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Rock'n Repair Shop

5.0 %% % % % (140)
Electronics repair shop

Closed - Opens 12 PM Sat

& You manage this Business Profile

sl 1,393 customer interactions Google ass

Union Market 9

El Presidente @
CB

@1 ®32 5

nnnnn 2 years ago

Nice little gem in the heart of DC, owner is very knowl-
edgeable, honest, and down to earth. | definitely recom-
mend taking all of your musical equipment here!!!

Megan D.
@2 ®5

BT 5years g0

Pete is a nice dude and fixed my guitar string last minute.
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% % % % %k 3 years ago

Super happy with the service at
Rock and Repair. Most shops
charge $50-75 just for a
diagnostic but Pete was willing to
share his knowledge for free and |
was able to fix my amp by myself
with his advice, iv never
experienced a repair shop with
this level of service!

Would recommend for any
musician who needs a repair!

* %k % %% 5months ago
| brought my very strange
Byzantine chant greek synthesizer
that | found in and the owner took
very good care of it and me. They
took the time to explain the
diagnostic process as they went
through it and were very fun to
learn from and talk to. This is my
go-to place for electronic repairs
now. Very honest business and
brilliant people.

%Kk 5yearsago
Peter has saved my professional
butt on multiple occasions,
rescuing me from hardware and
software problems, in person and
remotely, with competence, grace,
and compassion. Not only does he
have the technical skills to fix
pretty much everything, but he is
also a careful listener. He never
condescends to his clients, which
is a rare virtue indeed. | hope |
never have to work with anyone
else ever again for my computer
needs, because Peter broke the
mold. | can’t recommend him
highly enough.

* Kk kK 5yearsago
pete fixed a bunch of my modular
synths, and did some other stuff
on the modular rack, and did a
great job fixing a new pick up
system on my old acoustic. he also
changed a battery for me, without
pointing out how silly i was for not
knowing the thing had a battery.

%% Kk Kkk 4yearsago
Pete and his team are outstanding!
| had a 30 year old string of
musical Christmas lights that
failed, and even though it is
outside of his normal repair focus
area, he still offered to take a look
at it. Within 30 minutes he had
found and repaired 2 problems,
and restored the musical string to
working condition. This item has
strong sentimental value to our
family, and in a world of throw out
and replace, it was great to find
someone willing to take the time to
bring things back to life.

* %k k% 2 yearsago
| needed an amp worked on after
some problems and these guys
were able to fix it (and teach me
about what went wrong) in a very
fast turnaround time. They are
professional, super
knowledgeable, and friendly. For
amp and electronics repair in DC
they are the best shop by far.

%% %%k % 4 years ago

The best audio repair & instrument
tune up shop on town - bar none.
Peter is has an encyclopedic
knowledge of electronics and
acoustics, and is also the a strong
contender for "nicest guy in DC".
He has fixed two of my guitars and
amps in record time. Would give 6
stars if | could.

% % % % % 5 yearsago

This place is easily my favorite repair shop
around. After a few conversations with Pete at 7
Drum City about some guitar mods | wanted, it
was easy to notice Pete's expertise and passion
for his work. He is also a very friendly person who
was patient and willing to answer all the questions
| had about what | wanted to do with my guitar.
Wanting to learn more about the process to
satisfy my own curiosity, | brought in my Fender
Strat to have new Mother's Milk pickups installed
and to replace some older parts, and asked Pete
if | could get a walk-through of the installation.
Not only did he explain every step of the process
as he worked on my guitar, he even taught me
how to solder some of the parts using his own
tools, and gave me advice on how to take care of
smaller problems at home to avoid unnecessary
trips to the repair shop. It's been a few months
since | got this job done and my guitar sounds
better than it ever has. Basically, Pete's a stand up
guy who's highly skilled and running a top quality
repair shop that won't break the bank. | definitely
recommend this place to anyone who needs work
done on their equipment.



Collaboration with WPI Electric Guitar Innovation Lab (EGIL)

* Embedded WPI EGIL's DSP + Microcontroller Platform into My Guitar
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e, * Enables Modulation of Digital FX w/
Inngda Ean a * Accelerometer & Gyroscope Input (Movement of Guitar Body)

* Infrared Distance Sensor Input (Varying Hand Placement Above Sensor)
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Development of an FDA Approved
Medical Device Development Tool (MDDT):

‘Computation Tool For Temperature Rise
Prediction Near An Orthopedic Femoral Nail
Implant During A 1.5 T MRI Scan ’
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Motivation AR TR

* Produce a validated, efficient methodology to
simulate MRI-induced heating in a non-
homogenous, anatomically correct human
body model

* Demonstrate multi-physics simulation
methodology for comparisons against 1.5T
MRI with published experimental data

* Provide complete test-bed (human body
model and software solution) to medical
device development community to explore /I\
techniques and accelerate design decisions *




Ansys VHP Female Model v5.0

* Created by NEVA Electromagnetics (Yarmouth, MA)

* Manual/semi-manual segmentation using ITK-Snap

* Based on the Visible Human Project® of the U.S. National
Library of Medicine cryosection imagery

* Modeled after 59-year-old female patient with BMI ~30

* Optimized for use in wide variety of low and high frequency
electromagnetic applications

e 249 individual CAD based structures
 Compatible with AEDT + Mechanical & Fluent via Workbench
* Available in Two Resolutions:

- 640k Facets (0.5mm - 3.0mm Surface Deviation)

- 160k Facets (3.0mm - 7.0mm Surface Deviation)

Spinal Cord
CSF-filled volume
White matter

Gfe{y matter
4

) 3D Printing
\



z =80 mm grid :10 mm per division

WhiteMatter

Ansys VHP Female Model v5.0

* Anatomical validation completed by board of
subject matter experts in human physiology and
specialization areas

Skull

Skin

GrayMatter

/ FatShell
CSFShell

. AvgBodyShell

 MATLAB tool available to provide real-time structure
viewing for independent user examination and evaluation

e Latest enhancements include:

* Greater resolution of reproductive system — new
segmentation and mesh integration underway by Mallika
Anand, MD, BIDMC and research group

* Library of orthopedic implants
* Highly detailed ear canals
* Multiple body shells to modulate BMI

| Veins.lower
SkinShell
! Sciatic,Nerve.right
Sciatic.Nerve.left
Muscle.Sartorius.right
B Muscle.Sartorius.left
. Muscle.Quadriceps.right
Muscle.Quadriceps.left
Muscle.Hamstring.right
' Muscle.Hamstring.left
| Femur.right

Femur.left
Femur.Bone.Marrow.right
Femur.Bone.Marrow.left
FatShell
AvgBodyShell
I Arteries
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RF Induced Heating of Implanted Medical Devices in MRI

Simulation

Objective v A Flow ~ B
. . . : :
* Accurately predict temperature changes on and near implantable medical 2 & Geometry v — #2 @ EngneeringData
devices in magnetic resonance environments - sty v 3 | @ Geometry v,
* Ensure safety of patients with implants undergoing MRI scan by evaluating 4| soluton « — 4 @ Model v .
standardized regulatory requirements via simulation: with,_implant a5 @ setup &
— ASTM F2182: Standard Test Method for Measurement of Radio Frequency 6 g5 Solution Y 4
Induced Heating Near Passive Implants During Magnetic Resonance Imaging . _ 7 @ Results Y -

Transient Thermal

— ISO/TS 10974: Assessment of the Safety of Magnetic Resonance Imaging
for Patients with an Active Implantable Medical Device

Approach

Ansys Workbench seamlessly
passes data between Ansys

* Unified simulation environment links Ansys HFSS to Ansys ™ | HFSS and Mechanical
Mechanical to simulate temperature rise due to EM losses in

tissue and implant during exposure to RF fields of MRI. ’ /

* Parameterized models allow for rapid evaluation of patient Human body model contains

landmark, device placement, and device-specific variations. titanium femur implant
Value

Parameter Sweep of Implant Placement
Determines Location of Peak Heating

40.13 Max

* Efficient process for evaluating temperature rise on or near
implanted medical devices in realistic human body models
— Provide design insights into sources of temperature rise
to help identify MRI safe implant designs
— Perform in-silico testing prior to or in lieu of physical
measurements

Temperature [°C]

Implant Position [mm]
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EM-Thermal Co-Simulation Workflow Overview

v A v B v C - D
72 }9 Geometry v '72 & Geometry e o 2 & Engineering Data v ‘—172 & Engineering Data ‘.
3| @ seww ¥ 3 (@ sewp v Engineering Data @3 [l Geomety v,
4 | 2 solution v 4 & solution v N - 74 ’@ Model o
—> 5 |53 Parameters — 5 (B3 Parameters — 85 @ setp v b
NO_IMPLANT IMPLANT | |[ 6 |@ souton v,
"." 7 | @ Results 7
l', | " 8 [pd Parameters | —

Transient Thermal

LV LV |
(pd Parameter Set Vw




Validation Case #1a: Simulating ASTM F2182 Standard in Gel

65x42x12 cm

P 1180 0 3.14 0.2 1780
65 x 42 x 9 cm 1000 0.47 78 0.6 4184
3.2 mm diam x 4430 5.95 x 105 1 6.7 526.3

10 cm long
Height: 82
clg cm N/A Infinite N/A N/A N/A

Inner diameter: 59.4 cm

* Results predict a whole-body SAR of 3.6
W/kg and temperature rise of 11° C

e Within one standard deviation of
values reported in a peer-reviewed
')\ interlaboratory task group

Computational modeling of RF-induced heating due to a titanium-alloy rod: An Interlaboratory Comparison
for the ASTM F2182 task group; Murdock et al.; Proc. Intl. Soc. Mag. Reson. Med. 27 (2019)




FEM + Circuit Co-Simulation Model of “Birdcage” RF Coil
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Ansys
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Design Properties
Ctune = 105pF
Resr=0.1ohm
Vin=76.78V

C16

cir’
Ctunec1s
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S-Parameters: Tuned & Matched for Quadrature Excitation

0.00

-5.00 7|

-10.00 |

-15.00 7|

-20.00 |

Y1

-25.00 7|

-30.00

-35.00 1

-40.00

—

S

-19.76

-17.75

-19.76

Curve Info

— dB(S(1,1))
Setup1 : Sweep

dB(S(2,1))
Setup1 : Sweep

- dB(S(1,2))
Setup1 : Sweep

dB(S(2,2))
Setup1 : Sweep

-45.00
32.00

T
42.00

T T
52.00 62.00

96.00




S-Parameter [AS < 0.02] + Near Field Convergence [ASAR < 1%

Expression Converge Curve Info
100.00 — ExprPctDelta(E_Background1)
o Setup1 : AdaptivePass
Freq="0.064GHz’'
SR [Betupt = ExprPctDelta(LocalSAR_Background1)
Design Variation |CowLRotahon:'Odeg‘ RodDiameter='0.126in" J Qf Se"“lp1 AdaptlvePass
Freq="0.064GHz'
Profile CDnvergenCe‘MatrixData Mesh Statistics - EprPdDE“H(WhOlEBUd)’SAR1 )
Number of Passes 1.00 7 Setup1 - AdaptivePass
Completed 14 ] Freq="0.064GHz'
Maximum 20 E ExprPctGoal(E_Background1)
Minimum 1 Setup1 : AdaptivePass
] Freq="0.064GHz'
Max Mag. Delta S ]
Target 0.2 ° ExprPctGoal(LocalSAR_Background1)
1000 Current 0.017745 2 Selupl1 AdapllvlePass
90.107 Freq="0.064GHz
View: € Table @ Plot § 1 — ExprPctGoal(WholeBodySAR1)
X : [Pass Number ~ = 1 Setup1 : AdaptivePass
1 Freq="0.064GHz'
Y: |Ma>< Mag. Delta S j b a
CONVERGED |
- Consecutive Passes
> Target 1 0.01 +—+——— 1T T T
2 4 6 8 10 12 14
Gzt Pass Number
Close
1.00
Simulation Summary:
Design Validation Elapsed time: 00:00:00, total memory: 359 MB
Initial Mashing Elapsed time: 00:02:51, total memory: 502 MB
Adaptive Meshing Elapsed fime: 04:00:18, average memory/process: 299 GB, max memory/process: 299 GB, total number of processes: 1, total number of cores: 32
Frequency Sweep Elapsed time: 07:50:19, average memoryfprocess: 108 GB, max memory/process: 108 GB, total number of processes: 2, total number of cores: 32
max solved tets: 2247370, max matrix size: 14276186, max bandwidth: 54.2
Time: 02{15/2022 22:17:58, Status: Normal Completion
Total 035640 656:19:056 Elapsed time : 11:53:29 , ComEngine Memory : 903 M
0.10 ‘| T T T T T T T T T T T T T T T T T T
1.00 2.00 3.00 4.00 5.0 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00




Calibrate Power Input:
Adjust Input Voltage to Set |B,*|=1 uT at Coil’s Isocenter




Local SAR — Comparison w/ ASTM Standard

SAR (W/kg) 64 MHz B, = 1 uT

— . . . . 1

i '07’5
05

IOZS
0

Y (cm)

. A

-20 10 0 10 20
X (cm)

Ansys
Ik
1
0
0
0
0
0
0
0
0
33
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ison w/ ASTM Standard

— Compar

Local SAR

SAR Field
[Wikg]

1.0000

0.8667

0.7333
0.6667
0.6000
0.5333
0.4667
0.4000
0.3333
0.2667
0.2000
0.1333

Tul

SAR (W/kg) 64 MHz B,

X (cm)
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Validation Case #1b: Simulating ASTM F2182 Rod in VHP Phantom

10cm Titanium Rod e —

 Temperature rise again in line with standards

z
0100 oo ®
[ ] [ ]
0.050 0150
¥

Computational modeling of RF-induced heating due to a titanium-alloy rod: An Interlaboratory Comparison
for the ASTM F2182 task group; Murdock et al.; Proc. Intl. Soc. Mag. Reson. Med. 27 (2019)
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Validation Case #2a: Gel with Embedded Rod in 1.5T MRI

Phase = 0deg l

Phase = Odeg I

TR e

R e

.....

.....

Rod and Phantom in 1.5T MRI Coil

|

1

Jvol
[Aim*2]

500.0000/
. 466 6823
4333647
400.0470
366.7293
333.4117]
300.0840/
266.7763)
233.4587|
200.1410
166.8233
133.5057|

100.1880|
66.8703
335527
0.2350

T

32.019 Max
30915
20811
28,707
27602
26,498
25.3%4
2429
23,186
22.082 Min

Simulated Current Density

Simulated Temperature Rise

* Simulate realistically
loaded MRI birdcage
coil with simple gel
phantom and
embedded metallic rod

* Good agreement with
experimental results —
current density and
temperature rise

Muranaka H, Horiguchi T, Usui S, Ueda Y, Nakamura O, lkeda F, Iwakura K, Nakaya G. 2006. Evaluation of RF heating on humerus implant in phantoms during 1.5 T MRI

imaging and comparisons with electromagnetic simulation. Magn Reson Med Sci. 5(2):79-88. PMID: 17008764.

Muranaka H, Horiguchi T, Usui S, Ueda Y, Nakamura O, lkeda F. 2007. Dependence of RF heating on SAR and implant position in a 1.5T MR system. Magn Reson Med Sci.
6(4):199-209. PMID: 18239357.
Muranaka H, Horiguchi T, Ueda Y, Tanki N. 2011. Evaluation of RF heating due to various implants during MR procedures. Magn Reson Med Sci. 10(1):11-19. PMID 21441723.
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Validation Case #2b: VHP Female with Embedded Rod in 1.5T MRI

15
N S
i § 10 HP|data
¥ 8 S
A ®
e g n
g A kS ) \s
il
0 off
0 5 10 15 20 25
_'; Measurement time, min
VHP results in relative agreement —
| T differences attributed to variation in rod
Muranaka H, Horiguchi T, Ueda Y, Tanki N. 2011. Evaluation depth (VS ConSta nt depth Of phantom) and

of RF heating due to various implants during MR procedures.

Magn Reson Med Sci. 10(1):11-19. PMID 21441723. Cha nges in material pro perties

24
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Validation Case #3a: Surface Coil on Agar Phantom — SAR
Characterization at 165 MHz

* While not at the desired 1.5T
frequency, very few in vivo
experiments are available

e Just a simple Agar block, this
case establishes both the
workflow (model construction,
initial simulation in HFSS,
corresponding heat simulation in
Thermal) and simulation results

* Good correlation with both SAR
(~1100 W/kg) and change in

> « heat (~13° C)

Simulated SAR Simulated Temp Rise Measured Temp Rise

Oh S, Ryu Y-C, Carluccio G, Sica CT, Collins CM. 2014. Measurement of SAR-
induced temperature increase in a phantom and in vivo with comparison to
numerical simulation. Magn. Reson. Med. 71(5):1923-1931. PMID 23804188.1




Validation Case #3b: Surface Coil on Human Forearm — SAR
Characterization at 165 MHz

SAR Field SAR Field

(W/kg) (W/kg)
_ go I450 * Addingin forearm
¥ A 200 0 with corresponding
250 bones, blood vessels,
| B b '150 nerves, etc.
v I 50 50
: v 0 0
Temperature Temperature  ® G00d correlation with

138 g both SAR (~450
W/kg) and change in

heat (~6.6° C)

Oh S, Ryu Y-C, Carluccio G, Sica CT, Collins CM. 2014. Measurement of SAR-
induced temperature increase in a phantom and in vivo with comparison to
numerical simulation. Magn. Reson. Med. 71(5):1923-1931. PMID 23804188.1




Accessing Specific MRI Scan Sequence Timing:

46 T T T
probe temperature, deg C 2 min on, 18 min off
5 min on, 15 min off
44 - 15 min on, 5 min off
unsafe
42
40
safe
safe
36 1 1 I} |

0 500 1000 1500 2000 2500 3000 3500 time, sec
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Visible Human Project® female surface based
computational phantom (Nelly) for radio-
frequency safety evaluation in MRI coils
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Abstract

Quanfitative modeling of specific fion rate and ura risa within tha human
body during 1.5T and 3 T MRI scans is of clinical significance o ensure patient safety. This
work presants jusification, via validat d , of the potential use of the Visible
Human Project (VHF) darived Computer Aided Design (CAD) famale full body computa-
tional human modsal for non-clinical assessmeant of female patients of age 5065 years with
& BMIl of 30-36 during 1.5 Tand 3 T basad MR procedures. The initial segmentation valida-
tion and four diffierent application examples have been identified and used o compars to
numerical simulation resu s obtained using VHP Female computational human modal
undar tha samea or similar The first appli le provides a simulafion-t
simullation validation while the latter three application examples compare with measured
axparimantal data. Given the sama or simil ar coil settings, the computafonal human model

genarates meaningful results for SAR, B1 field, and temparature rise when used in conjunc-
tion with the 1.5 T birdcage MR coils or athigher frequancies comesponding to 3 T MALL
Motably, fhe deviafion in temperature rise from experiment did not exceed 275" C for thres
differant haating scen aros considared in the study with relative deviations of 10%, 25%,
and 207%. This sudy provides a reasonably systematic validation and comparison of the
VHP-Female CAD v.3 .0-5.0 surfa ce-based computational human model starting with tha
sagmantation validafion and following four different application examples.

Introduction

Qruantitat ive assessme nt of radio frequency (RF) absorption experienced by a patient undergo-
ing a Magnetic Resonance Imaging (MRI) procedure is prohibitively difficult to obtain due to
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pone (260922  Daecember 10, 2021 12
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An in silico testbed for fast and accurate
MR labeling of orthopedic implants

Gregory M Noetscher'™!, Peter J Serano®, Marc Horner?, Alexander Prokop?,
Jonathan Hansen®, Kyoke Fujimoto®, James Brown®, Ara Nazarian',

Jerome Ackerman®”, Sargey N Makaroff'”

'Electrical & Computer Eng. Dept, Worcester Polytechnic Institute, Worcester,

United States; *Ansys, Canonsburg, United States; ‘Dassault Systémes Deutschland
GmbH, Darmstadt, Germany; *Meva Electromagnetics, LLC, Holden, United States;
5GE HealthCare, Chicago, United States; *Micro Systems Enigineering, Inc, an

affiliste of Biotronik, Lake Oswego, United States; "Musculoskeletal Translational
Innovation Initiative, Department of Orthopedic Surgery, Beth Israel Deaconess
Medical Center and Harvard Medical School, Boston, United States; *Harvard Medical
School, Boston, United States; *Athinoula A Martinos Center for Biomed. Imaging,
Massachusetts General Hospital, Charlestown, United States

Abstract One limitation on the ability to monitor health in older adults using magnetic rescnance
{MR] imaging is the presence of implants, where the prevalence of implantable devices {orthopedic,
cardiac, neuromadulation) increases in the population, as does the pervasiveness of conditions
requiring MRI studies for diagnesis (musculoskeletal diseases, infections, or cancer). The present
study describes a novel multiphysics implant modeling testbed using the following approaches with
two examples: (1) an in silico human model based on the widely available Visible Human Project (VHP)
cryc-section dataset; (2} a finite element method (FEM) modeling software workbench from Ansys
(Electronics Desktop/Mechanical) to model MR radio frequency (RF) coils and the temperature rise
madeling in heterogeneous media. The in siico VHP-Female model (250 parts with an additional

A0 components specifically characterizing embedded implants and resultant surrounding tissues)
cormesponds to & &0-year-old female with a body mass index of 36, The testbed includes the FEM-
compatible in sifico human model, an implant embedding procedure, a generic parameterizable MRI
RF birdcage two-port coil model, 2 workflow for computing heat sources on the implant surface and
in adjacent tissues, and a thermal FEM sclver directly linked to the MR coil simulator to determine
implant heating based on an MR imaging study protocol. The primary target is MR labeling of large
orthopedic implants. The testbed has very recently been approved by the US Food and Drug Admin-
istration (FOWA) as a medical device development tool for 1.5 T orthopedic implant examinations.

elife assessment

This manuscript provide a valuable method to evaluate the safety of MR in patients with ortho-
paedic implants, which i required in clinics. A strength of the work is that the in-silicon testbed &
solid, based on the widely available human project, and validated. In addition, the toolbox will be
open for clinical practice.

Introduction

One limitation on the ability to monitor health in older adults using magnetic resonance (MR) imaging
studies is the presence of implants, where the prevalence of implantable devices (orthopedic, cardiac,
newromodulation) increases in the population, as does the pervasiveness of conditions requiring MRI

ZRPI04LD https://dai.org/10.7554/cl fa 9044 14612




FDA Medical Device Development Tool (MDDT)

Date
Tool (Link to SEBQ) Product Area(s) MDDT Category Qualified
Computational Tool Comprising_ Visible Human Project Based Anatomical Female CAD Orthopedic, MR Safety Non-clinical 03/30/2023
Model and Ansys HFSS/Mechanical FEM Software for Temperature Rise Prediction nearan  Labeling Assessment
Orthopedic Femoral Nail Implant during.a 1.5 T MRI Scan Model

The FDA's Medical Device Development Tools (MDDT) program is intended to facilitate
device development, timely evaluation of medical devices, and promote innovation by
providing a more efficient and predictable means for collecting the necessary information
to support regulatory submissions and associated decision-making.
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Microwave Imaging
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Single Tx/Rx Microwave Imaging System
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Dual Anti-Phase Patch Antenna (Modeled as HFSS 3D Component)
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Single Tx/Rx Microwave Imaging System
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Problem: On-Body Antenna Radiates Excessively Outside The Body (DUT)
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1000000

541170

29.2865
15.8489
8.57 70

4.6416
25119

1.3554

0.7356

0.3981

0.2154
0.1166

0.0631
0.0341
0.0185

0.010:0




Proposed Solution Utilizing New RF Absorbing Foams

Eccosorb® LS
Lossy, Flexible, Foam Microwave Absorber

APPLICATIONS
Approximate Insertion Loss at 3 GHz and 45°
e Eccosorb LS is used to lower cavity Q’s in RF amplifiers, oscillators, cabinets containing g Ez (530
microwave devices, computer housings, LNB’s and isolation of antennas by insertion loss. g 40 ~ -
® Eccosorb LS is also used to reduce surface currents on radiating elements and outer g 30 S
ground-plane type surfaces. S o8
e Reflectivity of an object (metal or otherwise) can be reduced somewhat by applying one 12 p— — | L

or more layers of Eccosorb LS to its surface. 32 6.4 95 127 191
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Inner Foam Layer:
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Outer Metal Layer



Foam + Metal Cap: HFSS Model (Left); Constructed Prototype (Right)




HFSS Models:

NO FOAM / NO METAL FOAM / NO METAL




|E| Field vs. Input Excitation Phase — Coronal Plane
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|E| Field vs. Input Excitation Phase — Transverse Plane
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Poynting Vector Magnitude: Body Surface (
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Poynting Vector Magnitude: Through vs. Around Head
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Far Field Gain Pattern

Gain Plot 2
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S Parameters: Reduced S21 Coupling « Increase in SNR
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I Antennas on VHP Hips




I Antennas on VHP Hips with Foam + Metal Belt




Cross-Section View
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E

E Field [Vim]
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|E| Field vs. Input Excitation Phase — Sagittal Plane

No Belt With Belt
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Far Field Gain Pattern
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Student Award & IEEE Publication
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Methods to Suppress Surface Waves
in Microwave Imaging
Worcester Polytechnic Inst., Ansys, Inc., U.S.A.
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Reducing Non-Through Body Energy Transfer
in Microwave Imaging Systems
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WPI MQP Student Project: Design of an EMI Scanner

* Array of H-Field Loop Probes
* Digitally Multiplexed via Software
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Magnetic Field (H-Field) Loop Probe
Encourage Students to Build DIY Probe:

. ETH zirich ouantumopTics 2.7 9NN ‘o
(-mmnmnnn Centcr ........ ..x. : | v s auuogreongo Bosedo pene se sonages o sube o doa saggoE po oD bUb oo oR Bo LD o oo e soDRoEo o RE g DB RO,
wire - -
| Gap |
Py W
Shield ----+-- > ._::' TS 1 i — )_E_‘_"T\
@ (A)
aangscecss Cover seessevesoees >

Square loop from a coax cable unshielded (left) and shielded (right

“SHIELDED VS. UNSHIELDED SQUARE MAGNETIC FIELD LOOPS FOR
EMI/ESD DESIGN AND TROUBLESHOOTING”:




Initial Simulation: Lumped Circuit Model

Introduce Students to Python Scripting & Single probe Inner onductr
Review Lumped vs. Distributed Circuit Theory: | *

Lgi
. : Gap— 4|
Plot Made Students with NumPy + Matplotlib: AL N
. N Shielded-ground Loop aperture
.1 Figure 1 o x o Area=S§
Impedance vs. Frequency t E(t), Electric field
i | —— loop_radius=5.0 mm ® H(t), Magnetic field
105 4 i : —— loop_radius=7.5 mm b (c]
: : —— loop_radius=10.0 mm ( ] ]
— | : 200 kHz _ o,
£ H 1 GHz
§ 10 ! . Lz
v ] i
g | | I <E
g 10 i i Simplified ¢ ]
E ; I model ol
10-11 . i _ — 3Lsa
: i Electric | . -
105 107 10° 1011 1013 1015 coupling L —
Frequency (Hz) — —
A popular single-shielded-loop magnetic field probe (g}, its circust mode (b) 2ad simplified mode (c)

Liu, J., Xiao, M., He, X, Fang, W., Shao, W., Huang, Q., Lu, G., Wang, L., Huang, Y., En, Y. and Yao, R. (2021),
Symmetrical double-loop H-field probe with floating shield for improving sensitivity and electric field

suppression. IET Microw. Antennas Propag, 15: 464-473.



https://doi.org/10.1049/mia2.12050

Single Shielded Loop Probe + Array: Implemented on FR-4 Substrate

Introduce Students to Creation of Parameterized CAD &
Full-Wave FEM Modeling with Ansys HFSS

loop_size = 10m

[
1] 10 20 {mm)

\nsys



Example Simulation Output: Loop Probe Input Impedance (Z,,)

Terminal Z Parameter Plot 1 HFSSDesignt  ANSYS
’ 2023 R1.1
300 —— re{Zt{Loop1_T1 Loopl_T1})
T Setupl : Sweep
7 im{Zt{Loop1_T1 Loop1_T13) 264 .2¢
250 — Setupl © Sweep
200 —
= 150 7
100 —
50
0 | | ! ! -
oo 0z 0.4 06 na 1.0

Freqg [GHz] I




AT

i
S
fa

e
5

S
S
S

Frequency

o

10N

:1.3....1.

,++++.¢...+

e

g
R

i)
O
r
S
X
(W
i)
-
Q.
£
n
>
()
e
-
.t
C
o]0
=
O
D
S
L

[ ]
[ ]
g
Fik

0.0001GH

Freq

Min

I Animation




4x4 Array of Loop Probes: Evaluate Loop-to-Loop Coupling

H Field
[A/m]

Max: 0400

0400
. 0.360
0321
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0123
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. 0.044
0.004

Min: 0.004

® o

\-<
t
»

[ [
[u] 40 B0 {mm) 0 45 90-{mm)

* H-Field Magnitude on XY Plane, 5mm Above Array e Add External RF Excitation from Smartphone Antennas
* Evaluate Field Homogeneity e Evaluate Phone-to-Array S-Parameter Coupling
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Generic Android Cell Phone w/ LTE Antenna (Provided by Ansys)
& NFC Coil (Added by Students)
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FEM + Circuit Co-Simulation for NFC Coil Matching Network

HFSSDesign3

Port2 B 5G_Phone1__R%§_"E:hone1_LTE b6
|

c_ser_tag

Design Properties
—— c_shunt_tag = 119pF

¢_shunt_tag c_ser_tag = 25pF
’ Vin =1V

[
0 25 50 (mm)




Y1

S-Parameters: Phone Antennas in Free Space

0

-10

-20

-30

.40

-50

-60

-70

-80

-10.98

-77.32 -77.32

|
0.010

Freq [GHz]

0.01356

|
0.100

0.63644

e (B(S(Fort1 Port1))
LinearFrequency

dB(S(Fort2 Port1))
LinearFrequency

mes (B(S(Fort1 Port2))
LinearFrequency

dB(S(Fort2 Port2))
LinearFrequency

0.65000




H-Field Magnitude Plot Through Cross-Section of Phone

Max 50.000 Max 50.000

NFC Coil Excited @ 13.56 MHz LTE Antenna Excited @ 650 MHz
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NFC Coil Excited (13.56 MHz):

Normalized S-Parameter Coupling Magnitude
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LTE Antenna Excited (650 MHz):

Normalized S-Parameter Coupling Magnitude
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Proposed Syllabus for New Senior-Level Undergraduate Course:
ECE 4114 — ‘Introduction to Computational Electromagnetics’

Week 1: Review of Vector Fields, Vector Calculus Notation, and Maxwell’s Equations
Lab: Introduction to Python Scripting and the PyAEDT Python module

Week 2: Review of Lumped vs. Distributed Models of Electromagnetic Phenomena
Lab: Designing a Capacitive Touch Sensor with Lumped RLGC Parameter Solver Ansys Q3D

Week 3: Numerical Computation Methods Part 1: Electrostatics, Magnetostatics, and Quasi-Static Solutions for Electrically Small Problems
Lab: Designing an Electric Guitar Pickup with Magnetostatic & Quasistatic EM Solver Ansys Maxwell / Near-Field Visualization Techniques

Week 4: Numerical Computation Methods Part 2: Full-Wave Solutions — FEM, MoM, and FDTD
Lab: Designing a Highly Directional Wi-Fi Antenna with Full-Wave FEM Solver Ansys HFSS / Far-Field Visualization Techniques

Week 5: Numerical Computation Methods Part 3: Asymptotic Solutions for Electrically Large Problems
Lab: Optimizing Wi-Fi Signal Propagation in a Home with Asymptotic EM Solver Ansys SBR+ / Ray-Tracing Visualization Techniques

Week 6: RF System Design and Co-Simulation of Models with Lumped Components & Distributed Structures
Lab: Designing a Matching Network for an Electrically Small Bluetooth Antenna with Ansys Circuit + HFSS

Week 7: Finals Week — Student Project (In Lieu of Final Written Exam)
Students to work in small teams on a computational EM modeling/design project of their own interest.

Extra Credit: Build the device modeled in your simulation and compare to measurements taken with a VNA or other relevant measurement device.

Student Art Competition: Along with their final project, students will submit their favorite animated GIF that demonstrates the power of visualizing EM fields!




3D Printed Lithophane Hardcover for Dissertation Document

FEM Modeling for Blomedical Applications:
RF Heating & Microwave Imaging

Electrical & Computer Engineering
PR s * I|nitial Book Cover CAD w/ Print-in-Place Hinges:

SERANO

2023 * CAD Modified in Ansys HFSS
) * Enlarged for 8.5 x 11” Document
 Added WPI Seal (PNG > DXF)
» Splitinto 4x Pieces w/ Connecting Dovetail Joints
* Printed with UV-Activated Glow-in-the-Dark PLA
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https://www.printables.com/model/10776-book-cover

Animation Flip Book Appendix:

Appendix B: Cut-Out Animation Flip Book

|E| Field: Phase — 0.0°, Without Foam Helmet

The following section may be cut out of this document to create an animation “flip book’.

These animations were generated as part ol the research for:

Serano P. Adams JW. Chen L, Nazarian A, Ludwig R. Makaroff SN, Reducing
Non-Through Body Energy Transfer in Microwave lmaging Systems. [EEE
Jouwrnal of Electromagnetics, RE and Microwaves in Medicine and Biology, vol.

T.ono. 2, pp. 187192, June 2023, doi: 10.1109/JERM. 20233247904

|E| Field: Phase — 0.0°. With Foam Helmet

Each animation shows the magnitude of the electric field plot through a cross-section of the

head and animated vs. the phase of the input excitation:

Upper Animation: Withont Foam Helmet

Lower Animation: With Foam Helmet

\nsys
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" Thank You!

2 N '

Animation: Combined Far-ild Pattern of Two Antennas vs. Antena Spacing; Made w/ Ansys HFSS SBR+

Wnsys
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