
Assisting Learning through Student Mastery

Metrics

A Major Qualifying Project Report

Submitted to the Faculty of

Worcester Polytechnic Institute

by

Justin Weintraub

Noah Goodman

Date: 3/1/2024

Project Advisor:

Professor Neil Hefferman

Worcester Polytechnic Institute

This report represents the work of one or more WPI undergraduate students submitted to the

faculty as evidence of completion of a degree requirement.WPI routinely publishes these reports

on the web without editorial or peer review.

1



Abstract

When it comes to learning a subject matter or skill, each student can be stuck in different areas

and have differing needs. Our work on this MQP was done to provide a means to help out with

this variability, researching into methods to assist student learning on the ASSISTments

platform, a platform used by students all across the world. We looked into knowledge tracing, a

way to predict student mastery in relation to problems. We then used that work to implement a

service that uses reinforcement learning to provide tailored hint messages to help students with

their varying needs.

2



Acknowledgments

Firstly, we would like to thank our advisor, Neil Hefferman, for his continued support and advice

for the project. We’d also like to thank our graduate research assistant, Morgan Lee. Morgan

gave us tasks throughout our MQP and was a great help with any questions we had. Also, we’d

like to thank our teammate, Leo Riesenbach, an IQP student who joined us a term after we

started. A substantial amount of the work mentioned in the paper was contributed to by him.

Joseph St. Pierre and Ryan Emberling, members of ASSISTments, were both a great help in

advising us and helping us out with our tasks, so we’d like to thank them. Lastly, we’d like to

thank Ethan Prihar for making the Reinforcement Learning Service that we built off of. We are

very thankful for all the support we got from everyone over the course of this project.

3



Table of Contents

Abstract 2
Acknowledgments 3
1 Introduction 5
2 Mastery Service 6

2.1 Background 6
2.2 Types of Knowledge Tracing 6

2.2.1 Bayesian Knowledge Tracing 6
2.2.2 Deep Knowledge Tracing 7
2.2.3 Performance Factor Analysis (PFA) 8
2.2.3 Other Types 8

2.3 Analyzing Knowledge Tracing (Google Collab) 8
2.4 Displaying Mastery 10
2.5 Creating a Knowledge Tracing Application 11
2.6 Creating Student Datasets 12

3 Reinforcement Learning Service (RLS) 14
3.1 Background 14
3.2 Linking the Mastery Service to RLS 15
3.3 Containerizing RLS 16
3.4 Code Cleanup 16
3.5 Unit Testing 17
3.6 Performance Testing 19

3.6.1 Running Standard Scripts 20
3.6.2 Generating Synthetic Recommendation Logs 20

4 Future Work 22
Bibliography 23

4



1 Introduction

ASSISTments is a free learning platform for students, where students are able to learn subject

matter and do homework problems off of it. It is used by many school systems in the US,

covering the school years K-12 with a focus on middle school mathematics. As of late, there’s

been an effort to individualize student learning. And by that, I mean tailoring the problems, hints,

and the like for each student. This is where our work comes in. The Reinforcement Learning

Service (RLS) is a service that chooses what hints to give students based on certain criteria. Our

work, as described later, was to get this service up and running. The criteria that this service was

based on was another part of the work we’ve done. We also did work on the Mastery Service. We

learned about the Mastery Service and its underlying algorithms, as well as helped to get it up

and running. This mastery value is one such metric now being used by the RLS service. This

paper will go into more detail about our work in these two services in a mostly chronological

order.

5



2 Mastery Service

2.1 Background

Our first major form of work for our MQP was on the “Mastery Service”, a service that uses

knowledge tracing to determine student knowledge of skills. With a skill being something like

the “Pythagorean theorem” or “Basic addition”. To determine student knowledge, knowledge

tracing was used, which is a section of algorithms that determine student mastery over tasks.

There are multiple types of knowledge tracing algorithms that were researched, as discussed in

the next section. Our main work in knowledge tracing was to help get the service up and running

by doing tasks such as creating a knowledge tracing app, creating displays, and demoing said

deliverables so the knowledge tracing app could get implemented. We also helped to get data for

a paper that will compare the different forms of knowledge tracing on ASSISTments data over

the years.

2.2 Types of Knowledge Tracing

Part of our work was researching different forms of knowledge tracing, both for understanding

them and for implementation.

2.2.1 Bayesian Knowledge Tracing

Bayesian Knowledge Tracing (BKT) is one of the simpler forms of knowledge tracing, and the

one being used by the Mastery Service. BKT is formulaic, and its formula (Catherine) is as

described by Code 1.

6



Code 1. The formula for calculating mastery.

The mastery equation has multiple components based on the skill’s characteristics. The initial

mastery is a variable between 0 and 1. “Learns” is the chance of the user learning how to do the

problem upon getting it right, “Forgets” is the chance of the user forgetting how to do a problem,

“Guesses” is the chance of the user not understanding the problem but getting it right, and

“Slips” is the chance of getting something wrong despite the student already knowing the

problem. A new mastery value is calculated from this equation, with the mastery value

determining the chance the student would get the problem correct. Despite BKT being relatively

simple, it’s been found to be effective for the Mastery Service.

2.2.2 Deep Knowledge Tracing

We also researched other forms of knowledge tracing that weren’t used by the Mastery Service.

Deep Knowledge Tracing (DKT) is a form of knowledge tracing that uses a deep neural network

to determine mastery. Specifically, DKT uses long short-term memory and a recurrent neural

network to provide a flexible model/one with a high area under the curve measurement

performance (Mohammad). DKT is passed in time series data, with each data point being a tuple

that consists of the exercise answered and whether or not they got the exercise correct. In large

feature spaces, dimension reduction of the input is performed. Its loss function is binary

cross-entropy loss, and its output, like BKT, is the probability of a student answering the problem

7



correctly (or in other words the mastery value). It’s argued as to whether or not DKT’s higher

complexity leads to higher performance or not than that of BKT.

2.2.3 Performance Factor Analysis (PFA)

While not directly knowledge tracing, Performance Factor Analysis (PFA) is another method

used to predict student performance. It uses logistic regression, a type of machine learning model

(Philip). The variables it uses related to student performance are variable, typically using

information from past successes or failures for predictions. PFA allows for fast optimization and

is good for finding new parameters, but has trouble giving predictions with high certainty (not

returning 0 and 1 predictions for mastery, instead being somewhere in between). We researched

this as an alternative method of prediction.

2.2.3 Other Types

There are other forms of knowledge tracing, such as with factorization machines and

performance factors analysis, that don’t directly use knowledge tracing. While we researched

less into these types, they will potentially be looked into for the paper comparing different types.

2.3 Analyzing Knowledge Tracing (Google Collab)

To better understand BKT and logistic regression we ran code on a pandas dataframe to test the

model and better understand it. We first ran a dataset through the model using the pyBKT python

library and evaluated the model for its accuracy, area under curve, and root mean squared error.

We tested the data with and without forgetting, a metric that determines if a student has lost the

8



ability to do a skill. We then tested the model with differing minimum sequence lengths for the

amount of times a student has done a problem. A length of 0 means there is no limit.

Figure 1. Our Tests for Differing Amounts of Data with and without Forgetting and Filters.

Figure 2. Shows difference in area under curve with just linear regression

As shown in Figure1, we found that including forgetting made the model better at predicting

mastery. The amount of filtering didn’t have much of an effect on the results. We also ended up

testing the model with logistic regression using the scikit-learn python package and got a worse

value for accuracy than with BKT as shown in figure 2.

9



2.4 Displaying Mastery

One of our tasks was to show how the mastery value would be used in ASSISTments. We also

received experience with elements of design by using Figma to create a mockup of the UI.

Figure 3. Mockups made in Figma for the Mastery Progress Bar

In Figure 3, we placed a mastery progress bar in the top right corner displaying the current

mastery of the student in this specific skill or problems. There is also an information button that

can be used to display more information such as the specific percentage of mastery or how much

mastery they had gained in that session. Color would indicate how close the student was to

mastery.

10



2.5 Creating a Knowledge Tracing Application

One of our major tasks was creating a demo for knowledge tracing, that would showcase a

student's mastery being updated in real-time for different skills on an assignment. The app could

select an assignment, and when doing so it would give a display such as that in Figure 4. Every

skill related to an assignment gets its own mastery bar and other features.

Figure 4. The Knowledge Tracing Application’s View for Assignment 1452305.

Depending on the skill’s fitted parameters, pressing Correct or Incorrect raises the mastery bar by

a certain amount, as listed in Code 1. The initial mastery value is shown on the progress bar for

the skill. This demo assumes only one user is doing the assignment, the one interacting with the

demo.

To get the data for the assignments and skills, SQL queries on the ASSISTments database were

performed. We joined the tables for assignments, skills, student mastery, and any other tables

necessary to do the linkage. We stored that information in a local Postgres database. The app

made for the demo had a Postgres database, a Node.js backend, and a React frontend. The

database’s mastery value for a skill would get updated every time correct or incorrect is pressed.

After this app was completed, we presented our work and it spurred the work on putting mastery

into ASSISTments.

11



2.6 Creating Student Datasets

Part of our work was getting logs from students’ problem attempts sorted year by year, to be

used for a paper previously mentioned on testing different forms of knowledge tracing on student

data. Our work on getting logs was done to compare/evaluate the differences between the data

every year (with every year being the last 4 school years) for the paper. This work is building off

of a previous one made by Morgan Lee et al. that looked into mastery in previous school years,

but didn’t look into investigating different forms of knowledge tracing and dealt with oddities in

data as the pandemic was starting. To do our work, this required SQL queries the linked data

between the problem logs and assignment logs tables. We wanted to get data from assignments

that were assigned in that school year, and the performance of the students on said assignments,

as shown by Code 2.

create or replace view assign19_20 as

select * from core.assignments where assign_date between '30-May-20 23:00:00.000' and

'31-May-21 00:00:00.000' ;

select pl.discrete_score as discrete_score, al.user_xid as user_xid, a.sequence_id as assignments,

metadata_value_id as skill_id

from (select * from student_data.problem_logs pl

where pl.start_time between '30-May-20 23:00:00.000' and '30-May-21 00:00:00.000') pl

inner join student_data.assignment_logs al

on pl.assignment_log_id = al.id

inner join assign19_20 a

on al.assignment_xid = a.id

inner join cas_core.legacy.assistment_to_sequence_associations a2s

12



on a.sequence_id = a2s.sequence_id

inner join cas_core.legacy.problems p

on a2s.assistment_id = p.assistment_id

inner join

(select * from cas_core.legacy.metadata_taggings where metadata_target_id = 1) mt

on p.id = mt.object_id;

Code 2. The query for a specific school year.

Doing this method of getting all the logs from each year proved to be ineffective, as the data

gathered was simply too large and the queries took too long. We applied several filters to limit

the data to what was the most important for gathering inferences. First off, we limited

assignments to only be for school years 6-7, as that’s where the majority of data was from. We

selected the assignments that were the most frequently used, being the top 500 from each grade.

These steps significantly reduced the file sizes, the final step for creating the student datasets.

13



3 Reinforcement Learning Service (RLS)

3.1 Background

RLS or Reinforcement Learning Service is a program to be used in ASSISTments to recommend

specific help messages based on the student’s mastery of the specific skill being tested. This is so

that it can better help the student based on how proficient they are at the topic. For example, in

the case of a problem on fractions, a student could be given a hint about how division works, or

one related to how to add two fractions together.

RLS, as the name mentions, works through reinforcement learning. Reinforcement learning is a

means of a model taking actions through getting or not getting rewards for their past actions. In

this case, if a user gets the next problem correct after solving a problem with a hint given by

RLS, that hint will be more likely to be used again under the same circumstances for another

student. There is also a set chance for RLS to select a random hint to give, as a means of

discovering potentially new valuable options. As RLS makes decisions and analyzes the

outcomes, it will get better at helping students.

We had multiple tasks related to RLS. Our first major task was linking the Mastery Service into

RLS. How RLS used to work was that it used the fraction of problem correctness to determine

what hints to give to the student. However, if a student is learning something new, that isn’t a

great metric to use due to a lack of data. So instead, we got to work at using mastery as a

parameter, due to that being better suited for the prediction task. An empirical study in the future

will be made to determine the effectiveness of using mastery in RLS. Our next major task was

getting RLS up and running in ASSISTments. In addition to making it so it could run on

ASSISTments, we had to make sure it’d be safe to run in the production stack of

14



ASSISTments (in comparison to the testing stack). To do that, we had to do testing and code

cleanup. RLS is not yet up and running, and will be in the future.

3.2 Linking the Mastery Service to RLS

To do the task of linking the two services, we needed to update the RLS codebase to get the data

from the Mastery Service. Some of the work we did to get data from the Mastery Service can be

seen in Code 3.

Code 3. Getting Data from the Mastery Service

As can be seen by Code 3, to get mastery for a specific skill, we needed to do a query between

the two tables and a connection table. “N_observations” is used to choose the mastery value that

is the most recent, as there is a mastery value for every instance a student has done a problem in

the database. After getting the mastery data, we updated the preexisting RLS code to use the

15



mastery value instead of user correct whenever possible (if there exists a mastery value). With

that done and some test cases, the linkage was complete.

3.3 Containerizing RLS

One of the major tasks we had was containerizing RLS, or in other words, making it so all of the

service’s dependencies are installed in one go in an environment that is accessible anywhere.

This was done so we could easily install the RLS service onto ASSISTments’s EC2 instances

(computing machines). To do that, we had to first figure out what dependencies needed to be

installed. We did a clean run-through of installing all the dependencies from scratch on a

computer, specifically the pip dependencies necessary for our Python application to work. With

all of the requirements stored in a requirements.txt file, we then created a pyproject.toml file,

which packaged the RLS service and its dependencies. This would allow us to simply import

RLS and its functionality. With that done, we passed on this work to Joe St. Pierre so he could

create a pipeline for making Docker images that when containerized would run the packaged

RLS we generated in a simulated environment. This Docker image would be put on

ASSISTment’s ECR, a storage location running on AWS.

3.4 Code Cleanup

To make the code more readable and efficient we went through a code review. We first went

through the codebase and made TODO comments on what needed to be changed and then

worked to improve it. One such problem was that the previous code was taking in parameters to

functions through the function’s arguments and it would not tell you what connection you would

need until you looked at the function itself. We turned the connections into a dictionary as an

16



improvement. This dictionary would be passed to the functions and they would use specific

features from the dictionary. Since the code was written in Python, we implemented type hinting

for more readability as it describes what type each of the arguments are as well as what the return

type of the functions is. For an example of us improving the clarity of the code, we simplified a

variable declaration by making repeated values their own variables and passing them into the

original declaration as shown in Code 4.

Code 4. How we Restructured the Code to be More Readable (Red is old Code and Green is

new).

We also created more comments and documentation for the code to make it more understandable

including adding docstrings to functions. This is also being continued after we leave by our

teammate Leo.

3.5 Unit Testing

We created test cases for many functions in the program. This testing included queries, functions,

and model tests. The model used was Dynamic Linear Epsilon Greedy, which was used for

choosing the help message. For the model tests we simulated situations with random choice, a

single option, and with two options weighted and unweighted as seen below in Code 5.

17



Code 5. Test Cases for Testing the Decision Model.

Another test case tests various edge cases for functions that get data from the database including

missing skill and mastery data as well as checking whether the correct values are gotten from the

get functions as shown in Code 6.

18



Code 6. Shows the test cases for getting values from the database.

3.6 Performance Testing

To make sure that RLS could go up and running without issues, we needed to perform a

substantial amount of performance tests on the various functionality of RLS.

19



3.6.1 Running Standard Scripts

Our first main performance test was checking to see how the setup and update script ran in a new

environment for RLS. The setup script initialized the RLS in a specified environment. So for

setup, we purged information about RLS from the testing RDS (the host for the data on AWS),

and then ran the script on the testing EC2. After some debugging of various small errors that

occurred (such as needing to rename a column in a database), the script ran for approximately 5

hours without a hitch, initializing RLS on the testing EC2. The testing EC2 gets dumped on with

up to date data from ASSISTments every week. So when the new week came around, we had a

new batch of data to work with for the update script. After a similar debugging process, we ran

the update script, and after a few hours, it finished normally.

3.6.2 Generating Synthetic Recommendation Logs

Another type of performance test done was to see how RLS would process newly made

recommendation logs, as the update script wouldn’t simply be testing this task. To do this test,

we had to generate fake unprocessed recommendation logs. Even though they were fake, they

were based on real data. To create these recommendation logs, we gathered information from the

assignment logs (a table that shows what assignments each student has done), problem logs

(what problems the student did during the assignment), and tutor strategies table (a table that has

a list of possible hints a student could be given for a problem). We got data from 1000 random

assignment logs and got their associated problems’ data. For every problem, we got the tutor

strategies associated with it. After that, we created rows in the user features, problem features,

tutor strategy features, and finally, recommendation logs. These tables were all accordingly given

20



fake data and linkage to the associated prior tables. This way, we’d have a large set of random

features and recommendation logs to be used for the processing.

21



4 Future Work

As previously alluded to, there’s still a lot of work left to do for the Mastery Service and RLS.

With the Mastery Service now implemented, there’s a paper being made about comparing

different forms of knowledge tracing on ASSISTments data over the years. And as of when this

paper was written, RLS hasn’t gone live, being still in the works. There is an ongoing process of

testing, cleanup, and implementation for this. RLS needs to be handled with care, due to the

potential of giving unhelpful hint messages. We hope our work can help with student learning for

ASSISTments users nationwide.

22



Bibliography

Mohammad Khajah, et al. “How Deep Is Knowledge Tracing?” arXiv [Cs.AI], 2016,

http://arxiv.org/abs/1604.02416. arXiv.

Morgan Lee, et al. “Knowledge Tracing over Time: A Longitudinal Analysis”. Proceedings of

the 16th International Conference on Educational Data Mining, International Educational Data

Mining Society, 2023, pp. 296--301, doi:10.5281/zenodo.8115788.

Philip Pavlik Jr, et. al. “Performance Factors Analysis – A New Alternative to Knowledge

Tracing”, Carnegie Mellon University,

https://pact.cs.cmu.edu/koedinger/pubs/AIED%202009%20final%20Pavlik%20Cen%20

Keodinger%20corrected.pdf.

Catherine Yeh, et. al. “Predicting What Students Know”. Computer Science Wlliams.

https://www.cs.williams.edu/~iris/res/bkt-balloon/index.html.

23


