
 

1 

 

Applications of Machine Learning in 
Real-time Brain Tissue Strain 

Estimation 

 
A Dissertation 

Submitted to the Faculty of 
WORCESTER POLYTECHNIC INSTITUTE 

In Partial Fulfillment of the Requirements for the Degree of 
DOCTOR OF PHILOSOPHY 

in Biomedical Engineering 

Summer 2021 

By 

Kianoosh Ghazi 

Approved by: 

 

 

 

 

 

  

______________________________ 

Songbai Ji 

Professor, Advisor 
Biomedical Engineering, Mechanical 

Engineering 
Worcester Polytechnic Institute 

 
______________________________ 

Karen Troy 

Professor 
Biomedical Engineering, Mechanical 

Engineering 
Worcester Polytechnic Institute 

 

______________________________ 

Dirk Albrecht 

Associate Professor 
Biomedical Engineering, Biology and 

Bio technology 
Worcester Polytechnic Institute 

 
______________________________ 

Nima Rahbar 

Associate Professor 
Civil and Environmental Engineering, 

Mechanical Engineering  
Worcester Polytechnic Institute 

 

______________________________ 

Steve Rowson 

Associate Professor 
Biomedical Engineering and Mechanics 
Virginia Polytechnic Institute and State 

University (Virginia Tech) 

 



 

2 

 

Acknowledgements: 

Thank you to my wonderful advisor, Dr. Songbai Ji for your mentorship over the past four 

years. I am grateful for the opportunity to work alongside you on this project, and for your 

continuous support and guidance, encouragement and patience. Working with you has been an 

experience that taught me independence and resilience and I appreciate your hard work in helping 

me learn and succeed. I would also like to thank the members of my dissertation committee, Dr. 

Karen Troy, Dr. Dirk Albrecht, Dr. Nima Rahbar, and Dr. Steve Rowson for their insight in 

developing this dissertation. 

I would like to thank all past and present members of Ji Lab. Especially I am grateful to 

Wei Zhao for his generous guidance and help along the way and Shaoju Wu for sharing his insight 

and knowledge. Working alongside you has been instructive and encouraging and I am grateful 

to be teammates and friends with you.  

Further, I thank the WPI faculty for their role as role models and support for students. I am 

particularly thankful to Dr. Marsha Rolle for her help and guidance during my time as a Ph.D. 

student.  

I want to thank Megan Chrobak for her mentorship during my internship. Thank you for 

your patience and being an exemplar. I learned so much from you and I am grateful to you. 

I am thankful to all WPI graduate students whose friendship and company made this 

experience all the more enjoyable. Particularly I am thankful to Elizabeth English and Kate 

Mistretta for their friendship. 

Lastly, I would like to thank my wonderful friends, especially Sam Bagheri, Hooman Pilevar 

Abrisham, and Aria Masoomi. A special thank you to my wonderful mother Marjan Mollabeirami, 

for her endless love and support for me. This would not be possible without you.  



 

3 

 

Table of Contents 

Contents 

Table of Contents ....................................................................................................................... 3 

Table of Figures ......................................................................................................................... 8 

Table of Tables .........................................................................................................................15 

Abstract.....................................................................................................................................17 

Chapter 2: Background .............................................................................................................22 

Clinical Significance ...............................................................................................................22 

Methods of diagnosis .............................................................................................................23 

Symptomatic diagnosis ......................................................................................................23 

Kinematic metrics ...............................................................................................................24 

Finite Element ....................................................................................................................27 

Worcester Head Injury Model (WHIM) ...................................................................................39 

WHIM Model Validation .........................................................................................................40 

Limitations of FE head models ..............................................................................................41 

Mapping to other simpler functions ........................................................................................42 

Pre-Computed Brain Response Atlas (pcBRA) ..................................................................42 

Use of Machine Learning in conjunction with pre-computation ..............................................44 

Machine Learning Background ...........................................................................................45 



 

4 

 

Alternative Approaches to FE modeling .................................................................................53 

Roadmap ...............................................................................................................................53 

Chapter 3: Converting a head injury model implemented in Abaqus into LS-DYNA for impact 

simulation ..................................................................................................................................56 

Introduction ...........................................................................................................................56 

Methods ................................................................................................................................57 

Results ..................................................................................................................................59 

Discussion and Conclusion ....................................................................................................61 

Chapter 4: Aim 1: Assessment of a CNN based approach to obtain real-time element-wise strain 

prediction for the entire brain directly from impact profile ..........................................................64 

Introduction ...........................................................................................................................64 

Methods ................................................................................................................................68 

CNN Training Data .............................................................................................................68 

CNN Architecture ...............................................................................................................69 

CNN Estimation Performance ............................................................................................71 

Injury Prediction .................................................................................................................72 

Data Analysis .....................................................................................................................74 

Results ..................................................................................................................................74 

Discussion .............................................................................................................................78 

Potential Applications .........................................................................................................79 

Limitations and further developments .................................................................................80 



 

5 

 

CNN architecture and estimation performance ...................................................................82 

Conclusion .........................................................................................................................85 

Acknowledgments ..............................................................................................................86 

Funding Information ...........................................................................................................86 

Chapter 5: Aim 2: Feasibility assessment of the functionality of simplified “effective kinematics” 

to map complex profiles to equivalent simple profiles while maintaining brain strain map. ........87 

Introduction ...........................................................................................................................87 

Methods ................................................................................................................................91 

Workflow Overview ............................................................................................................91 

Impact dataset ...................................................................................................................92 

Strain responses from idealized impacts in a pcBRA .........................................................92 

Effective peak rotational velocity magnitude to preserve peak MPS ...................................94 

Effective kinematic triplets to preserve elementwise MPS ..................................................95 

CNN model to derive effective impact kinematics directly ..................................................97 

Data Analysis: .......................................................................................................................99 

Results ................................................................................................................................ 100 

Effective peak rotational velocity magnitudes about the three anatomical axes ................ 100 

Effective kinematic triplets to preserve elementwise MPS ................................................ 103 

Discussion ........................................................................................................................... 105 

Effective peak rotational velocity magnitude to preserve peak MPS ................................. 106 



 

6 

 

Effective peak rotational velocity magnitude to preserve elementwise MPS ..................... 107 

Idealized head impact mode ............................................................................................ 110 

Limitations ........................................................................................................................... 110 

Acknowledgements: ............................................................................................................ 111 

Chapter 6: Aim 3: Football helmet comparison based on strain-based and kinematics-based 

metrics .................................................................................................................................... 112 

Introduction ......................................................................................................................... 112 

Methodology ........................................................................................................................ 116 

Roadmap ......................................................................................................................... 116 

STAR Methodology and Helmet Impact Database ........................................................... 118 

Instantaneous brain strain estimation using a CNN-based brain injury model .................. 121 

Range of helmet injury mitigation capabilities using brain strain ....................................... 121 

Statistical Analysis ........................................................................................................... 123 

Results ................................................................................................................................ 124 

CNN Performance in Brain Strain Generation .................................................................. 124 

Comparison between CNN and simulation in injury metrics ............................................. 124 

Strain-based uncertainty in helmet concussion mitigation capability................................. 125 

Investigation of Significance of Impact Directionality in Helmet Injury Mitigation 

Performance using an Impact location-based comparison ............................................... 126 

Discussion ........................................................................................................................... 128 

Disparities between strain-based helmet safety performances ......................................... 129 



 

7 

 

Potential of CNN to facilitate helmet testing and iterative design ...................................... 130 

Limitations ........................................................................................................................... 131 

Conclusion .......................................................................................................................... 133 

Chapter 7: Conclusions and future directions .......................................................................... 134 

Chapter 8: References ............................................................................................................ 141 

 



 

8 

 

Table of Figures 

Figure 1: Worcester Head Injury Model (WHIM) mesh and anatomical regions (a and b). (c) 

Shows the injury relevant deep white matter regions of the brain and (d) shows the white matter 

fibers in the model. ....................................................................................................................40 

Figure 2: (a) Example of an idealized 3DOF impact rotational velocity profile; (b) the 

corresponding kinematics triplet (𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣, 𝜃𝜃, 𝛼𝛼) is represented by a vector emanating from the 

head center of gravity characterizing the impact kinematic magnitude and directionality in the 

WHIM coordinate system. For a given impact severity (denoted by rotational velocity peak: 

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣), traversing the end point of the vector in space would generate a hemisphere shown in 

(c). In the middle hemisphere, the discretized (𝜃𝜃, 𝛼𝛼) pairs are also shown as grid on the 

hemisphere. ..............................................................................................................................43 

Figure 3: Schematic Representation of a fully connected artificial neural network with 3 input 

values, four hidden neurons, and one output. The weights of each connection as well as the 

biases for each node are shown in 𝑤𝑤 and 𝑏𝑏 respectively. The values of each neuron is based on 

all the preceding neurons via the internally optimized weights and biases. ...............................49 

Figure 4: An illustration of the use of fully connected neural networks. An illustrative 4 channel 

signal is “flattened” before being fed into the network. The data “flattening” necessary in the pre-

processing neglects the temporal relationship between the signals. ..........................................52 

Figure 5: A flowchart of the aims in this dissertation. Aim1 focuses on developing an alternative 

to FE modeling to improve efficiency. Aim 2 addresses the gap between kinematics metrics and 

FE modeling by proposing a strain-driven kinematics (Effective Kinematics). Aim 3 is a real-

world application of the aim 1 where a number of helmets are compared in terms of strains and 



 

9 

 

the Summation of Tests for the Analysis of Risk (STAR) to provide context about the 

implications of using strain in helmet injury mitigation capabilities. ............................................55 

Figure 6: Cumulative maximum principal strain from C3D8I with an anisotropic material model 

(a), C3D8R with anisotropic material and high SFs (b), optimized isotropic material with GM/WM 

heterogeneity using C3D8R and high SFs (c), and same isotropic materials converted into LS-

DYNA (d). .................................................................................................................................62 

Figure 7: Histograms of peak resultant rotational velocity (a; vrot) and acceleration (b; arot) for 

the entire training sample (n = 5661). The real-world impacts are overlaid. Regions between the 

two vertical lines are considered ‘‘in range.’’ The starred cases are explained in more detail in 

Fig. 10. The blue bars are a subset of the database we used as independent validation data 

(scaled by 10 for visibility). This process is detailed in the following sections. ...........................69 

Figure 8: Flow chart showing preprocessing of a head impact kinematic profile (top) and an 

empirically optimized convolutional neural network (CNN) architecture (bottom) to predict the 

distribution of peak maximum principal strain (MPS) of the entire brain. The preprocessed vrot 

profile (after transforming to its ‘‘conjugate rotational axis,’’ and if needed, shifting, and padding  

(Wu, Zhao, Ghazi, et al., 2019)) is combined with the corresponding pre-processed and scaled 

arot profile (effectively, with a unit of 100 rad/sec2 after scaling). The resulting two-dimensional 

[2D] image representation serves as the CNN input. .................................................................71 

Figure 9: Histograms of peak resultant rotational velocity (a; vrot) and acceleration (b; arot) for 

a subset of data (n = 3064) used to train and test on an independent National Football League 

(NFL) data set (n = 53), which is overlaid (number of occurrences multiplied by 10 to improve 

visualization). ............................................................................................................................73 

Figure 10: Summary of k and r when comparing convolutional neural network (CNN)-estimated 

and directly simulated maximum principal strain (MPS) distributions using a 10-fold cross-



 

10 

 

validation, using either the entire (a) or a subset of (b) the impact data set focusing on ‘‘in-

range’’ impacts (after removing ‘‘outliers’’). The shaded area represents impact cases of 

sufficient accuracy (i.e., 0:9 < k < 1:1 and r > 0:9). The k and r axes are capped to improve 

visualization. The identified four cases in (a) are further illustrated in Fig. 10. ...........................75 

Figure 11: Representative impact cases showing impact vrot and arot profiles with the 

convolutional neural network (CNN)-estimated (eest) and directly simulated (esim) maximum 

principal strain (MPS) distributions for a successful prediction (a) or ‘‘failed’’ cases resulting from 

(1) out-of-range vrot peak magnitude (b); (2) out-of-range arot peak magnitude together with a 

large initial vrot value (c); and (3) a large initial vrot value (d). The four cases correspond to 

cases 1–4 identified in Fig. 6. ...................................................................................................76 

Figure 12: Summary of k and r for convolutional neural network (CNN)-estimated (𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀) and 

directly simulated (𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀) maximum principal strain (MPS) distribution for an independent 

National Football League (NFL) impact data set (a; shaded area represents impacts of sufficient 

estimation accuracy, i.e., 0:9 < k < 1:1 and r > 0:9). Three representative impacts are selected 

to show a successful estimation (b; purposefully chosen to represent an r toward the threshold 

value for success) and two ‘‘failed’’ cases (c and d). The latter two cases only failed 

‘‘marginally’’; that is, their corresponding k and r were rather close to their success threshold 

values. ......................................................................................................................................77 

Figure 13: Comparison of estimation performance using the previous convolutional neural 

network (CNN) architecture (a; with the size of the last output layer changed to 55 k to match 

the number of brain elements for response prediction39) and the one updated in this study (b). 

Their convergence behaviors in terms of root mean squared error (RMSE) between the two 

distributions versus epochs are also compared (c). All performance measures reported here are 



 

11 

 

based on the previous impact data set (n = 3069) using vrot profiles alone as CNN input, without 

the addition of arot profiles. ........................................................................................................84 

Figure 14: Illustration of a National Football League (NFL) concussive head impact (a; 

Case125HD0243) and another head impact from the HF data set (b; no injury diagnosis 

available). Even though their vrot peak magnitudes are significantly larger than the targeted 

range (61.4 rad/sec and 78.4 rad/sec, respectively, vs. 40 rad/sec as the upper bound of the 

targeted range; corresponding to the two cases identified in Fig. 6a), the convolutional neural 

network (CNN)-estimated strains were sufficiently accurate. Note, strain in (a) is higher than that 

in (b), even though its vrot peak magnitude is lower, because of its significant deceleration, 

which is lacking in the recorded profile in (b). ............................................................................85 

Figure 15: Flowchart of the study to translate an arbitrary head impact into effective impact 

kinematics to preserve either peak MPS or spatially detailed MPS. Elementwise MPS of the 

brain for an arbitrary head impact is first obtained and compared with the pcBRA library to 

identify an idealized impact. With a CNN, this process is automated without the need for actual 

costly impact simulation. pcBRA: pre-computed brain response atlas. ......................................91 

Figure 16: (a) Example of an idealized three-degree-of-freedom (3DOF) impact rotational 

velocity profile; (b) the corresponding kinematics triplets (𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣, 𝜃𝜃, 𝛼𝛼) represented by a vector 

emanating from the head center of gravity to characterize the peak velocity magnitude and 

directionality in the WHIM coordinate system. For a given 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣, traversing the vector end point 

in space would generate a hemisphere shown in (c). In the middle hemisphere, the discretized 

(𝜃𝜃, 𝛼𝛼) pairs are also shown as grid on the hemisphere. .............................................................93 

Figure 17: (a) Histogram distribution of peak MPS for the N=3069 impacts. (b) Peak MPS 

values corresponding to the same anatomical axis from the pcBRA are grouped to fit a 

constrained third order polynomial. The MPS of each impact is used to identify the 



 

12 

 

corresponding 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣, 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣, 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 along the three anatomical axes. The two dashed lines on 

the far right show the extent of 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 extrapolation range deemed of sufficient accuracy. For the 

same 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣, an axial rotation produces a considerably higher MPS than a coronal or a sagittal 

rotation. The red line shows an unsuccessful case that did not coincide with the X and Y 

polynomials within the allowed margin for extrapolation. ...........................................................95 

Figure 18: (a) Illustration to identify nearest neighbors in the pcBRA parametric space for an 

arbitrary head impact based on brain strain. The rotational axis is weight averaged and then 

fixed to interpolate a number of brain strains for a range of 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 values based on the pcBRA. 

Their corresponding k values as regressed against simulated elementwise MPS for a given 

impact are used to generate a constrained third order polynomial fitting (b). The effective 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 

is finally determined by intersecting a horizontal line with k of 1.0. ............................................97 

Figure 19: The CNN architecture used in this study, which shares the architecture with the one 

in aim 1 with the exception of the final layer. .............................................................................98 

Figure 20: (a) shows the definition of angular and magnitude errors. Angular error is 

represented by 𝛽𝛽. ......................................................................................................................99 

Figure 21: A scatterplot between the peak MPS and peak effective rotational velocity and the 

nominal counterparts are shown along X, Y, and Z ((a) thought (c)). Comparison between 

effective and nominal peak rotational velocity and acceleration along the x, y, and z axis 

(coronal, sagittal, and axial directions, respectively, as defined in Fig. 15) in ((d) through (f)) and 

((g) though (i)). ........................................................................................................................ 102 

Figure 22: (Left) shows the scatterplot of CNN prediction of effective peak rotational velocity 

magnitude against the label counterpart for all three axes. (Right) shows the scatterplot of CNN 

predictions translated to MPS compared against the ground-truth MPS. ................................. 103 



 

13 

 

Figure 23: (a) Summary of element-wise Pearson correlation coefficient (r) with the most similar 

idealized impact in the pcBRA database when the linear regression slope (k) was forced to be 

1.0 by adjusting the effective 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 (those with r>0.9 were considered “successfully matched”). 

(b) a comparison of effective 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 and the nominal counterparts for the successfully matched 

impacts; (c) and (d) illustration of example cases showing their actual and idealized impact 

profiles, together with the corresponding elementwise MPS. ................................................... 104 

Figure 24: The histograms of error in terms of “angular” and “Vrot percentage magnitude” errors 

respectively using a 10-fold cross validation. The relative error in (a) is the percentage of the 

absolute magnitude error. The unsuccessful impacts are shown in red. For clarity, data points 

outside the shown range on the subfigure on the left were shown on the border. .................... 105 

Figure 25: An example of a biphasic impact in pcBRA format. The CNN from aim 1 is fully 

capable of predicting the strain distribution for this impact. ..................................................... 109 

Figure 26: A flowchart of the current study. Firstly we obtain the brain strain patterns from the 

CNN in aim 1 (Ghazi et al., 2020). Based on the strain pattern, we calculate the injury metrics 

(peak MPS and CSDM). Using the collected injury metrics we run two experiments to answer 

the questions of this study. ...................................................................................................... 116 

Figure 27: The distribution of the peak linear (first row) and rotational (second row) 

accelerations as well as the peak rotational velocity (third row) of the STAR test dataset used in 

this study. The dashed lines show the data range that the CNN in aim 1 was trained on (an 

acceleration range of 793 to 6313 rad/s2 and a velocity range of 2 to 40 rad/s). ...................... 119 

Figure 28: An illustration of the voxel-wise comparison between the strain distribution obtained 

from FE simulations and the CNN estimations. (a) illustrates the performance in terms of k and r 

between the CNN estimation and corresponding simulations. (b) and (c) illustrate two example 

cases of the CNN predictions. ................................................................................................. 124 



 

14 

 

Figure 29: A scatter plot of the peak MPS (left) and CSDM (right) between each simulations 

and the corresponding CNN prediction. .................................................................................. 125 

Figure 30: (a) shows the number of concussions between the best and the worst helmet based 

on each threshold value and regardless of helmet. The shaded area between the two curves 

shows the difference between the best and the worst helmet given each threshold. (b) Illustrates 

the same properties for CSDM. In both figures, the red and blue line illustrate the helmets 

ranked the poorest among all helmets. The dashed line in both sub-figures represents the injury 

mitigation difference between the best and the worst helmet in each threshold value. ............ 126 

Figure 33: Box plot of the peak MPS (top) and CSDM (bottom) across helmets in each 

scenario.Helmets V and W (shown in green and yellow respectively) had the lowest STAR score 

yet performed average in terms of strain metrics. Helmet M (shown in red) generated large 

strains in the front boss direction, but perform close to the average in other directions.  𝜏𝜏 

denotes the kendall's tau value between the ranking in each scenario and the STAR ranking of 

the helmets. ............................................................................................................................ 127 

Figure 34: An illustration of the strain pattern difference between two impacts that have a low 

correlation. These two cases belong to the impact condition with 𝜃𝜃 = 90° and the Front Boss 

impact location, and the helmets O and P (“Schutt F7 LTD” and “Schutt F7” corresponding to 

the left and right figure respectively). ....................................................................................... 130 

 



 

15 

 

Table of Tables 

Table 1: A general overview of the symptoms of concussion on a group-wise basis. ...............23 

Table 2: A summary of selected head injury models and their characteristics (Giudice et al., 

2019). .......................................................................................................................................28 

Table 3: Summary of the discretizing variables, their ranges, step sizes, and number of samples 

for the idealized head impact rotational profiles used to establish the pcBRA. Peak rotational 

acceleration (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝) and peak rotational velocity (𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) are equivalent when the impulse 

duration, ∆𝑡𝑡 is constant. ............................................................................................................43 

Table 4: Summary of six simulation steps to convert the baseline WHIM using anisotropic brain 

material properties in Abaqus into LS-DYNA counterpart with isotropic properties. ...................58 

Table 5: Summary of the results from the experiments. ............................................................60 

Table 6: The number and the depth of trees, (N, D), used in RF depended on whether RF was used for 

feature selection (FS) or classification (CL), as shown below. ...........................................................74 

Table 7: Summary of injury prediction performances in terms of accuracy, sensitivity, specificity and 

AUC using CNN-estimated (“CNN”) or directly simulated (“WHIM”) MPS distributions. Injuries are 

predicted using either SVM or RF with feature selection (specified in parenthesis) based on either F-score 

or RF “gini” importance ranking (Cai et al., 2018). For comparison, baseline performances using peak 

MPS of the whole brain and logistic regression are also reported. All performances are evaluated via 

leave-one-out cross-validation for objective comparison. Using RF either for injury prediction or feature 

selection, 50 trials are used to account for the random initialization. Performances that are higher than the 

baseline are in bold (p<0.05; where appropriate). ............................................................................77 



 

16 

 

Table 8: The helmets used for this aim. The starred (*) helmets were randomly selected for 

direct simulations. ................................................................................................................... 117 

Table 9: The exposures corresponding to each impact location and pendulum angle (𝜃𝜃) 

corresponding to the comparative likelihood of a representative impact being sustained (Virginia 

Tech Helmet Lab, 2020). ......................................................................................................... 120 



 

17 

 

Abstract 

Mild Traumatic Brain Injury is a major health concern in the United States and around 

the world and is especially common in contact sports and is difficult to reliably diagnose as it is 

often diagnosed in a symptom-based fashion. This is problematic since the symptoms may take 

time to develop and the recognition of the symptoms could introduce some subjective bias. In 

addition, athletes are less likely to recognize, appreciate the significance of, or disclose 

symptoms in a competitive atmosphere such as that of contact sports. This is a contributing 

factor to the difficulty of diagnosis. Undiagnosed mTBI can cause more serious health 

complications such as neurodegenerative diseases. Hence, there is a significant need to reliably 

predict the risk of concussion, and prevent concussion using preventative equipment. One 

method that holds a great potential for such scenarios is FE modeling. Yet FE models are 

computationally expensive, making them infeasible in a side-line scenario. As a result there has 

been a recent shift to pre-computation based techniques to bypass the time consuming FE 

simulations. Yet, referring to the pre-simulated database to exploit the full potential of such 

methods is a challenge as a result of the complex nature of impact profiles. Here, we addressed 

this challenge by using deep learning based approaches, which are well-suited for modeling 

such complex scenarios with constant boundary conditions. 

Here, we first identified a gap in the literature about the implications of the used software 

packages for FE simulation as a potential point of discrepancy in FE based TBI research. 

Hence, we established a bridge between Abaqus and LS-DYNA, which are two of the most 

widely-used software platforms currently used in FE modeling. We identified the differences 

between the two packages along the way to convert our Worcester Head Injury Model with 

material anisotropy, which was originally developed in Abaqus, into LS-DYNA format. We used 

the most reliable element type in Abaqus (C3D8I) as a benchmark, converted the WHIM with 
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C3D8I elements through a series of steps into an isotropic version with C3D8R elements that 

could be directly translated into LS-DYNA format, and translated the model into LS-DYNA 

format without any alterations. Then we compared the model with all the appropriate LS-DYNA 

model configurations to the Abaqus model. Then we identified the LS-DYNA configurations that 

perform the most similarly with Abaqus hence stablishing a bridge between the two.  

Further in the aims sections, with the assumption of limited time and computational 

power, we bridged the gap between FE based TBI research and utilization of such methods in 

real-world scenarios. We developed and assessed different machine learning based 

approaches with the goal of making different aspects of FE based injury assessment real-time. 

In the first aim, using a deep learning approach, we bypass FE based model simulations entirely 

and obtain the entire brain strain pattern directly from the impact profile. In the second aim, we 

developed a new, strain-based injury metric using an inverse approach to map brain strains into 

a simple kinematic profile. The advantage of this approach is that unlike all other available 

kinematic based injury metrics, it accounts for impact directionality. Finally in the third aim, we 

use our developed methods in a real-world scenario by investigating the effectiveness of a 

number of helmets based on the generated strains in the brain.  
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Chapter 1: Introduction 

With an estimated annual impact of 1.6 to 3.8 million cases, sports-related concussion or 

mild Traumatic Brain Injury (mTBI) is considered a major public health concern in the United 

States (Faul et al., 2004). TBIs are often ignored by the athlete or under- or undiagnosed. Yet, 

late or lack of diagnosis of mTBI may lead to repetitive concussions, causing permanent 

neurocognitive impairment (Zhao and Ji, 2015). So, there is a need for a reliable method of TBI 

diagnosis on sports field. 

Numerous statistically driven injury metrics were proposed to assess the risk of injury 

based on impact kinematic profile. Nevertheless, these metrics do not provide consistent injury 

predictions (Zhao and Ji, 2015). This may be because they are not directly based on brain 

tissue level mechanical responses which are thought to cause injury (Zhao, Kuo, et al., 2017b). 

To address this shortcoming, Finite Element (FE) models play a significant role in providing the 

tissue level mechanical response (e.g. strain) which are otherwise difficult to measure in live 

human brain. Other methods to obtain such results include MR imaging, which is infeasible for 

on-field sports applications. 

A significant barrier in the way of applying FE modeling in real world is its high 

computational cost, which makes it inapplicable for an on-field scenario. Hence, a methodology 

is needed to make the results from FE modeling, which requires high computational power, 

readily available for on field applications with limited computational capability (Zhao, Kuo, et al., 

2017b). 

To address this problem, here we develop methodologies to provide real-time insight 

into brain tissue strains, strain-based injury metrics and the potential applications. These 

methodologies can help to assess concussion risk in real-time and reliably to avoid subsequent 

concussions and prevent injury aggravation. They can further be used to provide a tissue level 
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understanding on the effectiveness of injury mitigation equipment. This study aims to require 

minimal computational cost to be applicable with limited equipment. The achievement from this 

research bridges the gap between FE modeling of the brain and its on-field application to utilize 

the theoretical achievements of the computational brain models in real-world applications.  

To that end we take advantage of the efficiency and versatility of machine learning 

methods to provide real-time methodologies for predicting brain tissue response and other injury 

metrics for any given impact collected from contact sports. This data will provide valuable 

information for assessment of injury risk on sports field as well as that of safety equipment in 

mitigating injury risk. The mentioned applications will be implemented by taking advantage of a 

number of simulated real-world sports impacts to train Convolutional Neural Networks (CNN) 

and subsequently using them in different contexts. We use our Worcester Head Injury FE model 

(WHIM) for this study, which has been verified extensively against cadaver and in-vivo relative 

brain-skull displacement as well as strain data, for all simulations. 

AIM 1: Assessment of a CNN based approach to obtain real-time element-wise strain 

prediction for the entire brain directly from impact profile.  Our first aim is to predict the 

cumulative MPS for the entire brain elements in our WHIM based on real-world simulated data 

using a Convolutional Neural Network (CNN). This aim is based on our previous study that took 

the same approach to obtain the peak MPS proved to perform very well (R2 = 0.966 when 

comparing predicted to the ground truth of simulated peak MPS (Wu, Zhao, Ghazi, et al., 

2019)). 

AIM 2: Feasibility assessment of the functionality of simplified “effective kinematics” to 

map complex profiles to equivalent simple profiles while maintaining brain strain map. 

This aim matches MPS distribution pattern of a database of real-world impacts to a well-

established “dictionary” of pre-simulated head impacts with simple impact profiles in a way that 



 

21 

 

maintains the brain MPS pattern. Then we train a CNN to predict the simplified profile given the 

real-world profile. The value of this approach, in our opinion, is that it translates complex real-

world impacts into simple and intuitively understandable and comparable profiles based on the 

brain strains with minimal sacrifice in accuracy.  

AIM 3: Football helmet comparison based on strain-based and kinematics-based metrics. 

We use the CNN based approach from aim 1 to investigate the injury mitigation performance of 

a number of helmets based on brain tissue strain distribution and other commonly used FE 

based injury metrics. Most of the helmets in this aim are identically scored with the commercially 

used STAR rating system, which is a well-established rating system for helmet performance 

(Rowson and Duma, 2011). 
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Chapter 2: Background 

Clinical Significance 

With an estimated annual impact of between 1.6 and 3.8 million people, sports-related 

concussions, or mild traumatic brain injury (mTBI), is considered to be a major public health and 

socio-economic concern in the United States (Faul et al., 2004). A large number of annual 

concussions occur in football and ice hockey (Thomas R. Frieden, Debra Houry, 2015). 

The pathology as well as an exact definition of concussion is still being investigated. 

However, the current consensus is the fact that concussion is a pathophysiologic response of 

the brain to biomechanical forces that is functional rather than structural (Kutcher and Giza, 

2014). 

Given the potentially devastating effects of concussion, especially in contact sports, 

there has been an increasing focus on understanding the significance of concussion in the past 

20-30 years. One of the earliest efforts was the publication of the first practice parameter 

document on sports concussion in 1997 by the American Academy of Neurology (AAN) 

(American Academy of Neurology Report of the Quality Standards Subcommittee, Practice 

Parameter: The management of concussion in sports. Neurology, 1997). This was a response 

to the surveillance of athletes revealing evidence of the potential long term effects of mTBI. 

Further, there was aggregating concerns over the dire consequences of repetitive head impacts 

that could cause serious health complications such as chronic traumatic encephalopathy (CTE), 

which is still an active area of research (Kutcher and Giza, 2014). 

Yet, in an athletic atmosphere it is frequently under- or undiagnosed because the signs 

of cognitive changes may be unclear, masked, or unrecognized/ ignored by the athlete (McCrea 

et al., 2004).  Further, based upon the fact that diagnosis of concussion is frequently performed 
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based upon the symptoms, instant diagnosis of concussion is sometimes not possible, as the 

pathology that makes concussion diagnosis possible may take several hours to take place 

(Kutcher and Giza, 2014). This highlights the significance of predictive metrics in an on-field 

setting. Misdiagnosis of concussion could put the athlete at risk of sustaining subsequent 

impacts, if they were to return to the sports field after injury. Sustaining subsequent impacts to 

the head after concussion leads to permanent neurocognitive and neurophysiological 

impairments such as CTE (Kutcher and Giza, 2014). In addition, the athletes who sustain a first 

concussive impact are more likely to sustain another impact, which further highlights the 

necessity of timely diagnosis (Beckwith et al., 2013). Hence, there is a need of a real-time 

method of on-field concussion diagnosis to remove the concussed athletes from practice to 

avoid subsequent impacts.  

 

Methods of diagnosis 

Symptomatic diagnosis 

One of the most frequently used methods to diagnose concussion is based on the 

symptoms. These symptoms can be categorized into the following categories (Table 1). 

However, these symptoms cannot be reliably used to diagnose concussion on a sports field as 

they can take time (up to several hours) to develop (Kutcher and Giza, 2014).  

Table 1: A general overview of the symptoms of concussion on a group-wise basis.  

Physical Headache, nausea/vomiting, photophobia, phonophobia, dizziness, 

slurred speech, blurred vision, incoordination. 

Cognitive/Mental 

Status 

Inattention, slowed thinking, amnesia, confusion, disorientation, 

vacant stare, loss of consciousness. 
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Affective Emotional lability, depression, anxiety, mania. 

Sleep Increased latency, frequent waking, increased sleep time, 

decreased sleep time. 

 

 

Kinematic metrics 

Numerous kinematics based injury metrics were developed over the last decades. The 

general idea behind kinematics metrics is to extract features from an impact to translate the 

impact into a scalar. These scalars are then used in conjunction with the available injury labeled 

impact data to develop a classification model to distinguish between concussive and non-

concussive impacts. Some of these metrics aim to estimate risk of injury directly from the impact 

profile. The early metrics that aim to directly estimate injury risk based on the profile include 

basic metrics such as peak linear acceleration, peak rotational acceleration, or peak rotational 

velocity. However, later these metrics evolved into more complex metrics. Some of these 

metrics are as follows: 

Head Injury Criterion (HIC): The most widely used injury criteria (Part 571, Standard No. 

202a–Head restraints., 2014), which is defined as follows:  

𝐻𝐻𝐻𝐻𝐻𝐻 =  max {[ 1
𝑡𝑡2−𝑡𝑡1

∫ ||𝑎⃗𝑎(𝑡𝑡)||𝑑𝑑𝑑𝑑] 𝑡𝑡2
𝑡𝑡1

2.5
(𝑡𝑡2 − 𝑡𝑡1)} (1) 

Here, ||𝑎⃗𝑎(𝑡𝑡)|| is the resultant magnitude of linear acceleration with respect to time, and 𝑡𝑡1 and  

𝑡𝑡2 are time boundaries chosen to maximize the value of HIC so that 𝑡𝑡2 − 𝑡𝑡1 < 15 𝑚𝑚𝑚𝑚 for HIC15 

and 𝑡𝑡2 − 𝑡𝑡1 < 36 𝑚𝑚𝑚𝑚 for HIC36. 
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Severity index (SI): This metric is also known as Gadd Severity Index (GSI) and is given as 

follows (Beckwith, Greenwald and Chu, 2012): 

𝑆𝑆𝑆𝑆 =  ∫ ||𝑎⃗𝑎(𝑡𝑡)||2.5𝑑𝑑𝑑𝑑 (2) 

Rotational Injury Criterion (RIC): The rotational equivalent of the HIC, is defined as follows: 

𝑅𝑅𝑅𝑅𝑅𝑅 = max �[ 1
𝑡𝑡2−𝑡𝑡1

∫ ||𝛼⃗𝛼(𝑡𝑡)||𝑑𝑑𝑑𝑑] 𝑡𝑡2
𝑡𝑡1

2.5
(𝑡𝑡2 − 𝑡𝑡1)� (3) 

Brain Injury Criterion (BrIC): This metric was developed by National Highway Traffic Safety 

Administration. It is based on Cumulative Strain Damage Measure (CSDM), which is derived 

from a Finite Element head model.  

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =  𝜔𝜔���⃗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝜔𝜔���⃗ 𝑐𝑐𝑐𝑐

 (4) 

Where 𝜔𝜔��⃗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the vector containing the peak velocities in each anatomical direction and 𝜔𝜔��⃗ 𝑐𝑐𝑐𝑐 is 

a vector of critical values derived from the FE model (E. G. G. Takhounts et al., 2013).  

Diffuse Axonal Multi-Axis General Evaluation (DAMAGE): This metric is based on mapping 

the MPS obtained from an FE simulation onto the equations of motion of a three-degree-of-

freedom, coupled 2nd-order system. It is obtained as follows: 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =  𝛽𝛽𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡��𝛿𝛿(𝑡𝑡)�� (5) 

Here, 𝛽𝛽 is a scale factor relating the maximum resultant displacement of the systems to the 

MPS value from the FE brain model and �𝛿𝛿(𝑡𝑡)� is a vector containing the displacement time (t) 

histories of the three coupled masses in the second order system model (Lee F. Gabler, 

Crandall and Panzer, 2018). 
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STAR Injury Risk Function: This statistically driven, logistic based metric is used to assess the 

injury risk possessed by an impact based on the peak linear and rotational acceleration values. 

It is defined as follows: 

𝑅𝑅(𝑎𝑎,𝛼𝛼) =  
1

1 + 𝑒𝑒−(−10.2+0.0433∗𝑎𝑎+0.000873∗𝛼𝛼−0.000000920∗𝑎𝑎𝑎𝑎) 

Where 𝛼𝛼 and 𝑎𝑎 denote the peak rotational (rad/s) and linear accelerations (g) (Tyson and 

Rowson, 2018). 

However, despite years of endeavor, kinematic metrics have major drawbacks that 

introduce inconsistencies in injury risk prediction (Ji and Zhao, 2015). One of the reasons for the 

discrepancies could be that these metrics are dependent on the database, which could 

introduce bias in either direction in terms of the number of concussive vs. non-concussive 

impacts. Further, since these metrics are statistically driven, if they are developed on a “simple” 

database, they could perform worse for more complicated databases. For instance the BrIC 

metric performs well in the study performed by  Takhounts et al. (R2 = 0.98 when compared to 

the MPS from the related head model), yet the performance decreases in (Lee F. Gabler, 

Crandall and Panzer, 2018) when used on a different dataset (R2 = 0.85). 

Further, translating a temporal 3-Degree-of-Freedom impact profile into a scalar value 

neglects the impact directionality, which plays a significant role in the generated strains in the 

brain tissue, which causes injury (Zhao, Kuo, et al., 2017b). Finally, another possible reason for 

the discrepancy between kinematic metrics is perhaps due to their limitation in providing insight 

into tissue mechanical responses, most notably strain pattern (Ji and Zhao, 2015).  
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Finite Element 

FE models play a unique role in providing brain tissue mechanical response to an impact 

to the head. FE models are valuable since they can provide insight into mechanics of injury 

based on the brain tissue mechanical responses to the impact (e.g. strains), which are the most 

probable cause of injury (Post and Hoshizaki, 2012). Consequently, there has been various 

endeavors for implementation of Finite Element models of the human brain, most of which were 

conducted in the recent years (Hardy et al., 2001, 2007; Ji, Zhao, et al., 2014).  

In comparison to kinematic metrics, FE models have proven to perform more accurately, 

which is expected since they are based on the tissue level strain response which is closely 

related to injury. For this reason, they are believed to withhold great potential in understanding 

the mechanics of injury (Wu, Zhao, Rowson, et al., 2019).  

Another unique capability of FE models, is their ability to provide various features of the 

strain response, which may be closely correlated with injury. For instance, strains along white 

matter fiber directions (instead of isotropic maximum principal strains) is one of such 

measurable features. When using this response, the consistency between model- estimation 

and neuroimaging findings significantly improves in terms of the spatial distribution and group- 

wise extent of potential white matter damage. (Bazarian et al., 2012; Ji et al., 2015a)  

Numerous efforts were made to create accurate FE models of the human head. These 

efforts have resulted in an increase in the model sophistication (Wu, Zhao, Rowson, et al., 

2019). Nonetheless, researchers have not reached consensus on the “correct” properties to 

model the brain. For instance optimizing brain material properties (Zhao, Choate and Ji, 2018) 

and enhancing the quality of brain mesh (Giudice et al., 2019; Zhao and Ji, 2019b) are only a 

few of these brain model parameters, which are open areas of research. The following 
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subsections will provide more detail into the characteristics that separate FE models available to 

date. 

 

Characteristics 

FE models play a crucial role in providing insight into how impact kinematics can be 

converted to regional brain tissue level response. These responses are not available by any 

other means as they cannot be obtained in vivo. This lends strength to the significance of FE 

models in studying concussion. FE head models in general can be regarded as functions to 

translate physical boundary conditions (e.g. acceleration or velocity) into tissue responses, such 

as strain, pressure, or stress (Van Dommelen, Hrapko and Peters, 2010). Several studies have 

been dedicated to using FE models in various contexts using FE models (e.g. in American 

football based on impact reconstruction (Zhang, Yang and King, 2004; Marjoux et al., 2008; Ji et 

al., 2015a), pedestrian and motorcycle accidents (Willinger and Baumgartner, 2004), and 

instrumented helmets from collegiate football players (Takhounts et al., 2008)). A list of some of 

the human head FE models used today is presented in table 2 (Giudice et al., 2019). 

Table 2: A summary of selected head injury models and their characteristics (Giudice et al., 
2019). 

 KTH (Kleiven 

and Von 

Holst, 2002) 

THUMS 

(Hideyuki et 

al., 2006) 

SIMon 

(Takhounts 

et al., 2004) 

GHBMC (Jin 

et al., 2013) 

WHIM V1 (Ji 

et al., 2015b) 

Head Elm. No. 21k 50k 46k 270k 115k 

Mean 

Resolution 

3.9 mm 3.8 mm 3.2 mm 2.5 mm 3.3 mm 
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Elm. Type Hexahedral 

Quadrilateral 

Hexahedral 

Quadrilateral 

Hexahedral 

Quadrilateral 

Hexahedral 

Quadrilateral 

Triangular 

Pentahedral 

Tetrahedral 

Hexahedral 

Quadrilateral 

Elm. 

Formulation 

Selectively 

Reduced 

Constant 

Stress 

Constant 

Stress 

Constant 

Stress 

Constant 

Stress 

Anisotropy No No No No No 

Viscoelasticity No Yes Yes Yes Yes 

Hyperelasticity Yes No No No No 

Hourglass 

Control 

N/A Viscous Viscous Viscous Enhanced 

Geometry Visible 

Human 

Database 

50th 

Percentile 

Male 

50th 

Percentile 

Male 

50th 

Percentile 

Male 

Subject-

specific 

(male) 

Solver LS-DYNA LS-DYNA LS-DYNA LS-DYNA Abaqus 

 

The models mentioned above were specifically developed for investigating the 

biomechanics of TBI, and have been validated to different extents using brain deformation 

(Hardy et al., 2001, 2007) and intracranial pressure (Nahum, Randall and Ward, 1977; 

Trosseille et al., 1992). They are each unique in their numerical implementations such as mesh 
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type, number of elements, mesh size, element formulation, hourglass formation, and the FE 

solver software package. The following sections will discuss the differences between the model 

specifications across the mentioned models to provide a background on the FE model 

characteristics.  

 

Meshing 

To begin with, an obvious and crucial discordance between the previously mentioned 

head models is meshing. Meshing is a crucial component to FE modeling since it is directly 

related to the complexity of the model. Not surprisingly, with the advancement of computational 

capacity of computers, human head FE models are growing more sophisticated in the recent 

studies--e.g. (Fernandes et al., 2018; Zhao and Ji, 2019a). Meshing has two major components, 

which are, mesh type and mesh size. 

 

Mesh Element Type 

The most common three dimensional element type is hexahedral elements (Giudice et 

al., 2019). This preference is expected because of the computational efficiency, accuracy, and 

the high rate of convergence in hexahedral elements (Tadepalli, Erdemir and Cavanagh, 2011). 

Further characteristics lending strength to the precedence of this element type are their stability 

and capacity to compute accurate solutions in highly non- linear applications that involve large 

deformation and material incompressibility, such as that of the brain (Bonet and Burton, 1998; 

Tadepalli, Erdemir and Cavanagh, 2011). 

However, the downside of hexahedral elements is that the mesh generation process 

includes a large portion of manual labor (Giudice et al., 2019). This can make the process 
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increasingly arduous as the shape geometry grows more convoluted, such as the gyri and sulci 

in the brain (Yang et al., 2014). Further, maintaining the quality of the mesh could be 

challenging while modeling geometric details such as gyri and sulci, hence such details are 

often compromised in favor of mesh quality. This is the reason why no hexahedral- based brain 

model contains such details (Giudice et al., 2019). Another shortfall of hexahedral elements is 

their vulnerability to unrealistic hourglass deformation modes which are explained in more detail 

in the next chapters (Giudice et al., 2019). 

Voxel elements are a subset of hexahedral elements with some fundamental differences 

in terms of characteristics compared to regular hexahedral elements. These elements were 

implemented in several recent brain FE models (Ho, Von Holst and Kleiven, 2009; Chen and 

Ostoja-Starzewski, 2010; Miller, Urban and Stitzel, 2016; Ghajari, Hellyer and Sharp, 2017). 

These models can be automatically generated (as opposed to manually in regular hexahedral 

element type) based on MR images of the brain, where each voxel of the MR image is 

converted to a cubic hexahedral element and construct the whole model in this fashion. This 

method paves the way for creating subject specific models (Ho, Von Holst and Kleiven, 2009). 

These models benefit from the accuracy and stability of the hexahedral elements, as well as the 

ability to take into account the anatomical features of the brain at the fine resolution of MR 

images, hence in the absence of smoothing the elements are perfect cubes with a length of 1—

2 mm (depending on the resolution of the utilized image) (Giudice et al., 2019).  

Yet, voxel based models are unable to compensate for discretization error at curved 

interfaces (e.g. brain and cortical Cerebrospinal Fluid (CSF) interface or White Matter and Grey 

Matter interfaces) (Guldberg, Hollister and Charras, 1998; Ho, Von Holst and Kleiven, 2009). To 

alleviate this problem, smoothing algorithms were proposed. Yet, these algorithms affect the 

quality of the elements negatively (Taubin, 2000; Boyd and Müller, 2006; Chen and Ostoja-
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Starzewski, 2010). Element quality becomes increasingly important when modeling soft 

incompressible materials, such as that of the brain. Consequently, the elements of poor quality, 

especially where the model is experiencing large shearing deformations (such as the interface 

of the brain and CSF), will result in unrealistically large strains compared to the neighboring 

elements with better quality (Panzer et al., 2012; Panzer, Myers and Bass, 2013). To measure 

element quality, Scaled Jacobian is the metric often used to measure the deviation of a 

hexahedral element from a perfect cubic element. The range of Scaled Jacobian is from -1 to 1, 

which indicates the position of the centroid with respect to the element, hence first order 

tetrahedral elements have an irrevocable Jacobian of 1. A lot of FE solvers will not solve the 

model if the Scaled Jacobian is less than zero, which in the model means that the centroid of 

the element is falling outside of the element volume. Same as all models with hexahedral 

element type, voxel FE models are prone to hourglass energy formation, hence using hourglass 

control while utilizing them is necessary (Giudice et al., 2019).  

In contrast to most hexahedral elements, tetrahedral elements can be generated 

automatically, and are suitable for complex geometries such as that of the brain. They further do 

not exhibit hourglass deformation modes. For these reasons, tetrahedral elements have been 

used in several studies examining the influence of gyri and sulci on brain deformation such as 

(Yang et al., 2014; Fernandes et al., 2018).  

However, tetrahedron elements are overly stiff for this application (Zeng and Liu, 2018) 

and prone to a numerical phenomenon called volume locking when modeling incompressible 

materials such as that of the brain tissue (Tadepalli, Erdemir and Cavanagh, 2011). Volume 

locking is a result of the reduced degrees-of-freedom in tetrahedral elements (Hallquist, 1986). 

This can be alleviated, to some extent, through mesh refinement or by using higher-order 

tetrahedral elements. For instance Singapore model (Yang et al., 2014) has 1.17 million 
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elements compared to hexahedral models, for which the element count is in the order of 

thousands. However, each of the mentioned options greatly increases computational cost of the 

FE solution.  

 

Mesh size 

Mesh size is one of the most important factors in finite element modeling. The nature of 

meshing is discretizing a continuum, hence the finer the mesh is, the more accurately it is will 

mimic the behavior of the original continuum, and the better it will perform (Giudice et al., 2019). 

Meshes are almost never uniformly distributed (with an exception of the voxel models that were 

described earlier), and the mesh size is usually not reported in the literature (Giudice et al., 

2019). The closest one can get to the mesh resolution is based on the number of elements and 

the estimated size of the brain (1275 cm3) (Scahill et al., 2009). A finer mesh also allows for 

modeling more details within the brain such as the anatomical boundaries between different 

regions within the brain. Another benefit of increasing the mesh resolution is that a more refined 

mesh is less prone to hourglass deformation modes (Hallquist, 1986). 

However, increasing the mesh resolution is a tradeoff of accuracy and computational 

cost. In order to find a reasonable point in this tradeoff a mesh convergence studies are 

performed to determine the proper mesh resolution. In a study using the Worcester Head Injury 

Model (WHIM), it was concluded that there is a convergence point of approximately 200,000 

elements for meshing the brain, after which point the results from finer meshes do not 

significantly differ (Zhao and Ji, 2019b). Typically a mesh is considered to have “converged” if 

the outputs do not vary by more than 5% with increasing the mesh resolution (Tadepalli, 

Erdemir and Cavanagh, 2011). Another method of assessing the convergence of a mesh is the 

Grid Convergence Index (GCI). This method is one that qualitatively assesses the model’s 
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discretization convergence, provides an estimation of the discretization error, and estimates the 

exact value of the converged solution (Roache, 1994). Despite the importance of a mesh 

convergence behavior study, the existing models rarely prove their mesh quality through a mesh 

convergence study (Giudice et al., 2019). Aside from the WHIM, some studies focused on the 

pressure while reporting convergence behavior, but not strain (Kleiven and Von Holst, 2002; 

Mao, Gao, et al., 2013). A different study only reported averaged strains of the whole brain in 

mesh convergence behavior (Garimella and Kraft, 2017).  

 

Element Formulation 

Another important model characteristic that contributes to the disparity between different 

models is element formulation (or integration scheme). Element formulation indicates the shape 

functions as well as the integration scheme to compute finite element problems. In a more 

general way, element formulation indicates the mathematical equations that are to be made use 

of to solve the FE simulation. The shape functions are the functions used to interpolate the 

directly calculated results on the nodes to yield the field variables in all the points in an element 

(Hughes, 2012). Shape functions are predominantly linear functions in each dimension. An 

exception is elements which incorporate nodal rotation degrees of freedom where higher order 

formulations are utilized. Based on this element formulation, the number of integration points 

varies. With an increase in the number of the integration points, the computation cost will 

increase (often exponentially). To illustrate, a single element with C3D8I formulation (Fully 

Integrated Hexahedral Element, which has 8 integration points), requires 25 times more 

computational power than the equivalent C3D8R (constant- stress hexahedral also referred to 

as reduced integrated hexahedral element) (Hallquist, 1986). Selectively-reduced hexahedral 

elements (referred to as S/R in LS-DYNA (J. O. Hallquist, 2007) equivalent to C3D8 in Abaqus 
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(Abaqus, 2016)), are considered somewhere in between reduced integrated and fully integrated 

elements in terms of cost. Due to their low computational cost and their ability to maintain their 

integrity under large shear forces, the constant- stress hexahedral are generally preferred in FE 

modeling of the brain (Giudice et al., 2019).  

For the application of FE modeling of the brain, the brain material, which is a nearly 

incompressible material due to its high water content, undergoes large shear deformations in 

case of an impact (Libertiaux, Pascon and Cescotto, 2011; Alshareef et al., 2018a). Hence, 

choosing an element formulation is a trade-off between their pros and cons. For instance, fully-

integrated elements, which are considered to be the most accurate element types (Abaqus, 

2016), tend to be stiffer compared to the constant stress elements and vulnerable to volumetric 

locking when used with nearly incompressible materials and to shear locking when the aspect 

ratio of the element is large (Hallquist, 1986; Hughes, 2012). To address a part of these issues, 

selectively reduced elements were designed to compensate for the volumetric locking that the 

fully integrated elements are prone to. Yet, they still suffer from the same shear locking problem 

(J. O. Hallquist, 2007).  

The downside of constant- stress elements is their vulnerability to Hourglass deformation 

modes. Hourglassing is an unrealistic, zero-energy deformation mode for the mesh that yields 

zero stress and strain (Belytschko et al., 1984). Hourglassing can lead to numerical instabilities 

and model failure in constant stress hexahedral elements. The fully integrated and selectively 

reduced elements do not have Hourglass deformation modes. Hence, while using constant 

stress elements for simulations, models must have a form of hourglass control embedded in 

them, which is an important aspect of the model (Giudice et al., 2019).  

Tetrahedral elements are not suitable for the application of modeling a soft nearly 

incompressible material such as that of the brain as they result in little to no deformation in the 
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brain, and are clearly prone to volumetric locking (Giudice et al., 2019). Further, selectively 

Reduced Tetrahedral elements and 10 –node composite tetrahedron elements were shown to 

be unstable and fail to terminate normally in the literature. Which leads to the conclusion that 

tetrahedral elements in general are unrealistically stiff or unstable to be utilized in brain 

biomechanical modeling and they are prone to volumetric locking (Giudice et al., 2019). 

 

Hourglass deformation and Formulations 

One shortfall of using constant- stress hexahedral element formulation is their potential 

error due to formation of hourglass deformation modes. Hourglass deformation is an unrealistic 

deformation in finite element analysis due to reduced stiffness of the elements introduced by 

using reduced integration. Each software package has a way of artificially compensate for such 

deformations to make the simulations more realistic. Hourglass deformation modes are 

especially problematic while modeling soft, nearly incompressible materials such as that of the 

Brain (Giudice et al., 2019). 

To address this issue, Hourglass control algorithms were developed to prevent these 

modes to an extent. Hourglass control is mandatory for every simulation which uses constant 

stress hexahedral elements. Furthermore, the hourglass energy decreases with higher mesh 

quality and increases with higher mesh size. Hence, increasing mesh resolution is a way of 

tackling this issue, yet it comes at the expense of higher computational cost (Abaqus, 2016). As 

a result, normally a lower mesh density along with hourglass control algorithm is used to 

maintain computational efficiency. 

Hourglass control algorithms are numerical ways of overcoming unrealistic, zero energy 

deformations resulted from Hourglass deformation modes. In a very high level, the general idea 
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of these methods is that the solver applies small internal nodal forces to nullify the zero energy 

deformation modes that are inherent to constant– stress elements. The determination of the 

amount of this force divides hourglass controls into three general groups. These algorithms 

either use a stiffness formulation, or a viscous formulation (Flanagan and Belytschko, 1981) or a 

combination of these (Abaqus, 2016). Different hourglass types proved to have significant 

implications in the solution and the stability of the FE simulation (Giudice et al., 2019). 

Hourglass control algorithms are crucial when using constant- stress elements. 

However, all of these approaches to hourglass control make the elements stiffer. This is to 

some extent expected due to the fact that they aim to increase their resistance to non-physical 

deformation modes.  

In a deeper perspective, when using stiffness Hourglass control formulations, the 

previously mentioned internal forces correspond to the displacement of the nods due to 

hourglass modes. Hence, they are recommended for the applications with a low rate loading 

(Hallquist, 1986). Algorithms that fall under this category are effective in reducing hourglass 

energy, yet they should be closely monitored to insure that the final results are not overly 

affected by the Hourglass control algorithm. In other words, if employed incorrectly, these 

methods could make the model excessively stiff (Takhounts et al., 2004).  

In contrast, the internal forces in viscous hourglass control algorithms are closely related 

to the velocity of the model nodes, which makes them suitable for applications in which the 

loading conditions are of a high velocity and high strain rate (Hallquist, 1986). Thus, it is not 

surprising that in brain modeling viscous models are predominantly used (Hideyuki et al., 2006; 

Takhounts et al., 2008; Jin et al., 2013). Yet, Hourglass control algorithms are not well reported 

in the literature, which makes a thorough investigation of different models challenging since it 

can cause significant effect in the results (Giudice et al., 2019).  
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Hourglass control algorithms, introduce external work to the system to counteract the 

hourglass deformation modes. This work is reported as “Hourglass Energy”, which is not 

accounted for in the global energy calculations in an FE simulation. Hence, Hourglass control 

drains real energy from the system (Hallquist, 1986). The extent of this drained energy can be 

monitored through the Hourglass energy ratio (Takhounts et al., 2004). The literature suggests 

maintaining this ratio below 10% ensures that this energy is not affecting the results extensively. 

The same guideline was originally pursued for brain modeling (Flanagan and Belytschko, 1981; 

Belytschko and Tsay, 1983; Belytschko and Bindeman, 1993). However, it was later expanded 

to ratios 2.0-3.0 for human brain modeling (Takhounts et al., 2004). 

To name some of the alternate methods of addressing the hourglass energy formation, 

there is the solution of increasing the number of elements, and element quality, which of course 

comes at the price of increased computational cost because of the increased elements. Another 

solution to address hourglass control is using tetrahedral elements, which are not prone to 

Hourglass deformation modes. However as discussed previously, these element types are 

overly stiff to be able to mimic the behavior of a soft nearly incompressible material such as the 

brain. 

 

Software package 

As observed in the previous sections, there are quite a few properties within each 

software package affecting the final accuracy of a computational analysis. However, as the 

implementation of these methods may not be conducted identically in different software 

packages, the use of different software packages also introduces inherent disparities to results 

from the simulation. A majority of the previously mentioned head models use the LS-DYNA 

platform. Yet, another widely used platform is Abaqus, which was used for the Worcester Head 
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Injury Model (WHIM). To address these discrepancies, we conduct a study in the chapter 3 

where we translate our WHIM model from Abaqus to LS-DYNA to characterize the differences 

between these two software packages. 

 

Material Anisotropy within Software Packages 

To mimic the behavior of the brain material, some FE models include the material 

anisotropy of the white matter. The implementation of anisotropy, however, is a point of 

discrepancy across FE head models. For instance, WHIM incorporates material anisotropy 

modeled by Holzapfel-Gasser-Ogden (HGO), an example of an anisotropic material in Abaqus 

(Abaqus, 2016). Yet, this material model is absent from LS-DYNA and hence cannot be 

implemented in models that use the LS-DYNA platform.  

 

Worcester Head Injury Model (WHIM) 

The Worcester Head Injury Model (WHIM) V1 was used for obtaining strain distributions 

generated in the brain tissue. The FE mesh of the WHIM was constructed based on the MR 

images of an individual male athlete. It uses the reduced integrated (C3D8R) element type in 

Abaqus software package with optimized configurations (to mimic the behavior of C3D8I which 

the most accurate element type in Abaqus, while using less computational power). There are 

~55k brain elements in WHIM V1 while distinguishing the white matter and gray matter material 

properties. To mimic the behavior of the brain tissue more closely, WHIM uses white matter 

anisotropy. The hyper-viscoelastic materials were used to mimic the brain material properties 

along with the enhanced hourglass control settings, which is recommended by Abaqus for this 

material c. WHIM can provide entire brain strain distributions (element-wise or voxel-wise strain 



 

40 

 

distribution), strains distribution in specific regions of interest within the brain, and strains along 

the white matter fibers (Zhao et al., 2016; Zhao, Cai, et al., 2017a) (Figure 1).  

 

 

Figure 1: Worcester Head Injury Model (WHIM) mesh and anatomical regions (a and b). (c) 
Shows the injury relevant deep white matter regions of the brain and (d) shows the white matter 

fibers in the model. 

 

WHIM Model Validation 

The biofidelity of a head injury model is insured by validation of a head injury model. 

However, there is a debate on the validation data used for FE model validation. In a nutshell, 

even the “validated” head models using current techniques exhibit significant differences in 

terms of generated brain strains when simulating the same impact. These differences suggest 

that the current validation methods need improvements to become more discriminating among 

models.  

One point of debate in model validation is available data. For example, a majority of FE 

models (Yang et al., 2006; Mao, Zhang, et al., 2013; Ji et al., 2015b; Giordano and Kleiven, 

2016; Miller, Urban and Stitzel, 2016; Garimella and Kraft, 2017) where validated against 

relative brain-skull displacement. However, the spatial gradient of such displacements result in 
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injury, not the displacements directly (King et al., 2003). So brain-skull displacements have been 

deemed not specifically suitable for FE model validation.  

Another point of debate is the injury relevance of the available data. As discussed 

before, most models have been validated by high-rate cadaveric impacts. This database 

generally has more severe impacts than those typically seen in constact sports (Hardy, 2007; 

Hardy et al., 2007). Another available database is in vivo strains that are lower in terms of 

generated strains and are related to subconcussion (Sabet et al., 2008; Knutsen et al., 2014; 

Atsumi et al., 2018; Lu et al., 2019). A recent dataset is focused on the mid-rate range wich is 

more aligned with the impact magnitudes experienced on sports fields (Alshareef et al., 2017; 

Guettler, 2017; Guettler et al., 2018), compared to the high rate and low rate impacts. 

To address these inconsistencies, a recent study investigate the validity of the WHIM 

and proposed a standard way of model validation with currently available baseline experiment 

data. In this study, WHIM was further validated across a wide range of impacts, including high-

rate cadaveric impacts, mid-rate cadaveric pure rotations simulating impacts in contact sports, 

and in vivo head rotation/extension tests as discussed above (Zhao and Ji, 2020a). 

 

Limitations of FE head models 

As discussed in the sections above, FE models are computationally expensive. Further, 

accuracy of FE models is a tradeoff with the computational cost that they incur. Yet, in a sideline 

setting there is limited computational power available compared to a lab setting (A personal 

laptop vs. a high-end computer cluster). Even with the available resources in a lab setting, 

simulating a single impact could take hours to complete (Ji and Zhao, 2015). Hence, using FE 

modeling directly in a sport setting is simply unfeasible.  



 

42 

 

To address this issue, there has been various methods to mitigate the computational 

costs of FE modeling while taking advantage of the valuable insight into the brain tissue. Some 

of these methods map FE simulations into a simpler, less computationally costly method for 

faster strain prediction. Another group of such methods provide an estimation of the FE 

simulation based on a database of completed simulations. The following sections provides 

some background for some of these methods. 

 

Mapping to other simpler functions 

Gabler et al. (Lee F. Gabler, Crandall and Panzer, 2018) proposes an innovative way to 

model the MPS generated by the strain map from a frequently used head model into a second-

order spring dashpot system for rapid estimation of MPS. While this method performs well in 

predicting the peak MPS generated in the brain in an impact, it remains incapable of predicting 

the strain patterns of the brain.  

Another example of such methods is the BrIC method that was mentioned in the 

previous sections. This method also suffers from the same limitation as DAMAGE. Further, as 

mentioned before, it is database dependent and performs less accurately with more “complex” 

impact data.  

 

Pre-Computed Brain Response Atlas (pcBRA) 

Another method to mitigate the time needed for FE simulations is pre computation. Pre 

computation is using simulations that are already complete. The Pre-computed Brain Response 

Atlas (pcBRA) is an FE based pre-computation technique to reduce the expensive 
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computational cost of FE simulation to make FE models usable on the sports field. The pcBRA 

consists of a dataset of pre-defined simplified impacts with various directionalities and impact 

magnitudes. These impacts only have a rotational component, as it is known that rotation is the 

most major contributor to generated brain strains. The severity of these impacts is defined using 

the peak resultant rotational velocity of the impacts, while the directionality was defined by the 

azimuth and elevation angle of the rotational axis (Fig. 2). The duration of these single impacts 

was shown to not have a significant effect on the strain generated in the brain by the impact for 

this specific tear of impacts related to contact sports and was hence set to be 10ms (Ji and 

Zhao, 2015; Zhao, Kuo, et al., 2017b). Table 3 illustrates the step-size in the three values 

defining the impact. Fig. 2 shows a visual illustration of the pcBRA. 

 

Figure 2: (a) Example of an idealized 3DOF impact rotational velocity profile; (b) the 
corresponding kinematics triplet (𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟

𝑝𝑝 , 𝜃𝜃, 𝛼𝛼) is represented by a vector emanating from the head 
center of gravity characterizing the impact kinematic magnitude and directionality in the WHIM 

coordinate system. For a given impact severity (denoted by rotational velocity peak: 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝 ), 

traversing the end point of the vector in space would generate a hemisphere shown in (c). In the 
middle hemisphere, the discretized (𝜃𝜃, 𝛼𝛼) pairs are also shown as grid on the hemisphere.  

Table 3: Summary of the discretizing variables, their ranges, step sizes, and number of samples 
for the idealized head impact rotational profiles used to establish the pcBRA. Peak rotational 

acceleration (𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝 ) and peak rotational velocity (𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟

𝑝𝑝 ) are equivalent when the impulse duration, 
∆𝑡𝑡 is constant.  
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Variable 𝒂𝒂𝒓𝒓𝒓𝒓𝒓𝒓
𝒑𝒑  (rad/s2) 𝒗𝒗𝒓𝒓𝒓𝒓𝒓𝒓

𝒑𝒑  (rad/s) 𝜽𝜽(°) 𝜶𝜶(°) ∆𝒕𝒕(𝒎𝒎𝒎𝒎) 

Range [1500 7500] [7.5 37.5] [-90 90] [-90 90] 10 

Step size 750 3.75 15 15 N/A 

# of samples 9 9 13 13 1 

 

While this method can provide a reasonably well estimation of the brain strain pattern as 

well as the peak MPS, its performance diminishes when confronted by more complex impacts. 

This is due to the simplicity of the pre-defined impacts as shown in (Zhao, Kuo, et al., 2017b).  

Despite the fact that studies such as (Ji and Zhao, 2015; Zhao, Kuo, et al., 2017b) pave 

the way in using the pre-computation technique, they rely heavily on empirical observations to 

use the pre-computed database. Yet, the nature of contact sports-related impacts is complex. 

While empirical observations gain some insight into the strain generation mechanism, they have 

room for fine-tuning and improvement. For instance, Zhao et al. relies on the peak rotational 

velocity of the entire impact to predict the brain strain distribution. This assumption loses 

accuracy with more complex impacts. For instance, velocity reversals in impact profiles 

introduces a large error to the pcBRA (Zhao, Kuo, et al., 2017b). This suggests that pre-

computation, while promising, requires a more versatile technique for implementation on 

complex real-world impacts.  

 

Use of Machine Learning in conjunction with pre-computation 

Recently a number of studies have shifted focus to applications of machine learning in 

biomedical application. The attraction of machine learning techniques is in that they have 
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proven to be extremely adaptive to different scenarios, such as diagnosis (Chong et al., 2015; 

Mitra et al., 2016), biomedical signal processing, and even modeling (Wu, Zhao, Ghazi, et al., 

2019; Zhan et al., 2020).  

For the purpose of modeling, machine learning is particularly attractive because it has 

the potential to reduce the time required to obtain brain strains and strain-based metrics 

drastically. A number of approaches have been proposed to predict the peak MPS of the brain 

using a set of complex, real-world impacts (Wu, Zhao, Ghazi, et al., 2019; Zhan et al., 2020). 

These methods, compared to the empirically based pre-computation methods, provide a more 

sophisticated approach to pre-computation. This grants the method considerable versatility 

compared to analytical techniques. Further, as they are based on real-world impacts, they 

“learn” to function well with real-world impacts that possess a higher level of complexity 

compared to idealized impacts. The following sections provide a deeper background as well as 

a more detailed description of machine learning based methods in TBI as they pertain to this 

dissertation. 

 

Machine Learning Background 

Machine learning (ML) methods are a set of data-driven statistical methods for statistical 

tasks using available data (Mitchell, 1997). This method has been used extensively for different 

applications including in the biomedical field (Wu et al., 2018) . Generally speaking, these 

methods are based on optimizing some of loss function to perform a prediction task based on a 

set of features (which themselves can be engineered to increase training performance 

(Masoomi et al., 2020)). There are several methods of optimizing these loss functions, each of 

which are suitable for certain scenarios. They can differ in many aspects such as types of input 
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and output, model level of complexity, scalability, and time required to train the model. Two of 

the most predominant applications of ML are classification and regression tasks.  

 

Classification 

Classification tasks are scenarios where we desire to determine the class of a data point 

based on previously classified data. These classifications could be binary classifications, as well 

as multi-class classifications. For instance in case of brain biomechanics, given an impact, 

whether or not an impact would result in an injury (such as that in (Cai et al., 2018)). There are 

several methods that can provide an injury probability in such a scenario. The most simplistic 

method is Logistic Regression (Cai et al., 2018). This method uses a logistic function to 

differentiate between the two or more classes. Another method includes Support Vector 

Machines, which function by finding the best border line between different classes of data. Once 

the line is determined, it classifies any new data point using the regions that are separated by 

the borderlines (Cai et al., 2018).  

Machine Learning based classification techniques have proven to be effective in TBI 

injury assessment (Cai et al., 2018). While simple methods, such as logistic regression can 

provide a crude comparison of impacts with a high risk of injury compared to those with a low 

risk, more sophisticated methods are emerging that are capable of outperforming the other 

methods. For instance, (Wu, Zhao, Rowson, et al., 2019) uses a network-based response 

feature matrix as a brain injury metric, where a matrix is used to represent specific regions of 

the gray matter as well as the white matter interconnections between the gray matter regions. 

This metric consistently outperformed conventional scalar metrics including peak maximum 

principal strain of the whole brain (MPS), peak linear/rotational acceleration, and peak rotational 

velocity across different performance measures, showing great promise for this approach. 
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Regression 

Another popular application of machine learning is for regression tasks. Regression 

tasks follow a similar concept to classification tasks, however they predict a desired value as 

opposed to a class. An example of a regression task would be to predict the peak MPS of the 

brain in case of an impact (such as that in (Wu, Zhao, Ghazi, et al., 2019)). Linear Regression 

models are the most basic models used for regression tasks. Regression models find the best 

function that relates two sets of data to each other (e.g. peak velocity magnitude and peak 

MPS). Then given a new data point in one dataset, they predict the corresponding value in the 

second dataset using the fitted line.  

Regression models provide great value to FE based TBI research. Once trained, these 

methods can predict FE based injury metrics directly and accurately, which effectively bypasses 

the time-consuming simulation step in FE modeling. These methods can also be designed and 

trained to predict the desired FE based injury metric directly, which can save unnecessary 

computational cost. In other words, machine learning based regression methods can 

approximate the non-linear relationship between a given impact profile and the corresponding 

FE based results and represent them in real-time, making them a promising option for making 

the FE based research more accessible without necessitating substantial computational power. 

As a result, they hold the potential to making FE based injury assessment into a usable method 

for sideline applications as well as providing easy access for TBI researchers in general. 
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Support Vector Machines 

Support Vector Machines (SVMs also known as Support Vector Networks (Cortes and 

Vapnik, 1995)) are supervised learning methods developed and used for both regression and 

classification tasks. This method is based on mapping data into points in a high dimensional 

space and finding a hyperplane or a set of hyperplanes boundary between different classes of 

data that maximizes the margin between different classes (Hastie, Tibshirani and Friedman, 

2017). To further expand the versatility of this method and increase the sophistication, it can be 

used in conjunction with different kernel functions. Kernel functions are functions that help 

determine a higher order hyperplane for classification, while not introducing the significant 

computational cost of calculation in the higher dimensions (Chen and Lin, 2006). Recent studies 

have shifted towards using SVMs based on both Kinematic metrics (Hernandez et al., 2015) 

and strains (Cai et al., 2018). 

 

Artificial Neural Networks 

A highly versatile machine learning method that has been successfully used in both 

classification and regression tasks is Artificial Neural Networks (ANNs) (Cai et al., 2018). ANN is 

an iterative method that is based on the interaction of mathematical nodes (called “neuron” or 

“perceptron”) to optimize a loss function. This method is designed to mimic the behavior of the 

neurons in a biological brain. The nodes in this model interact with each other using weights and 

biases. The schematic representation of a neural network is presented in Fig. 3. 
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Figure 3: Schematic Representation of a fully connected artificial neural network with 3 input 
values, four hidden neurons, and one output. The weights of each connection as well as the 

biases for each node are shown in 𝑤𝑤 and 𝑏𝑏 respectively. The values of each neuron is based on 
all the preceding neurons via the internally optimized weights and biases. 

 

In the training process, based on the desired outputs (referred to as “labels”), the 

network iteratively adjusts the weights and biases to result in a prediction that is as close as 

possible to the labels. This iterative approach is a high dimensional gradient based optimization 

called “error back propagation”. As the name suggests, in error back propagation, the final error 

of the predicted values compared to the labels is traced back through the entire network, 

resulting in an individualized adjustment for each node weight and bias.  

The upside of these networks is their versatility and their minimal need for operator 

adjustment. As a result, with an application appropriate architecture, ANNs can achieve 

substantially better results compared to other methods. However, depending on the architecture 

of the network, there is a need for a large number of data to train the network and reach the full 
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potential (Wu, Zhao, Ghazi, et al., 2019). The crudest architecture for ANNs is the fully 

connected sequential networks, which requires all inputs to be inputted in one vector.  

 

Convolutional Neural Networks 

A drawback of fully connected ANNs is that they lose the spatial features of the input, as the 

input is “flattened” into a vector (Wu, Zhao, Ghazi, et al., 2019). This reduces the performance 

of ANNs with tasks such as image processing as the relative spatial positioning of the pixels has 

a high importance. To address this, Convolutional Neural Networks (CNNs) were developed to 

account for the spatial positioning of features. CNNs are deep learning architectures inspired by 

the natural perception mechanism of living creatures (Hubel and Wiesel, 1968) and consider the 

spatial positioning of the input into account through a set of two dimensional filters (Gu et al., 

2018).  

 

Model Validation 

While machine learning algorithms are powerful tools in for a vast variety of research 

topics, they are prone to errors associated with data-driven approaches. Two of the most 

common problems with data-driven approaches are under-fitting and over-fitting. Under-fitting 

occurs when either the model is not trained for enough iterations or it is “too simplistic” for 

representing the relationship between the inputs and the outputs for the application. Over-fitting, 

on the other hand, occurs when the network performs well on the data used for training but 

poorly on any other independent dataset. In other words the network “memorizes” the training 

data as opposed to “learning” the trends (Van Der Aalst et al., 2010). Model validation is a way 

to avoid both of these scenarios.  
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A common practice for validation is to have three sets of data: a training set, a validation 

set, and a testing set. The model is trained based on the training set, and then evaluated on the 

validation set. Based on the comparison of these two performances, the operator can alter the 

model hyper-parameters to maximize the model performance on both the training and the 

validation dataset (Gareth et al., 2013). However, the final product can also be tested on an 

independent testing dataset to ensure that the hyper-parameters were not chosen in a fashion 

that would “over-fit” the training and validation data (Wu, Zhao, Ghazi, et al., 2019).  

When using one large database for training testing and validation cross validation is 

often used. In this method, the data is broken down into separate portions for training, 

validation, and testing. To ensure that the grouping of data is not introducing any bias to the 

model, k-fold cross validation is used. In this method, the data is broken down into k-folds. The 

network is trained a number of times in a systematic way where k-2 folds of the data are used 

for training the network, while the remaining two are reserved for validation and testing. Then 

the process repeats until all the data-points had a chance to take part in training and validation. 

The extreme version of k-fold validation is the leave-one-out cross validation. As the name 

suggests, this cross validation method uses the entire database but one data-point to train, 

retaining the one data-point for validation. Effectively, this is a k-fold cross validation where k 

equals the number of data-points in the database. The leave-one-out cross validation method is 

desirable for situations where data is sparse (Gareth et al., 2013).  

 

Applications of ANNs in TBI Research: Strain Prediction 

The most basic networks are Sequential fully connected networks, where all neurons in 

one layer are connected to all neurons to the adjacent layer. Zhan et al. in (Zhan et al., 2020) 

uses a fully connected network to estimate the entire brain deformation based on the impact 



 

52 

 

rotational profiles in three dimensions. They input an 8 channel signal constructed by 

(𝛼𝛼𝑥𝑥,𝛼𝛼𝑦𝑦,𝛼𝛼𝑧𝑧,𝛼𝛼𝑟𝑟𝑟𝑟𝑟𝑟.,𝜔𝜔𝑥𝑥 ,𝜔𝜔𝑦𝑦,𝜔𝜔𝑧𝑧,𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟.) where the x, y, and z are the anatomical directions and “res.” Is 

the resultant value from all three directions. While this method achieves acceptable results, it 

does not take the relation between these channels into account. This means that the effects of 

impact directionality (which is obtained from the relative magnitude of the impact in the x, y, and 

z directions) are not directly surveyed (Fig. 4).  

  

Figure 4: An illustration of the use of fully connected neural networks. An illustrative 4 channel 
signal is “flattened” before being fed into the network. The data “flattening” necessary in the pre-

processing neglects the temporal relationship between the signals. 

 

This is a known fact about the fully connected architecture. To combat that, 

Convolutional Neural Networks (CNNs) are designed in a way that can account for the spatial 

features in two dimensional inputs (Wu, Zhao, Ghazi, et al., 2019). This makes them into a well 

suited candidate for 2D data such as images. Wu et al. takes advantage of this characteristic of 

the CNNs by translating the impact profile into a 2D image via pre-processing (Wu, Zhao, 

Ghazi, et al., 2019). Then they train a Convolutional Neural Network using the produced image 
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data to predict the peak MPS. This approach takes the temporal relationship between the profile 

components into account and thereby accounts for the impact directionality.  

However, while this approach is instant and accurate in predicting the peak MPS, it does 

not provide a full brain strain pattern, which results in an under sampling of the simulation in just 

one number. Thus, it is a logical next step to extend this approach to include whole brain strain 

pattern, which is discussed in more detail in aim 1. 

Alternative Approaches to FE modeling 

While the Lagrangian finite element methods are utilized most frequently to model the 

brain, there are some alternate solutions for modeling the brain. (Ganpule et al., 2017; Marques 

et al., 2017) To illustrate the John Hopkins university (JHU) model takes advantage of a material 

point method (MPM) which is a meshless technique. In this technique the model is represented 

by material nodal points, where the equations of motion, boundary conditions and material 

properties are applied.  A stable and non-deformable grid is used to solve the equations of 

motion, while shape functions are used to compute a continuous field response (Ganpule et al., 

2017). The downside of these approaches is that they are computationally inefficient and 

validation and assessment for the specific purpose of brain modeling is yet to be done 

(Wiȩckowski, 2004). 

Roadmap 

Understanding the exact mechanics of mild traumatic brain injury is an active field of 

research (Bailey et al., 2020). Yet, it is known that strain plays a significant role in the 

mechanics of mTBI (Zhao, Kuo, et al., 2017b). As a result, many studies have focused on 

developing a predictive head injury model (Svein Kleiven, 2002; Takhounts et al., 2004; 

Fernandes et al., 2018). However, there are a number of hurdles on the way of using FE 
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modeling for injury risk prediction. Firstly, as discussed in detail in the previous sections, 

obtaining the strains from an FE model is computationally expensive. Secondly, there is no clear 

way of relating whole brain strain patterns obtained from an FE model to injury risk. Many 

studies use the peak MPS or CSDM as benchmarks from FE models (E. G. G. Takhounts et al., 

2013; Lee F. Gabler, Crandall and Panzer, 2018). For instance, (Lee F. Gabler, Crandall and 

Panzer, 2018) uses a second order system to rapidly and accurately estimate the peak MPS of 

the entire brain. However, peak MPS and CSDM have shortcomings. Peak MPS samples the 

high strain values across the entire brain without attention to where the high strain region 

occurs. In other words, the same peak MPS value could result from high strain values in 

completely different regions of the brain. This could potentially result in injury to a different part 

of the brain or a different injury risk altogether. Similarly, CSDM samples the volume of the brain 

that exceeds a certain threshold. Yet, it provides no indication of the extent to which the 

threshold is surpassed. Further, just like peak MPS, it does not indicate the regions of the brain 

where the strain exceeds the threshold. These shortcomings signify the need to take a holistic 

approach to the brain strain distribution. 

In aims 1 and 2 of this dissertation, we provide two methodologies to address this 

problem. In the first aim we develop a deep learning model as an alternative to FE modeling. 

This results in a significant improvement in terms of computational efficiency. Yet, despite the 

accumulating evidence of the significance of tissue level brain responses (Cai et al., 2018), 

kinematics-based metrics (Hernandez et al., 2015) continue to be used for injury prediction 

(Fahlstedt et al., 2021). This is potentially problematic as the relationship between impact 

kinematics and tissue-level responses is non-linear, hence the kinematics cannot directly relate 

to such responses. To address that, in the second aim, we developed a strain-based simplified 

kinematics to provide intuitive understanding of tissue-level strains as well as the ability to easily 
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compare head impacts in terms of simple kinematics as opposed to complex real-world impact 

profiles, which are not directly comparable.  

One of the applications of the methods developed in aim 1 and 2 are in the design cycle 

of injury mitigation instruments, such as helmets. Hence, in aim 3 we use the deep learning 

model from aim 1 in a real-world application scenario. We compare the widely used strain-

based injury metrics (MPS and CSDM) to a well-accepted kinematics-based injury mitigation 

assessment method known as the Summation of Tests for the Analysis of Risk (STAR) method. 

We provide context for implications of potential differences between the two and provide 

suggestions on ways to improve the injury mitigation capability of helmets. 

 

Figure 5: A flowchart of the aims in this dissertation. Aim1 focuses on developing an alternative 
to FE modeling to improve efficiency. Aim 2 addresses the gap between kinematics metrics and 

FE modeling by proposing a strain-driven kinematics (Effective Kinematics). Aim 3 is a real-
world application of the aim 1 where a number of helmets are compared in terms of strains and 

the Summation of Tests for the Analysis of Risk (STAR) to provide context about the 
implications of using strain in helmet injury mitigation capabilities. 
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Chapter 3: Converting a head injury model implemented in 

Abaqus into LS-DYNA for impact simulation 

Introduction 

Traumatic brain injury, including sports-related concussion occurring in 1.6 to 3.8 million 

athletes, is considered to be a major health problem in the United States. This necessitates 

accurate and reliable prediction of brain injury. In the past, head impact kinematics including 

peak magnitudes of linear or rotational accelerations have been extensively used as injury 

predictors. Lately, efforts to employ finite element (FE) models of the human head are 

increasing. FE models translate impacts into tissue strains and hold substantial promise to 

improve injury prediction performance over kinematic metrics. 

Numerous efforts exist to improve FE models of the human head, including optimizing 

brain material properties, enhancing the quality of brain meshes, etc. These characteristic 

differences have been identified as causes of model result disparity. However, a significant yet 

less studied disparity between the various human head injury models is their platform software 

packages. Two of the most widely used FE software packages are Abaqus and LS-DYNA. This 

difference contributes to model response differences that may preclude a meaningful 

comparison between their simulation results and injury analyses.  

In this chapter, we converted our anisotropic Worcester Head Injury Model (WHIM) V2 

originally developed in Abaqus into LS-DYNA format. The reason WHIM V2 was used for this 

portion of the study is that this model has been optimized through a mesh convergence study, 

which eliminates the variable of mesh size from our comparisons in this portion. Yet, the WHIM 

V1 with 55k elements was used in the subsequent aims as performs better in validation and 

hence is more biofidelic (Zhao and Ji, 2020b).  
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The conversion process in this study allowed us to understand the differences between 

these two most commonly used software packages in brain injury studies. This would facilitate 

the comparisons between models developed in these two packages in the future.  

 

Methods 

The WHIM V2 with white matter anisotropy served as a baseline for model conversion. 

The model uses a re-meshed brain (202.8 k high-quality hexahedral elements of the brain (Zhao 

and Ji, 2019b)) and implements brain material property anisotropy in Abaqus using the HGO 

hyperelastic model coupled with viscoelasticity (Zhao and Ji, 2018). It was successfully 

validated against a range of impact and in vivo scenarios (Zhao and Ji, 2018). Unfortunately, 

LS-DYNA currently does not have an equivalent anisotropic material to that used in the WHIM 

V2 (Holzapfel-Gasser-Ogden (HGO) anisotropic material as introduced in the previous chapter). 

Therefore, a material optimization scheme was conducted to convert the Abaqus HGO 

anisotropic material model into an isotropic model in LS-DYNA while minimizing differences 

between model simulation responses. To that end, it was necessary to model the gray matter 

(GM) and white matter (WM) separately in order to preserve their response differences arising 

from brain material anisotropy.  

Specifically, we started with the baseline WHIM V2 based on fully integrated elements 

with incompatible modes (C3D8I) in Abaqus. This type of element often serves as a benchmark 

in simulation that is free from shear locking, immune to hourglass deformation, and with minimal 

volumetric locking (Abaqus, 2016; Zhao and Ji, 2019b). However, this element is 

computationally expensive. Therefore, we next converted the model into reduced integrated 

elements (C3D8R) using relax stiffness hourglass control (HG) with a high scaling factor (SF) of 
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200 for GM and 100 for WM to maximize model simulation efficiency as suggested by (Zhao 

and Ji, 2019b) to mimic the C3D8I elements.  

Next, an Ogden isotropic hyper-viscoelastic model was selected to approximate the 

anisotropic strain distribution from the previous step. The initial shear modulus in the Ogden 

model (𝐺𝐺0) was determined via iterative adjustment so that a linear regression slope between 

the maximum principal strain distribution across all brain elements (GM and WM regions) 

obtained from the isotropic and the anisotropic model was within 1.00±0.05.  

Then, using the obtained 𝐺𝐺0 value for the entire brain as a new starting point, the 𝐺𝐺0 

values were separately altered in an iterative manner for the GM and WM so that the linear 

regression slope between the strain distribution in both GM and WM regions were within 

1.00±0.05.  

Next, the two isotropic GM and WM material models were directly converted into LS-

DYNA format without any further alteration. As there were many integration schemes available 

in LS-DYNA, we identified the most compatible option by maximizing the match between 

simulation results with respect to that from Abaqus. All the tested element types examined were 

the selectively reduced integration (S/R; element types 2, -1, and -2) as well as all of the 

reduced integration schemes in LS-DYNA, enumerating each hourglass control type (HG) with 

three hourglass coefficients (QM) (0.01, 0.1 (default), and 1), with a maximum QM of 1 to avoid 

unstable simulations. Table 4 summarizes the overall procedure of this study, including the type 

of material properties and element types used in each step.  

 

Table 4: Summary of six simulation steps to convert the baseline WHIM using anisotropic brain 
material properties in Abaqus into LS-DYNA counterpart with isotropic properties. 
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Step Software Hourglass Control (HG) Elm. 

Type 

Material 

1 Abaqus Not needed C3D8I Anisotropic 

2 Abaqus Relaxed stiffness 

WM SF of 100  GM SF of 200 

C3D8R Anisotropic 

3 Abaqus Relaxed stiffness 

WM SF of 100  GM SF of 200 

C3D8R Isotropic (same for 

GM/WM) 

4 Abaqus Relaxed stiffness 

WM SF of 100  GM SF of 200 

C3D8R Isotropic (with GM/WM 

heterogeneity) 

5 LS-

DYNA 

Not needed for S/R {2, -1,  

2} 

Isotropic (with GM/WM 

heterogeneity) 

6 LS-

DYNA 

Type{1 to 7, 9, 10}/QM of 

0.001, 0.01, 0.1, 1 

1 Isotropic (with GM/WM 

heterogeneity) 

 

Results 

 After converting the baseline WHIM (step 1 in Table 4) into isotropic and heterogeneous 

GM/WM with C3D8R (step 4 in Table 4), element-wise comparisons led to the following linear 

regression slopes (k) and Pearson correlation coefficients (r): kWM = 0.91 and rWM = 0.71 for the 

50 WM ROIs; kGM = 0.96 and rGM = 0.86 for the 54 GM ROIs. Step-wise comparisons are 

reported in Table 5. Converting anisotropy into isotropy mostly affected the WM (a low rWM of 
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0.78), as expected. These results suggested that the reduced integration scheme was able to 

preserve the simulation accuracy while maximizing computational efficiency (2h 24 min versus 

38 min on a computer cluster: 15 CPUs + 2 GPUs). Fig.5 (a, b, c) compares their fringe plots of 

accumulated maximum principal strain. 

 

Table 5: Summary of the results from the experiments. 

Reference Target GM WM 

kGM rGM kWM rWM 

Anisotropic/ 

C3D8I 

Anisotropic/

C3D8R 

0.97 0.92 0.93 0.95 

Anisotropic/ 

C3D8R 

Isotropic/ 

C3D8R 

0.99 0.92 0.98 0.78 

Isotropic/ 

C3D8R 

LS-DYNA 

HG = 1 

0.93 0.88 0.98 0.85 

Anisotropic/ 

C3D8I 

LS-DYNA 

HG = 1 

0.89 0.87 0.89 0.64 

 

When further converting into LS-DYNA, results from the S/R integration (element types 

2, -1, -2; step 4 in Table 4) did not match the Abaqus counterpart (e.g., kWM = 1.12, rWM = 0.42 

and kGM = 1.32, rGM = 0.72 with element type 2). The closest response was obtained using 

reduced integration with HG types 1, 2, or 3 with the default QM of 0.1 (e.g., step 6 in Table 4; 
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Fig. 5d). A QM of 1 led to unstable simulations in most cases. Results from HG type 6, 9 and 10 

were always unstable regardless of the QM (type 8 for shell elements was not applicable here).  

 These findings were further re-affirmed by simulating a separate impact case (self-

reported concussion case (Hernandez et al., 2015)). This verifies that the observations in this 

study can be extended to other impacts as well.  

 

Discussion and Conclusion 

 The goal of this chapter was to establish a link between two of the most frequently used 

FE method software platforms, Abaqus and LS-DYNA. We started from anisotropic WHIM V2 

along with Enhanced Integrated Hexahedral Elements (C3D8I). Initially, we implemented 

RELAX STIFFNESS HG control with high SF, after parametrically proving that the results from 

such HG configuration match closely with the C3D8I in Abaqus. We revalidated the resulting 

model using experimental cadaver data. Then, we conducted a material optimization to match 

the results obtained from the strain map from the previous step. In the final step with Abaqus, 

we conduct a material optimization to model the anisotropic material with an isotropic material, 

while maintaining the heterogeneity between WM and GM. Finally, we convert the best model to 

LS-DYNA format with different configurations and identify the one that matches the Abaqus 

results the best, which establishes a link between the two software packages (Error! Reference 

source not found.).  

Within the LS-DYNA software package, S/R did not yield comparable results, suggesting 

that the integration in the two software packages is performed differently. The final results from 

LS-DYNA suggested that reduced integration with HG types 1, 2, and 3 coupled with the default 

QM of 0. 1 produced the most similar results relative to the baseline C3D8I elements in Abaqus. 
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However, the similarity of the results from these HG types decreased as the QM decreased. 

The results further indicate that when using HG types 4, 5, a QM lower than the default value 

results in a higher Pearson correlation coefficient, and hence should be used for more reliable 

results. This was while HG type 6 appeared to become less stable as QM decreased and finally 

became unstable at QM = 0.001. However, all of the simulations with this HG type were 

unrealistic although they were terminated normally. In addition, the results from HG type 10 was 

always unstable.  

 

Figure 6: Cumulative maximum principal strain from C3D8I with an anisotropic material model 
(a), C3D8R with anisotropic material and high SFs (b), optimized isotropic material with GM/WM 
heterogeneity using C3D8R and high SFs (c), and same isotropic materials converted into LS-

DYNA (d). 

In conclusion, based on these results we can confirm that using different software 

packages can indeed cause discrepancies in model simulations. Based on the results from this 

section, these differences could be minimized by using the properties described above. 

However, many models, to maximize validation performance, do not conform to these settings, 

which can introduce a divorce between models simulated in different packages and preclude 
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cumulative knowledge. Addressing this problem could be a worthwhile contribution to the 

modeling-based research and resolve some of the inconsistencies as a result of using different 

software packages. However, this exploration is beyond the scope of this thesis.  
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Chapter 4: Aim 1: Assessment of a CNN based approach to 

obtain real-time element-wise strain prediction for the entire 

brain directly from impact profile 

Published in the Journal of Neurotrauma as:  

Kianoosh Ghazi, Shaoju Wu, Wei Zhao, and Songbai Ji. 2020. “Instantaneous Whole-Brain Strain 

Estimation in Dynamic Head Impact.” Journal of Neurotrauma, in press. 

https://doi.org/10.1089/neu.2020.7281. 

Introduction 

TBI is a major health concern across the world (Faul et al., 2004) and is caused by the 

strain generated in the brain tissue as a response to the exposure of the head to extreme 

dynamic movement. These movements are then translated to the brain and generate large 

tissue strains that can result in injury. Several methods were developed in the span of several 

years to reliably assess the risk of concussion. A majority of these are based on translating the 

six degree-of-freedom impact temporal profile into a scalar value. These values are then 

translated into injury risk using various techniques such as a logistic regression technique. 

Some of these methods are the head injury criterion (HIC; (Versace, 1971)) and Brain Injury 

Criterion (BrIC; (E. G. Takhounts et al., 2013)) which consider the acceleration profile. However, 

as mentioned previously, these metrics are scalar and neglect the temporal profile shape of the 

impact, which has a significant effect on the generated strains in the brain tissue. Further, as 

they are scalar, a majority of them neglect the impact directionality. Hence, these metrics 

oversimplify the impact and are insufficient to provide insight into the brain tissue level strains to 

an impact.  

https://doi.org/10.1089/neu.2020.7281
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To that end FE models play an increasingly important role to provide insight into the 

tissue level response. With the advancements in the computational power, the sophistication of 

these models have proportionally increased to better model a brain impact scenario (Yang et al., 

2011; Madhukar and Ostoja-Starzewski, 2019). To increase the biofidelity, recent models have 

increased the mesh resolutions (Miller, Urban and Stitzel, 2016; Ghajari, Hellyer and Sharp, 

2017; Zhao and Ji, 2019a; Zhou, Li and Kleiven, 2019a), incorporated more realistic brain 

anatomy (Atsumi et al., 2018; Zhou, Li and Kleiven, 2019b; Zhao and Ji, 2020c), and more 

accurate brain-skull boundary conditions (Scott, Margulies and Coats, 2016; Zhou, Li and 

Kleiven, 2018). Further these efforts have expanded to the model validation in different ranges 

of impacts from high-rate (Hardy et al., 2001, 2007)  to mid-rate (Alshareef et al., 2018a; 

Guettler et al., 2018)  and in vivo loading conditions (Knutsen et al., 2014; Chan et al., 2018; Lu 

et al., 2019). 

Yet, these advances in FE modeling of the brain increase the resources needed to 

model even a single simulation substantially. This is a known drawback with FE modeling. For 

instance, simulating a single head impact will on average take from several hours to upwards of 

days (Mao et al. 2013; Miller et al. 2016; Zhao and Ji 2019b; (Lu et al., 2019; Zhou, Li and 

Kleiven, 2019b). This significant computational cost renders this method unfeasible on a football 

field where neither the time nor the resources are available.  

The need to increase the efficiency of brain FE models is a well-known issue (Franklyn 

et al., 2005; Takhounts et al., 2008), and several strategies were introduced to mitigate the 

computational cost from FE modeling. One of these methods is to develop injury metrics that 

are based on a more simplistic model, the response of which can be obtained instantaneously. 

In other words, these models map the complex FE simulation onto a more simplistic problem 

that can be readily solved. The embedded parameters of these simple models are determined 
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offline using regression against the peak MPS from the FE simulation (Gabler et al., 2018; 

Laksari et al., 2020a). Once the parameters are determined, the simple model can be used to 

provide an accurate estimation of the peak MPS instantaneously. However, similar to the other 

scalar metrics discussed hitherto, these methods result in an over-simplification of the 

information obtained from the FE model into a single value. Additionally, simply using the peak 

resultant acceleration from the impact can outperform the use of MPS which renders such 

methods potentially less effective (Beckwith et al., 2018; Wu, Zhao, Rowson, et al., 2019; 

Anderson et al., 2020). 

To address this shortcoming of the scalar models, Ji and Zhao proposed using pre-

computation (Ji and Zhao, 2015) (as discussed in the background section). This methodology is 

a real-time technique to obtain the whole brain strain pattern to an impact using a set of pre-

defined impacts. These impacts are spread in across different directions and severities. Given a 

new impact, this method uses interpolation or extrapolation to predict the brain strain pattern 

based on the available data. This method can accurately estimate the strains for an impact with 

one major rotational velocity peak. However, for more complex impacts, this method 

significantly under-estimates the brain strains. This is expected as a result of the simplicity of 

the pre-defined impacts.  

Recently pre-computation has been extended to deep learning approaches (Wu, Zhao, 

Ghazi, et al., 2019). These approaches pre-process the impact profiles into discrete data points 

which are then inputted into the network for training. These models can then output an FE 

model output, such as peak MPS. Wu et al. uses this approach to train a CNN. They first 

translate the impacts in the entire database into a two-dimensional (2D) image format with the 

same size in their pre-processing step. Then using this data and the available peak MPS from 

the simulation, the CNN is able to implicitly (as opposed to explicitly (Ji and Zhao, 2015)) learn 
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the non-linear relationship between the impact profile and the peak MPS. This method proved 

successful with multiple real-world impacts measured in sports-fields. However, this success 

was limited to the peak MPS of the entire brain and specific regions of the brain. 

Hence, the next step is to extend this methodology to predict the entire brain strain 

pattern. This is important since the strain pattern that can be uniquely obtained from FE 

simulations contains important information about the condition of the brain tissue. Yet, it 

mitigates the long and costly process of simulation which could render this approach feasible for 

a sideline setting. Further, the strain pattern generated by an impact allows for machine learning 

classification approaches (such as network-based injury assessment methods (Wu, Zhao, 

Rowson, et al., 2019)) to assess the risk of injury. 

In the following sections of this aim, we first systematically optimize the network 

architecture and hyper parameters, using the CNN from (Wu, Zhao, Ghazi, et al., 2019) as a 

starting point. This process is done using a 10-fold cross validation for our entire database. 

Then, to test the CNN with an independent testing dataset, we retain the CNN architecture from 

the previous step and predict the MPS distribution for a set of injury labeled data from the 

National Football League (NFL; N=53, 20 concussions and 33 non-injury cases). This step 

helps characterize any performance degredation as a result of using the CNN compared to 

direct FE simulation. If successful, testing the CNN with the independent database could 

illustrate the capability of this method as a far more efficient substitute for direct FE simulation, 

while sacrificing very little accuracy. 
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Methods 

CNN Training Data 

The original data used for this study is a combination of a dataset from the Stanford 

University (SF) with a size of 110 (Hernandez et al., 2015), a dataset from the National Football 

League (NFL) with a size of 53 (Sanchez et al., 2018), and a dataset of 314 impacts recorded in 

American high-school football (HF) (Montenigro et al., 2017). However, this data size is small 

compared to the databases often used to train CNNs (which is in the order of thousands or even 

millions (Günther et al., 2014)). Hence, we used data augmentation based on the SF and NFL 

databases to increase the number of training data.  

In the process of augmentation, we first used permutation with the 3 components of the 

rotational velocity (i.e., xyz, xzy, yxz, yzx, zxy, and zyx). Then we rotated the rotation axis in 

each time step using a randomly generated rotation axis. The azimuth and elevation angles (θ 

and α, respectively) of the rotational axis, Ω(θ,α), were then determined based on peak 

magnitude of rotational velocity. Due to head symmetry about the mid-sagittal plane, only half of 

the Ω sampling space was necessary (Zhao, Kuo, et al., 2017b). Therefore, for Ω with θ > 90° , 

its corresponding “conjugate rotational axis”, Ω″(180°−θ, −α), was used to maximize the use of 

vrot profiles for generating unique brain responses. If axes were conjugated the strain pattern of 

the brain was mirrored to match the velocity profile. In the same fashion, several batches of data 

were constructed. The SF data was used to create a dataset of (n = 1320, 110 x 6 x 2) and the 

NFL dataset was used to create four batches of augmented data (n = 1272, 53 x 6 x 4). These 

augmentations were focused on the more severe range of impacts (21.9-40 rad/sec (Rowson et 

al., 2012)). The same process was used to create less severe impacts in the sub-concussive 

range (2-21.9 rad/sec) using the SF and NFL data sets. This led to 2592 (110 x 6 x 2 + 53 x 6 x 

4) additional training samples. Fig. 6 illustrates the distribution of the database. 
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Figure 7: Histograms of peak resultant rotational velocity (a; vrot) and acceleration (b; arot) for 
the entire training sample (n = 5661). The real-world impacts are overlaid. Regions between the 
two vertical lines are considered ‘‘in range.’’ The starred cases are explained in more detail in 
Fig. 10. The blue bars are a subset of the database we used as independent validation data 

(scaled by 10 for visibility). This process is detailed in the following sections. 

 

CNN Architecture 

The previous CNN architecture (Wu, Zhao, Ghazi, et al., 2019) was further empirically 

optimized to estimate element-wise peak MPS (regardless of the time of occurrence), by 

minimizing a weighted loss function (described subsequently) in a 10-fold cross validation using 

the entire training data set (n = 3069). Compared with the previous architecture, the updated 

network consists of three convolutional layers, with 64, 64, and 32 filters, each with sizes of 3 x 

30, 1 x 3, 1 x 3, and stride sizes of 1 x 2, 1 x 2, 1 x 1, respectively (Fig. 7). They are followed by 

a pooling layer of a size of 1 x 2 with a stride size of 1 x 2, a flattening layer (with a dropout rate 

of 0.2), and three fully connected layers with sizes of 200, 100, and 55 k (the last of which 

corresponds to the number of brain elements to predict responses). The pooling layer and the 

first fully connected layer (of a size of 200) adopted a rectified linear unit (ReLU) activation 

function, while all other layers used a linear activation function. A batch size of 256 was chosen 

with the number of epochs set to 400. An early stopping criterion was used to avoid overfitting. 
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The CNN architecture was implemented using Keras library (Version 2.2.4) with Tensorflow 

(Version 1.11.0) backend. 

To further increase the performance of the CNN, we designed our loss function in a way 

that would impose more penalty to FE model elements that frequently result in a larger variance 

across all impacts. To that end, we calculated the variance of each element across all impacts 

in the dataset, and used them as a weighting coefficient in the loss function.  

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =  
1
𝑝𝑝
� (

1
𝑞𝑞
� 𝜎𝜎𝑖𝑖 × �𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑖𝑖𝑖𝑖�

2𝑞𝑞

𝑗𝑗=1
)

𝑝𝑝

𝑖𝑖=1
× 100 

where xij and yij are the estimated and directly simulated MPS values for the ith brain element in 

the jth training sample impact, respectively; p is the number of the brain elements in the 

anisotropic WHIM V1.0, q is the number of the training samples (e.g., 90% of the 3069), and 𝜎𝜎i 

is the standard deviation of the ith brain element among the q training samples. An additional 

scaling factor of 100 was used to mitigate the loss of data precision resulting from round-off 

errors during the iterative training process, as values of xij, yij, and 𝜎𝜎i were typically small. This 

was important as the internal CNN architecture uses 32-bit single-precision floating numbers 
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Figure 8: Flow chart showing preprocessing of a head impact kinematic profile (top) and an 
empirically optimized convolutional neural network (CNN) architecture (bottom) to predict the 

distribution of peak maximum principal strain (MPS) of the entire brain. The preprocessed vrot 
profile (after transforming to its ‘‘conjugate rotational axis,’’ and if needed, shifting, and padding  
(Wu, Zhao, Ghazi, et al., 2019)) is combined with the corresponding pre-processed and scaled 
arot profile (effectively, with a unit of 100 rad/sec2 after scaling). The resulting two-dimensional 

[2D] image representation serves as the CNN input. 

CNN Estimation Performance 

The CNN performance was characterized by a 10-fold cross validation across the entire 

dataset (n = 5661). In this process, a linear regression model is fit to each predicted strain 

pattern from the CNN and the directly simulated counterpart. Further, for cases that required 

rotational axis conjugation, the strain pattern was mirrored with respect to the mid-sagittal plane 

to reflect the conjugated rotational axis. In an ideal case where the CNN pattern prediction is 

identical to the direct simulation, the linear regression slope (k) and the Pearson correlation 

coefficient (r) between these strain patterns are both equal to 1. We empirically determined that 

the prediction is sufficiently accurate when the k and r error are less than 10% (0.9 < k < 1.1 and 

r > 0.9). The ratio of cases that satisfy this criteria to the entire database is referred to as the 

“success rate”. 

As the augmented dataset was controlled in terms of peak rotational velocity (2-40 

rad/sec; Fig 6a), a majority of the peak velocity ranges were in this range. However, such 

concentration did not exist in the acceleration since it was not controlled in the augmentation 

procedure. Further, a number of impacts had a large initial rotational velocity. This is because 

the SF dataset was given in terms of rotational velocity (as opposed to rotational acceleration) 

and contained non-zero values at the starting point s (the ratio to the peak vrot magnitude of 18.1 

– 22.2% for the given data set, range 0–100%). This issue could be further exacerbated by the 

scaling, perturbation, and the rotations in the augmentation procedure. This is important since 
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the large initial velocity will effectively decrease the change in rotational velocity magnitude and 

result in outliers. 

In order to evaluate the performance of the CNN independent of the non-zero initial 

velocity characteristic of some impacts in the database and “out of range” velocity or 

acceleration, we removed them and reassessed the CNN performance. Impacts with peak 

rotational velocity outside the targeted range (1.5% of the cases), with peak rotational 

acceleration below the 10th or above the 90th percentile (20.0% of the cases), or with the ratio 

between the initial and rotational velocity peak values >10% (11.0% of the cases), were 

empirically removed, which resulted in a new database with 4298 impacts (75.9% of the initial 

database; some of these category ratios have overlap). The new obtained database was also 

used in a 10-fold cross validation and compared against the directly simulated counter parts. 

Injury Prediction 

The final goal of FE analysis of the brain is to assess the risk of injury. Consequently, it 

is crucial to ensure using the CNN does not degrade the injury prediction performance based on 

the strain pattern. To that end, we use the injury labeled original NFL database (N = 53). To 

ensure that the NFL data is used as an independent dataset, we remove the original NFL 

dataset as well as all the augmented data that were generated based on the NFL data and 

retrain the CNN model. Removing these cases resulted in a database with 3064 impacts (5661-

53 x 6 x 8 - 53) to retrain the CNN architecture with. The resulting distribution of the peak 

rotational velocity and acceleration are shown in Fig. 8a and 4b respectively. The assessment 

of the CNN performance for strain pattern prediction is done similarly to the previous parts in 

terms of k and r. 
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Figure 9: Histograms of peak resultant rotational velocity (a; vrot) and acceleration (b; arot) for 
a subset of data (n = 3064) used to train and test on an independent National Football League 
(NFL) data set (n = 53), which is overlaid (number of occurrences multiplied by 10 to improve 

visualization). 

MPS distribution can be regarded as a set of features (50k, one for each element strain 

value) to classify an impact into the injury or non-injury group. To that end, we used machine 

learning algorithms—namely Support Vector Machine (SVM) and Random Forest (RF)—for the 

classification. The classification was repeated in the exact same way for the CNN estimated and 

the directly simulated MPS pattern. Further, as these methods both require some kind of feature 

selection, we implemented two feature selection methods using either F-score or RF ‘‘gini’’ 

importance ranking separately. To characterize the performance of the classification in each 

case, we reported the accuracy, sensitivity, specificity, and area under the receiver operator’s 

curve (AUC). All injury performances were carried out using a leave-one-out cross-validation. 

This approach was following a similar publication that was previously published (Cai et al., 

2018).  

The hyper parameters of the SVM and RF method were empirically determined. In case 

of using feature selection, following the findings of (Cai et al., 2018), we used the top 4% of 
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features using F-score. The SVM used a linear kernel and the depth of the RF was determined 

separately for feature selection and classification (Table 2). 

Table 6: The number and the depth of trees, (N, D), used in RF depended on whether RF was used for feature 
selection (FS) or classification (CL), as shown below.  

 SVM (CL) RF (CL) 

RF (“gini” importance 

ranking), FS 
(10, 2): FS 

(100, 2): FS 

 (1000, 2): CL 

F-score, FS N/A (50, 2): CL 

 

Data Analysis 

All head impacts were simulated using the anisotropic WHIM V1.0, which took ~30 min 

for one impact of ~100 ms duration (double precision with 15 central processing units [CPUs] 

and graphics processing unit [GPU] acceleration; Intel Xeon E5-2698 with 256 GB memory, and 

4 NVidia Tesla K80 GPUs with 12 GB memory). Another 30 min was necessary to extract peak 

MPS distribution across the impact duration. In total, this study required ~8 months of nonstop 

computations to generate the data, which was mitigated by concurrent running of 5–10 jobs. 

Each CNN training took ~9 min per fold for the entire data set on an NVIDIA Titan X Pascal 

GPU with 12 GB memory. Predicting the response distribution for a testing profile was instant 

(<0.05 seconds) 

Results 

In a 10-fold cross validation, the linear regression slope and the Pearson correlation 

coefficients (k and r, respectively) were found to have an average value of 0.99 ± 0.06 and 0.96 
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± 0.04 respectively. This resulted in a 92.1% “success rate” across all impacts in the database 

(Fig. 9a).  

 

Figure 10: Summary of k and r when comparing convolutional neural network (CNN)-estimated 
and directly simulated maximum principal strain (MPS) distributions using a 10-fold cross-
validation, using either the entire (a) or a subset of (b) the impact data set focusing on ‘‘in-
range’’ impacts (after removing ‘‘outliers’’). The shaded area represents impact cases of 

sufficient accuracy (i.e., 0:9 < k < 1:1 and r > 0:9). The k and r axes are capped to improve 
visualization. The identified four cases in (a) are further illustrated in Fig. 10.  

A majority of the failed cases were observed to have similar traits: (1) out-of-range 

velocity (Fig. 8b) peak, (2) out-of-range acceleration (Fig. 8c), and (3) a high initial velocity (Fig. 

8d). Removing these outliers resulted in an increase in the success rate (Success Rate = 

97.1%; Fig. 7b) using a 10-fold cross validation.  
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Figure 11: Representative impact cases showing impact vrot and arot profiles with the 
convolutional neural network (CNN)-estimated (eest) and directly simulated (esim) maximum 

principal strain (MPS) distributions for a successful prediction (a) or ‘‘failed’’ cases resulting from 
(1) out-of-range vrot peak magnitude (b); (2) out-of-range arot peak magnitude together with a 

large initial vrot value (c); and (3) a large initial vrot value (d). The four cases correspond to 
cases 1–4 identified in Fig. 6. 

Fig. 11 a illustrates the performance of the CNN when using the NFL dataset as an independent 

testing data. k and r were found to have average values of 0.99 ± 0.05 and 0.96 ± 0.02 

respectively. 96.6% (51 out of 53) of the impact strains were predicted with sufficient accuracy. 

Yet, even the impacts that did not pass the “hard” success threshold were reasonably accurate 

(Fig. 11b-d).  
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Figure 12: Summary of k and r for convolutional neural network (CNN)-estimated (𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒) and 
directly simulated (𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠) maximum principal strain (MPS) distribution for an independent 

National Football League (NFL) impact data set (a; shaded area represents impacts of sufficient 
estimation accuracy, i.e., 0:9 < k < 1:1 and r > 0:9). Three representative impacts are selected 
to show a successful estimation (b; purposefully chosen to represent an r toward the threshold 

value for success) and two ‘‘failed’’ cases (c and d). The latter two cases only failed 
‘‘marginally’’; that is, their corresponding k and r were rather close to their success threshold 

values. 

Table 7: Summary of injury prediction performances in terms of accuracy, sensitivity, specificity and AUC using 
CNN-estimated (“CNN”) or directly simulated (“WHIM”) MPS distributions. Injuries are predicted using either 

SVM or RF with feature selection (specified in parenthesis) based on either F-score or RF “gini” importance ranking 
(Cai et al., 2018). For comparison, baseline performances using peak MPS of the whole brain and logistic regression 
are also reported. All performances are evaluated via leave-one-out cross-validation for objective comparison. Using 
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RF either for injury prediction or feature selection, 50 trials are used to account for the random initialization. 
Performances that are higher than the baseline are in bold (p<0.05; where appropriate). 

Performance category Accuracy Sensitivity Specificity AUC 

SVM  

(F-Score) 

CNN 0.79 0.65 0.88 0.84 

WHIM 0.79 0.65 0.88 0.82 

SVM (“gini”) 
CNN 0.83±0.02 0.62±0.06 0.96±0.03 0.88±0.01 

WHIM 0.83±0.02 0.63±0.04 0.94±0.03 0.87±0.01 

RF (F-Score) 
CNN 0.81±0.01 0.74± 0.02 0.85± 0.01 0.79±0.01 

WHIM 0.78±0.01 0.66±0.02 0.85±0.004 0.80±0.01 

RF (“gini”) 
CNN 0.83±0.02 0.71±0.03 0.90±0.03 0.87±0.01 

WHIM 0.83±0.02 0.71±0.03 0.90±0.03 0.87±0.01 

Peak MPS WHIM 0.77 
 

0.65 
 

0.85 
 

0.86 
 

 

Discussion 

Brain strain distributions are of high importance to understand the mechanics of 

concussion and classify injury. The main method to obtain the brain strain distribution is through 

FE modeling, which requires significant computational power and a substantial amount of time. 

Hence, they are unfeasible in a sideline setting. The outcome of this aim reduces the significant 

amount of time required to complete a single simulation (hours or even days depending on the 

duration of the impact and the FE model), to less than one second on a low-end laptop. This 

achieves a ~36k fold speedup, which would be even more with some other models that require 

more time to simulate than WHIM. This work is a significant improvement over the previous 

work, which used a simpler CNN architecture to predict only the peak MPS of the entire brain or 

specific regions of the brain (a single value), and extends that to predict the spatially detailed 
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brain strain pattern in the entire brain (50k values, one for each brain element in WHIM). This 

work can be readily used in a sideline setting without any additional equipment.  

Further, the CNN-estimated brain strains can be reliably used for feature-based injury 

classification as its performance is comparable to that of the direct simulation. The fact that 

feature-based injury metrics often outperform scalar metrics along with logistic regression lends 

more strength to the CNN approach used in this study. The random forest (RF) classification 

technique using the ‘‘gini’’ importance ranking for feature selection consistently had the best 

performance across almost all categories. Collectively, these findings support the use of CNN to 

instantly estimate spatially detailed brain strains for real-world applications in the future. 

Potential Applications 

This approach has the potential to revolutionize the field of TBI research and head gear 

standards and testing as it makes the brain strain distribution readily available. This would have 

a broad application in the field of brain biomechanics in general. For instance, despite the 

consensus that the brain strain-based approximations are more closely related to injury than 

kinematic metrics (King et al., 2003), kinematic-based approximations (e.g. acceleration-based 

approximations) are still widely used for headgear design and clinical applications. This is 

perhaps due to the lack of availability and the demanded resources for FE models. Our model 

fills the gap of readily translating the available impact data into cumulative brain strains. This 

method adds a level of sophistication to the currently available methods that are solely based on 

impact kinematics t (e.g., Risk Weighted cumulative Exposure [RWE]. (Urban et al., 2013; 

Davenport et al., 2014) Cumulative Head Impact Index [CHII], (Montenigro et al., 2017) and 

impact density(Broglio et al., 2017)). 

The transition to using cumulative injury metrics using FE model strains is already 

underway (Karton, Hoshizaki and Gilchrist, 2020). Yet, the current approaches are limited to the peak 
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strain value of the entire brain  from a subset of impacts. The advantage of the CNN approach 

compared to peak MPS based approaches is the ability to provide a detailed, region-specific 

strain distribution. This enables obtaining correlation between region-specific, cumulative strain 

exposure with the corresponding localized brain injury findings, either on an individual level or a 

groupwise basis. This is a significant improvement in neural health monitoring over the “hybrid” 

injury metrics that provide instant peak MPS in the entire brain but but not its anatomical 

location or distribution (Lee F Gabler, Crandall and Panzer, 2018; Laksari et al., 2020a). Injury 

metrics that provide regional MPS exist but do not account for cumulative effects from repeated 

head impacts (Chiara Giordano, 2014; Zhao, Cai, et al., 2017b). 

Another potential application of the pre-trained CNN model is in protective head gear 

design. In practice, the CNN could be used to provide insight into the distribution of the strains 

sustained by the brain as a feedback to help assess the effectivity of the design. It can pinpoint 

specific regions of the brain that are experiencing the largest strains for a given test scenario 

using the head gear. a targeted multi-scale modeling could also be launched. This approach 

could serve as a vessel to answer questions about how the impact external energy is 

transmitted to the brain and leads to axonal undulation, swelling, and microtube breakage 

(Ahmadzadeh, Smith and Shenoy, 2014; Zhu, Gatti and Yang, 2016; Montanino and Kleiven, 

2018) that are characteristic of diffuse axonal injury (Smith, Meaney and Shull, 2003). These 

applications could pave the way for swift advancements in TBI biomechanics. 

Limitations and further developments 

A less recognized limitation with not only this aim but the current stage of TBI 

biomechanics is that it focuses solely on the peak positive strains. This, in effect, neglects the 

negative strain values—tissue compression—that are also important and can cause injury (Bar-

Kochba et al., 2016). Further, while the current understanding focuses on a “static picture” of the 
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strain pattern (cumulative strains), the temporal history of tissue strain/strain rate during the 

head impact could also play a role in the risk of brain damage. This is similar to the temporal 

profile of dynamic head impact kinematics, on which, numerous injury metrics are shaped and is 

also the driver for any impact simulation. Rapidly reproducing the spatiotemporal details of brain 

strain (vs. spatial distribution alone) is another potential path that hold value for exploration in 

the future. 

Second, while this method achieves comparable injury prediction results compared to 

direct simulation, the peak angular acceleration outperforms the FE based metrics for this 

particular dataset (e.g., sensitivity of 0.80 for peak arot vs. 0.71 using RF for both classification 

and feature selection based on MPS distribution, or 0.65 based on peak MPS via logistical 

regression). The same observation was made using the Global Human Body Models 

Consortium (GHBMC) model when compared with peak MPS (Anderson et al., 2020). However, 

the NFL injury dataset is known to suffer from reconstruction errors (Pellman et al., 2003; 

Sanchez et al., 2018) and the under-sampled non-injury cases may have significant implications 

in injury prediction as well (Chiara Giordano, 2014). Further, this database does not indicate the 

effects of repeated sub-concussive impacts, which are now thought to be important. Hence, 

further investigation is needed into injury prediction capability, perhaps with a more realistic 

database. 

Yet, there are methodologies that outperform all kinematic metrics. For instance, a recent 

network-based injury metric outperformed peak arot across all five performance categories 

evaluated (e.g., sensitivity of 0.85 vs. 0.80 for peak arot (Wu, Zhao, Rowson, et al., 2019)). The 

network-based “response feature matrix” encodes the peak MPS of the regions of interest in the 

gray matter as well as their white matter interconnections. This suggests a way to expand the 

CNN model and increase the injury prediction performance even more could be to include white 
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matter fiber strains. The earlier success in predicting peak fiber strain in the corpus callosum (Wu, 

Zhao, Ghazi, et al., 2019) provides some initial confidence along this line for further development.  

CNN architecture and estimation performance 

The architecture used in this aim is based on a previous architecture from (Wu, Zhao, 

Ghazi, et al., 2019). However, the same architecture did not work well for predicting the strain 

pattern directly (Success rate = 67.2%). A contributor to the poor performance is that the 

penultimate later size (10 in the original architecture) is small to project the strain values for 50k 

elements. To mitigate that in the current study, we replace this layer with two fully connected 

layers with sizes 200 and 100 respectively. Alternatively, it was possible to use a single layer 

with a large size (e.g. 500), but the convergence rate dropped. We characterized the 

improvements in the network with each tweak by empirically observing the progression of the 

loss function, the convergence rate, overfitting (Figure 13 c), as well as the success rate as 

discussed before (Figure 13 a and b). The final network had a faster convergence, a lower 

overall loss function, and a higher success rate.  

However, further tweaking the fully connected layers did not further improve 

performance. Additionally, we found that including the arot profile as an additional input 

signals/features can further significantly increase the success rate (from 83.2% to 92.1%; Fig. 

9a). This led us to the final architecture design and use the vrot and arot configuration profiles as 

the input for CNN training (Fig. 7). The CNN estimates appear to have sufficient accuracy, 

especially for the "in-range" test impact, even the "unsuccessful" cases only fail slightly (i.e., k 

and r are not much different from their respective success thresholds; Fig. 9b). Compared with 

the previous study (Wu, Zhao, Ghazi, et al., 2019), the updated CNN architecture and input 

structure also achieved almost the same performance in estimating the peak MPS of the entire 

brain. For real-world impacts where the magnitudes of the vrot peaks were outside the target 
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range (> 40 rad / s; Fig. 6a), 65 of 73 cases or 89% were successful, with two impacts 

illustrated in Fig. 13 (correspond to those identified in Fig. 6a). These results highlight the 

robustness of the technique and suggest the feasibility of applying our pre-trained CNN to the 

vast majority of head hits in contact sports. 

Physically, the vrot and arot contain the same information about describing the head 

impact with three degrees of freedom—that is with the exception that arot does not include the 

initial velocity. Yet, it was necessary to combine them as a CNN entry. This shows that in the 

current CNN structure, some high-order information from arot features is not derived or well 

represented by the vrot profile. Understanding of the underlying mathematics of this problem 

improves the performance of CNN. It should also be noted that there already exists techniques 

such as “attention mechanisms” for identifying the "important features" behind the observed 

response. However, this knowledge-based “inverse” approach probably far exceeds the ability 

of the conventional “forward approach with the limited data available (Zhao and Ji, 2017), 

however this method is worth pursuing in the future.  

Little success-rate improvement was achieved when MPS variance was incorporated as 

a weighting factor into the loss function (Eqn. 1; ~1%). As the linear regression slope and 

Pearson correlation we adopted for accuracy assessment do not discriminate the absolute 

response magnitude in their calculations, the MPS magnitude was not included as an additional 

weighting factor. Nevertheless, if needed, applying the weighting factor to focus more on higher 

strain regions that are likely more injury-relevant is straightforward. Another difference from the 

previous architecture is the use of linear activation functions as opposed to exclusively ReLU in 

the original architecture. This resulted in a ~1.3% improvement in the success rate in the 10-fold 

cross-validation, and also increased the convergence rate. 
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Figure 13: Comparison of estimation performance using the previous convolutional neural 
network (CNN) architecture (a; with the size of the last output layer changed to 55 k to match 

the number of brain elements for response prediction39) and the one updated in this study (b). 
Their convergence behaviors in terms of root mean squared error (RMSE) between the two 

distributions versus epochs are also compared (c). All performance measures reported here are 
based on the previous impact data set (n = 3069) using vrot profiles alone as CNN input, without 

the addition of arot profiles. 

Finally, we observed a significant effect caused by the non-zero initial velocities in the 

impacts compared to the impacts with a zero initial velocity. Physically, one can force the initial 

velocity to zero with little difference in the brain strains generated (verified but not shown). 

Hence, applying a step to force the initial velocity to zero is a potential way to improve the 

performance which will minimize “confusion” by the CNN. The very existence of a large non-

zero velocity is an indicator that the impact event was incompletely captured. This is beyond the 

scope of modeling efforts.  

Nevertheless, our outlier criteria used to outline impacts that are not compatible to our 

network provides a way to estimate how much the CNN results can be trusted. More precisely, 

the outliers in terms of peak rotational acceleration and velocity are less concerning. This is 

because the impacts with a magnitude below the outlined acceleration and velocity levels are 

unlikely to cause injury. This is while impact events with magnitudes above the outlined bounds 

are likely to cause injury, even without the CNN strain predictions. Yet, in a real-world scenario, 
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non-zero velocities should be “flagged” and forced to have a zero initial velocity (as discussed 

above). 

These empirical observations enrich the knowledge base of CNN behavior in the context 

of TBI biomechanics, which may promote future continuous development to further improve 

performance. 

 

Figure 14: Illustration of a National Football League (NFL) concussive head impact (a; 
Case125HD0243) and another head impact from the HF data set (b; no injury diagnosis 

available). Even though their vrot peak magnitudes are significantly larger than the targeted 
range (61.4 rad/sec and 78.4 rad/sec, respectively, vs. 40 rad/sec as the upper bound of the 
targeted range; corresponding to the two cases identified in Fig. 6a), the convolutional neural 

network (CNN)-estimated strains were sufficiently accurate. Note, strain in (a) is higher than that 
in (b), even though its vrot peak magnitude is lower, because of its significant deceleration, 

which is lacking in the recorded profile in (b). 

Conclusion 

So far, the work of developing head injury models has focused on improving the 

complexity and biological fidelity of the models and little attention was paid to how to maximize 

the practicality of the model in practical applications. This research further developed a 

Convolutional Neural Network (CNN) for offline training, enabling real-time online applications. 
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The pre-trained CNN can immediately estimate the whole-brain strain distribution on the low-

end computing platform, so it has sufficient accuracy when most head impact contact motions. 

This ability may have broad significance for the study of the final findings, mitigation and 

prevention mechanisms of TBI. 
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Introduction 

One of the major health concerns in the world is Traumatic brain Injury (TBI) (CDC, 

2015; Dewan et al., 2019). On average one out of every four TBIs is considered severe (~3%) 

or moderate (~23%) injuries, both of which can cause long lasting and devastating neurological 

problems (Faul, Xu and Coronado, 2010). The remaining injuries are considered “mild” TBI’s, 

with a rate of occurrence of 40 million cases world-wide according to the World Health 

Organization (Cassidy et al., 2004). The number of mTBI cases in the United States is between 

1.6 to 3.8 million cases annually and is particularly prevalent in contact sports (Graham et al., 

2014; Dompier et al., 2015). 

The primary mechanism of injury is believed to be caused by rapid head movement, 

resulting in sudden brain tissue deformation (King et al., 2003; Meaney, Morrison and Bass, 

2014). However, as the brain is not easily accessible in vivo, the tissue deformation in the brain 

cannot be measured directly. Hence, the sole way to gain insight into the brain tissue 

deformation and the resulting strains is Finite Element Simulations (Yang et al., 2006; Madhukar 
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and Ostoja-Starzewski, 2019). Yet, a significant barrier on the way of readily utilizing FE models 

for obtaining the brain strains is their significant computational cost, resulting in hours (Mao, 

Zhang, et al., 2013; Miller, Urban and Stitzel, 2016; Zhao and Ji, 2020c) to even days (Lu et al., 

2019; Li, Zhou and Kleiven, 2020) of simulation run time. 

Although recently a deep learning convolutional neural network (CNN) based approach 

(Wu, Zhao, Ghazi, et al., 2019; Ghazi et al., 2020) successfully provided a sufficiently accurate 

estimation of brain strain distribution from FE simulation, impact kinematics such as acceleration 

and velocity remain widely used in TBI biomechanics research field. This could shift in the 

coming years as the mentioned CNN based method has the potential to shift acceleration-based 

injury biomechanics to focus more on tissue strain. Yet, the current preference of the kinematics 

based metrics extends to different applications within the field of TBI. For instance, They have 

long been adopted as the basis for head protection standards in the automotive and sport safety 

industries (Gadd, 1966; Lemmon and Huston, 1994; National Operating Committee on 

Standards for Athletic Equipment, 2019). This preference could be partially explained since 

kinematic variables are readily measurable and have specific physical interpretations easily 

accessible to the general public. 

The most basic kinematic parameters used for injury risk estimation are the peak linear 

and rotational acceleration and peak rotational velocity. They are often used to characterize the 

impact severity in terms of rotational and translational head motion. Yet, several studies have 

shown that the brain strains are generated mainly by the rotational component of the impact as a 

result of the brain incompressibility (Bradshaw and Morfey, 2001; Kleiven, 2007; Ji, Zhao, et al., 

2014; Bian and Mao, 2020). As a result, the focus of injury metrics has shifted towards the impact 

rotation. Because of the contribution of kinematic features such as temporal profile shape in terms 

of acceleration and deceleration phases (Zhao and Ji, 2017) as well as direction and impulse 
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duration (Bian and Mao, 2020) to brain strain variation, peak rotational acceleration/velocity 

magnitudes do not typically correlate well with brain strain (Lee F. Gabler, Crandall and Panzer, 

2018). This has resulted in an increase in the sophistication of the kinematic metrics that were 

developed recently to account for the variation in impact kinematic profile shapes and anatomical 

components. Some of these metrics are empirically derived metrics such as Rotational Injury 

Criterion (RIC) (Kimpara and Iwamoto, 2012), Brain Injury Criterion (BrIC) (E. G. G. Takhounts et 

al., 2013), and Rotational Velocity Change Index (RVCI) (Yanaoka, Dokko and Takahashi, 2015). 

Others metrics, such as the universal brain injury criterion (UBrIC) (Lee F Gabler, Crandall and 

Panzer, 2018), diffuse axonal multi-axis general evaluation (DAMAGE) (Lee F. Gabler, Crandall 

and Panzer, 2018), and brain angle metric (BAM) (Laksari et al., 2020b) are based on the physics 

of brain rotational mechanics.  

With an increase in the level of sophistication, these injury metrics usually outperform peak 

rotational velocity and acceleration when comparing with model simulated brain strain. Two strain 

measures are often used benchmark the performance of these metrics (Lee F. Gabler, Crandall 

and Panzer, 2018; Bian and Mao, 2020): (1) peak MPS of the whole brain and (2) cumulative 

strain damage measure (CSDM) (Takhounts et al., 2008). The latter equals the percentage of 

brain volume, whose strains exceed a given threshold value. The DAMAGE model, which is a 

physics-based reduced order model, has achieved a high correlation with peak MPS (~0.96) 

across a variety of impact conditions (Lee F. Gabler, Crandall and Panzer, 2018). This method 

effectively maps the brain strains into an analytically solvable simplified second-order system of 

equations of the brain mass displacement at every time point. Then the peak displacement is 

correlated with peak MPS, while the system critical parameters are determined by fitting simulated 

responses from a set of simplified multi-directional head rotations.  
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Despite these advances, the all kinematics based injury metrics to date are scalar values 

(a single numerical number to infer brain strain response on the global level). This results in two 

major oversimplifications that can affect the reliability of the injury assessment from these metrics. 

Firstly, using such metrics prohibits representation of the brain strain distribution as well as the 

region of the brain where the high strain occurs. This is important due to the diffuse nature of 

strain (Koerte et al., 2015). Further, easily accessible physical interpretations (such as in peak 

rotational velocity) may be lost in sophisticated injury metrics. Thus, promoting complex 

kinematics-based injury metrics for routine real-world use in the general public, such as in head 

protection safety industries could be challenging.  

This aim addresses these shortcomings by developing the concept of “effective impact 

kinematics” to translate an arbitrary head impact rotational profile into a set of basic impact scalar 

kinematic variables. These values are determined by the best approximation within a pre-

computed brain response atlas (pcBRA) (Ji and Zhao, 2015; Zhao, Kuo, et al., 2017a). This atlas 

serves as a common strain “dictionary” to represent all impacts. First, we determine effective peak 

rotational velocity (𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝 ) to maintain the same peak MPS. Here the MPS is regarded as a scalar 

value to describe the global level of brain strain. This is a similar approach to the conventional 

scalar injury metrics to simplify a complex head impact into a single numeric value. Next, we take 

a similar best approximation approach to identify the “effective kinematic triplets” to preserve 

elementwise MPS. Effective kinematic triplets are the effective 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝  and the associated rotational 

axis (delineated by the azimuth and elevation angles (𝜃𝜃 and 𝛼𝛼, respectively)). Unlike other 

conventional scalar injury metrics to date, the effective kinematic triplets approach can preserve 

spatially detailed brain strain, which is consistent with the direction-specific peak rotational 

velocity for predicting brain strain (Bian and Mao, 2020).  
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Finally, we develop a CNN structure to automatically simplify a given real-world impact 

and avoid the computational cost of the simulation for obtaining brain strain distribution. A given 

impact can be readily simplified into a common reference in terms of easily understandable peak 

rotational velocity and the associated rotational axis using the trained and validated CNN. This 

approach may allow for more effective comparisons of head impacts by simplifying real-world 

impacts into an idealized “impact mode”, be it in terms of global peak MPS or spatially detailed 

strain. However, the implications of this study could be extended to a wide variety of applications 

in other injury scenarios such as fall and automotive impacts in the future. 

Methods 

Workflow Overview 

For an arbitrary head impact recorded from a measuring instrument (e.g. instrumented 

helmet or mouthguard), a simulation was constructed and ran using the Worcester Head Injury 

Model (WHIM) V1.0 (Zhao and Ji, 2019c). Then the strain distribution resulted from the simulation 

is compared to those in the pcBRA (Zhao, Kuo, et al., 2017a) to identify the corresponding 

effective kinematic variables, depending on how the strain is to be preserved (peak or 

elementwise MPS). Finally, a CNN is trained to instantly predict the corresponding effective 

kinematic variables. The details of this process are outlined in the following sections.  

Figure 15: Flowchart of the study to translate an arbitrary head impact into effective impact 
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kinematics to preserve either peak MPS or spatially detailed MPS. Elementwise MPS of the 
brain for an arbitrary head impact is first obtained and compared with the pcBRA library to 

identify an idealized impact. With a CNN, this process is automated without the need for actual 
costly impact simulation. pcBRA: pre-computed brain response atlas. 

Impact dataset  

A previously simulated set of impacts obtained from contact sports (N = 3069) we used 

for this study. This dataset includes on-field recorded impacts (Hernandez et al., 2015; Zhao et 

al., 2019), reconstructed impacts from the National Football League (Sanchez et al., 2018), as 

well as their augmented impacts via data augmentation as explained in the previous aim (Wu, 

Zhao, Ghazi, et al., 2019). The target range of the augmented data in this dataset were designed 

to increase the number of “more severe” head impacts (i.e., peak rotational velocity magnitude 

range of 21.9–40 rad/s, which corresponds to 50th concussive and above the 95th concussive 

impact, respectively (Rowson et al., 2012)). Impact simulations were conducted using the WHIM 

V1.0 (Wu, Zhao, Ghazi, et al., 2019). The database in the previous aim was not feasible in this 

aim as a result of the incompatibility of the anisotropic WHIM (used for the simulations in the 

previous aim) and the pcBRA (which was developed on the isotropic WHIM). 

Strain responses from idealized impacts in a pcBRA 

A set of idealized rotational acceleration pulses of a triangular shape were used to pre-

define and simulate brain impacts that construct the pcBRA library (Ji and Zhao, 2015; Zhao, Kuo, 

et al., 2017a). This technique has recently been adopted to develop strain-based cumulative 

impact exposure (Miller et al., 2020). The impact duration of the impulses used in pcBRA is fixed 

to 10 ms as it was found that maintaining the same peak rotational velocity with varying 

acceleration impulse durations did not significantly alter strain for impacts in contact sports (Zhao, 

Kuo, et al., 2017a; Bian and Mao, 2020). This reduced the number of defining parameters which 
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resulted in a significant reduction of the total number of idealized impacts necessary for costly 

impact simulation.  

Hence each pcBRA impact can be identified by triplets consisting of peak resultant 

rotational velocity (𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝 ) and the azimuth and elevation angles (𝜃𝜃 and 𝛼𝛼, respectively) of the 

rotational axis. Table 3 in the background provides a summary of the ranges and step sizes of 

the three discretizing variables. Fig. 15 provides a visual illustration of an idealized impact profile 

(Fig. 15a) as represented by a 3D vector emanating from the WHIM head center of gravity (Fig. 

15b). As a result of the head symmetry about the mid-sagittal plane, the range of directionalities 

in the pcBRA only cover half of the space (Fig. 15c). The impacts outside this range can be 

mapped into this region using conjugation (explained in the previous sections) (Ji and Zhao, 

2015).  

Figure 16: (a) Example of an idealized three-degree-of-freedom (3DOF) impact rotational 
velocity profile; (b) the corresponding kinematics triplets (𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟

𝑝𝑝 , 𝜃𝜃, 𝛼𝛼) represented by a vector 
emanating from the head center of gravity to characterize the peak velocity magnitude and 

directionality in the WHIM coordinate system. For a given 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝 , traversing the vector end point in 

space would generate a hemisphere shown in (c). In the middle hemisphere, the discretized (𝜃𝜃, 
𝛼𝛼) pairs are also shown as grid on the hemisphere.  
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Effective peak rotational velocity magnitude to preserve peak MPS  

One 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝  value about an arbitrary head rotational axis is sufficient to preserve peak MPS 

of the whole brain (assessed at the 95th-percentile level). However, this 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝  value is dependent 

on the direction and does not consider the strain distribution in the brain. Therefore, we chose to 

separately identify a 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝  value along each of the three anatomical directions (X, Y, and Z). 

Impacts around the same rotational axis were grouped together (i.e., 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝  range of 7.5–

37.5 rad/s along each anatomaical direction; Table 3). Then we fit a constrained third order 

polynomial function against 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝  (i.e., peak MPS of zero when 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟

𝑝𝑝  is zero) to their respective peak 

MPS. Thereby, we inversely identified 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝  to generate the same peak MPS from the fitted function 

for for an arbitrary head impact. This process led to three corresponding effective 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝  values 

along the three anatomical axes 𝑣𝑣𝑟𝑟𝑜𝑜𝑜𝑜𝑥𝑥 , 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑦𝑦 , 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟𝑧𝑧 , respectively (Fig. 16). Here we treat 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟𝑥𝑥 , 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟

𝑦𝑦 , 

𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟𝑧𝑧  as the effective values because we are mapping peak MPS onto rotational velocities. In other 

words, as we choose to only into the pcBRA impacts along anatomical directions, where 𝜃𝜃 and 𝛼𝛼 

are constant along each direction.  

Some impacts can have peak MPS values that are outside of the pcBRA sampling range, 

which leads to extrapolation (Fig. 16). To identify a reasonable range of extrapolation to avoid 

large errors we iteratively removed MPS-𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝  sampling points (Fig. 16b) along the axial rotation 

at the higher end and refitted the remaining sampling points with a constrained third order 

polynomial. In each step we extrapolated the MPS to find the highest 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝  available in the baseline 

pcBRA (37.5 rad/s; Table 3). The peak MPS was then compared against the directly simulated 

counterpart.  

This experiment outlined that up to three sampling points could be removed to yield an 

extrapolation error in strain <0.01, which was considered sufficiently accurate. Based on this 
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finding, we assumed the extrapolation within 3 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝  step-sizes to be reasonably accurate when 

using all of the 9 MPS-𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝  sampling points for fitting (that is 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟

𝑝𝑝  < 48.75 rad/s or 𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝 < 9750 

rad/s2equivalently)). This extrapolation range was applied to the impacts along all rotational axes.  

This allowed for re-using existing impact simulations without the need to re-simulate new impacts. 

90.7% of impacts were successfully simplified using this approach (𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝  within the extrapolation 

range; Fig. 16).  

 

Figure 17: (a) Histogram distribution of peak MPS for the N=3069 impacts. (b) Peak MPS 
values corresponding to the same anatomical axis from the pcBRA are grouped to fit a 

constrained third order polynomial. The MPS of each impact is used to identify the 
corresponding 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟𝑥𝑥 , 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟

𝑦𝑦 , 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟𝑧𝑧  along the three anatomical axes. The two dashed lines on the far 
right show the extent of 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟

𝑝𝑝  extrapolation range deemed of sufficient accuracy. For the same 
𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝 , an axial rotation produces a considerably higher MPS than a coronal or a sagittal rotation. 
The red line shows an unsuccessful case that did not coincide with the X and Y polynomials 

within the allowed margin for extrapolation. 

Effective kinematic triplets to preserve elementwise MPS  

Based on the construction of the pcBRA impacts, three independent parameters were 

necessary to preserve elementwise MPS accounting for spatial distribution: 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝  and the 
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associated rotational axis, 𝜃𝜃 and 𝛼𝛼 angles. These variables were determined by comparing with 

the pcBRA impacts. This comparison was done according to linear regression slope, k, and 

Pearson correlation coefficient, r between elementwise MPS. In an ideal scenario where the two 

MPS distributions are identical, both k and r would be 1.0.  Hence, we used an empirical error 

threshold of 0.1 both k and r. In other words, an impact was considered to be sufficiently similar 

to an idealized impact when both k and r did not deviate from 1.0 by more than an empirical 

threshold of 0.1 (Ghazi et al., 2020).  

To match the real-world impacts to the pcBRA impacts, we used a two-step approach. 

First, we identified a subset of pcBRA impacts that best matched the simulated MPS.  

The following objective function was used for minimization to account for the differences 

in peak MPS magnitude and spatial distribution simultaneously: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = |1 − 𝑘𝑘| + |1 − 𝑟𝑟| .   

A brute-force approach was used to identify 10 idealized impacts that produced the lowest 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 values. The resulting kinematic triplets formed a neighborhood of idealized impact within 

the pcBRA parametric space (Fig. 17a). As the second step, they were weight-averaged to 

approximate 𝜃𝜃 and 𝛼𝛼 based on their corresponding r values (Eqns. 2 and 3), as higher r values 

indicate closer similarity in MPS distribution. This led to 59.7% of the impacts remaining to continue 

with subsequent analysis (N=1900; Fig. 19).  

𝜃𝜃 = ∑ 𝜃𝜃𝑖𝑖×𝑟𝑟𝑖𝑖10
𝑖𝑖=1
∑ 𝑟𝑟𝑖𝑖10
𝑖𝑖=1

   

𝛼𝛼 = ∑ 𝛼𝛼𝑖𝑖×𝑟𝑟𝑖𝑖10
𝑖𝑖=1
∑ 𝑟𝑟𝑖𝑖10
𝑖𝑖=1

   

Using the obtained directionality from the weight-averaged 𝜃𝜃 and 𝛼𝛼, discrete 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝  values 

were grouped following the same range and step size (Table 1) and Interpolation was used to 
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obtained their corresponding elementwise MPS distributions.  Their elementwise MPS values 

were regressed against those from the arbitrary impact. The resulting k values were then obtained 

to fit a constrained third order polynomial function. Then, using the obtained polynomial relating 

the 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝  to the k value about the given rotational axis, (𝜃𝜃, 𝛼𝛼), the 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟

𝑝𝑝  resulting in a k of 1.0 was 

identified (Fig. 17b).  

 

Figure 18: (a) Illustration to identify nearest neighbors in the pcBRA parametric space for an 
arbitrary head impact based on brain strain. The rotational axis is weight averaged and then fixed to 

interpolate a number of brain strains for a range of 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝  values based on the pcBRA. Their 

corresponding k values as regressed against simulated elementwise MPS for a given impact are 
used to generate a constrained third order polynomial fitting (b). The effective 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟

𝑝𝑝  is finally 
determined by intersecting a horizontal line with k of 1.0. 

CNN model to derive effective impact kinematics directly 

The Head impact profiles and their identified effective kinematics were used to train a CNN 

model to automate the process. The same earlier CNN architecture was adopted, with input 

concatenated from both rotational velocity and acceleration profiles as a 2D image. This was 

found to improve accuracy in estimating elementwise MPS (Ghazi et al., 2020).  

The CNN architecture consists of 3 convolutional layers, with 64, 64, and 32 filters, each 

with sizes of 3 × 60, 1 × 3, 1 × 1, and stride sizes of 1 × 2, 1 × 2, 1 × 1, respectively (Fig. 18). 



 

98 

 

They are followed by a pooling layer of a size of 1 × 2 with a stride size of 1 × 2, a flattening layer 

(with a dropout rate of 0.2), and three fully connected layers with sizes of 200, 100, and 3 (the 

last of which corresponds to the number of values to predict in the effective kinematics triplets). 

The pooling layer and the first fully connected layer (of a size of 200) adopted a ReLU activation 

function, while all other layers used a linear activation function. A batch size of 16 was chosen 

with the number of epochs set to 500. An early stopping criterion was used to avoid overfitting. 

The CNN architecture was implemented using Keras library (Version 2.2.4) with Tensorflow 

(Version 1.11.0) backend.  

Figure 19: The CNN architecture used in this study, which shares the architecture with the one 
in aim 1 with the exception of the final layer.  

 We used the mean squared error as the loss function to train and predict the three effective 

𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝  values to preserve peak MPS along the three anatomical directions. However, both 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟

𝑝𝑝  and 

rotational axis (θ and α) were important to preserve elementwise MPS. Hence, we designed a 

composite loss function to penalize the magnitude error and angular error in a weighted manner:  

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑𝑑𝑑𝑑𝑑. =  1
𝑁𝑁
∑ �|𝑣⃗𝑣𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶|−  |𝑣⃗𝑣𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙|�

2) 𝑁𝑁
𝑖𝑖=1 +  𝛾𝛾 1

𝑁𝑁
∑ 𝑐𝑐𝑐𝑐𝑐𝑐−1(   𝑣𝑣�⃗ 𝑖𝑖

𝐶𝐶𝐶𝐶𝐶𝐶 ∙ 𝑣𝑣�⃗ 𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

| 𝑣𝑣�⃗ 𝑖𝑖
𝐶𝐶𝐶𝐶𝐶𝐶 | ×| 𝑣𝑣�⃗ 𝑖𝑖

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 |
)𝑁𝑁

𝑖𝑖=1 ,   
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where 𝑣⃗𝑣𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶 and 𝑣⃗𝑣𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 are the predicted and baseline rotational axis of the 𝑖𝑖th impact, respectively, 

𝑁𝑁 is the number of the training samples, and 𝛾𝛾 is a Lagrange multiplier (empirically chosen to be 

0.1) to balance the different scales of the two error terms (angular and 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝  error, Fig. 19). 

 

Figure 20: (a) shows the definition of angular and magnitude errors. Angular error is 
represented by 𝛽𝛽. 

Data Analysis: 

Effective peak kinematics to preserve peak MPS 

We compared the peak effective rotational velocity (𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟𝑥𝑥 , 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑦𝑦 , and 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟𝑧𝑧 ) magnitudes with 

their corresponding “nominal peaks” from the resultant profiles for impacts that were successfully 

identified with peak rotational velocity along the three anatomical axes to preserve peak MPS. 

We then evaluated the CNN performance using a 10-fold cross-validation. Here, we compared 

the predicted 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝  values against those inversely identified via the coefficient of determination (𝑅𝑅2) 

and root mean squared error (RMSE). Then, we converted the two sets of simplified kinematics 

converted into peak MPS via the pcBRA, and further evaluated the performance of the CNN in 

terms of the corresponding peak MPS.  
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Effective kinematic triplets to preserve elementwise MPS 

We identified the impacts that could be accurately represented with effective kinematic 

triplets (𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝 , 𝜃𝜃, 𝛼𝛼). For these impacts the k and r values of their elementwise MPS as compared 

to those from actual model simulation did not deviate from the value of 1.0 (when they were 

identical) by more than 0.1 (Ghazi et al., 2020). For these impacts, 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝  from the simplified impacts 

were compared with the corresponding nominal 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝  derived from the arbitrary resultant profiles.  

Further, we evaluated the performance of the CNN model via 10-fold cross-validation, 

where we compared each variable in the predicted triplets with the corresponding value reported 

from the inverse mapping. Additionally, In addition, we generated elementwise MPS based on the 

pcBRA using the triplets for further comparison in terms of k and r. Similarly, success criteria for 

the CNN prediction of elementwise MPS was when neither k not r deviated from the value of 1.0 

by more than 0.1. Success rate for the CNN model was finally reported. All data analyses were 

conducted using MATLAB (R2020b; MathWorks, Natick, MA). 

Results 

Effective peak rotational velocity magnitudes about the three anatomical axes 

Out of the 3069 impacts, 90.7% could be were successfully mapped to effective 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝  along 

all three anatomical axes. Other impacts resulted in one or more of the corresponding 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝  

exceeding the maximum extrapolation range and hence “failed”. For the remaining “successful” 

impacts the effective 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝  and 𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟

𝑝𝑝  were compared against their corresponding nominal peaks 

(Fig. 20). Because this dataset had augmented impacts focusing on between ~22–40 rad/s in 

terms of nominal peak velocity magnitude (Wu, Zhao, Ghazi, et al., 2019) a large portion of the 

data points clustered this data range. Although each pair corresponded to the same peak MPS, 
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the effective 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝  from the simplified head impacts had a relatively low correlation with the 

nominated counterparts along all anatomical directions (𝑅𝑅2 ranged 0.337 – 0.344).  

Generally, the effective 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝  along the x and y (i.e., coronal and sagittal head rotation, 

respectively) directions had a comparable trend with the nominal peaks (as their regression 

slopes were close to 1.0), yet, with a large deviation (RMSE = ~7–12 rad/s). However, their 

effective rotational acceleration peaks, 𝑎𝑎𝑟𝑟𝑟𝑟𝑡𝑡
𝑝𝑝 , were significantly higher than the nominal 

counterparts along the two directions (k=1.23 – 1.26; Fig. 21). However, for 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝  and 𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟

𝑝𝑝  along 

the z axis (axial rotation), the effective peaks were both lower than the nominal counterparts 

(k=0.6~0.8).  
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Figure 21: A scatterplot between the peak MPS and peak effective rotational velocity and the 
nominal counterparts are shown along X, Y, and Z ((a) thought (c)). Comparison between 
effective and nominal peak rotational velocity and acceleration along the x, y, and z axis 

(coronal, sagittal, and axial directions, respectively, as defined in Fig. 15) in ((d) through (f)) and 
((g) though (i)).  

An 𝑅𝑅2 of 0.954–0.955 with RMSE of ~1.2–1.9 rad/s was achieved using the CNN 

predictions of 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝  along all anatomical axes (Fig. 22 top). The MPS obtained by translating these 
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effective 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝  values using the pcBRA, they had an 𝑅𝑅2 of 0.955-0.960 with RMSE of 0.011-0.012 

(Fig. 21 bottom).  

 

Figure 22: (Left) shows the scatterplot of CNN prediction of effective peak rotational velocity 
magnitude against the label counterpart for all three axes. (Right) shows the scatterplot of CNN 

predictions translated to MPS compared against the ground-truth MPS.  

Effective kinematic triplets to preserve elementwise MPS 

The elementwise MPS of the impacts that successfully matched with idealized impact 

modes all had a k value of 1.0 relative to the pcBRA counterparts because of the way the effective 

𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝  values were determined. Their Pearson correlation coefficients, r, are reported as a histogram 

in Fig. 22a. The effective 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝  and their nominal counterparts for those “successfully matched” are 

also compared (Fig. 22b). Some representative cases are shown (Fig. 22c and d).  
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Figure 23: (a) Summary of element-wise Pearson correlation coefficient (r) with the most similar 
idealized impact in the pcBRA database when the linear regression slope (k) was forced to be 1.0 by 

adjusting the effective 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝  (those with r>0.9 were considered “successfully matched”). (b) a 

comparison of effective 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝  and the nominal counterparts for the successfully matched impacts; 

(c) and (d) illustration of example cases showing their actual and idealized impact profiles, 
together with the corresponding elementwise MPS.  

 

The angular differences between predicted and baseline rotational axes as well as the 

errors in 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝  values were used to evaluate the estimation performance of the CNN (Fig. 23a and 

b) based on the N=1900 impacts successfully idealized. A success rate of 73.5% was obtained 

from the elementwise MPS based on the CNN estimated kinematic triplets compared against the 
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baseline responses in terms of k and r (Fig. 23c). All evaluations were based on a 10-fold cross-

validation.   

 

Figure 24: The histograms of error in terms of “angular” and “Vrot percentage magnitude” errors 
respectively using a 10-fold cross validation. The relative error in (a) is the percentage of the 
absolute magnitude error. The unsuccessful impacts are shown in red. For clarity, data points 

outside the shown range on the subfigure on the left were shown on the border.  

Discussion  

In the TBI biomechanics field, impact kinematics such as peak rotational acceleration and 

velocity are used ubiquitously. This can be partially explained by their physical interpretations, 

which allow them to be easily accessible to the general public. However, there is often a 

discordance between the peak kinematic values and injury-causing brain strains due to their 

complex relationship resulting from the nonlinear and viscoelastic properties of the brain 

parenchyma and its complicated anatomical geometry. In this aim, we develop the concept of 

“effective impact kinematics” which translates a real-world, complex, time-varying head rotational 

kinematic profile into an idealized impact characterized by the peak rotational velocity and the 

associated rotational axis, with a fixed time span. This aim is supporting the development of 

direction-specific peak rotational velocity for predicting brain strain (Bian and Mao, 2020). It also 

establishes a common ground using an earlier study by using a pre-computed brain response 
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atlas (pcBRA) (Zhao, Kuo, et al., 2017a) with idealized head impact modes to facilitate real-world 

impact simplification.  

The concept of our work is similar to conventional injury metrics that map the complicated 

head impact kinematic profiles into a common scalar reference for comparison. Yet the innovation 

of our approach lies within using effective kinematics which may have two notable advantages. 

First, it retains the physical meaning of the peak rotational velocity, which may help promote this 

method in the general public. Second, it maps a potentially complicated head impact into an 

idealized but actual impact allowing for preservation of brain strain distribution, which is infeasible 

with conventional injury metrics. The time-consuming impact simulation is avoided in this 

methodology by developing and training a deep learning convolutional neural network (CNN) to 

automate the process to identify the effective kinematics for strain preservation, which mitigates 

the alternative of using model-simulated brain strains. 

Nonetheless, compared to most other injury metrics which are explicit and typically rely 

on a mathematical formula to derive the injury metric value, this process is implicit hence the 

burden of fitting a mathematical model is not on the shoulder of the users. 

Effective peak rotational velocity magnitude to preserve peak MPS 

Three effective 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝  values were obtained along the three anatomical axes when matching 

peak MPS. The process of matching the MPS is the practical standard for current kinematics-

based injury metrics. For these values, a relatively low correlation coefficient and a large scatter 

was observed along with a statistical correlation with the nominal counterparts (Fig. 20). This is 

reaffirmed by other reports of relatively low correlation between peak MPS and nominal peak 

velocity (Lee F. Gabler, Crandall and Panzer, 2018; Bian and Mao, 2020). The CNN was able so 

successfully predict the effective 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝  values directly. It consistently achieved an R2 of 0.955–
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0.960 in terms of both 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝  and peak MPS (with RMSE of 0.011–0.012; Fig. 20) based on a 10-

fold cross-validation. These results were comparable to the use of CNN to predict peak MPS 

directly (R2 of 0.966 with RMSE of 0.013; (Wu, Zhao, Ghazi, et al., 2019)) and another best-

performing kinematics-based injury metric (~0.96 for DAMAGE; (Lee F. Gabler, Crandall and 

Panzer, 2018)). However, this method outperforms other empirical injury metrics (e.g., R2 of 

0.638, 0.326, 0.602, 0.853 for HIP, PRHIC, RIC, and BrIC, respectively, based on real-world 

impacts (Lee F. Gabler, Crandall and Panzer, 2018)). We observed a variation in the effective 

𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝  values for the same impact across the anatomical axes, with the lowest value occurring about 

the z-axis or axial rotation (Fig. 16). This finding was consistent with the “critical maximum angular 

velocity” values developed for BrIC (E. G. G. Takhounts et al., 2013) using the SIMom head injury 

model (Takhounts et al., 2008), where the critical value (corresponding to a 50% risk of 

Abbreviated Injury Scale (AIS) 4+ injury) in the axial direction was ~30–50% lower than in the 

other two directions. Hence head rotation about the axial direction would be more vulnerable to 

induce higher peak MPS than rotation about the coronal or sagittal axes given that the effective 

𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝  value is the same (Bian and Mao, 2020).  

Effective peak rotational velocity magnitude to preserve elementwise MPS 

Perhaps most importantly, this aim allows for real-world impact simplification into an actual 

idealized impact characterized by triplets consisting of the effective 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝  and the associated 

rotational axis (azimuth and elevation angles, 𝜃𝜃 and 𝛼𝛼, respectively). Simplifying an impact in this 

fashion enables preserving elementwise MPS relative to a common reference, which is not 

feasible with other scalar injury metrics. The earlier effective 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝  aimed at preserving peak MPS 

can be considered as a degenerated case when the head rotational axis is aligned with one of 

the anatomical directions.  
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As a result of the limited sampling of the pcBRA (the idealized head impacts only consider 

head rotational acceleration but not deceleration (Ji and Zhao, 2015; Zhao, Kuo, et al., 2017a)), 

only ~60% of the impacts were successfully matched with an idealized impact from the pcBRA.  

In reality, head deceleration always occurs in impact events, the alternative of which is not 

physically feasible. The rationale behind adopting acceleration-only head rotation with the pcBRA 

was because, historically, head impact kinematics were often characterized by linear and 

rotational or angular acceleration (Rowson et al., 2009; Camarillo et al., 2013). Some recorded 

impact profiles also focused on peak acceleration and may not capture the complete deceleration 

phase (Liu et al., 2020). Yet, if deceleration is introduced to an impact with an identical peak 

rotational velocity generated from acceleration, the resulting strain magnitude would increase 

(Zhao, Kuo, et al., 2017a) (or CSDM value as found for the GHBMC model (Bian and Mao, 2020)).  

A straightforward way to overcome this limitation is using half-sine biphasic rotational 

velocity profiles as adopted previously (Zhao, Kuo, et al., 2017a; Lee F. Gabler, Crandall and 

Panzer, 2018) by including an additional deceleration phase into the idealized head rotational 

modes. This strategy was previously proven to be effective – for impacts failed to match with the 

monophasic impacts, their match significantly improved when using the biphasic idealized 

impacts (Zhao, Kuo, et al., 2017a). To mitigate the time required for the simulation of biphasic 

rotational profiles, the latest CNN-based model (Ghazi et al., 2020) can be conveniently and 

efficiently used to estimate the MPS distribution without the time-consuming direct simulation. 

This is illustrated in Fig. 24.  

A real-world impact, on the other hand, could include vastly more features. These features 

include constant change in impact rotational axis, complex acceleration and deceleration profiles, 

velocity reversals, and some “impacts” are also a combination of two or more impacts. Each of 

these features introduces additional complexity to the cumulative strain pattern, which explains 
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why the pcBRA could only simplify 60% of the impacts. Further, these features could introduce 

questions over the importance of strain rate as well, which are beyond the scope of this study, 

but worth investigating in the future.  

Figure 25: An example of a biphasic impact in pcBRA format. The CNN from aim 1 is fully 
capable of predicting the strain distribution for this impact.  

~75% of the impacts that were predicted by the CNN were successful after being 

translated into elementwise MPS. Compared to estimating the strain directly (aim 1; success rate 

of 92–97% was achieved (Ghazi et al., 2020)), the achieved performance was considerably lower. 

Which, was the result of at least two factors.  

First, the smaller size of impact database was notably compared to the earlier aim (~1.9 

k vs. 5.6 k). Second, the element-wise MPS obtained from the pcBRA was sensitive to the angular 

error in the rotational axis. To verify this, we introduced random angular perturbations to the 

rotational axis for N=100 impacts in the pcBRA. Then the obtained elementwise MPS responses 
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were compared to the baseline counterparts. The r value was rapidly reduced when the angular 

perturbation exceeded 10 degrees compared to the baseline (e.g., r degraded to a value of 

95.23±0.0266 when perturbed by 10 deg, or 0.8422±0.0668 by 20 deg). Furthermore, the rate of 

failure rapidly increases after the 10 degree error mark, with all cases failing with an error of more 

than 30 degrees, in Fig. 24. This error could be minimized by increasing the data size to increase 

the accuracy of the CNN in terms of angular error.  

Idealized head impact mode 

In essence, the goal of kinematics-based injury metrics is to transform head impact profiles 

into a common, numerical reference for comparison of impact severity. The comparison would 

then have the ability to infer the relative impact severity in terms of brain strain when using impact-

induced brain strain as the benchmark to evaluate their performances. The technique proposed 

in this aim is an extension of the earlier efforts by establishing the concept of “idealized head 

impact mode”. This results in a simplification that can provide an intuitive comparison based on 

impact severity as well as directionality. One major advantage of this method is to include 

directionality which is not achievable in conventional injury metrics. 

 

Limitations  

The limitations of this study are largely due to the limited modality of the pcBRA (as it has 

one acceleration phase with no deceleration). This results in a limited number of impacts which 

can be simplified using this impact library. This can be easily addressed by appropriately 

expanding the atlas. Further, another limitation was the dependence of the effective impact 

kinematics from this study on the given head injury model used to assess brain strain. This results 

in inherent limitations of the given head injury model transferring to the findings from this aim. 
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Despite these limitations, a new avenue to simplify head impacts into idealized but actual “impact 

modes” is proposed in this aim, which is an improvement over the conventional single scalar 

values. This method could facilitate a more intuitive and meaningful impact comparison in the 

future. 
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Chapter 6: Aim 3: Football helmet comparison based on 

strain-based and kinematics-based metrics 

Introduction 

Sports and recreation related mild traumatic brain injury (mTBI), or concussion, is one of 

the major health concerns in the world United States (CDC, 2015). To minimize the risk of 

concussion, participants wear helmets in some sports and recreations, including American 

football (Rowson and Duma, 2011), ice-hockey (Allison et al., 2014; Rowson, Rowson and Duma, 

2015), bicycle (Cripton et al., 2014; Bland et al., 2020; Fahlstedt et al., 2021), motorcycles 

(McIntosh and Lai, 2013), or snow sport (DiGiacomo, Tsai and Bottlang, 2021). The National 

Operating Committee on Standards for Athletic Equipment (NOCSAE) (National Operating 

Committee on Standards for Athletic Equipment, 2012), the Consumer Product Safety 

Commission (CPSC) in the US (CPSC, 1998), and the European safety standards (European 

Committee for Standardization, 1997) provide a set of test standards to rate helmet performance 

in terms of peak linear acceleration when striking a helmet on a rigid surface. These standards 

were developed to minimize the most acutely severe head trauma resulting from high linear 

accelerations (Levy et al., 2004), and helmets have proven to be highly effective in reducing 

severe head injury and TBI (e.g., by 60% and 53%, respectively, for bicycle helmets (Høye, 

2018)).  

For instance, the initial standards by the NOCSAE, developed in the 1970s, were focused 

on regulating the amount of linear head acceleration exposure, which can result in severe TBI 

(e.g. catastrophic events such as skull fracture). These standards were based on drop tests, 

which are consistent of predominantly linear motion (Hodgson VR, 1974). However, with the 

growing concern about concussion and the associated long-term neurological consequences, 
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NOCSAE recently adopted a modified version of their methodology to limit both head linear and 

angular acceleration by adding standardized pendulum tests (National Operating Committee on 

Standards for Athletic Equipment, 2019). This is due to the fact that linear acceleration induces 

little strain in the brain (King et al., 2003; Meaney, Morrison and Bass, 2014) due to the near 

incompressibility property of the brain (Ji, Zhao, et al., 2014; Bian and Mao, 2020). As a result, 

helmet designs are also shifting towards reducing peak rotational kinematics (Bottlang et al., 

2020; DiGiacomo, Tsai and Bottlang, 2021).  

Despite this improvement, however, the NOCSAE standard is still a binary requirement, 

which does not provide the means to compare helmets that do satisfy the standard. Consequently, 

there is need for a meaningful way to quantitatively compare the helmets’ injury mitigation 

capabilities of the available helmets that satisfy NOCSAE standard.  

To quantify the overall helmet safety performance in mitigating the risk of concussion, a 

rating system called the Summation of Tests for the Analysis of Risk (STAR) was developed to 

condense helmet performance from a range of tests into a single value (Rowson and Duma, 

2011). Initially, a helmet was subjected to a NOCSAE-style drop tests at representative locations 

from representative drop heights. The resulting peak accelerations were used to calculate the 

probability of injury based on real-world concussion rates. A composite injury risk was then 

obtained by a weighted summation of impact condition-specific injury risks according to the 

corresponding relative impact exposures. However, the STAR evaluation system has similarly 

evolved to combine linear acceleration with rotational acceleration (Rowson, Rowson and Duma, 

2015) or, more recently, rotational velocity (Bland et al., 2020), following pendulum impacts to 

formulate the injury risk function, following the recent updated NOCSAE standards. This effort 

was further extended by developing sport-specific variants to account for the difference in head 
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impact location and location-specific exposure (e.g., hockey (Rowson, Rowson and Duma, 2015) 

and bicycle (Bland et al., 2020) helmets).  

Nevertheless, the STAR evaluation system relies on peak accelerations to assess the 

risk of injury; thus, it suffers from the general limitations with kinematics-based injury metrics. 

Although extensively used, kinematics-based injury metrics such as peak accelerations lack 

specificity in estimating concussion risk (Broglio et al., 2010; Guskiewicz and Mihalik, 2011; 

Beckwith et al., 2013). They are particularly prone to generating a large number of false 

positives (Mihalik et al., 2017). In contrast, brain strains estimated from a validated head injury 

model is generally believed to be a more realistic measure of injury risk. The metrics based on 

FE models have proven to outperform the kinematic metrics (Zhao, Kuo, et al., 2017b). More 

precisely, as a result of down sampling the impact profile to the peak rotational and linear 

accelerations, the injury risk function loses the directionality of the impact which has a significant 

effect on the resultant brain strains resulting from the impact. Further, this down sampling 

neglects the important effects of the impact profile shape variation (Zhao and Ji, 2017). In 

addition, the STAR risk function is based on rotational and linear acceleration, however is it 

known that brain strain is primarily caused by impact rotation (King et al., 2003) and is mostly 

correlated peak rotational velocity (Kleiven, 2006). This suggests that there is a need for a 

deeper understanding on the tissue level to accurately quantify the effectiveness of sports 

helmets. 

Consequently, there has been a shift of efforts to rate helmet performance using a head 

injury model in recent years. For instance, Clark et al. sought to highlight the discrepancies of 

peak MPS of the whole brain obtained from head models and the kinematics metrics to 

compare the performance of three ice hockey goaltender helmets (Clark et al., 2018). Further, 

as even “validated” head models produce significantly different intracranial responses even 
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under identical impact conditions (Ji, Ghadyani, et al., 2014), a study by Fahlstedt et al. used 

eight major head injury models to compare the performance ranking of 17 bicycle helmets 

(Fahlstedt et al., 2021) using peak MPS and cumulative strain damage measure (CSDM) 

(Takhounts et al., 2008). These studies provide some context for the need to develop a strain 

based helmet performance comparison system.  

To this end, Finite Element (FE) head models provide detailed insight into brain tissue 

mechanical response. Studies have shown that tissue response-based injury metrics outperform 

those based on kinematics (Chiara Giordano, 2014; Hernandez et al., 2015). As a result, 

numerous head injury models have been developed and validated over the years (Giudice et al., 

2019). Essentially an FE model is a non-linear function translating the impact kinematics to the 

brain mechanical responses. Perhaps as a result of this non-linearity, kinematic metrics 

underperform compared to FE based metrics in injury prediction. To infer the injury risk of a 

given impact based on FE models, injury metrics are driven from the FE simulation. The most 

predominantly used FE based injury metrics to translate an FE simulation into injury risk include 

the peak maximum principal strain (MPS) of the entire brain, and the cumulative strain damage 

measure (CSDM) (Zhao, Kuo, et al., 2017b).  

Yet, despite their appeal for providing detailed mechanical responses, FE models are 

complex mathematical models that have a substantial computational cost. Consequently, a 

number of studies have been dedicated to alleviating the long duration and the computational 

resources required to complete even a single simulation. One proposed method used to this 

end was the concept of pre-computation proposed by (Ji and Zhao, 2015; Zhao, Kuo, et al., 

2017b). In a previous study, we developed a method to leverage the efficiency of Convolutional 

Neural Networks (CNN) to directly obtain the whole brain peak MPS from the impact profile 
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(Wu, Zhao, Ghazi, et al., 2019). In aim 1, we expanded this method to predict the whole brain 

strain pattern instantly based on real-world data efficiently (Ghazi et al., 2020b).  

The transition from kinematics-based approximation to strain-based design and injury 

risk analysis may be a potential outcome of the CNN technique. Nevertheless, in the context of 

helmet testing, this method has not been verified. Therefore, this aim has two objectives. First, 

to investigate the reliability of the CNN-based model for the assessment of helmet safety 

ranking within the STAR evaluation system. We conduct this by comparing the CNN-estimated 

brain strain measures (peak MPS and CSDM) against the direct simulation counterparts using a 

subset of helmet testing data. Second, using the trained CNN, the corresponding MPS 

distribution of 23 commercially available football helmet tests are obtained. These MPS 

distributions are used to compare the helmets in terms of injury risk mitigation capabilities using 

either peak MPS or CSDM. This study may provide important initial insights into the feasibility of 

using a brain strain-based helmet safety performance ranking system in the future. 

Methodology 

Roadmap 

 

Figure 26: A flowchart of the current study. Firstly we obtain the brain strain patterns from the 
CNN in aim 1 (Ghazi et al., 2020). Based on the strain pattern, we calculate the injury metrics 
(peak MPS and CSDM). Using the collected injury metrics we run two experiments to answer 

the questions of this study.  
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In this study we aim to examine the performance of helmets based on strains obtained 

from FE simulations. To achieve this goal, first revalidate our CNN from aim 1 with this database 

to ensure it can be used to obtain brain strains reliably. Then, we dive deep into the impact test 

database used for helmet performance analysis in the STAR method and compare the helmets 

based on the generated strains. The details of the helmets are given in table 8.  

Table 8: The helmets used for this aim. The starred (*) helmets were randomly selected for 
direct simulations. 

ID Helmet Model Score Weight (lbs) Cost ($) 
A Schutt_F7_LTD 0.75 5.1 975 
B Xenith_Shadow_XR 1.91 4.7 679 
C VICIS_Zero1 1.92 4.4 950 
D Schutt_F7_VTD 2.54 4.1 975 
E Xenith_X2E 2.92 4.1 289 
F Riddell_Precision_FIT 3.23 4.8 1700 
G Xenith_Shadow 3.35 4.3 479 
H Xenith_EPIC 3.79 4.2 349 
I* Riddell_SpeedFlex 4.49 4.4 410 
J LIGHT_LS1_CV 4.76 3.2 550 
K Schutt_Vengeance_Z10_LTD 4.97 3.4 499 
L* Schutt_Vengeance_Pro_LTD 5.24 3.8 299 
M* SG_DBS001 5.39 2.9 329 
N Schutt_Vengeance_Z10 6.28 3.7 210 
O Schutt_Vengeance_Pro 6.44 3.3 225 
P Schutt_F7 6.5 4.1 649 
Q Riddell_Speed 6.67 3.7 280 
R Schutt_Air_XP_Pro_VTD_II 6.98 4.5 220 
S Schutt_Vengeance_VTD_II 7.35 4.2 250 
T Schutt_Air_XP_Pro_Q10_VTD 8.42 4.1 336 
U Riddell_Speed_Icon 9.95 3.8 280 
V Schutt_Air_XP_Pro 18.22 3.7 200 
W Schutt_Air_XP_Pro_Q10 25.77 4 210 
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To assess the helmet performance based on the brain strains, FE models are used. 

However, one major drawback to FE modeling is the substantial computational cost and time 

consumption of simulations. For context, each impact in this study requires close to 30 minutes 

on a high-end computer cluster to simulate and an additional 30 minutes to extract brain strain 

patterns. This means to simulate the entire dataset in this study (N = 23 × 48 = 1104) we 

needed 46 days of constant simulation time. To mitigate that, we opted to use our previously 

established CNN (Ghazi et al., 2020), which is capable of generating the whole brain strain 

pattern given the impact profile (aim 1). This CNN was validated against FE simulations from 

the Worcester Head Injury Model (WHIM) simulation results of a large database (N = 5661) of 

real-world impacts using 10-fold cross validation. Hence, in this phase of the study we first we 

further validate our CNN from aim 1 to ensure it is sufficiently accurate with the impact data 

used in this aim. To do that we compare the CNN predictions to the direct simulation of all 

impacts corresponding to three randomly selected helmets. Once we ensure that our CNN 

performs sufficiently accurately, we generate the strain data for the entire helmet dataset. 

Finally, use the strain results to provide strain-based medical context for the difference in the 

performance of helmets.  

STAR Methodology and Helmet Impact Database 

For the 12 standardized test conditions to obtain STAR values (3 pendulum angles: 40, 

65, and 90 degrees, and 4 impact locations: Back, Front Boss, Front, Side), each experiment 

was repeated 4 times (2 trials × 2 specimens, and 48 total conditions). For this study, we 

averaged the resultant strains from the simulations for each scenario for each brain element 

(resulting in 12 mean MPS values, one for each scenario; Fig. 25) (Rowson, Rowson and 

Duma, 2015). The STAR risk assessment metric is based on the peak resultant rotational and 



 

119 

 

linear acceleration of impacts (Fig. 25). For the remainder of this study, the 4 trials for each of 

the 12 impact conditions were averaged to minimize the effects of testing variations.  

 

Figure 27: The distribution of the peak linear (first row) and rotational (second row) 
accelerations as well as the peak rotational velocity (third row) of the STAR test dataset used in 

this study. The dashed lines show the data range that the CNN in aim 1 was trained on (an 
acceleration range of 793 to 6313 rad/s2 and a velocity range of 2 to 40 rad/s).  

More precisely, the STAR score is defined as follows based on the impact kinematics: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  ��𝐸𝐸(𝐿𝐿,𝑉𝑉)
3

𝑉𝑉=1

4

𝐿𝐿=1

× 𝑅𝑅(𝑎𝑎,𝛼𝛼) 

Here, the terms 𝐿𝐿 and 𝑉𝑉 represent the impact location and velocity of each impact 

scenario respectively (𝑉𝑉 value of 1 through 3 corresponds to a pendulum angle of 𝜃𝜃 = 40, 65, 
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and 90). 𝐸𝐸 is a statistically driven coefficient demonstrating the likelihood of each impact 

scenario (table 9). 𝑅𝑅 is the concussion risk function, which is a function of linear acceleration 

(𝑎𝑎) and rotational acceleration (𝛼𝛼). The risk function itself is a statistically driven property, which 

is defined as:  

𝑅𝑅(𝑎𝑎,𝛼𝛼) =  
1

1 + 𝑒𝑒−(−10.2+0.0433∗𝑎𝑎+0.000873∗𝛼𝛼−0.000000920∗𝑎𝑎𝑎𝑎) . 

Aside from the STAR values reported in table 8, we used an unweighted sum of the risk 

function as an additional injury metric in the next sections to facilitate better comparison. 

Table 9: The exposures corresponding to each impact location and pendulum angle (𝜃𝜃) 
corresponding to the comparative likelihood of a representative impact being sustained (Virginia 

Tech Helmet Lab, 2020).  

Location 𝜽𝜽 = 𝟒𝟒𝟒𝟒 𝜽𝜽 = 𝟔𝟔𝟔𝟔 𝜽𝜽 = 𝟗𝟗𝟗𝟗 

Back 42.3 9.2 2.0 

Front 183.7 39.8 8.9 

Front Boss 67.1 14.6 3.2 

Side 39.0 8.5 1.9 

 

For this study, we used an additional unweighted risk function, constituted from the 

unweighted summation of the risk functions in all 12 impact conditions to investigate the effects 

of the exposure factor.  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆∗ =  ��𝑅𝑅(𝑎𝑎,𝛼𝛼)
3

𝑉𝑉=1

4

𝐿𝐿=1
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Instantaneous brain strain estimation using a CNN-based brain injury model 

We use our previously developed CNN (Ghazi et al., 2020) to predict the entire brain 

strain patterns to each impact in the database. To reaffirm the compatibility of the trained 

network with the experimental data, we randomly selected 3 helmets and simulated all the 48 

corresponding experiments. Then we compared the CNN estimated brain strain patterns to the 

direct simulations via an element-wise regression model. Once we confirm that the brain strain 

distribution generated by the CNN are sufficiently accurate (Pearson correlation coefficient (r) > 

0.9 and 0.9 < linear regression slope (k) < 1.1), we use the CNN to estimate the brain strain 

pattern for the remainder of the data. 

In addition, we compared the peak MPS and CSDM obtained from the CNN and the 

directly simulated counterparts to further reaffirm the accuracy of the CNN. The CSDM measure 

is the percentage of the brain volume that experiences MPS above a certain threshold (Takhounts 

et al., 2008). In this study a strain threshold for CSDM was empirically chosen to be 0.15. We 

calculated the peak MPS values at the 95th percentile level for consistency. However, other 

percentile values (90th, 95th, or 100th) have also been used (Fahlstedt et al., 2021). CSDM and 

peak MPS are global level strain-based metrics that are often used as the baseline for assessing 

the quality of kinematics-based injury metrics (Lee F. Gabler, Crandall and Panzer, 2018; Bian 

and Mao, 2020). The comparison of these two metrics was carried out based on coefficient of 

determination (𝑅𝑅2) and root mean squared error (RMSE). If the comparison suggested sufficient 

accuracy in each scenario, the CNN-based model would then be applied to the rest of helmet 

impacts for strain estimation. 

Range of helmet injury mitigation capabilities using brain strain 

The CNN MPS distribution estimation can allow for region-wise brain strains to assess the 

risk of injury, which can improve the injury assessment (Wu et al., 2020). However, the global 
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scalar strain measures (e.g. CSDM and peak MPS) remain the most predominantly metrics today 

(Lee F. Gabler, Crandall and Panzer, 2018; Bian and Mao, 2020; Fahlstedt et al., 2021). A logistic 

regression is usually used to derive an injury threshold value based on a real-world injury labeled 

database. An injury probability can be produced using this method for use for an arbitrary head 

impact according to the corresponding brain strain. Yet, an injury threshold based on strain is yet 

to be developed since a large on-field impact dataset and actual concussion cases is currently 

not available. A widely used reconstructed National Football League (NFL) dataset (Sanchez et 

al., 2018) has been used for this application (Viano et al., 2005; Kleiven, 2007; Anderson et al., 

2020; Wu et al., 2020). Nevertheless, the reconstructed impacts substantially oversamples 

concussive impacts relative to non-injury cases (20 concussions vs. 33 non-injuries) and hence 

the resulting injury threshold is not applicable to real-world on-field impacts (Pellman et al., 2003; 

Kleiven, 2007).  

Therefore, here we utilized a range of sweeping injury thresholds over the entire range of 

peak MPS and CSDM, respectively, to characterize the helmet injury mitigation capabilities. 

Thereby an impact was said to be concussive if the corresponding peak MPS or CSDM exceeded 

the threshold value. To minimize the effects of the step-size, it was set at 0.1% of the 

corresponding value range. As the injury metrics were averaged across the two helmet test 

samples and the two impacts for each impact condition (location and pendulum height; N=12), 

the maximum number of likely concussions was 12 (which occurred when the injury threshold 

was at the lower end of the range). The minimum number of concussions was 0, which occurred 

when the threshold was set to the higher end of the range.  

A range of strain-based concussion mitigation capabilities would be produced by the 

binarized numbers of possible concussions among the helmets at each injury threshold, which 

would provide insight into the uncertainty of concussion mitigation capabilities for helmets.  
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Statistical Analysis 

All head impacts from the randomly selected impacts were simulated using the 

anisotropic WHIM V1.0, which took ∼30 min for one impact of ∼100 ms duration (double 

precision with 15 central processing units [CPUs] and graphics processing unit [GPU] 

acceleration; Intel Xeon E5-2698 with 256 GB memory, and 4 NVidia Tesla K80 GPUs with 12 

GB memory). Another 30 min was necessary to extract peak MPS distribution across the impact 

duration. In total, this study required ∼46 days of nonstop computations to generate the data, 

which was mitigated by Using the trained CNN from the first aim. The CNN estimation took 

∼1 sec to predict the complete strain distribution of the brain for the entire data set on an 

NVIDIA Titan X Pascal GPU with 12 GB memory. The similar instant results were obtainable 

using a low-end laptop. 

The Peak MPS was obtained using the 95th percentile of the voxel-wise (voxel size = 

5mm) brain strain for each impact. The CSDM threshold in this study is 0.15 (commonly referred 

to as CSDM15), which was obtained by the number of voxels that exceeded the 0.15 cumulative 

strain threshold by the number of the entire voxels. Finally, the consistency in helmet 

performance ranking was compared by using either the STAR values or strain-based metrics 

among helmets, either aggregated from all impact conditions with exposure-based weighting, or 

under each impact condition separately. 

All data analyses were conducted using MATLAB (R2019b; MathWorks, Natick, MA). 

Student's t tests were used to compare the injury prediction performances. Statistical 

significance was reached when the p value was <0.05. 
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Results 

CNN Performance in Brain Strain Generation  

The CNN was capable of accurately estimating the entire brain strain for almost all the 

impacts. The success rate for these impacts was 98.6%, which is consistent with the findings in 

the first aim. This was while the “unsuccessful” cases also fall within a reasonable estimation 

range (Fig. 28).  

 

 

 Figure 28: An illustration of the voxel-wise comparison between the strain distribution obtained 
from FE simulations and the CNN estimations. (a) illustrates the performance in terms of k and r 
between the CNN estimation and corresponding simulations. (b) and (c) illustrate two example 

cases of the CNN predictions.  

Comparison between CNN and simulation in injury metrics 

Translating the generated strains from both the simulations and the CNN predictions 

revealed a high correlation between the two for both injury metrics (Figure). Hence, the CNN 

proved capable of injury metric estimation for the rest of the impacts. 

 



 

125 

 

 

Figure 29: A scatter plot of the peak MPS (left) and CSDM (right) between each simulations 
and the corresponding CNN prediction.  

Strain-based uncertainty in helmet concussion mitigation capability  

We observed a statistically significant difference between the concussion mitigation 

ability of the best and the worst helmets across all thresholds. This observation holds true for 

both peak MPS and CSDM comparison (p < 0.05). The best helmet was on average able to 

mitigate 22.7% and 28.3% of the concussions across the threshold spectrum based on peak 

MPS and CSDM respectively (Fig. 29). For the peak MPS threshold of 0.3, the helmet ranked 

as the “worst” by the STAR function had no binarized concussion, while helmet “M” had 4. 
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Figure 30: (a) shows the number of concussions between the best and the worst helmet based 
on each threshold value and regardless of helmet. The shaded area between the two curves 

shows the difference between the best and the worst helmet given each threshold. (b) Illustrates 
the same properties for CSDM. In both figures, the red and blue line illustrate the helmets 

ranked the poorest among all helmets. The dashed line in both sub-figures represents the injury 
mitigation difference between the best and the worst helmet in each threshold value. 

 

Investigation of Significance of Impact Directionality in Helmet Injury Mitigation 

Performance using an Impact location-based comparison 

A close look at the distribution of the injury metrics (both peak MPS and CSDM) reveals 

a large difference between impact conditions (Fig. 30). In other words, comparative 

performance of the helmets differ significantly (p<0.05) in different impact conditions. This is 

consistent regardless of injury metric (CSDM or peak MPS).  
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Figure 31: Box plot of the peak MPS (top) and CSDM (bottom) across helmets in each 
scenario.Helmets V and W (shown in green and yellow respectively) had the lowest STAR score 

yet performed average in terms of strain metrics. Helmet M (shown in red) generated large 
strains in the front boss direction, but perform close to the average in other directions.  𝜏𝜏 

denotes the kendall's tau value between the ranking in each scenario and the STAR ranking of 
the helmets.  
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Discussion 

Kinematic metrics are currently the most predominant method used in helmet safety 

performance rating and ranked. Recently, to mitigate the risk of concussion, helmet design criteria 

have shifted towards limiting head rotational motion in terms of peak rotational acceleration or 

velocity during helmet impact. This is a consequence of the mounting evidence that head rotation 

is the primary contributor to brain strain thought responsible for concussion. However, brain 

strains and peak rotational kinematics do not typically correlate well (Lee F. Gabler, Crandall and 

Panzer, 2018; Bian and Mao, 2020). Therefore, there is a potential that brain strain may potentially 

replace peak kinematics to improve the effectiveness of helmet safety performance evaluation, if 

it can be directly and efficiently obtained with sufficient accuracy.  

In this study, we proved the capability of the developed CNN in the first aim is capable of 

instantly producing sufficiently accurate elementwise MPS of the entire brain. a success rate of 

98.6% was achieved, based on 144 impact simulations from three randomly chosen helmets. Yet, 

the elementwise linear slope and the Pearson correlation coefficient only marginally deviated from 

the “success threshold” for the two “failed” cases (k no less than 0.8; Fig. 27 a). Further, the two 

“failed” cases poses some unique features in the corresponding head rotational velocity profile 

where the impact profiles go through a steep velocity increase, followed by a much less steep 

velocity climb before reaching to the peak. In other words, the peak velocity comes to a “flat” peak 

(as opposed to a sharp peak; Fig. 27 b) which can reduce the accuracy of the CNN.  

The high accuracy was maintained when deriving the peak MPS and CSDM from the CNN 

elementwise estimation (R2 of 0.977 and 0.980, with RMSE of 0.015 and 0.029 respectively). This 

is similar to the performance of the CNN-based approach used to predict the peak MPS directly 

based on the impact profile (Wu, Zhao, Ghazi, et al., 2019), and another state-of-the-art “best-
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performing” kinematics-based injury metric, such as DAMGE (Lee F. Gabler, Crandall and 

Panzer, 2018).  

The high estimation accuracy was not surprising, given that head rotational kinematic 

profiles in helmet testing were notably simpler than those directly measured on the field. Hence, 

they did not have impact “features” that are new to the trained CNN, which resulted in the good 

performance. Additionally, these impacts are well within the range, for which the CNN was trained 

and have a near zero initial velocity, which further contribute to the accurate MPS estimations. 

Collectively, these results suggest the feasibility of applying the CNN-based brain injury 

model for routine use in helmet testing. In fact, in simpler impact settings such as those in the 

laboratory testing conditions, the CNN performs very reliably.  

Disparities between strain-based helmet safety performances  

Firstly, substantial disparities were observed in helmet safety performance using strain-

based measures. These disparities are particularly pronounced in different impact locations, even 

for the same helmet. For instance, the helmet “M” (SG DBS001) produced substantially higher 

strain values than all other helmets in the front boss direction and hence performed poorly based 

on our two strain metrics. This is due to the fact that as a result of the helmet design, it translates 

the impacts in the Front Boss direction into a large axial component, which is known to produce 

more strains in the brain compared to the sagittal and coronal counterparts (E. G. G. Takhounts 

et al., 2013; Bian and Mao, 2020). This makes this helmet perform the “worst” in terms of strain 

driven metric ranking.  

Second, even within each impact condition, a close peak MPS does not necessarily 

translate into the same injury risk. The reason is that the peak MPS samples the 95th percentile 

of strain in the entire brain regardless of the location, in which the high strain occurs. Hence the 
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strain could occur in a different area of the brain while maintaining the peak MPS value. Fig. 33 

illustrates an example of two helmets in the same impact condition that produce different strain 

distributions.  

 

Figure 32: An illustration of the strain pattern difference between two impacts that have a low 
correlation. These two cases belong to the impact condition with 𝜃𝜃 = 90° and the Front Boss 
impact location, and the helmets O and P (“Schutt F7 LTD” and “Schutt F7” corresponding to 

the left and right figure respectively). 

Potential of CNN to facilitate helmet testing and iterative design  

It is conceivable that the instantaneous CNN-based brain injury model could be adopted 

more widely in helmet testing and design, given the high accuracy in strain estimation (Fig. 27). 

This provides further evidence that this method would avoid inherent limitations with kinematics-

based counterparts by providing a strain-based injury risk function reliably, which could improve 

the effectiveness in helmet performance evaluation. However, a complete six-degree-of-freedom 

(6-DOF) impact acceleration impact profile is required in this method to enable model simulation. 

This is yet not possible as such needed impact profiles for head rotation (Rowson and Duma, 

2011) are not directly provided by earlier impacts based on the HITs system (Greenwald et al., 

2008). While mouthguards measure complete 6-DOF impact profiles (Liu et al., 2020), a large 
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impact dataset consisting of both concussive and subconcussive impacts is yet to become 

available to allow deriving a strain-based injury risk function.  

The STAR evaluation system relies on an injury risk function determined from actual on-

field impact measurements and injury diagnoses. As a result, developing a tissue-level 

equivalent requires simulating all of head impacts used to develop the STAR system. Several 

challenges remain on the way of such approach. Firstly, to obtain the generated strains within 

the brain a large series of head impacts must be simulated using a FE head model. However, 

as discussed before, this is rather computationally expensive and can result in months of 

constant simulation time even on a high-end computing system. As shown in this aim, a 

potential way to address this problem is use of the efficiency that CNN readily offers, which 

addresses this challenge. Nevertheless, the CNN-based strain estimation is model-dependent 

and relies on the training dataset generated from the anisotropic WHIM. 

While it is conceivable to use more sophisticated injury metrics that approximate brain 

strain with good accuracy (Lee F. Gabler, Crandall and Panzer, 2018) to develop a helmet ranking 

system, it would be ideal to use brain strain directly, if it is made feasible.  

 

Limitations 

Firstly, this study is based on the current understanding of mTBI. Hence the findings in 

this study are based on the maximum principal strains only. While these metrics do generally 

outperform the kinematics based metrics (Zhao, Kuo, et al., 2017b), there are other more 

sophisticated injury metrics that can provide a better injury prediction performance (e.g. a 

network-based injury prediction metric considering the gray matter regions of interest as well as 

the white matter interconnections between them (Wu, Zhao, Rowson, et al., 2019)). This 
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suggests a more sophisticated understanding is needed for the mechanics of concussion. Yet, 

providing insight into the MPS distribution is a significant step forward from the status quo. 

Second, although this study provides insight into the differences between helmets, it is 

still based on the standard tests used for obtaining the STAR score, which replicate certain peak 

linear and rotational accelerations. However, the strain gsenerated in the brain tissue is 

significantly affected by the duration, directionality, and shape variations of the impact (Zhao 

and Ji, 2017). This illustrates that more investigation is needed to characterize and account for 

the impact shapes that result in injury relevant peak kinematics. 

Third, to save time and computation, we used the trained CNN from the first aim to 

generate the strain patterns for the test data. Hence, another inherent limitation of this study is 

the limitations of the CNN. Although the CNN proved to work with this particular database, it 

needs to be stress tested before use for any impact database as it can be prone to error due to 

certain impact characteristics that were covered in aim 1.  

Fourth, the strain-based performance comparison of helmet was limited to one head 

injury model. Yet, as discussed in the background section, different models are known to 

produce different strain responses even for the same impact (Ji, Ghadyani, et al., 2014). 

Therefore, results from the strain-based evaluations may change when another model or the 

upgraded WHIM V2.0 (Zhao and Ji, 2020c) is used. Nevertheless, a recent study suggests that 

WHIM V1.0 is largely consistent with the majority of other head injury models when studying 

bicycle helmet safety ranking and rating in oblique impacts (Fahlstedt et al., 2021).  

Fifth, a more effective comparison with the STAR values would have been possible by a 

strain-based injury risk function, which is yet to be developed. An example of such risk function 

is a logistic injury risk function that would nonlinearly transform the peak MPS (range from 0 to 

~0.5) or CSDM (range of 0–1) into an injury probability value in the range of 0–1. Yet, as a 
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result of the fact that such function would be monotonic (injury risk would increase with an 

increase in the injury metrics), we do not anticipate any significant change should the strain-

based injury risk function become available in the future. For example, as similarly conducted 

before (Rowson and Duma, 2011) while accounting for concussion underreporting, the CNN-

based brain injury model may be applied to a large on-field impact dataset to fit the strain 

measures against the recorded concussions. Such study is a valuable next step worth pursuing, 

which is beyond the scope of this study.  

Conclusion 

The field of TBI is gradually shifting towards using FE based strain metrics to assess the 

risk of mTBI. This study is another milestone, providing a deep understanding of the substantial 

differences of helmets based on common FE based injury metrics as well as the brain strain 

distribution. Further, using the CNN tool, these analyses are readily available for the research 

community as well as the helmet manufacturing companies with insignificant computational 

cost, especial instrumentation, or any additional cost. This study provides a tissue based 

context for the necessity of investigating a strain-based approach to the helmet design cycle to 

improve the performance of helmets and minimize the devastating effects of mTBI in contact 

sports.  
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Chapter 7: Conclusions and future directions 

Mild Traumatic Brain Injury is a major health concern in the United States and around 

the world and is especially common in contact sports. These injuries are difficult to reliably 

diagnose as they are often diagnosed in a symptom-based fashion. Further, the competitive 

atmosphere of contact sports is a contributing factor that can cause the athletes to be less likely 

to recognize, appreciate the significance of, or disclose symptoms. Yet, undiagnosed mTBI can 

lead to serious health complications such as neurodegenerative diseases. As a result, there is a 

significant need to reliably predict the risk of concussion, and prevent concussion using 

preventative equipment. FE models are used to model such incidents, yet they are 

computationally expensive, making them infeasible in a side-line scenario. As a result there has 

been a recent shift to pre-computation based techniques to bypass the time consuming FE 

simulations. Nevertheless, as a result of the complex nature of impact profiles, referring to the 

pre-simulated database to exploit the full potential of such methods is a challenge. Here, we 

addressed this challenge by using deep learning based approaches, which are well-suited for 

modeling such complex scenarios with constant boundary conditions. 

In this dissertation, we first identified a gap in the literature, which was addressed in 

chapter 3. The used software package for FE simulation is a potential point of discrepancy in FE 

based TBI research and has received little attention in the literature. Hence, we established a 

bridge between two of the most widely-used software platforms currently used in FE modeling: 

Abaqus and LS-DYNA. We designed a study in which we convert our Worcester Head Injury 

Model with material anisotropy, which was originally developed in Abaqus, into LS-DYNA 

format, and identified the differences between the two packages along the way. We used the 

most reliable element type in Abaqus (C3D8I) as a benchmark and converted the WHIM with 

C3D8I elements through a series of steps into an isotropic version with C3D8R elements that 
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could be directly translated into LS-DYNA format. Then, we translated the model into LS-DYNA 

without any alterations and compared the model with all the appropriate LS-DYNA element 

types and hourglass control techniques to the compatible Abaqus model. Then we identified the 

LS-DYNA configurations that perform the most similarly with Abaqus. This study shed light on a 

contributing factor to the disparity between different available FE models. 

In the rest of the dissertation, we aimed to bridge the gap between FE based TBI 

research and utilization of such methods in real-world scenarios with limited time and 

computational power. As a result, we developed and assessed different machine learning based 

approaches with the goal of making different aspects of FE based injury assessment real-time. 

Firstly, we developed an approach to bypass FE based model simulations entirely and obtain 

the entire brain strain pattern directly from the impact profile using a pre-trained CNN. Second, 

we developed a new, strain-based injury metric using an inverse approach to map brain strains 

into a simple kinematic profile. The advantage of this approach is that unlike all other available 

kinematic based injury metrics, it accounts for impact directionality. Third, we put our developed 

methods to use in a real-world scenario by investigating the effectiveness of a number of 

helmets based on the generated strains in the brain.   

The findings in aim 1 can effectively bypass FE simulations while providing reliable and 

reasonable brain strains. The novelty of this method is that it provides strains instantaneously 

and as it is constructed on real-world data, it is equipped to handle the level of complexity in a 

contact sports sideline setting. The CNN from the aim 1 was stress-tested a number of times 

with independent datasets (e.g. in aim 3) and has yielded consistent performance across all 

databases. This further increases our confidence in this methodology. There is a wide variety of 

potential applications for the CNN based method. For instance, this method can be reliably used 

in conjunction with state of art FE based injury metrics (e.g. simple logistic metrics such as peak 
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MPS or complex methods such as the injury matrix in (Wu, Zhao, Rowson, et al., 2019)) in a 

sideline setting. This bridges the gap between the best currently available technologies for injury 

assessment (FE modeling) and the real-world application through overcoming the hurdle of 

computational cost. Further, as a result of the low computational cost and the fact that it is freely 

available, this methodology can be integrated into TBI research, preventative gear design 

cycles, and the process of designing the standards for such applications. Another advantage of 

such method is that it can improve by adding new impacts to the database to reliably predict 

strains for other applications, such as automotive applications, as well.  

Yet, despite these advances in the FE based TBI research, the kinematics-based 

metrics are generally preferred in practice. One of these practical applications is the contact 

sports sideline scenarios, where even with the appropriate instrumented gear (e.g. instrumented 

mouthguards or helmets), the teams only use the peak values of the impact profile, which is not 

indicative of the injury relevant brain strains. Further, this under sampling neglects impact 

directionality as well as impact profile shape, both of which play a substantial role in the strains 

generated in the brain tissue. To bridge this gap, we developed a strain-based equivalent 

impact kinematics that can preserve peak MPS of the whole brain as well as elementwise MPS. 

This approach can accommodate the preference of the community for tangible impact 

kinematics and thereby revolutionize the status quo. This impact simplification also allows for an 

intuitive comparison across impacts based on commonly used kinematic metrics (e.g. peak 

acc), which is otherwise unfeasible with real-world impacts as a result of their complexity. This 

comparison is possible since the peaks in effective kinematics are strictly correlated to the FE 

based results (Aim 2).  

Aim 3 illustrates a real-world scenario where the aim 1 could be used. It is a well-known 

fact that kinematics metrics cannot be directly translated into strains as a result of the non-linear 
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properties of the problem. However, kinematic metrics are the main means used for helmet 

standards as well as helmet performance comparison techniques today. This suggests the need 

for a deeper understanding of the tissue-level implications of using kinematics in helmet 

performance comparison. As a result, our aim 3 focuses on a strain based helmet performance 

comparison between a number of helmets that were similarly ranked with the current kinematics 

based methods (the widely accepted STAR method). We further took this opportunity to use our 

CNN from aim 1 to obtain strains for helmet tests. This served two purposes: first, to reaffirm our 

findings about the CNN performance from aim 1, and second, it saved days of simulation time 

which would be necessary have we used FE simulations. While comparing the helmets, we 

found even helmets that are similarly ranked sometimes substantially differ in terms of FE based 

injury metrics. Aside from the complex relationship between the impact profile and the brain 

strains, another contributing factor to this disagreement is the fact that the used STAR ranking 

system also considers linear acceleration, which plays a minimal role in strain generation. Our 

second finding was that helmets perform differently across different impact conditions. Hence, 

the ranking should be also based on the amount of exposure of the head to each impact 

location (as already implemented by the STAR method). Lastly, in the same impact condition, 

the regions of high strain were significantly different in some helmets. While this may have an 

effect on the probability or region of injury, this difference is not reflected in neither the 

kinematics based metrics of the impact nor the commonly used injury metrics (peak MPS and 

CSDM). This aim highlights the importance of incorporating a strain-based system into helmet 

comparison methodologies.  

We developed two different data-driven approaches using deep learning to combat the 

computational cost of FE modeling. One of these two approaches (aim 1) have more 

implications for the research community while the other (aim 2) facilitates a more intuitive 

understanding of the injury mechanics and has more implications in the sports community. We 
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further used one of these aims to facilitate a deeper understanding about the medical 

implications of the current methods for helmet performance evaluation compared to a strain-

based approach. However, as these findings are based on FE models, they inherent the 

limitations of FE modeling. 

Firstly, a majority of head models are validated using the experimental relative brain-

skull displacement from a number of available cadaver (Hardy, 2007; Hardy et al., 2007; 

Sanchez et al., 2018) and volunteer data (Alshareef et al., 2018b). However, There are 

significant differences between the available head models, even after model validation (Zhao 

and Ji, 2020b). A number of studies have observed significant difference in terms of strains 

across various “validated” models in terms of strains and strain rate (Hardy et al., 2007; Ji, 

Ghadyani, et al., 2014). Further, the KTH head model (Giordano and Kleiven, 2016) showed up 

to a 45% whole brain strain reduction after incorporating white matter fiber reinforcements, with 

negligible change in the displacement-based validation score. Recent studies have shed light on 

this limitation and efforts are already being made to address this discrepancy (Zhao and Ji, 

2020b).  

Another limitation, which is not specific to this study but to FE based TBI research in 

general, is that the current literature focuses on the maximum principal strains only. Hence, the 

current studies are only focused only on brain tissue tension. However, this discards the 

negative brain tissue strain (compression) which can also result in injury (Bar-Kochba et al., 

2016). Further, the directions taken in this study and in the general direction of TBI research so far 

have been based on the cumulative strain distribution of the brain. This, however, the temporal 

exposure of the brain to high strains over time could be an avenue to pursue in the future.  

 As a result of the methodologies in this dissertation being data-driven, they are 

potentially prone to higher error when confronted with an unseen dataset. The functionality of 
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deep neural networks is based on learning the “features” of the input (in this case the impact 

profile). Hence, given a new dataset with new features in the impact profiles that were not 

included in the training data, the CNN might produce larger errors. This issue is especially 

important to consider since the different instruments, as well as different scenarios, may 

introduce additional features (e.g. variations in data sampling resolution, non-zero initial and 

final velocity, and impact duration). Further, some recorded impacts could be incomplete (e.g. 

only the acceleration or deceleration phase was captured), or irregular (high initial velocity as a 

result of a high impact recoding threshold) or occurrence of multiple serious impacts (multiple 

peak kinematics). To address this we included different real-world datasets (and augmented 

data based on the existing real-world impacts) and different sources (instrumented helmets, 

mouthguards, professional and high school football as well as other contact sports).  

Another limitation to the current method is that it is bound to the WHIM V1 with the 

current characteristics and boundary conditions. Hence, with any change in the head injury 

model or the boundary conditions the CNN needs to be retrained, which is time-consuming. 

Nevertheless, this dissertation proves that the concept of a deep learning based method to 

accurately predict the strain pattern is possible. 

In addition, a limited supply of impacts with a binary injury label was available to us for 

injury prediction. The injury labeled database used in this study is consistent of 53 reconstructed 

impacts from the NFL. However, it is well-known that concussive impacts are over-represented 

in this database. Hence, ML based method trained based on this data could potentially result in 

type 1 error in the injury classification.  

Finally, we uncovered a large difference between strain-based metrics and a statistically-

driven kinematics metric. Although the kinematic metric performs well in sports related 

concussion assessment, it is not based on injury mechanics. Hence, the performance could 
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improve if the same fitting methodology was developed on the tissue-level brain responses to 

increase the robustness of the method and potentially improve the performance. To our 

knowledge, an equally large dataset of real-world impacts with injury labels that has the 

complete impact profile (and can be simulated) is not available. But the same technique used 

for the development of STAR could be implemented for a tissue-level STAR, once such data 

becomes available.  

In conclusion, we removed a significant hurdle on the way of using strain-based 

responses in real-world scenarios by introducing deep learning-based approaches to overcome 

the severe computational cost of FE modeling in TBI. This thesis addresses the logistical 

shortcomings of FE modeling as a result of their computational expense, which is otherwise a 

more accurate injury assessment method than the status quo. However, further investigation is 

needed to take advantage of whole-brain strain distribution to its full potential as well as to 

uncover other contributing factors to concussion. This can result in a more accurate assessment 

of brain injury in real-time and thereby prevent the devastating effects of multiple concussions 

such as CTE. We hope this work would contribute to timely diagnosis of concussion, 

improvement of protective gear design, and would benefit the general public as well as the TBI 

research community at large. 
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