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Technical Background

• 2018-Present (Full-Time): Ansys Inc., Washington, DC
• Lead Application Engineer

• 2017-Present (Part-Time): Rock ’n Repair Shop, Washington, DC
• Owner / Founder / Manager / Electronics & Instrument Repair Technician

• 2014-2017: U.S. Food and Drug Administration, Silver Spring, MD
• ORISE Research Fellow, CDRH/OSEL/DBP

• 2011-2014: Athinuola A. Martinos Center for Biomedical Imaging, Charlestown, MA
• Research Assistant, Analog Brain Imaging Laboratory
• Research Technician, 15 Tesla MRI Laboratory

• 2010-2011: Bruker Bio-Spin, Billerica, MA
• RF Engineer: NMR Probe Head Design & Construction

• 2008-2010: InsightMRI, Worcester, MA
• RF Engineer: RF Coil Design & Construction

• 2002-2009: Worcester Polytechnic Institute, Worcester, MA
• BS ECE, Music Minor (2006);  MS ECE (2009)



4



5





7

Collaboration with WPI Electric Guitar Innovation Lab (EGIL)

• Embedded WPI EGIL’s DSP + Microcontroller Platform into My Guitar

• Custom PCB Design Currently Being Developed!

• Enables Modulation of Digital FX w/
• Accelerometer & Gyroscope Input (Movement of Guitar Body)

• Infrared Distance Sensor Input (Varying Hand Placement Above Sensor)
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Lead Guitar in Synth-Rock Band ‘Goodbye Futureman’;
Debut Album Available on All Streaming Platforms! 
http://bit.ly/4anBnpj

Generate 2D Terrain 
Surface w/ PyAEDT

Plasma Discharge Photography

World’s First Penguin-Based MIDI Controller

Art Made in the 
Medium of 

HFSS 

3D Printing!

+ Custom Python 
Code to Generate 
3D Printable STL



Development of an FDA Approved

Medical Device Development Tool (MDDT):

‘Computation Tool For Temperature Rise 
Prediction Near An Orthopedic Femoral Nail 
Implant During A 1.5 T MRI Scan ’

Ph.D. Dissertation Defense

Electrical & Computer Engineering

Peter Serano

PhD Candidate, WPI ECE  

Lead Application Engineer, Ansys Inc.

12/14/23
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Motivation 

• Produce a validated, efficient methodology to 
simulate MRI-induced heating in a non-
homogenous, anatomically correct human 
body model

• Demonstrate multi-physics simulation 
methodology for comparisons against 1.5T 
MRI with published experimental data

• Provide complete test-bed (human body 
model and software solution) to medical 
device development community to explore 
techniques and accelerate design decisions
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Ansys VHP Female Model v5.0 

• Created by NEVA Electromagnetics (Yarmouth, MA)

• Manual/semi-manual segmentation using ITK-Snap

• Based on the Visible Human Project of the U.S. National 
Library of Medicine cryosection imagery

• Modeled after 59-year-old female patient with BMI ~30

• Optimized for use in wide variety of low and high frequency 
electromagnetic applications

• 249 individual CAD based structures

• Compatible with AEDT + Mechanical & Fluent via Workbench
+

• Available in Two Resolutions:

‐ 640k Facets (0.5mm - 3.0mm Surface Deviation)

‐ 160k Facets (3.0mm - 7.0mm Surface Deviation)

2

Spinal Cord

Grey matter

White matter
CSF-filled volume

4 6 8 mm

Cranium

Cryosection

3D Printing
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Ansys VHP Female Model v5.0 

• Anatomical validation completed by board of 
subject matter experts in human physiology and 
specialization areas

• MATLAB tool available to provide real-time structure 
viewing for independent user examination and evaluation

• Latest enhancements include:
• Greater resolution of reproductive system – new 

segmentation and mesh integration underway by Mallika 
Anand, MD, BIDMC and research group

• Library of orthopedic implants 

• Highly detailed ear canals

• Multiple body shells to modulate BMI

z = 80 mm grid :10 mm per division

WhiteMatter

Skull

Skin

GrayMatter

FatShell

CSFShell

AvgBodyShell

z = 375 mm grid :10 mm per division

z = 625 mm grid :10 mm per division

z = 925 mm grid :10 mm per division

Veins.lower
SkinShell
Sciatic,Nerve.right
Sciatic.Nerve.left
Muscle.Sartorius.right
Muscle.Sartorius.left
Muscle.Quadriceps.right
Muscle.Quadriceps.left
Muscle.Hamstring.right
Muscle.Hamstring.left
Femur.right
Femur.left
Femur.Bone.Marrow.right
Femur.Bone.Marrow.left
FatShell
AvgBodyShell
Arteries

Veins.upper
Veins.lower
Ulna.Radius.right
Ulna. Radius.left
T12
Stomach
Spleen
SkinSlell
Ribs.right12
Ribs.right11
Ribs.right10
Ribs.right9
Ribs.right8
Ribs.left12
Ribs.left11
Ribs.left10
Ribs.left9
Ribs.left8
Muscle.Rectus.Abdominal.right.top
Muscle.Rectus.Abdominal.left.top
Muscle.LatissimusDorsi.right
Muscle.LatissimusDorsi.left
Muscle.Forearm.Flexors.right
Muscle.Forearm.Flexors.left
Muscle.Forearm.Extensors.right
Muscle.Forearm.Extensors.left
Muscle.Erector.spinae.right
Muscle.Erector.spinae.left
Muscle.Bisep.right
Muscle.Bisep.left
Humerus.right
SpinalCordGrayMatter
FatShell
SpinalCordCSF
Cartilage6.right
Cartilage6.left
AvgBodyShell
Arteries

a)
b)

c)

d)

e)
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RF Induced Heating of Implanted Medical Devices in MRI

Objective

Approach

Value

• Accurately predict temperature changes on and near implantable medical 
devices in magnetic resonance environments 

• Ensure safety of patients with implants undergoing MRI scan by evaluating 
standardized regulatory requirements via simulation:

‒ ASTM F2182: Standard Test Method for Measurement of Radio Frequency 
Induced Heating Near Passive Implants During Magnetic Resonance Imaging

‒ ISO/TS 10974: Assessment of the Safety of Magnetic Resonance Imaging 
for Patients with an Active Implantable Medical Device

• Unified simulation environment links Ansys HFSS to Ansys 
Mechanical to simulate temperature rise due to EM losses in 
tissue and implant during exposure to RF fields of MRI.

• Parameterized models allow for rapid evaluation of patient 
landmark, device placement, and device-specific variations.

Human body model contains 
titanium femur implant

Ansys Workbench seamlessly 
passes data between Ansys 

HFSS and Mechanical 

Simulation
Flow

Implant Position [mm]Te
m

p
er

at
u

re
 [

°C
]

Parameter Sweep of Implant Placement 
Determines Location of Peak Heating

• Efficient process for evaluating temperature rise on or near 
implanted medical devices in realistic human body models
‒ Provide design insights into sources of temperature rise 

to help identify MRI safe implant designs
‒ Perform in-silico testing prior to or in lieu of physical 

measurements
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EM-Thermal Co-Simulation Workflow Overview
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Validation Case #1a: Simulating ASTM F2182 Standard in Gel

Computational modeling of RF-induced heating due to a titanium-alloy rod: An Interlaboratory Comparison 
for the ASTM F2182 task group; Murdock et al.; Proc. Intl. Soc. Mag. Reson. Med. 27 (2019)

Component Dimensions Density (kg/m) Electrical Conductivity (S/m)
Relative 

permittivity

Thermal conductivity 

(W/(m*K))

Specific heat 

(J/(kg*K))

Phantom enclosure
65 x 42 x 12 cm

12 mm thickness
1180 0 3.14 0.2 1780

Phantom gel 65 x 42 x 9 cm 1000 0.47 78 0.6 4184
Implant 

(Ti alloy rod)

3.2 mm diam x

10 cm long
4430 5.95 x 105 1 6.7 526.3

1.5 T RF coil
Height: 82 cm

Inner diameter: 59.4 cm
N/A Infinite N/A N/A N/A

• Results predict a whole-body SAR of 3.6 
W/kg and temperature rise of 11° C

• Within one standard deviation of 
values reported in a peer-reviewed 
interlaboratory task group 
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FEM + Circuit Co-Simulation Model of “Birdcage” RF Coil

Design Properties
Ctune = 105pF 
Resr = 0.1ohm 
Vin = 76.78V
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S-Parameters: Tuned & Matched for Quadrature Excitation
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S-Parameter [ΔS < 0.02] + Near Field Convergence [ΔSAR < 1%]
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Calibrate Power Input: 
Adjust Input Voltage to Set |B1

+|= 1 μT at Coil’s Isocenter

|B1
+| 

 
 
 

|B1
-|
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Local SAR – Comparison w/ ASTM Standard
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Local SAR – Comparison w/ ASTM Standard



22

Validation Case #1b: Simulating ASTM F2182 Rod in VHP Phantom

Computational modeling of RF-induced heating due to a titanium-alloy rod: An Interlaboratory Comparison 
for the ASTM F2182 task group; Murdock et al.; Proc. Intl. Soc. Mag. Reson. Med. 27 (2019)

• Temperature rise again in line with standards
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Validation Case #2a: Gel with Embedded Rod in 1.5T MRI

• Simulate realistically 
loaded MRI birdcage 
coil with simple gel 
phantom and 
embedded metallic rod

• Good agreement with 
experimental results – 
current density and 
temperature rise

Muranaka H, Horiguchi T, Usui S, Ueda Y, Nakamura O, Ikeda F, Iwakura K, Nakaya G. 2006. Evaluation of RF heating on humerus implant in phantoms during 1.5 T MRI 
imaging and comparisons with electromagnetic simulation. Magn Reson Med Sci. 5(2):79-88. PMID: 17008764.

Muranaka H, Horiguchi T, Usui S, Ueda Y, Nakamura O, Ikeda F. 2007. Dependence of RF heating on SAR and implant position in a 1.5T MR system. Magn Reson Med Sci. 
6(4):199-209. PMID: 18239357.

Muranaka H, Horiguchi T, Ueda Y, Tanki N. 2011. Evaluation of RF heating due to various implants during MR procedures. Magn Reson Med Sci. 10(1):11-19. PMID 21441723.
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Validation Case #2b: VHP Female with Embedded Rod in 1.5T MRI

Muranaka H, Horiguchi T, Ueda Y, Tanki N. 2011. Evaluation 

of RF heating due to various implants during MR procedures. 
Magn Reson Med Sci. 10(1):11-19. PMID 21441723.

VHP results in relative agreement – 
differences attributed to variation in rod 
depth (vs constant depth of phantom) and 
changes in material properties
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Validation Case #3a: Surface Coil on Agar Phantom – SAR 
Characterization at 165 MHz

Oh S, Ryu Y-C, Carluccio G, Sica CT, Collins CM. 2014. Measurement of SAR-

induced temperature increase in a phantom and in vivo with comparison to 
numerical simulation. Magn. Reson. Med. 71(5):1923–1931. PMID 23804188.1

• While not at the desired 1.5T 
frequency, very few in vivo 
experiments are available

• Just a simple Agar block, this 
case establishes both the 
workflow (model construction, 
initial simulation in HFSS, 
corresponding heat simulation in 
Thermal) and simulation results

• Good correlation with both SAR 
(~1100 W/kg) and change in 
heat (~13° C)

Simulated SAR              Simulated Temp Rise                   Measured Temp Rise
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Validation Case #3b: Surface Coil on Human Forearm – SAR 
Characterization at 165 MHz

• Adding in forearm 
with corresponding 
bones, blood vessels, 
nerves, etc.

• Good correlation with 
both SAR (~450 
W/kg) and change in 
heat (~6.6° C)

Oh S, Ryu Y-C, Carluccio G, Sica CT, Collins CM. 2014. Measurement of SAR-

induced temperature increase in a phantom and in vivo with comparison to 
numerical simulation. Magn. Reson. Med. 71(5):1923–1931. PMID 23804188.1
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Accessing Specific MRI Scan Sequence Timing:
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Publications in PLOS ONE & eLife:
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FDA Medical Device Development Tool (MDDT)

https://www.fda.gov/medical-devices/medical-device-development-tools-mddt



A Novel Approach to Reducing 
Non-Through Body Energy Transfer 
in Microwave Imaging Systems

Ph.D. Dissertation Defense

Electrical & Computer Engineering

Peter Serano

PhD Candidate, WPI ECE  

Lead Application Engineer, Ansys Inc.

12/14/23
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Microwave Imaging

Image Source: Mahmud, et. al; “Ultra-Wideband (UWB) Antenna Sensor Based Microwave Breast Imaging: A Review”
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Single Tx/Rx Microwave Imaging System

Tx Rx
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Dual Anti-Phase Patch Antenna (Modeled as HFSS 3D Component)

Molex MMCX SMT 
Connector Model

Antenna CAD 
Imported from 

Altium PCB Design

Vendor 
Touchstone File

Lumped 
Tuning/Matching 

Components

Single 
Wave Port 
Excitation



34

Single Tx/Rx Microwave Imaging System

Tx Rx
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Problem: On-Body Antenna Radiates Excessively Outside The Body (DUT)
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Proposed Solution Utilizing New RF Absorbing Foams
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Inner Foam Layer:



Outer Metal Layer:



Foam + Metal Cap: HFSS Model (Left); Constructed Prototype (Right)
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A

C

B

D

A B
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NO FOAM / NO METAL FOAM / NO METAL

NO FOAM / METAL FOAM / METAL

HFSS Models:
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NO FOAM / NO METAL FOAM / NO METAL

NO FOAM / METAL FOAM / METAL

|E| Field vs. Input Excitation Phase – Coronal Plane
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NO FOAM / NO METAL FOAM / NO METAL

NO FOAM / METAL FOAM / METAL

|E| Field vs. Input Excitation Phase – Transverse Plane
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Poynting Vector Magnitude: Body Surface (Left); Through Head (Right)
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Poynting Vector Magnitude: Through vs. Around Head
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Far Field Gain Pattern
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S Parameters: Reduced S21 Coupling ∝ Increase in SNR
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Case 2: MW Imaging of the Femur
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Antennas on VHP Hips
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Antennas on VHP Hips with Foam + Metal Belt
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Cross-Section View
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|E| Field vs. Input Excitation Phase – Transverse Plane

No Belt With Belt
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|E| Field vs. Input Excitation Phase – Sagittal Plane

No Belt With Belt
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Far Field Gain Pattern
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S Parameters: Reduced S21 Coupling ∝ Increase in SNR
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Student Award & IEEE Publication



WPI MQP Student Mentoring

Fall Semester ’23

Ph.D. Dissertation Defense

Electrical & Computer Engineering

Peter Serano

PhD Candidate, WPI ECE  

Lead Application Engineer, Ansys Inc.

12/14/23
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WPI MQP Student Project: Design of an EMI Scanner 

Commercial EMI Scanner: “EMSCAN ERX EMC Scanner”

https://www.emcfastpass.com/test-equipment/shop/near-field-scanners/near-
field-scanner-emxpert-ehx/

• Array of H-Field Loop Probes

• Digitally Multiplexed via Software
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Magnetic Field (H-Field) Loop Probe

Encourage Students to Build DIY Probe:

“EEVblog #1178 - Build a $10 DIY EMC Probe”: 
https://www.youtube.com/watch?v=2xy3Hm1_ZqI

“SHIELDED VS. UNSHIELDED SQUARE MAGNETIC FIELD LOOPS FOR 
EMI/ESD DESIGN AND TROUBLESHOOTING”:
https://incompliancemag.com/article/shielded-vs-unshielded-square-
magnetic-field-loops-for-emiesd-design-and-troubleshooting/

“A DIY Magnetic Field Probe”:
https://www.changpuak.ch/electronics/MagneticFieldProbe.php
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Initial Simulation: Lumped Circuit Model

Introduce Students to Python Scripting & 
Review Lumped vs. Distributed Circuit Theory:

Liu, J., Xiao, M., He, X., Fang, W., Shao, W., Huang, Q., Lu, G., Wang, L., Huang, Y., En, Y. and Yao, R. (2021), 
Symmetrical double-loop H-field probe with floating shield for improving sensitivity and electric field 
suppression. IET Microw. Antennas Propag, 15: 464-473. https://doi.org/10.1049/mia2.12050

Plot Made Students with NumPy + Matplotlib:

https://doi.org/10.1049/mia2.12050
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Single Shielded Loop Probe + Array: Implemented on FR-4 Substrate

Introduce Students to Creation of Parameterized CAD &
Full-Wave FEM Modeling with Ansys HFSS 
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Example Simulation Output: Loop Probe Input Impedance (Z11)
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Animation: H-Field Magnitude vs. Input Excitation Frequency
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4x4 Array of Loop Probes: Evaluate Loop-to-Loop Coupling

• H-Field Magnitude on XY Plane, 5mm Above Array
• Evaluate Field Homogeneity

• Add External RF Excitation from Smartphone Antennas
• Evaluate Phone-to-Array S-Parameter Coupling
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Generic Android Cell Phone w/ LTE Antenna (Provided by Ansys) 
& NFC Coil (Added by Students)
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FEM + Circuit Co-Simulation for NFC Coil Matching Network
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S-Parameters: Phone Antennas in Free Space
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H-Field Magnitude Plot Through Cross-Section of Phone

NFC Coil Excited @ 13.56 MHz LTE Antenna Excited @ 650 MHz
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NFC Coil Excited (13.56 MHz):
Normalized S-Parameter Coupling Magnitude
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LTE Antenna Excited (650 MHz):
Normalized S-Parameter Coupling Magnitude
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Proposed Syllabus for New Senior-Level Undergraduate Course:
ECE 4114 – ‘Introduction to Computational Electromagnetics’

Week 1: Review of Vector Fields, Vector Calculus Notation, and Maxwell’s Equations
Lab: Introduction to Python Scripting and the PyAEDT Python module

Week 2: Review of Lumped vs. Distributed Models of Electromagnetic Phenomena  
Lab: Designing a Capacitive Touch Sensor with Lumped RLGC Parameter Solver Ansys Q3D

Week 3: Numerical Computation Methods Part 1: Electrostatics, Magnetostatics, and Quasi-Static Solutions for Electrically Small Problems
Lab: Designing an Electric Guitar Pickup with Magnetostatic & Quasistatic EM Solver Ansys Maxwell  /  Near-Field Visualization Techniques

Week 4: Numerical Computation Methods Part 2: Full-Wave Solutions – FEM, MoM, and FDTD
Lab: Designing a Highly Directional Wi-Fi Antenna with Full-Wave FEM Solver Ansys HFSS  /  Far-Field Visualization Techniques

Week 5: Numerical Computation Methods Part 3: Asymptotic Solutions for Electrically Large Problems
Lab: Optimizing Wi-Fi Signal Propagation in a Home with Asymptotic EM Solver Ansys SBR+  /  Ray-Tracing Visualization Techniques

Week 6: RF System Design and Co-Simulation of Models with Lumped Components & Distributed Structures
Lab: Designing a Matching Network for an Electrically Small Bluetooth Antenna with Ansys Circuit + HFSS

Week 7: Finals Week – Student Project (In Lieu of Final Written Exam)
Students to work in small teams on a computational EM modeling/design project of their own interest.
Extra Credit: Build the device modeled in your simulation and compare to measurements taken with a VNA or other relevant measurement device.

Student Art Competition: Along with their final project, students will submit their favorite animated GIF that demonstrates the power of visualizing EM fields!



71

3D Printed Lithophane Hardcover for Dissertation Document

• Initial Book Cover CAD w/ Print-in-Place Hinges:
• https://www.printables.com/model/10776-book-cover

• CAD Modified in Ansys HFSS
• Enlarged for 8.5 x 11” Document
• Added WPI Seal (PNG > DXF)
• Split into 4x Pieces w/ Connecting Dovetail Joints
• Printed with UV-Activated Glow-in-the-Dark PLA

https://www.printables.com/model/10776-book-cover
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Animation Flip Book Appendix:
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Thank You!

Animation: Combined Far-Field Pattern of Two Antennas vs. Antenna Spacing; Made w/ Ansys HFSS SBR+
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Full List of Presenter’s Publications: Journal Articles

[1] Serano P, Makaroff SN, Ackerman JL, Nummenmaa AR, Noetscher G. Detailed High-Quality Surface-Based Mouse CAD Model Suitable for Electromagnetic Simulations. Biomed Phys 
Eng Express. 2023 Nov 20. doi: 10.1088/2057-1976/ad0e14. Epub ahead of print. PMID: 37983756.

[2] Yao J, Kaso A, Serano P, Ackerman JL, A Single-Solenoid Double-Resonance Radiofrequency Coil for 1H and 31P Solid State MRI at 1.5 T. - Under Review at
Journal of Medical & Radiation Oncology, 2023
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[4] Serano P, Adams JW, Chen L, Nazarian A, Ludwig R, Makaroff SN, Reducing Non-Through Body Energy Transfer in Microwave Imaging Systems. IEEE Journal
of Electromagnetics, RF and Microwaves in Medicine and Biology, vol. 7, no. 2, pp. 187-192, June 2023, doi: 10.1109/JERM.2023.3247904

[5] Adams JW, Chen L, Serano P, Nazarian A, Ludwig R, Makaroff SN, Miniaturized Dual Antiphase Patch Antenna Radiating into the Human Body at 2.4 GHz. IEEE
Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, vol. 7, no. 2, pp. 182-186, June 2023, doi: 10.1109/JERM.2023.3247959

[6] Noetscher GM, Serano P, Wartman WA, Fujimoto K, Makarov SN. Visible Human Project female surface based computational phantom (Nelly) for radio-frequency safety evaluation in 
MRI coils. PLoS One. 2021 Dec 10;16(12):e0260922. doi: 10.1371/journal.pone.0260922. PMID: 34890429; PMCID: PMC8664205
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Full List of Presenter’s Publications: Journal Articles
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