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Abstract

Timing diagrams are used in industrial practice as a specification language of circuit

components. They have been formalized for efficient use in model checking. This

formalization is often more succinct and convenient than the use of temporal logic.

We explore the relationship between timing diagrams and temporal logic formulas

by showing that closure under disjunction does not hold for timing diagrams. We

give an algorithm that returns a disjunction (if any) of two given timing diagrams.

We also give algorithms that tell satisfaction of timing diagram and exact time

separation between events in timing diagram. An Alloy specification for timing

diagrams with one waveform has also been built.

Keywords: timing diagrams, temporal logic, model checking, disjunction, Alloy.



Acknowledgements

I spent three wonderful years at Worcester Polytechnic Institute. I am indebted to

my advisor Kathi Fisler. She introduced me to model checking and timing diagrams

and taught me that presentations of research results should be easy for people to

understand. I thank her for her numerous comments and revisions on this thesis. I

learnt a lot from her about how to write. I also thank her for her patience on me.

Dan Dougherty has been a superb mentor. He taught me logic. His logic course

is the best course I’ve taken at WPI. The second to it is his foundation course. I

thank Danny for his advice on timing diagrams and NFA. I thank Tim for study

groups on algorithms and logic courses. I thank Theo for discussions with him about

logic and math, and his help on my job-hunting.

I owe much to my parents. They have been caring me and giving me advice

during these years. I’m regretful that I have been away from them for 7 years.

Yu Feng

i



Contents

1 Background 1

1.1 RTD as a Specification Language . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 3

2 Regular Timing Diagrams 4

2.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 The Disjunction Problem . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 RTD transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 CD Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.2 SD Rewriting . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Modeling RTD in Alloy 19

3.1 Alloy Specification for One-Waveform RTD . . . . . . . . . . . . . . . 19

3.2 Properties about RTD Checked using Alloy . . . . . . . . . . . . . . . 26

3.2.1 Unique Assignment . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.2 Checking Lack of Common Word . . . . . . . . . . . . . . . . 28

4 Tight Bound Computation 30

4.1 Event Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

ii



4.1.1 RTD Satisfiability and Event Graph . . . . . . . . . . . . . . . 33

4.2 Tight Bound Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.1 Correctness Proof . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 RTD Transformation using Tight Bound Computation . . . . . . . . 41

5 Disjunction Algorithm 46

5.1 Disjunction of One-Waveform RTD . . . . . . . . . . . . . . . . . . . 46

5.1.1 Concrete Points . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1.2 Adding Points . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.3 Disjunction Type . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1.4 Disjunction Algorithm . . . . . . . . . . . . . . . . . . . . . . 53

5.1.5 Correctness Proof . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Disjunction of Multi-Waveform RTD . . . . . . . . . . . . . . . . . . 67

6 Conclusions 69

A An Alloy Specification for RTD 71

iii



List of Figures

2.1 RTD example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 RTD and one of its words . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Two RTDs having disjunction . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Two RTDs having no disjunction . . . . . . . . . . . . . . . . . . . . 15

2.5 Before CD elimination . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 After CD elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 RTD before SD rewriting . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.8 RTD after SD rewriting . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 An Alloy Specification . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Result of Check of PiUnique . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Result of Check of FirstSecondPointDifferent . . . . . . . . . . . . . . 29

4.1 RTD having a sequential dependency that is not a tight bound . . . . 30

4.2 Event Graph from RTD in Figure 4.1 . . . . . . . . . . . . . . . . . . 33

4.3 a cycle in GRTD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Result after Non-transition Points Elimination . . . . . . . . . . . . . 43

5.1 Concrete Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Disjunction algorithm example . . . . . . . . . . . . . . . . . . . . . . 50

5.3 Adding point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

iv



5.4 Example illustrating adding point is necessary . . . . . . . . . . . . . 52

v



Chapter 1

Background

Timing diagrams are used in industrial practice as a specification language of circuit

components. Nina Amla et al [2] introduced the class of Regular Timing Diagrams

which have formal syntax and semantics. They gave a model checking algorithm

with regular timing diagrams which runs in cubic size of regular timing diagrams.

The notation of timing diagrams is often more succinct and convenient than the

use of temporal logic. Fisler and Chockler[6] proved that each timing diagram

can be translated to a LTL formula. More importantly, they gave two modalities,

forgettable past and unforeseen future[6], which allow a temporal logic to capture

timing diagrams more succinctly than LTL. But there have been no results showing

whether each LTL formula can be translated to a timing diagram. In this thesis, we

solve this problem by showing closure under disjunction does not hold for timing

diagrams.

1.1 RTD as a Specification Language

Formal verification is a technique of mathematically proving whether a system de-

sign satisfies properties. It contains three elements: (1) a specification method of
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a system design, (2) a kind of logic describing properties, and (3) an algorithm

checking whether the system design satisfies properties. One approach to formal

verification is model checking. It represents system designs and properties as au-

tomata and temporal logics, and it checks whether system designs satisfy properties

by checking whether the language of the automaton is a subset of language of the

temporal logic formula.

In industrial practice, timing behaviors for circuit components are often de-

scribed by timing diagrams[2]. Nina Amla et al introduce the class of Regular

Timing Diagrams which has formal syntax and semantics. They also gave an effi-

cient model checking algorithm on Regular Timing Diagrams[2]. They decompose

a Regular Timing Diagram into isolated waveforms and timing constraints among

waveforms. Each waveform or constraint can be represented as a NFA and the whole

Regular Timing Diagram can be represented as a ∀FA. A ∀FA is an automaton which

accepts a word iff every run of the automata along the word ends at some accepting

state. Their model checking algorithm runs in the worst case of size “cubic in the

size of the diagram and the largest time constant represented in unary”.

There are many systems, for example real communication systems, whose spec-

ifications are satisfied by infinite computations. For the problem of how an infinite

computation satisfies a timing diagram, Fisler [5] considers two kinds of semantics:

invariant semantics and iterative semantics. In invariant semantics, a timing dia-

gram is satisfied from every position in a computation. In iterative semantics, each

computation satisfying a timing diagram is a concatenation of infinitely many com-

putation of finite length each of which satisfies a timing diagram starting from the

first position and ending at the last position. Nina Amla’s regular timing diagrams

use the iterative semantics.

In order to understand the formal connections between timing diagrams and tex-
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tual temporal logics so that temporal specifications can be made designer-friendly,

Fisler and Chockler[6] considered the problem of translating timing diagrams to LTL

formulas. They gave an algorithm that translate timing diagrams to LTL formulas

with forgettable past (N) modality and unforseeable future (Ñ) modality. NÑLTL

is equivalent to LTL[6].

1.2 Contributions of the Thesis

This thesis use the syntax of Nina Amla’s Regular Timing Diagram and our one-

step semantics. In chapter 2, we prove that for every word w and every regular

timing diagram RTD, there is unique assignment π such that w |=π RTD and we

give two algorithms to rewrite regular timing diagrams. In chapter 3, we give an

Alloy specification for RTDs with one waveform, and we check some theorems using

Alloy. In chapter 4, we prove the relationship between satisfiability of RTD and

existence of negative cycles in event graph. We also give an algorithm that compute

the exact time separation between each events in RTDs. In the last chapter, we

give an algorithm that decide existence of disjunctions of given two regular timing

diagrams, and we prove the correctness of the algorithm.

We refer to Regular Timing Diagram as RTD or timing diagram henceforth.
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Chapter 2

Regular Timing Diagrams

Because of the practical use of timing diagrams in hardware specification, there are

many ways to formally define them. Among those definitions, we use Amla’s syntax

[1][2] and our own semantics called one-step semantics which is close to Amla’s

semantics.

After we introduce RTD’s syntax and semantics in the first two sections, we

define the disjunction problem of well-formed timing diagrams in section 2.3 and

give several ways of transforming RTD without changing its language in section 2.4.

2.1 Syntax

Figure 2.1 shows an example of RTD: This RTD has three waveforms: a, b, and

c. Events of interest on each waveform are called points. In figure 2.1, there

are four points on waveform a (labeled (a, 0), (a, 1), (a, 2), and (a, 3)), five points

on waveform b (labeled (b, 0), (b, 1), (b, 2), (b, 3), and (b, 4)) and three points on

waveform c (labeled (c, 0), (c, 1) and (c, 2)). Vertical lines specify concurrent de-

pendencies between points on different waveform. In figure 2.1, there are four

concurrent dependencies: the first points and last points over all waveforms each
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Figure 2.1: RTD example

form a concurrent dependency by default. In addition, the example adds concurrent

dependencies {(a, 1), (b, 2)} and {(a, 2), (c, 1)}. Curve lines labeled with pairs [x, y]

of natural numbers tell the allowed time difference between two points; these are

called sequential dependencies. In figure 2.1, there are three sequential depen-

dencies: (a, 1)
[2,2]
−→ (a, 2), (a, 2)

[3,5]
−→ (b, 3) and (b, 1)

[4,4]
−→ (c, 1).

Formally, the syntax of RTD can be defined as follow:

Definition 2.1.1. A RTD is a tuple (Point,WF,Value,SD,CD) in which

• Point is the set of all points in RTD. (p, i) means the ith point on signal p.

• WF , the set of waveform names, is: {p | ∃i.(p, i) ∈ Point}

• Value:Point→ {0, 1, X} assigns a value to each point.

• SD ⊆ {(p, i)
[a,b]
−→ (q, j), (p, i)

[c,+∞)
−→ (q, j) | (p, i), (q, j) are points, a, b, c are

natural numbers and a ≤ b}

• CD is a set of sets of points. {(p, 0) | p ∈ WF}1 ∈ CD and {(p, m) | p ∈

1this is the set of first points on all waveforms.
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WF, ∀i.((p, i) ∈ Point → m ≥ i) ∧ (∀j∀i. (p, i) ∈ Point → j ≥ i → (m ≤

j))}2 ∈ CD

Example 2.1.1. For the RTD in figure 2.1:

Point = {(a, 0), (a, 1), (a, 2), (a, 3), (b, 0), (b, 1), (b, 2), (b, 3), (b, 4), (c, 0), (c, 1), (c, 2)},

WF = {a, b, c}

V alue : (a, 0) → 0, (a, 1) → 1, (a, 2) → 1, (a, 3) → 0, (b, 0) → 1, (b, 1) → 0,

(b, 2)→ 0, (b, 3)→ 1, (b, 4)→ 1, (c, 0)→ 0, (c, 1)→ X, (c, 2)→ X,

SD = {(a, 1)
[2,2]
−→ (a, 2), (b, 1)

[4,4]
−→ (c, 1), (a, 2)

[3,5]
−→ (b, 3)},

CD = {{(a, 0), (b, 0), (c, 0)}, {(a, 1), (b, 2)}, {(a, 2), (c, 1)}, {(a, 3), (b, 4), (c, 2)}}

In RTD, a point is a rise or a fall if it has different value from its preceeding

point’s value. When a point (p, i) is a rise or a fall, it’s not hard to tell where it

will be located on a system behavior. For example, when (p, i) is a rise, it will be

located to the position where the first 1 occurs after where (p, i− 1) is located on a

system behavior. When a point is not a rise or a fall, it’s difficult to tell where this

event is located in a system behavior. For example, for points (p, i) which has value

X, we don’t know whether it should be located at a position where signal p is low,

or high, or both. This will lead to a problem that there can be multiple ways to

tell a system behavior satisfies a RTD. We want to avoid this and we want to know

where precisely a point having value X is located in system behavior. One way to

solve this problem is requiring every point to be an event.

We will define events after we define rises and falls as following:

Definition 2.1.2. Point (p, i) is a rise (fall) if:

1. i 6= 0 and

2This is the set of last points on all waveforms.
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2. V alue((p, i)) = 1 and V alue((p, i−1)) = 0 (V alue((p, i)) = 0 and V alue((p, i−

1)) = 1).

In figure 2.1, points (a, 1), (b, 3) are rises and points (a, 3), (b, 1) are falls.

Definition 2.1.3. A point (p, i) is an event if it satisfies one of the following rules:

• i = 0.

• (p, i) is a rise or fall.

• (p, i) belongs to a concurrent dependency that contains an event.

• There exists a sequential dependency (q, j)
[a,a]
−→ (p, i) in which (q, j) is an

event.

In figure 2.1, point (a, 2) is an event because there is a sequential dependency

(a, 1)
[2,2]
−→ (a, 2) and (a, 1) is an event. Point (b, 2) is an event because (b, 2) and

(a, 1) are in the same concurrent dependency and (a, 1) is an event. Point (c, 1) is

an event because there exists a sequential dependency (b, 1)
[4,4]
−→ (c, 1) and (b, 1) is

an event. Points (c, 2) and (b, 4) are events because (c, 2), (b, 4), and (a, 3) are in

the same concurrent dependency and (a, 3) is an event. All other points are events

either because they are the first points on waveforms or they are rises or falls.

A RTD specifies a timing relation on events in a system. On each waveform p,

event (p, j) occurs later than (p, i) if j > i. For each sequential dependency like

(p, i)
e
−→ (q, j), event (q, j) occurs later than event (p, i) and their time difference

satisfies e. It makes no sense that an event (q, j) occurs later than event (p, i) and

(p, i) also occurs later than (q, j). In order to avoid this, we need to define formally

the timing relation on events.

Definition 2.1.4. We can define a relation ≤ on subset of Point. p and q are two

points, (p, i) ≤ (q, j) if
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• p = q and i < j, or

• (p, i) and (q, j) are in the same concurrent dependency, or

• There exists a sequential dependency (p, i)
[a,b]
−→ (q, j) or (p, i)

[c,∞)
−→ (q, j).

The transitive closure of ≤ tells the timing relation on events. If (p, i) ≤+ (q, j),

then in the system specified by the RTD, event (p, i) occurs no later than event (q, j).

We can avoid the problem before Definition 2.1.4 by requiring ≤+ is irreflexive. In

figure 2.1, (b, 1) ≤+(a, 2) because (b, 1)≤(b, 2), (b, 2)≤(a, 1) and (a, 1)≤(a, 2).

Definition 2.1.5. A RTD is well-formed if it satisfies:

1. All points are events.

2. The transitive closure ≤+ of relation ≤ is irreflexive.

We can see that relation ≤+ in the timing diagram in figure 2.1 is irreflexive.

We have showed above that all points in this RTD are events. The timing diagram

in figure 2.1 is therefore a well-formed RTD.

In this thesis, we only focus on well-formed timing diagrams.

2.2 Semantics

RTD describes sets of words over an alphabet that assigns a sequence of 0 and 1

to each waveform. The semantics tells us whether a word satisfies the given RTD.

Intuitively, a word satisfies a RTD when values on the words satisfy all points,

and relative positions of points satisfy time bounds of sequential dependencies and

concurrent dependencies.

Since RTD has only finitely many points on each waveform and many systems
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have infinite computations, an important question in RTD semantics is how an

infinite word satisfies a RTD. There are many kinds of semantics [5]:

1. In the invariant semantics, RTD is satisfied from every position in a word.

2. In the one-step semantics, RTD is satisfied starting from the first position of

a word and ending at the last position of a word.

3. In the iterative semantics, each word satisfying a RTD is a concatenation of

infinite many words that satisfy the RTD under one-step semantics.

We will use one-step semantics in this thesis. We believe we can use the result of

operations3 on RTDs under one-step semantics to solve those operations on RTDs

under invariant or iterative semantics.

A point having value X means we don’t care whether it maps to position where

there is 0 or 1. A point having value 0(1) can only be located to position where

there is 0(1). This can be described by a relation ⊑ on {0, 1, X}. The left side of

⊑ is the value of a point and the right side of ⊑ is the value on position in word to

which the point corresponds.

Definition 2.2.1. a ⊑ b if a = X or a = b.

Definition 2.2.2. A word or model of a RTD is (WF, signal-trace) in which:

signal-trace ∈




p0 : Σ∗

p1 : Σ∗

...
...

pn−1 : Σ∗




in which Σ = {0, 1}

Definition 2.2.3. Given a word, |wordp| is the length of signal trace p in word.

3Including disjunction, conjunction and complement etc.
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Figure 2.2: RTD and one of its words

Figure 2.2 shows a word that satisfies the RTD in figure 2.1. The word satisfies

the RTD because there is a way to assign all points in RTD to appropriate positions

such that points, sequential dependencies and concurrent dependencies are satisfied.

• Points (a, 0), (b, 0), (c, 0) are mapped to position 0.

• Points (a, 3), (b, 4), (c, 2) are mapped to position 14.

• Points (a, 1) and (b, 2) are mapped to position 5.

• Points (a, 2) and (c, 1) are mapped to position 7.

So all concurrent dependencies are satisfied by this word.

Point (b, 3) is mapped to position 11 and point (a, 2) is mapped to position 7,

their difference is 4 which is in [3, 5], so sequential dependency (a, 2)
[3,5]
−→ (b, 3) is

satisfied.
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These mapping ends up to be deterministic. That is, for every point (p, i), it

will be mapped to only one position in a word satisfying the RTD. We will come

back to this in Theorem 2.2.1.

We formally define the one-step semantics as follows:

Definition 2.2.4. Given a RTD, an assignment π : Point → N is a mapping

from points in the RTD to positions in a word.

Definition 2.2.5. Given a RTD=(Point, WF, Value, SD, CD), a word=(WF,

signal-trace) and an assignment π, p ∈ WF and (p, i) ∈ Point, wordp(π((p, i)))

is the digit at position π((p, i)) on signal trace p in word.

Definition 2.2.6. Given a RTD=(Point, WF, Value, SD, CD), a word=(WF,

signal-trace) and a function π, word |=π RTD if:

1. ∀p ∈ WF , let m be the number of points on waveform p, π((p, 0)) = 0 and

π((p, m− 1)) = |wordp| − 1

2. Point consistency: ∀(p, i) ∈ Point, V alue((p, i)) ⊑ wordp(π((p, i)))

3. Waveform consistency: ∀p ∈ WF , if (p, i) is not the last point on waveform

p, then ∀j ∈ [π((p, i)), π((p, i + 1))− 1] V alue((p, i)) ⊑ wordp(j)

4. Dependency consistency: For every sequential dependency (p, i)
[a,b〉
−→ (q, j),

π((q, j)) − π((p, i)) ∈ [a, b〉. For every concurrent dependency cd, ∀p ∈ cd

∀q ∈ cd, π(p) = π(q).

Definition 2.2.7. Given a RTD and a word, word |= RTD if there exists an

assignment π s.t. word |=π RTD.

Definition 2.2.8. The language of RTD, denoted L(RTD), is {word | word |=

RTD}.
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We can see that given a RTD=(Point, WF, Value, SD, CD) and word ∈ L(RTD),

∀p, q ∈WF , |wordp| = |wordq|.

We’ve said above that for well-formed RTDs, their semantics is deterministic.

Given any well-formed RTD and any word that satisfies it, there is only one assign-

ment that meets Definition 2.2.6. The reason is: for every point which is a rise or

a fall, there is only one way to locate it on words. For every point (q, j) which is

neither a rise nor a fall, there exists a rise or a fall (p, i) and some sequential de-

pendencies (or a sequential dependency) (p, i)
[k0,k0]
−→ (p0, i0), (p0, i0)

[k1,k1]
−→ (p1, i1), ...,

(pn−1, in−1)
[kn,kn]
−→ (pn, in), (pn, in)

[kn,kn]
−→ (q, j) which means there is only one position

where (q, j) can be located. We will formally prove it in the following theorem.

Theorem 2.2.1. Given a well-formed RTD=(Point, WF, Value, SD, CD), a word=(WF,

signal-trace), if word |= RTD, then there exists only one assignment π s.t. word |=π

RTD.

Proof. We prove by contradiction. Suppose there exists π0 and π1 s.t. word |=π0

RTD and word |=π1 RTD when word |= RTD. According to semantics, ∀p ∈ WF ,

π0((p, 0))=π1((p, 0))=0 and π0((p, m))=π1((p, m))=|wordp| − 1.

Since π0 and π1 are not the same, there exists a point (p, i) s.t. π0((p, i)) 6=

π1((p, i)). We choose the first of such points on waveform p, and let it be (p, i).

Without loss of generality, let π0((p, i)) < π1((p, i)).

• If (p, i) is a rise or fall, by definition, V alue((p, i)) 6= V alue((p, i− 1)) which

means wordp(π0((p, i))) = 1 − wordp(π0((p, i)) − 1) and wordp(π1((p, i))) =

1 − wordp(π1((p, i)) − 1). Since (p, i) is the first point which is mapped to

different position by π0 and π1, π0((p, i − 1)) = π1((p, i − 1)) < π0((p, i)) <

π1((p, i)). Since word |=π1 RTD, waveform consistency is satisfied which

means wordp(π0((p, i))) = V alue((p, i − 1)). Point consistency must also be
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satisfied which means wordp(π0((p, i))) = V alue((p, i)). So V alue((p, i)) =

V alue((p, i− 1)) which contradicts point (p, i) is a rise or fall.

• If (p, i) is not a rise or fall, by definition of well-formed timing diagram, there

exists a sequential dependency (q, j)
[k,k]
−→ (p, i). Since (p, i) is the first point

which is mapped to different positions by π0 and π1, π0((q, j)) = π1((q, j)).

Since π0((p, i)) < π1((p, i)), π0((p, i))−π0((q, j)) 6= π1((p, i))−π1((q, j)) which

contradicts word |=π0 RTD and word |=π1 RTD because (q, j)
[k,k]
−→ (p, i)

cannot be satisfied by both π0 and π1.

So we have proved this theorem.

Another interesting property of RTD semantics is RTD cannot be satisfied by

any prefix of its words. This can be prove using similar technique as above.

Theorem 2.2.2. Given any RTD=(Point, WF, Value, SD, CD), and any word ∈

L(RTD), if pre-word is a prefix of word and |pre-word| < |word|, then pre-word

/∈ L(RTD).

Proof. We prove by contradiction. Suppose there exists an assignment πp s.t. pre-

word |=πp
RTD. Since word |= RTD, let the assignment mapping points to position

in word be π which means word |=π RTD. ∀p ∈ WF ∃i. πp((p, i)) < π((p, i))

because |pre-word| < |word|. We choose one waveform p and choose the first point

of this kind. Let it be (p, i).

We first prove (p, i) has to be either rise or fall. If (p, i) is neither rise nor

fall, then by definition of well-formed timing diagram, there exists a sequential

dependency (q, j)
[k,k]
−→ (p, i). Since word |=π RTD and pre-word |=πp

RTD,

this sequential dependency should be satisfied in both word and pre-word. So

πp((p, i))− πp((q, j)) = π((p, i))− π((q, j)) which means πp((q, j)) < π((q, j)). This
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contradicts (p, i) being the first point which is mapped to different position by π

and πp. So (p, i) has to be either rise or fall.

Since (p, i) is either a rise or fall, V alue((p, i)) = 1 − V alue((p, i − 1)). We

have πp((p, i − 1)) = π((p, i − 1)) < πp((p, i)) < π((p, i)) because (p, i) is the first

point mapped differently by π and πp. Since word |=π RTD, waveform consis-

tency is satisfied which means V alue((p, i − 1)) ⊑ wordp(πp((p, i))) which means

V alue((p, i − 1)) = wordp(πp((p, i))). Since pre-word |=πp
RTD, point consistency

must be satisfied by pre-word. So V alue((p, i)) ⊑ pre-wordp(πp((p, i))) which means

V alue((p, i)) ⊑ wordp(πp((p, i))) which means V alue((p, i)) = wordp(πp((p, i))). So

we have V alue((p, i)) = V alue((p, i− 1)) which contradicts (p, i) is a rise or fall.

So we have proved the theorem.

2.3 The Disjunction Problem

Given two RTDs RTD0 and RTD1, we want to know under what conditions there

exists a RTD RTD2 s.t. L(RTD0)
⋃
L(RTD1) = L(RTD2).

Definition 2.3.1. Given RTD0 and RTD1, if there exists a RTD2 such that

L(RTD0)
⋃
L(RTD1) = L(RTD2), then RTD2 is called disjunction of RTD0 and

RTD1.

Figure 2.3: Two RTDs having disjunction

The two RTDs in figure 2.3 have their disjunction which can be drawn as TD 2.

This is case when L(TD 1) ⊂ L(TD 2).
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There is no RTD whose language captures L(RTD1)
⋃
L(RTD2) in Figure 2.4.

Figure 2.4: Two RTDs having no disjunction

Because the first digit of all words satisfying RTD1 is 0 and the first digit of all words

satisfying RTD2 is 1. The last digit of all words satisfying RTD1 is 1 and the last

digit of all words satisfying RTD2 is 0. Suppose such their disjunction RTD exists,

its first and last point should both have value X. But in the language of disjunction,

there are also words whose first digit and last digit are the same. These words can

satisfy neither RTD1 nor RTD2 which contradicts definition of disjunction.

2.4 RTD transformation

In order to simplify the proofs about algorithms that appear in following chapters, we

transform given RTD into another one without changing its language. For example,

in Chapter 4 when we are going to compute exact time separations between any

pair of points in a RTD. For that, we treat any concurrent dependency as a special

form of sequential dependency. In our algorithm which computes disjunction of two

given RTDs, we found that we can rewrite SD of any RTD into SD′ in which for

any (p, i)
e
−→ (q, j) (p, i) is a rise or fall. This rewriting will save us lots of trouble

in proving the algorithm.

We present two transformations: CD Elimination and SD Rewriting.

2.4.1 CD Elimination

Given a RTD={Point, WF, Value, SD, CD}, we replace each concurrent dependency

{(p, i0), (q, i1), (r, i2), ...} involving n points with
(

n

2

)
sequential dependencies of the
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form (p, im)
[0,0]
−→ (q, in), ... . After we do this for all concurrent dependencies in

CD, we get a RTD with an empty CD. Note that when we replace every concurrent

dependency with sequential dependencies, we do not change the language of RTD.

For the RTD in figure 2.5, we can replace concurrent dependency {(p, 0), (q, 0)}

Figure 2.5: Before CD elimination

with a sequential dependency (p, 0)
[0,0]
−→ (q, 0) and {(p, 2), (q, 3)} with a sequential

dependency (p, 2)
[0,0]
−→ (q, 3). So we get a RTD in figure 2.6 whose CD is an empty

Figure 2.6: After CD elimination

set.

2.4.2 SD Rewriting

Given an RTD=(Point, WF, Value, SD, CD), we can rewrite it into another timing

diagram RTD′=(Point, WF, Value, SD′, CD) in which for every sequential depen-

dency (p, i)
e
−→ (q, j) in SD′, (p, i) is either a rise/fall or the first point on waveform

p.

Intuitively, we pick any sequential dependency (p, i)
[a,b]
−→ (q, j) in which (p, i)

is neither a rise/fall nor the first point on waveform p. Since RTD is well-formed,
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there exists a sequential dependency (r, l)
[k,k]
−→ (p, i), we can replace (p, i)

[a,b]
−→ (q, j)

with (r, l)
[a+k,b+k]
−→ (q, j). We know (r, l) is an event, it may be or may not be a

rise/fall or the first point on waveform r. If not, we repeat this process to replace

(r, l)
[a+k,b+k]
−→ (q, j) to some other sequential dependency; if yes, we replace other

sequential dependencies in the same way.

The process is as follows:

for each (p, i)
〈a,b〉
−→ (q, j) in which neither (p, i) is a rise/fall nor i = 0 do

SD ← SD − {(p, i)
〈a,b〉
−→ (q, j)}

for each point (r, l) s.t. (r, l)
[k,k]
−→ (p, i) exists do

if there exists a sequential dependency (r, l)
e
−→ (q, j) then

SD ← SD
⋃
{ (r, l)

[a+k,b+k]∩e
−→ (q, j) }

else

SD ← SD
⋃
{ (r, l)

[a+k,b+k]
−→ (q, j) }

This process will terminate, because the number of sequential dependencies (p, i)
e
−→

(q, j) in which (p, i) is neither rise/fall nor the first point decreases in the process

and the number of points is finite.

SD rewriting does not change language of RTDs. That is, for a given RTD0,

after we apply SD rewriting on it, it returns RTD1 and L(RTD0) = L(RTD1). The

reason is: In RTD0, there is (p, i)
[a,b〉
−→ (q, j)4 and (r, l)

[k,k]
−→ (p, i) which means all

words satisfy these two sequential dependencies. This is the same as saying all words

satisfy sequential dependencies (r, l)
[k,k]
−→ (p, i) and (r, l)

[a+k,b+k〉
−→ (q, j)5. So each step

of SD rewriting does not change language of RTDs which means SD rewriting does

not change their language.

Example 2.4.1.

4When b is an integer, the bound is [a, b]; when b is +∞, the bound is [a, +∞).
5When b is an integer, the bound is [a + k, b + k]; when b is +∞, the bound is [a + k, +∞).
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Figure 2.7: RTD before SD rewriting

Figure 2.8: RTD after SD rewriting

Figure 2.7 shows an RTD on which we will apply SD rewriting. (p, 1) is neither

a rise/fall nor the first point on waveform p. We remove (p, 1)
[2,2]
−→ (p, 2) and

(p, 1)
[1,2]
−→ (q, 1), then we add two sequential dependencies (p, 0)

[3,3]
−→ (p, 2) and

(p, 0)
[2,3]
−→ (q, 1). Finally we get a RTD as in Figure 2.8. All sequential dependencies

in Figure 2.8 is in the form of Point0
e
−→ Point1 in which Point0 is either a rise/fall

or the first point on some waveform. The RTD in Figure 2.7 and the RTD in Figure

2.8 have the same language which contains only one word.
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Chapter 3

Modeling RTD in Alloy

Alloy is a declarative specification language for expressing structural constraints and

behavior in software systems. It provides a simple structural modeling tool based

on first-order logic [8]. Alloy Analyzer is a tool [3] to find models of a specification

written in Alloy language under certain bound. We have used Alloy Analyzer to

successfully check some theorems about RTD with only one waveform.

3.1 Alloy Specification for One-Waveform RTD

Our full Alloy specification for RTD is in Appendix A. An Alloy specification consist

of signatures1, functions on signatures, facts and predicates. We model values as

signatures which can be either ValueZero, ValueOne or ValueX meaning a value can

be 0, 1, or X, as shown below.

1A set of relation symbols and constant symbols
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one sig ValueZero extends NonXValue{}

one sig ValueOne extends NonXValue{}

one sig ValueX extends Value{}

sig NonXValue extends Value {}

sig Value{}

We model points, one-waveform RTDs, sequential dependencies, words, and as-

signments as signatures Point, SimpleT imingDiagram, SequentialDependency,

Word, and Pi respectively, as shown below.

sig Point {hasvalue: one Value, index: one Int}

sig SimpleTimingDiagram {haspoint:set Point, hassd:set SequentialDependency}

{#haspoint>1}

sig SequentialDependency {SDis: Point -> Point -> Int -> Int}

sig Word{position: seq NonXValue}{#position>1}

sig Pi {positionis: SimpleTimingDiagram->Word->one Point2Position}

sig Point2Position {is: seq Int}

Relations are defined implicitly in signatures declarations. For example, relation

hasvalue is defined implicitly in signature Point’s declaration as a binary relation

from signature Point to signature Value.

• Relation hasvalue : Point→ One V alue tells us the value of every point.

• Relation index : Point→ int tells us the index of any point on the waveform.

Since RTD has only one waveform, any pair of points are in relation ≤+ which

is the transitive closure of the relation defined in Definition 2.1.4. If point

p ≤+ q, then p.index < q.index.

• Relation haspoint : SimpleT imingDiagram → set Point tells us the set of

points a RTD has. Relation hassd : SimpleT imingDiagram→ set Sequential-

Dependency tells us the set of sequential dependencies a RTD has. Since every
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RTD has only one waveform, there is no concurrent dependency in RTD pre-

sumably means no concurrent dependency modeled at all!

• Relation SDis : SequentialDependency → Point → Point → Int → Int

tells us the set of sequential dependencies a signature SequentialDependency

has. SequentialDependency.SDis is a subset of SD. In every Alloy specifica-

tion, the number of one-waveform RTDs and the number of words are bounded.

So sequential dependency p
[a,+∞)
−→ q can be seen as (SequentialDependency, p, q, [a, b])

when

Maxi=n−1
i=0 (πwordi,RTD(q)− πwordi,RTD(p)) ≤ b 2

in which wordi |=πwordi,RTD
RTD. n is the number of words that satisfies the

RTD and the bound of Alloy specification specified in Alloy language is the

upper bound of n.

• Relation position maps signature Word to a sequence of values on {0, 1},

because every word that satisfies one-waveform RTD has only one signal-trace,

which means every word is a sequence of integers from {0, 1}.

• Relation Positionis maps signature Pi to (SimpleT imingDiagram, Word,

Point2Position) in which Point2Position tells the position in Word where

each point in SimpleT imingDiagram is mapped by Pi.

There are also some interesting facts and predicates as below:

2This means for every sequential dependency p
[a,b]
−→ q, if b is greater than distance between

where point p and point q are mapped in any word in an Alloy specification that satisfies the
specification, then b can be viewed as +∞.
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• pred PointInTDIsRiseFall [td:SimpleTimingDiagram, p:Point]

{some q:Point | (p.index>0) and (p.hasvalue != ValueX) and

(q in td.haspoint) and (TDPointNext[td, q, p]) and (p.hasv

alue !=q.hasvalue) and (q.hasvalue != ValueX)

}

This predicate is true when point p is either a rise of a fall in td. Predicate

TDPointNext[td, q, p] is true when q is the preceding point of p.

• fact TDWellFormed {

all td:SimpleTimingDiagram | all q:Point| some sd:td.hassd | some p:Point |

let PrevOfqInsd=(((sd.SDis).Int).Int).q |

let LowerBoundOfsdp2q=(q.(p.(sd.SDis))).Int |

let HigherBoundOfsdp2q=Int.(q.(p.(sd.SDis))) |

(

(q in td.haspoint)

and not (PointInTDIsRiseFall[td, q])//when q is neither a rise nor fall

and (q.index>0) //point q is not the first point.

)

=>

(

p in td.haspoint and

q in ToPointOfSD[sd] and p in PrevOfqInsd and

(

(p.index=0) //point p is the first point

or

PointInTDIsRiseFall[td, p] //point p is a rise/fall

)

and //lower bound and higher bound are the same

(

LowerBoundOfsdp2q=HigherBoundOfsdp2q and #LowerBoundOfsdp2q=1

and #HigherBoundOfsdp2q=1

)

)

}

According to the SD rewriting process we described in section 2.4.2, we can

rewrite every RTD into RTD′ in which for every sequential dependency p
e
−→
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q, point p is either a rise/fall or the first point on its waveform. So an equivalent

definition of event is: (p, i) is an event if it satisfies one of the following rules:

1. i = 03.

2. (p, i) is either a rise or a fall4.

3. (p, i) belongs to a concurrent dependency that contains a rise or a fall5.

4. There exists a sequential dependency (q, j)
[a,a]
−→ (p, i) in which (q, j) is a

rise or a fall6.

By definition of event and well-formed RTD in section 2.1.3 and 2.1.5 respec-

tively, a one-waveform RTD is well-formed iff every point is an event. So for

well-formed one-waveform RTD, we only need to make sure for every point

(p, i) which is neither a rise/fall nor the first point, there exists a dependency

(q, j)
[a,a]
−→ (p, i) in which (q, j) is either a rise/fall or the first point and a is an

nonnegative integer.

The predicate PointInTDIsRiseFall[td, q] is true when q is either a rise or a

fall in td. q in ToPointOfSD[sd] and p in PrevOfqInsd says there exists a

dependency p
e
−→ q, and LowerBoundOfsdp2q=HigherBoundOfsdp2q

says the lower bound of e is the same as the higher bound of e. p
e
−→ q should

be the only dependency between point p and q if td is satisfiable. Because if

there exists more than one dependencies, for example p
[a,a]
−→ q and p

[a′,a′]
−→ q

(a 6= a′), then if there exists a word w |=π td, we have π(q) − π(p) = a

and π(q)− π(p) = a′ which contradicts a 6= a′. So we have #LowerBound-

Ofsdp2q=1 and #HigherBoundOfsdp2q=1 saying that there exists only

3It’s same as the first part of definition of event in section 2.1.3
4It’s same as the second part of definition of event in section 2.1.3
5Text in bold is the part that is different with the third part of definition of event in section

2.1.3
6Text in bold is the part that is different with the last part of definition of event in section 2.1.3
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one dependency between point p and q.

This fact says that if for all point q which is neither a rise/fall nor the first

point, there exists a point p which is either a rise/fall or the first point such

that there exists one dependency p
[a,a]
−→ q, then td is a well-formed RTD.

• pred PointValueMatch [td:SimpleTimingDiagram, pi:Pi, word:Word]

{all p:td.haspoint |

(p.hasvalue!=ValueX) =>

(p.hasvalue=word.position[pi.PositionPointMappedByPi[td, p, word]])

}

This predicate is true when point consistency 7 is satisfied. It says for every

point p, if p does not have value X, then p’s value is the same as the value in

word at position where p is mapped by pi.

• pred WaveformConsistencySatisfaction[td:SimpleTimingDiagram, pi:Pi,

word:Word]

{all p, q:td.haspoint | all j:Int |

(

TDPointNext[td, p, q] and (j<pi.PositionPointMappedByPi[td, q, word])

and (j>=pi.PositionPointMappedByPi[td, p, word]) =>

((p.hasvalue != ValueX)=>word.position[j]=p.hasvalue)

)

}

This predicate is true when waveform consistency is satisfied. It says for every

two successive points p and q, values at positions between where p and q are

mapped by pi are the same as value of p as long as p’s value is not X.

7It’s defined in Definition 2.2.6
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• pred SequentialDependencySatisfaction [td:SimpleTimingDiagram, pi:Pi,

word:Word]

{all sd:td.hassd | all p, q:td.haspoint | all i, j:Int |

let LowerBoundOfSDp2q=(q.(p.(sd.SDis))).Int |

let HigherBoundOfSDp2qLowerIsi=(i.(q.(p.(sd.SDis)))) |

( (p->q in ((sd.SDis).Int).Int) and (i in LowerBoundOfSDp2q) and

(j in HigherBoundOfSDp2qLowerIsi) ) =>

( sub[pi.PositionPointMappedByPi[td, q, word],

pi.PositionPointMappedByPi[td, p, word]]<=j

and

sub[pi.PositionPointMappedByPi[td, q, word],

pi.PositionPointMappedByPi[td, p, word]]>=i )

}

This predicate is true when dependency consistency is satisfied. It says for

every sequential dependency p
e
−→ q, pi(q)− pi(p) ∈ e.

Figure 3.1: An Alloy Specification

Figure 3.1 illustrates an Alloy specification that satisfies our specification. The
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top left box represents the RTD td; arrows labeled haspoint represent relation has-

point. Those arrows indicate td has three point: Point0 which has value X shown by

the arrow labeled hasvalue outgoing from it, Point1 which has value 0 and Point2

which has value 1. The arrow hassd indicates td has a sequential dependency.

The arrow labeled SDis[Point0, Point1, 1] indicates the sequential dependency is

Point0
[1,1]
−→ Point1. The RTD is well-formed, because there exists a sequential de-

pendency Point0
[1,1]
−→ Point1 when Point1 is neither a rise nor a fall.

The Word box represent a word and the arrow position[0] indicates value on po-

sition 0 is 0. So the word is 0001. The box labeled with Pi represent the assignment

π mapping from points of td to position in word. In this model, it maps Point0 to

the first position, Point1 to the second position, and Point2 to the fourth position.

So word |=pi td

3.2 Properties about RTD Checked using Alloy

We have checked some interesting properties about RTD using Alloy Analyzer under

certain bounds on number of RTDs, points, assignments, words, ... and so forth.

This cannot be considered to be correctness proof of properties because there are

infinite many RTDs and words, but it will gain us confidence about the correctness.

3.2.1 Unique Assignment

In Theorem 2.2.1, we have proved that given a RTD, for every word w that satisfies

it, there is only one assignment π s.t. w |=π RTD. We capture this in the following

Alloy assertion:
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assert PiUnique {

all td:SimpleTimingDiagram | all word:Word | all pi1, pi2:Pi |

(WordMatchTimingDiagramUnderPi[td, pi1, word] and

WordMatchTimingDiagramUnderPi[td, pi2, word])=>

((word.(td.(pi1.positionis))).is=(word.(td.(pi2.positionis))).is)

}

This assertion says for every RTD td, every word that satisfies td, if there exists

two assignments pi1 and pi2 that satisfies every facts and predicates in our specifi-

cation, then for every point in td, pi1 and pi2 map it to the same position in word.

We can check this assertion with the Alloy command:

check PiUnique for 6 but exactly 1 SimpleTimingDiagram, exactly 1 Word,

exactly 2 Pi

which means we check all models in which there is only one RTD, one word, and

two assignments. Figure 3.2 shows the result returned by Alloy Analyzer after it

checked assertion PiUnique.

Figure 3.2: Result of Check of PiUnique
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3.2.2 Checking Lack of Common Word

In Figure 2.4, we show for two RTDs each having two points, if none of their points

has value X and if their first points don’t have the same value, then they have no

disjunction. In this section, we will show another interesting property about such

pair of RTDs. That is, there is no word that satisfies both these two RTDs.

We can use Alloy Analyzer to check this. First we have a predicate saying each

of two RTDs has two points having value 0 or 1, and the first points of two RTDs

have different value, as follows:

pred FirstSecondPointDifferentValueAndNotX[td0, td1:SimpleTimingDiagram] {

#td0.haspoint=2 and

#td1.haspoint=2 and

some p1td0, p1td1:Point |

TDPointNext[td0, min[td0.haspoint], p1td0] and

TDPointNext[td1, min[td1.haspoint], p1td1] and

min[td0.haspoint].hasvalue !=ValueX and

p1td0.hasvalue != ValueX and

min[td1.haspoint].hasvalue !=ValueX and

p1td1.hasvalue != ValueX and

min[td0.haspoint].hasvalue != min[td1.haspoint].hasvalue and

p1td0.hasvalue !=p1td1.hasvalue

}

Then we have an assertion called FirstSecondPointDifferent, as follows:

assert FirstSecondPointDifferent {all td0, td1:SimpleTimingDiagram

| all word:Word | all pi0, pi1:Pi |

FirstSecondPointDifferentValueAndNotX[td0, td1]=>

not

(

WordMatchTimingDiagramUnderPi[td0, pi0, word] and

WordMatchTimingDiagramUnderPi[td1, pi1, word]

)

}
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This assertion says for all pair of RTDs td0 and td1, for all word, and for all pair

of assignment pi0 and pi1, if td0 and td1 satisfy predicate FirstSecondPointDiffer-

entValueAndNotX, then word cannot satisfy both td0 and td1.

Figure 3.3 shows the result returned by Alloy Analyzer after it checked assertion

FirstSecondPointDifferent. The ‘no counter-example found’ indicates the assertion

and predicates are unsatisfiable.

Figure 3.3: Result of Check of FirstSecondPointDifferent
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Chapter 4

Tight Bound Computation

Figure 4.1: RTD having a sequential dependency that is not a tight bound

Sequential dependencies don’t necessarily tell us the tightest time separations

between each pair of points. That is, there may exist at least one value in some

sequential dependency which does not represent the actual distance between the

end points in any word. For example, the timing diagram in Figure 4.1 only allows

words of length 5 due to the SDs between (p, 0) & (p, 1) and (p, 1) & (p, 2). Values

1-4 in time bound [1, 5] of (p, 0)
[1,5]
−→ (p, 2) do not occur in any word. The sequential

dependency (p, 0)
[1,5]
−→ (p, 2) is less restrictive than the constraints induced in the

rest of the diagram.

Our disjunction algorithm needs time separations between each pair of points to

be as tight as possible. In this chapter, we introduce a polynomial time algorithm

30



to find the tightest time separations1 between each pair of points. This algorithm

first computes an event graph from the given RTD, and computes the tight bound

between each pair of points using Floyd-Warshall algorithm [4].

Definition 4.0.1. Given a RTD=(Point, WF, Value, SD, CD), the tight bound

between points (p, i) and (q, j) denoted tbound(p,i),(q,j), has the form of 〈a, b〉2 in

which a is an integer or −∞, b is an integer or +∞ such that

1. For all word w, if w |=π RTD then π((q, j))− π((p, i)) ∈ tbound(p,i),(q,j).

2. If e ∈ tbound(p,i),(q,j) then there exists a word w s.t. w |=π RTD and π((q, j))−

π((p, i)) = e.

In Figure 4.1, tbound(p,0),(p,1) = [2, 2], tbound(p,1),(p,2) = [3, 3] and tbound(p,0),(p,2) =

[5, 5].

Computing tight bounds is a problem of finding the maximal achievable time

separation [9, 7]

dij = max(τ(j) − τ(i))

between pairs of events i and j, occurring at times τ(i) and τ(j) respectively. The

limits on the occurrence times of these events are specified by a system of timing

constraints. Different kinds of constraints require different algorithms.

• When timing constraints are of the form τ(j) − τ(i) ≤ sij in which sij is a

fixed bound for event i and j, they are called linear constraints.

• When timing constraints are of the form τ(j) = min(τ(i) + δij) or τ(j) =

max(τ(i) + δij) where δij is the delay from event i to event j and lij ≤ δij ≤

1It will be called tight bounds henceforth.
2When a = −∞ and b = +∞, it is (a, b);When a = −∞ and b 6= +∞, it is (a, b]; When a 6= −∞

and b = +∞, it is [a, b); When a 6= −∞ and b 6= +∞, it is [a, b].
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uij for fixed upper and lower bounds uij and lij, they are called min/max

constraints.

Kenneth McMillan and David Dill have proved that the problem of finding the

maximal achievable time separation under min/max constraints is NP-Complete

[9].

Timing constraints of RTDs are linear constraints. In chapter 5 of [7], Eduard

Cerny et al. mentioned that the all pair shortest path algorithm can be use to

solve the maximum time separation problem in system of linear constraints. But we

haven’t found any detailed algorithm nor its correctness proof. So in this chapter,

we give an algorithm to solve this problem and its correctness proof.

4.1 Event Graph

Given a RTD, we can interpret its timing relationship in a graph-theoretic point

of view by translating it into an event graph. Event graphs are complete directed

weighted graphs. Every point in RTD can be viewed as a vertex in its event graph

GRTD. When there is a sequential dependency p
〈a,b〉
−→ q, there is a weighted edge

from p to q with weight b, and a weighted edge from q to p with weight −a. The

formal definition of the event graph is as follows:

Definition 4.1.1. Given a RTD=(Point, WF, Value, SD, CD), its event graph

GRTD(Point, E, W ) is a complete directed weighted graph. W is a weight function.

For all points (p, i), (q, j) in Point:

• If (p, i)
[a,b]
−→ (q, j) ∈ SD, then ((p, i), (q, j)) ∈ E, W ((p, i), (q, j)) = b and

((q, j), (p, i)) ∈ E, W ((q, j), (p, i)) = −a.

• If (p, i)
[a,+∞)
−→ (q, j) ∈ SD, then ((p, i), (q, j)) ∈ E, W ((p, i), (q, j)) = +∞ and
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((q, j), (p, i)) ∈ E, W ((q, j), (p, i)) = −a.

• For points (p, i) and (q, j) between which there is no sequential dependency,

((p, i), (q, j)) ∈ E, W ((p, i), (q, j)) = +∞ and ((q, j), (p, i)) ∈ E, W ((q, j), (p, i)) =

+∞.

Figure 4.2: Event Graph from RTD in Figure 4.1

Figure 4.2 illustrates an event graph from the RTD in Figure 4.1.

We apply Floyd-Warshall algorithm on event graphs to compute the shortest

paths between each pair of points. For any pair of points (p, i) and (q, j), if the

shortest path from (p, i) to (q, j) is a and the shortest path from (q, j) to (p, i) is b,

then tbound(p,i),(q,j) is [−b, a]. This is the idea for computing tight bounds and we

will prove its correctness later in this chapter.

4.1.1 RTD Satisfiability and Event Graph

It turns out that we can check whether a given RTD is satisfiable by checking the

existence of negative cycles in its event graph. The event graph is well-defined

such that its negative cycles tells contradictions among sequential dependencies and

concurrent dependencies. For this section, we will prove that given a RTD, it is

satisfiable iff there exists at least one negative cycle in its event graph. We first

prove there is no negative cycle in event graphs of satisfiable RTDs.
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Theorem 4.1.1. For any satisfiable RTD, there is no negative cycle in its event

graph GRTD.

Proof.

If there exists an edge with weight +∞ in this cycle, certainly this cycle is not

Figure 4.3: a cycle in GRTD

negative. So we focus only on the case when no edge has a +∞ weight.

In an event graph, the weight between two vertices (points) can be either positive

or negative. When some edge from vertices p to q has weight dp,q ≥ 0, according

to definition of event graph, there exists a sequential dependency with upper bound

dp,q. Since RTD is satisfiable, there exists a word w such that

Vq − Vp ≤ dp,q when dp,q ≥ 0

in which Vp means the position where point p is mapped in w.

When some edge from vertices p to q has weight dp,q and dp,q ≤ 0, according

to definition of event graph, there exists a sequential dependency with lower bound

−dp,q. Since RTD is satisfiable, we have

Vp − Vq ≥ −dp,q when dp,q ≤ 0

which means
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Vq − Vp ≤ dp,q when dp,q ≤ 0

For any cycle, as illustrated by Figure 4.3, we have the following set of inequalities:

VPi1
− VPi0

≤ di0

VPi2
− VPi1

≤ di1

VPi3
− VPi2

≤ di2

... ≤ ..

... ≤ ..

... ≤ ..

VPi,0
− VPi,n

≤ din

When we add all these inequalities, we get

0 ≤

n∑

j=0

dij .

Since the edges in equations above form a cycle in event graph, left sides of all

inequalities above add up to 0. So for any cycle in event graph, the sum of weight

is not negative. So we have proved the theorem.

We then prove the theorem that given a RTD, if its event graph has no negative

cycle then it is satisfiable. To prove this theorem, we first give a way to construct a

word for RTD, then we prove the word we construct satisfies RTD.

Theorem 4.1.2. For any regular timing diagram RTD, if there is no negative cycle

in its event graph GRTD then RTD is satisfiable.

Proof. We construct the word satisfying RTD as follows:
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1: Given a RTD whose event graph GRTD has no negative cycle
2: Add a vertex v to GRTD

3: for all vertex p other than v do
4: add an edge v → p with weight 0
5: Apply the Floyd-Warshall algorithm on the graph we get from above. Let the

matrix returned by Floyd-Warshall algorithm be M
6: for all vertex p other than v do
7: Assign the integer Mv,p to p //Mv,p is the position where point p is mapped

in the word we are constructing.
8: Assign appropriate values from {0, 1} at position Mv,p for every point p.
9: for all consecutive points (p, i) and (p, i + 1) do

10: if (p, i) has value 0 or 1 then
11: Assign 0 or 1 to each position between Mv,(p,i) and Mv,(p,i+1)

12: else
13: Arbitrarily assign values from {0, 1} to positions between Mv,(p,i) and

Mv,(p,i+1)

We just need to prove the word we construct by the algorithm above satisfies

RTD.

We first prove the assignment of Mv,p to every point p in RTD satisfies all depen-

dency consistencies. This is to prove that for every sequential dependency p
[a,b〉
−→ q,

Mv,q −Mv,p ∈ [a, b〉 which is to prove Mv,q −Mv,p ≤ b and Mv,p −Mv,q ≤ −a 3.

By definition of event graph, when there is a sequential dependency p
[a,b〉
−→ q in

RTD, there are two edges in its event graph GRTD: (p, q) with weight b and (q, p)

with weight −a. For edge (p, q) with weight b, since Mv,p and Mv,q are the shortest

distances from v to p and q respectively, we have

Mv,q ≤Mv,p + b

which means

Mv,q −Mv,p ≤ b

For similar reasons, we can prove

3We assume all concurrent dependencies in RTD have been eliminated by the algorithm in
section 2.4.1
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Mv,p −Mv,q ≤ −a

So the assignment of Mv,p to every point p in RTD satisfies all dependency consis-

tencies.

It’s not difficult to see that the word returned by the algorithm above satisfies

point consistency by line 8, and it satisfies waveform consistency by lines from line

9 to line 13.

So we have proved the theorem.

Example 4.1.1. Given RTD illustrated in Figure 4.1, there is no negative cycle

in its event graph in Figure 4.2. By the algorithm on page 36, Mv,(p,0) = −5,

Mv,(p,1) = −3 and Mv,(p,2) = 0. Since (p, 0) has value X, we can assign either 0 or 1

at position Mv,(p,0). (p, 1) and (p, 2) have value 0, so we can only assign 1 at position

Mv,(p,1) and Mv,(p,2). At each position between Mv,(p,0) and Mv,(p,1), we can assign

either 0 or 1. At each position between Mv,(p,1) and Mv,(p,2), we can only assign 0.

So the word return by the algorithm on page 36 is:

({p}, p : 110000)

Theorem 4.1.3. Given a regular timing diagram RTD, it is satisfiable iff there is

no negative cycle in its event graph GRTD.

Proof. By Theorem 4.1.1 and Theorem 4.1.1, we can prove this theorem.

4.2 Tight Bound Algorithm

Our tight bound algorithm on page 45 has three parts, the first part accepts an RTD

and returns its event graph. The second part applies Floyd-Warshall algorithm on

the event graph to find shortest paths between all pair of points. The third returns

tight bounds between all pair of points. This algorithm runs in polynomial time. It
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has complexity O(|Point|3).

From the tight bound algorithm on page 45, we can get the following lemma:

Lemma 4.2.1. For all RTD, for any pair of points p and q from GRTD, boundp,q =

〈a, b〉 iff boundq,p = 〈−b,−a〉, bound is the matrix returned by the tight bound algo-

rithm on page 45.

Proof. By tight bound algorithm, b is the shortest distance from p to q in event

graph, and −a is the shortest distance from q to p in event graph. So we have

proved this lemma.

4.2.1 Correctness Proof

By Definition 4.0.1, in order to prove the matrix bound returned by our tight bound

algorithm produces tight bounds between any pair of points, we need to prove two

theorems. The first (Theorem 4.2.1) is that every word corresponds to integers from

bound; this theorem satisfies item 1 of Definition 4.0.1. The second (Theorem 4.2.2)

is that for any pair of points p and q, every integer in boundp,q corresponds to at

least one word; this satisfies item 2 of Definition 4.0.1.

Theorem 4.2.1. For every word w, if w |=π RTD then π(q)− π((p, i)) ∈ boundp,q

for every pair of points p and q, where bound is the matrix returned by the tight

bound algorithm on page 45.

Proof. By the tight bound algorithm, boundp,q can be defined by a table which is:

when D(q, p) = +∞ when D(q, p) 6= +∞

when D(p, q) = +∞ boundp,q = (−D(q, p), D(p, q)) boundp,q = [−D(q, p), D(p, q))

when D(p, q) 6= +∞ boundp,q = (−D(q, p), D(p, q)] boundp,q = [−D(q, p), D(p, q)]

We will only prove

π(q)− π(p) < D(p, q) or π(q)− π(p) ≤ D(p, q)

38



depending on whether D(p, q) is +∞ or not. The reason is by Lemma 4.2.1

π(q)− π(p) > −D(q, p) or π(q)− π(p) ≥ −D(q, p)

can be proved by

π(p)− π(q) < D(q, p) or π(p)− π(q) ≤ D(q, p)

When D(p, q) = +∞, since word w is finite, we have π(q)−π(p) < D(p, q) trivially.

When D(p, q) 6= +∞, by our algorithm there exists a path p → r → ... → q in

event graph GRTD along which there is no edge having weight +∞. In the proof

of Theorem 4.1.1, we have proved in event graph GRTD, for any edge p → r with

weight dp,r, for any word w that satisfies RTD, π(r)− π(p) ≤ dp,r. Each edge along

the path corresponds to one inequality of this form. All left side of inequalities from

the path p→ r → ...→ q add up to π(q)− π(p) and all weights along the path add

up to D(p, q). So we have proved

π(q)− π(p) ≤ D(p, q)

which proves this theorem.

Theorem 4.2.2. Given a satisfiable regular timing diagram RTD, after we run

the tight bound algorithm on it, for any pair of points p and q, for any integer

m ∈ boundp,q, there exists a word w |=π RTD s.t. π(q)− π(p) = m.

Proof. Let the event graph of RTD be GRTD. The sketch of our proof is we first

change the weight of edges (p, q) and (q, p) in GRTD to m and −m respectively to

get another graph G′, then we prove G′ has no negative cycle. We prove G′ has no

negative cycle because we need to prove the corresponding timing diagram RTD′

(whose event graph is G′) is satisfiable5.

We define graph G′ as: VG′ = VGRTD
, EG′ = EGRTD

and for each edge e

5By Theorem 4.1.1, G′ is satisfiable iff there is no negative cycle in RTD′.
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other than (p, q) and (q, p), WFG′(e) = WFGRTD
(e) while WFG′((p, q)) = m and

WFG′((q, p)) = −m.

We then prove there is no negative cycle in G′. Since RTD is satisfiable, there

is no negative cycle in its event graph GRTD. For each cycle in G′, if each edge in it

is neither (p, q) nor (q, p), it is not negative cycle because this is a cycle that is also

in GRTD. For each cycle in G′ which contains edges (p, q) or (q, p):

• If it contains (p, q), let the cycle be p → q → r → ... → s → p and let the

sum of weight along path q → r → ... → s → p be S. Since this cycle is also

in GRTD but with different weight of edge (p, q), we have:

WGRTD
((p, q)) + S ≥ 0

since WG′((p, q)) = m and m ∈ boundp,q
6. Let boundp,q be [a, b]. By the tight

bound algorithm, −a is the shortest distance from q to p in GRTD. Therefore,

S ≥ −a. Since m ∈ [a, b], m− a ≥ 0. Therefore m + S ≥ 0 which means this

cycle is not a negative cycle in G′.

• Proof is similar when (q, p) is in the cycle.

So we have proved that G′ has no negative cycle. Using the same technique as the

algorithm on page 36, we first add a new vertex v to G′ and compute the shortest

distance between v and each vertex p in G′ which is Mv,p. By definition of G′, it

keeps all dependencies in GRTD. Therefore, by Theorem 4.1.1 the assignment of Mv,p

to each vertex p in G′ satisfies all dependencies in GRTD. Therefore, with Mv,p for

each vertex p, we can construct a word w by assigning appropriate values from {0, 1}

to positions in w by the algorithm on page 36. w |=π RTD and π(q)− π(p) = m.

So we have proved this theorem.

6The matrix bound is the result we get after we run the tight bound algorithm on GRTD
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4.3 RTD Transformation using Tight Bound Com-

putation

As we said in section 2.4, we transform given RTDs into another form without

changing their language in order to simplify the design of our tight bound algorithm

and the proof of its correctness and completeness.

Definition 4.3.1. In RTD={Point, WF, Value, SD, CD}, a point (p, i) ∈ Point is

a non-transition point if (p, i) is not the first point on waveform p and V alue((p, i)) 6=

V alue((p, i− 1)).

In a well-formed RTD, there can be some points which are not transitions. For

example in Figure 2.1, point (a, 2), (b, 2), (b, 4), and (c, 2) are non-transition point.

Eliminating non-transition points simplifies the disjunction algorithm and its

proofs. So in this section, we present a method to eliminate non-transition points

which are neither the first nor the last points.

Our algorithm to eliminate non-transition points in previous sentence is as fol-

lows:
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1: Given RTD={Point, WF, Value, SD, CD}

2: Apply method in section 2.4.1 to eliminate all concurrent dependencies.

3: Apply method in section 2.4.2 to rewrite all sequential dependencies.

4: for each point p which is non-transition point and is neither the first nor the

last point do

5: there exists a sequential dependency t
[k,k]
−→ p

6: for each sequential dependency s
〈x,y〉
−→ p do

7: Eliminate this sequential dependency by adding sequential dependency

s
〈x−k,y−k〉
−→ t

8: Get points q and r s.t. q is the preceding point of p and p is the preceding

point of r

9: Add two sequential dependencies t
tboundt,q

−→ q and t
tboundt,r

−→ r7

10: Remove point p

This algorithm will terminate because during each iteration, we eliminate one

non-transition point without adding any point.

Example 4.3.1. For the RTD in Figure 2.1, after we eliminate non-transition

points which are neither the first nor the last points, we get another RTD as shown

in Figure 4.4
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Figure 4.4: Result after Non-transition Points Elimination

Lemma 4.3.1. Let tboundt,q and tboundt,r at line 9 of the non-transition elimination

process be 〈b, c〉 and 〈d, e〉 respectively. Then c < k and d > k.

Proof. Since 〈b, c〉 and 〈k, k〉 are the tight bounds between t & q and t & p respec-

tively, there exists a word w |=π RTD s.t. π(q) − π(t) = c and π(p) − π(t) = k.

Since q ≤+ p, π(p) > π(q) which means π(p) − π(t) > π(q) − π(t) which means

k > c.

We can use the similar way to prove k > c.

Theorem 4.3.1. Given RTD, if there is a point p which is neither the first nor

the last point and it’s a non-transition point, and if p is in only one sequential

dependency which is t
[k,k]
−→ p, then after we add two sequential dependencies t

tboundt,q

−→

q and t
tboundt,r

−→ r in which q is the preceding point of p and p is the preceding point of

r, we can remove p and sequential dependency t
[k,k]
−→ p without changing its language.

Proof. Given RTD, after we add two sequential dependencies t
tboundt,q

−→ q and t
tboundt,r

−→

r, we get another timing diagram RTD′. For each word w in L(RTD′), w is in

L(RTD) because RTD keeps the same points, sequential dependencies, and concur-
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rent dependencies as RTD′ except for t
tboundt,q

−→ q and t
tboundt,r

−→ r. For each word w

in L(RTD), w is in L(RTD′) because by definition of tight bound, if w |=π RTD,

then π(q)−π(t) ∈ tboundt,q and π(r)−π(t) ∈ tboundt,r which means π also satisfies

the only two sequential dependencies in RTD′ not in RTD.

We then get another timing diagram RTD′′ after we remove point p and sequen-

tial dependency t
[k,k]
−→ p from RTD′. We need to prove L(RTD′)= L(RTD′′).

L(RTD′)⊆ L(RTD′′) because RTD′′ keeps all the same points, sequential de-

pendencies and concurrent dependencies as RTD′ except for point p and sequential

dependency t
[k,k]
−→ p.

We then prove L(RTD′′)⊆ L(RTD′). Let tboundt,q be 〈b, c〉 and tboundt,r be

〈d, e〉. For every word w |=πRTD′′, we have π(q)− π(t) ≤ c which means

π(q) ≤ π(t) + c

We also have π(r)− π(t) ≥ d which means

π(r) ≥ π(t) + d

Since we have proved in Lemma 4.3.1 that c < k < d, we have

π(q) < π(t) + k < π(r)

which means the position π(t) + k in w is always between π(q) and π(r). So we can

build an assignment π′ which is:

π′(p) =





π(p) if p is a point in RTD′′

π(t) + k if p is the only point in RTD′ not in RTD′′

in which t
[k,k]
−→ p is the only sequential dependency in RTD′ not in RTD′′ and

w |=π′RTD′.

So we have proved this theorem.
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Algorithm 1 Tight Bound Algorithm

Given a RTD=(Point, WF, Value, SD, CD), returns matrix bound on points.

//The first part

The event graph of it is GRTD(Point, E, W ) in which W is a weight function.
E ← {}
for all (p, i) ∈ Point do

for all (q, j) ∈ Point and (q, j) 6= (p, i) do

if (p, i)
[a,b]
−→ (q, j) ∈ SD then

E ← E
⋃
{((p, i), (q, j)), ((q, j), (p, i))}

W ((p, i), (q, j)) = b, W ((q, j), (p, i)) = −a

else if (p, i)
[a,+∞)
−→ (q, j) ∈ SD then

E ← E
⋃
{((p, i), (q, j)), ((q, j), (p, i))}

W ((p, i), (q, j)) = +∞, W ((q, j), (p, i)) = −a
else

E ← E
⋃
{((p, i), (q, j)), ((q, j), (p, i))}

W ((p, i), (q, j)) = +∞, W ((q, j), (p, i)) = +∞

//The second part

D=Floyd-Warshall(GRTD)4

//The third part

for all (p, i) ∈ Point do
for all (q, j) ∈ Point and (q, j) 6= (p, i) do

if D((p, i), (q, j)) > 0 then
if D((p, i), (q, j)) 6= +∞ then

if D((q, j), (p, i)) 6= +∞ then
bound(p,i),(q,j) = [−D((q, j), (p, i)), D((p, i), (q, j))]

else
bound(p,i),(q,j) = (−D((q, j), (p, i)), D((p, i), (q, j))]

else
if D((q, j), (p, i)) 6= +∞ then

bound(p,i),(q,j) = [−D((q, j), (p, i)), D((p, i), (q, j)))
else

bound(p,i),(q,j) = (−D((q, j), (p, i)), D((p, i), (q, j)))
Return bound
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Chapter 5

Disjunction Algorithm

Recall that in section 2.3, we illustrated that not every pair of regular timing di-

agrams has a disjunction that can be represented as a timing diagram. In this

chapter, we give an algorithm that decides whether given pair of regular timing di-

agrams have a disjunction1, and returns a disjunction if two given timing diagrams

have one.

We first give an algorithm that decides the disjunction problem for timing di-

agrams with only one waveform. Then we show that the disjunction problem for

timing diagrams with multiple waveforms can be solved using the result of one

waveform case.

5.1 Disjunction of One-Waveform RTD

In this section, we focus on regular timing diagrams with only one waveform. So we

assume all terms mentioned in this section as ‘regular timing diagram’ or ‘timing

diagram’ really mean ‘regular timing diagram with one waveform’.

1The word ‘disjunction’ means a timing diagram whose language is the union of languages of
given timing diagrams. It is defined in Definition 2.3.1.
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Regular timing diagrams contain points and timing constraints on pairs of points.

In order to find a disjunction of two given timing diagrams, we therefore need to

find a way to appropriately disjoin points and timing constraints from the given

timing diagrams. Our approach is that we find pairs of points p and q from two

given timing diagrams respectively. If there exists a disjunction of two given timing

diagrams, then there exists points r such that for any word from one of given timing

diagrams, r is mapped to the same position as p (in the timing diagram where point

p is in) or q (in the timing diagram which point q is in) and the value of r is the

disjunction of values of p and q. In regular timing diagrams, values of points can be

either 0, 1, or X. We define disjunction on {0, 1, X} as follow:

∨ 0 1 X

0 0 X X

1 X 1 X

X X X X

In the following sections, we formalize the notion of points above as concrete points

and some examples illustrating we sometimes might need to add concretes points to

given timing diagrams in order to find their disjunction.
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5.1.1 Concrete Points

Figure 5.1: Concrete Point

Figure 5.1 shows two regular timing diagrams TD1 and TD2 and their disjunction

timing diagram TD. We notice that there exists pairs of points p and q from TD1

and TD2 respectively such that there is a point r in TD that corresponds to them.

By ‘corresponds’, we mean for any word w in L(TD1) (or L(TD2)), point p (or q)

is mapped to the same position in w as point r. For example, the first point (p, 0)

in TD1 and the first point (q, 0) in TD2 correspond to the first point (r, 0) in TD.

The last point (p, 4) in TD1 and the last point (q, 3) in TD2 correspond to the last

point (r, 3) in TD. Point (p, 3) from TD1 and point (q, 2) from TD2 correspond to

point (r, 2) in TD. For any word w that satisfies TD1, (p, 3) is mapped to position

10 and (r, 2) is mapped to position 10 in w. For any word w′ that satisfies TD2,

(q, 2) is mapped to position 10 and (r, 3) is mapped to position 10 in w′.

We call points (p, 0), (p, 3) and (p, 4) concrete points in TD1 and we call points

(q, 0), (q, 2) and (q, 3) concrete points in TD2.

Definition 5.1.1. Given regular timing diagrams TD0 and TD, for all word w

such that w |=π0 TD0 and w |=π TD, if for point p from TD0 and r from TD,

π0(p) = π(r) then p and r are concrete points and (p, r) is a concrete pair.
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The first and last points are always concrete points.

For regular timing diagrams with one waveform, we define their prefix as follow:

Definition 5.1.2. Given RTD (Point, WF, Value, SD, CD) in which |WF | = 1

(without loss of generality, let WF = {p}), a prefix of it preRTD,(p,i) is a tuple

(Point(p,i), WF, V alue(p,i), SD(p,i), CD(p,i)) in which

• The nonnegative integer i is less than or equal to the number of points on p.

• Point(p,i) = {(p, j) | 0 ≤ j < i}

• V alue(p,i) is defined on domain Point(p,i) and ∀0 ≤ j < i.V alue(p,i)((p, j)) =

V alue((p, j)).

• SD(p,i) = {(p, m)
e
−→ (p, n) | 0 ≤ m, n < i, (p, m)

e
−→ (p, n)∈ SD}

• {(p, i0), (p, i1), ..., (p, in)} ∈ CD(p,i) iff {(p, i0), (p, i1), ..., (p, in)} ∈ CD and

∀m ∈ [0, n]. 0 ≤ im ≤ i.

By the above definition, if a regular timing diagram TD is well-formed, then

all of its prefixes except the one with only one point (the first point of TD) are

well-formed.

Our algorithm starts from the first point, gradually enlarges the prefix of both

TD0 and TD1 for which we have found a disjunction by disjoining concrete points

and adding appropriate timing dependencies from prefix to the new added concrete

points.
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Figure 5.2: Disjunction algorithm example

Example 5.1.1. Figure 5.2 shows an example on which we apply the disjunction

algorithm. At the beginning, the prefix of TD0 and TD1 each contains only one

point which is the first point.

• We add one point to TD whose value is the disjunction of values of (p, 0) and

(q, 0).

• We extend prefixes of TD0 and TD1 to include (p, 1) and (q, 1) respectively

and we add point (r, 1) to TD whose value is the disjunction of values of (p, 1)

and (q, 1).

• We add a sequential dependency (r, 0)
[2,3]
−→ (r, 1) whose bound [2, 3] is the union

of that of sequential dependencies (p, 0)
[2,2]
−→ (p, 1) and (q, 0)

[3,3]
−→ (q, 1) from

TD0 and TD1 respectively.

• We add point (r, 2) and sequential dependencies (r, 1)
[2,3]
−→ (r, 2), (r, 0)

[5,5]
−→

(r, 2) to TD.

TD is a disjunction of TD0 and TD1.
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5.1.2 Adding Points

Our algorithm tries to find concrete points in TD0 and TD1, then generates a

disjunction of TD0 and TD1 by disjoining values of concrete points and generating

correct dependencies in TD. But sometimes we need to add some points to TD0 or

TD1 to help us generate their disjunction TD.

Figure 5.3: Adding point

For example: the timing diagrams in Figure 5.3 are similar to timing diagrams

shown in Figure 5.1, except that we add a point with value 0 between the first and

second points in TD1 and a sequential dependency with bound [1, 1]. What TD2

really means is that there is one 0 followed by nine uncertain values which can be

either 0 or 1. What TD1 really means before we add (p, 1) is that there are either

three or four 0 followed by some 1 and 0 and the total number of digits before the

last rise should be 10. TD1 can also be interpreted as there is one 0 followed by

either two or three 0 followed by some 1 and 0 and the total number of digits before

the last rise should be 10. If we interprete TD1 in the second way, it’s easy to find

concrete points in it which are (p, 0), (p, 1), (p, 4) and (p, 5) and generate disjunction

timing diagram TD.

This example shows that properly adding points can help us finding disjunction
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of given regular timing diagrams. There are also examples showing that if we don’t

add any point, we cannot find a correct disjunction of given timing diagrams. A

simple example of this kind is in Figure 5.4:

Figure 5.4: Example illustrating adding point is necessary

In this example, both TD0 and TD1 are well-formed, and there are no non-

transition points between the first and the second points (not-inclusive). If we don’t

add any point between (p, 0) and (p, 1) in TD0, we cannot find their disjunction.

The reason is that after we find two points which capture disjunctions of (p, 0), (q, 0)

and (p, 1), (q, 1) respectively, there is still a point (q, 2) in TD1 and we run out of

points in TD0.

5.1.3 Disjunction Type

If two regular timing diagrams TD0 and TD1 have disjunction TD, then there can

be several relationships between L(TD0) and L(TD1).

• L(TD0)=L(TD1). We call this type ‘full-full’. In this case, L(TD)=L(TD0)=

L(TD1).

• L(TD0)⊂L(TD1) (or L(TD1)⊂L(TD0)). We call this type ‘full-partial’ (or

‘partial-full’). In this case, L(TD)=L(TD1) (or L(TD)=L(TD0)).
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• L(TD0)*L(TD1) and L(TD1)*L(TD0). We call this type ‘partial-partial’.

In this case, L(TD0) and L(TD1) partition L(TD) but neither of them equals

L(TD).

Definition 5.1.3. We can define an operator ∗ on {Full-Full, Full-Partial, Partial-

Full, Partial-Partial} as follows:

∗ Full-Full Full-Partial Partial-Full Partial-Partial

Full-Full Full-Full Full-Partial Partial-Full Partial-Partial

Full-Partial Full-Partial Full-Partial undefined undefined

Partial-Full Partial-Full undefined Partial-Full undefined

Partial-Partial Partial-Partial undefined undefined undefined

Remember that timing diagrams which have different syntax may have the same

language. So the timing diagram returned by our disjunction algorithm might be

different from any of given timing diagrams.

5.1.4 Disjunction Algorithm

Our disjunction algorithm accepts two well-formed regular timing diagrams and ei-

ther returns a well-formed regular timing diagram, whose language is the disjunction

of that of the given two, or returns ‘NO DISJUNCTION’ otherwise.

This algorithm starts from the first points of TD0 and TD1, and tries to enlarge

the two prefixes on TD0 and TD1 to find disjunction of two enlarged prefixes. We

apply algorithms on page 15, 17 and 42 before we call the disjunction algorithm.

These guarantee that there are no non-transition points in TD0 and TD1. Given

this, at each step we enlarge two prefixes on TD0 and TD1, we always enlarge each

by one point. On page 55, we give a table which summarizes all possible cases when
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two prefixes can be enlarged. In the table:

• The second column describes values of last points in prefixes and points to be

included in enlarged prefixes. For example, in the second column of case 1, X

X;X m means the last point in TD0’s prefix has value X and the point to be

included in enlarged prefix in TD0 has value X; the last point in TD1’s prefix

has value X and the point to be included in enlarged prefix in TD0 has value

m. m, n ∈ {0, 1} and m 6= n.

• The third column describes disjunction types. The last row describes con-

straints on the tight bound between last point of prefix and point to be in-

cluded. [a, b] and [a′, b′] are tight bounds between last points of prefixes and

points to be included in enlarged prefixes.
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case 1 X X; X m full-partial [a′, b′] ⊆ [a, b]

case 2 X m; X n partial-partial [a′, b′] = [a, b] = [1, 1]

case 3 X m; X m full-full or b ≥ a′ and b′ ≥ a

full-partial or

partial-partial

case 4 X X; m X full-partial [a′, b′] ⊆ [a, b]

case 5 X m1; m0 m1 full-partial [a′, b′] ⊆ [a, b]

and m0, m1 ∈ {0, 1}

case 6 m X; n X partial-partial [a′, b′] = [a, b] = [1, 1]

case 7 m0 m1; n m1 partial-partial [a′, b′] = [a, b] = [1, 1]

and m0 6= n

(n, m0, m1 ∈ {0, 1})

case 8 m X; m X full-full or b ≥ a′ and a ≤ b′

full-partial or

partial-partial

case 9 m0 X; m0 m1 full-partial m0, m1 ∈ {0, 1}

[a′, b′] ⊆ [a, b]

case 10 m0 m1; m0 n partial-partial m0, m1, n ∈ {0, 1}

m1 6= n

[a, b] = [a′, b′] = [1, 1]

case 11 m n; m n full-full or m 6= n

full-partial or b ≥ a′ and

partial-partial a ≤ b′

case 12 X X; m n full-partial m 6= n

[a′, b′] ⊑ [a, b]

55



On page 57, we give our disjunction algorithm for one-waveform regular timing

diagrams.

5.1.5 Correctness Proof

By Definition 5.1.2, for any one-waveform timing diagram TD, if any of its prefix

except the one with only one point is not well-formed, then TD is not well-formed.

Line 12 of function add-dependencies on page 58 guarantees that if the disjunction

algorithm returns a timing diagram, it should be well-formed.

To prove the disjunction algorithm for one-waveform RTDs is correct, we need

to prove:

1. Given TD0 and TD1, if the disjunction algorithm returns a TD, then their

disjunction exists and TD is one of them2.

2. If the disjunction algorithm returns ‘NO DISJUNCTION’, then their disjunc-

tion does not exist.

The disjunction algorithm iterates over inputs TD0 and TD1. Each iteration accepts

the prefix from the last iteration and extends the prefix to a larger one until all

points and timing dependencies are considered. In each iteration, we have two

choices: either add a new point that was not in original timing diagram TD0 or

TD1 or extend prefixes without adding any point. So when the disjunction algorithm

returns TD, there exists a sequence of choices. We can describe this sequence of

choice as a sequence of point triples. The first and last point triples in this sequence

contains the first and last points on TD0, TD1 and TD respectively. For example,

the first point triple is ((p, 0), (q, 0), (r, 0)) in which (p, 0), (q, 0), and (r, 0) are the

first points in TD0, TD1 and TD respectively. For each intermediate point triple,

2There can be multiple timing diagrams which have the same language.
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Algorithm 2 A Disjunction Algorithm for RTD with One Waveform
1: one-waveform-disj(preTD0,(p,i), preTD1,(q,j), mark, S)

//mark is the disjunction type of preTD0,(p,i) and preTD1,(q,j). S is a set: ((p, m), (q, n), (r, o)) ∈
S if (p, m) is a point in preTD0,(p,i), (q, n) is a point in ∈ preTD1,(q,j) and the value of (r, o) is
disjunction of that of (p, m) and (q, n).

2: if preTD0,(p,i) 6= TD0 and preTD1,(q,j) 6= TD1 then

3: Let bound(p,i),(p,i+1) = [a, b] and bound(q,j),(q,j+1) = [a′, b′]
4: L0: Choose untried choice(s) from choice 1 and choice 2, if both are tried return ‘NO

DISJUNCTION’
choice 1 (this choice can only be tried when b < b′):

add a point (p, m) having the same value as (p, i) and sequential dependency: (p, i)
[a′,b′]
−→

(p, m)
5: if (p, i) (p, m); (q, j) (q, j + 1) isn’t in one of 12 cases then

6: terminate this choice and return to L0.
7: else

8: Let the disjunction type of (p, i) (p, m); (q, j) (q, j + 1) be mark′

9: if (mark contradicts mark′ AND NOT(mark = Partial-Partial AND p(i) = 0 or 1
AND q(j) = 1 or 0 AND p(m) = q(j + 1)) then

10: terminate this choice and return to L0.
11: else

12: mark ← mark ∗mark′

13: if mark = Partial-Partial AND p(i) = 0 or 1 AND q(j) = 1 or 0 AND p(m) = q(j+1)
then

14: mark ← Partial-Partial

15: call function add-dependencies(preTD0,(p,i), (p, i + 1), preTD1,(q,j), (q, j + 1), S, mark)
on page 58

16: choice 2: without adding point
17: if [a, b] ∩ [a′, b′] 6= φ then

18: if (p, i) (p, i + 1);(q, j) (q, j + 1) both with bound [1, 1] isn’t in one of 12 cases then

19: terminate this choice and return to L0.
20: else

21: get mark′ of (p, i) (p, i + 1);(q, j) (q, j + 1) both with bound [1, 1]
22: if (mark contradicts mark′ AND NOT(mark = Partial-Partial AND p(i) = 0 or 1

AND q(j) = 1 or 0 AND p(m) = q(j + 1)) then

23: terminate this choice and return to L0

24: else

25: mark ← mark ∗mark′

26: if mark = Partial-Partial AND p(i) = 0 or 1 AND q(j) = 1 or 0 AND p(m) =
q(j + 1) then

27: mark ← Partial-Partial

28: call function add-dependencies(preTD0,(p,i), (p, m), preTD1,(q,j), (q, j + 1), S, mark)
on page 58

29: else

30: terminate this choice and return to L0.
31: else

32: if only one of preTD0,(p,i) = TD0 and preTD1,(q,j) = TD1 is true then

33: return ‘NO DISJUNCTION’
34: else

35: return TD.
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1: add-dependencies(preTD0,(p,i), (p, i + 1), preTD1,(q,j), (q, j + 1), S, mark)
2: for all ((p, x), (q, y), (r, z)) ∈ S do
3: compute tight bound bound(p,x),(p,i+1) = [m, n] and bound(q,y),(q,j+1) = [m′, n′]
4: if n′ < m or n < m′ then
5: terminate this choice and return to L0.
6: else

7: add sequential dependency (r, z)
[m,n]∪[m′,n′]
−→ (r, k + 1), we get preTD0,(p,i+1)

and preTD1,(q,j+1)

//value of (r, k + 1) is disjunction of that of (q, j + 1) and (p, i + 1)
8: if [m, n] and [m′, n′] don’t contradict mark then
9: update mark according to [m, n] and [m′, n′].

10: else
11: mark ← Partial-Partial
12: if (r, k + 1) is not an event then
13: terminate this choice and return to L0.
14: else
15: call function equality(preTD0,(p,i+1), preTD1,(q,j+1), S, mark)
16: if the above function return false then
17: terminate this choice and return to L0.
18: else
19: call function one-waveform-disj(preTD0,(p,i+1), preTD1,(q,j+1), mark, S ∪

{((p, i + 1), (q, j + 1), (r, k + 1)})

1: equality(preTD0,(p,i+1), preTD1,(q,j+1), S, mark)
2: for all ((p, m), (q, n), (r, x)) ∈ S,(p, m′), (q, n′), (r, x′)) ∈ S do
3: replace the original sequential dependency between (r, x) and (r, k + 1) to

tbound(p,m),(p,i+1) − tbound(q,n),(q,i+1).
4: replace the original sequential dependency between (r, x′) and (r, k + 1) to

tbound(q,n′),(q,i+1) − tbound(p,m′),(p,i+1).
5: if there is no negative cycle in GpreTD,(r,k+1)

then
6: return false
7: for all ((p, m′′), (q, n′′), (r, x′′)) ∈ S such that ((p, m′′), (q, n′′), (r, x′′)) 6=

((p, i + 1), (q, j + 1), (r, k + 1)) do
8: replace the original sequential dependency between (r, x) and (r, k + 1) to

tbound(p,m),(p,i+1) − tbound(q,n),(q,i+1).
9: replace the original sequential dependency between (r, x′) and (r, x′′) to

tbound(q,n′),(q,n′′) − tbound(p,m′),(p,m′′).
10: if there is no negative cycle in GpreTD,(r,k+1)

then
11: return false
12: mark ← Partial-Partial
13: return true
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points in it are supposed to be mapped to the same position inside each common

word.

Theorem 5.1.1. Given TD0 and TD1, if the disjunction algorithm returns TD,

then L(TD0) ∪ L(TD1) ⊆ L(TD).

Proof. We only prove L(TD0) ⊆ L(TD). The proof that L(TD1) ⊆ L(TD) is

similar.

Since the disjunction algorithm returns TD, there exists a sequence of point

triples (p, q, r) as returned by the disjunction algorithm. We prove by induction on

the sequence of point triples that for all word w |=π0 TD0, there exists an assignment

π such that w |=π TD and for each point triple (p, q, r), π0(p) = π(r).

For the first point triple ((p, 0), (q, 0), (r, 0)), by the disjunction algorithm, when

the value of (r, 0) is not X, it has the same value as (p, 0). So V alue((r, 0)) ⊑

w(π((r, 0))).

Suppose for the ith point triple ((p, i), (q, i), (r, i)), π satisfies point consistency,

waveform consistency and dependency consistency for all points and dependencies

before (r, i) (including (r, i)).

We then prove for the (i+1)th point triple ((p, i+1), (q, i+1), (r, i+1)), π satisfies

point consistency, waveform consistency and dependency consistency. There are two

cases for this point triple: (p, i+1) is a new added point or it is a point in the original

TD0.

1. When (p, i+1) is a new added point, by the disjunction algorithm, if the value

of (r, i + 1) is not X, then (r, i + 1) and (p, i + 1) have the same value. So

V alue((r, i + 1)) ⊑ w(π((r, i + 1))) which means π satisfies point consistency

with respect to (r, i + 1) and w. For each digit w(d) between where (r, i) and

(r, i + 1) are mapped in w, V alue((r, i + 1)) ⊑ w(d) which means π satisfies
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waveform consistency. By the disjunction algorithm, for each sequential de-

pendency (r, m)
e
−→ (r, i + 1) between a previous point (r, m) and (r, i + 1),

tbound(p,m),(p,i+1) ⊆ e. By definition of tight bounds, π satisfies dependency

consistency.

2. When (p, i + 1) is not a new added point, let tbound((p, i), (p, i + 2)) = [a, b]

and tbound((q, i), (q, i + 1)) = [a′, b′]. By the disjunction algorithm, b′ < b

which means the new added point (p, i + 1) is always mapped between where

(p, i) and (p, i + 2) are mapped, and has the same value as (p, i). Since if the

value of (r, i + 1) is not X, it has the same value as (p, i + 1), π satisfies point

consistency with respect to (r, i +1) and w. For the similar reason as the first

case, π satisfies waveform consistency and dependency consistency.

So we have proved this theorem. This proof also shows the disjunction algorithm

correctly finds concrete points in TD0 and TD1.

In order to prove TD is a disjunction of TD0 and TD1, we also need to prove

TD is not satisfied by words that are in neither L(TD0) nor L(TD1).

Theorem 5.1.2. Given TD0 and TD1, if the disjunction algorithm returns TD,

then L(TD) ⊆ L(TD0) ∪ L(TD1).

Proof. We prove that for every word w |=π TD, there exists an assignment π′ such

that w |=π′ TD0 or w |=π′ TD1.

Notice that when the disjunction algorithm returns TD, it also returns the dis-

junction type of TD0 and TD1. Their disjunction type can be Full-Full, Full-Partial,

Partial-Full, or Partial-Partial.

When the disjunction algorithm returns Full-Full, by the disjunction algorithm,

for each point triple (p, q, r), the value of p, q and r are the same. For every
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two point triples ((p, i), (q, j), (r, k)) and ((p, i′), (q, j′), (r, k′)), tbound(p,i),(p,i′) =

tbound(q,j),(q,j′) = e in which e is the bound of sequential dependency (r, k)
e
−→

(r, k′). We prove w |=π′ TD0 under the assignment π′ defined as: for each point

triple (p, q, r), π(r) = π′(p). Since in each point triple (p, q, r), the value of p and

the value of r are the same, π′ satisfies point consistency and waveform consistency.

For every sequential dependency p
d
−→ p′ in TD0, by definition of tight bound,

tboundp,p′ ⊆ d. Let the point triples where r and r′ in TD be (p, q, r) and (p′, q′, r′)

and let the sequential dependency between r and r′ in TD be r
e
−→ r′. By the dis-

junction algorithm e = tboundp,p′ ⊆ d. Since π satisfies r
e
−→ r′ and π(r) = π′(p),

π(r′) = π′(p′), π′ satisfies p
d
−→ p′. So π′ satisfies dependency consistency.

When the disjunction type is Full-Partial, by the disjunction algorithm, for every

point triple (p, q, r), either p has value X or p and q have the same value. When

p has value X, r has value X; when p and q have the same value, r has the same

value as them. For every point triples (p, q, r) and (p′, q′, r′), let the sequential de-

pendency between r and r′ in TD be r
e
−→ r′, tboundq,q′ ⊆ tboundp,p′ = e. We

prove there exists an assignment π′ such that w |=π′ TD0 and for every point triple

(p, q, r), π(r) = π′(p). By the disjunction algorithm, for every point triple (p, q, r),

p and r always have the same value. So we can prove similarly as we did in the first

case that π′ satisfies point consistency and waveform consistency. For every two

point triples (p, q, r) and (p′, q′, r′), tboundp,p′ = e in which e is the time bound of

sequential dependency between r and r′, so similarly we can prove that π′ satisfies

dependency consistency.

When the disjunction type is Partial-Partial, then there can be several cases:

1. There exists a point triple (p, q, r) in which p has value 0 and q has value 1.

For each of the point triples other than this one, the three points in it have

the same value which is guaranteed by line 9 and line 22. For each two point
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triples (p′, q′, r′) and (p′′, q′′, r′′), tboundp′,p′′ = tboundq′,q′′ = e in which e is the

bound of sequential dependency r′
e
−→ r′′.

2. For each point triple, the three points in it have the same value. There are at

least two point triples (p, q, r) and (p′, q′, r′) such that tboundp,p′−tboundq,q′ 6=

φ and tboundq,q′ − tboundp,p′ 6= φ

We prove that there exists an assignment π′ such that w |=π′ TD0 or w |=π′ TD1

and for every point triple (x, y, z), π(z) = π′(x).

For the first case, without loss of generality, let w(π(r)) = 0 and V alue(p) = 0.

By definition of π′, π′(p) = π(r). So π′ satisfies point consistency. We can prove π′

satisfies waveform consistency and dependency consistency in the similar way as we

did in Full-Full case.

For the second case, since in each point triple, the three points have the same

value. We can prove π′ satisfies point consistency and waveform consistency in

similar way as we did in Full-Full case. We then prove π′ satisfies dependency

consistency. If for every two point triples (p, q, r) and (p′, q′, r′), π(r) − π(r′) ∈

tboundp,p′ ∩ tboundq,q′, we can prove in the similar way as we did in the Full-Full

case that w |=π′ TD0 and w |=π′ TD1. If there exists two point triples (p, q, r)

and (p′, q′, r′) such that π(r) − π(r′) ∈ tboundp,p′ − tboundq,q′ or π(r) − π(r′) ∈

tboundq,q′−tboundp,p′ , without loss of generality, π(r)−π(r′) ∈ tboundp,p′−tboundq,q′ .

By function ‘equality’ called by the disjunction algorithm, there are no point triples

(p′′, q′′, r′′) and (p′′′, q′′′, r′′′) such that π(r)−π(r′) ∈ tboundq′′,q′′′−tboundp′′,p′′′. Then

we can prove w |=π′ TD0.

So we have proved the theorem.

By Theorem 5.1.1 and Theorem 5.1.2, given TD0 and TD1, if the disjunction

algorithm returns TD, then TD is a disjunction of TD0 and TD1. We then prove
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that if the disjunction algorithm returns ‘NO DISJUNCTION’, then their disjunc-

tion does not exists.

Notice that in the disjunction algorithm there are only two parts where it returns

‘NO DISJUNCTION’. One is in line 4 and the other is in line 33. We first prove

that given TD0 and TD1, if the disjunction algorithm returns ‘NO DISJUNCTION’

in line 4, then there is no disjunction of TD0 and TD1.

When we call function one-waveform-disj on input preTD0,(p,i), preTD1,(q,j), mark

and S, there exists a disjunction of preTD0,(p,i) and preTD1,(q,j) and let it be preTD,(r,k).

There can be multiple disjunctions of preTD0,(p,i) and preTD1,(q,j). But there exists

some relationship between all those disjunctions and preTD,(r,k). Let one of those dis-

junction be preTD,(r,x). By Theorem 4.3.1, we can remove all non-transition points

in preTD,(r,x). Let the result after we remove all non-transition points be pre′TD,(r,x).

Then all points in pre′TD,(r,x) are all the transition points in preTD,(r,k), because tran-

sition points describe the shape of a RTD.

In function one-waveform-disj, there are two choices. In each choice, the function

can terminate its current execution and return to the other choice if that thoice has

never been tried. Each choice tries to add a point triple ((p, i+1), (q, j+1), (r, k+1))

to S. We will prove for each of the two choices, if the function terminates its current

choice, then there is no disjunction of preTD0,(p,i+1) and preTD1,(q,j+1).

Theorem 5.1.3. Given input preTD0,(p,i), preTD1,(q,j), mark, and S, if the disjunc-

tion algorithm terminates its current choice in choice 1, then there is no disjunction

of preTD0,(p,m) and preTD1,(q,j+1).

Proof. In choice 1, the algorithm can terminate its current choice at line 6 and line

10 in function one-waveform-disj and at line 5, line 12, and line 17 in function

add-dependencies.

63



• If the algorithm terminates its current choice at line 6 in function one-waveform-

disj, let the timing diagram whose points are (p, i) and (p, m) be postTD0,(p,i),

and let the timing diagram whose points are (q, j) and (q, j+1) be postTD1,(q,j).

Since postTD0,(p,i) and postTD1,(q,j) does not satisfy any of the 12 cases in

the table on page 55, there is no disjunction of postTD0,(p,i) and postTD1,(q,j).

Suppose there exists a disjunction of preTD0,(p,m) and preTD1,(q,j+1), let it be

preTD,(r,k+1). Either there exists a concrete point (r, k) which corresponds to

(p, i) and (q, j), or we can add such point without changing its language. The

reason is all the transition points in preTD,(r,k) which is constructed by the

disjunction algorithm in the last step are in preTD,(r,k+1). If (r, k + 1) is a

transition point, it is in preTD,(r,k+1). If it is a non-transition point, there

should be a sequential dependency (r, x)
[k,k]
−→ (r, k + 1) in which (r, x) is a

rise/fall because preTD,(r,k) is well-formed. This implies that we can add (r, k)

to preTD,(r,k+1) without changeing its language. So the prefix of preTD,(r,k+1)

whose last point is (r, k) is the disjunction of preTD0,(p,m) and preTD1,(q,j).

This means the timing diagram which has two points (r, k) and (r, k + 1) and

a sequential dependency (r, k)
tbound(r,k),(r,k+1)

−→ (r, k + 1) is the disjunction of

postTD0,(p,i) and postTD1,(q,j). This contradicts the hypothesis that postTD0,(p,i)

and postTD1,(q,j) has no disjunction. So there is no disjunction of preTD0,(p,m)

and preTD1,(q,j+1).

• If the algorithm terminates its current choice at line 10 in function one-

waveform-disj, mark ∗ mark′ equals UNDEFINED in the table on Page 53.

We prove by contradiction that there is no disjunction of preTD0,(p,m) and

preTD1,(q,j+1). Let one of their disjunctions be preTD,(r,k+1). Without loss of

generality, let mark = Full-Partial and mark′ = Partial-Partial. As we

have proved above in the first case, either there exists a concrete point (r, k)
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which corresponds to (p, i) and (q, j), or we can add such point without chang-

ing the language of preTD,(r,k+1). Let the prefix of preTD,(r,k+1) whose last point

is (r, k) be preTD,(r,k), it is the disjunction of preTD0,(p,i) and preTD1,(q,j). Let

the timing diagram which has two point (r, k) and (r, k + 1) and a sequential

dependency (r, k)
tbound(r,k),(r,k+1)

−→ (r, k+1) be postTD,(r,k), it is the disjunction of

postTD0,(p,i) and postTD1,(q,j). Since mark = Full-Partial, there exists a word

w1 which satisfies preTD0,(p,i) but not preTD1,(q,j). Since mark′ = Partial-

Partial and tbound(p,i),(p,m) = tbound(q,j),(q,j+1)
3, (p, m) and (q, j + 1) have

value 0 or 1 but don’t have the same value. Without loss of generality, let

(p, m) has value 0 and (q, j + 1) has value 1. The word w1 should satisfies

preTD,(r,k+1), but it satisfies neither preTD0,(p,m) nor preTD1,(q,j+1) which con-

tradicts the hypothesis that preTD,(r,k+1) is a disjunction of preTD0,(p,m) and

preTD1,(q,j+1). So there is no disjunction of preTD0,(p,m) and preTD1,(q,j+1).

• If the algorithm terminates its current choice at line 5 in function add-dependencies,

there will be no bound of the sequential dependency between (r, k) and (r, k+1)

in preTD,(r,k+1) in the form of [a, b].

• If the algorithm terminates its current choice at line 12 in function add-

dependencies, preTD,(r,k+1) will not be well-formed.

• If the algorithm terminates its current choice at line 17 in function add-

dependencies, the function equality returns false on input preTD0,(p,i+1), preTD1,(q,j+1),

mark and S. By Theorem 4.1.1, there exists a word w |= preTD,(r,k+1) and w sat-

isfies tbound(p,x′),(p,x′′)−tbound(q,y),(q,y′′) and tbound(q,y′),(q,y′′)−tbound(p,x′),(p,x′′)

for point triples ((p, x), (q, y), (r, z)), ((p, x′), (q, y′), (r, z′)) and ((p, x′′), (q, y′′), (r, z′′)).

But w does not satisfies any of preTD0,(p,m) or preTD1,(q,j+1) which contra-

3This is because (p, m) is the new added point.
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dicts the hypothesis that preTD,(r,k+1) is a disjunction of preTD0,(p,m) and

preTD1,(q,j+1).

So we have proved this theorem.

Similarly we can prove the following theorem.

Theorem 5.1.4. Given input preTD0,(p,i), preTD1,(q,j), mark and S, if the disjunction

algorithm terminates its current choice in choice 2, then there is no disjunction of

preTD0,(p,i+1) and preTD1,(q,j+1).

We then prove that if both choices are unsuccessful, then there is no disjunction

of given RTDs.

Theorem 5.1.5. If the disjunction algorithm returns ‘NO DISJUNCTION’ in line

4, there is no disjunction of TD0 and TD1.

Proof. We prove this theorem by contradiction. Suppose there exists a disjunction

of TD0 and TD1, and let it be TD. Since two choices have been tried, by Theorem

5.1.3 and Theorem 5.1.4, preTD0,(p,m) and preTD1,(q,j+1)
4 has no disjunction and

preTD0,(p,i+1) and preTD1,(q,j+1) has no disjunction. Since preTD0,(p,i) and preTD1,(q,j)

has a disjunction, we have proved above that there should be a concrete point (r, k)

in TD which corresponds to (p, i) and (q, j). Since (q, j + 1) is a transition point,

TD2 change its shape at (q, j+1)5. There should be a point (r, k+1) which captures

this transition, because this transition may also occur in TD. (r, k + 1) can only

correspond to either (p, m) or (p, i + 1) in TD1. So (r, k + 1) is a concrete point.

Since TD is a disjunction of TD0 and TD1, preTD,(r,k+1) is a disjunction of either

preTD0,(p,m) and preTD1,(q,j+1) or preTD0,(p,i+1) and preTD1,(q,j+1). This contradicts

4(p, m) is an added point between (p, i) and (p, i + 1) and it has the same value as (p, i).
5This is why we first remove all non-transition points.
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preTD0,(p,m) and preTD1,(q,j+1) has no disjunction and preTD0,(p,i+1) and preTD1,(q,j+1)

has no disjunction. So there should be no disjunction of TD0 and TD1.

We then prove that if the algorithm returns ‘NO DISJUNCTION’ at line 33,

then there is no disjunction of TD0 and TD1.

Theorem 5.1.6. Given timing diagrams TD0 and TD1, if there exists a point (p, i)

in TD0 such that preTD0,(p,i) and TD1 has a disjunction and (p, i) is not the last

point in TD0, then there exists no disjunction of TD0 and TD1.

Proof. We prove this theorem by contradiction. Suppose there exists a disjunction

of TD0 and TD1, and let it be TD′. Since there exists a disjunction of preTD0,(p,i)

and TD1 let it be TD. We can add a point (r, k) in TD′ such that preTD′,(r,k) and

TD have the same language. This means all words w that satisfy TD1 satisfy both

preTD′,(r,k) and TD′. This contradicts Theorem 2.2.1.

By Theorem 5.1.3, 5.1.4, 5.1.5 and 5.1.6, we can prove that if the disjunction

algorithm returns ‘NO DISJUNCTION’, then there exists no disjunction of given

RTDs.

5.2 Disjunction of Multi-Waveform RTD

A multi-waveform RTD is a RTD which has more than one waveforms. Given two

multi-waveform RTDs TD0 and TD1, if their exists a disjunction RTD of them,

TD0 and TD1 must have the same number of waveforms. After we have computed

tight bound between each pair of events, for any waveform p in TD0, there exists

a waveform p′ in TD1 such that there exists a disjunction RTD for p and p′. The

contrapositive of this sentence is much more useful: after we have computed tight

bound between each pair of events, if there exists a waveform p in TD0 such that
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there exists no disjucntion RTD of p and any waveform in TD1, then there is no

disjunction RTD of TD0 and TD1.

If for each waveform p in TD0 there exists a waveform p′ in TD1 and a RTD

TD which captures disjunction of p and p′, we need to check whether there exist

contradictions among disjunction types of waveforms from TD0 and TD1. For each

pair of waveforms p0 and p′0 there exists a disjunction type t0. So for TD0 and TD1,

there exists a set of disjunction types {t0, t1, t2, ..., tn}. By applying the operator

∗ defined in Definition 5.1.3 on each pair of disjunction types ti and tj , if ti ∗

tj =UNDEFINED, then there exists no disjunction RTD of TD0 and TD1. If for any

ti and tj , ti∗tj 6=UNDEFINED, then we check whether there exsits any contradiction

between tight bounds. If contradiction exists, then there is no disjunction RTD of

TD0 and TD1; if not, there exists disjunction RTD.
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Chapter 6

Conclusions

Timing diagrams are used in industrial practice as a specification language of circuit

components. But the temporal logic based specification methods in model checking

are not primarily used in practical design. So practical designers may want to know

whether there exists a temporal logic formula expressing the same property as the

timing diagram they draw. This thesis tries to explore relationship between linear

temporal logic (LTL) and regular timing diagrams. It focuses on disjunction of

regular timing diagrams. In order to solve the disjunction problem, we first find

out all implicit timing relations between events. The tight bound algorithm in

Chapter 4 computes exact time separations between each pair of events; we have

presented a proof that the algorithm is correct. Then we focus on disjunction of

one-waveform regular timing diagrams. The Algorithm 2 in section 5.1 decides the

disjunction problem for one-waveform regular timing diagrams. In each iteration of

the algorithm, we either add a concrete point or use the next point as a concrete

point, and we check if there exists contradiction among timing constraints or values

on waveforms. We used the one-waveform RTDs disjunction algorithm to decide

disjunction of multi-waveform RTDs.
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As we were exploring disjunctions of RTDs, we built an Alloy specification for

one-waveform RTDs. We also checked a theorem proved by us in Alloy under a

bound on the size of RTDs. We had hoped to use the Alloy specification to verify

that algorithm under a useful bound on the size of the timing diagrams. But even for

the smallest RTDs (RTDs with two points), verification of the disjunction algorithm

requires far more memory and CPU time than our machine’s. It would be useful to

have some formal tool that can quickly identify counterexamples to our theorems

and algorithms.

This thesis talks about disjunction of RTDs. For negation, RTD is not closed

under negation. An example can be a RTD with three points each of which is either

a rise or a fall. To further explore relationships between RTD and temporal logic

formulas, we need to know an algorithm (if it exists) which decides existance of

negation of RTD. Notice that the semantics used in this paper is different from

either iterative semantics or invariant semantics. It would be useful to extend our

result about disjunction to that under iterative semantics or invariant semantics.
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Appendix A

An Alloy Specification for RTD

open util/sequniv

open util/ternary

open util/relation

open util/integer

open util/ternary

open util/ordering[Point]

one sig ValueZero extends NonXValue{}

one sig ValueOne extends NonXValue{}

one sig ValueX extends Value{}

sig NonXValue extends Value {}

sig Value{}

fact {NonXValue=ValueZero+ValueOne}

fact {Value=NonXValue+ValueX}

sig Point {hasvalue: one Value, index: one Int}

sig SimpleTimingDiagram {haspoint:set Point, hassd:set SequentialDependency}{

#haspoint>1}

fact TDPointIndex {all td:SimpleTimingDiagram | all p, q:td.haspoint |

(min[td.haspoint].index=0) and

(lt[p, q]=>(p.index<q.index)) and

(max[td.haspoint].index=#td.haspoint-1)

}

pred TDPointNext[td:SimpleTimingDiagram, p:Point, q:Point] {

p in td.haspoint and q in td.haspoint and q.index=p.index+1
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}

pred PointInTDIsRiseFall [td:SimpleTimingDiagram, p:Point] {some q:Point |

(p.index>0) and //p is not the first point of td

(p.hasvalue != ValueX) and //value of p is not X

(q in td.haspoint) and //q is a point of td

(TDPointNext[td, q, p]) and //q is previous point of p

(p.hasvalue !=q.hasvalue)

//value of p is not the same as value of its previous point

and

(q.hasvalue != ValueX) //value of previous point of p is not X

}

sig SequentialDependency {SDis: Point -> Point -> Int -> Int}

fun FromPointOfSD [sd:SequentialDependency]:set Point

{(((sd.SDis).Int).Int).Point}

fun ToPointOfSD [sd:SequentialDependency]:set Point

{Point.(((sd.SDis).Int).Int)}

fact PointOfSDInTD {all td:SimpleTimingDiagram | all sd:td.hassd |

(FromPointOfSD[sd] in td.haspoint) and (ToPointOfSD[sd] in td.haspoint)

// For every SD, its first point and second point are both in the timing

//diagram where this SD is.

}

fact SDSecondPointLater {

all td:SimpleTimingDiagram | all sd:td.hassd | all p, q:Point |

(p->q in ((sd.SDis).Int).Int)=>TDPointNext[td, p, q]

//the second point should occurs later than the first point,

//and Point->Point in sd should be irreflexive

}

fact SDHigherNoLessThanLower {all sd:SequentialDependency | all i, j:Int |

(i->j in (Point.(Point.(sd.SDis)))) =>

(i>=0) and (i<=j) and ((i=0)=>(i!=j))

//lower bound of any SD of any timing diagram is no less than

//its higher bound and higher bound cannot be 0 when lower bound is 0

}

fact SDTimeBoundUnique {all sd:SequentialDependency | all p, q:Point |

let LowerBoundOfSDWhenFirstTwoArepq=(q.(p.(sd.SDis))).Int |

let HigherBoundOfSDWhenFirstTwoArepq=Int.(q.(p.(sd.SDis))) |

( p->q in ((sd.SDis).Int).Int)=>
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( #LowerBoundOfSDWhenFirstTwoArepq=1 and #HigherBoundOfSDWhenFirstTwoArepq=1 )

}

fact TDWellFormed {

all td:SimpleTimingDiagram | all q:Point| some sd:td.hassd | some p:Point |

let PrevOfqInsd=(((sd.SDis).Int).Int).q |

let LowerBoundOfsdp2q=(q.(p.(sd.SDis))).Int |

let HigherBoundOfsdp2q=Int.(q.(p.(sd.SDis))) |

(

(q in td.haspoint) //point q is not the first point in one waveform TD

and //point q has value X or point q is not transition

not (PointInTDIsRiseFall[td, q]) and

(q.index>0)

)

=>

(

p in td.haspoint and

q in ToPointOfSD[sd] and p in PrevOfqInsd and

(

(p.index=0) //point p is the first point

or //if p is not the first point

PointInTDIsRiseFall[td, p] //point p is rise/fall

)

and //lower bound and higher bound are the same

(

LowerBoundOfsdp2q=HigherBoundOfsdp2q and #LowerBoundOfsdp2q=1

and #HigherBoundOfsdp2q=1

)

)

}

sig Word{position: seq NonXValue}{#position>1}

//the length of every word shoule be no less than 2

sig Pi {positionis: SimpleTimingDiagram->Word->one Point2Position}

//all pi has only one Point2Position, but can have more than one

//SimpleTimingDiagram

sig Point2Position {is: seq Int}

pred AllPointMappedInsidePi [td:SimpleTimingDiagram, pi:Pi, word:Word] {

(td->word in ((pi.positionis).Point2Position))=>

(#((word.(td.(pi.positionis))).is)=#td.haspoint)

}
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pred Point2PositionNoDuplicate [td:SimpleTimingDiagram, pi:Pi, word:Word] {

!((word.(td.(pi.positionis))).is).hasDups

}

fun PositionPointMappedByPi[pi:Pi, td:SimpleTimingDiagram, p:Point,

word:Word]:Int {((word.(td.(pi.positionis))).is)[p.index]}

//we have to be sure p is in td

pred PointMappedToPositivePosition[td:SimpleTimingDiagram, pi:Pi, word:Word]

{

all i:Int | (i in ((word.(td.(pi.positionis))).is).elems)=> (i>=0)

//Every point is mapped to positive position

}

pred PointMappedInsideWord [td:SimpleTimingDiagram, pi:Pi, word:Word]

{all p:td.haspoint | all i:Int |

(i in pi.PositionPointMappedByPi[td, p, word])=>(i < #word.position)

//any point in TD mapped inside any word

}

pred FirstPointFirstPosition [td:SimpleTimingDiagram, pi:Pi, word:Word] {

((word.(td.(pi.positionis))).is)[0]=0

//first point of any timing diagram is mapped to the first position

//of any word that matches this timing diagram

}

pred LastPointLastPosition [td:SimpleTimingDiagram, pi:Pi, word:Word] {

(pi.PositionPointMappedByPi[td, max[td.haspoint], word])=#word.position-1

//last point of any timing diagram is mapped to the last position of

//any word that matches this timing diagram

}

pred MappingFunctionIncreasing [td:SimpleTimingDiagram, pi:Pi, word:Word]

{all p, q:td.haspoint |

(TDPointNext[td, p, q])=>

(pi.PositionPointMappedByPi[td, p, word]<pi.PositionPointMappedByPi[td, q, word])

//mapping function increase

}

pred PointValueMatch [td:SimpleTimingDiagram, pi:Pi, word:Word]

{all p:td.haspoint |

(p.hasvalue!=ValueX) =>

(p.hasvalue=word.position[pi.PositionPointMappedByPi[td, p, word]])

//For every point, its value should be the same as the value on

//position where it’s mapped
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}

pred WaveformConsistencySatisfaction[td:SimpleTimingDiagram, pi:Pi, word:Word]

{all p, q:td.haspoint | all j:Int |

(

TDPointNext[td, p, q] and (j<pi.PositionPointMappedByPi[td, q, word]) and

(j>=pi.PositionPointMappedByPi[td, p, word]) =>

((p.hasvalue != ValueX)=>word.position[j]=p.hasvalue)

)

//any digit in word shoule have the same value as its nearest previous digit

//which is mapped by some point.

}

pred SequentialDependencySatisfaction [td:SimpleTimingDiagram, pi:Pi, word:Word]

{all sd:td.hassd | all p, q:td.haspoint | all i, j:Int |

let LowerBoundOfSDp2q=(q.(p.(sd.SDis))).Int |

let HigherBoundOfSDp2qLowerIsi=(i.(q.(p.(sd.SDis)))) |

( (p->q in ((sd.SDis).Int).Int) and (i in LowerBoundOfSDp2q) and

(j in HigherBoundOfSDp2qLowerIsi) ) =>

( sub[pi.PositionPointMappedByPi[td, q, word],

pi.PositionPointMappedByPi[td, p, word]]<=j

and

sub[pi.PositionPointMappedByPi[td, q, word],

pi.PositionPointMappedByPi[td, p, word]]>=i )

//for every SD, the difference of positions where its first point and second

//point are mapped should be no less than its lower bound and no greater than

//its upper bound.

}

pred WordMatchTimingDiagramUnderPi [td:SimpleTimingDiagram, pi:Pi, word:Word] {

AllPointMappedInsidePi[td, pi, word] and

Point2PositionNoDuplicate[td, pi, word] and

SequentialDependencySatisfaction [td, pi, word] and

WaveformConsistencySatisfaction [td, pi, word] and

PointValueMatch [td, pi, word] and

MappingFunctionIncreasing [td, pi, word] and

LastPointLastPosition[td, pi, word] and

FirstPointFirstPosition [td, pi, word] and

PointMappedInsideWord [td, pi, word] and

PointMappedToPositivePosition [td, pi, word]

}

run WordMatchTimingDiagramUnderPi for 6 but 1 SimpleTimingDiagram, 1 Pi, 1 Word
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