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Abstract

Cloud game streaming service allows users to play games without downloading locally

by hosting the game on a server and streaming the game through the network to the user’s client.

Network conditions such as jitter and latency can negatively impact users’ quality of experience

(QoE) when using cloud streaming services. To determine the effect of latency and jitter on the

user’s cloud steaming QoE, we developed a custom game that allowed us to test different

combinations of latency and jitter with different game perspectives. A separate buffer for the

cloud streaming client Moonlight was developed to smooth out jitter and latency and improve the

user’s QoE. For the study, the buffer is simulated through different levels of jitter and latency.

After running the study, which included 35 participants, we concluded that perspective had a

significant effect on QoE, score, and damage taken, while difficulty and texture quality were less

conclusive.
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Section 1 Introduction

Cloud-based game streaming continues to grow in popularity as the technology and

Internet speeds powering it improve (Roach & Parrish, 2021). Through services such as NVidia

GeForce Now and Sony PlayStation Now, cloud gaming has become more readily available for

consumers. Compared to normal computer gaming where the user’s local computer handles

executing the game, cloud-based gaming utilizes servers to stream the game to a user-side client

machine. Simply put, a user remotely controls the game that is being played on the server-side

computer.

Although cloud-based game streaming provides convenience for the users since they do

not need to download games locally, cloud gaming has encountered several issues. Adverse

network conditions such as latency and jitter present problems for cloud-based game systems

(Jarschel et al., 2011). Latency, also labeled as delay, refers to the time it takes for a packet to be

sent and received. Jitter refers to the variance in time between the arrival of packets. Users’

quality of experience (QoE) is greatly affected by latency and jitter. There is a considerable

amount of research towards improving QoE in cloud gaming by reducing the effect of delay, but

there is minimal research towards QoE and jitter specifically in cloud gaming.

In this paper, we analyzed the effects of latency and jitter on the quality of experience of

cloud game streaming. We researched implementing our own client-side buffer into an existing

cloud-streaming platform and developed a game that switches between multiple parameters,

notably three different perspectives: first-person, third-person, and overhead. The game was then

used within a user study through an open-sourced cloud-streaming platform, switching between

multiple combinations of game parameters and network conditions.
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Through the user study consisting of 35 participants, the final results of the study indicate

that perspective, difficulty, and texture quality QoE ratings were all more affected by delay than

jitter. Perspective related QoE ratings displayed significant changes because of delay and jitter,

while QoE ratings for difficulties and texture qualities showcased less noticeable changes.

The rest of the paper is organized as: Chapter 2 explains cloud-based streaming and

buffers for cloud streaming, Chapter 3 presents similar works done by other researchers, Chapter

4 introduces the setup of the research and user study, Chapter 5 covers the results of the user

study, Chapter 6 concludes the findings, and Chapter 7 explores potential future work for the

study.
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Section 2 Background

Cloud game streaming is a method for playing games with advantages and challenges

compared to traditional game playing methods. By sending packets to and from a server, a client

can play a game over the Internet without the need to utilize local hardware to run the game.

While this provides underpowered devices a way to play demanding games, cloud game

streaming also introduces complications for network conditions like jitter and delay.

Section 2.1. Cloud-based Game Streaming

Cloud gaming allows a client to play games using an Internet connection to connect to

remote servers (Roach & Parrish, 2021). Rather than the traditional method of playing games

where users install games onto their machine, cloud gaming has servers handle running the

game. The client then sends and receives packets to and from the server for game interaction and

video/audio output respectively. The model has been adapted into various products and systems

and offers a way for consumers to play games on various devices without needing to install the

game locally.

Section 2.1.1. How it Works

Cloud gaming works through its use of a server and client. From the client-side, the game

is streamed to the machine, allowing for player interaction. Inputs from the client machine are

then sent back to the server, which is then processed by the server and used by the game. The

server renders and plays the game, handling the work that a user’s local machine would typically

do. The rendered frames are sent as a video stream to a client computer, where the game can be

seen and interacted with as shown in Figure 1. While video streaming services are similar to

cloud-based game streaming, video streaming services do not require the as frequent interactions

that cloud gaming needs to work properly.

3



Figure 1. Diagram Depicting the Process of a Cloud Game Streaming Service

Streaming from a server allows the client machine to be one of many types of devices,

such as a desktop PC, a console, or a mobile device. This gives cloud gaming a unique advantage

over traditional game playing methods, allowing for devices that do not have the hardware

specifications required to run the game effectively an alternative to deliver the game. However, a

stable Internet connection with high bandwidth and low latency is needed for the games to play

effectively. Otherwise, game resolutions and responsiveness can suffer, diminishing the user’s

quality of experience.

Section 2.1.2. History

Commercial cloud game streaming systems began with the founding of G-Cluster in

2000 (“G-cluster”, 2022). However, cloud gaming products at the time were limited by the high

bitrate required, given the infrastructure and Internet connections of that time. In 2010 and 2011,

OnLive and Gaikai were released respectively (Mangalindan, 2020). OnLive allowed gamers to

play games on demand with a subscription fee, with more costs for renting or purchasing games.

The service struggled to build a catalog of games, as publishers did not embrace the subscription

model. Gaikai instead focused on delivering game demos through cloud gaming, making the

service more appealing to publishers. In June 2012, Sony purchased Gaikai and used the
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service’s technology as the foundation for the PlayStation Now service. Sony purchased OnLive

in April 2015, shutting down the service after.

Cloud gaming services offered currently to consumers include Amazon Luna, Microsoft

XCloud, NVidia GeForce Now, and Sony PlayStation Now. These platforms allow users to

stream games at higher graphical quality and frame rates than past services. GeForce Now is

notable for allowing users to stream games they already own on other existing PC storefronts.

Section 2.2. Existing Cloud-Streaming Platforms

To evaluate the available cloud-streaming platforms, the video quality between the client

and server-side computers while playing were compared using screenshots. This was done to

effectively compare bitrates and visual quality for Parsec, Moonlight/Sunshine, and OpenStream.

Parsec is a commercial cloud-gaming platform that supports both remote desktop and

cloud-gaming similar to Stadia. Parsec has different products aimed for a wide range of purposes

such as Parsec for Work, Parsec for Gaming, and Parsec Pros (gives better visual quality and

more settings) (“Connect to Work or Games From Anywhere | Parsec”, n.d.). We did not choose

Parsec as our testing platform because the resolution degraded when jitter was added. The ideal

testing cloud-streaming platform for us should not perform any type of adaptation to jitters or

delay.

Moonlight is an open-source cloud-streaming client that implements NVIDIA’s

GameStream protocol. Moonlight supports multiple client platforms such as Android, iOS, PC,

Apple TV, Mac, Chromebook, PS Vita, Wii U, Raspberry Pi, LG, and webOS TV (“Moonlight

Game Streaming: Play Your PC Games Remotely”, n.d.). Sunshine is an open-sourced

cloud-streaming host for Moonlight, supporting AMD, Intel and Nvidia GPUs (“GitHub -

LizardByte/Sunshine: Self-hosted game stream host for Moonlight”, 2019). To pair Sunshine

5



with Moonlight, Sunshine uses a web UI to generate a password to be entered on Moonlight.

Sunshine also uses the web UI to configure streaming settings. Additionally, Moonlight and

Sunshine are open-sourced so we could modify and recompile them as needed. We initially chose

Moonlight and Sunshine as our cloud-streaming platform because visually they did not degrade

resolution when adding jitter, showing no noticeable bitrate reduction. However, because

Sunshine could not be found on the Moonlight client on the day we tested the user study test bed

setup, we chose OpenStream as the server of the test bed.

OpenStream is another low latency cloud-streaming host based on other open-sourced

streaming platforms such as Moonlight and Sunshine. It currently does not have its own client

platform released (“Open-Stream – The first completely integrated open-source game streaming

platform”, n.d.). As explained above, we chose OpenStream as the server for the study. As for

the purpose of testing a custom buffer and running the study, the choice of platform for the server

does not affect the result significantly.

Section 2.3. Challenges with Cloud-Based Game Streaming

While cloud-based game streaming has its benefits, two main challenges negatively

impact a user’s quality of experience: latency and jitter.

Section 2.3.1. Latency

Generally, latency refers to the time between a stimulus and the beginning of a response.

There are many different specific causes of latency, especially within a system such as

cloud-based game streaming (as shown in Figure 2).
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Figure 2. Diagram of the Steps in Xbox Game Streaming (M-Stahl et al., 2023)

Figure 2 specifically refers to Xbox Game Streaming, but the process is similar for any

cloud-based game streaming system. Each step takes some amount of time, and when combined,

will result in a certain amount of overall latency from when the player provides input to when

they receive the frame where that input first takes effect.

This paper focuses on the effects of network latency, represented by the yellow boxes in

the diagram, and the delay caused by a client-side frame buffer. The client buffer is not pictured

in Figure 2 but would be placed between the “Decode” and “Frame presented on streaming

client” steps.

Network delay is always present to some degree due to the laws of physics for light in

fiber-optic cables (typically about 5 to 5.5 microseconds per kilometer) (“Fiber-optic cable”,

2023). Client-side buffer delay, however, is entirely dependent on the buffering policy, as

discussed in Section 2.4.
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Section 2.3.2. Jitter

Jitter refers to the variance in latency of a network connection. When transferring data,

packets do not take a consistent amount of time to get from the server to the client. As shown in

Figure 3, the time interval d3 between packet 1 and packet 2 does not equal the time interval d4

between packet 2 and packet 3 on the client, where the time interval d1 equals interval d2 on the

server. This can be due to several factors, but as this paper is focusing on network jitter, the

typical cause is network congestion and variable bandwidth (IR Team, n.d.).

Figure 3. A Visualization of Jitter and Latency within a Client-Server Connection

High jitter negatively affects a user’s quality of experience while playing a game if the

frames are displayed as soon as possible by the client. This causes the video playback to appear

choppy rather than smooth. In video streaming, this problem is solved by having a playback

buffer, but video games are interactive and the user’s quality of experience suffers from the delay

caused by a buffer.
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Section 2.4 Client-Side Buffer

To reduce jitter’s negative impact on the user’s quality of experience (QoE), buffers are

implemented on the client. Instead of outputting frames as soon as the client receives a frame

from the stream, a buffer receives frames from the stream and stores them in a container, then

outputs the frames at a specific rate, as illustrated in Figure 4. If jitter takes place without a

buffer, the effect of the jitter is obvious to the user since frames are being streamed as soon as

they arrive at the client-side. With a buffer, jitter can be moderated by outputting the frames

stored previously in the buffer at the default streaming rate while waiting for the next frame to

arrive at the buffer so the stream would look continuous on the client.

The size of the buffer can affect users’ QoE. A large buffer is able to smooth out greater

jitter spikes since it can store more frames and output frames from the buffer for a longer time to

wait for the jitter to end. However, having a large buffer size and holding more frames might

cause greater latency on the client-side.

Figure 4. Visualization of a Buffer within a Client-Server Connection
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Section 3 Related Work

This chapter gives an overview of research related to cloud game streaming delay, jitter,

and frame buffers. More research has been conducted on game sensitivity to delay as opposed to

jitter and buffer sizes for cloud game streaming in particular. However, additional research has

been done for jitter and buffering for typical video streaming instead. The following research

influenced the design of the custom game and the user study.

Section 3.1. Game Sensitivity to Latency

Perspectives, Frame Rates, and Resolutions: It’s all in the Game, written by Mark

Claypool and Kajal Claypool, discussed the effects of frame rate and resolution on game

performance (2009). The paper researched these effects with a custom game, utilizing three

perspectives: first-person linear, third-person linear, and third-person isometric. Although this

research was focused on frame rates and resolutions, it indicates the performance of players may

be impacted differently by frame rate based on the perspective of the game, and that the effects

of frame rate may be similar to that of delay. These conclusions influenced the game designed

for our study (as detailed in Section 4.1), particularly the three perspectives to evaluate the

effects of delay and jitter.

Delay Sensitivity Classification of Cloud Gaming Content, written by Saeed Shafiee

Sabet, Steven Schmidt, Saman Zadtootaghaj, Carsten Griwodz, and Sebastian Möller, classified

nine game characteristics influencing the sensitivity of delay for games on cloud game streaming

(2020). The paper indicated that the number of input directions (capability to move back and

forward, left and right, up and down, rotation around the x and y axis) proved to be significantly

delay sensitive. It influenced our game design decision of allowing users to move in all

directions and move along the y axis by jumping in the first-person and third-person perspective.
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Feedback frequency (amount of visual, auditive, or haptic feedback) also proved to be a

delay-sensitive characteristic, which influenced our game design of adding visual feedback such

as sparks and audio feedback such as gunshot sounds.

Section 3.2. Game Sensitivity to Jitter

Quality of Experience Evaluation for Buffer Sizing of Cloud-Based Game Streaming, by

Brennan Aubuchon and Morgan Langstaff, discusses the effects of latency, jitter, and buffer sizes

on user’s experience playing games (2022). They found that games with lots of camera

movement, complex animations, and/or many particle effects are more negatively affected by

jitter and smaller frame buffer sizes compared to other types of games. This influenced our initial

game design by pushing us toward a game genre that could easily incorporate different types and

amounts of animations, and varying amounts of camera movement. It also gave us the idea to

incorporate and vary the intensity of particle effects.

Section 3.3. Effects of Buffer Sizes on QoE

Joshua Allard and Andrew Roskuski studied quality defects in video streaming in their

paper Measuring the Annoyance in Streaming Media Caused by Buffers and Interrupts (2015).

By having participants watch a series of videos with differing buffer or interrupt counts, they

attempted to find a relationship between annoyance levels and video streaming issues. Their

results indicated that not only was overall annoyance towards jitter higher than for buffers, but

videos with low motion had the highest average annoyance score for jitter related results. While

not specifically related to cloud game streaming, these results indicate that there may be some

acceptable amount of delay to users if it means smoothing out jitter spikes, though it is likely

much lower than for video due to the interactive nature of games.
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Section 4 Methodology

This chapter gives an overview of the custom game Robot Rampage, the client-side

buffer, and the user study. Section 4.1 explains the planning stages of Robot Rampage. Section

4.2 focuses on the development of Robot Rampage. Section 4.3 presents an overview of the final

build of Robot Rampage. Section 4.4 covers the design of the client-side buffer. Section 4.5

provides an outline for the user study structure and additional information related.

Section 4.1. Custom Game: Robot Rampage Planning

The development of our custom game, Robot Rampage, took place from October 2022 to

March 2023. During the planning stages, the focus was on incorporating various parameters that

were, based on our research, either sensitive to delay or sensitive to jitter. These parameters

needed the ability to change throughout the course of a user study session. These primary

requirements informed much of the development process and decisions made regarding many

aspects of the game.

Section 4.1.1. Delay-sensitive Game Parameters

As discussed in Chapter 3, prior research in the areas of cloud game streaming and

similar areas indicated certain elements of games that are sensitive to delay. These include:

● Perspectives (first-person, third-person, overhead)

● Enemy bullet accuracy

● Enemy movement speed

● Player bullet spread size/accuracy

From that list, the team narrowed down which elements we thought would a) be able to

be implemented by us in our custom game and b) could be changed to various levels of

sensitivity. For example, the accuracy of enemies could be decreased or increased, making it
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easier or harder for players to avoid taking damage, especially as network delay increases. The

resulting list was as follows:

● Perspectives (first-person, third-person, overhead)

● Enemy movement speed

● Player bullet spread size/accuracy

Section 4.1.2. Jitter-sensitive Game Parameters

As discussed in Section 3.2, while limited, the research on the effects of jitter to user’s

quality of experience in game streaming indicates that certain elements of games are more

sensitive to jitter. These include:

● Number of animations (fewer/more animations)

● Level of visual effects (fewer/more visual effects)

Like with the delay-sensitive parameters in the previous sub-section, the team narrowed

down this list to parameters that could be feasibly implemented and changed to varying degrees.

As an example, enemy animations could vary from few or none (e.g., they slide around when

moving, disappear when they die, etc.) to prevalent and elaborate. The resulting list was as

follows:

● Number of animations (fewer/more animations)

● Level of visual effects (fewer/more visual effects)

● Quality of textures (less/more detailed)

Section 4.1.3. Early Game Design Decisions

The first game design decision was what genre/type of game we should make in order to

best incorporate all the parameters we decided upon. To do this, the team went through all the

widely accepted main genres of video games and gave them a rating based on feasibility. One of
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the genres the group rated most highly was action, and when broken down by sub-genre, we

rated shooter most highly. It was agreed upon that shooters can be flexible in terms of many of

the parameters we discussed such as perspective and difficulty. It was also agreed upon that the

genre would be easier to develop compared to other genre contenders such as platformers.

The second major decision was what game engine to use to make this game. We decided

to make Robot Rampage in Unity as the team members working on it were already familiar with

that game engine and knew the capabilities of it. While Unity may not be widely considered to

be the best choice for shooters, it is a relatively simple and flexible engine. This was important

given the timeline for development and due to the number of unknowns regarding game features.

An additional decision we had to make before development was how the game was going

to be structured. Keeping in mind the context of the user study having many rounds, the team

decided a ‘boomer shooter’-like game with some amount of procedural generation in the levels

would be a good way to go. ‘Boomer shooter’ as it is commonly used refers to “first-person

shooters that intentionally harken back to the classic PC games of the late ‘90s like Doom and

Quake” (Franzese, 2021). These and similar games served as inspiration for some of the

mechanics as well as the mood of Robot Rampage.

Section 4.2. Custom Game: Robot Rampage Development

The bulk of development on Robot Rampage focused on implementing the design

decisions made during the planning stages on-time and effectively. To ensure that work would be

properly managed and completed, the team structured development loosely around the Agile

development cycle. The intent of designing development around this method was to ensure tasks

of the utmost importance were prioritized and assigned to a team member. Typically, a handful of

tasks were targeted each week based on what had already been completed, what was most

14



important for the study, and how difficult the task was. These tasks were created and managed

within the project management tool Trello.

To properly share the work done over Unity between team members and to have some

form of version control, a GitHub repository was created specifically for the game. The team

briefly considered utilizing Plastic SCM for version control given its built-in functionality with

Unity. However, due to the potential costs of maintaining it and our unfamiliarity with using it

compared to GitHub, the team pursued GitHub.

Early builds created during development were referred to as the MVP, or minimum viable

product. This build of the game was created to get the core functionality of the game complete as

early in the development cycle as possible. However, much of this version of the game was

scrapped after feedback from players at Worcester Polytechnic Institute’s Alphafest and due to

the inclusion of the default Unity third-person controller.

Section 4.2.1. Game Structure

The initial game loop concept was for players to fight their way through several rooms

before reaching the end of the level, thus concluding a single round. Each room would have

contained robots to fight, preventing the player from progressing unless all robots had been

defeated. However, as development progressed, the team found several issues with this structure

within the context of the study. For the study, having one consistent level would become an issue

when trying to analyze how the change in game parameters and network conditions affect QoE.

As players would have to play this level multiple times, there was potential for players to

memorize the level and adjust how they play based on the level layout rather than the change in

conditions. Instead of making several levels and potentially running into this issue, the team
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instead developed endlessly generating rooms for a level rather than having a specific end. More

detailed technical and design information on the level generation can be found in Section 4.2.4.

Initially, the player had a limited set of health and ammo. Players would lose health and

ammo with any hits from enemies or any shots respectively. To give players an opportunity to

regain health and ammo, power-ups were created as seen in Figure 5 However, these two were

scrapped near the end of development for the final build, as the two features introduced new

challenges and issues with other game features and requirements. The current structure of the

game gave players no goal beyond defeating as many enemies as they could within the given

time. With limited time for rounds, players dying due to a lack of health would significantly

increase the time spent not actively playing the game. The ammo caused a similar issue, since a

player could run out of ammo and would need another way to fight. Giving players ammo would

have made the need for an ammo count unnecessary, and waiting to give players ammo after

enough time had passed would share a similar issue with the health. With the presence of the

points system, these two were removed and their power-ups were reworked, giving players an

endless amount of health and ammo.
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Figure 5: Initial Health and Ammo Power-up Models. The Red and Green Models are the Health

and Ammo Respectively

The point system was introduced later into development to incentivize players to proceed

forward through the level and defeat as many robots as possible. Points were designed to reward

players for playing well and punish them for performing poorly, such as when they destroyed a

robot or had been hit respectively. As a result, the points worked better alongside the structure of

the game compared to the health and ammo, as a player could be rewarded or punished for their

actions without slowing the pace of the game or study itself. Once the health and ammo were

removed, the points became the primary way to gauge how successful a player was during the

game.

Power-ups would drop randomly from enemies when defeated to assist players when they

were running low on health and ammo. While the power-ups were originally designed for the
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health and ammo systems, they would be reworked once those two systems were scrapped.

Instead, the power-ups temporarily increase the stats of the player. Speed and damage increases

were chosen, incentivizing players to defeat robots to collect them, thus allowing them to more

efficiently and effectively defeat more robots. To prevent players from becoming too powerful,

the power-ups were given time limits, encouraging players to strategically choose which

power-up to grab in a given situation.

Section 4.2.2. Player Mechanics

The player character’s controls and abilities remained consistent across development

from a surface level view. Players controlled the character with the mouse and keyboard,

walking, jumping, and shooting in the process. However, the player controller within Unity

changed drastically during development in response to player feedback and the three cameras

required for the study.

Initially, a custom player controller was created that contained the same player keyboard

and mouse controls as in the final build. Both the MVP build and the final player controller used

raycasts to create a hitscan gun. Rather than fire out a physical object, with hitscan the player can

fire the gun into the direction of the target and so long as it falls within the set range of the

raycast it will connect. To give players an indication of where they would shoot, a reticle was

placed in the center of the screen and would change colors to indicate when the player could

successfully shoot an enemy. This reticle feature stayed consistent throughout all builds of the

game. What changed were the physics of the player controller, as early playtesters of the MVP

build found the player character too floaty and slippery. This player controller was built with a

first-person perspective, lacking the other two perspectives in the process, and only using a

default Unity camera. The most significant difference between the MVP player controller and the
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one found within the final build was the ability to aim in any direction, which would later change

as a result of the overhead view. Figure 6 presents an early version of the MVP build within the

Unity editor.

Figure 6: Early Version of the MVP Build, Containing the Basic Player Controller and Example

Scene

In response to the feedback given by playtesters of the MVP build and to make adding

additional camera perspectives easier, the team switched to Unity’s default third-person

controller. The controller was customizable, allowing for us to tweak it to get the desired feel

from the game interaction. The physics of the controller were much more elaborate, giving a

better sense of game feel as a result. The controller also utilized Unity’s cinemachine camera

system, providing a much more intricate and complex camera system than what was seen within

the MVP build.

While the first-person and third-person perspectives were relatively similar and required

no changes in player controls or mechanics, the overhead view significantly altered the view and

how players controlled the game. With the overhead view, players were put at a significant
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disadvantage when trying to aim along the y-axis. The ability to aim along the y-axis had to be

removed to compensate. To make the controls as consistent as possible between each

perspective, the same was done to the first-person and third-person views. Now the only axis that

the game would consider when a player aimed with the mouse was the x-axis, meaning the game

only took in left and right mouse movements. Further changes were made to how the player

aimed and moved within the overhead view as detailed in Section 4.2.3.

For the purposes of the study, the game needed adjustable difficulty levels. To do this, the

player shooting was modified to allow for changeable accuracy ranges. The SettingsManager

handled the three difficulties, changing the range of values within the player attack script to

match.

Section 4.2.3. Camera Functionality

In the initial MVP build, the game only contained a first-person view. The camera

utilized within this build was a default Unity camera, lacking the complexity of other Unity

camera systems such as cinemachine. With the switch to the Unity third-person controller, a

cinemachine camera was utilized.
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Figure 7: A screenshot of the final build’s third-person perspective

Given that the third-person controller only contained a third-person camera, the

first-person and overhead cameras had to be implemented. To manage switching between

cameras for the three perspectives, a Unity game object called CameraMonitor was created to

change the current camera and any other attributes. Using the Unity third-person controller, the

third person perspective was already completed. To implement a first-person perspective, an

additional cinemachine camera was added and placed in front of the player model. When

switching to the first-person camera, CameraMonitor would turn off the player model’s mesh,

preventing the model from clipping into view.
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Figure 8: A screenshot of the final build’s first-person perspective

The most difficult perspective to implement was the overhead view. To solve the issue of

aiming within the overhead view, the team considered various ideas. At one point, the team

tested the ability to aim with the arrow keys rather than the mouse. However, the team found that

this control scheme felt uncomfortable in all three perspectives. The final implementation was to

always keep the player aiming straight in front of them, only allowing the player to rotate the

entire player in the overhead perspective and move up, down, left, and right relative to the

screen. To give a proper indication of where the player was shooting, a Unity line renderer

replaced the reticle in the overhead view. The line works similarly to the reticle by changing

colors when the player could shoot an enemy. CameraMonitor manages turning on and off the

reticle and render line based on the current camera.
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Figure 9: A screenshot of the final build’s overhead view

Section 4.2.4. Levels

From early on in development, the team planned to have the levels of Robot Rampage be

procedurally generated in some way. We hoped the procedural aspect of the level generation

would keep the game from getting too monotonous to play for the duration of the study while

requiring minimal work in level design on the part of the team. There are several ways of going

about procedurally generating levels, such as generating terrain maps using noise functions,

using 2D dungeon-generating algorithms, generating full 3D cave systems, and various other

more or less complex methods. Given the chosen setting of the tunnels under Atwater Kent and

the other technical and scope limitations of the project, the team decided to make several preset

rooms that would be placed procedurally to form a given level.

The actual algorithm governing the level generation is relatively simple. There is a

LevelGenerator object in the level scene that starts by instantiating the start room and then picks
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a random doorway from the most recently placed room, attempting to attach a random room to it.

This repeats for as many rooms as wanted per level, checking if any rooms overlapped each time

to avoid collisions.

The initial rooms were simply made of primitive blocks in the Unity editor to work on

implementing the placement system. There were a few different kinds of rooms to provide

variety such as a square room that would spawn enemies as seen in Figure 10, several types of

hallways, and a taller room with some platforms to get to a second-story door.

Figure 10: An Example of an Initial Room with an Isometric View

Once the team started finalizing the design of the user study, the initial concept of having

individual levels for each round was changed. If there was a specific number of rooms in each
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level, this may result in some players finishing the level before the expected time, while some

players may not finish the level in time. Additionally, starting a new level for every round may

not be very time efficient as beginning a level may be slightly disorienting as well as not contain

any enemies. Therefore, the final level generation was changed such that it would infinitely

spawn new rooms and destroy old rooms. Gameplay would simply be paused between rounds,

and that way the user would pick up right where the previous round ended.

Additionally, the final rooms were redesigned. From feedback at Alphafest as well as our

own feelings towards the rooms, we decided the rooms should be larger, and there should be

fewer hallways. Additionally, we decided to remove most of the verticality from the final rooms,

particularly in the way that all of the final rooms sit on the same plane (we removed the hallways

that start and end at different heights, for example). One reason for this is the fact that we

eliminated players’ ability to aim in the vertical direction. With how the overhead camera ended

up working (we included a black plane outside the rooms since the overhead camera could see

beyond the walls of the room), there was the potential for verticality in the levels to cause issues

with the overhead view.

The final rooms designs were made in Blender. No one on the team has much experience

with 3D modeling or asset creation, and only some limited experience using Blender. While

Blender is a powerful tool for model creation, it turned out that we likely did not require it for

our purposes with Robot Rampage. Given the user study was the priority of the game, the actual

room design and creating assets was a low priority, and it turned out to be easiest to use mostly

primitive shapes in Blender to create the rooms. This likely resulted in a similar result to

re-doing the room creation in Unity itself. Some of the final rooms are pictured below:
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Figure 11: Two examples of the final room designs for Robot Rampage from a top-down view.

Section 4.2.5 Enemies

The addition of enemy robots gave players a proper goal: to destroy as many robots as

possible. Robots were designed to stay still when they spawned in a room, only attacking when a

player was nearby. State machines were used to achieve this, switching the robot from idle,

walking, and attacking states. If a player was near, the robot would exit its idle state and begin

walking towards the player. Once close enough, the robot would enter its attack state and fire at

the player. The robots would enter and exit these states based on their distance from the player.

To create variety for users, three enemy types were created, each of which sporting a

different color scheme, walking state distance, attack state distance, health, walk speed, and

damage output. The intention was to have three difficulties of enemies with variance in the

previously described values. The easy enemies would be unable to move and do the least amount

of damage, the middle difficulty enemies would do considerable damage, and the hardest

enemies would have the most damaging attacks. However, with the exclusion of health and
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ammo from the final build of the game, many of the enemy stats went unused. This resulted in

the medium difficulty enemies, who had a slightly higher walking range and speed than the

hardest enemies, becoming the hardest enemies in the game due to the lack of damage values.

The intended difficulties of the enemies appear below in Figure 12 from left to right: easy,

medium, and hard.

Figure 12: The Three Enemy Types

Section 4.2.6. Art and Sound

The development team lacked both a dedicated artist and sound designer. As a result, the

game utilized existing assets from various sources to speed up the development process and to

improve the user experience. Original assets and modifications to existing ones were also created

by the team using Unity’s built-in functionality.

For models, the team gathered three models from the Unity Asset store. The player

model, Gompei the Goat, originated from the Goat - Quirky Series asset (Omabuarts Studio,

2022). The enemy robot model used was gathered from the Robot JR-1 (animated) + mod1 &

mod2 pack of assets, specifically robot JR-1 (Jope Anti-Studio, 2020). Additionally, the pistol
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model used was the Pistol_05 prefab found within PolyGun Sample Pack (Out of Ram Studios,

2020). To modify the colors for the player, the team changed the colors in the texture used by the

model’s material. The process was simpler for robot models, as we could directly apply new

materials created within Unity to any part of the robot such as the body. Additional models for

the power-ups and enemy bullets were created by using Unity game objects and applying

materials for the colors.

The majority of animations within the game originated from the included models, such as

the player movement and robot actions. However, much of the player animations were modified

using Unity’s built-in animator to properly sync the player’s gun position with the player model

animations. The player shooting animation in particular was created by taking an existing

animation for the goat and having the gun spin around the goat’s horn during the time of the

animation. Functionality to turn on and off all animations in real-time was added by using

override controllers in Unity, but this functionality went unused in the final build.

Two textures were used for the floors and walls of the levels, both of which originated

from OpenGameArt. The two textures were of rocky blocks, giving the level a rough, rugged

look. A material was then applied to the level geometry, darkening the color of the textures.

Figure 13: The Original Textures Used for Rooms (qubodup, 2012; bart, 2012)

28



Basic particle effects were created to enhance the visual look of the game and provide

proper feedback to players. The first particle effect appeared when a player shot their gun. The

end of the gun produced a brief explosion to indicate that the player had fired the weapon. In

addition, spark particle effects would shoot out of robot enemies when successfully shot. Both

particle effects were created using Unity’s built-in particle effect.

To give the game a distinct look and to blend the different art assets together more

seamlessly, a pixel filter was created for the game. Using a Unity material and a shader script, the

filter could be easily modified to change the size of the pixels in the filter. Initially, we explored

modifying the filter as a parameter for the study, but instead kept it as an unchanging aspect of

the game. A comparison between the game with the pixel filter off and on can be seen in Figure

14, showing the filter off and on in the top and bottom images respectively.
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Figure 14: Comparison Between the Pixel Filter On and Off In-game

Various music and sound effects were included to not only enhance the atmosphere of the

game but to provide enjoyment for players during the study. Music used within the game

originated from the site Soundimage.org and sound effects were gathered from FreeSound. In
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total, the game included seven songs and thirteen sound effects. Music played throughout the

game, alternating between one another every thirty seconds. Sound effects would play after

specific in-game events, such as a player attacking or walking. An audio manager would handle

playing these sound effects, controlling their volume, and properly swapping between music and

sound effects when needed. Tables containing the specific music and sound effects used in the

game can be found in Appendix E.

Section 4.3. Custom Game: Robot Rampage Final Build

The final build of the Robot Rampage took the form of a shooter where players control

Gompei as he traverses a variety of rooms and takes down robot enemies. In the story, robots

from Worcester Polytechnic Institute’s robotics department unleashed hundreds of deadly robots

into the tunnels of the Atwater Kent building. It is up to Gompei to go down to the tunnels and

stop the robot rampage. The final build aimed to provide a clear objective to players while

effectively providing information for the study.

Section 4.3.1. Game Overview

In Robot Rampage, the player’s objective was to score as many points as possible, which

is accomplished by defeating robots, collecting power-ups, and taking as few hits as possible.

The rooms and robots were generated endlessly, allowing for players to play for several rounds.

Users utilized a mouse and keyboard to play. The basic controls for players include:

● W, S, A, and D Keys: Move Gompei up, down, left, and right respectively.

● Spacebar: Have Gompei jump.

● Mouse Left-click: Shoot Gompei’s weapon.

● Mouse Movement: Rotate Gompei.
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Enemies spawned within rooms in three types, each of which contains a different color.

Attack range, health, and speed differ between enemy types. Gray robots had the longest attack

range, but they also possessed the lowest health and did not have the ability to move toward

players. Red and orange robots had shorter attack range but had the ability to walk towards the

player if too far to attack and had higher health values.

Two power-ups had a chance to spawn once an enemy was defeated. The power-ups

included a speed boost and a damage boost, both increasing the respective properties of the

player for a set amount of time. Power-ups could not be combined, so players had to choose

carefully when taking a dropped power-up.

Figure 15: Example of the Final Build Gameplay. Depicted is the Third-Person Perspective, a

Dropped Speed-up Power-up, and Spark Particle Effects Originating from the Robot

Various actions within the game contributed to the player’s score. A player could increase

their total score by hitting a robot, destroying a robot, or collecting a power-up. However, a
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player would lose points if hit by a robot or if they did not engage in combat for a certain period

of time.

Section 4.3.2. Logging

Robot Rampage would log specific game-related actions into a csv file until shutdown.

Each action was represented as a row within the file, with each column containing information

related to the game during that specific action. From left to right, the columns included the time

in seconds since the beginning of the game, the current round number, the current camera option,

the current difficulty, the current texture quality, and the specified action.

The actions logged include:

● “Collected Damage Up”, logged when a damage power-up was collected by a

player.

● “Collected Speed Up”, logged when a damage power-up was collected by a

player.

● “New Round Started”, logged when a new round has begun.

● “Player Hit”, logged when a player was hit by a robot bullet.

● “Round Score”, logged when a round ended. The cumulative score up to the end

of the round was included.

● “Shot Fired”, logged when a player shoots.

● “Shot Hit”, logged when a player successfully hits a robot.

Section 4.3.3. Parameters

The game changed three specific parameters in-between rounds: camera type, difficulty,

and texture quality. These parameters were used based on the parameters related to delay and

interrupts that were analyzed during development.
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The camera type parameter had three options: first-person, third-person, and overhead.

First-person took on the perspective of the player character, third-person depicted the game from

behind the player character, and overhead aimed the camera at the player from above.

Difficulty switched between three options: easy, medium, and hard. As the difficulty

increased, the required accuracy for the player to hit a robot increased as seen in Figure 16. The

robot’s accuracy for shots increased alongside the player’s accuracy.
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Figure 16: Visual Representation of the Changing Difficulties Using Unity’s Debug Tools. From

Top to Bottom: Easy Difficulty, Medium Difficulty, and Hard Difficulty
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Textures also changed between low, medium, and high quality. High quality textures were

the original textures, but as the quality decreased the more compressed the texture appeared as

seen in Figure 17.

Figure 17: An Example of the Three Texture Quality Settings. From Left to Right: High Quality,

Medium Quality, and Low Quality

Section 4.4 Client-Side Buffering Methods

A multi-threaded buffer written in C was implemented on a separate open-sourced

Moonlight client from the study. The buffer was implemented with a queue with two threads for

enqueue and dequeue. The initial buffer time determines the max size of the buffer. A separate

function was written to perform all dequeuing actions. The code containing enqueuing actions

was written in LiCompleteVideoFrame(), a Moonlight original function, where arriving frames

were rendered.

In the dequeue thread, the function decided the two states of the buffer: FILL and PLAY.

If the queue size was less than or equal to 0, the buffer entered the FILL state. The buffer entered

the PLAY state when the queue size was greater than the max size set by the initial buffer time.

Although the max queue size was set, it was still possible for the queue size to fluctuate around

the max size due to the network condition for the given run. In the FILL state, the buffer did not
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dequeue frames and allowed the enqueue thread to store frames. In the PLAY state, the buffer

entered the critical region, dequeuing one frame item and one drstatus item (drstatus is part of

Moonlight’s original rendering code), leaving the critical region. The dequeued frame and

drstatus item were used in the rest of the program to render the frame. The dequeue thread was

sent to sleep at the end of the buffer function to match the average enqueue rate to avoid the

buffer from being drained.

Section 4.4.1. Average Enqueue Rate Calculation Size

Two runs of buffer settings of 500 ms and 800 ms initial buffer time with a 30 ms jitter

magnitude were performed in addition to a run of 0 ms buffer (no buffer) with no jitter for

comparison. The average enqueue rate was calculated on the enqueue thread and was used to

match the enqueue and dequeue rates. Interframe times for each frame were stored in an array for

later average enqueue rate calculation. We performed three 30 seconds test runs with average

enqueue rates of every window of 10 or 100 frames and logged the queue occupancy of the

corresponding run. The queue occupancy graphs below allow us to see if the selected average

calculation size can produce a relatively stable performance in queue occupancy. Since having a

greater window size takes longer to produce an average, in Figure 19, the queue was

continuously drained and filled for the first five seconds since the average still needs to be

calculated. This type of behavior was not ideal for producing a relatively stable queue

occupancy. In Figure 18, the queue was filled from the start and stayed relatively stable for the

rest of the stream time. Thus, we chose to calculate the average enqueue rate every 10 frames.
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Figure 18: Queue Occupancy for a Buffer Using Average Enqueue Rate for Every 10 Frames

Figure 19: Queue Occupancy for a Buffer Using Average Enqueue Rate for Every 100 Frames

Section 4.4.2. Simulated Buffer

Due to the time and scope of the project, the buffer discussed above was not able to be

implemented for the study. For the study, the buffer was simulated by changing jitter and latency
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values through a router. Buffering can reduce jitter spikes but will result in a certain amount of

additional latency depending on the size of the buffer. A larger buffer takes longer to fill and thus

can cause greater latency. For the jitter settings we had none (0 ms), low (30 ms), and high (60

ms) magnitude values. A buffer was simulated by adding latency and reducing the jitter

magnitude by 30ms. For example, the low jitter setting with a simulated buffer would become

the no jitter and low latency setting.

Section 4.5. User Study

To properly collect data for the purposes of the study, the user study was designed to

effectively gather data from users both inside and outside the playable game. The user study

consisted of multiple steps:

1. The start of the study consisted of the user reading and signing the informed

consent form, completing a reaction time test, and filling out a demographics

survey.

2. The user played one practice round for each perspective for twenty seconds.

3. The user played a round of the game for thirty seconds.

4. Once the round finished, the user would fill out a post-round survey, answering

two questions about their experience.

5. The user repeated steps 2 and 3 for forty-two total rounds excluding the initial

practice rounds, with each round consisting of a different combination of game

parameters and network conditions.

6. Once the user completes the required number of rounds, the study would

conclude.
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Section 4.5.1. Test bed

The user study utilized a setup of two computers and a Raspberry Pi that performed as the

server, the client, and the router respectively. The streaming host OpenStream was installed on

the server computer, hosting the custom game as well. The router computer was connected to a

Raspberry Pi that received command lines and added different sets of delay and jitter to the

internet connection. The streaming client Moonlight was used on the client computer, connecting

to the server for players to play the game.

Figure 20: A Diagram Depicting the Test Bed Setup for the User Study

Section 4.5.2. Preliminary Tests

Before starting the study, the participant was tasked to complete three items before

beginning the game. The first of which was an informed consent agreement, informing them of

the study and any risks associated with it. The informed consent agreement is attached in

Appendix A. Once completed, the participant was required to fill out a demographics survey,

giving us insight into the experience with cloud gaming the users had prior to the study. More

detail on the demographics survey can be found in Section 4.5.5.

The final requirement prior to the start of the game was a reaction time test. The test

gathered information on the user’s ability to react quickly to changes on the monitor. The

reaction time test requires the user to click on the colored interface as soon as the interface

changes color for ten rounds. In between each round, the test displayed the time the user took to
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react and click on the interface once the color changed. After all ten rounds, the data was saved

and the participant proceeded to the game.

Section 4.5.3. Game Round Structure

Once the participant completed the demographics survey, Robot Rampage was started for

the user to play. The user played one practice round of 20 seconds for each perspective (third

person, first person, top-down view). After filling out the practice round survey, the user plays

multiple rounds, each round consisting of the user trying to score as high as they can by shooting

robots and collecting power-ups in the given time before they fill the post-round survey. In

between rounds, the game settings changed in addition to the network condition settings. There

are six network condition combinations: no jitter no latency, low jitter with no latency, high jitter

with no latency, no jitter with low latency, no jitter with high latency, and low jitter with low

latency. For latency, a low setting was 50 millisecond and a high setting was 150 millisecond. As

a result of the changes, the user’s experience between rounds would change.

As the user played the game, specific information from each round was logged. This

information indicated what actions the user took within a round and how well they did. Example

information gathered includes the number of shots taken, the number of shots successfully hit,

and the number of times hit by an enemy.

Section 4.5.4. Data Collection

Demographic survey data was collected through Google Forms and was stored in a

Google Drive made for the study. In-between round survey data was collected by python scripts

running alongside Moonlight on the client machine. Specific in-game actions were logged for

each game round and stored together in a csv file. Once a participant finished answering all

round surveys, a script compiled the in-between round surveys and the in-game round data into a
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single zip file. All user study data files were secured on WPI sharepoint until the end of the study

where the faculty advisor, Professor Claypool, archived the data. No identifiable information was

released, and only group members and advisors were able to access user study data files.

Section 4.5.5. Surveys

The user study started with a demographics survey. The survey acquired the user’s age

and gender and gained information about the user’s experience with games. Different levels in

gaming can influence the user’s adaptation to different internet conditions and thus produces

variances in data collected from the survey. For example, a more experienced gamer might adapt

to internet delays better than a less experienced gamer and perform better. In the demographic

survey, we asked if the user plays games and how often they play games on a weekly basis to

help us determine the user’s experience as a gamer. User demographics survey questions are

provided in Appendix B.

The user would fill out a survey after each round of playtesting. The survey acquired

information about users’ quality of experience (QoE) of the round. Examples include how

smooth was the game experience for the round. From the survey responses, we can interpret the

effect of jitter and latency on users’ QoE and how well can different buffer sizes reduce the

negative impact of poor internet conditions. In-between round survey questions are provided in

Appendix C.

Section 4.5.6 Advertisement

The user study was advertised through email and was sent to all IMGD and CS students.

To incentivize participation, playtesters were given a $10 Amazon gift card and playtesting credit

for any class at WPI that required it. The recruitment email is provided in Appendix D.
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Section 5 Analysis

This chapter presents the analysis from data collected in the user study and client-side

buffer log files. Section 5.1 provides an overview of the demographics of the user study. Section

5.2 analyzes the relationship between QoE for both delay and jitter with game perspective,

difficulty, and texture quality. Section 5.3 discusses player performance in relation to delay and

jitter, primarily by perspective. Section 5.4 presents data for the enqueue rate of the client side

buffer. Section 5.5 shows data for client side buffer queue occupancy. Section 5.6 presents data

for client side buffer dequeue time.

Section 5.1. Demographics

The demographics survey questions found in Appendix B were filled out by participants

prior to the start of the game. In addition, the participants took a reaction time test after the

demographics survey but before playing the game.

There were a total of 35 participants, with the average age was 20.8 with a mode of 20.

The youngest participant was 18 years old, and the oldest was 44 years old. There were 26 male

participants, 6 female participants, one nonbinary participant, one genderfluid participant, and

one participant who was unsure.

A majority of 31 participants answered yes to the question that asked whether the

participants play video games, and 4 participants answered no. Out of the 31 participants who

answered yes, 16 of them play video games almost every day, 6 participants play 4-5 times a

week, and 9 participants play 1-3 times a week.

Only 11 participants had used any cloud game streaming service prior to the study and 24

had no cloud gaming experience. When asked to select which cloud game streaming services

participants specifically used, the most frequently used service was NVIDIA GeForce Now with
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5 results. Google Stadia placed second with 3 results, Xbox Cloud Gaming had 2 results, and the

remaining services only had 1 result. Beyond the services listed, 5 participants selected Other.

The average reaction time was 250.124 milliseconds to click on the screen after the color

changed. The median reaction was 232 milliseconds, indicating the distribution is slightly

skewed to the right by a few participants that had slower reaction times. Local system latency

could have added to the results of participants’ reaction time.

Although the majority of the participants had gaming experience, more than half of the

participants did not have cloud gaming experience. Among those who had experience with cloud

gaming, NVIDIA GeForce Now was the most popular out of the given selection, but just as

many participants had used a service not specified. Due to this, many of the QoE ratings were

from participants experiencing cloud gaming for the first time.

Section 5.2. Quality of Experience Analysis

Average QoE ratings were calculated from the first question in the in-between round

survey and analyzed versus perspective, difficulty, and texture quality across three levels of

added delay or jitter. The delay magnitudes include none (0 milliseconds), low (50 milliseconds),

and high (150 milliseconds). The jitter magnitudes set include none (measured at 9.2 ms/s), low

(measured at 152 ms/s), and high (measured at 334 ms/s). Because the magnitude might range

from the intended added amount to two times the added amount during streaming, the actual

average jitter magnitudes for each set magnitude were calculated.
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Section 5.2.1. Quality of Experience for Perspective

Figure 21: Average QoE Rating Versus Delay By Perspective

Figure 22: Average QoE Rating Versus Delay By Perspective with Trend Lines
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To calculate average QoE ratings, combinations of delay magnitude and perspective were

analyzed. As seen in Figure 21, the overhead view consistently ranked the lowest in QoE ratings,

while the first-person and third-person perspectives ranked higher. However, while the

first-person view ranked the highest with no delay, the increase in delay led to the perspective

receiving worse QoE ratings compared to the third-person view. When taking a look at the

regression lines of each perspective, the overhead perspective remained the most consistent for

QoE ratings, while the first-person perspective had the sharpest decline in ratings, all with fairly

high R2 values.

Figure 23: Average QoE Rating Versus Jitter Magnitude By Perspective
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Figure 24: Average QoE Rating Versus Jitter Magnitude By Perspective with Trend Lines

Based on Figure 23, we noticed the overhead perspective had the lowest rating regardless

of jitter magnitude. This could be because participants did not prefer the controls that the

overhead view provided. Although the ratings for the overhead perspective were low, the slope

of its trend line across the different levels of jitter magnitude was the smallest. The first person

perspective had a steeper trend line than the third person perspective according to Figure 24.

Compared to the first and third person, the overhead perspective was relatively more resilient to

jitter, or participants disliked this perspective in general. The first person perspective had the

highest QoE rating when no jitter was present, but its rating dropped below the QoE rating of the

third person for low and high jitter magnitude settings. For high jitter magnitude, none of the

three perspectives had a significant advantage over each other.
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Section 5.2.2. Quality of Experience for Difficulty

Figure 25: Average QoE Rating Versus Delay By Difficulty

Figure 26: Average QoE Rating Versus Delay By Difficulty with Trend Lines

The average QoE ratings corresponding to the three levels of difficulty were compared

with different levels of delay. According to Figure 25, three difficulty levels had similar trends,
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and the data points were relatively close. Thus there was no statistical difference between each

level of difficulty. Medium difficulty had the lowest rating for all delay settings, though not by

any statistically significant margin. All three levels of difficulty’s QoE ratings decreased at

roughly the same rate as delay increased, and all with high R2 values.

Figure 27: Average QoE Rating Versus Jitter Magnitude By Difficulty
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Figure 28: Average QoE Rating Versus Jitter Magnitude By Difficulty with Trend Lines

In Figure 27, combinations of jitter magnitude and difficulty were utilized to analyze

average QoE ratings. The low and high difficulties scored the highest QoE ratings with no jitter,

with both ratings rounding out to 3.88. With a low jitter magnitude, the high difficulty ranked

with the higher rating over the low difficulty until both equaled out for QoE ratings with high

jitter. The medium difficulty ranked the lowest in terms of QoE ratings for no jitter and low jitter,

but ranked slightly higher than the other difficulties with the highest jitter magnitude. All three

difficulties were similarly consistent in their drop in QoE ratings, indicating that difficulty had

little effect on participants’ experience when affected by jitter.
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Section 5.2.3. Quality of Experience for Texture Quality

Figure 29: Average QoE Rating Versus Delay By Texture Quality

Figure 30: Average QoE Rating Versus Delay By Texture Quality with Trendlines
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The average QoE rating was calculated for combinations of different delay levels and

texture quality. There were three levels of texture quality: low, medium, high. Low texture

quality had the highest QoE ratings across different levels of delay. As shown in Figure 29, the

average QoE ratings for the three levels of texture quality were very similar to each other across

different levels of delay. All three levels of texture quality’s QoE ratings decreased as the delay

level increased at roughly the same rate as shown in Figure 30.

Figure 31: Average QoE Rating Versus Jitter Magnitude By Texture Quality
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Figure 32: Average QoE Rating Versus Jitter Magnitude By Texture Quality with Trend Lines

As shown in Figure 31, medium texture quality scored the lowest ratings for all jitter

magnitude levels. When no jitter was added, low texture quality had the highest rating, but later

decreased below high texture quality as jitter magnitude increased. Three levels of texture quality

had similar QoE ratings across all levels of jitter magnitude. Three QoE ratings all decreased as

the jitter magnitude increased. It appears that texture quality did not have a significant impact on

participants’ QoE, as indicated by the overlapping confidence intervals as well as the similar

slopes and high R2 values.
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Section 5.3. Participant Performance Analysis

Figure 33: Average Score Per Round Versus Delay By Perspective

Figure 34: Average Score Per Round Versus Jitter Magnitude By Perspective
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Figure 35: Damage Per Round Versus Delay By Perspective

Figure 36: Damage Per Round Versus Jitter Magnitude By Perspective
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The above figures (Figure 33 - 36) show various metrics of player performance vs.

network conditions separated by perspective. Figure 33 and Figure 34 show that the overhead

perspective resulted in statistically significantly lower score per round compared to the first and

third person perspectives, while first and third person do not appear to have different average

scores for the given network condition. Figure 35 and Figure 36 show damage taken versus delay

and jitter respectively, also separated by perspective. These are less conclusive, but similarly

indicate that participants took more damage (worse performance) in the overhead view compared

to first and third person, while first and third person resulted in very similar amounts of damage

taken per round. As seen in the figure named “Average Score Per Round Versus Delay By

Perspective with Trend lines” from Appendix F, score is negatively affected the least in the

overhead perspective while first and third person are similarly affected, with R2 values of 0.98,

0.96, and 0.86 respectively. Additional charts for perspective that include the trend lines can be

seen in Appendices F and G.

We performed the same analysis for score and damage taken separated by both texture

quality and difficulty (as seen in Appendices H through K). As seen in the figure named

“Damage Per Round Versus Jitter Magnitude By Difficulty with Trend Lines” in Appendix I,

there seemed to be little correlation between jitter and damage taken for low and medium

difficulty, but there was a positive correlation of 0.0095 hits per round per ms/s of jitter with an

R2 of 0.85 for high difficulty. Additionally, as seen in the figure named “Average Score Per

Round Versus Delay By Texture Quality with Trend Lines” in Appendix J, average score per

round is most negatively affected by delay for low textures, followed by medium textures, and

least affected by high texture quality, with R2 values of 0.97, 0.90, 0.98 respectively.
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Section 5.4. Client-Side Buffer Enqueue Rate

Figure 37: Enqueue Rate Versus Time for a 0 ms Buffer with 0 ms Jitter Magnitude

Figure 38: Enqueue Rate Versus Time for a 500 ms Buffer with 30 ms Jitter Magnitude
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Figure 39: Enqueue Rate Versus Time for an 800 ms Buffer with 30 ms Jitter Magnitude

The interframe time (enqueue rate) was logged every time a frame was enqueued. The

average enqueue rate was calculated by the interframe time of every ten frames in the enqueue

thread. As depicted in Figures 37, 38, and 39, the average enqueue rate generally stayed around

0.033 seconds per frame for all three runs. Comparing the average enqueue rate lines for Figures

38 and 39, we could infer that with the same amount of jitter magnitude, an 800-millisecond

buffer could provide a slightly stabler average enqueue rate. Based on Figures 38 and 39, we

noticed the 500-millisecond buffer had more interframe time spikes that exceeded 0.05 than that

of an 800-millisecond buffer.
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Section 5.5. Client-Side Buffer Queue Occupancy

Figure 40: Queue Size Versus Time for a 0 ms Buffer with 0 ms Jitter Magnitude

Figure 41: Queue Size Versus Time for a 500 ms Buffer with 30 ms Jitter Magnitude
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Figure 42: Queue Size Versus Time for an 800 ms Buffer with 30 ms Jitter Magnitude

In the dequeue thread, the queue occupancy was logged for each run. The queue size was

logged every time a frame was enqueued or dequeued. The max queue size for a zero

milliseconds buffer was zero. As mentioned in previous sections, although the max queue size

was set after the initial buffer time, it was still possible for the buffer to exceed the max size for a

small amount. Since it was impossible for the size to drop below zero, in Figure 40, the queue

occupancy of a buffer with zero milliseconds of initial buffer time fluctuated around 0-10. In

Figure 41, the queue occupancy for a 500-millisecond buffer had risen and fluctuated around

25-35 compared to the zero-millisecond buffer, which showed that increasing buffer time would

lead to greater queue occupancy. In Figure 42, with a greater buffer time of 800 milliseconds, the

queue occupancy raised and fluctuated around 38-46. Comparing Figures 41 and 42, with an

800-millisecond buffer, the queue occupancy was able to only fluctuate for a small amount

around a constant size for a longer period of time compared to that of a 500-millisecond buffer.

60



According to these graphs, we were able to show that the buffer size can be controlled by the

initial buffer time. Additionally, the buffer size and the initial buffer time were proportional.

Section 5.6. Client Side Buffer Dequeue Time

Figure 43: Dequeue Time Versus Time for a 0 ms Buffer with 0 ms Jitter Magnitude

Figure 44: Dequeue Time Versus Time for a 500 ms Buffer with 30 ms Jitter Magnitude
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Figure 45: Dequeue Time Versus Time for an 800 ms Buffer with 30 ms Jitter Magnitude

The dequeue time was calculated in the dequeue thread, and the dequeue time logged the

interframe time of every dequeued frame and drstatus. Comparing Figure 43 with Figures 44 and

45, we noticed that there were several significant spikes in the dequeue time. This could be

caused by not having a buffer so that frames were being dequeued as soon as the frames arrived

at the client, where frames were arriving at varying rates. Based on the data points in Figure 44,

the dequeue time was able to stay around 0.010-0.046 seconds from the 0.5th to 8.7th second.

We then noticed a decreasing trend, and the dequeue rate reached zero at the 10th second. As

shown in Figure 45, the dequeue rate fluctuated between 0.012 and 0.043 seconds, which is a

tighter range compared to that of Figure 44. In addition, the dequeue times in Figure 45 did not

drop to zero, and the trend of the dequeue time stayed relatively flat after dequeue actions started

compared to Figure 44.
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Section 5.6 Analysis Summary

Based on the analysis in sections 5.1-5.2, all three categories were more negatively

affected by delay than jitter based on the slope of the trend lines for QoE ratings. For

perspectives, QoE for first-person and third-person appear to be similarly affected by delay and

jitter, but first-person more so in both cases. The overhead view scored the lowest QoE ratings

and had the worst performance overall among the three perspectives. This could indicate general

dislike towards the perspective by participants in Robot Rampage, as verbal feedback from

participants pointed to the perspective being less user-friendly. Despite this, it may be that the

QoE for the overhead perspective is affected the least by the change in network conditions based

on the trend lines. Meanwhile, the effects of texture quality and difficulty are far less pronounced

and more inconsistent for QoE, score, and damage taken. A table comparing all the trend line

equations gathered can be found in Appendix L.

Figure 46: Average QoE Rating Separated by Network Conditions
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Additionally, this project was interested in the effects on user’s QoE when reducing jitter

via buffering some number of frames in the client. This inherently adds delay, which

theoretically is roughly equal (in ms) to the amount of jitter smoothed (in ms/s). Looking at low

jitter (152 ms/s) compared to high delay (150 ms) can give an estimated indication of the effects

of a client-side frame buffer on user’s QoE. As shown in Figure 46, the average QoE for high

delay (2.70) is significantly lower than the average QoE for low jitter (3.35). This would suggest

that, at least for amounts of jitter around this level, having a large enough buffer to smoothly

playout frames would result in a worse user experience.

From sections 5.3-5.5, we inferred a greater initial buffer time would produce a greater

buffer size. Additionally, we showed the ability to control the buffer and produce relatively stable

queue occupancy in addition to the ability to calculate enqueue rates, average enqueue rates, and

dequeue rates.
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Section 6. Conclusion

Cloud-based game streaming provides unique advantages over traditional methods of

playing games while battling its own unique challenges in the process. Through the use of

servers to stream games to user-side client machines, cloud gaming provides convenience to

users who are unable to download and run the games on their local hardware such as phones or

tablets. However, unfavorable network conditions such as latency and jitter affect the quality of

experience a user could have with cloud gaming. To smooth out jitter, buffers can be

implemented on the client side at the cost of added latency.

To address the problem of jitter and delay, the team ran a user study with a custom game

to analyze how they affect the quality of experience within cloud-based game streaming. The

custom game, Robot Rampage, was a 3D shooter created within the Unity game engine. It

featured changeable game parameters, specifically three perspectives, three difficulties, and three

texture quality settings. With these changeable game parameters and a set of different network

settings with a range of delay and jitter values, the team was able to run a user study to measure

how participants would rate their quality of experience based on combinations of specific game

parameters and network conditions.

In addition, further research was done on implementing a buffer policy within an existing

cloud game streaming service. The buffers stored frames in a container and streamed from the

container at a specific rate instead of directly streaming frames from the server to the client to

render. Thus when a jitter takes place, the buffer would output frames stored previously in the

container instead of waiting for the next frame to arrive from the server. The buffer was not able

to be implemented for the study due to the time and scope of the project.
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The final results of the study indicate that perspective, difficulty, and texture quality QoE

ratings were all more affected by delay than jitter. While perspective related QoE ratings

displayed noticeable changes due to delay and jitter, QoE ratings showcased less pronounced

changes across difficulties and texture qualities. The results also indicate potential design flaws

in Robot Rampage, which can be improved in future versions. The results from the client side

buffer analysis showed data that suggests it can control the number of frames buffered.
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Section 7. Future Work

To expand the research on the project, we can select additional games from different

genres to perform the user study. Gameplay mechanisms vary across game genres and thus can

have different sensitivity in jitter and latency. By trying different game genres for the study, we

can investigate the relation between game genres and jitter/latency sensitivity.

Only three levels (none, low, high) of jitter and latency were selected for the study. Future

work can be done on streaming on a wider variety of jitter and latency values. With more values

to test, we can produce a more specific and accurate analysis of the effect of jitter and latency on

cloud streaming experience and the ability to smooth out jitter for different buffer sizes.

The client side buffer was not able to be deployed for the user study due to the time and

scope of the project. From the log files and graphs generated, the buffer appeared to be bypassed

by the original program and could not smooth out jitter spikes. This might be because the

Moonlight client program had multiple functions that rendered frames. The sleep timer in the

dequeue thread could not match the enqueue rate and caused the dequeue time to oscillate

significantly. For future work, we need to examine the Moonlight client source code further, put

all frame-rendering code under the dequeue thread, fix the sleep timer to properly match the

enqueue rate, and implement a functioning buffer to the user study. Having a functioning buffer

would help us to better understand the effect of different buffer sizes on users’ QoE.

For future versions of this study, it is important to properly define the ratings used for

QoE for participants. While QoE ratings are inherently subjective, making it clear to participants

that the rating from 1 to 5 should be specifically in comparison to the practice rounds is

important. Such a distinction could help normalize the data.
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To further improve the custom game, the custom game needs to be playtested multiple

times before the user study to ensure all game features and functionalities are best fitted for the

purpose of the study. For example, users should not be able to fire their weapon without any

penalty as it makes other aspects of the game such as accuracy less important. By playtesting

early, design issues and dominant strategies can be found and dealt with ahead of time.
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Appendices

Appendix A: Informed Consent Form

Informed Consent Agreement for Participation in a Research Study

Investigator: Ryan Darcey, Botao Han, Sean O'Connor, Wenjie Zhang

Contact Information: stadiamqp22@gmail.com, gr-StadiaMQP22-23@wpi.edu

Title of Research Study: Latency and Jitter in Cloud Game Streaming

Sponsor: None

Introduction

You are being asked to participate in a research study. Before you agree, however, you must be

fully informed about the purpose of the study, the procedures to be followed, and any benefits,

risks, or discomfort that you may experience as a result of your participation. This form presents

information about the study so that you may make a fully informed decision regarding your

participation.

Purpose of the study: The purpose of this study is to test the effects of varying network

conditions on games played through cloud game streaming. Specifically, the effects of jitter and

latency are to be tested through the use of a game with varying parameters and a customized

cloud game streaming client. Data from the user study will be used to find effective solutions for

latency and jitter based on the varying game parameters and network conditions.

Procedures to be followed: The participant will first be asked to fill out a demographic survey

before playtesting. Then the participant will have a trial round to get familiar with the game.

Once the trial play has been completed, the participant will play the game for several rounds.

72



After each round, the participant will complete a survey regarding their experience in the

preceding round. Users will spend about 30 minutes in total playing the game, with the total

study taking about an hour to complete.

Risks to study participants: There will not be any physical risks caused by our study. Our study

gathers information about in-game actions, as well as email addresses for those who want to

receive IMGD playtesting credits (which is entirely optional). This study is voluntary, you can

withdraw from the study anytime you wish to.

Benefits to research participants and others: There are no benefits to research participants.

Record keeping and confidentiality: This is an anonymous interview/survey, and individual

responses will not be published. Information collected will be stored in a Google Drive secured

by WPI online security and will be destroyed after the research is completed. Responses will be

collectively analyzed. Records of your participation in this study will be held confidential so far

as permitted by law. However, the study investigators or its designee and, under certain

circumstances, the Worcester Polytechnic Institute Institutional Review Board (WPI IRB) will be

able to inspect and have access to confidential data that identify you by name. Any publication or

presentation of the data will not identify you.

Compensation or treatment in the event of injury: This research does not involve more than

minimal risk or harm. If you would like to have compensation or treatment of any kind, you are

welcome to contact us with the information given below. You do not give up any of your legal

rights by signing this statement.

Cost/Payment: Participants will be given a $10 gift card for participating in the research study.
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For more information about this research or about the rights of research participants, or

in case of research-related injury, contact:

Ryan Darcey, Botao Han, Sean O'Connor, and Wenjie Zhang, Email:

gr-StadiaMQP22-23@wpi.edu

Mark Claypool, Tel. 508-831-5409, Email: claypool@wpi.edu

IRB Manager, Ruth McKeogh, Tel. 508-831- 6699, Email: irb@wpi.edu

Human Protection Administrator, Gabriel Johnson, Tel. 508-831-4989, Email:

gjohnson@wpi.edu

Your participation in this research is voluntary. Your refusal to participate will not result in

any penalty to you or any loss of benefits to which you may otherwise be entitled. You may

decide to stop participating in the research at any time without penalty or loss of other benefits.

The project investigators retain the right to cancel or postpone the experimental procedures at

any time they see fit.

By signing below, you acknowledge that you have been informed about and consent to be a

participant in the study described above. Make sure that your questions are answered to your

satisfaction before signing. You are entitled to retain a copy of this consent agreement.

___________________________ Date: ___________________ Study Participant Signature
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___________________________

Study Participant Name (Please print)

____________________________________ Date: ___________________ Signature of Person

who explained this study
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Appendix B: User Demographics Survey Questions

1. Participation Number:

2. Age:

3. Gender:

a. Male

b. Female

c. Other:

4. Do you play video games?

a. Yes

b. No

5. How often do you play video games?

a. 1 to 3 times a week

b. 4 to 5 times a week

c. Almost everyday

d. I do not play video games

6. Have you used any cloud game streaming services?

a. Yes

b. No

7. Select all cloud game streaming services that you have used:

a. Amazon Luna

b. Google Stadia

c. NVIDIA GeForce Now

d. PlayStation Now
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e. Xbox Cloud Gaming

f. Other

g. None

8. If you would like playtesting credit, please include your WPI email:
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Appendix C: In-between Round Survey Questions

1. Rate the quality of the previous game round (Please enter a number from 1.0 to 5.0):

2. Is the experience acceptable?

a. Yes

b. No
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Appendix D: User Study Recruitment Email

Hello,

We are a MQP team studying the effects of jitter and latency on games played with cloud game

streaming services. We are looking for participants to play a few rounds of our custom shooter

game Robot Rampage and fill out an in-between round survey about your experience of playing

the game.

Robot Rampage is a 3D shooter in Unity with three perspectives: first-person, third-person, and

overhead. The game has players control Gompei as he traverses a variety of rooms and takes

down robot enemies. Each playtesting session will last around 45-60 minutes. Participation is

voluntary and participants can quit at any time. Participants are paid $10 in gift cards for each

session and receive IMGD playtesting credit if needed.

If interested, please select a time slot here.

For any further questions, please email gr-stadiamqp22@wpi.edu.

Thank you,

Jitter and Latency in Cloud Game Streaming Team
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Appendix E: Game Audio References

Music:

Name Artist Game
Description

Source

More Eric Matyas Level Theme
1

https://soundimage.org/wp-content/uplo
ads/2019/01/More-8-Bit-Drama_Loopi

ng.mp3

Craffeine
Crazed

Coin-Op Kids

Eric Matyas Level Theme
2

https://soundimage.org/wp-content/uplo
ads/2020/07/Caffeine-Crazed-Coin-Op-

Kids.mp3

8-Bit
Espionage

Eric Matyas Level Theme
3

https://soundimage.org/wp-content/uplo
ads/2017/10/8-Bit-Espionage_Looping.

mp3

Arcade Drama Eric Matyas Level Theme
4

http://soundimage.org/wp-content/uploa
ds/2017/12/Arcade-Drama.mp3

Cyberpunk
Arcade 2

Eric Matyas Level Theme
5

https://soundimage.org/wp-content/uplo
ads/2021/09/Cyberpunk-Arcade-2.mp3

8-Bit Drama Eric Matyas Menu Theme https://soundimage.org/wp-content/uplo
ads/2017/03/8-Bit-Drama.mp3

Sound Effects:

Name Artist Game
Description

Source

Laser kafokafo Enemy Attack https://freesound.org/people/kafokafo/s
ounds/128229/

8bit_hit_11 Soundholder Enemy
Damage

https://freesound.org/people/Soundhold
er/sounds/425348/

ROBOT
WHAT IS

HAPPENING
TO ME

metrostock99 Enemy Death
1 - 3

https://freesound.org/people/metrostock
99/sounds/514696/

Jumping On a
Bed

deleted_user_
7146007

Enemy Run https://freesound.org/people/deleted_us
er_7146007/sounds/383753/
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Retro Gun Shot Jofae Player Attack https://freesound.org/people/Jofae/soun
ds/363698/

8-bit damage
sound

EVRetro Player
Damage

https://freesound.org/people/EVRetro/s
ounds/501104/

Cartoon jump Bastianhallo Player Jump https://freesound.org/people/Bastianhall
o/sounds/462958/

Retro Bonus
Pickup SFX

suntemple Player Pickup https://freesound.org/people/suntemple/
sounds/253172/

8-bit footsteps EVRetro Player Walk https://freesound.org/people/EVRetro/s
ounds/501102/

81



Appendix F: Average Score Per Round By Perspective Trendlines

Average Score Per Round Versus Delay By Perspective with Trend lines

Average Score Per Round Versus Jitter Magnitude By Perspective with Trend lines
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Appendix G: Damage Per Round By Perspective Trendlines

Damage Per Round Versus Delay By Perspective with Trend Lines

Damage Per Round Versus Jitter Magnitude By Perspective with Trend Lines
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Appendix H: Average Score Per Round By Difficulty

Average Score Per Round Versus Delay By Difficulty

Average Score Per Round Versus Delay By Difficulty with Trend lines
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Average Score Per Round Versus Jitter Magnitude By Difficulty

Average Score Per Round Versus Jitter Magnitude By Difficulty with Trend lines
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Appendix I: Damage Per Round By Difficulty

Damage Per Round Versus Delay By Difficulty

Damage Per Round Versus Delay By Difficulty with Trend Lines
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Damage Per Round Versus Jitter Magnitude By Difficulty

Damage Per Round Versus Jitter Magnitude By Difficulty with Trend Lines
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Appendix J: Average Score Per Round By Texture Quality

Average Score Per Round Versus Delay By Texture Quality

Average Score Per Round Versus Delay By Texture Quality with Trend Lines
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Average Score Per Round Versus Jitter Magnitude By Texture Quality

Average Score Per Round Versus Jitter Magnitude By Texture Quality with Trend Lines
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Appendix K: Damage Per Round By Texture Quality

Damage Per Round Versus Delay By Texture Quality

Damage Per Round Versus Delay By Texture Quality with Trend Lines
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Damage Per Round Versus Jitter Magnitude By Texture Quality

Damage Per Round Versus Jitter Magnitude By Texture Quality with Trend Lines
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Appendix L: All Trend Line Equations

Metric
Network
Condition Game Parameter Trendline Equation R2

QoE Delay Perspective y = -0.009495x + 4.06 0.992

QoE Delay Perspective y = -0.004449x + 2.92 0.98

QoE Delay Perspective y = -0.007314x + 3.91 0.973

QoE Delay Texture Quality y = -0.007673x + 3.88 0.973

QoE Delay Texture Quality y = -0.007551x + 3.95 0.956

QoE Delay Texture Quality y = -0.007050x + 3.74 0.991

QoE Delay Difficulty y = -0.007777x + 3.97 0.986

QoE Delay Difficulty y = -0.006922x + 3.93 0.998

QoE Delay Difficulty y = -0.007163x + 3.73 0.981

QoE Jitter Perspective y = -0.005301x + 4.10 0.998

QoE Jitter Perspective y = -0.002573x + 3.01 0.988

QoE Jitter Perspective y = -0.004786x + 4.00 0.958

QoE Jitter Texture Quality y = -0.004108x + 3.94 0.96

QoE Jitter Texture Quality y = -0.004634x + 3.99 0.971

QoE Jitter Texture Quality y = -0.004609x + 3.83 0.972

QoE Jitter Difficulty y = -0.005286x + 4.14 0.927

QoE Jitter Difficulty y = -0.005265x + 4.07 0.964

QoE Jitter Difficulty y = -0.004251x + 3.78 0.979

Round Score Delay Perspective y = -2.179460x + 1412.22 0.964

Round Score Delay Perspective y = -1.094694x + 581.41 0.985

Round Score Delay Perspective y = -2.086434x + 1334.37 0.861

Round Score Delay Texture Quality y = -1.198281x + 1211.30 0.98

Round Score Delay Texture Quality y = -2.949307x + 1365.98 0.974

Round Score Delay Texture Quality y = -1.912434x + 1215.23 0.899

Round Score Delay Difficulty y = -1.874459x + 1202.29 0.967

Round Score Delay Difficulty y = -1.949223x + 1492.36 0.517
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Round Score Delay Difficulty y = -1.976779x + 1192.48 0.975

Round Score Jitter Perspective y = -0.108232x + 1385.30 0.063

Round Score Jitter Perspective y = -0.228129x + 591.60 0.644

Round Score Jitter Perspective y = -0.433759x + 1305.38 0.876

Round Score Jitter Texture Quality y = -0.311567x + 1251.90 0.298

Round Score Jitter Texture Quality y = -0.400632x + 1338.35 0.996

Round Score Jitter Texture Quality y = -0.297856x + 1180.91 0.997

Round Score Jitter Difficulty y = -0.594688x + 1186.06 1

Round Score Jitter Difficulty y = -0.567610x + 1414.64 0.817

Round Score Jitter Difficulty y = -0.204810x + 1180.06 0.923

Damage Taken Delay Perspective y = 0.005311x + 5.33 0.748

Damage Taken Delay Perspective y = 0.008449x + 8.27 0.772

Damage Taken Delay Perspective y = 0.005299x + 5.23 0.797

Damage Taken Delay Texture Quality y = 0.003429x + 6.10 0.077

Damage Taken Delay Texture Quality y = 0.002816x + 6.20 0.261

Damage Taken Delay Texture Quality y = 0.006795x + 5.49 0.903

Damage Taken Delay Difficulty y = 0.011088x + 3.95 0.708

Damage Taken Delay Difficulty y = 0.001794x + 4.43 0.101

Damage Taken Delay Difficulty y = 0.005539x + 6.26 0.934

Damage Taken Jitter Perspective y = 0.002043x + 4.83 0.338

Damage Taken Jitter Perspective y = -0.000866x + 8.83 0.013

Damage Taken Jitter Perspective y = 0.001747x + 5.33 0.949

Damage Taken Jitter Texture Quality y = -0.003204x + 6.37 0.318

Damage Taken Jitter Texture Quality y = -0.000258x + 6.07 0.004

Damage Taken Jitter Texture Quality y = 0.002674x + 5.58 0.577

Damage Taken Jitter Difficulty y = 0.009541x + 3.82 0.851

Damage Taken Jitter Difficulty y = -0.000581x + 4.83 0.36

Damage Taken Jitter Difficulty y = 0.000220x + 6.31 0.249
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