
Project Number: EOA-0017

RENDERING LEAVES DYNAMICALLY IN REAL-TIME

A Major Qualifying Project Report
submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the
Degree of Bachelor of Science

by
Madison Dickson
John Sandbrook
Michael Oliver

April 28, 2011

Approved:

Professor Emmanuel O. Agu, Advisor

This report represents work of WPI undergraduate students submitted to the faculty as evidence of a degree
requirement. WPI routinely publishes these reports on its web site without editorial or peer review. For more
information about the projects program at WPI, see http://www.wpi.edu/Academics/Projects.

http://www.wpi.edu/Academics/Projects

Abstract

Methods of Global Illumination, which model inter-reflections between objects in a scene,

are key to creating realistic images. A recent technique that approximates Global Illumination

is Light Propagation Volumes (LPVs), which runs at interactive frame rates, or ‘realtime’. This

report details the design and implementation of a realtime Global Illumination approximation using

LPVs, simulating both reflected and transmitted diffuse light. It employs 4th degree polynomial

Spherical Harmonics on separate color channels to represent the flow of light, and its complexity

is independent of resolution or geometry. A modular framework using OpenGL version 3.3 was

built to support the task and implements a deferred rendering system to facilitate the multiple

passes required by the technique employed. A Reflective Shadow Map is used to build a model

of the lighting environment inside the LPV, which is then processed to propagate light through

the scene. The program runs at an average of 40 FPS on modern graphics hardware and uses less

than 50MB of system memory and 70MB of GPU memory, making it a viable option for realtime

rendering applications. The scene displayed is a leafy bush and ground plate.

Keywords: OpenGL, Light Propagation Volumes, Spherical Harmonics, Global Illumination, In-

direct Lighting, real-time, realtime

Contents

1 Introduction 1

1.1 The Problem . 1

1.2 Project Goal . 2

2 Graphics Background 4

2.1 General Shading . 4

2.2 Technical Shading . 5

2.3 A General Shading Model . 5

2.4 Forward Shading . 9

2.5 Deferred Shading . 10

2.6 Graphics packages . 12

2.6.1 Graphics Application Programming Interfaces (APIs) 12

2.6.2 Programmable Graphics Pipeline . 12

2.6.3 Shading Languages . 14

2.6.4 Shader Tools & Graphics Engines . 15

2.6.5 OpenGL Extension Wrangler (GLEW) . 16

2.6.6 OpenGL Utility Toolkit (GLUT) . 17

2.6.7 OpenGL Shader Wrangler (GLSW) . 17

3 Lighting 19

3.1 What is light? . 19

3.1.1 Abstraction of Light . 20

3.1.2 Representations of Light . 21

3.2 Indirect Lighting . 22

i

3.3 Mathematical Models . 23

3.3.1 Bi-directional Distribution Functions . 23

3.3.2 Spherical Harmonics . 25

3.4 Rendering Techniques . 30

3.4.1 Raytracing . 30

3.4.2 Photon Mapping . 30

3.4.3 Radiosity . 30

3.4.4 Precomputed Radiance Transfer . 31

3.4.5 Light Propagation Volumes . 32

4 Methodology 35

4.1 Chosen Platforms . 35

4.2 GSUITE Practical Overview . 36

4.3 GSUITE Technical Overview . 37

4.3.1 Language . 37

4.3.2 Object Model . 39

4.3.3 Modules . 40

4.4 Implementing Light Propagation Volumes . 43

4.4.1 Transformations . 44

4.4.2 Generating the Reflective Shadow Map (RSM) 44

4.4.3 Building the LPV . 44

4.4.4 Propagation . 46

4.4.5 Illumination . 47

5 Results 48

5.1 Benchmarks . 48

5.2 Objects and Textures . 53

5.2.1 Big Bush . 53

5.2.2 Ground Plane . 55

5.3 Qualitative Assessment . 57

5.4 Direct Lighting vs. LPV vs. Ground Truth . 58

ii

5.5 Additional Effects . 61

5.6 Fudgefactors and Assumptions . 62

6 Conclusion 63

6.1 Light Propagation Volume Trade Offs . 63

6.1.1 Advantages . 64

6.1.2 Reflective Shadow Map Sampling . 64

6.1.3 Propagation . 65

6.2 Implementation . 66

6.2.1 Using OpenGL . 67

6.2.2 Coding Shortcomings . 68

6.2.3 Additional Problems and Challenges . 68

6.3 Recommendations / Further Study . 69

Bibliography 71

A Compiling & Running GSUITE 75

A.1 Hardware Requirements . 75

A.2 Build Environment . 75

A.3 Running & Hotkeys . 76

B Shader Code 77

B.1 rsmGen.glsl . 77

B.2 volumeGen.glsl . 79

B.3 volumeProp.glsl . 84

B.4 normalShade.glsl . 90

B.5 defShader.glsl . 91

B.6 defCompositor.glsl . 94

iii

List of Equations

2.1 Ambient Term . 7

2.2 Diffuse Term . 8

2.3 Specular Term . 8

2.4 Complete General Shading Model . 9

2.5 Blinn-Phong Shading Model . 9

3.1 Photon Emission of 100W lightbulb . 20

3.2 The Rendering Equation . 22

3.3 Laplace’s Equation . 25

3.4 Gradient . 25

3.5 Divergence of the Gradient . 25

3.6 Sampled radiance values . 27

3.7 Calculating spherical harmonic bases . 28

3.8 SH Converted to Cartesian Coordinates . 28

3.9 Radiance Lobe similarity to SH . 28

3.10 Monte Carlo SH Integral Approximation . 29

3.11 Calculating coefficients . 29

3.12 Final Spherical Harmonic approximation . 29

3.13 General RSM Use . 33

iv

List of Figures

1.1 Sun behind mulberry leaves . 3

2.1 Shaded sphere example, Lambertian model . 4

2.2 Three basic lighting terms and their sum . 6

2.3 Jaggies and anti-aliasing . 11

2.4 A generalized diagram of the typical graphics pipeline 13

3.1 Visual Rendering Equation . 22

3.2 Visualised BRDF and BTDF . 24

3.3 The spherical coordinate system[1] . 26

3.4 Comparison of Radiosity to Direct Illumination 31

4.1 GSuite Module Diagram . 38

4.2 RSM Depth Map . 44

4.3 RSM Injection and LPV Seeding model . 46

5.1 GPU-Z program collecting data . 52

5.2 “bigbush.obj” object mesh, modeled after real leaves 53

5.3 Bush Textures . 54

5.4 “groundplane.obj” object mesh . 55

5.5 Groundplane Textures . 56

5.6 Project results compared to raytraced ground truth 58

5.7 Full composite . 59

5.8 Shading layers that form the composite image . 60

5.9 Graphical Representation of Object Data . 61

6.1 Visualization of our propagation scheme . 66

6.2 Spherical harmonic coefficients using different voxel densities 67

v

List of Tables

5.1 RSM vs LPV Voxel Density - 512x512 px . 49

5.2 RSM vs LPV Voxel Density - 1024x1024 px . 49

5.3 GPU Utilization - Scene with 24,919 faces . 51

vi

Chapter 1

Introduction

1.1 The Problem

Achieving realtime photorealism is the ultimate goal of computer graphics. Empirical lighting

models1 are insufficient for this task; physically based algorithms must be devised with the lim-

itations of current hardware in mind. How humans perceive light and interpret images are also

major factors in the believability of an image. Shadows and numerous other visual cues are used

to understand images and the spatial relationships of the objects within a scene. These cues can

be exploited to render realistic images even when the underlying model is not a strictly accurate

representation.

Many important visual cues are modeled by Global Illumination (GI), which refers to any tech-

nique that takes into account light interactions between objects in a scene. GI methods include

numerous shadowing techniques, Radiosity to simulate the way surfaces illuminate each other,

Ambient Occlusion (AO) to portray how close surfaces mutually darken each other, and various

ways to calculate reflections, refractions, and transmittance[3].

The development of powerful hardware-based graphics acceleration continually increases the

potential for realism in realtime graphics: dedicated graphics hardware can perform millions of

floating point calculations per second and support custom algorithms that can approximate all

1 explained in Section 2.3 on page 5

1

types of GI, bringing realtime photorealism closer to reality.

Light Propagation Volumes (LPVs) is one such GI method that has recently gained notoriety.

First used by Crytek, LPV coarsely models the way light flows through a scene by separating a

given scene volume into cubes, and iteratively propagating the light through that volume[16].

1.2 Project Goal

Accounting for the full lighting environment of a scene is essential to achieving realism. This

project renders in realtime a visually accurate approximation of leaves lit with a single source (the

sun) using GI techniques. We consider ‘realtime’ to be at least 30 frames per second (FPS). The

level of realism achieved will be compared with photographic references and with images rendered

on commercial rendering platforms and game engines. We want to model the way light is reflected

off and transmitted through leaves, as shown by the mulberry leaves in Figure 1.1. Additional

subtle effects will be used to enhance the realism of the final image; surfaces behind a leaf should

receive color from the light transmitted through it, while shadows cast on upper surfaces should

affect the transmitted light seen through the bottom surface.

We will incorporate LPVs using Spherical Harmonics (SH) to describe the lighting environment

of a complex scene that incorporates translucent media. Lambertian shading and an ambient sphere

map will be used for additional environment lighting. Because common shader libraries and demo

packages do not support the level of control needed to implement these advanced methods, partic-

ularly the dynamic generation of three dimensional textures, we will design a custom framework

in C.

2

Figure 1.1: Sun shining behind mulberry leaves[9]

3

Chapter 2

Graphics Background

2.1 General Shading

Shading refers to any method of ”determining the effect light has on a material”[3]. The goal of

shading is to produce an image that ‘makes sense’ to the viewer.

Figure 2.1: Lambertian reflectance, Cook-Torrance specularity, indirect lighting and shadows give

a simple sphere shape and depth. Rendered in Blender[8].

4

2.2 Technical Shading

Shading in computer graphics involves altering an object’s color and brightness based on the prop-

erties of the object. This commonly includes the color of the material, the angle to, distance from,

and color of light sources, and the viewing angle as well. Shading is independent of the represen-

tation of a surface as long as the needed data for any particular shading algorithm can be derived

from the surface representation.

Current models of the process of realtime shading on computers fall into two broad categories.

These are Forward Shading and Deferred Shading. Note that either model can be used for non-

realtime, or offline, pipelines, but we will discuss them in terms of realtime. Offline implementa-

tions of either model do not necessarily work in the same way.

Two terms that are essential to distinguish these two models of rendering are the concept of

fragments and the technique of depth testing. A fragment is a rasterized piece of the image that

can receive a color. Fragments are related to pixels; after geometry is transformed into a coordinate

space that can be displayed, it is cut up into pieces that eventually determine the color pixels, and

these pieces are called fragments. Fragments do not need to directly correspond to display pixels.

Shading on a pixel based device is applied to fragments[3].

Depth testing is related to the fact that graphics hardware usually takes advantage of paral-

lelization, running multiple processes or threads of execution, sometimes on multiple separate

processing cores. In addition to this, many systems do not strictly order this processing relative to

actual scene space: parts of a scene may be processed out of order. To avoid objects being drawn

over each in the wrong order, depth testing is used to sort fragments that have already been colored

so that only the fragments closest to the viewer are seen[3].

2.3 A General Shading Model

Shading is a process only concerned with assigning the outgoing radiance along a view direction

from a surface given its properties and the properties of the light that illuminates it. It does not in

itself deal with more complex issues such as global illumination[3].

5

The general model of shading involves three generalizations of the lighting environment of an

object. These are the ambient, diffuse, and specular terms, which each describe a component of

how a surface is lit. Observe Figure 2.2 for a visual representation of the differences. This division

is not physically accurate; it is instead informed by the perceptual components of an image that are

easy to control and provide believable results.

Understanding how these three components are put together creates a foundation for under-

standing how more advanced techniques and methods work. For the purpose of these examples,

color variables are represented as three component vectors containing the value of the red, green,

and blue color channels .

(a) Ambient term (b) Diffuse Term

(Lambert)

(c) Specular Term

(Blinn-Phong)

(d) Sum of basic

shading terms

Figure 2.2: Examples of the three basic lighting terms and their sum. Rendered in Blender[8]

Ambient light

Ambient light is a base approximation of the environmental light in a setting. It accounts for the

light that has reflected off all objects in a scene in such a manner that it “seems to come from

everywhere” [7]. The Lighting Design Lab describes ambient light as “lighting throughout a space

that produces uniform illumination”[18]. Without applying other shading models, every object in

the scene with an ambient term will have the same color, defined by the color and intensity of the

ambient light source. Equation 2.1 defines the typical ambient term found within many general

shading models[3].

6

EQUATION 2.1
CA = Cambient

CA : shaded ambient color

Cambient : the ambient color

Note that we do not include any intensity term for the ambient light in this formulation. We

assume that any such factor is accounted for in the term Cambient, a simplifying convention we use

for the following formula.

Diffuse light

Diffuse shading describes the interaction of a finely rough surface and a light source. At each point

of calculation, diffuse terms often only deal with the direction from the point on the surface to

the light source, and so are generally agnostic to the type of light source. As an approximation,

diffuse shading assumes an infinitely rough surface such that it scatters and reflects light uniformly

and independently of the viewing direction. The intensity of the resulting color depends on the

intensity and color of the light source and the angle between the direction to the light and the

surface normal. The diffuse intensity will be greatest when it is parallel to the normal, and the least

when it is perpendicular.

The classic model is called Lambertian Reflectance, and is mathematically defined as the dot-

product1 of the surface normal and the direction to the light multiplied by the material’s diffuse

color and the light color. This is shown in equation 2.2[3].

1We are using the dot product directly, whereas the proper definition uses the cosine of the angle between the

normal and light direction. Using the angle between the vectors is required when the normal and light direction are

not unit vectors.

7

EQUATION 2.2
CD = Cdiffuse ∗ Clight ∗ (N̂� L̂) ∗ 1

π

CD : shaded diffuse color

Cdiffuse : the diffuse color of the surface

Clight : the color of the light source

N̂ : the normal to the surface

L̂ : the direction to the source of light

∗ : per component vector multiplication

� : the dot product clamped to the range [0, 1]

Specular light

Specular reflection (or specular highlight) is a type of shading that models reflected light, like

diffuse shading. However, specular shading is also dependent on the viewer’s location. It provides

the glossy, shiny look of plastics, wet materials, and other reflective surfaces that can reflect non-

scattered light directly from the light source to the viewer’s eye. The color of specular reflection

at a given point on the surface is dependent on the strength of the light source, the vector from

the point to the viewer, the vector from the point to the light source, the surface normal, and the

material’s specular color. In equation 2.3, we show the mathematically complete specular term[3].

EQUATION 2.3

CS = Cspecular ∗ Clight ∗ (N̂� L̂) ∗ m+ 8

8π
(N̂� Ĥ)m

CS : shaded specular color

m : the specular power; larger values result in brighter and smaller highlights

Ĥ : the vector halfway between the direction to the eye and the light direction

Cspecular : the specular color of the surface

8

General Shading

Combining these three shading terms provides a simple parameterized model of the behavior of a

surface with some physical basis. However, most general shading models drop the extra factors

which involve π and instead use intensity factors to adjust the effect of each term directly. Equation

2.4 shows this sum mathematically and Figure 2.2 shows it visually. This general equation is very

similar to the Blinn-Phong shading model, which is shown in Equation 2.5 for comparison[7].

EQUATION 2.4
Gcolor = CA + CD + CS

Gcolor = Cambient

+ Cdiffuse ∗ Clight ∗ (N̂� L̂) ∗ 1

π

+ Cspecular ∗ Clight ∗ (N̂� L̂) ∗ m+ 8

8π
(N̂� Ĥ)m

Gcolor : General Model shaded color

EQUATION 2.5
Pcolor = CA + CD + CS

Pcolor = Cambient

+ Cdiffuse ∗ Clight ∗ (N̂� L̂)

+ Cspecular ∗ Clight ∗ (N̂� Ĥ)m

Pcolor : Blinn-Phong Model shaded color

2.4 Forward Shading

Forward shading2 is the traditional model of rendering a scene in realtime whereby depth testing

and shading happen together[3]. When forward shading, geometry is processed and pixels colored

directly in the output image. All shading calculations happen in this single pass, even on fragments
2This term is not strictly defined except to contrast it from Deferred Shading. We list it first because it is by far

more common.

9

that will later be discarded by depth testing. In the general case, forward shading output goes

directly to the display device, or to the back buffer of a double buffered system. The Fixed Function

Pipeline (FFP) of OpenGL is specified as a forward shading system3, as are traditional graphics

engines used for video games. Primitives are given to the pipeline with certain parameters and

they are rendered to the main framebuffer.

2.5 Deferred Shading

Deferred shading is a method of rendering a scene usually contrasted with forward shading. Under

a deferred framework, shading operations are set aside for a later processing step and a number

of output buffers4 are used to store relevant shading data from the scene. This data may include

surface normals, albedo, and any other information deemed necessary. These images are then used

as the input data for shading algorithms.

By deferring the expensive shading calculations the rendering system does not waste time

shading fragments that will never be seen. Instead, depth testing selects only one set of source data

and actual shading occurs just once for every pixel of the output image. The process is analogous

to a complex PhotoShop R© file, allowing a great deal of flexibility in the possible effects that the

shading pass can include. With access to all this data through texture lookups, a variety of post-

processing techniques such as depth of field and motion blur can be easily applied to the scene[3].

Crytek’s CryENGINE5 uses deferred shading to include a scene-independent customizable color

grading pass to help set the mood in their games[5].

Deferred shading does have drawbacks, beyond the bandwidth involved with using g-buffers.

For instance, anti-aliasing of primitive edges does not function properly. It is thus necessary to

handle the ‘jaggie’6 artifacts that result, as shown in Figure 2.3. Crytek uses a blur on areas

3The FFP can be used for Deferred Shading, but it is complicated and involves expensive memory operations.
4Referred to as g-buffers in the literature.
5CryENGINE is actually a hybrid system. Crytek has combined several methods, including many pre-processing

and post-processing algorithms, in a non-trivial manner which is beyond the scope of this paper[5].
6A ‘jaggie’ describes the jagged edges caused by a rasterized object’s edge that falls in-between two pixels, result-

ing in an edge clamped to the nearest whole pixel[3].

10

(a) Jaggies resulting from no anti-

aliasing

(b) Jaggies fixed with Mitchell-

Netravali anti-aliasing

(c) Jaggies fixed in post-processing

with edge blur

Figure 2.3: Jaggies; anti-aliasing does not work with deferred shading because multi-sampling can-

not occur across separate output buffers. Images 2.3b and 2.3c use post processing in PhotoShop

by blurring on edges detected from normals. Rendered in Blender[8].

identified with an edge detection algorithm[5].

Also, it is difficult to use different algorithms on different objects, since the granularity of the

scene has been reduced to one large collection of shading input data. Using color object IDs with

control branching in the final shader is a naı̈ve solution, but adds conditionals to the shader code

which will affect performance[3]. Some techniques also cannot easily benefit from deferred frame-

works. The more robust versions of relief mapping require direct access to unmapped textures to

accurately warp texture coordinates. If one of the g-buffers contains diffuse color information,

these operations must happen in the first stage of deferred shading to produce correct results.

The popular game Killzone uses deferred shading, designating several g-buffers for various

special effects, such as accurate motion blur[3]. Crytek manages to pack almost all of the data

their algorithms need into only two g-buffers[5]. Since Crytek has extensively documented their

methods[5, 16], which complement our need to render various components of the lighting model

in separate passes, much our code is inspired by their work.

11

2.6 Graphics packages

2.6.1 Graphics Application Programming Interfaces (APIs)

Graphics APIs provide an interface to graphics hardware from within a user application, allowing

it to set up a graphics context and initiate draw calls. The two common graphics APIs, OpenGL

and and portions of Microsoft’s DirectX, are in fact published standards which describe how an

implementation should behave, much like how C and C++ are defined.7 Hardware vendors imple-

ment these standards through a combination of hardware, microcode, and drivers. We chose to use

OpenGL because it works on any Operating System (OS).

OpenGL

OpenGL8 is a graphics standard maintained by the Khronos Group, an association of graphics

software and hardware vendors including NVIDIA, Intel, Texas Instruments, and Epic Games[11].

Originally, OpenGL was an open substitute for the proprietary scripting language Iris GL, which

was used for programming graphics applications on Silicon Graphics Inc. workstations.

Over the four major versions of the standard9, OpenGL has been altered drastically from a strict

Fixed Function Pipeline to a highly customizable graphics processing interface. A programmer

may alter key stages of the pipeline to achieve nearly any effect desired. The Khronos Group

has since created the similar OpenGL ES API, an embedded hardware and mobile platform based

version of OpenGL which shares aspects of both the new and old OpenGL standards[12].

2.6.2 Programmable Graphics Pipeline

In terms of paradigm shifts, one of the most significant recent developments in graphics has been

the introduction of programmable stages to the graphics pipeline as described by DirectX and

OpenGL. Generally speaking, the Graphics Processing Unit (GPU) of dedicated graphics hardware

7Also like C and C++, OpenGL implementations can have compliance issues. See Section 6.2.3 on page 68.
8The Open Graphics Language
9The majority of the OpenGL revisions have been released in the last five years[28].

12

is a highly specialized processor with an emphasis on parallelized floating point operations and, in

particular, common linear algebra operations such as dot products. The rendering pipeline of these

devices is essential to their speed and power[3].

Consequently, only a few key areas in the calculation of pixels can actually be altered, namely

the processing of raw geometry, the amplification of geometry, and the shading of rasterized prim-

itives. Before 2001, all hardware was fixed-function and the graphics pipeline was straightforward

and inflexible[7, 33]. There was essentially one model for shading with only a few user control-

lable features. The graphics cards of today allow for programmable instructions to change how

an image is rendered, and can even be used for non-rendering purposes such as fluid simulations

and character animations[7]. The programs that do this, called shaders, are loaded onto the GPU at

runtime. Figure 2.4 provides a graphical representation of the standard programmable pipeline.

Figure 2.4: A generalized diagram of the typical graphics pipeline[26]

Vertex Shaders

Vertex shaders handle operations on incoming vertices into the pipeline; what primitives these

vertices describe is not known by a vertex shader. Vertex shaders can only perform operations

on the specific vertex and attributes passed in. The vertex shader is analogous to the automatic

transformation of vertices using the ModelView and Projection matrices of the OpenGL Fixed

13

Function Pipeline (FFP).

Geometry Shaders

Unlike vertex shaders, geometry shaders have access to the primitive assembly stage of the pipeline.

This means that, once raw inputed vertices are processed and transformed into normalized device

coordinates, geometry shaders may emit or ‘amplify’ them to create geometric primitives such as

triangles and lines which may not contain the same number of vertices. The Geometry shader can

be used to duplicate a simple but often repeated object in large quantities without having to store

them all in memory, or to generate dynamic geometry such as terrain[22].

Geometry shaders are a recent addition10, and because of the complexity of the primitive as-

sembly process are not yet well suited to amplification factors of more than two dozen[27]. There

is no analogue for this stage in the FFP since primitive assembly is handled internally.

Fragment Shaders

After primitives are assembled, they are rasterized into fragments that are mapped to individual

pixels on the display device. The fragment shader’s job, in broad terms, is to give each fragment a

color.

Like vertex shaders, fragment shaders have no knowledge of the context of the fragment being

shaded. The values of attributes which were assigned on a per-vertex basis are interpolated between

vertices across primitives and these values are made available to the fragment shader.

This stage also has few analogous portions in the OpenGL FFP. Under the FFP, the program-

mer’s only interaction with this stage is via the setting of lighting and material parameters in the

OpenGL rendering context before a vertex was loaded into the pipeline.

2.6.3 Shading Languages

Both OpenGL and DirectX implement graphics shading languages, designed to give control over

the graphics pipeline using a high-level C-like language.

10 Geometry shaders were added to the core OpenGL in version 3.2, which was released in 2009 [27, 28]

14

Graphics Language Shading Language (GLSL)

GLSL is based on C, and was created by the OpenGL Architecture Review Board[33]. GLSL can

use geometry, vertex, and fragment shaders, which are compiled at runtime.11 Benefits of GLSL

include cross platform compatibility on Windows, Mac OSX, and most Linux distributions, and is

hardware independence; it works on all OpenGL GLSL enabled graphics chips[33]. Another added

benefit is that each hardware vendor includes the GLSL compiler with their drivers, allowing for

architecture specific optimizations. While it cannot use pointers, support for structured data was

recently added[28].

High-Level Shading Language (HLSL)

HLSL is the proprietary shading language for the Microsoft Direct3D Application Programming

Interface (API), and parallels OpenGL’s GLSL.

C for Graphics (Cg)

NVIDIA’s proprietary graphics language Cg was developed closely with Microsoft as the first high

level shading language, and thus Cg and HLSL have many similarities[7].

2.6.4 Shader Tools & Graphics Engines

Writing the entire framework to support shader development is tedious and time consuming if

the goal is is to quickly design and test shader effects. As a result, several packages have been

designed to provide the backbone and front end, and sometimes even include a Graphical User

Interface (GUI) to design the effect programing. The following is a list of the options most relevant

to our project, but is not exhaustive.

11 GLSL version 4.1 introduced the ability to load pre-compiled shaders to reduce loading time and increase overall

performance[28].

15

GLSLDemo

GLSLDemo is a small package designed to quickly test GLSL shaders on a variety of models. It

is limited to Vertex and Fragment shaders, but provides an XML interface for variable input with

slider GUI elements. Originally developed by 3DLabs, it was dropped in 2006 when the company

changed its direction[2].

FX Composer

NVIDIA’s most recent graphics package is called FX Composer, currently on version 2.5[23]. It

is a robust shader designer with advanced features and user-friendly wizards and templates. It has

cross-API support, including DirectX 9, 10, and OpenGL, and can export GLSL, HLSL, and CgFX

code natively. Shader FX even has a built-in particle system for effects programming.

Unity Game Engine

The Unity game engine was designed to make game development quick and easy while still pro-

viding a powerful engine[38]. It can export to both Mac and PC, mobile devices, consoles like the

Wii and Xbox 360, and even the web via their browser plug-in.

Blender Game Engine

The Blender Game Engine is included with the 3D modeling and animation program Blender. It

uses Python for advanced control of nearly every aspect of the game and rendering, and supports

all OpenGL lighting modes and GLSL shaders[8]. Support is included for the open source Bullet

Physics Library, originally developed for the Playstation 3, for use in collision detection and rigid

body dynamics[8, 19].

2.6.5 OpenGL Extension Wrangler (GLEW)

Native OpenGL implementations are frozen at version 1.1 on Windows and up to 1.4 on the latest

versions of Linux. This limits the functionality of OpenGL programs which use only the Operating

16

Systems (OSs) built-in support, which does not even include buffer objects12 to store vertex infor-

mation. Furthermore, the majority of the functionality in these versions has since been deprecated.

In order to render anything with modern OpenGL the available extensions and core functionality

must be loaded at runtime.

There are hundreds of functions in OpenGL to check for driver support. GLEW performs this

task for the programmer by testing everything in the OpenGL specification on the current hardware

and loading all available parts of the API. Version information is exposed for querying so precau-

tions can be taken in an application’s code to accommodate, cope, or simply remove advanced

functionality if older hardware is being used [13].

2.6.6 OpenGL Utility Toolkit (GLUT)

Every windowing system Application Programming Interface (API) has its own way to interface

with OpenGL. The details of these interfaces are largely Operating System (OS) dependent and by

definition not portable.

To facilitate more portable OpenGL applications, GLUT hides the platform-dependent details of

actually displaying OpenGL images with a uniform API. It contains routines for opening windows,

detecting and interpreting input, timing, and several advanced primitives significantly more easy

to use than those available in OpenGL utilities[36].

However, GLUT is not part of the OpenGL standard and as such has related disadvantages.

The last time the original GLUT library was updated was in 1997, ostensibly with bugs remain-

ing. The primary implementation used now is called FreeGLUT which replicates the original’s

functionality[25] and adds a few new features such as a new primitive type[25].

2.6.7 OpenGL Shader Wrangler (GLSW)

Shaders in OpenGL are comprised of two to three shader steps: vertex and fragment or vertex,

geometry, and fragment. Each is treated as a separate block of shader code, compiled separately,

and finally linked together into a single shader program. Since the shader steps reference each

12Buffers were introduced in OpenGL 1.5

17

other, making sure variables are named properly and outputs are aligned to inputs becomes a

maintenance liability. GLSW takes care of this by providing string handling functions that allow a

single file to containing all the shader code to be cut up into its constituent shader source. These

source blocks can then be loaded into OpenGL separately[31]. Having related shaders in the same

file makes shader development easier. For a library that has only six functions, GLSW is very

flexible and effective. 13

13There is a small bug in the library: due to an optimization concerning file loading, substitution of code blocks

from one part of a file into another part does not work.

18

Chapter 3

Lighting

3.1 What is light?

Before discussing the methods used to accurately simulate light, it is important to understand what

light is and how it behaves in the real world. Light is a flow of electromagnetic radiation which is

carried by photons. Because of the quantum effects on the scale of photons, light has both particle

and wave properties. For instance, the color of visible light is related its wavelength, a wave-

like property, whereas the ‘brightness’ of light is related to the amount of photons in the beam of

radiation, a particle-like property. The wave properties and secondary properties like polarization

are usually ignored in computer graphics as they contribute little to the majority of scenes[3].

The study of electromagnetic radiation in general is called Radiometry; this includes radiation

outside the narrow band visible to the human eye[29], which only spans wavelengths of 400nm to

just over 750nm[3]. The measurement and study of this narrow band and how humans perceive

it is called Photometry[42]. To the human eye, the appearance of an object is determined by the

interaction between the light illuminating it and the object’s surface properties.

The particle-like properties of light imply that when a photon hits a surface, it bounces off and

continues on its way. However, surfaces absorb different wavelengths of light at different rates, and

the microscopic details of surfaces are complex. Absorption properties will alter the wavelength

19

and thus the color of the light, whereas surface topology and optical properties will alter its path1.

Light is modified by every surface it encounters until it finally exhausts its energy; a very small

fraction reaches a viewer’s eye and is then observed. In general terms, this means a computer

can simulate a scene by summing the interaction of all light sources and objects in it. Modeling

this interaction to produce images that mimic what the eye expects is the practical challenge of

computer graphics[3].

Light does not bounce around a scene in a uniform manner, however. Even seemingly flat or

smooth surfaces have microscopic details that affect the way light reflects and refracts off them.

Standard light properties still apply: a ray of light will bounce off a surface at an incident angle

equal to the incoming angle reflected about the surface’s normal, but these tiny details change the

outgoing angle. There are several components of reflection models, which are broadly categorized

into “diffuse, glossy specular, perfect specular, and retro-reflective” reflections[30].

In addition to modeling direct lighting, our project focuses on the use of indirect lighting, or,

any effect that a light ray has after its first reflection. Once a photon hits a surface, calculating

its new direction, intensity, and wavelength is a complex problem with innumerable solutions for

diverse situations. Though some solutions simulate the physics of lighting with high accuracy, we

chose to find a solution that could run in a real time setting with dynamic geometry.

3.1.1 Abstraction of Light

Explicitly simulating photon paths quickly becomes intractable for realtime graphics, even on the

best of current hardware. For instance, a 100W incandescent light bulb at 2% efficiency releases

on the order of 1032 photons a second, as shown in Equation 3.1.

EQUATION 3.1
100W × 2% = 1032 photons/s

1The effects of optical properties are usually wavelength dependent, so even optical properties can alter the color

of an object.

20

Tracking each photon’s direction, intensity, position, and wavelength takes a minimum of seven

floating point numbers. Using 32 bit floats, we would need to store 7×32×1032 bits of information,

or approximately 2.3× 1021 terabytes.

This is an impossible amount of information to deal with, requiring graphics algorithms to use

generalized models of light that do not rely on full light simulation. Individual photons are ignored

and instead are often modeled as rays that transport color and intensity information.

3.1.2 Representations of Light

The direct implementation of this model propagates light rays out from light sources and through-

out a scene, using an eye model to accumulate the image. This quickly becomes intractable in a

realtime context; the eye model only sees the very small fraction of all rays that reach it, requiring

a very large number of rays to produce an image. Ideal solutions would involve reflecting each ray

around the scene indefinitely, or until its energy was spent, further complicating this issue.

Since this is very inefficient, realtime solutions typically use the surface properties of objects

in the scene in relation to the position and properties of lights to color surfaces. This method

corresponds to finding a solution to the Rendering Equation(see Equation 3.2)[3]. The equation

is a general relation between light, surface geometry, and material properties. It is a mathemat-

ical model of the ground truth of the interaction of surfaces and light sources. Many rendering

algorithms, as discussed in Section 2.3, are possible solutions to the Rendering Equation, and all

shading methods henceforth discussed are in some way an approximation of this ideal behavior.

EQUATION 3.2

21

Figure 3.1: The parameters of the Rendering Equation visualized; Ω is the set ~ωi for all i.

L(x, ~ω0) = Le(x, ~ω0) +

∫
S

fr(x, ~ωi → ~ωo) L(x′, ~ωi) G(x,x′) V (x,x′) dωi

where:

L(x, ~ω0) : the radiance reflected from position x in direction ~ωo

Le(x, ~ω0) : the light emitted from x by the material itself

fr(x, ~ωi → ~ωo) : the BRDF of the surface at point x, transforming incoming light ~ωi to reflected light ~ωo

L(x′, ~ωi) : light from x′ on another object arriving along ~ωi

G(x,x′) : the geometric relationship between x and x′

V (x,x′) : a visibility test: returns 1 if x can see x′, 0 otherwise

3.2 Indirect Lighting

Indirect Lighting, part of Global Illumination, is often broken into a separate topic in light represen-

tation methods. Indirect Lighting occurs when diffusely reflected light illuminates other surfaces.

When light reflects off a surface, other surfaces nearby may receive some of the original surface’s

reflected light. This brightens the image and helps increase its photorealism [21].

We will use the ideas of primary and secondary light sources to discuss Indirect Lighting.

22

Primary light sources include points that light originate from, and secondary light sources can

include any point in the entire scene. Light reflecting off of any surface effectively creates another

light source, caused by a diffuse reflection from the surface. This reflection creates a secondary

light source which can illuminate other surfaces, possibly creating more light sources.2 The light

reflects from the surface in a diffuse manner and affects the surfaces around it.

However, calculating these effects in an efficient manner becomes increasingly complicated.

Using secondary light sources, the total number of lights a scene contains exponentially grows

with each light bounce. Methods implementing aggregation [16], splatting , and pre-computation

all attempt to reproduce the effects of global illumination through approximations that reduce the

number of bounces. Though they may not strictly adhere to the way light travels, the diffuse nature

of Indirect Lighting allows these shortcuts to approach photorealism.

3.3 Mathematical Models

There are many parameters to the Rendering Equation, generally too many to use for fast solutions.

Depending on the requirements of a scene, some properties may be more important than others.

For this reason, different types of lighting and shading allow different approaches which can be

optimized in different ways. For instance, specular materials require a higher granularity of lighting

information, like the viewing direction properties, whereas dull objects can use simpler approxi-

mations without sacrificing realism. Indirect Lighting presents different challenges: it needs full

scene information including unseen surfaces, while transparency models only needs information

about objects away from the eye model.

3.3.1 Bi-directional Distribution Functions

For more complex shading approximations, Bi-directional Distribution Functions can be used to

mathematically store surface shading information. These are a class of functions that describe in

2These tertiary light sources can be thought of as secondary light sources relative to the secondary source that

illuminates them.

23

detail how light is reflected from or transmitted through the surface, through a set of parameters.

There are two basic types: Bi-directional Reflectance Distribution Function s (BRDFs) and Bi-

directional Transmittance Distribution Functions (BTDFs), as seen in Figure 3.2.

A BRDF describes how light is reflected off a surface; both Lambertian reflectance and Phong

specularity are examples of a simple BRDF. Similarly, BTDFs describe how light is transmitted

through a material and how it may exit on the other side. Since Indirect Illumination relies on

diffuse reflections of light, designing a good BRDF is important.

Figure 3.2: Demonstrated light reflecting and refracting via BRDF/BTDF[1]

BXDFs can be directly measured from real life materials by using a custom device called a

Gonioreflectometer[24]. Several other derivation methods exist; sometimes merely observing a

given surface to define its parameters phenomenologically can produce realistic results[15]. Ap-

proximations for essentially any real surface can be generated through appropriate measurements.

However, accurate BRDFs and BTDFs for specific surfaces are very complex and difficult to

simply parameterize and thus are not suitable for a general lighting model. Storing the data for

24

these complex surfaces must also be taken in consideration. Pre-computed methods such as Pre-

computed Radiance Transfer (PRT) are one way to store large amounts of shading information,

often by using Spherical Harmonics (SH) to compress or approximate the lighting information[41,

3].

These methods are unsuitable for fully dynamic situations, however, since a BRDF is discretely

defined for a specific surface and pre-calculating lighting information assumes a static mesh or

lighting environment, or both. If an object were to change shape or material, all pre-computed

values wold need to be updated. Storing any large quantity of values of a highly defined BRDFs

will also quickly consume memory[41].

3.3.2 Spherical Harmonics

Spherical Harmonics are a special set of solutions to Laplace’s equation, shown in equation 3.3.

EQUATION 3.3∇2ρ = 0

It is a second order partial differential equation which is comprised of Laplace’s operator, ∇2,

applied to a scalar function, ρ, set equal to zero. All solutions to Laplace’s equations are termed

harmonic functions. The gradient, a representation of a scalar field’s rate of change, in spherical

coordinates is shown applied to a spherical scalar field in Equation 3.4 . The result after taking the

gradient’s divergence is shown in Equation 3.5. Spherical harmonic functions are solutions to this

final equation in the spherical coordinate space.

EQUATION 3.4δf

δr
r +

1

r

δf

δΘ
Θ +

1

rsinθ

δf

δΦ
Φ

EQUATION 3.51

r2
δ

δr
(r2

δf

δr
) +

1

r2sinΘ

δ

δΘ
(sinΘ

δf

δΘ
) +

1

r2sin2Θ

δ2f

δφ2

We use the spherical coordinates because they more natively represent how light travels. A

point in three dimensional spherical coordinates is defined with a radius r, an azimuth angle θ, and

25

Figure 3.3: The spherical coordinate system[1]

a zenith (elevation) angle φ, as shown in Figure 3.3. If the light source is at the origin, these coor-

dinates define how far away a point is from the light source and in what direction, key information

for determining the direction and intensity of light at a point in space.

Spherical harmonics are linearly independent and can be calculated to an arbitrary complexity,

and this qualifies them as a set of functional bases. Basis functions for a coordinate space are a

mathematical series of linearly independent functions which can define any function located within

that space to an arbitrary accuracy, one proportional to the size of the basis series. The full theory

behind functional bases is beyond the scope of this paper; what is important is that we will use

spherical harmonics as a set of bases to approximate the distribution of a light source’s intensity.

In order to provide an example, we will speak of the use of spherical harmonics in two stages:

encoding and decoding. For the encoding step, intensity information is placed into a spherical

harmonic approximation via the generation of coefficients that most closely amplify the bases to

represent the fully realized, ‘ideal’ light source. Decoding involves retrieving the intensity data

from this approximation in the same form as the original light.

26

Without geometry and neglecting any differential attenuation, the radiance distribution of a

point light is a sphere and could be perfectly represented by a single spherical harmonic function.

The example, nonetheless, uses four bases to demonstrate how more complex sets of bases work,

using two bands of spherical harmonics. We will also define the radiant flux of this area light

source as 0.8 on the range[0, 1].

The first step in encoding is to take a series of samples of the light source’s radiant flux. The

granularity of the sampling is dependent on the complexity of the original intensity distribution and

the number of bases used; more variation in the light source or more bands of spherical harmonics

require more samples. For a perfect sphere, we will take samples in the six directions of 3D

Cartesian space.

EQUATION 3.6

(1, 0, 0) = .8 (−1, 0, 0) = .8

(0, 1, 0) = .8 (0,−1, 0) = .8

(0, 0, 1) = .8 (0, 0,−1) = .8

Since we are using a point light, all values are the same. It should be stressed that this is rarely

always the case, especially when representing secondary light sources.

Now that we have sample values, we calculate coefficients for the first two bands of spherical

harmonic functions. Our approximation of the light source’s distribution function is then a linear

combination of these functions multiplied by their coefficients.

EQUATION 3.7

Y 0
0 =

1

2
×
√

1

π

Y −11 =

√
3

8π
× e−iφ sin θ

Y 0
1 =

√
3

4π
× cos θ

Y 1
1 = −

√
3

8π
× eiφ sin θ

27

The functions, transformed from complex spherical coordinates to real Cartesian coordinates,

are below. We use the real-valued functions for simplicity and speed of computation on a computer.

EQUATION 3.8

s =
1

2
×

√
1

π

px =

√
1

2
× (Y −11 − Y 1

1) =

√
3

4π
× x

r

py = i

√
1

2
× (Y −11 + Y 1

1) =

√
3

4π
× y

r

pz = Y 0
1 =

√
3

4π
× z

r

The next step, in effect, determines the light source’s radiance lobe’s similarity to the spherical

harmonic basis functions by actually generating the coefficients, cml [10].

EQUATION 3.9

cml =

∫
S

f(s)× yml (s)δS

The integral evaluates a function, f(s), at points around the sphere, S, multiplying the results by

the evaluation of the current spherical harmonic band in the sample’s direction. Using the integral

notation alludes to the idea of infinite sampling. Technically, if an infinite number of samples

were taken for a light source, we would be able to perfectly approximate any light source’s shape

using this integral. However, an inifinte number of samples is infeasible, especially for real time

solutions.

Monte Carlo evaluation uses a finite number of samples to approximate the same integral. Our

original sample information evaluates the function in each direction, sj , around the light source’s

lighting function. Using Monte Carlo estimation, the function becomes:

EQUATION 3.10

28

cml =
4π

N

N∑
j=1

f(sj)y
m
l (sj)

We now have all the information needed to generate a spherical harmonic representation of our

light source. Evaluating for each coefficient, we get:

EQUATION 3.11

c00 =
4π

6
{6× 0.8× s([1, 0, 0])} = 4π × 0.8× .282094792 = 2.835926164

c−11 = 0.8× [px([1, 0, 0]) + px([−1, 0, 0])] = 0

c01 = 0.8× [py([0, 1, 0]) + py([0,−1, 0])] = 0

c11 = 0.8× [pz([0, 0, 1]) + pz([0, 0,−1])] = 0

Writing out the entire spherical harmonic representation including it’s functions and coeffi-

cients gives us a final linear combination, φ, of:

EQUATION 3.12

φ =

[
2.835926164× 1

2
×
√

1

π

]
+[

0×
√

3

8π
× x

r

]
+

[
0×

√
3

4π
× y

r

]
+

[
0×

√
3

8π
× z

r

]

φ =2.835926164× 1

2
×

√
1

π
= 0.8

Constructing this spherical harmonic representation for more complex radiance lobes, such as

the one produced by groups of secondary point lights, results in more interesting calculations, but

the method is entirely the same.

In this example, only four bands are used. But, as previously mentioned, spherical harmonics

are an infinite set of functions. As more are used, the representation approaches the actual function

until, at an infinite number of functions, it is a perfect representation of the original . Later we

discuss that, given the diffuse, low-frequency nature of indirect lighting, only the first two bands

of spherical harmonics are needed to achieve a believable model of the phenomenon.

29

3.4 Rendering Techniques

3.4.1 Raytracing

Ray tracing is a technique for rendering an image that traces the path of light backwards from the

eye, through the pixels of the rendering window, and into the scene, calculating the effects of its

encounters with virtual objects. Ray tracing is capable of simulating a wide range optical effects,

such as reflection and refraction, scattering, and chromatic aberration, but is computationally slow

and grows exponentially more complex with larger screen sizes, increased numbers of objects, and

more ray bounces.

3.4.2 Photon Mapping

Photon mapping is a two-pass Global Illumination (GI) algorithm developed by Henrik Wann

Jensen. Rays from the light source and rays from the camera are traced independently until some

termination criterion is met, then they are visualized in a second step to calculate a radiance value.

Photon Mapping is used to simulate the interaction of light with different objects, most often the

caustic properties of glass and liquids.

3.4.3 Radiosity

Radiosity is one of the oldest GI techniques for indirect lighting, originally stemming from 1950’s

heat transfer methods. Like Photon Mapping, Radiosity tracks reflected light before being captured

by the camera, creating view independent indirect lighting.

It accomplishes this by iteratively running several passes with increasing light bounces, essen-

tially tracking light as it ‘spills’ into the scene. Note the way the color from the floor bleeds onto

the ceiling and walls for the Radiosity image in Figure 3.4. While it historically has been a still

frame rendering solution, there are several methods for simple Radiosity solutions in realtime[35].

30

Figure 3.4: Comparison of Radiosity to Direct Illumination[4]

3.4.4 Precomputed Radiance Transfer

The PRT algorithm [41] presents a real time solution to indirect lighting that utilizes a low frequency

spherical harmonic basis to represent radiance transfer. Though able to fill our needs of a real time

solution, the PRT method cannot cope with a dynamically changing objects.

Before the scene is rendered, the algorithm iterates across a scene’s geometry and splits objects

into equal sized patches. At the vertices of each of these patches, a radiance transfer function is de-

fined using spherical harmonics. As a volumetric equivalent to a Fourier series approximation, this

spherical harmonic representation emulates the function that defines how light transfers between

an incoming and outgoing angle after hitting the object. The incident light hitting an object (from

a scene’s light source) is also represented using spherical harmonics. This allows the previously

necessary integrals across a scene’s lighting to be represented as a summation of four, nine, or 25

basis coefficients instead.

Further research was completed by Teemu Mäki-Patola on using PRT to render self-occlusion,

glossy, and diffuse lighting surfaces, but these techniques are still pre-computed[21]. Though real

time speeds are reached, if a scene’s geometry were to change, the algorithm would need to define

new surface patches and new radiance transfer functions across even unchanged parts of the scene.

Though the use of spherical harmonics bases relates to our work, PRT is not suitable for our use.

31

3.4.5 Light Propagation Volumes

A method of indirect lighting called Light Propagation Volumes (LPVs), first defined by Anton

Kaplanyan working for Crytek, calculates first hop radiance information using a three-step, fully

dynamic process [16]. It does not use any pre-calculated values from a scene’s geometry, thus

allowing the geometry to change within the scene with no loss of performance. It is highly down-

scaled in nature, independent of scene geometry, and uses spherical harmonics to further compress

its lighting information.

In a general sense, the method of LPV uses a three dimensional texture to represent highly

down-sampled first bounce lighting information through a scene. Radiant flux is first sampled

across the scene then injected in the down-sampled volumetric texture. This lighting information

is propagated through the three dimensional texture giving a final, volumetric representation of the

entire scene’s indirect lighting. This texture can then be used as a three dimensional lookup table

to determine the effect global illumination has on a single fragment [16].

It should be noted that LPV only calculates the first bounce of indirect lighting. Information

past the first bounce has been shown to make little difference to the scene’s final look and feel and

only adds to the computation time of the algorithm [16].

Reflective Shadow Map Generation

This first step generates a reflective shadow map (RSM) from the lights perspective. The Reflective

Shadow Map (RSM) map contains standard shadow map information but also includes values de-

scribing a scene’s radiant flux. Performed for each light source, it is computationally cheap and

can be done in a single pass each time the scene is rendered. Each time this shader runs, it gener-

ates world space position, normal vector, depth, and radiant flux information for each point in the

scene. This output is stored within two OpenGL textures and is passed to the next stage of LPV.

The resulting map represents an array of ‘secondary light sources’, storing all the necessary

information needed to calculate second hop lighting information. Using radiant flux instead of

other measurements of light, such as radiance or radiant intensity, allows us to disregard the area the

secondary light source is affecting during subsequent calculations[6]. We only store information

32

regarding the direction and intensity of light bouncing off the current surface. Once generated, we

can calculate the light intensity, I , at any point in any direction, ω̂, by using equation 3.13.

EQUATION 3.13
I(ω̂) = ΦR ∗ (N̂� ω̂)

Volume Injection

The key component of LPV is the volume representation of the secondary point light sources. A

cube is defined, encompassing the geometry currently visible by the camera. Inside of this cube,

smaller cubes are delineated, each representing an individual region of the main volume. Each

smaller cube will eventually contain a spherical harmonic representation of the average radiant flux

the pixels it contains output. Using spherical harmonic representations allows lighting information,

including direction, to be stored using only a small number of float values.

Iterating across each cube in the volume, the algorithm samples the RSM at a dynamically

specified sample rate and determines if that pixel of the RSM resides within the current smaller

cube through depth testing. If the pixel lies within the cube, the direction and radiant flux from

that point of the RSM is used as a single sample in the final smaller cube’s spherical harmonic

representation. Increasing the sample rate, will create a finer tuned the spherical harmonic function

at a performance loss only directly proportional to the increase.

The injection stage is repeated for each light source but the results are aggregated into a single

volumetric texture. This is possible because of the additive nature of spherical harmonic coeffi-

cients. It also means this is the last step that requires iteration across each light source, increasing

the algorithm’s performance [16].

Light Propagation

This step takes into account the way indirect lighting from the secondary light sources spreads.

In the previous step, a volume is generated, representing the initial state of the scene’s lighting.

However, each secondary point light inside one of the smaller cubes can transfer light into other

33

cubes as well. Propagation takes into account the distance light can travel from a secondary light

source.

Given the coefficients of a spherical harmonic representation and a direction, the intensity the

function represents in that direction is found by evaluating a linear combination of basis functions.

To conduct the propagation stage and finalize the volumetric indirect lighting texture, each smaller

cube’s radiant flux in the direction of its adjacent cubes is calculated. Once again, the additive

nature of spherical harmonic coefficients allows us to simply add to each set of coefficients in

order to represent the propagation of light.

Once propagated, the volumetric representation is ready to be used for lighting the scene as a

whole. When running the final lighting shader, the total indirect lighting a pixel receives can be

found by adding the coefficients multiplied by their respective spherical harmonic basis function

together from the just the smaller cube the current pixel is located within. No additional informa-

tion from surrounding pixels needs to be calculated [16].

34

Chapter 4

Methodology

4.1 Chosen Platforms

While there are several platforms for developing graphics, none of the game engines, development

packages, or shader design packages had the flexibility or advanced support we needed for our

project. Microsoft’s C# based XNA has unwanted overhead from the .NET framework while still

requiring us to build the entire backend. Other packages like the Blender and the Unity game

engine are specifically targeted at rapid game development rather than advanced graphics, and can

often be buggy. No packages offered the control of input and output necessary to create or use a

Light Propagation Volume (LPV), so we decided to simply program everything ourselves.

Our Application Programming Interface (API) options were OpenGL and DirectX, and we

chose OpenGL for its open standard and implementation on more systems than the proprietary

DirectX. We were limited to OpenGL version 3.3 because of the capabilities of our personal hard-

ware. Fortunately, this version of OpenGL has core support for framebuffers, a feature we found

necessary for the generation and manipulation of LPVs.

For external images, the Targa (TGA) image format was used[40]. This format, originally

created by Truevision for use on graphics workstations, is a popular choice when simple parsing

of files is desired since the actual color information in an uncompressed TGA is stored linearly in

memory. Due to storing its channels in blue-green-red-alpha (BGRA) order, TGAs are ideally suited

35

to Graphics Processing Unit (GPU)s which prefer incoming color information in BGRA. Writing

the importer for TGA images is thus easier than other formats that support alpha channels, which

we used for passing information other than color into the program[40].

Keeping with the open source theme, we started coding in Eclipse and compiling with MinGW,

but quickly ran into library issues: there is no precompiled library for OpenGL Extension Wrangler

(GLEW) for use with MinGW, and compiling it requires a cross-compilation from GNU/Linux to

Windows. This was beyond our skill set and we subsequently switched to Visual Studio 2008, but

ran into compiling issues again. This time it was because Visual Studio does not support the C99

standard[20]. Compiling our C code with the C++ compiler fixed these issues, with possible loss

of C compliance.

The 3D models and textures in the project were created entirely by our team.

4.2 GSUITE Practical Overview

The framework we built to support the project is an OpenGL based low level graphics engine

that we named GSUITE, short for ‘graphics suite’. Since the OpenGL standard itself provides a

lowest common denominator API, GSUITE was built to encapsulate the raw functionality into ab-

stractions that are easier to deal with and more interoperable. As a library, we provide few features

not present in OpenGL already: apart from mathematical constructs common in graphics, GSUITE

mostly exposes easier-to-use versions of the constructs that OpenGL specifies, sometimes mirror-

ing the deprecated OpenGL functionality. These include buffer objects, shader programs, textures,

and framebuffers. In general, it is meant to be used as an aid to programming OpenGL demos and

experiments. For that reason, we sought to mask as little OpenGL functionality as possible and

only fold features together that would most usually be used together. The result is a library that

served our goals and took care of the boilerplate aspects that results from complex OpenGL tasks,

like using shaders.

36

4.3 GSUITE Technical Overview

GSUITE is a collection of almost entirely original code written in C. It relies on several external li-

braries that use OpenGL: GLEW, GLSW, and FreeGLUT. These libraries provide extension loading,

shader source management, and platform independent OpenGL context and windowing control, re-

spectively. For ease, we will refer to the combination of the GSUITE code and these support libraries

collectively as GSUITE.

The combination of libraries and code in GSUITE manages the details and complexities of deal-

ing with the low-level aspects of OpenGL. This allowed us to focus on implementing graphical ef-

fects instead of OpenGL extensions and platform-specific APIs or Graphical User Interface (GUI)s.

The framework has allowed the implementation and addition of new shaders to the rendering

pipeline, changes to color formats, and alterations of core functionality with isolated errors and

highly localized changes to code outside of the altered packages. It also makes changes much

faster. Refer to Figure 4.1 for the full Module Diagram.

We built GSUITE to serve our needs within this project, but in the interests of programming

best practices we also designed it with extensibility, portability, and scalability in mind. How well

we achieved this remains to be seen in a real-world context, though it has proved fairly easy to

work with despite some quirks. Modules such as GCanvas1 were built and incorporated in only a

few hours. The highly encapsulated design also keeps relations among modules clear to that bug

tracking only deals with a shallow dependency hierarchy. We point out that the positive experiences

we had were under limited scope on only four platforms and one Operating System.

4.3.1 Language

The choice of programming in C was motivated by the assumption that performance would be

an issue we would have to deal with, and we wanted to be able to maximize processing power

and speed to provide ample space for the shader work. C’s exposed memory management would

allow us to tightly control allocation and deallocation and produce code that, theoretically, had

1A module designed to show picture-in-picture style images in the window.

37

Figure 4.1: The relationships between GSuite’s various modules; GMath is not shown connected

because practically all modules use it.

38

little overhead to do exactly what it needed to do. We originally chose C89 as our programming

standard but because of compiler issues2 and expediency we switched to using C99 features.

Also, OpenGL has always been designed from a procedural perspective because it seeks to be

a standard that any language can have bindings to. We felt C was a natural fit for this paradigm.

The choice of language was also affected by the team’s familiarity with C. Two members are

well versed in the language and had few issues with pointer management. Using a more object-

oriented language such as C++, though beneficial in terms of reuse and abstraction with similar

performance, would have slowed down our work and likely caused subtle bugs from features we

did not fully understand. It is very hard to debug the interaction of dozens of objects when the

details of memory are unknown to the programmer due to a lack of experience with the language.

4.3.2 Object Model

Without objects but with a desire for their benefits, we had to implement a limited object system

in C in order to avoid an intractable jumble of ad-hoc code. Object data is simply represented

by a STRUCT, forward declared in its header file and defined in its implementation file. This was

necessary to both avoid name collisions from inclusions that preprocessor directives cannot resolve

and to provide data hiding by making every field in an object effectively private.

The collection of functions that act upon a given object are declared in the header file and

implemented in the implementation file and each takes a pointer to the object the specific call

applies to as the first parameter. Since this is the sole location where the actual fields of an object

are defined, only class functions can mutate class fields directly. This assurance greatly simplified

debugging since it is (mostly) impossible for code in one module to alter data from another

without passing through a controlled interface, barring the use of bad memory management.

Likewise, allocation and deallocation of objects can only happen in code that exists in the

implementation file, so the use of MALLOC and FREE is restricted to a very tight and small collection

of code that is isolated from the rest of the program. This helped avoid memory issues.

None of these features are novel or original. C++ and Java have the same functionality built-

2These issues mostly deal with the arbitrary declaration of local variables within a function block.

39

in with far more powerful features than our simple system and they are the common techniques

employed in C’s standard library. However, this system was central to our ability to make the

program work and do so with minimal volatile behavior or development. Even though it is not a

strictly object-oriented system in terms of ‘real’ features, we will use the standard terminology of

classes and objects to discuss it.

4.3.3 Modules

For most classes, there is a header file and implementation file. The exceptions are Textures and

Renderbuffers, which share a source file because of the analogous and brevity of the Renderbuffer

class, as well as any support classes for the main classes. We refer to the two files together a

module. In general, the classes provided by each module provide an interface to or abstraction of an

OpenGL object. A few are unique and incorporate elements of non-OpenGL specific functionality

as well as some OpenGL interaction. For instance, GSUITE GBUFFER objects interface directly with

OpenGL buffers objects, whereas GCANVAS provides a GUI widget that draws a texture to the screen,

something that OpenGL does not support natively. Each module masks OpenGL interaction as

much as is practical. Since GSuite is not full-featured or prefect, there are still numerous OpenGL

facilities that are used directly by the code.

GMATH

Because OpenGL versions past 3.0 removed the Fixed Function Pipeline (FFP) from the core fea-

tures, all application space linear algebra needs to be implemented by the programmer. These

include the construction of perspective and transformation matrices, and any vector operations.

The GMATH module provides this faculty.

GMATH defines structured data that mimic primitive data types. We used Graphics Language

Shading Language (GLSL)’s primitives as a guide and implemented C analogs. Thus GMATH pro-

vides two, three, and four component vectors as well as all combinations of these dimensions for

matrices3.
3Since the data type has arbitrary dimensions, these types were mimicked through constructors.

40

The vector types are defined as arrays of the length of their respective size; typedefs and the

assumption that only allocation of vectors via the support in GMATH will be used keep this system

type safe. In addition, we included a quaternion type for orientations. These are modeled exactly

as four component vectors are, except with a separate name and interface.

The matrix type, GMATF, is implemented similarly to other GSUITE classes. Unlike vectors,

matrices support arbitrary size since it would be cumbersome and unmanageable to have sepa-

rate explicitly dimensioned types. Matrices can also be initialized explicitly or from vectors, and

various built-in functions can create and mutate matrices in expected ways, such as inversion,

adjunction, and transposition.

A large collection of converters between types are supported when appropriate. These include

operations such as conversion between quaternions and rotation matrices.

GSHADE

OpenGL’s support for shader programs is low-level and modeled on the C/C++ compilation model.

Shader source code needs to be uploaded using C-strings and each stage compiled separately.

Using the string handling functionality of OpenGL Shader Wrangler (GLSW), the GSHADE module

handles all interaction with shader objects in OpenGL.

Creating a GSHADER involves a filename and path and parameters which GLSW uses to slice

the source file up into its component stages. The stages can then be compiled, aligned to output

buffers, and linked. GSHADERS also define an interface for the alignment of attributes, uniforms,

and textures to the shader program which is far simpler than the raw OpenGL interface. Since the

interface is more type aware, aligning inputs consists of a single bind operation and a call to one

of the five alignment functions, instead of the several dozen in the OpenGL standard.

GTEXTURE

Three classes encapsulate the large list of parameters and options of OpenGL’s texture objects:

acrnGTexture, GIMAGEPARAMS , and GTEXPARAMS . GTEXTURE is a container for all the texture

options and the image data for each level of a texture itself, which are managed by the two other

41

support classes.

In addition, GTEXTURE tracks the current framebuffer attachment, layer, target, and texture unit

of the texture it represents. This values are used when the corresponding operations are performed.

A GTexture also has a default attachment, layer, and unit, usually the one it was created with but

this can be changed. It is important to know what the creation parameters were sicne OpenGL

implementations are free to use such information to optimize performance. The current context

information can be reset to any of the default values.

GDEFBUFFER

GDEFBUFFER is a class that models a more complex conception of a framebuffer than that of its

OpenGL counterpart. In addition to managing an OpenGL framebuffer, GDEFBUFFERs register and

track all textures that can be attached to them, indexed by a unique integral name retrieved with

GETGDEFLAYERENUM. These layers can be attached and detached by this name, allowing a collec-

tion of render targets to be managed as a group and selectively used. In terms of performance, this

organization is crucial because switching attachments is far faster than switching framebuffers. For

practical reasons, however, few modules makes use of this ability and no centralized framebuffer

exists.

GCAMERA

GCAMERAs deal with the projection of geometry onto the screen. In many ways the class behaves

like a concrete version of the GLUT camera functions, except the projection and model view ma-

trices must be extracted and loaded by the programmer into shaders. Cameras are initialized by

the point it looks at, the up vector, and the position of the camera and a collection of projection

parameters.

Because of the accuracy of floating point and the math needed to create a quaternion from a

description of an orientation related to a rotation matrix, the initialization of the camera can be less

than ideal. Implementation tricks ensure that the camera will look at the appropriate location as

specified, but the actual angle of the camera may differ by several degrees and the location may

42

be off by a few hundredths. Subsequent transformations work as expected, as the conversion from

quaternions to rotation matrices is much more reliable.

GBUFFER

GBUFFERS are similar to GTEXTURES in that they manage a large amount of options and parameters.

However, GBUFFERS track attribute formats that describe how data is packed into memory. These

are created then stored in a list, indexed by the string name of the input they attach to in the shader.

GSHADERS are can use the GBUFFER type directly to align attributes by name.

GCANVAS

The canvas is a simple display widget which renders a texture, including 3D textures, to the window

in a specific location. We have used this extensively to debug various textures.

GLIGHTVOLUME

GLIGHTVOLUME manages our LPV implementation. After initializing the object, successively calling

three functions in order is all that is needed to produce a lighting volume. Using a collection of

internal textures, a camera, and three shaders, as well as transformation code from other modules,

the light volume collapses a huge amount of code into a very small main program footprint. The

specifics of how the algorithm works are described in the following section.

4.4 Implementing Light Propagation Volumes

Implementing LPVs introduced new challenges to developing an extensible coding framework

around OpenGL. The LPV algorithm relies on multiple passes and the use of OpenGL structures

in unusual ways, which proved difficult to develop especially in the absence of extant OpenGL

examples and the novelty of the technique.

43

4.4.1 Transformations

In order to render to the LPV we needed to be able to systematically transform from points defined

in the volume’s space to points in the light’s space. This allowed depth testing to occur in light

space such that surfaces could be identified and their radiance modeled by spherical harmonics.

4.4.2 Generating the Reflective Shadow Map (RSM)

The RSM is a projection of the scene from the point of view of the light source. We used an

orthographic projection to model exterior sunlight, which is essentially parallel in nature. Our

RSM (Figure 4.2) stores the albedo, depth, and surface normal in three distinct textures.

Figure 4.2: RSM Depth Map

4.4.3 Building the LPV

Building the initial LPV requires rendering to a 3D texture. However, graphics APIs are designed

to only render to 2D arrays of values. This presented a problem: printing a 3D texture using 2D

outputs. Only a single layer of a 3D texture may be attached as an output of a shader, and the

number of 2D slices in even a small volume is prohibitive to attach all at once, because the limited

44

number of attachments allowed.4 Furthermore, any number of outputs more than one would require

us to alter the shader any time a change in the resolution of the volume was needed.

Printing to a 3D Volume

Thus, we wrote a shader that executed on a single slice of the volume. The geometry passed to the

shader is in fact a single quadrilateral mapped to the render window, run with depth testing turned

off. When the shader exits the vertex stage, the fragment stage receives its location in volume

space, with each fragment representing a single voxel in the LPV. This location is mapped exactly

the same way the normalized device coordinates are, on the range [0, 1] on all axes. Using the

transformation from the LPV space and the transformation to the RSM allows points to be put into

the light’s space so that samples may be accumulated and injected into the LPV. This means that

only a few matrix multiplications are used to get the base position of each fragment to use for

identifying primary reflectors and transmitters.

Injection of Secondary Light Sources

The fragment stage uses the information received from the the vertex shader to gather samples of

nearby secondary light sources and transmitters from the RSM. Because the LPV is guaranteed to

be coarser5 than the RSM, we sample an area around the fragment’s location for reflector data.

The number of samples to take within each voxel is passed as a shader input and the actual

offset from the center of a voxel is taken from a lookup of a 1D texture of random colors. These

offsets are transformed so that they always lie within the volume of the voxel, then the final sample

location is transformed to light space.

With this information, the RSM’s depth texture is sampled and the current sample’s z component

compared. If the RSM depth contains a value that lies within half a voxel’s width from the sample

location, the RSM contains a primary reflector and transmitter that is within the current voxel.

At this point, the shader looks up the surface normal and albedo at the sample location in

the RSM. These are used to generate two bands of per-channel spherical harmonic coefficients.
4The hardware we used, for example, only allows 8 draw buffers.
5See Section 5 for why.

45

The average of these coefficients is saved in the three LPV textures, one each for the three color

channels.

Figure 4.3: RSM Injection and LPV Seeding model

4.4.4 Propagation

To propagate the lighting data through the volume, a similar design to the volume generation shader

is used. Three 3D textures are taken as input, which are the LPV channels from the previous propa-

gation step.6 Subsequent passes swap the outputs for the inputs, thus overwriting the propagations

from two passes previously. This is necessary because, though the standard allows it, writing to a

texture which is currently being sampled has vendor dependent and undefined behavior. 7

Given its position in the volume, the shader pulls coefficients from adjacent voxels in the vol-

ume using the inputs and adds it to the current location’s coefficients, multiplied by an attenuation

factor which makes sure light smoothly ‘smears out’ across the volume. This value is then output

6On the first propagation pass, the shader uses the LPV channels from the injection step.
7Extensions do exist to allow this to work but we were more concerned with portability and support.

46

to the the slice of the LPV the fragment is part of.8 The propagation process is executed for each

slice and the whole process repeated as many times as desired to increase the number of ‘hops’ of

light.

4.4.5 Illumination

Once the volume is generated, it is plugged into the compositing shader of the deferred framework.

At composite time, each fragment’s surface normal and position are transformed into the volume’s

texture space are used to sample the volume and calculate the illumination at that point due to

indirect lighting. This effect is compounded with the more standard diffuse and specular techniques

to produce an image that displays the transmissive properties of the material.

8This alignment is ensured in application space since outputs must be two dimensional.

47

Chapter 5

Results

5.1 Benchmarks

Our benchmarks were primarily made on computers in the Worcester Polytechnic Institute (WPI)

IMGD lab, which are Intel Core2 Duo 3.0GHZ processor computers with 4GB of RAM and two

Nvidia GeForce 9800GT graphics cards in SLI configuration, running Windows 7 [14].1 Addi-

tional user experience tests were conducted on a similar machine with a single GeForce 9500 (Ma-

chine 1), an Intel Core2 1.80GHZ processor, 2GB RAM desktop with an nVidia GeForce 8500GT

(Machine 2), and a Lenovo Thinkpad w510 i7 quad-core 1.6GHZ processor, 3GB RAM laptop with

a Quadro FX 880M graphics card (Machine 3).

The test mesh used was “bigbush.obj”, created in Blender, and has 22,100 faces. For qualitative

tests, a ground plane object “groundplane.obj” was included as well, bringing the total scene face

count to 24,191. Both objects use separate 512x512 texture maps and normal maps.

The first test compares the effects of Reflective Shadow Map (RSM) map size to Light Propaga-

tion Volume (LPV) cube resolution, measuring the resulting FPS while noting the visual differences

in image quality. The results are shown in Tables 5.1 and 5.2. The observed results were fairly

expected, showing decreasing frame rates as both the voxel density and RSM size increased, but

1While many programs and games can greatly benefit from an SLI configuration, there was no noticeable FPS

difference when running our benchmark tests with SLI on or off, so those results have been omitted.

48

RSM Map size v.s.

LPV Voxel Cube size 83 163 323 643 1283

128x128 px 47.95 52.65 42.27 12.20 1.89

256x256 px 49.55 52.73 41.44 11.68 1.83

512x512 px 49.55 52.71 39.64 11.25 1.80

1024x1024 px 34.10 47.07 34.17 8.84 1.32

2048x2048 px 17.7 38.22 28.55 7.91 1.31

Table 5.1: Frame rendering speed (FPS), 512x512 px window

RSM Map size v.s.

LPV Voxel Cube size 83 163 323 643 1283

128x128 px 44.15 37.71 29.32 11.20 1.60

256x256 px 44.44 37.24 29.00 10.87 1.57

512x512 px 42.04 35.65 27.96 10.67 1.58

1024x1024 px 33.50 31.61 24.68 7.74 0.83

2048x2048 px 8.97 26.07 20.71 6.70 0.81

Table 5.2: Frame rendering speed (FPS), 1024x1024 px window

the increase in FPS from LPV voxel densities 83 to 163 was unusual.

Small LPV densities resulted in a smooth but very generic lighting, and caused jagged shadow

approximations when specifically hard edges are present. Small RSM values also resulted in gran-

ular shadows, due to the loss of edge precision caused by the small resolution of the RSM map.

Lower resolutions of both LPV and RSM decreases processing time, which helped increase the

frame rate.

49

Overall, the best results for both qualitative measurement and rendering speed were for RSM

sizes between 128 and 512 pixels, and an LPV voxel density of 163.2 There was little noticeable

difference between RSM map sizes above 512 pixels squared, and large LPV cube densities created

very granular and spotted illumination passes, and were thus not a good representation of Global

Illumination (GI).

A second test was conducted to measure the program’s effect on graphics hardware.3 A stand-

alone executable, GPU-Z, was used to measure the change in Graphics Processing Unit (GPU) load

and memory usage[39] (see Figure 5.1). Variations of RSM and LPV sizes were used to stress the

graphics card. The results are shown in Table 5.3.

Because the GPU is used for rendering the Operating System (OS) as well, the graphics card’s

memory is always in use. To calculate the memory used by our program, data was measured before

and while the program was running, and the difference recorded. 4 CPU and GPU processes were

observed for 10 seconds after the program fully loaded and displayed on screen, and the average

recorded.

The results show that this implementation has a very small memory footprint, but is rather

processor intensive for both the CPU and the GPU. Being GPU bound is a good thing, however;

it narrows down where optimizations could be made and means that using faster GPUs will create

higher frame rates.

2It is worth noting that while our shader was designed to handle virtually any RSM map or LPV size, graphics cards

prefer texture sizes of binary powers [28].
3Administrator Privileges were required to run the program, so the test was conducted on a personal computer

(Machine 1); the same one used for the qualitative assessment.
4The settings of 2048px, 2563 for RSM and LPV sizes, respectively, crashed the GPU, so data was unable to be

retrieved for that value pair. Since the graphics card had 1GB of onboard memory, and the average memory load was

around 50MB, it was likely a processing choke; it couldn’t handle the exponentially increased calculations.

50

RSM & LPV sizes GPU (%) GPU Memory (MB) CPU (%) Computer RAM (MB)

256px, 163 98 30 50 31

512px, 323 99 34 50 33

1024px, 643 98 30 60 68

2048px, 2563 NA NA NA NA

2048px, 1283 99 74 97 122

2048px, 643 99 80 95 63

256px, 323 98 46 50 33

256px, 1283 99 76 97 106

512px, 1632 99 72 50 31

64px, 83 97 36 44 44

Table 5.3: GPU Utilization - Scene with 24,919 faces

51

Figure 5.1: Screenshot of GPU-Z program while collecting data[39]

52

5.2 Objects and Textures

All objects and textures used in this project were created by the project team, using Blender 2.5 for

models and Photoshop CS5 for image creation and manipulation. Only the skymap was used from

an outside source.

5.2.1 Big Bush

The bigbush.obj consists of 22,100 faces.

Figure 5.2: “bigbush.obj” object mesh, modeled after real leaves

53

Bush Textures

(a) albedo (b) normal map

(c) transmittance value (d) movement weights

Figure 5.3: Bush Textures

54

5.2.2 Ground Plane

The groundplane.obj consists of 2,819 faces.

Figure 5.4: “groundplane.obj” object mesh

55

Groundplane Textures

(a) albedo (b) normal map

(c) movement weights

Figure 5.5: Groundplane Textures

56

5.3 Qualitative Assessment

The qualitative assessment involved explaining the purpose of the project to the subject, then show-

ing them, in increasing complexity, the various rendering stages of the program.5

This involved rotating the bush object, as well as the light around it, to fully show the effect of

the implemented LPV GI approximation. The subject’s reaction and opinion on the look of the final

image were observed. The test was rendered in a 1024x1024 px window, using an RSM size of

256x256 px and an LPV voxel size of 323. The subject pool consisted of seven WPI Senior students,

with a diverse set of graphics knowledge and experience: ranging from having seen at least one 3d

animated movie to someone currently coding a game-oriented graphics engine.

All subject responses were positive6, noting how the lighting was smoother and the ability to

see the shadows from the underside of the leaves was ‘realistic’.7 These results demonstrate the

visual effectiveness of the lighting techniques.

5The four stages used were Albedo (Figure 5.8a), Specular and Diffuse5.6a, Specular and Diffuse with Shadow

Map (Figure 5.6b), and the final composite stage with LPVs (Figure 5.7).
6Many subjects exclaimed “oh wow!” and “oooh!” when the final composite layer was shown.
7A couple subjects complained about the light flickering as it rotated, but concluded it was still realistic overall.

57

5.4 Direct Lighting vs. LPV vs. Ground Truth

The following are screenshots of the final program,8 and then breakdowns of all the shader infor-

mation that is used to create the final composite image.

(a) Lambertian Diffuse (b) Diffuse + Shadow

(c) LPV Composite (d) Blender Raytrace, 2 minutes

Figure 5.6: The project results, compared to raytraced ground truth, rendered in Blender

8An odd, noted bug that results in a less than perfect ground plane: regardless of input mesh, the ground plane

object’s normals are always inverted, which affects the resulting reflected GI term.

58

Figure 5.7: Full composite

59

(a) Texture color; one of the deferred inputs (b) Ambient sky term with shading and shadows

(c) Non-normalized global illumination term (d) Non-normalized transmitted illumination term

Figure 5.8: Shading layers that result in the final composite image in figure 5.7 on page 59

60

(a) World normals; one of the deferred inputs (b) Position of fragment in the LPV; based on the de-

ferred input of world position

Figure 5.9: Graphical Representation of Object Data, used in the shader calculations

5.5 Additional Effects

Subsurface Scattering (SSS) is loosely approximated using our LPV method through the translu-

cence/thickness map, which is packed into the alpha channel of the normal map. See Appendix 5.2

for the actual texture. The values from this map not only scatter the propagated light in a slightly

more realistic way, but serve to selectively darken the underside of the leaves as well, to emphasize

the internal plant structure.

An additional improvement to the scene was the inclusion of subtle leave movement. This helps

bring the scene to life while effectively proving the validity of the dynamic qualities of the LPV

lighting method. The vertices are moved via the vertex shader of the initial deferred shader pass,

using a sin wave offset by the vertices’ xyz position to randomize the movement, a time value to

smoothly loop between the movement extremes, and a vertex weight texture which is packed into

the alpha map of texture map. This texture-based method is derived from one of Crytek’s papers

61

in GPU Gems 3[37]. In their example, they have an entire texture dedicated to the movement of

palm tree leaves, and use animated wind vectors to realistically blow the branches around.

Initially, the object’s normal map was too dense, and caused significant specular noise on the

final rendered image. A normal map filter was devised to reduce the noise and smooth the look of

the leaves, using the 8 rooks sampling kernel [3] and an original convolution method.9 It works

great for far away and dense materials, but for surfaces that are close to the camera, it starts to lose

detail.

The original black background hindered the visuals, so we added a spherical sky map. The sky

texture is mapped dynamically using the camera’s orientation, avoiding the addition of geometry

to the scene and any depth testing issues.

5.6 Fudgefactors and Assumptions

Shadows

There is a notable margin of error with the shadow map due to the shadow bias, that can cause thin

walls to self-shadow and light at certain angles to illuminate correctly, but only on one side.

Edges

One unfortunate side-effect of deferred shading is that traditional antialiasing techniques do not

work since the final fragment values are determined from textures whose finite resolution cannot

easily yield the multi-sampling information needed to properly disguise edges. This problem can

be difficult to deal with; the popular solution is to use a blur filter on areas located with an edge

detection algorithm[3]. We did not implement this for reasons of time and priority.

9The way we smoothed normals was not based on any literature, only experiment. It may be attested to before our

implementation.

62

Chapter 6

Conclusion

Combining our results, benchmarks, user studies, and final product, it is evident that real-time, dy-

namic, global illumination is possible on todays graphics hardware. Using methods such as Light

Propagation Volumes (LPVs) is a feasible solution to the problem of realtime Global Illumination

(GI), and can be implemented using OpenGL and Graphics Language Shading Language (GLSL).

Though it does not cleanly reproduce the effects of a complex and complete Bi-directional

Reflectance Distribution Function (BRDF) and Bi-directional Transmittance Distribution Function

(BTDF) pair, nor the physical accuracy of a raytracer, our solution produces a scalable representa-

tion of GI that is perceptually similar and runs in realtime.

6.1 Light Propagation Volume Trade Offs

Our method of LPV contains multiple stages where implementation could differ, producing dif-

ferent results. Some of these differences were tested in our benchmarks, for example, Reflective

Shadow Map (RSM) resolution or the number of voxels contained in the final volume. Others exist

and can be changed as well.

63

6.1.1 Advantages

The primary advantage of using LPV is that it is geometry independent and consequently incurs

a constant performance cost. It has a very small memory footprint, and is GPU-bound, so future

technology can run it even faster. Also, the diffuse nature of the indirect lighting it traditionally

simulates and the transmittance we added acts on a scale large enough that the LPV can be quite

coarse and still produce the desired visuals. The same principle applies to the spherical harmonics

themselves, since two bands are enough to reasonably simulate the direction of the scattered light.

6.1.2 Reflective Shadow Map Sampling

This trade off played a less significant role in altering our approximation of GI yet significantly

reduced our number of calculations per frame. In order to create a Spherical Harmonics (SH)

approximation to a scene’s lighting function, you must take a discrete number of samples of that

lighting function. However, when creating the SH for a voxel to represent the global lighting inside

it, choices can be made on how those samples are taken.

Initially, our plan was to pick a number of points from the RSM that were located inside the

current voxel. At each point, we would chose random directions using a buffer of randomly gener-

ated noise to sample in. The lighting values in each direction would be a single sample and would

contribute to the SH coefficients for that point inside the voxel. In the end, the coefficients for all

points would be added and normalized to represent the final SH function.

This proved to be inefficient. Creating an accurate SH function for a single point on the RSM

required at least 20 sample points for the simplest scenes and many more for complex geometry.

Then, to have an accurate representation of the geometry inside a voxel, an increasing amount

of sample RSM points were required, raising the number of calculations exponentially. Thus, the

number of calculations necessary to form an accurate representation of GI was limiting.

To increase run speeds with little detraction from our volume’s accuracy, we changed our

method of sampling from the RSM. Instead of creating SH functions for each point we sampled, we

used the points as samples themselves. Each point on the RSM contained radiant flux and position

values. Using the fragment position we found a given point’s direction from the center of a voxel

64

and the radiant flux served as our sample value.

Now, forming an SH required less calculations on orders of ten to 1000. Though more com-

plex scene geometry still requires a higher number of samples to accurately portray it’s lighting

information, the relationship became linear as opposed to exponential.

6.1.3 Propagation

The way our propagation stage is implemented, one run of the shader pulls Indirect Lighting from a

voxel’s 12 immediate neighbors. The shader is run multiple times to further spread light throughout

the entire volume. However, this places more weight on the initial seed illumination. Light reaches

further distances through the volume by multiple runs of the shader, yet each shader run propagates

the initial seeded light an additional time. This method was mainly chosen due to the limitations

today’s graphics cards have on the number of input and output buffers for shaders.

As seen in Figure 6.1, spreading a voxel’s light past its immediate neighbors inevitably in-

creases the light in it’s neighbors cells a second time. This also inherently limits the number of

voxels light can travel. For light to travel four voxels away from its original position, the propaga-

tion shader must be run four times. That also means a voxel’s original neighbors receive light four

times, blowing their illumination out of proportion.

Limiting the number of propagations ends up limiting our GI algorithm’s performance as well.

The number of voxels in a light volume can be easily increased or decreased to produce different

results. However, as the number of voxels increases, the percentage of a scene lit by the same

number of propagations decreases, sidestepping the fluid, globular nature of SH functions and

causing our GI to become jagged and defined, as you can see in Figure 6.2.

While this method provides us with a fairly accurate approximation of GI propagation through

a scene, it does not model the true behavior of light. A different method may have produced more

accurate results while keeping within the bounds of our hardware limitations. Instead of propa-

gating only from immediate neighbors, the entire light volume could be passed to the propagation

shader. Iterating over each voxel in the volume, we could determine the distance away from our

current voxel, reconstruct the lighting function for that voxel in the correct direction, then propa-

65

(a) Initial Seed

(b) First Propagation

(c) Second Propagation

Figure 6.1: Visualization of our propagation scheme

gate the GI using an attenuation value based on the distance. In this way, the shader would only

need to be run one time and the initial seed light would only be spread once.

6.2 Implementation

Our implementation is written in OpenGL, meaning that a working LPV algorithm can be created

for any platform, possibly using our methods as an example. It is also written in C but compiled

66

(a) 83 light volume (b) 163 light volume

(c) 323 light volume (d) 643 light volume

Figure 6.2: Spherical harmonic coefficients using different voxel densities

in C++ mode, which means that using the code directly in an application is not easy nor advisable

since most such programs will be written in actual C++. The benefits of object oriented program-

ming lend themselves well to graphics applications, and as such, we found ourselves implementing

object-like functionality in our C code. Even with Visual Studio’s recent improvements to stan-

dards compliance, the code is potentially unportable as well.

6.2.1 Using OpenGL

Some parts of our implementation are not designed with the best performance in mind. For in-

stance, it is far cheaper to alter the attachments of a framebuffer than it is to swap entire frame-

buffers. The fact that we use multiple framebuffers instead of one or two with more use of attach-

ment swaps is an artifact of how we wrote earlier modules and abstracted the objects involved; a

centralized framebuffer is simply harder to build and test after the fact. This incurs an unknown

performance cost.

Our methods also assume a version of OpenGL of 3.1 or better, which fully updated drivers

67

on up to four year old nVidia cards support, but this is not universal. All our test machines had

NVIDIA cards with up-to-date drivers, so the project’s compatibility with other brands is question-

able due to a few small details of NVIDIA’s GLSL compliance.

6.2.2 Coding Shortcomings

There is a known memory leak that is triggered at some point after the camera is rotated, which

consumes about three matrices-worth of memory per frame. Given the quantity of math and data

involved, this is a small hole, but it remains an open issue.

Also, our shaders have not been scrutinized for optimizations, and given their length it is likely

large improvements can be made. In particular the final compositing shader has several different

methods of shading combined into one, complex system which probably has some redundancies

and has factors incorporated to make the final product more visually pleasing and a more dynamic

demo.

6.2.3 Additional Problems and Challenges

Documentation

The vast difference in design and complexity between older OpenGL and the OpenGL version 3.3

we used creates a problem when it comes to documentation: much of the openGL documentation is

based on older standards and small, one-off demos. A huge supply of Fixed Function Pipeline (FFP)

information exists, but relatively little is targeted at a thorough understanding of the latest features

of OpenGL, particularly the issues that come with shaders and the complex relationship they have

with buffers, framebuffers, renderbuffers, and application space data. There is a contrast between

core features and the extensions that inspired them and new standards depricate many common

functions in favor of more programmable options at the cost of complexity.

68

Standards and Portability

An open standards based Application Programming Interface (API) has the advantage of anyone

being able to implement it, free of charge, and the decoupling of the standard from specific plat-

forms. This is also a weakness; there is no consequence for providing a working implementation

that is not standards compliant. C and C++ suffer from this, and some of their features are very

dependent on the compiler being used. OpenGl has similar issues.

Very often, implementing OpenGL based applications requires careful consideration for the

hardware they will run on. Being gaming enthusiasts, we managed to avoid this issue of hardware

support for the features we desired; the computers used for developing the project had relatively

new NVIDIA cards. This allowed us to ignore programming support for discrepancies between

hardware capabilites.

6.3 Recommendations / Further Study

There are several future directions this project could take. The propagation step is a significant

bottleneck that warrants improving. In particular, we would like to work on better methods of

propagation as the interaction of two dimensional output and three dimensional input is difficult to

resolve.

The quality of the lighting is rather sensitive to small changes in settings, and one way to find

a balance between the extensive parameters would be to add graphical sliders to change settings

during runtime. There is a significant amount of untested configurations that could affect the end

result.

The issue of color flickering has been a long standing and open ended issue for this project.

Numerous fixes were attempted but resulted in only marginal success. It may have to do with

the relative size of the volume to the scene, the resolution of the depth map, how we sample the

RSM or LPV, or how many spherical harmonic bands we use. We switched to using three LPVs for

each color channel in an attempt to resolve color flickering artifacts. Prior versions propagated a

single spherical harmonic model of intensity and the light color separately. The method used for

69

propagating the color without loosing its fidelity was identified as the source of the flickering, so

we switched to per channel harmonics. These three volumes consume more memory because they

use three, four channel, 3D 16-bit float textures instead of only one 16-bit float texture and one

three channel 8-bit color texture. Devising a more compact method for representing the harmonics

or further investigating separating intensity and color propagation would benefit performance.

A significant change that would improve the GSUITE API would be to overhaul the math module.

An example of its shortcomings is the camera module: the current implementation does not store

the camera’s true location because of fixes to rotation matricies within the camera.1 We did not

have the time to resolve this issue, so attempts to get the camera’s position return a constant value.

A side effect is that specular terms are not dynamic since the camera appears to be in the same

place to the shader. Issues like this expose more fundamental issues related to numerical stability

and accuracy in GMATH, and the huge number of operations required makes the module’s functions

nearly illegible under C’s required unique function names. Either a change of language or a better

design are needed to improve these problems.

Crytek combines their LPV method into a Cascaded LPV, nesting 3 volumes to provide extra

detail to objects closest to the camera[16]. This is a possible avenue to pursue. On the flipside,

including an Ambient Occlusion (AO) pass in the final GI approximation could also help improve

realism. There are several papers on this [16, 32, 34].

Since the seeding of the LPV is done using straightforward depth testing, a technique which has

its own set of similar issues when applied to shadows, it may be possible to use solutions from the

extensive shadow rendering literature on the LPV. In particular, using variance shadow mapping

techniques may be a way to improve the way the lighting environment is modeled in the initial

volume since it allows spatially related samples to be convolved in a rational and non-destructive

manner.2

Since LPV simulates a complex propagation of properties through a volume using a 3D grid, it

shares features with the field of fluid simulation and techniques applied there may be useful. 3

1See Section 4.3.3 on page 42.
2Such as Summed-Area Variance Shadow Maps[22].
3Such as Dynamic Particle Coupling for Graphics Processing Unit (GPU)-based Fluid Simulation[17].

70

Bibliography

[1] (2011). Creative commons.
URL http://creativecommons.org/

[2] 3Dlabs (2006). Legacy graphics cards.
URL http://www.3dlabs.com/content/legacy/

[3] Akenine-Moller, T., Haines, E., & Hoffman, N. (2008). Real-Time Rendering, 3rd edition.
Wellesly, MA: A K Peters, Ltd.

[4] budda165 (2011). radiosity comparison.jpg.
URL http://budda165.files.wordpress.com/2008/01/radiosity_

comparison.jpg

[5] Crytek (2009). Deferred Shading.
URL http://www.crytek.com/sites/default/files/A_bit_more_

deferred_-_CryEngine3.ppt

[6] Dachsbacher, C., & Stamminger, M. (2005). Reflective shadow maps.
URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.

87.6346&rep=rep1&type=pdf

[7] Fernando, R., & Kilgard, M. J. (2003). The Cg Tutorial. Boston, MA: Pearson Education,
Inc.

[8] Foundation, T. B. (2011). Blender 2.56a.
URL http://www.blender.org/

[9] foxhavenjournal.com (2011). mulberry-leaves-in-sun.jpg.
URL http://foxhavenjournal.com/wp-content/uploads/2008/07/

mulberry-leaves-in-sun.jpg

71

http://creativecommons.org/
http://www.3dlabs.com/content/legacy/
http://budda165.files.wordpress.com/2008/01/radiosity_comparison.jpg
http://budda165.files.wordpress.com/2008/01/radiosity_comparison.jpg
http://www.crytek.com/sites/default/files/A_bit_more_deferred_-_CryEngine3.ppt
http://www.crytek.com/sites/default/files/A_bit_more_deferred_-_CryEngine3.ppt
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.87.6346&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.87.6346&rep=rep1&type=pdf
http://www.blender.org/
http://foxhavenjournal.com/wp-content/uploads/2008/07/mulberry-leaves-in-sun.jpg
http://foxhavenjournal.com/wp-content/uploads/2008/07/mulberry-leaves-in-sun.jpg

[10] Greene, R. (2003). Spherical harmonic lighting - the gritty details.
URL www.cs.columbia.edu/˜cs4162/slides/spherical-harmonic-lighting.
pdf

[11] Group, K. (2011). Opengl.
URL http://www.khronos.org/opengl/L

[12] Group, K. (2011). Opengl apis.
URL http://www.khronos.org/apis

[13] Ikits, M., & Magallon, M. (2011). The OpenGL Extension Wrangler Library.
URL http://glew.sourceforge.net/

[14] Institute, W. P. (2011). Interactive media & game development - imgd lab.
URL http://imgd.wpi.edu/imgdlab.html

[15] Jafolla, J., Stokes, J., & Sullivan, R. (1998). Phenomenological brdf modeling for engineer-
ing applications.
URL http://mi-projekte.hs-harz.de:8800/trac/brdf/export/10/

trunk/literatur/jafolla.pdf

[16] Kaplanyan, A. (2009). Light propagation volumes in cryengine 3.
URL http://www.crytek.com/sites/default/files/Light_

Propagation_Volumes.pdf

[17] Kol, A., & Cuntz, N. (2011). Dynamic particle coupling for gpu-based fluid simulation.
URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.

89.2285&rep=rep1&type=pdf

[18] Lab, L. D. (2011). Lighting glossary.
URL www.lightingdesignlab.com/library/glossary.htm

[19] Library, B. P. (2011). Game physics simulation.
URL http://bulletphysics.org/wordpress/

[20] Microsoft (2009). Support c99.
URL http://connect.microsoft.com/VisualStudio/feedback/

details/485416/support-c99

72

www.cs.columbia.edu/~cs4162/slides/spherical-harmonic-lighting.pdf
www.cs.columbia.edu/~cs4162/slides/spherical-harmonic-lighting.pdf
http://www.khronos.org/opengl/L
http://www.khronos.org/apis
http://glew.sourceforge.net/
http://imgd.wpi.edu/imgdlab.html
http://mi-projekte.hs-harz.de:8800/trac/brdf/export/10/trunk/literatur/jafolla.pdf
http://mi-projekte.hs-harz.de:8800/trac/brdf/export/10/trunk/literatur/jafolla.pdf
http://www.crytek.com/sites/default/files/Light_Propagation_Volumes.pdf
http://www.crytek.com/sites/default/files/Light_Propagation_Volumes.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.89.2285&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.89.2285&rep=rep1&type=pdf
www.lightingdesignlab.com/library/glossary.htm
http://bulletphysics.org/wordpress/
http://connect.microsoft.com/VisualStudio/feedback/details/485416/support-c99
http://connect.microsoft.com/VisualStudio/feedback/details/485416/support-c99

[21] Mki-Patola, T. (2003). Precomputed radiance transfer.
URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.

131.6778

[22] NVIDIA (2007). Gpu gems 3.
URL http://http.developer.nvidia.com/GPUGems3/gpugems3_pref01.
html

[23] NVIDIA (2009). FX Composer 2.5.
URL http://developer.nvidia.com/object/fx_composer_home.html

[24] of Computer Graphics, C. U. P. (2001). Reflectance data.
URL http://www.graphics.cornell.edu/online/measurements/

reflectance/index.html

[25] Olszta, P. W., Umbach, A., & Baker, S. (2009). The Free OpenGL Utility Toolkit.
URL http://freeglut.sourceforge.net/

[26] OpenGL (2011). pipeline.gif.
URL http://www.opengl.org/sdk/docs/tutorials/ClockworkCoders/

pipeline.gif

[27] OpenGL.org (2011). Geometry shaders.
URL http://www.opengl.org/wiki/Geometry_Shader

[28] OpenGL.org (2011). History of opengl.
URL http://www.opengl.org/wiki/History_of_OpenGL

[29] Palmer, J. M. (2003). Radiometry and photometry faq.
URL http://www.optics.arizona.edu/Palmer/rpfaq/rpfaq.pdf

[30] Pharr, M., & Humphreys, G. (2004). San Francisco, CA: Morgan-Kaufmann.

[31] Rideout, P. (2010). The OpenGL Shader Wrangler.
URL http://prideout.net/blog/?p=11

[32] Ritschel, T., Grosch, T., & Seidel, H.-P. (2009). Approximating Dynamic Global Illumination
in Image Space. In Proceedings ACM SIGGRAPH Symposium on Interactive 3D Graphics
and Games (I3D) 2009.
URL http://www.mpi-inf.mpg.de/˜ritschel/Papers/SSDO.pdf

73

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.6778
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.6778
http://http.developer.nvidia.com/GPUGems3/gpugems3_pref01.html
http://http.developer.nvidia.com/GPUGems3/gpugems3_pref01.html
http://developer.nvidia.com/object/fx_composer_home.html
http://www.graphics.cornell.edu/online/measurements/reflectance/index.html
http://www.graphics.cornell.edu/online/measurements/reflectance/index.html
http://freeglut.sourceforge.net/
http://www.opengl.org/sdk/docs/tutorials/ClockworkCoders/pipeline.gif
http://www.opengl.org/sdk/docs/tutorials/ClockworkCoders/pipeline.gif
http://www.opengl.org/wiki/Geometry_Shader
http://www.opengl.org/wiki/History_of_OpenGL
http://www.optics.arizona.edu/Palmer/rpfaq/rpfaq.pdf
http://prideout.net/blog/?p=11
http://www.mpi-inf.mpg.de/~ritschel/Papers/SSDO.pdf

[33] Rost, R. J. (2006). OpenGL Shading Language, Second Edition.

[34] Shanmugam, P., & Arikan, O. (2007). Hardware Accelerated Ambient Occlusion Techniques
on GPUs. In Proceedings ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games (I3D) 2009, (pp. 73–80).
URL http://doi.acm.org/10.1145/1230100.1230113

[35] Shanmugam, P., & Arikan, O. (2007). Incremental Instant Radiosity for Real-Time Indirect
Illumination. In Eurographics Symposium on Rendering (2007).
URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.

109.1355&rep=rep1&type=pdf

[36] Shreiner, D., Woo, M., Neider, J., & Davis, T. (2007). OpenGL Programming Guide, Sixth
Edition. Boston, MA: Pearson Education, Inc.

[37] Sousa, T. (2008). Vegetation Procedural Animation and Shading in Crysis. Boston, MA:
Pearson Education, Inc.

[38] Technologies, U. (2011). Unity: Game development tool.
URL http://unity3d.com/unity/

[39] TechPowerUp (2011). Gpu-z video card gpu information utility.
URL http://www.techpowerup.com/gpuz/

[40] Truevision (1991). Truevision TGA File Format Specification.
URL http://www.dca.fee.unicamp.br/˜martino/disciplinas/ea978/

tgaffs.pdf

[41] Wang, L., Wang, W., Dorsey, J., Yang, X., Guo, B., & Shum, H.-Y. (2005). Real-time
rendering of plant leaves.
URL graphics.cs.yale.edu/julie/pubs/Leaf.pdf

[42] Zakia, R. D., & Stroebel, L. (1996). Woburn, MA: Butterworth-Heinemann.

74

http://doi.acm.org/10.1145/1230100.1230113
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.109.1355&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.109.1355&rep=rep1&type=pdf
http://unity3d.com/unity/
http://www.techpowerup.com/gpuz/
http://www.dca.fee.unicamp.br/~martino/disciplinas/ea978/tgaffs.pdf
http://www.dca.fee.unicamp.br/~martino/disciplinas/ea978/tgaffs.pdf
graphics.cs.yale.edu/julie/pubs/Leaf.pdf

Appendix A

Compiling & Running GSUITE

A.1 Hardware Requirements
Our code requires a graphics card capable of OpenGL version 3.2/3.3 commands. This allows a
higher flexibility with textures and samplers sent to our shaders as well as support for GLSL 1.5.

A.2 Build Environment
Our environment is built in Windows, requires the OpenGL Extension Wrangler (GLEW) and
FREEGLUT includes and libraries to compile, their respective binaries to run, and the latest drivers
for your specific graphics hardware. The binaries and lib files are included with this project, but can
also be found at http://www.transmissionzero.co.uk/software/freeglut-devel/
and http://glew.sourceforge.net/

The binaries need to be copied to

C:\Windows\System32

and for x64 bit systems, to

C:\Windows\SysWOW64

Copy the lib and include folders to

C:\Program Files\Microsoft Visual Studio 9.0\VC

C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC

for 32 bit and 64 bit computers, respectively. 1

The code was compiled using Visual Studio 20082. If this environment is not available we have
included a standalone version in the Release folder. To change the window, RSM and LPV sizes,
recompile changing their respective global variables found in defshade.c.

1Note: Your installation directory may be different depending on your system setup.
2If there are glew.c compile errors, make sure the project’s C/C++ properties ”Additional Include Directories”

points to the actual location of the project folder. For whatever reason, local references did not work.

75

http://www.transmissionzero.co.uk/software/freeglut-devel/
http://glew.sourceforge.net/
defshade.c

A.3 Running & Hotkeys
• Escape: Terminate the program

• 0-9: Switch between individual render layers

• n: Toggle normalmap filter modes

• w, s, a, d : Translate camera position (x,y)

• t: Rotate the camera around the up vector

• v: Scroll through the LPV volume layers

• l, k: Rotate light

• p: Three level toggle; Spin object continuously, spin light continuously, stop.

• M, m: Increase and decrease the number of shadow samples

76

Appendix B

Shader Code
B.1 rsmGen.glsl

−−Vertex

v e r s i o n 150

i n vec4 position ;
i n vec4 tangent ;
i n vec4 bitangent ;
i n vec4 texCoord ;
i n vec3 color ;

o u t vec4 interpNormal ;
o u t vec4 interpAlbedo ;
o u t vec2 interpTexCoord ;

un i fo rm mat4 perspective ;
un i fo rm mat4 lightView ;
un i fo rm mat4 normalMatrix ;

vo id main () {
/ / C a l c u l a t i n g s t u f f
vec4 lightProjection = perspective ∗ lightView ∗ position ;

/ / S e t t i n g o u t p u t s
g l P o s i t i o n = lightProjection ; / / P o s i t i o n i n l i g h t s p a c e
interpTexCoord = texCoord .st ;
interpAlbedo = vec4 (color , 1 . 0) ;
interpNormal = normalMatrix ∗ vec4 (c r o s s (tangent .xyz , bitangent .xyz) , 0 . 0) ;

}
−−Fragment

v e r s i o n 150
/∗
∗ For each p i x e l , t h i s o u t p u t s :
∗ d e p t h
∗ world s p a c e p o s i t i o n
∗ s u r f a c e normal
∗ r a d i a n t f l u x
∗ /

/ / R a d i a n t i n t e n s i t y (I) i n d i r e c t i o n (w) from f l u x (F) p e r
/ / normal = (n)
/ / < | > = d o t p r o d u c t
/ /
/ / I (w) = F ∗ max (0 , <n |w>)
/ /

77

/ / Th i s w i l l happen i n a n o t h e r s h a d e r

i n vec4 interpNormal ;
i n vec4 interpAlbedo ;
i n vec2 interpTexCoord ;

o u t vec4 albedoFlux ;
o u t vec4 normalDepth ;

un i fo rm sampler2D testTexture ;

vo id main () {
f l o a t radiantFlux = 1 . 0 ;
albedoFlux = t e x t u r e (testTexture , interpTexCoord) ;

albedoFlux .a = radiantFlux ;
/ / l i n e a r l y i n t e r p o l a t e d norma l s a r e n o t u n i t
vec4 packedNormal = n o r m a l i z e (interpNormal) ;
/ / t o pack normal d a t a i n t o a c o l o r t e x t u r e , we need t o
/ / remap [−1 ,1] t o [0 , 1]
packedNormal = packedNormal ∗ 0 . 5 + 0 . 5 ;
/ / same goes f o r d e p t h

normalDepth = vec4 (packedNormal .xyz , 1 . 0 − g l F r a g C o o r d .z) ;

}

78

B.2 volumeGen.glsl

−− Vertex

v e r s i o n 150

i n vec2 position ;

un i fo rm mat4 lpvTransform ; / / T rans fo rm t o l p v s p a c e
un i fo rm mat4 lightTransform ; / / T rans fo rm t o l i g h t s p a c e
un i fo rm mat4 lightProjection ; / / T rans fo rm f o r t h e p r o j e c t i o n o f l i g h t s p a c e i n t o c a n n o n i c a l ←↩

volume
/ / o r < [−1 ,1] , [−1 ,1] , [−1 ,1] >

un i fo rm f l o a t nSlices ;
un i fo rm f l o a t currentSlice ;

o u t vec4 volumePos ;
o u t mat4 volumeToLight ; / / Composed t r a n s f o r m a m t r i x f o r moving sample o f f s e t s i n t o

/ / RSM l i g h t s p a c e

vo id main () {

f l o a t sliceZ = (currentSlice + 0 . 5) / nSlices ;
sliceZ = (sliceZ ∗ 2 . 0) − 1 . 0 ;

vec4 volumePosition = vec4 (position .xy , sliceZ , 1 . 0) ;
g l P o s i t i o n = volumePosition ;

mat4 volToRSM = lightProjection ∗ lightTransform ∗ i n v e r s e (lpvTransform) ;
volumePos = volumePosition ;

volumeToLight = volToRSM ;

}

−− Fragment

v e r s i o n 150

i n mat4 volumeToLight ;

i n vec4 volumePos ;

o u t vec4 redCoeffs ;
o u t vec4 greenCoeffs ;
o u t vec4 blueCoeffs ;

/ / Ha l f t h e s q u a r e r o o t o f t h e t o t a l number o f sample p o i n t s p e r c u b i e (NEEDS TO BE AN INT)
un i fo rm i n t nEdgeSamples ;
/ / Th i s i s t h e s i z e o f one s i d e o f a c u b i e d i v i d e d by t h e number o f sample s
/ / (red , green , b lue , r a d i a n c e)
un i fo rm f l o a t stepSize ; un i fo rm sampler2D rsmAlbedoFlux ;
un i fo rm sampler2D rsmNormal ; / / (x , y , z , d e p t h)
un i fo rm sampler2D rsmDepth ;
un i fo rm sampler2D randomOffsets ;

un i fo rm f l o a t nSlices ;
un i fo rm f l o a t depthBias ;
un i fo rm vec3 lightDirection ;

c o n s t f l o a t pi = 3 .141592594535 ;

79

c o n s t f l o a t band2Factor = s q r t (3 . 0 / (4 . 0 ∗ pi)) ;
i n t nEdgeSquared = nEdgeSamples ∗ nEdgeSamples ;
vec3 normedLightDir = n o r m a l i z e (lightDirection) ;

/ / C a l c u l a t e t h e r a d i u s f o r a s p h e r i c a l v e c t o r
f l o a t calcRadius (vec3 sphericalVec) {

r e t u r n s q r t (d o t (sphericalVec , sphericalVec)) ;
}

/ / F i r s t band s p h e r i c a l harmonic
f l o a t calcY00 () {

r e t u r n 0 . 5 / s q r t (pi) ;
}

/ / Second band s p h e r i c a l ha rmon ic s
f l o a t calcY10 (vec3 sampleDir) {

r e t u r n band2Factor ∗ sampleDir .x ∗ calcRadius (sampleDir) ;
}

f l o a t calcY11 (vec3 sampleDir) {
r e t u r n band2Factor ∗ sampleDir .y ∗ calcRadius (sampleDir) ;

}

f l o a t calcY12 (vec3 sampleDir) {
r e t u r n band2Factor ∗ sampleDir .z ∗ calcRadius (sampleDir) ;

}

/ / T h i r d band SHs
f l o a t calcY20 (vec3 sampleDir) {

f l o a t constant = . 2 5 ∗ s q r t (5 / pi) ;
f l o a t rad = calcRadius (sampleDir) ;
f l o a t poly = pow(−1 ∗ sampleDir .x , 2) − pow(−1 ∗ sampleDir .y , 2) + (2 ∗ pow (sampleDir .z , 2)) ;

r e t u r n constant ∗ (poly / rad) ;
}

f l o a t calcY21 (vec3 sampleDir) {
r e t u r n . 5 ∗ s q r t (15 / pi) ∗ ((sampleDir .y ∗ sampleDir .z) / pow (calcRadius (sampleDir) , 2)) ;

}

f l o a t calcY22 (vec3 sampleDir) {
r e t u r n . 5 ∗ s q r t (15 / pi) ∗ ((sampleDir .z ∗ sampleDir .x) / pow (calcRadius (sampleDir) , 2)) ;

}

f l o a t calcY23 (vec3 sampleDir) {
r e t u r n . 5 ∗ s q r t (15 / pi) ∗ ((sampleDir .x ∗ sampleDir .y) / pow (calcRadius (sampleDir) , 2)) ;

}

f l o a t calcY24 (vec3 sampleDir) {
r e t u r n . 5 ∗ s q r t (15 /pi) ∗ ((pow (sampleDir .x , 2) − pow (sampleDir .y , 2)) / pow (calcRadius (←↩

sampleDir) , 2)) ;
}

/ / F o u r t h band s p h e r i c a l harmonic
f l o a t calcY30 (vec3 sampleDir) {

f l o a t constant = . 2 5 ∗ s q r t (7 / pi) ;
f l o a t radius = calcRadius (sampleDir) ;
f l o a t poly = sampleDir .z ∗ ((2 ∗ pow (sampleDir .z , 2)) − (3 ∗ pow (sampleDir .x , 2)) − (3 ∗ pow (←↩

sampleDir .y , 2))) ;

r e t u r n constant ∗ (poly / pow (radius , 3)) ;
}

f l o a t calcY31 (vec3 sampleDir) {
f l o a t constant = . 2 5 ∗ s q r t (35 / (2 ∗ pi)) ;

80

f l o a t radius = calcRadius (sampleDir) ;
f l o a t poly = ((3 ∗ pow (sampleDir .x , 2)) − pow (sampleDir .y , 2)) ∗ sampleDir .y ;

r e t u r n constant ∗ (poly / pow (radius , 3)) ;
}

f l o a t calcY32 (vec3 sampleDir) {
f l o a t constant = . 2 5 ∗ s q r t (35 / (2 ∗ pi)) ;
f l o a t radius = calcRadius (sampleDir) ;
f l o a t poly = (pow (sampleDir .x , 2) − (3 ∗ pow (sampleDir .y , 2))) ∗ sampleDir .z ;

r e t u r n constant ∗ (poly / pow (radius , 3)) ;
}

f l o a t calcY33 (vec3 sampleDir) {
f l o a t constant = . 2 5 ∗ s q r t (105 / pi) ;
f l o a t radius = calcRadius (sampleDir) ;
f l o a t poly = (pow (sampleDir .x , 2) − pow (sampleDir .y , 2)) ∗ sampleDir .z ;

r e t u r n constant ∗ (poly / pow (radius , 3)) ;
}

f l o a t calcY34 (vec3 sampleDir) {
f l o a t constant = . 5 ∗ s q r t (105 / pi) ;
f l o a t radius = calcRadius (sampleDir) ;
f l o a t poly = sampleDir .x ∗ sampleDir .y ∗ sampleDir .z ;

r e t u r n constant ∗ (poly / pow (radius , 3)) ;
}

f l o a t calcY35 (vec3 sampleDir) {
f l o a t constant = . 2 5 ∗ s q r t (21 / (2 ∗ pi)) ;
f l o a t radius = calcRadius (sampleDir) ;

/ / yuo f o r g o t a ” . y ” on t h e l a s t pow (. . .) c a l l t h e r e . . . I t h i n k
f l o a t poly = sampleDir .y ∗ ((4 ∗ pow (sampleDir .z , 2)) − pow (sampleDir .x , 2) − pow (sampleDir .y←↩

, 2)) ;

r e t u r n constant ∗ (poly / pow (radius , 3)) ;
}

f l o a t calcY36 (vec3 sampleDir) {
f l o a t constant = . 2 5 ∗ s q r t (21 / (2 ∗ pi)) ;
f l o a t radius = calcRadius (sampleDir) ;
f l o a t poly = sampleDir .x ∗ ((4 ∗ pow (sampleDir .z , 2)) − pow (sampleDir .x , 2) − pow (sampleDir .y←↩

, 2)) ;

r e t u r n constant ∗ (poly / pow (radius , 3)) ;
}

/ / Each t ime t h i s code runs , i t r u n s on one c u b i e
/ / o f one s l i c e o f t h e e n t i r e l i g h t p r o p a g a t i o n volume
vo id main () {

i n t x = 0 , y = 0 , z = 0 ;
f l o a t actualSamples = 0 . 0 ;
i n t index = 0 ;

vec3 sampledNormal ;
f l o a t sampledDepth ; / / The Alpha component o f t h e NormalDepth t e x t u r e
f l o a t volDepth ;

f l o a t nEdgeSamplesf = nEdgeSamples ;

vec4 sampledAlbedoFlux ;
f l o a t radiantFlux ; / / The Alpha component o f t h e AlbedoFlux t e x t u r e

81

vec4 rgbaTemp = vec4 (1 . 0 , 1 . 0 , 1 . 0 , 1 . 0) ;
/ / vec4 coef fsTemp = vec4 (0 . 0 , 0 . 0 , 0 . 0 , 0 . 0) ;
vec4 redCoeffsTemp = vec4 (0 . 0 , 0 . 0 , 0 . 0 , 0 . 0) ;
vec4 greenCoeffsTemp = vec4 (0 . 0 , 0 . 0 , 0 . 0 , 0 . 0) ;
vec4 blueCoeffsTemp = vec4 (0 . 0 , 0 . 0 , 0 . 0 , 0 . 0) ;

vec4 sampleOffset ;
vec4 samplePos = volumePos ;

i n t nSamples = nEdgeSamples ; / / ∗ nEdgeSamples ∗ nEdgeSamples ;
/ / i n t nEdgeSquared = nEdgeSamples ∗ nEdgeSamples ;

/ / I n t e r a t e a c r o s s t h e c u b i e
f o r (index = 0 ; index < nSamples ; index++){

/ / A l i t t l e n i f t y math s a v e s two loops , which a r e e x p e n s i v e
/ / (s e r i o u s l y , i t r a n smoothe r t h i s way)
/ / x = i n d e x % nEdgeSamples ;

/ / y = (i n d e x / nEdgeSamples) % nEdgeSamples ;
/ / z = (i n d e x / nEdgeSquared) % nEdgeSamples ;
/ / So we have t h e i n t e g r a l i n d e x of a p i x e l i n t h e s l i c e s t a t i n g a t t h e
/ / l ower l e f t−hand c o r n e r , [x , y] .
/ / Now we s h i f t t h a t i n t o c u b i e volume c o o r d i n a t e s

f l o a t offsetLookup = index ;
offsetLookup /= 6 4 . 0 ;

sampleOffset = t e x t u r e (randomOffsets , vec2 (offsetLookup , 0 . 5)) ;
sampleOffset = (sampleOffset ∗ 2 . 0) − 1 . 0 ;
sampleOffset /= 4 . 0 ∗ nSlices ;
sampleOffset .w = 0 . 0 ;

samplePos += sampleOffset ;
/ / And now t r a n s f o r m t h a t volume l o c a t i o n i n t o RSM/ l i g h t s p a c e
samplePos = volumeToLight ∗ samplePos ;

/ / We use t h a t sample p o s i t i o n t o lookup t h e a l b e d o RSM map so we can g e t
/ / t h e depth , b e i n g c a r e f u l t o s h i f t t h e RSM/ L i g h t s p a c e c o o r d i n a t e s t o
/ / T e x t u r e Space

/ / We t e s t t h i s by s e e i n g i f t h e d e p t h component i s n e a r enough t o our
/ / sample p o s i t i o n t o c o u n t .
sampledDepth = t e x t u r e (rsmDepth , samplePos .xy ∗ 0 . 5 + 0 . 5) .r ;
volDepth = 1 . 0 − (samplePos .z ∗ 0 . 5 + 0 . 5) ;

/ / Checking f o r z e r o removes e r r o n e o u s s e e d i n g of t h e back of t h e d e p t h map as a ←↩
s u r f a c e

/ / which c a u s e s a t h i c k band of l i g h t t o s l i c e t h e s c e n e
i f (sampledDepth != 0 . 0

&& sampledDepth + depthBias <= volDepth + stepSize
&& sampledDepth + depthBias >= volDepth − stepSize) {

sampledAlbedoFlux = t e x t u r e (rsmAlbedoFlux , samplePos .xy ∗ 0 . 5 + 0 . 5) ;
sampledNormal = t e x t u r e (rsmNormal , samplePos .xy ∗ 0 . 5 + 0 . 5) .xyz ;
sampledNormal = sampledNormal .xyz ∗ 2 . 0 − 1 . 0 ;
n o r m a l i z e (sampledNormal) ;
vec3 bounceDir = r e f l e c t (−normedLightDir , sampledNormal) ;

vec4 bounceCoeff = vec4 (calcY00 () ,
calcY10 (bounceDir) ,
calcY11 (bounceDir) ,
calcY12 (bounceDir)) ;

redCoeffsTemp += sampledAlbedoFlux .r ∗ bounceCoeff ;
greenCoeffsTemp += sampledAlbedoFlux .g ∗ bounceCoeff ;

82

blueCoeffsTemp += sampledAlbedoFlux .b ∗ bounceCoeff ;

f l o a t fudge = 0 . 7 5 ;
vec4 transmitCoeff = vec4 (calcY00 () ,

calcY10 (normedLightDir) ,
calcY11 (normedLightDir) ,
calcY12 (normedLightDir)) ;

redCoeffsTemp += fudge ∗ sampledAlbedoFlux .r ∗ transmitCoeff ;
greenCoeffsTemp += fudge ∗ sampledAlbedoFlux .g ∗ transmitCoeff ;
blueCoeffsTemp += fudge ∗ sampledAlbedoFlux .b ∗ transmitCoeff ;

actualSamples += 2 . 0 ;
}

}

redCoeffs = vec4 (0 . 0 , 0 . 0 , 0 . 0 , 0 . 0) ;
greenCoeffs = vec4 (0 . 0 , 0 . 0 , 0 . 0 , 0 . 0) ;
blueCoeffs = vec4 (0 . 0 , 0 . 0 , 0 . 0 , 0 . 0) ;

i f (actualSamples != 0){
redCoeffs = 4 . 0 ∗ pi ∗ redCoeffsTemp / actualSamples ;
greenCoeffs = 4 . 0 ∗ pi ∗ greenCoeffsTemp / actualSamples ;
blueCoeffs = 4 . 0 ∗ pi ∗ blueCoeffsTemp / actualSamples ;

}

}

83

B.3 volumeProp.glsl

−− Vertex

v e r s i o n 150

i n vec2 position ;

o u t vec3 volPos ;

un i fo rm f l o a t nSlices ;
un i fo rm f l o a t currentSlice ;

vo id main () {

f l o a t sliceZ = (currentSlice + 0 . 5) / nSlices ;
sliceZ = (sliceZ ∗ 2 . 0) − 1 . 0 ;

g l P o s i t i o n = vec4 (position , sliceZ , 1 . 0) ;
volPos = vec3 (position , sliceZ) ∗ 0 . 5 + 0 . 5 ;

}

−− Fragment

v e r s i o n 150

i n vec3 volPos ;

o u t vec4 redProp ;
o u t vec4 greenProp ;
o u t vec4 blueProp ;

un i fo rm f l o a t stepSize ;

un i fo rm sampler3D redHarmonics ;
un i fo rm sampler3D greenHarmonics ;
un i fo rm sampler3D blueHarmonics ;

c o n s t f l o a t pi = 3 .141592594535 ;
c o n s t f l o a t band2factor = s q r t (3 . 0 / (4 . 0 ∗ pi)) ;

f l o a t calcRadius (vec3 sphericalVec) {
r e t u r n s q r t (d o t (sphericalVec , sphericalVec)) ;

}

/ / F i r s t band s p h e r i c a l harmonic
f l o a t calcY00 () {

r e t u r n 0 . 5 / s q r t (pi) ;
}

/ / Second band s p h e r i c a l ha rmon ic s
f l o a t calcY10 (vec3 sampleDir) {

r e t u r n band2factor ∗ sampleDir .x / calcRadius (sampleDir) ;
}

f l o a t calcY11 (vec3 sampleDir) {
r e t u r n band2factor ∗ sampleDir .y / calcRadius (sampleDir) ;

}

f l o a t calcY12 (vec3 sampleDir) {
r e t u r n band2factor ∗ sampleDir .z / calcRadius (sampleDir) ;

}

84

f l o a t reconstructSH (vec3 dir , vec4 coeffs) {
f l o a t result = coeffs .x ∗ calcY00 () ;
result += coeffs .y ∗ calcY10 (dir) ;
result += coeffs .z ∗ calcY11 (dir) ;
result += coeffs .w ∗ calcY12 (dir) ;

r e t u r n result ;
}

vec4 calculateBands_1_2 (vec3 direction , f l o a t weight)
{

vec4 result = vec4 (0 . 0 , 0 . 0 , 0 . 0 , 0 . 0) ;
result .x = 0 . 5 / s q r t (pi) ;
result .y = calcY10 (direction) ;
result .z = calcY11 (direction) ;
result .w = calcY12 (direction) ;
r e t u r n result ∗ weight ;

}

/∗
∗ Given t h r e e LPV s l i c e s , p r o p a g a t e between them
∗ /
vo id main () {

/ / f f o r f a l l o f f
f l o a t f = 0 . 6 5 ;

i n t nRedProps = 1 ;
i n t nGreenProps = 1 ;
i n t nBlueProps = 1 ;

vec4 redPropStore = vec4 (0 . 0 , 0 . 0 , 0 . 0 , 0 . 0) ;
vec4 greenPropStore = vec4 (0 . 0 , 0 . 0 , 0 . 0 , 0 . 0) ;
vec4 bluePropStore = vec4 (0 . 0 , 0 . 0 , 0 . 0 , 0 . 0) ;

vec4 redPropCoeffs = vec4 (0 . 0) ; / / t e x t u r e (redHarmonics , vo lP os) ;
vec4 greenPropCoeffs = vec4 (0 . 0) ; / / t e x t u r e (greenHarmonics , vo lP os) ;
vec4 bluePropCoeffs = vec4 (0 . 0) ; / / t e x t u r e (b lueHarmonics , vo lP os) ;

vec3 offset = vec3 (stepSize , 0 . 0 , 0 . 0) ;
vec3 direction = vec3 (−1.0 , 0 . 0 , 0 . 0) ;

vec4 redCoeffsSample = t e x t u r e (redHarmonics , volPos + offset) ;
vec4 greenCoeffsSample = t e x t u r e (greenHarmonics , volPos + offset) ;
vec4 blueCoeffsSample = t e x t u r e (blueHarmonics , volPos + offset) ;

f l o a t RedL = max (0 . 0 , reconstructSH (direction , redCoeffsSample)) ;
f l o a t GreenL = max (0 . 0 , reconstructSH (direction , greenCoeffsSample)) ;
f l o a t BlueL = max (0 . 0 , reconstructSH (direction , blueCoeffsSample)) ;

redPropCoeffs += calculateBands_1_2 (direction , f ∗ RedL) ;
greenPropCoeffs += calculateBands_1_2 (direction , f ∗ GreenL) ;
bluePropCoeffs += calculateBands_1_2 (direction , f ∗ BlueL) ;

offset = vec3 (−stepSize , 0 . 0 , 0 . 0) ;
direction = vec3 (1 . 0 , 0 . 0 , 0 . 0) ;

redCoeffsSample = t e x t u r e (redHarmonics , volPos + offset) ;
greenCoeffsSample = t e x t u r e (greenHarmonics , volPos + offset) ;
blueCoeffsSample = t e x t u r e (blueHarmonics , volPos + offset) ;

RedL = max (0 . 0 , reconstructSH (direction , redCoeffsSample)) ;
GreenL = max (0 . 0 , reconstructSH (direction , greenCoeffsSample)) ;
BlueL = max (0 . 0 , reconstructSH (direction , blueCoeffsSample)) ;

85

redPropCoeffs += calculateBands_1_2 (direction , f ∗ RedL) ;
greenPropCoeffs += calculateBands_1_2 (direction , f ∗ GreenL) ;
bluePropCoeffs += calculateBands_1_2 (direction , f ∗ BlueL) ;

offset = vec3 (0 . 0 , stepSize , 0 . 0) ;
direction = vec3 (0 . 0 , −1.0 , 0 . 0) ;

redCoeffsSample = t e x t u r e (redHarmonics , volPos + offset) ;
greenCoeffsSample = t e x t u r e (greenHarmonics , volPos + offset) ;
blueCoeffsSample = t e x t u r e (blueHarmonics , volPos + offset) ;

RedL = max (0 . 0 , reconstructSH (direction , redCoeffsSample)) ;
GreenL = max (0 . 0 , reconstructSH (direction , greenCoeffsSample)) ;
BlueL = max (0 . 0 , reconstructSH (direction , blueCoeffsSample)) ;

redPropCoeffs += calculateBands_1_2 (direction , f ∗ RedL) ;
greenPropCoeffs += calculateBands_1_2 (direction , f ∗ GreenL) ;
bluePropCoeffs += calculateBands_1_2 (direction , f ∗ BlueL) ;

offset = vec3 (0 . 0 , −stepSize , 0 . 0) ;
direction = vec3 (0 . 0 , 1 . 0 , 0 . 0) ;

redCoeffsSample = t e x t u r e (redHarmonics , volPos + offset) ;
greenCoeffsSample = t e x t u r e (greenHarmonics , volPos + offset) ;
blueCoeffsSample = t e x t u r e (blueHarmonics , volPos + offset) ;

RedL = max (0 . 0 , reconstructSH (direction , redCoeffsSample)) ;
GreenL = max (0 . 0 , reconstructSH (direction , greenCoeffsSample)) ;
BlueL = max (0 . 0 , reconstructSH (direction , blueCoeffsSample)) ;

redPropCoeffs += calculateBands_1_2 (direction , f ∗ RedL) ;
greenPropCoeffs += calculateBands_1_2 (direction , f ∗ GreenL) ;
bluePropCoeffs += calculateBands_1_2 (direction , f ∗ BlueL) ;

offset = vec3 (0 . 0 , 0 . 0 , stepSize) ;
direction = vec3 (0 . 0 , 0 . 0 , −1.0) ;

redCoeffsSample = t e x t u r e (redHarmonics , volPos + offset) ;
greenCoeffsSample = t e x t u r e (greenHarmonics , volPos + offset) ;
blueCoeffsSample = t e x t u r e (blueHarmonics , volPos + offset) ;

RedL = max (0 . 0 , reconstructSH (direction , redCoeffsSample)) ;
GreenL = max (0 . 0 , reconstructSH (direction , greenCoeffsSample)) ;
BlueL = max (0 . 0 , reconstructSH (direction , blueCoeffsSample)) ;

redPropCoeffs += calculateBands_1_2 (direction , f ∗ RedL) ;
greenPropCoeffs += calculateBands_1_2 (direction , f ∗ GreenL) ;
bluePropCoeffs += calculateBands_1_2 (direction , f ∗ BlueL) ;

offset = vec3 (0 . 0 , 0 . 0 , −stepSize) ;
direction = vec3 (0 . 0 , 0 . 0 , 1 . 0) ;

redCoeffsSample = t e x t u r e (redHarmonics , volPos + offset) ;
greenCoeffsSample = t e x t u r e (greenHarmonics , volPos + offset) ;
blueCoeffsSample = t e x t u r e (blueHarmonics , volPos + offset) ;

RedL = max (0 . 0 , reconstructSH (direction , redCoeffsSample)) ;
GreenL = max (0 . 0 , reconstructSH (direction , greenCoeffsSample)) ;
BlueL = max (0 . 0 , reconstructSH (direction , blueCoeffsSample)) ;

redPropCoeffs += calculateBands_1_2 (direction , f ∗ RedL) ;
greenPropCoeffs += calculateBands_1_2 (direction , f ∗ GreenL) ;
bluePropCoeffs += calculateBands_1_2 (direction , f ∗ BlueL) ;

86

/ / / / / / / / / / / / Second o r d e r n e i g h b o r s (1 2) / / / / / / / / / / / / / / / / / /

offset = vec3 (stepSize , stepSize , 0 . 0) ;
direction = vec3 (−0.707107 , −0.707107 , 0 . 0) ;

redCoeffsSample = t e x t u r e (redHarmonics , volPos + offset) ;
greenCoeffsSample = t e x t u r e (greenHarmonics , volPos + offset) ;
blueCoeffsSample = t e x t u r e (blueHarmonics , volPos + offset) ;

RedL = max (0 . 0 , reconstructSH (direction , redCoeffsSample)) ;
GreenL = max (0 . 0 , reconstructSH (direction , greenCoeffsSample)) ;
BlueL = max (0 . 0 , reconstructSH (direction , blueCoeffsSample)) ;

redPropCoeffs += calculateBands_1_2 (direction , f ∗ RedL ∗ 0 . 5) ;
greenPropCoeffs += calculateBands_1_2 (direction , f ∗ GreenL ∗ 0 . 5) ;
bluePropCoeffs += calculateBands_1_2 (direction , f ∗ BlueL ∗ 0 . 5) ;

offset = vec3 (−stepSize , stepSize , 0 . 0) ;
direction = vec3 (0 . 7 0 7 1 0 7 , −0.707107 , 0 . 0) ;

redCoeffsSample = t e x t u r e (redHarmonics , volPos + offset) ;
greenCoeffsSample = t e x t u r e (greenHarmonics , volPos + offset) ;
blueCoeffsSample = t e x t u r e (blueHarmonics , volPos + offset) ;

RedL = max (0 . 0 , reconstructSH (direction , redCoeffsSample)) ;
GreenL = max (0 . 0 , reconstructSH (direction , greenCoeffsSample)) ;
BlueL = max (0 . 0 , reconstructSH (direction , blueCoeffsSample)) ;

redPropCoeffs += calculateBands_1_2 (direction , f ∗ RedL ∗ 0 . 5) ;
greenPropCoeffs += calculateBands_1_2 (direction , f ∗ GreenL ∗ 0 . 5) ;
bluePropCoeffs += calculateBands_1_2 (direction , f ∗ BlueL ∗ 0 . 5) ;

offset = vec3 (−stepSize , −stepSize , 0 . 0) ;
direction = vec3 (0 . 7 0 7 1 0 7 , 0 . 7 0 7 1 0 7 , 0 . 0) ;

redCoeffsSample = t e x t u r e (redHarmonics , volPos + offset) ;
greenCoeffsSample = t e x t u r e (greenHarmonics , volPos + offset) ;
blueCoeffsSample = t e x t u r e (blueHarmonics , volPos + offset) ;

RedL = max (0 . 0 , reconstructSH (direction , redCoeffsSample)) ;
GreenL = max (0 . 0 , reconstructSH (direction , greenCoeffsSample)) ;
BlueL = max (0 . 0 , reconstructSH (direction , blueCoeffsSample)) ;

redPropCoeffs += calculateBands_1_2 (direction , f ∗ RedL ∗ 0 . 5) ;
greenPropCoeffs += calculateBands_1_2 (direction , f ∗ GreenL ∗ 0 . 5) ;
bluePropCoeffs += calculateBands_1_2 (direction , f ∗ BlueL ∗ 0 . 5) ;

offset = vec3 (stepSize , −stepSize , 0 . 0) ;
direction = vec3 (−0.707107 , 0 . 7 0 7 1 0 7 , 0 . 0) ;

redCoeffsSample = t e x t u r e (redHarmonics , volPos + offset) ;
greenCoeffsSample = t e x t u r e (greenHarmonics , volPos + offset) ;
blueCoeffsSample = t e x t u r e (blueHarmonics , volPos + offset) ;

RedL = max (0 . 0 , reconstructSH (direction , redCoeffsSample)) ;
GreenL = max (0 . 0 , reconstructSH (direction , greenCoeffsSample)) ;
BlueL = max (0 . 0 , reconstructSH (direction , blueCoeffsSample)) ;

redPropCoeffs += calculateBands_1_2 (direction , f ∗ RedL ∗ 0 . 5) ;
greenPropCoeffs += calculateBands_1_2 (direction , f ∗ GreenL ∗ 0 . 5) ;
bluePropCoeffs += calculateBands_1_2 (direction , f ∗ BlueL ∗ 0 . 5) ;

/ /
offset = vec3 (stepSize , 0 . 0 , stepSize) ;
direction = vec3 (−0.707107 , 0 . 0 , −0.707107) ;

87

redCoeffsSample = t e x t u r e (redHarmonics , volPos + offset) ;
greenCoeffsSample = t e x t u r e (greenHarmonics , volPos + offset) ;
blueCoeffsSample = t e x t u r e (blueHarmonics , volPos + offset) ;

RedL = max (0 . 0 , reconstructSH (direction , redCoeffsSample)) ;
GreenL = max (0 . 0 , reconstructSH (direction , greenCoeffsSample)) ;
BlueL = max (0 . 0 , reconstructSH (direction , blueCoeffsSample)) ;

redPropCoeffs += calculateBands_1_2 (direction , f ∗ RedL ∗ 0 . 5) ;
greenPropCoeffs += calculateBands_1_2 (direction , f ∗ GreenL ∗ 0 . 5) ;
bluePropCoeffs += calculateBands_1_2 (direction , f ∗ BlueL ∗ 0 . 5) ;

offset = vec3 (−stepSize , 0 . 0 , stepSize) ;
direction = vec3 (0 . 7 0 7 1 0 7 , 0 . 0 , −0.707107) ;

redCoeffsSample = t e x t u r e (redHarmonics , volPos + offset) ;
greenCoeffsSample = t e x t u r e (greenHarmonics , volPos + offset) ;
blueCoeffsSample = t e x t u r e (blueHarmonics , volPos + offset) ;

RedL = max (0 . 0 , reconstructSH (direction , redCoeffsSample)) ;
GreenL = max (0 . 0 , reconstructSH (direction , greenCoeffsSample)) ;
BlueL = max (0 . 0 , reconstructSH (direction , blueCoeffsSample)) ;

redPropCoeffs += calculateBands_1_2 (direction , f ∗ RedL ∗ 0 . 5) ;
greenPropCoeffs += calculateBands_1_2 (direction , f ∗ GreenL ∗ 0 . 5) ;
bluePropCoeffs += calculateBands_1_2 (direction , f ∗ BlueL ∗ 0 . 5) ;

offset = vec3 (−stepSize , 0 . 0 , −stepSize) ;
direction = vec3 (0 . 7 0 7 1 0 7 , 0 . 0 , 0 .707107) ;

redCoeffsSample = t e x t u r e (redHarmonics , volPos + offset) ;
greenCoeffsSample = t e x t u r e (greenHarmonics , volPos + offset) ;
blueCoeffsSample = t e x t u r e (blueHarmonics , volPos + offset) ;

RedL = max (0 . 0 , reconstructSH (direction , redCoeffsSample)) ;
GreenL = max (0 . 0 , reconstructSH (direction , greenCoeffsSample)) ;
BlueL = max (0 . 0 , reconstructSH (direction , blueCoeffsSample)) ;

redPropCoeffs += calculateBands_1_2 (direction , f ∗ RedL ∗ 0 . 5) ;
greenPropCoeffs += calculateBands_1_2 (direction , f ∗ GreenL ∗ 0 . 5) ;
bluePropCoeffs += calculateBands_1_2 (direction , f ∗ BlueL ∗ 0 . 5) ;

offset = vec3 (stepSize , 0 . 0 , −stepSize) ;
direction = vec3 (−0.707107 , 0 . 0 , 0 .707107) ;

redCoeffsSample = t e x t u r e (redHarmonics , volPos + offset) ;
greenCoeffsSample = t e x t u r e (greenHarmonics , volPos + offset) ;
blueCoeffsSample = t e x t u r e (blueHarmonics , volPos + offset) ;

RedL = max (0 . 0 , reconstructSH (direction , redCoeffsSample)) ;
GreenL = max (0 . 0 , reconstructSH (direction , greenCoeffsSample)) ;
BlueL = max (0 . 0 , reconstructSH (direction , blueCoeffsSample)) ;

redPropCoeffs += calculateBands_1_2 (direction , f ∗ RedL ∗ 0 . 5) ;
greenPropCoeffs += calculateBands_1_2 (direction , f ∗ GreenL ∗ 0 . 5) ;
bluePropCoeffs += calculateBands_1_2 (direction , f ∗ BlueL ∗ 0 . 5) ;
/ /
offset = vec3 (0 . 0 , stepSize , stepSize) ;
direction = vec3 (0 . 0 , −0.707107 , −0.707107) ;

redCoeffsSample = t e x t u r e (redHarmonics , volPos + offset) ;
greenCoeffsSample = t e x t u r e (greenHarmonics , volPos + offset) ;
blueCoeffsSample = t e x t u r e (blueHarmonics , volPos + offset) ;

RedL = max (0 . 0 , reconstructSH (direction , redCoeffsSample)) ;

88

GreenL = max (0 . 0 , reconstructSH (direction , greenCoeffsSample)) ;
BlueL = max (0 . 0 , reconstructSH (direction , blueCoeffsSample)) ;

redPropCoeffs += calculateBands_1_2 (direction , f ∗ RedL ∗ 0 . 5) ;
greenPropCoeffs += calculateBands_1_2 (direction , f ∗ GreenL ∗ 0 . 5) ;
bluePropCoeffs += calculateBands_1_2 (direction , f ∗ BlueL ∗ 0 . 5) ;

offset = vec3 (0 . 0 , −stepSize , stepSize) ;
direction = vec3 (0 . 0 , 0 . 7 0 7 1 0 7 , −0.707107) ;

redCoeffsSample = t e x t u r e (redHarmonics , volPos + offset) ;
greenCoeffsSample = t e x t u r e (greenHarmonics , volPos + offset) ;
blueCoeffsSample = t e x t u r e (blueHarmonics , volPos + offset) ;

RedL = max (0 . 0 , reconstructSH (direction , redCoeffsSample)) ;
GreenL = max (0 . 0 , reconstructSH (direction , greenCoeffsSample)) ;
BlueL = max (0 . 0 , reconstructSH (direction , blueCoeffsSample)) ;

redPropCoeffs += calculateBands_1_2 (direction , f ∗ RedL ∗ 0 . 5) ;
greenPropCoeffs += calculateBands_1_2 (direction , f ∗ GreenL ∗ 0 . 5) ;
bluePropCoeffs += calculateBands_1_2 (direction , f ∗ BlueL ∗ 0 . 5) ;

offset = vec3 (0 . 0 , −stepSize , −stepSize) ;
direction = vec3 (0 . 0 , 0 . 7 0 7 1 0 7 , 0 .707107) ;

redCoeffsSample = t e x t u r e (redHarmonics , volPos + offset) ;
greenCoeffsSample = t e x t u r e (greenHarmonics , volPos + offset) ;
blueCoeffsSample = t e x t u r e (blueHarmonics , volPos + offset) ;

RedL = max (0 . 0 , reconstructSH (direction , redCoeffsSample)) ;
GreenL = max (0 . 0 , reconstructSH (direction , greenCoeffsSample)) ;
BlueL = max (0 . 0 , reconstructSH (direction , blueCoeffsSample)) ;

redPropCoeffs += calculateBands_1_2 (direction , f ∗ RedL ∗ 0 . 5) ;
greenPropCoeffs += calculateBands_1_2 (direction , f ∗ GreenL ∗ 0 . 5) ;
bluePropCoeffs += calculateBands_1_2 (direction , f ∗ BlueL ∗ 0 . 5) ;

offset = vec3 (0 . 0 , stepSize , −stepSize) ;
direction = vec3 (0 . 0 , −0.707107 , 0 .707107) ;

redCoeffsSample = t e x t u r e (redHarmonics , volPos + offset) ;
greenCoeffsSample = t e x t u r e (greenHarmonics , volPos + offset) ;
blueCoeffsSample = t e x t u r e (blueHarmonics , volPos + offset) ;

RedL = max (0 . 0 , reconstructSH (direction , redCoeffsSample)) ;
GreenL = max (0 . 0 , reconstructSH (direction , greenCoeffsSample)) ;
BlueL = max (0 . 0 , reconstructSH (direction , blueCoeffsSample)) ;

redPropCoeffs += calculateBands_1_2 (direction , f ∗ RedL ∗ 0 . 5) ;
greenPropCoeffs += calculateBands_1_2 (direction , f ∗ GreenL ∗ 0 . 5) ;
bluePropCoeffs += calculateBands_1_2 (direction , f ∗ BlueL ∗ 0 . 5) ;

redProp = redPropCoeffs / 1 8 . 0 ;
greenProp = greenPropCoeffs / 1 8 . 0 ;
blueProp = bluePropCoeffs / 1 8 . 0 ;

redProp += t e x t u r e (redHarmonics , volPos) ;
greenProp += t e x t u r e (greenHarmonics , volPos) ;
blueProp += t e x t u r e (blueHarmonics , volPos) ;

}

89

B.4 normalShade.glsl

−−Vertex

vo id main (vo id) {

g l P o s i t i o n = ftransform () ;

}

−−Fragment

vo id main (vo id) {
g l F r a g C o l o r = vec4 (. 2 , . 8 , . 8 , . 7) ;
}

90

B.5 defShader.glsl

−−Vertex

v e r s i o n 150

i n vec4 position ;
i n vec4 texCoord ;

i n vec4 tangent ;
i n vec4 bitangent ;

i n vec3 color ;

o u t vec4 interpColor ;
o u t vec2 interpTexCoord ;
o u t vec3 interpBitangent ;
o u t vec3 interpTangent ;
o u t vec3 interpNormal ;
o u t vec4 fragPos ;

un i fo rm mat4 perspective ;
un i fo rm mat4 modelView ;
un i fo rm mat4 normalMatrix ;
un i fo rm f l o a t time ;

un i fo rm sampler2D testTexture ;

vo id main ()
{

vec4 deltaY = vec4 (0 . 0 ,
cos (time / 1000 .0 ∗2 + (position . x + position .z) / 2 0 −(position .y∗←↩

position .y / 7 0) + position .z∗position .z / 3 0 0) ∗ t e x t u r e (testTexture ,←↩
texCoord .xy) .a ,

0 . 0 , 0 . 0) ;

vec4 movingPos = position + (deltaY ∗ 0 . 3) ;
vec4 projection = perspective ∗ modelView ∗ movingPos ;

/ / t o pack W i n t o a c o l o r channe l , we need t o e n s u r e i t i s i n t h e r a n g e [−1 ,1]
/ / f i r s t by ad d i ng or s u b t r a c t i n g one t o e n s u r e i t has a magn i tude g r e a t e r t h a n one
/ / t h e a b s o l u t e v a l u e o f a number d i v i d e d by t h e number i s e i t h e r −1 or +1
fragPos = movingPos ;
g l P o s i t i o n = projection ;
interpColor = vec4 (color , 1 . 0) ;
interpTexCoord = texCoord .st ;

mat3x3 normalMat = mat3 (normalMatrix [0] . xyz ,normalMatrix [1] . xyz ,normalMatrix [2] . xyz) ;

interpBitangent = (modelView ∗ (bitangent + deltaY ∗ 0 . 1)) .xyz ;
interpTangent = (modelView ∗ (tangent + deltaY ∗ 0 . 1)) .xyz ;

}

−−Fragment

v e r s i o n 150

i n vec4 interpColor ;
i n vec2 interpTexCoord ;
i n vec3 interpBitangent ;
i n vec3 interpTangent ;
i n vec4 fragPos ;

91

o u t vec4 albedo ;
o u t vec4 outPosition ;
o u t vec4 normal ;
o u t f l o a t depth ;

un i fo rm i n t normalMode ;

un i fo rm sampler2D testTexture ;
un i fo rm sampler2D testNormalTexture ;

vo id main () {

vec4 normalTransmit = t e x t u r e (testNormalTexture , interpTexCoord) ;
vec3 normalPrime = normalTransmit .xyz ∗ 2 . 0 − 1 . 0 ;

i f (normalMode == 0){
f l o a t spread = 0 . 3 5 ;
vec3 sample00 = t e x t u r e (testNormalTexture ,

interpTexCoord .xy + spread ∗ vec2 (0 .001953125 , 0 .0078125)) .←↩
xyz ;

sample00 = n o r m a l i z e (sample00 ∗ 2 . 0 − 1 . 0) ;
vec3 sample10 = t e x t u r e (testNormalTexture ,

interpTexCoord .xy + spread ∗ vec2 (0 .005859375 , 0 .001953125)←↩
) .xyz ;

sample10 = n o r m a l i z e (sample10 ∗ 2 . 0 − 1 . 0) ;
vec3 sample20 = t e x t u r e (testNormalTexture ,

interpTexCoord .xy + spread ∗ vec2 (0 .0078125 , −0.00390625))←↩
.xyz ;

sample20 = n o r m a l i z e (sample20 ∗ 2 . 0 − 1 . 0) ;
vec3 sample30 = t e x t u r e (testNormalTexture ,

interpTexCoord .xy + spread ∗ vec2 (0 .00292969 , −0.005859375)←↩
) .xyz ;

sample30 = n o r m a l i z e (sample30 ∗ 2 . 0 − 1 . 0) ;

vec3 sample01 = t e x t u r e (testNormalTexture ,
interpTexCoord .xy + spread ∗ vec2 (−0.001953125 , −0.0078125))←↩

.xyz ;
sample01 = n o r m a l i z e (sample01 ∗ 2 . 0 − 1 . 0) ;
vec3 sample11 = t e x t u r e (testNormalTexture ,

interpTexCoord .xy + spread ∗ vec2 (−0.005859375 , −0.001953125←↩
)) .xyz ;

sample11 = n o r m a l i z e (sample11 ∗ 2 . 0 − 1 . 0) ;
vec3 sample21 = t e x t u r e (testNormalTexture ,

interpTexCoord .xy + spread ∗ vec2 (−0.0078125 , 0 .00390625))←↩
.xyz ;

sample21 = n o r m a l i z e (sample21 ∗ 2 . 0 − 1 . 0) ;
vec3 sample31 = t e x t u r e (testNormalTexture ,

interpTexCoord .xy + spread ∗ vec2 (−0.00292969 , 0 .005859375)←↩
) .xyz ;

sample31 = n o r m a l i z e (sample31 ∗ 2 . 0 − 1 . 0) ;

sample00 ∗= d o t (sample00 , normalPrime) ;
sample10 ∗= d o t (sample10 , normalPrime) ;
sample20 ∗= d o t (sample20 , normalPrime) ;
sample30 ∗= d o t (sample30 , normalPrime) ;

sample01 ∗= d o t (sample01 , normalPrime) ;
sample11 ∗= d o t (sample11 , normalPrime) ;
sample21 ∗= d o t (sample21 , normalPrime) ;
sample31 ∗= d o t (sample31 , normalPrime) ;

normalPrime += sample00
+ sample10
+ sample20
+ sample30

92

+ sample01
+ sample11
+ sample21
+ sample31 ;

}

normalPrime = n o r m a l i z e (normalPrime) ;

vec3 normedTangent = n o r m a l i z e (interpTangent) ;
vec3 normedBitangent = n o r m a l i z e (interpBitangent) ;
vec3 normedNormal = n o r m a l i z e (c r o s s (interpTangent , interpBitangent)) ;

mat3x3 surfaceBasis = mat3x3 (normedTangent ,
normedBitangent ,
normedNormal) ;

vec3 outNormal = n o r m a l i z e (surfaceBasis ∗ normalPrime) ;

vec4 textureColor = t e x t u r e (testTexture , interpTexCoord) ;

albedo = textureColor ;

normal = vec4 (outNormal ∗ 0 . 5 + . 5 , normalTransmit .a) ;

outPosition = fragPos ;

depth = 1 . 0 − g l F r a g C o o r d .z ;

}

93

B.6 defCompositor.glsl

−−Vertex

v e r s i o n 150

i n vec4 viewPosition ;

un i fo rm mat4 modelView ;
un i fo rm mat4 perspective ;

o u t vec2 texCoord ;
o u t mat4 toWorldSpace ;
o u t mat3 normalToWorld ;

vo id main ()
{

g l P o s i t i o n = viewPosition ;

texCoord = viewPosition .xy ∗ vec2 (0 . 5) + vec2 (0 . 5) ;
toWorldSpace = i n v e r s e (modelView) ;

mat4 normModelView = i n v e r s e (modelView) ;
normalToWorld = mat3 (normModelView [0] . xyz , normModelView [1] . xyz , normModelView [2] . xyz) ;

}

−−Fragment

v e r s i o n 150

i n vec2 texCoord ;
un i fo rm vec3 cameraLocation ;
un i fo rm i n t layer ;
i n mat4 toWorldSpace ;
i n mat3 normalToWorld ;

un i fo rm mat4 volumeTransform ;
un i fo rm mat4 toShadowMap ;

un i fo rm sampler2D albedo ;
un i fo rm sampler2D position ;
un i fo rm sampler2D normal ;
un i fo rm sampler2D shadowMap ;
un i fo rm sampler2D skySphere ;
un i fo rm sampler1D randomOffsets ;
un i fo rm f l o a t shadowBias ;
un i fo rm i n t nShadowSamples ;
un i fo rm f l o a t specularPower ;
un i fo rm f l o a t nearPlane ;
un i fo rm f l o a t projPlaneHalfHeight ;
un i fo rm f l o a t width ;
un i fo rm f l o a t height ;

un i fo rm sampler3D redHarmonics ;
un i fo rm sampler3D greenHarmonics ;
un i fo rm sampler3D blueHarmonics ;

un i fo rm vec3 lightDirection ;

o u t vec4 fragColor ;

94

f l o a t pi = 3 .141592594535 ;

f l o a t calcRadius (vec3 sphericalVec) {
r e t u r n s q r t (l e n g t h (sphericalVec)) ;

}

/ / F i r s t band s p h e r i c a l harmonic
f l o a t calcY00 () {

r e t u r n 0 . 5 / s q r t (pi) ;
}

/ / Second band s p h e r i c a l ha rmon ic s
f l o a t calcY10 (vec3 sampleDir) {

r e t u r n s q r t (3 / (4 ∗ pi)) ∗ sampleDir .x ∗ calcRadius (sampleDir) ;
}

f l o a t calcY11 (vec3 sampleDir) {
r e t u r n s q r t (3 / (4 ∗ pi)) ∗ sampleDir .y ∗ calcRadius (sampleDir) ;

}

f l o a t calcY12 (vec3 sampleDir) {
r e t u r n s q r t (3 / (4 ∗ pi)) ∗ sampleDir .z ∗ calcRadius (sampleDir) ;

}

f l o a t reconstructSH (vec3 dir , vec4 coeffs) {
f l o a t result = coeffs .x ∗ calcY00 () ;
result += coeffs .y ∗ calcY10 (dir) ;
result += coeffs .z ∗ calcY11 (dir) ;
result += coeffs .w ∗ calcY12 (dir) ;

r e t u r n result ;
}

vo id main () {

f l o a t aoSpread = 1 . 0 / 6 4 . 0 ;

vec3 toLightDir = −n o r m a l i z e (lightDirection) ;
vec4 textureColor = t e x t u r e (albedo , texCoord) ;
textureColor .a = 1 . 0 ;

vec4 cameraPosColor = t e x t u r e (position , texCoord) ;
cameraPosColor .w = 1 . 0 ;

vec4 normalTransmit = t e x t u r e (normal , texCoord) ;
f l o a t transmitance = normalTransmit .a ;
vec3 normalColor = n o r m a l i z e (normalTransmit .xyz ∗ 2 . 0 − 1 . 0) ;
normalColor = normalToWorld ∗ normalColor ;
normalColor = n o r m a l i z e (normalColor) ;

vec4 volumePos = (volumeTransform ∗ cameraPosColor) ∗ 0 . 5 + 0 . 5 ;

/ / g e n e r a t e t h e s p h e r i c a l a n g l e s o f t h e wor ld s p a c e normal
f l o a t phi = acos (normalColor .y) ;
f l o a t theta = a t a n (normalColor .z , normalColor .x) ;

/ / c a l c u l a t e t h e n o r m a l i z e d r a d i u s o f t h e l a t i t u d e mapped t o a s p h e r i c a l t e x t u r e
f l o a t r = phi /pi ;
/ / c a l c u l a t e t h e t e x t u r e c o o r d i n a t e s o f t h e normal on t h e sky s p h e r e t e x t u r e
f l o a t s = r ∗ cos (theta) ∗ 0 . 5 + 0 . 5 ;
f l o a t t = r ∗ s i n (theta) ∗ 0 . 5 + 0 . 5 ;

vec4 skyIlluminant = vec4 (0 . 0 , 0 . 0 , 0 . 0 , 0 . 0) ;
i f (cameraPosColor .r != 0 . 0

&& cameraPosColor .g != 0 . 0

95

&& cameraPosColor .b != 0 . 0) {
skyIlluminant = t e x t u r e (skySphere , vec2 (s , t)) ;

}
skyIlluminant .a = 1 . 0 ;

vec4 shadowMapPos = toShadowMap ∗ cameraPosColor ;
shadowMapPos /= shadowMapPos .w ;
shadowMapPos = shadowMapPos ∗ 0 . 5 + 0 . 5 ;
f l o a t biasedFragDepth = − shadowBias − (1 . 0 − shadowMapPos .z) ;

/ / S e v e n t e e n RSM f r a g d e p t h d i f f e r e n c e samples
f l o a t shadowFactor = max (0 . 0 , t e x t u r e (shadowMap , shadowMapPos .xy) .r + biasedFragDepth) ;
f l o a t depthDiff = min (1 . 0 ,shadowFactor) ;

i n t i = 0 ;
f l o a t lookUp = 0 . 0 ;
vec2 offset ;
f o r (i = 0 ; i < nShadowSamples ; i++){

lookUp = i ;
lookUp /= nShadowSamples ;
offset = t e x t u r e (randomOffsets , lookUp) .rb ;
offset = offset ∗ 2 . 0 − 1 . 0 ;
offset /= 2 5 6 . 0 ;
shadowFactor += max (0 . 0 , t e x t u r e (shadowMap , shadowMapPos .xy + offset) .r + ←↩

biasedFragDepth) ;
}

shadowFactor = 1 . 0 − clamp (shadowFactor , 0 . 0 , 1 . 0) ;

vec3 sampleOffset = normalColor ∗ 0 . 0 0 1 ;

f l o a t redLightGI = clamp (reconstructSH (−normalColor , t e x t u r e (redHarmonics , volumePos .xyz←↩
+ sampleOffset)) , 0 . 0 , 1 . 0) ;

f l o a t greenLightGI = clamp (reconstructSH (−normalColor , t e x t u r e (greenHarmonics , volumePos←↩
.xyz + sampleOffset)) , 0 . 0 , 1 . 0) ;

f l o a t blueLightGI = clamp (reconstructSH (−normalColor , t e x t u r e (blueHarmonics , volumePos .←↩
xyz + sampleOffset)) , 0 . 0 , 1 . 0) ;

f l o a t backScatter = 0 . 0 5 + min (2 . 0 , max (d o t (normalColor , −toLightDir) , 0 . 0) / max (0 . 1 , (←↩
1 . 0 − transmitance))) ;

f l o a t redLightTI = backScatter ∗ clamp (reconstructSH (−toLightDir , t e x t u r e (redHarmonics ,←↩
volumePos .xyz + sampleOffset)) , 0 . 0 , 1 . 0) ;

f l o a t greenLightTI = backScatter ∗ clamp (reconstructSH (−toLightDir , t e x t u r e (←↩
greenHarmonics , volumePos .xyz + sampleOffset)) , 0 . 0 , 1 . 0) ;

f l o a t blueLightTI = backScatter ∗ clamp (reconstructSH (−toLightDir , t e x t u r e (←↩
blueHarmonics , volumePos .xyz + sampleOffset)) , 0 . 0 , 1 . 0) ;

f l o a t shadeFactor = clamp (d o t (normalColor , toLightDir) , 0 . 0 , 1 . 0) ;

vec4 GIColor = vec4 (redLightGI , greenLightGI , blueLightGI , 1 . 0) ;
vec4 TIColor = vec4 (redLightTI , greenLightTI , blueLightTI , 1 . 0)

∗ shadowFactor ;

f l o a t diffuse = shadeFactor ∗ shadowFactor ;
vec4 illuminants = vec4 (diffuse) + vec4 (1 . 0 − diffuse) ∗ GIColor ;
illuminants .r += (1 . 0 − illuminants .r) ∗ TIColor .r ;
illuminants .g += (1 . 0 − illuminants .g) ∗ TIColor .g ;
illuminants .b += (1 . 0 − illuminants .b) ∗ TIColor .b ;

illuminants .a = 1 . 0 ;

vec3 viewVector = cameraLocation ;
viewVector −= cameraPosColor .xyz ;
viewVector = n o r m a l i z e (viewVector) ;

96

vec3 halfVector = n o r m a l i z e (viewVector + toLightDir) ;
f l o a t cosTh = clamp (d o t (normalColor , halfVector) , 0 . 0 , 1 . 0) ;
f l o a t cosTi = clamp (d o t (normalColor , toLightDir) , 0 . 0 , 1 . 0) ;
f l o a t specularFactor = (specularPower + 0 . 8) / (8 . 0 ∗ pi) ∗ pow (cosTh , specularPower) ∗ cosTi←↩

;

/ / The d e f a u l t f r a g C o l o r i s t h e f u l l s h a d i n g e q u a t i o n
fragColor = textureColor ∗ illuminants

+ skyIlluminant ∗ 0 . 2
+ specularFactor ∗ shadowFactor ;

vec2 fragPos = vec2 (g l F r a g C o o r d .x , g l F r a g C o o r d .y) ;

fragPos /= vec2 (width , height) ;

fragPos = fragPos ∗ 2 . 0 − 1 . 0 ;

vec4 viewProjectionVector = vec4 (fragPos .x , fragPos .y , −1.0 , 0 . 0) ;

viewProjectionVector = toWorldSpace ∗ viewProjectionVector ;

i f (layer < 5 && textureColor .rgb == vec3 (0 . 0 , 0 . 0 , 0 . 0)) {

/ / c o l o r t h e sky as t h e sky
vec3 normedView = n o r m a l i z e (viewProjectionVector .xyz) ;
f l o a t phi2 = acos (normedView .y) ;
f l o a t theta2 = a t a n (normedView .z , normedView .x) ;

f l o a t r2 = phi2 /pi ;
/ / c a l c u l a t e t h e t e x t u r e c o o r d i n a t e s o f t h e normView on t h e sky s p h e r e t e x t u r e
f l o a t lat = r2 ∗ cos (theta2) ∗ 0 . 5 + 0 . 5 ;
f l o a t long = r2 ∗ s i n (theta2) ∗ 0 . 5 + 0 . 5 ;

fragColor = t e x t u r e (skySphere , vec2 (lat , long)) ;

} e l s e {
/ / I f we aren ’ t i n d e f a u l t mode , t r y t h e s e o t h e r l a y e r s

i f (layer != 0) {
/ / Layer 1 has no GI , TI , shad ing , o r sky
i f (layer == 1){
fragColor = textureColor ;

}
/ / Layer 2 has t h e s t a n d a r d s h a d i n g
i f (layer == 2){
fragColor = textureColor ∗ shadeFactor + specularFactor ;

}
/ / Layer 3 has shadows as w e l l
i f (layer == 3){
fragColor = (textureColor ∗ shadeFactor + specularFactor) ∗ shadowFactor ;

}
/ / Layer 4 has t h e sky c o l o r
i f (layer == 4){
fragColor = (textureColor ∗ shadeFactor + specularFactor) ∗ shadowFactor

+ skyIlluminant ∗ 0 . 2 ;
}
/ / Layer 5 i s t h e GI f a c t o r
i f (layer == 5){
fragColor = GIColor ;

}
/ / Layer 6 i s t h e TI f a c t o r
i f (layer == 6){
fragColor = TIColor ;

}
/ / Layer 7 i s t h e normal l a y e r
i f (layer == 7){

97

fragColor = vec4 (normalColor .xyz ∗ 0 . 5 + 0 . 5 , 1 . 0) ;
}
/ / Layer 8 i s t h e p o s i t i o n l a y e r
i f (layer == 8){
fragColor = vec4 (volumePos .xyz , 1 . 0) ;

}
/ / Layer 9 has some t r a n s m i t t e n c e , f l o p p i n e s s , and shadow as d i f f e r e n t RGB v a l u e s
i f (layer == 9){

f l o a t floppiness = t e x t u r e (albedo , texCoord) .a ;
fragColor = vec4 (transmitance , floppiness , shadowFactor , 1 . 0) ;

}
}
}

}

98

	Introduction
	The Problem
	Project Goal

	Graphics Background
	General Shading
	Technical Shading
	A General Shading Model
	Forward Shading
	Deferred Shading
	Graphics packages
	Graphics APIs
	Programmable Graphics Pipeline
	Shading Languages
	Shader Tools & Graphics Engines
	GLEW
	GLUT
	GLSW

	Lighting
	What is light?
	Abstraction of Light
	Representations of Light

	Indirect Lighting
	Mathematical Models
	Bi-directional Distribution Functions
	Spherical Harmonics

	Rendering Techniques
	Raytracing
	Photon Mapping
	Radiosity
	Precomputed Radiance Transfer
	Light Propagation Volumes

	Methodology
	Chosen Platforms
	GSuite Practical Overview
	GSuite Technical Overview
	Language
	Object Model
	Modules

	Implementing Light Propagation Volumes
	Transformations
	Generating the RSM
	Building the LPV
	Propagation
	Illumination

	Results
	Benchmarks
	Objects and Textures
	Big Bush
	Ground Plane

	Qualitative Assessment
	Direct Lighting vs. LPV vs. Ground Truth
	Additional Effects
	Fudgefactors and Assumptions

	Conclusion
	Light Propagation Volume Trade Offs
	Advantages
	Reflective Shadow Map Sampling
	Propagation

	Implementation
	Using OpenGL
	Coding Shortcomings
	Additional Problems and Challenges

	Recommendations / Further Study

	Bibliography
	Compiling & Running GSuite
	Hardware Requirements
	Build Environment
	Running & Hotkeys

	Shader Code
	rsmGen.glsl
	volumeGen.glsl
	volumeProp.glsl
	normalShade.glsl
	defShader.glsl
	defCompositor.glsl

