζ(S21A21, S11A11 + λ)− ζ(S21A21, λ)) + q4(ζ(B2, S11A11 + λ)− ζ(B2, λ))

−S11A11(log (S11A11q1 +B1q2 + S21A21q3 +B2q4 + λ) + 1),

∂I

∂q2

= ζ(B1, λ) + q3(ζ(S21A21, B1 + λ)− ζ(S21A21, λ)) + q4(ζ(B2, B1 + λ)− ζ(B2, λ))

−B1(log (S11A11q1 +B1q2 + S21A21q3 +B2q4 + λ) + 1),

∂I

∂q3

= (1− (q1 + q2))ζ(S21A21, λ) + q1ζ(S21A21, S11A11 + λ) + q2ζ(S21A21, B1 + λ)

−S21A21 (log(S11A11q1 +B1q2 + S21A21q3 +B2q4 + λ) + 1) ,

and

∂I

∂q4

= (1− (q1 + q2))ζ(B2, λ) + q1ζ(B2, S11A11 + λ) + q2ζ(B2, B1 + λ)

−B2 (log(S11A11q1 +B1q2 + S21A21q3 +B2q4 + λ) + 1) .

Now in order to find the set of optimal solutions, we may solve the above KKT condi-

tions (3.45) and (3.46). As we can see from the expressions of ∂I
∂qk

s, we need to solve a

set of nonlinear equations, which are in general difficult to solve and may have infinite

number of solutions. Nevertheless, by exploring the structure of problem, we obtain the

following result.

Proposition 15. There are only three possible cases for the solution to Problem (P4):

1. q = (0, α(B1/λ), 0, 0), which implies that both antennas of user 1 are active with

the same duty cycle α(B1/λ) while both antennas of user 2 are off.

2. q = (0, 0, 0, α(B2/λ)), which implies that both antennas of user 1 are off while

while both antennas of user 2 are active with the same duty cycle α(B2/λ).

3. q = (0, µ1, 0, µ2), which implies that both antennas of user 1 are active with the
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same duty cycle µ1 and both antennas of user 2 are active with the same duty cycle

µ2. Furthermore, there are only two possible pairs of (µ1, µ2) and can be obtained

by solving (3.13) and (3.14) with S1A1 being replaced with B1 and S2A2 being

replaced with B2.

Proof. Please refer to Appendix C.4.

Proposition 15 states that the solution to (P4) is the same as the solution to (P2), and

hence Theorem 12 is proved.

3.4 Numerical Analysis

In this section, we provide numerical examples to illustrate the results for MISO-MAC.

As discussed in the Chapter 3, the case of Poisson MISO-MAC can be converted to a

Poisson SISO-MAC. Hence, in this subsection, we provide only example related to the

SISO-MAC case.

Figure 3.7: Optimal operating schemes over the ranges of S1A1 and S2A2

Fig. 3.7 shows the optimal operating scenarios for different combinations of S1A1
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and S2A2 when they range from 0 to 25. In generating this figure, we set λ = 0.5. In

Region-I, it is optimal for user 2 to transmit alone. Region-II corresponds to the case in

which it is optimal for both users to transmit. In Region-III, it is optimal for user 1 to

transmit alone.

Figure 3.8: (µ̂1, µ̂2) vs. S2A2

Fig. 3.8 illustrates the effect of increasing S2A2 on the optimal value of (µ̂1, µ̂2) when

S1A1 is constant. In this figure, S1A1 = 12.5. We can see that when S2A2 is small, the

optimal value µ̂2 is equal to 0, i.e., it is optimal for user 2 to stay silent. We also observe

that once S2A2 starts to increase and has noticeable value compared to S1A1, µ̂1 starts to

decrease while µ̂2 starts to increase. Furthermore, µ1 and µ2 intersect with each other, i.e.

µ̂1 = µ̂2, when S1A1 = S2A2. This is consistent with the result obtained in [52] for the

symmetric case.
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Chapter 4

Multi User Multi Receiver

This chapter is a continuation to the Chapter 3, and we extend our analysis to the scenario

when receiver is also equipped with multiple antennas.

4.1 System Model

Figure 4.1: The Poisson MISO-MAC model.

In this section, we introduce the model studied in this chapter. As shown in Fig. 4.1,

we consider a two-user Poisson MIMO MAC. The analysis can be extended to the sce-

nario with more than two transmitting users. Let Jn be the number of antennas at transmit-

ter n, and M be the number of antennas at the receiver. Let Xnjn(t) be the input of the jthn
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transmitting antenna of the nth user and Ym(t) be the doubly-stochastic Poisson process

observed at the mth receiving antenna. The input-output relationship can be described as:

Ym(t) = P

(
2∑

n=1

Jn∑
j=1

SnjmXnj(t) + λm

)
, ∀m (4.1)

in which Snjnm is the channel response between the jthn antenna of the nth user and the

mth receiving antenna, λm is the dark current at themth receiving antenna, and P(·) is the

non-linear transformation converting the light strength to the doubly-stochastic Poisson

process that records the timing and number of photon’s arrivals. In particular, for any time

interval [t, t + τ ], the probability that there are k photons arriving at the mth receiving

antenna is

Pr{Ym(t+ τ)− Ym(t) = k} =
e−ΛmΛk

m

k!
, (4.2)

Λm =

∫ t+τ

t

[
2∑

n=1

Jn∑
j=1

SnjmXnj(t
′) + λm

]
dt′. (4.3)

We consider the peak power constraint, i.e., the transmitted signal Xnjn(t) must satisfy

the following constraint:

0 ≤ Xnjn(t) ≤ Anjn , (4.4)

where Anjn is the maximum power allowed for antenna jn of user n.

We use µnj to denote the duty cycle of each transmitting antenna, i.e., µnj is the

percentage of time at which the jth antenna of the nth user is on. We use µ to denote the

vector of all µnjs.

Throughout the chapter, we will use the following substitutions to simplify the nota-
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tions:

ajm , S1jmA1j, (4.5)

bjm , S2jmA2j, (4.6)

φ(x) , x log(x), (4.7)

ζ(x, y) , φ(x+ y)− φ(y). (4.8)

The goal of this chapter is to characterize the sum-rate capacity of this Poisson MIMO

MAC.

4.2 SIMO-MAC Analysis

To simplify the presentation of main ideas, in this section, we focus on the case with

M = 2 and J1 = J2 = 1. That is each transmitter has only one antenna while the receiver

has 2 antennas. The solution of this special case is a building block to the solution to the

general case where the transmitters also have multiple antennas. This general case will

be considered in Section 4.3. As J1 = J2 = 1, to lighten the notation, we omit the jn

subscript in the remainder of this section.

4.2.1 Optimality Conditions

As discussed before, it has been shown in [52] that the continuous-input discrete-output

Poisson MAC channel can be converted to a binary-input binary-output MAC channel.

In particular, the input waveform can be limited to a two level waveform i.e. 0 or An for

the nth user. Let µn be the duty cycle of each transmitting user. Therefore, the sum-rate
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capacity of of such a channel is given by

Csum = max
0≤µ1,µ2≤1

IX1,X2;Y . (4.9)

where

IX1,X2;Y =
M∑
m=1

IX1,X2;Ym (4.10)

with

IX1,X2;Ym = (1− µ1)(1− µ2)φ(λm) + µ1(1− µ2)φ(am + λm)

+µ2(1− µ1)φ(bm + λm) + µ1µ2φ(am + bm + λm)

−φ(amµ1 + bmµ2 + λm). (4.11)

The problem to calculate the sum-rate capacity can be rewritten as

P0-Multi: max IX1,X2;Y ,

s.t 0 ≤ µ1 ≤ 1,

0 ≤ µ2 ≤ 1. (4.12)

The problem (P0-Multi) has been solved for the special case of M = 1 (i.e., when the

receiver has only one antenna) in Chapter 3. The main idea in [62] is to convert a set of

nonlinear equations that appear in the analysis into a set of linear equations and a convex

function, which then can be solved. However, when M > 1 (i.e., when the receiver has

multiple antennas) as considered in this chapter, this technique will not work anymore.

It can be easily shown that (4.10) is not a convex function. Accordingly, (P0-Multi)

is a non-convex optimization problem. Therefore, KKT conditions, being necessary but
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sufficient conditions for non-convex optimization problem, can only be used to identify

candidates for the optimal solution. In the following, we use I to denote IX1,X2;Y .

The Lagrangian equation from (P0-Multi) is

L = −I + η1(µ1 − 1)− η2µ1 + η3(µ2 − 1)− η4µ2,

where ηi, i = 1, · · · , 4 are Lagrangian multipliers.

These KKT conditions are

∂I

∂µ1

∣∣∣
(µ̂1,µ̂2)

− η1 + η2 = 0,

∂I

∂µ2

∣∣∣
(µ̂1,µ̂2)

− η3 + η4 = 0,

η1(µ̂1 − 1) = 0,

η2µ̂1 = 0,

η3(µ̂2 − 1) = 0,

η4µ̂2 = 0,

where

∂I

∂µ1

=
2∑

m=1

(
− (1− µ2)φ(λm) + (1− µ2)φ(am + λm)− µ2φ(bm + λm)

+µ2φ(am + bm + λm)− am(log(amµ1 + bmµ2 + λm) + 1)
)
, (4.13)

and

∂I

∂µ2

=
2∑

m=1

(
− (1− µ1)φ(λm)− µ1φ(am + λm) + (1− µ1)φ(bm + λm)

+µ1φ(am + bm + λm)− bm(log(amµ1 + bmµ2 + λm) + 1)
)
. (4.14)
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To find the solution for this non-convex optimization problem, the KKT conditions can

be solved while considering different combinations of constraints being active at a given

time. This leaves us with 16 possible cases, each corresponding to whether ηi, i =

1, · · · , 4 being zero or not. Out of these 16 cases, in Appendix D.1, we show that 13

cases are not valid candidates for the optimal solution. For example when η1 = 0, η2 =

0, η3 6= 0, η4 = 0, we have

∂I

∂µ1

= 0,

∂I

∂µ2

− η3 = 0,

η3 6= 0⇒ µ2 = 1.

Then the optimal solution must satisfy ∂I
∂µ1

∣∣∣∣∣
(µ1,1)

= 0. In this case having µ2 = 1 means

that user 2 is transmitting constantly and just imposing interference for the user 1. Hence,

I(µ1, 0) ≥ I(µ1, 1). Therefore we may conclude that this case does not result in a candi-

date for the optimal solution. Detailed analysis on how to exclude these 13 cases is listed

in Appendix D.1.

The feasible candidates for the optimal solution are listed below.

Case-1: η1 = 0, η2 6= 0, η3 = 0, η4 = 0⇒

∂I

∂µ1

+ η2 = 0,

∂I

∂µ2

= 0,

η2 6= 0⇒ µ1 = 0.

76



The candidate for the optimal solution is (0, µ2), where µ2 satisfies ∂I
∂µ2

∣∣∣∣∣
(0,µ2)

= 0⇒

2∑
m=1

(
bm log(bmµ2 + λm)

)
=

2∑
m=1

(
− φ(λm) + φ(bm + λm)− bm

)
. (4.15)

This case corresponds to the scenario when only user 2 is active and user 1 is inac-

tive. (4.15) shows that the optimal value of µ2 that satisfies the KKT conditions will be

the intersection between the right side function of the equation and left side of the equa-

tion. It is easy to check that the left side of (4.15) is a monotonically increasing function

of µ2, while the right side of (4.15) is a constant. Therefore there can be at most one

value of µ2 that satisfies this equation. We use µ̃2 to denote the solution to (4.15). If such

solution does not exist or if the solutions lies out of [0, 1], we simply set µ̃2 = 0. Hence,

a candidate obtained from this case is (0, µ̃2).

Case-2: η1 = 0, η2 = 0, η3 = 0, η4 6= 0⇒

∂I

∂µ1

= 0,

∂I

∂µ2

+ η4 = 0,

η4 6= 0⇒ µ2 = 0.

Therefore the optimal pair must satisfy ∂I
∂µ1

∣∣∣∣∣
(µ1,0)

= 0. We have

2∑
m=1

(
am log(amµ1 + λm)

)
=

2∑
m=1

(
− φ(λm) + φ(am + λm)− am

)
. (4.16)

This case corresponds to the scenario when only user 1 is active and user 2 is inactive. It

is clear that, similar to Case-1, µ1 is the intersection point of a monotonically increasing

function and a constant. Therefore there could only be at most one such value of µ1 that
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satisfy this equation. Let (µ̄1, 0) be the obtained solution, with µ̄1 setting to zero if such

solution does not exist or the solution lies outside of [0, 1].

Case-3: η1 = 0, η2 = 0, η3 = 0, η4 = 0⇒

∂I

∂µ1

= 0, (4.17)

∂I

∂µ2

= 0. (4.18)

This case corresponds to the scenario when both users are active. The pair (µ1, µ2) must

satisfy (4.17) and (4.18) simultaneously.

From (4.13) and (4.14), we know that (4.17) and (4.18) are a pair of nonlinear equa-

tions. The solution can be obtained efficiently by numerical methods. Under certain

conditions, we can make further analysis and draw definite conclusions. These analysis

will be presented below.

After obtaining solutions from these three cases, we can then compare the rate ob-

tained from them and set the solution to the one that results in the largest rate.

4.2.2 Special Cases

In this subsection, we further analyze (4.17) and (4.18) and analytically show that there

are finite number of solutions for some interesting scenarios.

Asymptotic Analysis

In this subsection we show that when the transmission power of one user is sufficiently

higher than the other, then there is no solution to (4.17) and (4.18), and hence single user

transmission is optimal.

Lemma 16. For any µ1 ∈ (0, 1) and µ2 ∈ (0, 1), if am → ∞ for any m ∈ {1, 2}, then

∂I
∂µ2
→ −∞.
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Proof.

lim
am→∞

∂I

∂µ2

= lim
am→∞

2∑
m=1

(
− (1− µ1)φ(λm)− µ1φ(am + λm)

+(1− µ1)φ(bm + λm) + µ1φ(am + bm + λm)

−bm(log(amµ1 + bmµ2 + λm) + 1)
)

= lim
am→∞

2∑
m=1

(1− µ1)
(
φ(bm + λm) + φ(λm)

)
+ lim

am→∞

2∑
m=1

(
µ1(am + λm) log

(
bm

am + λm
+ 1

)
+ µ1bm log(am + bm + λm)

−bm log(amµ1 + bmµ2 + λm) + 1
)

(a)

≤ c+ lim
am→∞

2∑
m=1

(
µ1bm + bmµ1 log(am) + µ1bm log

(
bm + λm
am

+ 1

)

−bm log(a1mµ1)− bm log

(
bm + λm
am

+ 1

)
− bm

)

= c+ lim
am→∞

2∑
m=1

(
µ1bm − bm + bmµ1 log(am)− bm log(amµ1)

)
= c+ lim

am→∞

2∑
m=1

(
− bm(1− µ1) + bm(µ1 log(am)− log(µ1)− log(am))

)
= c+ lim

am→∞

2∑
m=1

(
− bm(1− µ1)− bm(1− µ1) log(am)− bm log(µ1)

)
= −∞.

where (a) follows from log inequalities and c is a positive constant.

From Lemma 16, we may conclude that when am → ∞ for any m ∈ {1, 2}, there is

no solution for Case-3. Similarly, when bm → ∞ for any m ∈ {1, 2}, Case-3 does not

lead to any solution. Hence in these scenarios, single user transmission is optimal.
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Symmetric Channel

Here we show that for the symmetric channel where am = bm,∀m ∈ [1,M ], there are at

most 2 solutions to (4.17) and (4.18).

Lemma 17. If the channel is symmetric, (4.17) and (4.18) have at most two solutions.

Furthermore, in these solutions, µ1 = µ2.

Proof. Let SmA , am = bm = SmA, ∂I
∂µ1

= 0 becomes

2∑
m=1

(
− (1− µ2)φ(λm) + (1− µ2)φ(SmA+ λm)

−µ2φ(SmA+ λm) + µ2φ(2SmA+ λm)

−SmA(log(SmA(µ1 + µ2) + λm) + 1)
)

= 0.

This implies

2∑
m=1

(
SmA log(SmA(µ1 + µ2) + λm) + SmA

)
=

2∑
m=1

(
− (1− µ2)φ(λm) + (1− µ2)φ(SmA+ λm)

−µ2φ(SmA+ λm) + µ2φ(2SmA+ λm)
)
. (4.19)

After plugging the value of
∑2

m=1

(
SmA log(SmA(µ1 + µ2) + λm) + SmA

)
from (4.19)
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into ∂I
∂µ2

= 0 and rearranging terms, we obtain

2∑
m=1

(
− (1− µ1)φ(λm)− µ1φ(SmA+ λm)

+(1− µ1)φ(SmA+ λm) + µ1φ(2SmA+ λm)
)

=
2∑

m=1

(
− (1− µ2)φ(λm) + (1− µ2)φ(SmA+ λm)

−µ2φ(SmA+ λm) + µ2φ(2SmA+ λm)
)
. (4.20)

(4.20) implies that µ1 = µ2, as the left side and right side of (4.20) are the same linear

functions of µ1 and µ2 respectively.

We can now replace the value of µ1 = µ2 = µ in (4.19) and obtain:

2∑
m=1

[
φ(λm)− 2φ(SmA+ λm) + φ(2SmA+ λm)

−SmA log(2SmAµ+ λm)− SmA

]
= 0. (4.21)

It is easy to verify that the left side of (4.21) is a strictly convex function of µ, while the

right side is a constant. Therefore, there can be at most two values of µ ∈ (0, 1) that

satisfies the above equation.

4.3 MIMO-MAC Analysis

In this section, using the results obtained in the SIMO-MAC case discussed in Sec-

tion 4.2, we study the general case of MIMO-MAC where all transmitters and receiver

are equipped with multiple antennas.

Similar to SIMO-MAC, the continuous-time continuous-input discrete-output Pois-

son MIMO-MAC can be converted to discrete-time binary-input binary-output MAC. In
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particular, the input waveform of each antenna can be limited to be piecewise constant

waveforms with two levels 0 or Anj for the jth antenna of the nth transmitter. Depending

on the on-off states of each antenna of user n, there are 2Jn states at user n. In the fol-

lowing, we use in ∈ [1, · · · , 2Jn ] to index each of these 2Jn states at user n. We will use

Pn(in) to denote the probability that user n lies in state in and pn , [Pn(1), · · · , Pn(2Jn)]

to denote the vector of probabilities of states at user n. We will use the binary variable

bnj(in) to indicate whether the jth antenna of the nth user is on or off at state in, i.e.,

bnj(in) = 1 if the jth antenna of the nth user is on for state in and is 0 otherwise. The

sum-rate achievable using (p1,p2) is given by

IXN ;Y (p1,p2) =

2J1∑
i1=1

2J2∑
i2=1

[
P1(i1)P2(i2)

M∑
m=1

[
ζ

(
2∑

n=1

Jn∑
j=1

SnjmAnjbnj(in), λm

)]]

−
M∑
m=1

[
ζ

(
2∑

n=1

Jn∑
j=1

SnjmAnjµnj, λm

)]
. (4.22)

It is easy to see that

µnj =
2Jn∑
in=1

Pn(in)bnj(in). (4.23)

To characterize the sum-rate capacity, we need to solve the following optimization

problem:

(P1-Multi): CMIMO−MAC
sum = max

p1,p2

IXN ;Y (p1,p2), (4.24)

s.t 0 ≤ Pn(in) ≤ 1, (4.25)

in = 1, · · · , 2Jn , n = 1, 2, (4.26)
2Jn∑
in=1

Pn(in) = 1, n = 1, 2. (4.27)
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Problem (P1-Multi) is a complex non-convex optimization problem with a large num-

ber of variables. In particular, the number of variables 2J1 + 2J2 increases exponentially

with the number of antennas. The main result of this section is the following theorem.

Theorem 18. Solving problem (P1-Multi) is equivalent to solving the following problem

(P2-Multi): CMIMO−MAC
sum = max

0≤µ1,µ2≤1
I(µ1, µ2), (4.28)

with

I(µ1, µ2) =
M∑
m=1

[
(1− µ1)(1− µ2)ϕ(λm)

+µ1(1− µ2)ϕ(am + λm) + (1− µ1)µ2ϕ(bm + λm)

+µ1µ2ϕ(am + bm + λ)− ϕ(amµ1 + bmµ2 + λm)
]
, (4.29)

where

am ,
J1∑
j1

S1j1mA1j1 , (4.30)

bm ,
J2∑
j2

S2j2mA2j2 . (4.31)

Note that the right hand side of problem (P2-Multi) has the same form as (P0-Multi)

solved in the SIMO-MAC case discussed in Section 4.2. This theorem means that the

sum-rate capacity of MIMO-MAC is the same as the sum-rate capacity of a properly

constructed SIMO-MAC. The enabling element of our result is that in MIMO-MAC, we

show that to achieve the sum-rate capacity, all antennas of the same transmitter must be

simultaneously on or off. This enables us to view these antennas of the same transmitter

as one antenna with properly modified parameters.

Using this theorem and results from the SIMO case, we know that are three different
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cases for the optimal inputs to achieve the sum-rate capacity of the Poisson MIMO-MAC.

The three optimal solution corresponds to 1) the scenario where only user 2 is active with

both antennas being simultaneously on or off; 2) the scenario where only user 1 is active

with both antennas being simultaneously on or off; and 3) the scenario where both users

are active with both antennas at user 1 being simultaneously on or off and both antennas

at user 2 being simultaneously on or off.

4.3.1 Proof of Theorem 18

The proof of Theorem 18 follows the same two-step structure as our recent work [60], and

relies on propositions 19 and 20 presented below. The proof of proposition 19 is similar to

the proof of Proposition 7 in [60]. The proof of proposition 20, however, is significantly

different as the proof method used in [60] does not work once we have multiple antennas

at the receiver.

For the presentation convenience, we focus on the case M = 2 in this section. The

proof for the cases with M > 2 is the same.

In Step-1, we prove the following proposition that simplifies the optimization problem

from (p1,p2) to µ.

Proposition 19. At the optimality, for each user, if the antenna with a smaller duty cycle

is on then all antennas with a larger duty cycle must also be on.

Proof. The proof of this proposition is similar to the proof of Proposition 7 in [60] with

proper modification. We prove Proposition 19 by characterizing the optimal value of

(p1,p2) for any given µ. Hence, in this subsection, µ is fixed. More specifically, we

show that, at the optimality in the MIMO-MAC, if the antenna with the smaller duty

cycle is on, then the other antenna should also be on.

From (4.22), it is clear that to optimize over (p1,p2) for a given µ, we only need to
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focus on

H ,
2J1∑
i1=1

2J2∑
i2=1

P1(i1)P2(i2)
2∑

m=1

ζ

(
2∑

n=1

Jn∑
j=1

SnjmAnjbnj(in), λm

)

=
2J1∑
i1=1

P1(i1)H1(i1), (4.32)

where

H1(i1) =
2J2∑
i2=1

P2(i2)
2∑

m=1

d(i1, i2), (4.33)

and

d(i1, i2) = ζ

(
J1∑
j=1

S1jmA1jb1j(i1) +

J2∑
j=1

S2jmA2jb2j(i2), λm

)
. (4.34)

We focus on finding the optimal values of p2 first. To facilitate the understanding, we list

the labeling of states of user 2 and the corresponding values of b2js in Table 4.1.

b21 b22

(i1, 1) 0 0
(i1, 2) 0 1
(i1, 3) 1 0
(i1, 4) 1 1

Table 4.1: The states of user 2 and the corresponding values of b2js.

Using the definition of ζ function, we can easily check that

d(i1, 1) < min{d(i1, 2), d(i1, 3)} ≤

max{d(i1, 2), d(i1, 3)} < d(i1, 4),

which is simultaneously true for any value of i1. AsH1(i1) is simply a linear combination
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of d(i1, i2)s, hence, for any given µ, maximizingH1(i1) is a linear programming problem,

for which we have the following (assuming µ21 ≥ µ22, the other case being similar):

1. As d(i1, 4) is the largest, P2(4) should be as large as possible. Therefore, we assign

P2(4) = µ22.

2. As µ22 has been all used, we should set P2(2) = 0.

3. As d(i1, 3) > d(i1, 1), we assign the remaining part of µ21 to state (i1, 3) and hence

P2(3) = µ21 − µ22.

4. For the last state related to the term d(i1, 1), allot the remaining probability. Hence

P2(1) = 1− µ21.

This assignment implies that if the antenna with a smaller duty cycle is on, the antenna

with a larger duty cycle should also be on. Note that the above arguments are true for all

i1s, and hence this assignment maximizes H1(i1) for all i1 simultaneously. Furthermore,

this assignment is independent of p1.

Notice that the above discussion for J2 = 2, can be extended for J2 > 2.

Similarly, by writing

H =
2J2∑
i2=1

P2(i2)
2J1∑
i1=1

P1(i1)
2∑

m=1

ζ

(
J1∑
j=1

S1jmA1jb1j(i1) +

J2∑
j=1

S2jmA2jb2j(i2), λm

)
,

then following the same procedure as above, we can calculate the optimal values of p1.

As the result, we know that (4.22) can be simplified to a function µ depending on

the relationships between the values of µnjs. For example, in the case of two transmitter

antennas, we have four symmetric cases, i.e. (µ11 ≥ µ12, µ21 ≥ µ22), (µ11 ≤ µ12, µ21 ≥

µ22), (µ11 ≥ µ12, µ21 ≤ µ22) and (µ11 ≤ µ12, µ21 ≤ µ22). For the case of (µ11 ≥
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µ12, µ21 ≥ µ22), IXN ;Y can be simplified to

I(µ11 − µ12, µ12, µ21 − µ22, µ22) =
2∑

m=1

[
(1− µ11)((1− µ21)ϕ(λm) + (µ21 − µ22)ϕ(b1m + λm)

+µ22ϕ(b1m + b2m + λm)) + (µ11 − µ12)((1− µ21)ϕ(a1m + λm)

+(µ21 − µ22)ϕ(a1m + b1m + λm) + µ22ϕ(a1m + b1m + b2m + λm))

+µ12((1− µ21)ϕ(a1m + a2m + λm) + (µ21 − µ22)ϕ(a1m + a2m + b1m + λm)

+µ22ϕ(a1m + a2m + b1m + b2m + λm))− ϕ

(
2∑

n=1

Jn∑
j=1

SnjmAnjµnj + λm

)]
.

(4.35)

As the result, the objective function is simplified to characterizing

CMIMO−MAC
sum = max (Cµ11≥µ12,µ21≥µ22 , Cµ11≤µ12,µ21≥µ22 ,

Cµ11≥µ12,µ21≤µ22 , Cµ11≤µ12,µ21≤µ22) , (4.36)

in which

(P3-Multi):Cµ11≥µ12,µ21≥µ22 = max I(µ11 − µ12, µ12, µ21 − µ22, µ22), (4.37)

s.t. 0 ≤ µ12 ≤ µ11 ≤ 1, (4.38)

0 ≤ µ22 ≤ µ21 ≤ 1. (4.39)

Other terms in (4.36) are defined in a similar manner. Due to symmetry, in the follow-

ing, we only provide details on how to solve (P3-Multi).

In Step-2, we show the following proposition that characterizes the optimal value of

µ.
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Proposition 20. At the optimality, for each user, all antennas must have the same duty

cycle and they must be on or off simultaneously.

Proof. For the ease of calculation, we define q1 = µ11 − µ12, q2 = µ12, q3 = µ21 − µ22

and q4 = µ22 and let q = [q1, q2, q3, q4]. Then (4.35) can be re-written as

I(q) =
2∑

m=1

[
(1− (q1 + q2))((1− (q3 + q4))ϕ(λm) + q3ϕ(b1m + λm)

+q4ϕ(b1m + b2m + λm)) + q1((1− (q3 + q4))ϕ(a1m + λm) + q3ϕ(b1m + a1m + λm)

+q4ϕ(b1m + b2m + a1m + λm)) + q2((1− (q3 + q4))ϕ(a1m + a2m + λm)

+q3ϕ(b1m + a1m + a2m + λm) + q4ϕ(b1m + b2m + a1m + a2m + λm))

−ϕ(a1mq1 + (a1m + a2m)q2 + b1mq3 + (b1m + b2m)q4 + λm)

]
. (4.40)

Correspondingly, (P3-Multi) is equivalent to

(P4-Multi): Cµ11≥µ12,µ21≥µ22 = max I(q) (4.41)

s.t. qk ≥ 0, k = 1, · · · , 4, (4.42)

q1 + q2 ≤ 1, (4.43)

q3 + q4 ≤ 1. (4.44)

Now in order to find the optimal solution for (P4-Multi), we show that any sum-rate

achievable when both of the antennas at both of the users 1 and 2 are active with different

duty cycles (called scheme A), can be achieved by setting the duty cycles of antennas of

the same user to be the same (called scheme B) in a properly constructed weaker channel.

This implies that, for the original channel, we can restrict to the case where the antennas

of the same user are simultaneously on or off for optimality.

For scheme A, let q1 and q2 be the duty cycles of each of the antennas at user 1 and q3
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and q4 be the duty cycle of each antenna at user 2 respectively.

IA(q) =
2∑

m=1

[
(1− (q1 + q2))((1− (q3 + q4))ϕ(λm) + q3ϕ(b1m + λm)

+q4ϕ(b1m + b2m + λm)) + q1((1− (q3 + q4))ϕ(a1m + λm) + q3ϕ(b1m + a1m + λm)

+q4ϕ(b1m + b2m + a1m + λm)) + q2((1− (q3 + q4))ϕ(a1m + a2m + λm)

+q3ϕ(b1m + a1m + a2m + λm) + q4ϕ(b1m + b2m + a1m + a2m + λm))

−ϕ(a1mq1 + (a1m + a2m)q2 + b1mq3 + (b1m + b2m)q4 + λm)

]
.

(4.45)

Figure 4.2: Transformation from Scheme A to Scheme B.

Figure 4.3: Scheme B elaborated.

Now we show that IA(q) can be achieved in a weakened channel but with both anten-

nas to be simultaneously on or off. In particular, in the weakened channel, we restrict the

channel gains for the stage of Scheme A when only the stronger antenna is active. For

user 1, as shown in Fig. 4.3, we reduce each ajm to β̃jmajm by reducing S1jm to β̃jmS1jm

89



with 0 ≤ β̃jm ≤ 1. We choose the values of β̃jm such that

a11 = β̃11a11 + β̃21a21, (4.46)

a12 = β̃12a12 + β̃22a22. (4.47)

It is easy to check that we can always find β̃jms in [0, 1] that satisfy (4.46) and (4.47).

Same can be done for user 2 by choosing b1m = β̄1mb1m + β̄2mb2m by restricting the

channel gain at each of the channels for user 2. We know that this scheme is also feasible

for 0 ≤ β̄1m, β̄2m ≤ 1. Therefore, the sum-rate capacity for scheme B is:

IB(q) =
2∑

m=1

[
(1− (q1 + q2))((1− (q3 + q4))ϕ(λm) + q3ϕ(β̄1mb1m + β̄2mb2m + λm)

+q4ϕ(b1m + b2m + λm)) + q1((1− (q3 + q4))ϕ(β̃1ma1m + β̃2ma2m + λm)

+q3ϕ(β̄1mb1m + β̄2mb2m + β̃1ma1m + β̃2ma2m + λm)

+q4ϕ(b1m + b2m + β̃1ma1m + β̃2ma2m + λm))

+q2((1− (q3 + q4))ϕ(a1m + a2m + λm) + q3ϕ(β̄1mb1m + β̄2mb2m + a1m + a2m + λm)

+q4ϕ(b1m + b2m + a1m + a2m + λm))

−ϕ(a1mq1 + (a1m + a2m)q2 + b1mq3 + (b1m + b2m)q4 + λm)

]
.

(4.48)

Clearly, we have IA = IB. Therefore, we can conclude that any sum-rate achievable by

both of the antennas at each user be active, at different duty cycles, can also be achieved

by letting both antennas of each user to be simultaneously on or off. Note that scheme A

represents a channel model with strong channel gains and scheme B represents a channel

model with weak channel gains. Hence, we conclude that in order to achieve the sum-rate

capacity, the duty cycles of antennas of the same user should be simultaneously on or
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off.

4.4 Extension to General Poisson MIMO-MAC

One of the natural extension of the case discussed above is to consider a MAC channel

with more than two transmitting users. With the above discussion, it is clear that the sum-

rate capacity forN users can be calculated by following the similar steps for 2 users. Let’s

take an example of a Poisson MAC channel with 3 transmitting users, then the candidates

for optimal solution to achieve sum-rate capacity will be:

1. Only user 1 is active.

2. Only user 2 is active.

3. Only user 3 is active.

4. User 1 and user 2 both are active, while user 3 is inactive.

5. User 1 and user 3 are active, while user 2 is inactive.

6. User 3 and user 2 are active, while user 1 is inactive.

7. All three of the users are active.

Therefore, we can conclude that for N users, there are
∑N

i=1C
N
i possible candidates for

the optimal solution, where CN
i = N !

i!(N−i!) . As N increases, the number of possibilities

for optimal solution increases exponentially. Although the approach used to analyze the

2 users case can be used in this scenario, but the complexity would by much higher.
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4.5 Numerical Results

In this section, we present numerical examples to illustrate the results for Poisson MIMO-

MAC channel.

In the first example, we set a1 = a2 = 5, b1 = b2 = 5, λ = 0.25. The sum-rate

achieved by three different cases are

Case - 1: µ̃1 = 0, µ̃2 = 0.25→ I(µ̃1, µ̃2) = 2.616.

Case - 2: µ̄1 = 0.25, µ̄2 = 0→ I(µ̄1, µ̄2) = 2.616.

Case - 3: µ1 = 0.2987, µ2 = 0.2987→ I(µ1, µ2) = 3.6057.

Therefore, for this channel, Case-3 where both users are active achieves the sum-rate

capacity.

For the next example, we set a1 = a2 = 4, b1 = b2 = 10, λ = 0.25. The sum-rate

achieved by three different cases are

Case - 1: µ̃1 = 0, µ̃2 = 0.3888→ I(µ̃1, µ̃2) = 6.3720.

Case - 2: µ̄1 = 0.4041, µ̄2 = 0→ I(µ̄1, µ̄2) = 2.276.

Case - 3: Does not result in a solution, therefore I(µ1, µ2) = 0.

Therefore, for this channel, Case-1 where only user 2 is active achieves the sum-rate

capacity. This confirms our conclusion that if the power of one user is relatively high, it

is optimal for only this user to be active to achieve the sum-rate capacity.

Figure 4.4: ∂I
∂µ2

and the zero plane.

Fig. 4.4 illustrates Lemma 16. In this figure, the red surface is the zero plane, and
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the black surface is ∂I
∂µ2

for different values of µ1 and µ2. In generating this figure, we

set a1 = a2 = 450, b1 = b2 = 1 and λ1 = λ2 = 0.25. From the figure, we can see

that, for this set of parameters, ∂I
∂µ2

has no intersection with the zero plane (except on the

boundary). This confirms our conclusion that, if the power of one user is relatively high,

Case-3 does not yield a solution.

Figure 4.5: Sum-rate capacity with respect to transmission power at user 1 when M = 1
andM = 2. Region I corresponds to the case when only user 2 is transmitting, Region II is
when both of the users are transmitting and Region III is when only user 1 is transmitting.

Fig. 4.5 illustrates how the sum-rate capacities for channels with different number of

receiving antennas increases as the transmission power increases. In generating Fig. 4.5,

we set b1 = b2 = 10 and λ1 = λ2 = 0.25, while increasing the value of a1 = a2. The

sum-rate capacity increases as the available transmission power at user 1 increases but

this slope is larger when the receiver has multiple receiving antennas. In the figure, we

also mark three regions corresponding to different input scenarios that achieve the-rate

capacity. In Region-I, when the value of a1 is small, it is optimal to allow only user-2 to

be active. When a1 = 4.7 for M = 1 and a1 = 4.5 for M = 2, both curves transit into

Region-II where both users must be active to achieve the sum-rate capacity and when the

value of a1 is high enough (a1 = 21.1 for M = 1 and a1 = 23 for M = 2), the curves are

in Region-III where it is optimal for only user-1 to be active.
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Chapter 5

Summary and Future Work

5.1 Summary

For this research, motivated by the applications of visible light communication, we have

analyzed Poisson channels under a variety of setups.

In Chapter 2, we have studied Poisson fading channels with varying noise levels for

a scenario when a single user communicates with a single receiver. We have consid-

ered cases with and without strict delay constraints. For the case without a strict delay

constraint, we have characterized the optimal power allocation scheme that achieves the

ergodic capacity. For the case with a strict delay constraint, we have characterized the

optimal power allocation strategy that minimizes the outage probability. We have also

provided numerical results to illustrate the analytical results obtained in this research.

In Chapter 3, by solving non-convex optimization problems, we have characterized

the sum-rate capacity for both non-symmetric Poisson SISO-MAC and non-symmetric

Poisson MISO-MAC. We have shown that under certain channel conditions, it is optimal

for both users to be active and we have also established conditions under which it is

optimal for only one user to be active.
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In Chapter 4, we have extended our analysis to the sum-rate capacity of the Poisson

MIMO-MAC. We have shown that the sum-rate capacity of a Poisson MIMO MAC can

be characterized by studying a carefully constructed Poisson SIMO MAC. We have also

shown that there are three possible operating scenarios for achieving the sum-rate capacity

of the Poisson SIMO MAC. We have shown that similar to SISO-MAC and MISO-MAC,

it is optimal for a single user to transmit under certain channel parameters and under

certain parameters, it is optimal for both of the users to transmit.

5.2 Future Work

In this section, we discuss a few interesting open directions along the lines of the results

presented in this study and potential challenges associated with these problems.

After characterizing the sum-rate capacity in Chapter 3 and Chapter 4, a natural next

step is to characterize all boundary points on the capacity region. Towards this goal,in

the case of a single receiving antenna, we can follow the same approach developed in

this chapter to solve the following optimization problem to obtain any boundary rate pair

(R1, R2) for a given 0 ≤ γ ≤ 1/2

max γR1 + (1− γ)R2. (5.1)

Here,

R1 = IX1;Y , R2 = IX2;Y |X1 , (5.2)

whose expression can be written out as functions of duty cycles of each antenna. Let

E1 be the set of obtained rate pairs (R1, R2) by solving (5.1) with γ varying in [0, 1/2].

Similarly, we can obtain the set E2 by setting R1 = IX1;Y |X2 and R2 = IX2;Y .
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Let E = E1

⋃
E2. [52] shows that E is a description of the boundary points of the

capacity region, if the set R , {(R1, R2) : ∃(R∗1, R∗2) ∈ E such that 0 ≤ R1 ≤ R∗1, 0 ≤

R2 ≤ R∗2} is a convex set. However, although one can verify the convexity of R nu-

merically, it turns out to be difficult to analytically verify such convexity even for the

symmetric case considered in [52] and further for the non-symmetric case. Such an open

problem is interesting and the solution to it requires more refined understanding of the

structure of the setR.

Another natural extension for the analysis conducted in Chapter 3 and Chapter 4 is to

characterize the sum-rate capacity in the presence of the maximum power constraint as

well as the average power constraint. The SISO-MAC Poisson problem, in the presence

of both average power constraint and maximum power constraint, can then be written as:

CSISO−MAC
sum = max IX1,X2;Y (µ1, µ2),

s.t. 0 ≤ µ1 ≤ 1,

0 ≤ µ2 ≤ 1,

µ1A1 ≤ σ1,

µ2A2 ≤ σ2, (5.3)

where IX1,X2;Y is defined in (3.9), σ1 and σ2 are the average power constraints at each user

1 and 2 correspondingly. To solve the above problem, we can follow the similar steps as

that of Chapter 3 and Chapter 4, but the number of KKT cases to analyze would be much

larger and hence the solution would be much more complex. Therefore, there is a need to

find an alternative approach to solve this problem.
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Appendix A

Proofs for Chapter 2

A.1 Proof of Lemma 1

The proof of Lemma 1 is divided into two parts.

Proof. We first show that µ0 ≤ 1, which is equivalent to

(
1 + λ(t)

SA

)(1+
λ(t)
SA )

(
λ(t)
SA

)(λ(t)SA )
e−1 ≤ 1 +

λ(t)

SA

⇐⇒

log


(

1 + λ(t)
SA

)(1+
λ(t)
SA )

(
λ(t)
SA

)(λ(t)SA )
e−1

 ≤ log

(
1 +

λ(t)

SA

)
⇐⇒

(A.1)
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(
1 +

λ(t)

SA

)
log

(
1 +

λ(t)

SA

)
− 1− λ(t)

SA
log

(
λ(t)

SA

)
≤ log

(
1 +

λ(t)

SA

)
,

⇐⇒
λ(t)

SA
log

(
1 +

λ(t)

SA

)
− λ(t)

SA
log

(
λ(t)

SA

)
≤ 1,

⇐⇒

log

(
1 + λ(t)

SA
λ(t)
SA

)λ(t)
SA

≤ 1,

⇐⇒(
1 + λ(t)

SA
λ(t)
SA

)λ(t)
SA

≤ e1,

Which is true, as limx→+∞
(
1 + 1

x

)x
= e and

(
1 + 1

x

)x is an increasing function of x.

Hence µ0 will always be less or equal to 1.
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Now we show µ0 ≥ 0, which is equivalent to

(
1 + λ(t)

SA

)(1+
λ(t)
SA )

(
λ(t)
SA

)(λ(t)SA )
e−1 − λ(t)

SA
≥ 0,

⇐⇒(
1 + λ(t)

SA

)(1+
λ(t)
SA )

(
λ(t)
SA

)(λ(t)SA )
≥ e

λ(t)

SA
,

⇐⇒

log


(

1 + λ(t)
SA

)(1+
λ(t)
SA )

(
λ(t)
SA

)(λ(t)SA )

 ≥ log

(
e
λ(t)

SA

)
,

⇐⇒(
1 +

λ

SA

)
log

(
1 +

λ

SA

)
− λ

SA
log

(
λ

SA

)
≥ log

(
λ

SA

)
+ 1,

⇐⇒(
1 +

λ

SA

)
log

(
1 +

λ

SA

)
−
(

1 +
λ

SA

)
log

(
λ

SA

)
≥ 1,

⇐⇒(
1 +

λ

SA

)
log

(
1 + λ

SA
λ
SA

)
≥ 1,

which is true, as log(1 + x) ≥ x
1+x

for x > 0.

A.2 Proof of Theorem 3

The proof of theorem 3 is given below.

Proof. The proof of Theorem 3 consists of the following steps.

Step 1: First we show that there exists an optimal solution that has the particular form

specified in (2.27).

Lemma 21. For any arbitrary µ with outage probability Pout and E[µ] ≤ σ, we can
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construct another power allocation function µ
′

with the form:

µ
′
=


µ∗ with probability w,

0 with probability (1− w).

such that E[µ
′
] ≤ σ and P

′
out ≤ Pout.

Proof. Let µ to be an arbitrary power allocation function that satisfies E[µ] ≤ σ. For this

power allocation scheme, we have a region such that:

A(µ, λ(t)) = {µ ∈ R : I(µ, λ(t)) ≥ r0}. (A.2)

Hence the outage probability is obtained as:

Pout = 1− Pr{µ ∈ A(µ, λ(t))}. (A.3)

Let χA be the indicator function of {µ ∈ A(µ, λ(t))}, then we can define a weight func-

tion as:

w = E[χA|λ]. (A.4)

Now, we construct a new power allocation function:

µ
′
=


µ∗ with probability w,

0 with probability (1− w).

(A.5)

The outage power for such a function is

P
′

out = 1− E[w]. (A.6)
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The outage probability of this new power allocation function is

P
′

out = 1− E[w]

= 1− E[E[χA|λ]]

= 1− E[χA]

= 1− Pr{µ ∈ A(µ, λ(t))}

= Pout. (A.7)

Moreover, µ′ satisfies the long-term power constraint:

σ ≥ E[µ]

≥ E[χAµ]

(a)

≥ E[χAµ
∗]

= E[E[χAµ
∗|λ(t)]]

= E[µ∗E[χA|λ(t)]]

= E[µ∗w]

= E[µ
′
],

in which (a) is true because of (2.26).

As the result, we can restrict ourselves to those power allocation functions that can be

written in the form of (A.5).

Step 2: Among all power allocation functions that have the form of (A.5), we char-

acterize the optimal power allocation function by characterizing the optimal choice of w.

From the discussion above, we know that the optimal choice of w is the solution to the

101



following optimization problem:


maximize E[w]

subject to E[wµ] = σ

and 0 ≤ w ≤ 1 with probability 1

(A.8)

We need to show ŵ specified in (2.28) is the solution to this problem.

First we note that ŵ satisfies the constraint with equality as

E[µ∗ŵ(µ)] =
∑

(p∗) + w∗p∗Pr{µ = p∗}

=
∑

(p∗) +
σ −

∑
(p∗)∑

(p∗)−
∑

(p∗)
p∗Pr{µ = p∗}

= σ. (A.9)

The objective function E[ŵ(µ)] is

E[ŵ(µ)] =
∑

(p∗) + w∗Pr{µ = p∗}. (A.10)

In the following, we show the optimality of ŵ(µ) by showing that for any other 0 ≤

w(µ) ≤ 1, such that E[w(µ)] is larger than E[ŵ(µ)] specified in (A.10), the power con-

straint will be voliated. In particular, we have:

E[µw(µ)]− σ = E[µw(µ)]− E[µŵ(µ)],

≥ p∗{E[w(µ)]− E[ŵ(µ)]}.

Hence if, E[w(µ)] > E[ŵ(µ)], then we get E[µw(µ)] > σ, which means that it violates

the average power constraint.
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Appendix B

Details of Equal Power Allocation

Scheme

To carry out the comparison with the adaptive power control discussed in Chapter 2 and an

equal power allocation scheme, we first derive the optimal duty cycle value for the equal

power allocation scheme, as we were unable to find any existing literature that discusses

this issue. To maximize the ergodic case for the two transmit antennas and one receive

antenna, the optimal (fixed over time) duty cycle for the equal power allocation scheme

is the solution of the following problem:

max
µ1,µ2

Eλ[I(µ1, µ2;λ(t))]

s.t 0 ≤ µ1 ≤ 1

0 ≤ µ2 ≤ 1 (B.1)

As in the numerical results presented in the manuscript we have assumed the λ(t) ∼

U [1, 2], so to be consistent, we assume the same distribution for solving (B.1) (the same

analysis can be carried for other distributions).

103



There are two possible outcomes for this problem: either µ1 ≥ µ2 or µ2 ≥ µ1. As the

case µ1 ≥ µ2 is similar to µ2 ≥ µ1, we present only one of them here. For µ1 ≥ µ2, if we

take µ1 − µ2 = x1 and µ2 = x2, then:

Eλ[I] =

x1

[
S2

1A
2
1 + 4S1A1 + 4

2
log(S1A1 + 2)− S2

1A
2
1 + 2S1A1 + 1

2
log(S1A1 + 1)− 1

2
S1A1 − 2

]
+x2

[
(S1A1 + S2A2)2 + 4(S1A1 + S2A2) + 4

2
log((S1A1 + S2A2) + 2)

−(S1A1 + S2A2)2 + 2(S1A1 + S2A2) + 1

2
log((S1A1 + S2A2) + 1)− 1

2
(S1A1 + S2A2)− 2

]
−
[

((x1 + x2)S1A1 + x2S2A2)2 + 4((x1 + x2)S1A1 + x2S2A2) + 4

2
log((x1 + x2)S1A1 + x2S2A2 + 2)

−((x1 + x2)S1A1 + x2S2A2)2 + 2((x1 + x2)S1A1 + x2S2A2) + 1

2
log((x1 + x2)S1A1 + x2S2A2 + 1)

−1

2
((x1 + x2)S1A1 + x2S2A2)− 2

]
(B.2)

At optimality (After solving KKT conditions), we find that µ∗1 = µ∗2 = x2 and they must

satisfy the following equation:

[
(S1A1 + S2A2)2 + 4(S1A1 + S2A2) + 4

2
log((S1A1 + S2A2) + 2)

−(S1A1 + S2A2)2 + 2(S1A1 + S2A2) + 1

2
log((S1A1 + S2A2) + 1)− 1

2
(S1A1 + S2A2)− 2

]
−2x2(S1A2 + S2A2)2 + 4(S1A1 + S2A2)

2
log(x2(S1A1 + S2A2) + 2)

+
2x2(S1A2 + S2A2)2 + 2(S1A1 + S2A2)

2
log(x2(S1A1 + S2A2) + 1) = 0,

which can be solved numerically.

In the numerical analysis we have compared proposed power allocation scheme with

the above mentioned power allocation scheme.
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Appendix C

Proofs for Chapter 3

C.1 Concavity of IX1,X2;Y (µ1, µ2)

In this Appendix, we show that IX1,X2;Y (µ1, µ2) is not necessarily concave for general

values of S1A1, S2A2 and λ. For IX1,X2;Y (µ1, µ2) to be concave, 52I needs to be neg-

ative semi-definite. For 52I to be negative semi-definite, there are two conditions to

be satisfied [63]. The first condition is that its first order principle minor must be non-

positive. As ∂2I
∂µ21

= − S2
1A

2
1

S1A1µ1+S2A2µ2+λ
< 0, this condition holds. The second condition is

that the determinant of the Hessian matrix must be non-negative. It is easy to check that

| 52 I| = (ϕ(λ)− ϕ(S1A1 + λ)− ϕ(S2A2 + λ) + ϕ(S1A1 + S2A2 + λ))(
2S1A1S2A2

S1A1µ1 + S2A2µ2 + λ
− (ϕ(λ)− ϕ(S1A1 + λ)− ϕ(S2A2 + λ) + ϕ(S1A1 + S2A2 + λ))

)
.

The two terms on the right hand side can be dealt separately. First, we show the following.

Lemma 22. ϕ(λ)− ϕ(S1A1 + λ)− ϕ(S2A2 + λ) + ϕ(S1A1 + S2A2 + λ) > 0.

Proof. Using the definition of ϕ, it is easy to see that ϕ′ is a strictly increasing function.

Let a = λ, b = S1A1 + λ, c = S2A2 + λ and d = S1A1 + S2A2 + λ. then using the mean
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value theorem, we have:

∃x1 ∈ (a, b) s.t. ϕ
′
(x1) =

ϕ(b)− ϕ(a)

b− a
,

∃x2 ∈ (c, d) s.t. ϕ
′
(x2) =

ϕ(d)− ϕ(c)

d− c
.

Without loss of generality we can assume that S1A1 < S2A2, then we will have a <

b < c < d. As ϕ′ is an increasing function and x1 < x2, we have ϕ′(x1) < ϕ
′
(x2) and

b− a = d− c, then:

ϕ(b)− ϕ(a)

b− a
<

ϕ(d)− ϕ(c)

d− c
ϕ(b)− ϕ(a) < ϕ(d)− ϕ(c). (C.1)

Hence ϕ(d) + ϕ(a) > ϕ(b) + ϕ(c).

As the first term is always greater than 0, for the function to be concave, the second

term, 2S1A1S2A2

S1A1µ1+S2A2µ2+λ
−(ϕ(λ)−ϕ(S1A1+λ)−ϕ(S2A2+λ)+ϕ(S1A1+S2A2+λ)), must

also be non-negative. This, however, is not true. For example, taking µ1 = 0.9, µ2 = 0.7

and setting S1A1 = 50, S2A2 = 100 and λ = 0.5, the second term results in the value of

−6.2943. Hence, we can conclude that IX1,X2;Y (µ1, µ2) is not always concave.

C.2 Proof of Lemma 9

In this section we present the asymptotic analysis of (3.16) and (3.19). As the case

S1A1 → ∞ is similar to analysis for S2A2 → ∞ due to symmetry, we restrict our

analysis to S2A2 →∞ in this section. We will show that as S2A2 →∞, f(µ1) and g(µ1)

do not intersect. Denoting S2A2 as x, we calculate lim
x→∞

g(0), lim
x→∞

g(1) and lim
x→∞

f(0) as
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lim
x→∞

f(0) = lim
x→∞

f(1).

lim
x→∞

g(0) = lim
x→∞

(
1

x
exp

(
1

x
(−ϕ(λ) + ϕ(x+ λ)− x)

)
+
λ

x

)
= lim

x→∞

(
1

xe
exp

(
log(λ)

−λ
x + log(x+ λ)

x+λ
x

))
= lim

x→∞

(
1

xe
λ
−λ
x (x+ λ)(

x+λ
x )
)

= lim
x→∞

(
1

e
λ
−λ
x

1

x

x
λ
x

x
λ
x

(x+ λ)(
x+λ
x )

)

= lim
x→∞

(
1

e
λ
−λ
x x

λ
x

(
1 +

λ

x

)(1+λ
x)
)
.

As lim
x→∞

λ
−λ
x = 1, and

lim
x→∞

x
λ
x = lim

x→∞
e

log
(
x
λ
x

)
= lim

x→∞
e
λ
x

log(x) = 1,

and

lim
x→∞

(
1 +

λ

x

)(1+λ
x)

= 1.

Hence, we obtain lim
x→∞

g(0) = 1
e
.
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Similarly

lim
x→∞

g(1) = lim
x→∞

(
1

x
exp

(
1

x
(−ϕ(S1A1 + λ) + ϕ(S1A1 + x+ λ)− x)

)
+
S1A1 + λ

x

)
= lim

x→∞

(
1

xe
exp

(
log(S1A1 + λ)

−(S1A1+λ)
x + log(S1A1 + x+ λ)

S1A1+x+λ
x

))
= lim

x→∞

(
1

xe
(S1A1 + λ)

−(S1A1+λ)
x (S1A1 + x+ λ)(

S1A1+x+λ
x

)

)
= lim

x→∞

(
1

e
(S1A1 + λ)

−(S1A1+λ)
x

1

x

x
(S1A1+λ)

x

x
(S1A1+λ)

x

(S1A1 + x+ λ)(
S1A1+x+λ

x
)

)

= lim
x→∞

(
1

e
(S1A1 + λ)

−(S1A1+λ)
x x

(S1A1+λ)
x

(
1 +

S1A1 + λ

x

)(1+
S1A1+λ

x )
)

=
1

e
.

Now for the f(µ1), we notice that lim
x→∞

f(0) = lim
x→∞

f(1). Hence we calculate lim
x→∞

f(0).

lim
x→∞

f(0)

= lim
x→∞

ζ(S1A1, λ) + S1A1

x
ζ(x, λ)

ζ(x, S1A1 + λ)− ζ(x, λ)

(a)
= lim

x→∞

−S1A1

x2
λ log

(
1 + x

λ

)
+ S1A1

x+λ
+ S1A1λ

x(x+λ)

log(1 + S1A1

x+λ
)

(b)
= lim

x→∞

−S1A1λ log
(
1 + x

λ

)
+ 2S1A1x

2x(x+ λ) log
(
1 + S1A1

x+λ

)
+ (x)2 log

(
1 + S1A1

x+λ

)
− x2S1A1

S1A1+x+λ

= lim
x→∞

−S1A1λ
2x

log
(
1 + x

λ

)
+ S1A1

(x+ λ) log
(
1 + S1A1

x+λ

)
+ x

2
log
(
1 + S1A1

x+λ

)
− xS1A1

2(S1A1+x+λ)

= 1,

where (a) follows from the L’hospital rule and (b) follows from multiplying by x2(x+λ)
x2(x+λ)

and L’hospital rule.
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C.3 Proof of Lemma- 11

In this section we will prove that when S1A1 = S2A2, we have g(1) < 1 and g(0) > 0.

Proof. Using S1A1 = S2A2, we will show that

g(1)− 1 < 0.

By plugging µ1 = 1 in (3.19), this is equivalent to show

1

S1A1

exp

(
1

S1A1

(−ϕ(S2A2 + λ) + ϕ(S1A1 + S2A2 + λ)− S1A1)

)
− 2− λ

S1A1

< 0,

⇔ 1

S1A1

exp

(
− (1 +

λ

S1A1

) log(S1A1 + λ) + (2 +
λ

S1A1

) log(2S1A1 + λ)

)
.e−1 < 2 +

λ

S1A1

,

which is equivalent to show

exp

log

(2S1A1 + λ)

(
2+ λ

S1A1

)

(S1A1 + λ)

(
1+ λ

S1A1

)
 < (2S1A1 + λ)e,

⇔ (2S1A1 + λ)

(
2+ λ

S1A1

)

(S1A1 + λ)

(
1+ λ

S1A1

) < (2S1A1 + λ)e,

⇔
(

1 +
S1A1

S1A1 + λ

)(1+ λ
S1A1

)
< e,

⇔
(

1 +
λ

S1A1

)
log

(
1 +

S1A1

S1A1 + λ

)
< 1,

which is true as log(1 + x) < x. Following the similar steps, g(0) > 0 can also be

proved.
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C.4 Proof of Proposition 15

The proof strategy is to analyze different cases corresponding to whether ηks are zero or

not. By exploiting the structure of the problem, we will show that, except for three cases,

all other cases are not optimal. It will be clear in the sequel, while some cases are easy to

handle, it needs significant amount of work to rule out certain cases.

Case-1: η1 6= 0, η2 6= 0, η3 6= 0, η4 6= 0⇒

ηk 6= 0→ qk = 0.

This implies that none of the users are active. It is clear that I(0, 0, 0, 0) can not the

optimal solution.

Case-2: η1 6= 0, η2 6= 0, η3 6= 0, η4 = 0⇒

η1 6= 0→ q1 = 0,

η2 6= 0→ q2 = 0,

η3 6= 0→ q3 = 0,

∂I

∂q4

= 0.

These equations imply that user 1 is inactive while at user 2 both transmitting antennas

are active with a same duty cycle. These equations lead to

ζ(B2, λ)−B2(log(B2q4 + λ) + 1) = 0,

from which we solve q4:

q̃′4 = α(B2/λ).
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As 0 ≤ α(B2/λ) ≤ 1, we obtain a feasible candidate (0, 0, 0, q̃4).

Case-3: η1 6= 0, η2 6= 0, η3 = 0, η4 6= 0⇒

η1 6= 0→ q1 = 0,

η2 6= 0→ q2 = 0,

∂I

∂q3

= 0,

η4 6= 0→ q4 = 0.

These equations imply that user 1 is inactive and at user 2 only one antenna is active. As

user 1 is inactive, the scenario is same as a single-user MISO Poisson channel. It is easy

to check that, for a single-user MISO Poisson channel, the maximal rate achievable using

only a single antenna is less than the maximal rate achievable when both antennas are

active, which is Case-2 mentioned above. Hence, Case-3 cannot be the optimal solution.

Case-4: η1 6= 0, η2 6= 0, η3 = 0, η4 = 0⇒

η1 6= 0→ q1 = 0,

η2 6= 0→ q2 = 0,

∂I

∂q3

= 0,

∂I

∂q4

= 0.

This case refers to the scenario when user 1 is inactive and user 2 transmits with both

antennas having different duty cycles. Plugging q1 = 0 and q2 = 0 into the last two
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equations leads to the following two equations:

S21A21 log

(
1 + α

(
S21A21

λ

) (
S21A21

λ

))
1 + S21A21

λ
q3 + B2

λ
q4

= 0,

B2 log
(1 + α

(
B2

λ

) (
B2

λ

)
)

1 + S21A21

λ
q3 + B2

λ
q4

= 0,

which requires:

S21A21

λ
q3 +

B2

λ
q4 = α

(
S21A21

λ

)(
S21A21

λ

)
,

S21A21

λ
q3 +

B2

λ
q4 = α

(
B2

λ

)(
B2

λ

)
.

It is easy to check that z(x) , α(x)x is a monotonically increasing function. As the

result, there does not exist (q3, q4) that satisfies these two equations simultaneously as

S21A21 < B2. Hence, Case-4 is not possible.

Case-5: η1 6= 0, η2 = 0, η3 6= 0, η4 6= 0⇒

η1 6= 0→ q1 = 0,

∂I

∂q2

= 0,

η3 6= 0→ q3 = 0,

η4 6= 0→ q4 = 0.

These imply that user 2 is inactive and at user 1 both antennas are active with a same duty

cycle. From these equations, we obtain

ζ(B1, λ)−B1(log(B1q2 + λ) + 1) = 0,

112



from which we solve q2:

q̃2 = α(B1/λ).

Hence, the obtained feasible candidate for optimal solution from this case is (0, q̃2, 0, 0).

Case-6: η1 6= 0, η2 = 0, η3 6= 0, η4 = 0⇒

η1 6= 0→ q1 = 0,

∂I

∂q2

= 0, (C.2)

η3 6= 0→ q3 = 0,

∂I

∂q4

= 0. (C.3)

This case corresponds to the scenario when all of the antennas are active and both antennas

at user 1 have same duty cycle and both antennas at user 2 have same duty cycle.

By plugging q1 = 0 and q3 = 0 into (C.2) and (C.3), these two equations have the

same form as (3.13) and (3.14) (with S1A1 replaced by B1 and S2A2 replaced by B2

respectively). Hence, (C.2)-(C.3) can be solved in the same manner as (3.13)-(3.14). In

particular, these two nonlinear equations can be converted into a linear equation and a con-

vex equation, therefore we know that there can be only two such values of q2 and q4 that

satisfy the equations simultaneously. Lets those values be (0, q̄2, 0, q̄4) and (0, q̄′2, 0, q̄
′
4).

If the solutions lies outside the range of (0, 1)× (0, 1)× (0, 1)× (0, 1), we replace it with

(0, 0, 0, 0) for the sake of presentations convenience.
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Case-7: η1 6= 0, η2 = 0, η3 = 0, η4 6= 0⇒

η1 6= 0→ q1 = 0,

∂I

∂q2

= 0,

∂I

∂q3

= 0,

η4 6= 0→ q2 = 0.

This case refers to the scenario when both of the antennas at user 1 are active with a

same duty cycle but at user 2 only the antenna with the larger duty cycle is active. In

Appendix C.5.1, we show that any sum-rate achieved in this case can also be achieved

by the letting both antennas of each user to be simultaneously on or off, which is Case-6.

Hence, Case-7 can be ruled out.

Case-8: η1 6= 0, η2 = 0, η3 = 0, η4 = 0⇒

η1 6= 0→ q1 = 0,

∂I

∂q2

= 0,

∂I

∂q3

= 0,

∂I

∂q4

= 0.

This case corresponds to the scenario when both antennas at the user 2 are active and have

different duty cycles but at user 1 both transmitting antennas have the same duty cycle.

Following a similar approach as how to obtain (3.15), we can combine ∂I
∂q3

= 0 and

∂I
∂q4

= 0 to obtain a linear equation in terms of q1 and q2. By plugging q1 = 0 to the
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obtained linear equation, we solve

q2 =
c1

c1 + c2

, (C.4)

where c1 = h1(λ), c2 = −h1(B1 + λ) with

h1(x) =

(
1 +

S22A22

S21A21

)
ζ(S21A21, x)− ζ(B2, x).

Now for q2 to be feasible, we need 0 ≤ q2 ≤ 1, which requires c1 and c2 to have the same

sign. To rule out this case, we need the following lemma.

Lemma 23. h1(x) < 0 for x > 0.

Proof. Please see Appendix C.5.2.

Using this lemma, we know c1 < 0 and c2 > 0, so q2 /∈ [0, 1]. Hence this case not a

valid choice.

Case-9: η1 = 0, η2 6= 0, η3 6= 0, η4 6= 0⇒

∂I

∂q1

= 0,

η2 6= 0→ q2 = 0,

η3 6= 0→ q3 = 0,

η4 6= 0→ q4 = 0.

In this case user 2 is inactive and at user 1 only the antenna with a larger duty cycle

is active. As user 2 is inactive, the scenario is same as the single-user MISO Poisson

channel. It is easy to check that, for a single-user MISO Poisson channel, the maximal

rate achievable using only a single antenna is less than the maximal rate achievable when

both antennas are active, which is Case-5 mentioned above. Hence, Case-9 cannot be the
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optimal solution.

Case-10: η1 = 0, η2 6= 0, η3 6= 0, η4 = 0⇒

∂I

∂q1

= 0,

η2 6= 0→ q2 = 0

η3 6= 0→ q3 = 0

∂I

∂q4

= 0.

This case refers to the scenario when both antennas at user 2 are active with a same duty

cycle, while at user 1 only one antenna is active. This case can be ruled out using the

same reason as Case-7.

Case-11: η1 = 0, η2 6= 0, η3 = 0, η4 6= 0⇒

∂I

∂q1

= 0,

η2 6= 0→ q2 = 0,

∂I

∂q3

= 0,

η4 6= 0→ q4 = 0.

In this case, only one antenna at both of the users are active. Following similar argument

as that in Case-7, we know this case cannot be the optimal solution.
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Case-12: η1 = 0, η2 6= 0, η3 = 0, η4 = 0⇒

∂I

∂q1

= 0,

η2 6= 0→ q2 = 0,

∂I

∂q3

= 0,

∂I

∂q4

= 0.

This case occurs when both antennas at user 2 are active and have different duty cycles

while at user 1 only one antenna is active. Following the same steps in Case-8, we obtain

q1 =
c1

c1 + c3

,

in which c1 = h1(λ) and c3 = −h1(S11A11 + λ). Using Lemma 23, we know that

q1 /∈ [0, 1], hence we may conclude that Case-12 is not a valid case.

Case-13: η1 = 0, η2 = 0, η3 6= 0, η4 6= 0⇒

∂I

∂q1

= 0,

∂I

∂q2

= 0,

η3 6= 0→ q3 = 0,

η4 6= 0→ q4 = 0.

In this case user 2 is inactive while at user 1 both antennas transmit with different duty

cycles. By plugging q3 = 0 and q4 = 0 into ∂I
∂q1

= 0 and ∂I
∂q2

= 0, we have that (q1, q2)
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must satisfy the following two equations simultaneously:

S11A11 log

(
1 + α

(
S11A11

λ

) (
S11A11

λ

))
1 + S11A11

λ
q1 + B1

λ
q2

= 0,

B1 log

(
1 + α

(
B1

λ

) (
B1

λ

))
1 + S11A11

λ
q1 + B1

λ
q2

= 0.

As mentioned in Case-4, z(x) = α(x)x is a monotonically increasing function. As

S11A11 6= B1, we may conclude that there does not exist such (q1, q2) pair and hence

this case is not possible.

Case-14: η1 = 0, η2 = 0, η3 6= 0, η4 = 0⇒

∂I

∂q1

= 0,

∂I

∂q2

= 0,

η3 6= 0→ q3 = 0,

∂I

∂q4

= 0.

This case corresponds to the scenario when at user 1 both antennas are active with differ-

ent duty cycles and at user 2 both antennas have same duty cycle.

Following the same steps in Case-8, we obtain

q4 =

(
1 + S12A12

S11A11

)
ζ(S11A11, λ)− ζ(B1, λ)

ζ(B2, B1 + λ)−
(

1 + S12A12

S11A11

)
ζ(B2, S11A11 + λ) + S12A12

S11A11
ζ(B2, λ)

. (C.5)

However, it is difficult to make any definitive conclusion about q4 from this form. To rule

out this case, we use the following lemma.
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Lemma 24.

(C.5) =
c4

c4 + c5

,

in which c4 = h2(λ) and c5 = −h2(B2 + λ) with

h2(x) =

(
1 +

S12A12

S11A11

)
ζ(S11A11, x)− ζ(B1, x).

Proof. Please see Appendix C.5.3.

Similar to Lemma 23, we can show that h2(x) < 0 when x > 0. As the result,

q4 /∈ [0, 1]. Hence, we know that Case-14 is not a valid choice.

Case-15: η1 = 0, η2 = 0, η3 = 0, η4 6= 0⇒

∂I

∂q1

= 0,

∂I

∂q2

= 0,

∂I

∂q3

= 0,

η4 6= 0→ q4 = 0.

This case corresponds to the scenario when both antennas at user 1 are active with a

different duty cycles while at user 2 only the antenna with the larger duty cycle is active.

Following the same steps in Case-8, we obtain the value of q3 as:

q3 =

(
1 + S12A12

S11A11

)
ζ(S11A11, λ)− ζ(B1, λ)

ζ(S21A21, B1 + λ)−
(

1 + S12A12

S11A11

)
ζ(S21A21, S11A11 + λ) + S12A12

S11A11
ζ(S21A21, λ)

.(C.6)

Similar to Case-14, it is difficult to directly make any conclusion about the value of q3.
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Following similar steps as in Lemma 24, we can show that

(C.6) =
c4

c4 + c6

,

in which c4 = h2(λ) and c6 = −h2(S21A21 + λ). Hence, similar to Case-14, we can

conclude that q3 /∈ [0, 1], and hence this case is not a valid choice.

Case-16: η1 = 0, η2 = 0, η3 = 0, η4 = 0⇒

∂I

∂qk
= 0, k = 1, · · · , 4

This case refers to the scenario when both of the antennas of each user is active and have

different duty cycles. Following similar argument in Appendix C.5.1, we can rule this

case out.

In summary, we are left with only three candidates for the optimality, i.e. Case-2,

Case-5 and Case-6. Case-2 corresponds to the scenario where only user 2 is active with

both antennas are simultaneously on or off with duty cycle α(B2/λ) and hence the optimal

value of q is (0, 0, 0, α(B2/λ)) . Case-5 is the scenario where only user 1 is active with

both antennas are simultaneously on or off with duty cycle α(B1/λ) and therefore q =

(0, α(B1/λ), 0, 0). Case-6 is the scenario where both users are active with both antennas

at user 1 are simultaneously on or off and both antennas at user 2 are also simultaneously

on or off and hence q = (0, µ1, 0, µ2) where µ1 and µ2 are obtained by solving (3.13)

and (3.14) with S1A1 replaced by B1 = S11A11 + S12A12 and S2A2 replaced by B2 =

S21A21 +S22A22. It is clear that results obtained for MISO-MAC are the same as a SISO-

MAC with properly chosen parameter.

120



C.5 Proofs of Lemmas used in the Proof of Proposition 15

C.5.1 Proof of Case-7

In this section we show that any sum-rate achievable for scheme A, where both of the

antennas at user 1 are active with a same duty cycle but at user 2 only the antenna with

the larger duty cycle is active, can also be achieved by scheme B, where both antennas of

each user are simultaneously on or off.

Let p∗ be the duty cycle used by both antennas of user 1 and x∗ be the duty cycle used

by the antenna with the larger duty cycle of user 2. Then the sum-rate achieved by scheme

A is

IA = (1− p∗)(1− x∗)ϕ(λ) + (1− p∗)x∗ϕ(S21A21 + λ)

+p∗(1− x∗)ϕ(S11A11 + S12A12 + λ) + p∗x∗ϕ(S21A21 + S11A11 + S12A12 + λ)

−ϕ((S11A11 + S12A12)p∗ + S21A21x
∗ + λ).

Now consider scheme B, in which both antennas of user 1 to be simultaneously on-off

with duty-cycle p∗, for user 2, we let both antennas to be simultaneously on or off with

duty cycle x∗ but with reduced amplitude. In particular, for antenna 1, it uses β1A21. For

antenna 2, it uses β2A22. We select β1 and β2 such that β1S21A21 + β2S22A22 = S21A21.

It is easy to check that there always exists 0 ≤ β1 ≤ 1 and 0 ≤ β2 ≤ 1 such that this

relationship holds. Hence, scheme B is a valid scheme. For this scheme, the achievable

sum-rate is

IB = (1− p∗)(1− x∗)ϕ(λ) + (1− p∗)x∗ϕ(β1S21A21 + β2S22A22 + λ)

p∗(1− x∗)ϕ(S11A11 + S12A12 + λ) + p∗x∗ϕ(β1S21A21 + β2S22A22 + S11A11 + S12A12 + λ)

−ϕ((S11A11 + S12A12)p∗ + (β1S21A21 + β2S22A22)x∗ + λ).
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As β1S21A21 + β2S22A22 = S21A21, we have IA = IB. Therefore, we can conclude that

any sum-rate achievable by letting both of the antennas at user 1 to be active with a same

duty cycle but letting only one antenna of user 2 to be active can also be achieved by

letting both antennas of each user to be simultaneously on or off.

C.5.2 Property of Lemma 23

To lighten up the notation, we set a = S22A22 and b = S21A21. We have

h1(x) =

(
1 +

b

a

)
ζ(a, x)− ζ(a+ b, x)

= ζ(a, x) +
b

a
ζ(a, x)− ζ(a+ b, x)

= (a+ x) log(a+ x)− x log x+
b

a
(a+ x) log(a+ x)

− b
a
x log x− (a+ b+ x) log(a+ b+ x) + x log x

= −(a+ x) log

(
a+ b+ x

a+ x

)
− b log

(
a+ b+ x

a+ x

)
+
b

a
x log

(
a+ x

x

)
.

Using the fact that for x > 0,

x

1 + x
< ln(1 + x) < x,

we obtain

h1(x) <
1

ln(2)

(
−(a+ x)

b

a+ b+ x
− b2

a+ b+ x
+
b

a
x
a

x

)
= 0.

C.5.3 Proof of Lemma 24

In order to come to a firm conclusion about the value of q4, we will write the value of

I(q) in (4.40) in a different form. In (4.40), all the terms are written separated by q1 and
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q2 terms, we will now write I(q) written separated by q3 and q4. Clearly I(q) in (4.40)

can be written as

I(q) = (1− (q3 + q4))
(

(1− (q1 + q2))ϕ(λ) + q1ϕ(S11A11 + λ) + q2ϕ(B1 + λ)
)

+q3

(
(1− (q1 + q2))ϕ(S21A21 + λ) + q1ϕ(S11A11 + S21A21 + λ) + q2ϕ(B1 + S21A21 + λ)

)
+q4

(
(1− (q1 + q2)ϕ(B2 + λ) + q1ϕ(S11A11 +B2 + λ) + q2ϕ(B1 +B2 + λ)

−ϕ(S11A11q1 +B1q2 + S21A21q3 +B2q4 + λ). (C.7)

Using this new form, then we have:

∂I

∂q1

= (1− (q3 + q4))ζ(S11A11, λ) + q3ζ(S11A11, S21A21 + λ) + q4ζ(S11A11, B2 + λ)

−S11A11 (log (S11A11q1 +B1q2 + S21A21q3 +B2q4 + λ) + 1) ,

∂I

∂q2

= (1− (q3 + q4))ζ(B1, λ) + q3ζ(B1, S21A21 + λ) + q4ζ(B1, B2 + λ)

−B1 (log(S11A11q1 +B1q2 + S21A21q3 +B2q4 + λ) + 1) ,

∂I

∂q3

= ζ(S21A21, λ) + q1

(
ζ(S11A11, S21A21 + λ)− ζ(S11A11, λ)

)
+ q2

(
ζ(B1, S21A21 + λ)

−ζ(B1, λ)
)
− S21A21(log (S11A11q1 +B1q2 + S21A21q3 +B2q4 + λ) + 1),

and

∂I

∂q4

= ζ(B2, λ) + q1

(
ζ(S11A11, B2 + λ)− ζ(S11A11, λ)

)
+ q2

(
ζ(B1, B2 + λ)

−ζ(B1, λ)
)
−B2(log (S11A11q1 +B1q2 + S21A21q3 +B2q4 + λ) + 1).
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Recall that we need to solve

∂I

∂q1

= 0,

∂I

∂q2

= 0,

q3 = 0,

∂I

∂q4

= 0.

By combining ∂I
∂q1

= 0 and ∂I
∂q2

= 0, we can eliminate the term with log and obtain a

linear equation in terms of q3 and q4. By plugging q3 = 0 to the obtained linear equation,

we obtain an alternative form of (C.5):

q4 =
c4

c4 + c5

,

in which c4 = h2(λ) and c5 = −h2(B2 + λ) with

h2(x) =

(
1 +

S12A12

S11A11

)
ζ(S11A11, x)− ζ(B1, x).
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Appendix D

Proofs for Chapter 4

D.1 Detailed Poisson SIMO-MAC:

In order to find out the optimal solution to the given problem, in this section, under dif-

ferent constraints we have following 16 cases.

Case-1: η1 = 0, η2 6= 0, η3 = 0, η4 = 0⇒

∂I

∂µ1

+ η2 = 0,

∂I

∂µ2

= 0

η2 6= 0⇒ µ1 = 0.

Therefore the candidate for the optimal solution is (0, µ2), where µ2 satisfies ∂I
∂µ2

∣∣∣∣∣
(0,µ2)

=

0. This case corresponds to the scenario when user 1 is inactive and user 2 is active.
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Case-2: η1 = 0, η2 = 0, η3 = 0, η4 6= 0⇒

∂I

∂µ1

= 0,

∂I

∂µ2

+ η4 = 0,

η4 6= 0⇒ µ2 = 0.

Therefore the optimal pair must satisfy ∂I
∂µ1

∣∣∣∣∣
(µ1,0)

= 0. This case corresponds to the

scenario when user 1 is active and user 2 is inactive.

Case-3: η1 = 0, η2 = 0, η3 = 0, η4 = 0⇒

∂I

∂µ1

= 0,

∂I

∂µ2

= 0.

This case corresponds to the scenario when it is optimal for both of the users to transmit.

The pair (µ1, µ2) must satisfy both of the equations simultaneously.

Case-4: η1 = 0, η2 = 0, η3 6= 0, η4 = 0⇒

∂I

∂µ1

= 0,

∂I

∂µ2

− η3 = 0,

η3 6= 0⇒ µ2 = 1.

Then the optimal solution must satisfy ∂I
∂µ1

∣∣∣∣∣
(µ1,1)

= 0. As I(µ1, 0) ≥ I(µ1, 1), therefore

we may conclude that this case does not result in a candidate for the optimal solution.
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Case-5: η1 = 0, η2 = 0, η3 6= 0, η4 6= 0⇒

∂I

∂µ1

= 0,

∂I

∂µ2

− η3 + η4 = 0,

η3 6= 0⇒ µ2 = 1,

η4 6= 0⇒ µ2 = 0.

It is clear that this case is not possible.

Case-6: η1 = 0, η2 6= 0, η3 = 0, η4 6= 0⇒

∂I

∂µ1

+ η2 = 0,

∂I

∂µ2

+ η4 = 0,

η2 6= 0⇒ µ1 = 0,

η4 6= 0⇒ µ2 = 0.

It is clear that this case does not result in a candidate for the optimal solution.

Case-7: η1 = 0, η2 6= 0, η3 6= 0, η4 = 0⇒

∂I

∂µ1

+ η2 = 0,

∂I

∂µ2

− η3 = 0,

η2 6= 0⇒ µ1 = 0,

η3 6= 0⇒ µ2 = 1.
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It is clear that µ1 = 0, µ2 = 1 is not a candidate for the optimal solution.

Case-8: η1 = 0, η2 6= 0, η3 6= 0, η4 6= 0⇒

∂I

∂µ1

+ η2 = 0,

∂I

∂µ2

− η3 + η4 = 0,

η2 6= 0⇒ µ1 = 0,

η3 6= 0⇒ µ2 = 1,

η4 6= 0⇒ µ2 = 0.

It is clear that it is not a feasible case.

Case-9: η1 6= 0, η2 = 0, η3 = 0, η4 = 0⇒

∂I

∂µ1

− η1 = 0,

∂I

∂µ2

= 0,

η1 6= 0⇒ µ1 = 1.

Similar to Case-4, this case does not result in a candidate for optimal solution because

I(0, µ2) ≥ I(1, µ1).

Case-10: η1 6= 0, η2 = 0, η3 = 0, η 6= 0⇒

∂I

∂µ1

− η1 = 0,

∂I

∂µ2

+ η4 = 0,

η1 6= 0⇒ µ1 = 1,

η4 6= 0⇒ µ2 = 0.
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It is clear that I(1, 0) does not result in a candidate for the optimal value of sum-rate.

Case-11: η1 6= 0, η2 = 0, η3 6= 0, η4 = 0⇒

∂I

∂µ1

− η1 = 0,

∂I

∂µ2

− η3 = 0,

η1 6= 0⇒ µ1 = 1,

η3 6= 0⇒ µ2 = 1.

It is clear that this this case does not result in the optimal candidate.

Case-12: η1 6= 0, η2 = 0, η3 6= 0, η4 6= 0⇒

∂I

∂µ1

− η1 = 0,

∂I

∂µ2

− η3 + η4 = 0,

η1 6= 0⇒ µ1 = 1,

η3 6= 0⇒ µ2 = 1,

η4 6= 0⇒ µ2 = 0.

This case is not feasible due to conflicting values of µ2.

Case-13: η1 6= 0, η2 6= 0, η3 = 0, η4 = 0⇒

∂I

∂µ1

− η1 + η2 = 0,

∂I

∂µ2

= 0,

η1 6= 0⇒ µ1 = 1,

η2 6= 0⇒ µ1 = 0.
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Clearly this case is also not feasible.

Case-14: η1 6= 0, η2 6= 0, η3 = 0, η4 6= 0⇒

∂I

∂µ1

− η1 + η2 = 0,

∂I

∂µ2

+ η4 = 0,

η1 6= 0⇒ µ1 = 1,

η2 6= 0⇒ µ1 = 0,

η4 6= 0⇒ µ2 = 0.

This case is also not feasible.

Case-15: η1 6= 0, η2 6= 0, η3 6= 0, η4 = 0⇒

∂I

∂µ1

− η1 + η2 = 0,

∂I

∂µ2

− η3 = 0,

η1 6= 0⇒ µ1 = 1,

η2 6= 0⇒ µ1 = 0,

η3 6= 0⇒ µ2 = 1.
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This case is also not feasible.

Case-16: η1 6= 0, η2 6= 0, η3 6= 0, η4 6= 0⇒

∂I

∂µ1

− η1 + η2 = 0,

∂I

∂µ2

+ η4 = 0,

η1 6= 0⇒ µ1 = 1,

η2 6= 0⇒ µ1 = 0,

η3 6= 0⇒ µ2 = 1,

η4 6= 0⇒ µ2 = 0.

This case is also not feasible.
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