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Abstract 

NIRS Automated Machine Learning (NAML), is a system that automates the running of 

time series machine learning algorithms on neural data [1]. This project expanded NAML by 

adding seven new algorithms, implementing manifold validation, and giving the user the ability 

to balance their datasets. NAML 2.0 gives more precise results than its predecessor and can still 

be utilized without expertise in machine learning. NAML 2.0 will allow researchers to classify 

brain states quickly, easily, and consistently. NAML 2.0 has been benchmarked on neural data 

for both accuracy and speed.  
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Introduction 

Over the last few years, time series data analysis techniques have become far more 

advanced. State of the art algorithms are both efficient and accurate. However, the complexity of 

these algorithms has also increased significantly. This presents labs that focus on time series 

analysis with a problem: advanced training in programming and data analysis is required to use 

these modern algorithms. This can cause a bottleneck in the research process as only advanced 

researchers are capable of effectively analyzing time series data. NAML 1.0 [1] was created to 

help solve this problem by allowing users of any skill level access to machine learning data 

analysis algorithms. NAML 1.0 provided a powerful framework for running these algorithms, 

offering users four choices in terms of algorithms.  

In this MQP report, we describe NAML 2.0, which expands on NAML 1.0’s capabilities 

to genuinely allow for state-of-the-art analysis. NAML 2.0, like NAML 1.0, uses the sktime [2] 

time series machine learning library to implement the algorithms it offers. Sktime is an open 

source Python library that builds upon more commonly used machine learning libraries like 

sklearn [11] to provide a resource for analysts studying time series datasets. By using this library, 

we can reduce the risk of implementation errors, and ensure that NAML 2.0’s algorithms run 

consistently. Since the creation of NAML 1.0, sktime has been updated with new algorithms 

including two multivariate algorithms, MrSEQL and MUSE. Adding these algorithms has made 

NAML 2.0 a more robust and versatile system.  
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Background 

Goals of this Project - 

The development of NAML 2.0 was focused on accomplishing the following three goals: 

1. Compatibility with updated sktime library and bug fixes 

NAML 1.0 was rendered non-functional by updates to sktime’s file structure. Therefore, the first 

goal of this project was to update NAML 1.0’s import system to reflect sktime’s new structure. 

Additionally, the multivariate shapelet transform method included in NAML 1.0 was removed 

from sktime so replacing it with a working multivariate method was also a priority. Finally, 

rather than use NAML 1.0’s test-train split method which could mistakenly produce empty 

datasets, sklearn’s manifold validation method was implemented.  

2. Addition of new algorithms 

The second goal of this project was to extend the capabilities of the NAML system by adding 

new classifiers and methods to it. NAML 1.0 included four classifiers available, and, after 

updates to sktime, did not have a usable multivariate classification method. To remedy this, 

seven new classification methods were added to NAML 2.0. Included among these new methods 

are NAML 2.0’s only multivariate classifiers, MrSEQL and MUSE, as well as algorithms that 

had not been implemented in sktime at the time of NAML 1.0’s development.  

·​       ​NAML 1.0 algorithms: 

o​   ​Shapelet transform (Multivariate) 

o​   ​K Nearest Neighbors (Univariate) 

o​   ​Proximity Forest (Univariate) 

o​   ​Time series Forest (Univariate) 

·​       ​NAML 2.0 algorithms: 
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o​   ​MrSEQL (Multivariate) 

o​   ​MUSE (Multivariate) 

o​   ​K Nearest Neighbors (Univariate) 

o​   ​Proximity Forest (Univariate) 

o​   ​Time series Forest (Univariate) 

o​   ​WEASEL (Univariate) 

o​   ​Bag of SFA Symbols Ensemble (Univariate) 

o​   ​Elastic Ensemble (Univariate) 

o​   ​Temporal Dictionary Ensemble (Univariate) 

o​   ​RISE (Univariate) 

3. Implementation of new features 

Finally, NAML 1.0  had neither a validation method nor a method for balancing the data. 

These are commonly used to improve the validity of classification results by controlling for 

anomalies through manifold validation, and class balancing through over- and undersampling. 

These features will allow users to better analyze unbalanced datasets and should give users a 

more accurate idea of how their classifiers are performing.  

 

New Algorithms -  

Bag of SFA Symbols Ensemble (BOSSE) [3]:  

The BOSSE algorithm classifies time series data by first extracting patterns from the time 

series, then it reduces noise by filtering the extracted patterns, and finally it compares those 

filtered patterns for differences. The extraction of patterns is done using Symbolic Fourier 

Approximation (SFA) [4] which transforms segments of the data into strings based on the data in 
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that segment. It is these strings that are filtered and then compared by the BOSSE algorithm. 

During the SFA transformation, a sliding window is used to create strings for each part of the 

dataset. The BOSSE algorithm tries multiple window sizes and uses the best one.  

 

Elastic Ensemble [5]:  

The Elastic Ensemble algorithm takes multiple distance measures using different distance 

equations like DTW (Dynamic Time Warping) and ensembles them together to create a classifier 

that is more accurate than one created with just one distance measure.  

 

MrSEQL [6]: 

MrSEQL is a multivariate time series classification method that classifies based on a 

symbolic representation of the time series. This representation is created using a symbolic fourier 

approximation which reduces the data from a full timeseries to a series of symbols selected by 

the algorithm. These strings of symbols are then compared to classify the datasets. MrSEQL 

aims to both be more easily interpretable and less resource intensive than equivalent 

classification algorithms. It is also unique in that it creates multiple symbolic representations of 

each subsection of the dataset rather than just one. During classification, the algorithm selects the 

best symbolic representation available.  

 

Random Interval Spectral Forest (RISE ) [7]: 

RISE is an algorithm included in the HIVE-COTE ensemble classifier. The HIVE-COTE 

ensemble classifier combines many classification methods, and is considered to have state of the 

art accuracy. RISE is one such classification method, but is implemented in sktime as a 
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standalone algorithm. RISE creates multiple decision trees and then ensembles them together. 

Each tree is created by first extracting features from a random interval of the dataset and then 

using these features to create the decision tree.  

 

Temporal Dictionary Ensemble  (TDE) [8]: 

The Temporal Dictionary Ensemble algorithm uses a sliding window along with a 

symbolic fourier approximation to convert the time series into a series of words. Then, the TDE 

algorithm forms a dictionary by counting the number of occurrences of a word in each time 

series. Finally, classification is run on the dictionaries representing each time series.  

 

Word ExtrAction for time SEries cLassification (WEASEL) [9]: 

WEASEL efficiently classifies large time series datasets by transforming the time series 

into feature vectors with a sliding window. These feature vectors are then classified. It is not as 

robust as some ensemble classifiers, but it is considerably faster.  

 

MUSE [10]: 

MUSE is a multivariate classifier that uses WEASEL to transform the time series into a 

multivariate feature vector. This vector is then reduced in size as feature selection removes 

non-discriminative features from each dimension of the time series. Finally, the vector is 

analyzed by a classifier to output a result.  
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Methodology 

Validation - 

NAML 2.0 implements manifold validation using one of sklearn’s [11] implementations 

of manifold validation [12]. Manifold validation is an effective way of eliminating a level of 

uncertainty from the accuracy results of each algorithm. This helps prevent situations where the 

user is presented with an accuracy that is deceptively high or low. First, the data is split into 

multiple folds; this split is done to ensure that no time series is subdivided. After the data has 

been split, the system iteratively excludes each part from the training set and instead uses it as 

the test set. Each result is recorded and the mean of the results is returned to the user. In 

particular, NAML 2.0 implements stratified k-fold validation [12]. Stratified k-fold validation is 

a type of manifold validation that attempts to keep the class ratio in each fold as similar to the 

original dataset’s class ratio as possible. This ensures that no fold will be without examples of 

each class which helps prevent outlier results. 

 

Univariate and Multivariate Algorithms -  

NAML 2.0 implements both univariate and multivariate time series classification 

algorithms. As fNIRS data is generally multivariate, multivariate algorithms were a priority in 

development. However, sktime does not support many multivariate algorithms so the univariate 

concatenation, or column ensemble transformations are often required.  

Univariate concatenation appends each time series to the end of the previous time series. 

This creates a univariate time series that univariate classification algorithms can be run on; this 

results in a loss of information. Each row in a multivariate time series represents a different 

measurement being taken in conjunction with other measurements in the data. In some cases 

9 



these measurements are correlated because they share a time. However, when you append each 

time series to the end of the last, you lose this correlation. This method is functional, but others 

are better for classification.  

Column ensemble allows the user to define individual classifiers for each row of the data. 

After each classifier finishes, they are all combined into a single result that is presented to the 

user. This allows the user to effectively classify a multivariate dataset using only univariate 

algorithms. 

Alternatively, users can make use of NAML 2.0’s two multivariate classification 

algorithms: MUSE and MrSEQL.  

 

Figure 1: Univariate / multivariate methods chart 
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Class Balancing -  

NAML 2.0 balances classes by oversampling the minority class after the dataset has 

already been split into folds for validation. Another Python library, Imbalanced-learn [13], is 

used to oversample the data. This oversampling is done by including copies of time series - that 

have the minority class label - in the training set. The training set with oversampled data is then 

run through the classifier as normal.  

 

Technical Evaluation -  

NAML 2.0’s technical evaluation had two goals: 

1. To get a baseline accuracy and time for each algorithm. The baseline accuracies and 

times will be helpful for future users of NAML 2.0 to compare against and should give us 

clues as to which algorithm will be most effective for different purposes.  

2. To examine how class balancing and dataset size affects classifier accuracy and 

efficiency.  

 

Note: At the time of the technical evaluation the Elastic Ensemble and Proximity Forest 

algorithms were not functioning in the latest version of sktime. I have left these algorithms 

available in NAML 2.0 in the hope that they will work in the future, but they could not be 

included in the technical evaluation.  
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Technical Evaluation 

This technical evaluation explores how a user might utilize NAML to classify different 

brain states. This evaluation is also a benchmark for classifier performance and speed. This 

technical evaluation is based on experiments run on our lab’s AX-CPT (AX- Continuous 

Performance Task) dataset. This dataset consists of neural data recorded using an fNIRS [14] 

device while the participant was engaged in the AX-CPT [15] cognitive control task. There are 

two classes in the data: AX wrong response, and AX correct response. AX wrong response 

occurs when a participant makes a mistake in their task, and AX correct response occurs when 

they correctly carry out the task.  

Full AXCPT Dataset for Participants 209, 214, and 216 

The dataset consists of 10,800 rows with 92 columns each. Each data point is the reading 

from each of 21 sensors placed on the participants’ head. The dataset is imbalanced as 80% of 

the events are AX correct responses and only 20% of events are AX wrong response. 5-fold 

stratified cross validation was used. NAML classified each participant's dataset only once. The 

computer used to conduct the experiments has 16 gigabytes of RAM, and an 8-core Intel 

i7-6700HQ processor. 
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Algorithm Accuracy Time (seconds) 

MrSEQL 77.78% 1126.95 

MUSE 53.7% 4857.43 

TSF 62.22% 40.52 

KNN 52.22% 1.62 

RISE 67.41% 1043.5 

BOSSE 58.52% 134307.22 

WEASEL 64.81% 15155.23 



 

Table 1: Full AXCAXWR Dataset Experiment Results 

 

 

 

Figure 2: Full Experiment Accuracies 

 

Figure 3: Full Experiment Times  
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TDE 67.3% 19476.5 



AXCPT AXCAXWR Dataset for Participant 209 

The dataset consists of 3,720 rows with 92 columns each. Each data point is the reading 

from each of 21 sensors placed on the participants’ head. The dataset is imbalanced as 76.3% of 

the events are AX correct responses and only 23.7% of events are AX wrong response. 5-fold 

stratified cross validation was used. NAML classified each participant's dataset three times. The 

accuracies and times given below are the averages of each run.  The computer used to conduct 

the experiments has 16 gigabytes of RAM, and an 8-core Intel i7-6700HQ processor. 
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Algorithm Balancing Average Accuracy Average Time 
(seconds) 

MrSEQL True 76.39% 331.08 

MrSEQL False 76.37% 358.41 

MUSE True 66.41% 932.23 

MUSE False 63.82% 735.72 

TSF True 86.03% 15.32 

TSF False 84.13% 15.23 

KNN True 82.44% 1.14 

KNN False 83.45% 1.16 

RISE True 83.24% 439.51 

RISE False 85.67% 413.2 

BOSSE True 87.8% 23107.26 

BOSSE False 87.37% 23186.4 

WEASEL True 74.95% 774.94 

WEASEL False 75.26% 696.68 

TDE True 86.7% 2028.67 

TDE False 87.88% 2427.54 



Table 2: AXCAXWR Participant 209 Dataset Experiment Results 

Note: (OS) in the graphs below stands for oversampled 

 

Figure 4: Single Participant Experiment Accuracies 

 

Figure 5: Single Participant Experiment Times 
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Figure 6: Single Participant Experiment Times Excluding BOSSE  
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Technical Evaluation Conclusions 

The first thing to note is the difference in accuracies between the full experiment and the 

single participant experiment. The single participant experiment achieved significantly higher 

accuracies than the full dataset experiment. This is likely due to the inclusion of data from 

multiple participants. Including data from multiple participants increases the difficulty of 

classification as most participants’ data is not very similar. While MrSEQL still achieved 

acceptable accuracy on this dataset most of the algorithms did not.  

Another interesting feature of the data is that algorithm time doesn’t increase linearly 

with the size of the dataset. The full dataset is about three times the size of the single participant 

dataset, but the algorithms took more than three times longer to run through the full dataset than 

the single participant dataset. This is true for most of the algorithms, but of particular note is 

BOSSE. BOSSE took about six and a half hours to run through the single participant dataset, but 

took 37 hours to run through the full dataset. The full dataset took BOSSE almost six times 

longer to complete than the single participant dataset. This suggests to me that users should 

carefully curate the size of their datasets before running them through NAML to avoid 

algorithms running for too long. On the other hand, KNN took almost the same amount of time 

on the full dataset as the single participant dataset. Therefore KNN might be a good choice when 

dealing with a large dataset.  

Finally, the effects of balancing the dataset were different for each algorithm. While 

some, like MUSE and TSF, reached higher accuracies on average with balanced datasets, other 

algorithms, like KNN and RISE, actually got lower accuracies with balanced datasets. Balancing 

didn’t have a uniform effect on the algorithm completion times either.  
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Overall, the data from these experiments allows us to clearly distinguish which 

algorithms are the best for each dataset. In particular, in the first experiment, the results show 

that MrSEQL is the best algorithm. This demonstrates that future NAML 2.0 users will be able to 

run their own experiments to find the best classifiers for their own datasets. While the results 

from experiment two are somewhat less conclusive, they do show that NAML provides multiple 

classifiers that can produce accurate results.   
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Future Work 

This project has significantly expanded upon the capabilities of NAML 1.0, but there are 

other improvements that may be worth including in a future update.  

The most important future improvement is adding new algorithms as they are 

implemented in sktime. NAML 2.0 implements most of sktime’s classification algorithms at this 

point, but sktime is constantly being updated. Keeping up to date with sktime’s algorithms will 

give NAML2.0  users access to new and potentially more effective algorithms. This should be 

the first priority of any subsequent versions of NAML.  

Another source of new algorithms for NAML 2.0 is sktime-dl [16]. sktime-dl is an 

extension library for sktime that implements deep learning algorithms for time series datasets 

with TensorFlow / Keras. Deep learning algorithms have been used to great effect in analyzing 

brain data [17] so NAML 2.0 could benefit greatly from their inclusion. Making sktime-dl 

algorithms usable in NAML 2.0 would likely not require dramatic changes to the structure of the 

code. However, many deep learning methods use GPUs, which would increase the complexity of 

implementation.  

Another area that could be improved is NAML 2.0’s validation system. Though cross 

validation was added to NAML as a part of this project, there are many types of validation that 

haven’t been included in NAML yet. Giving users the option to choose between multiple forms 

of validation would allow for even greater control over the results. sktime doesn’t include 

validation methods at the time of writing, but sklearn has implementations of many validation 

methods including leave one out, shuffle split, and time series split. All of these validation 

methods could be made available to NAML users with minimal modifications to the code. 
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Finally, NAML 2.0 could benefit from an automatic parameter tuning system. Many of 

NAML 2.0’s algorithms perform very differently based on the parameters inputted into them. 

This is why NAML 2.0 allows the user to set parameters in their config files. However, typical 

users who do not have data analysis experience will likely find tuning these parameters quite 

difficult. Those users in particular would benefit from a system that could determine the best 

parameters to use for each dataset. Manual implementation of such a system would be quite 

difficult, but sklearn has methods that may be applicable to NAML 2.0. At the time of writing, 

sktime has a parameter tuning cross validation method for time series forecasters, but none for 

classifiers.  
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Appendix A - Developer’s Guide 

In this section I will give guidance to developers who may work on NAML 2.0 in the 

future. These instructions are accurate at the time of writing (Fall 2020) but changes to the 

structure of NAML 2.0 itself, or to the structure of the underlying library, sktime, may render 

them inaccurate in the future.  

Adding New Univariate Algorithms to NAML 2.0 -  

1. Add the algorithm’s default parameters to the list of default parameters at the beginning 

of naml.py. You do not need to add all of the algorithm’s parameters, but users will only 

be able to change the ones inputted here in the config file. Below is a picture of the list of 

parameters near the top of naml.py.  

 

Figure 7​: NAML 2.0 Default Parameters List 

2. Add the algorithm to the classifierBuilder function. The if statement checks the name of 

the classifier requested in the config file and returns an instance of the classifier itself. 

To add a new algorithm simply add another elif section, create an instance of the 
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classifier, and give it the parameters inputted by the user. Below is an example of 

WEASEL’s section of classifierBuilder.  

 

Figure 8​: WEASEL Section of classifierBuilder 

3. The algorithm should now be usable.  

Note: NAML 2.0’s algorithms all take data in the same format (as a Numpy array). If you want 

to add an algorithm that requires a different format then you will need to modify the 

concatenateMethod function and the columnEnsembleMethod function in addition to the above 

steps.  
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Adding New Multivariate Algorithms to NAML 2.0 - 

Currently, NAML 2.0 supports two multivariate algorithms: MUSE and MrSEQL. 

Adding new multivariate algorithms is a similar process to adding new univariate algorithms, but 

there are a few key differences I will outline below.  

1. Add the algorithm’s default parameters to the list of default parameters at the beginning 

of naml.py. This is exactly the same as in step one of the “Adding New Univariate 

Algorithms to NAML 2.0” guide.  

2. Add the new algorithm to the MultivariateClassification method. First, add an elif 

statement to the section of code below that sets ​Multivar_params ​equal to the default 

parameter dictionary you created in step one. 

 

Figure 9​: Multivar_params Code Section 

Next, add an elif statement to the if statement shown below. In the body of the statement 

set ​clf​ to be an instance of your new classifier. If you want the user to be able to use their 

own parameters for your new algorithm, then set each parameter equal to 

Multivar_params[‘name_of_parameter’]​. 

 

Figure 10​: Multivariate Classifier Instantiation Code Section 

3. The algorithm should now be usable.  
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Changing Default Parameters for Algorithms - 

The default parameters for each algorithm are found at the top of the naml.py file. These 

values are used when the user does not specify parameters of their own. If you want to change 

these default values then modifying just these lines will suffice. Below is a picture of the section. 

 

Figure 11​: NAML 2.0 Default Parameters List (Identical to Figure 7)  
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Appendix B - Config File Construction 

Config File Values - 

filePath:​ Relative path to the data file you wish to use. 

loggingEnabled:​ If true will output logs as the program progresses. 

targetCol:​ The name of the column of your data you wish to classify by. 

percentTrain:​ The percentage of the initial dataset to be set aside for use as a testing set. This is 

only used if you choose the COLUMN_ENSEMBLE method. 

Jobs:​ This is where you define what kind of classification you want to run. It is an array of jobs. 

Each job must be surrounded by braces ({}), and each job should be separated by a comma (,). 

Each job must contain the following: 

- method: The method of classification you want to run. There are three options: 

- MULTIVARIATE_CLASSIFICATION: Allows you to classify using a 

multivariate classifier.  

- UNIVARIATE_TRANSFORMATION: Allows you to classify using a univariate 

classifier by transforming the dataset into a univariate time series.  

- COLUMN_ENSEMBLE: Allows you to classify using univariate classifiers on 

specified columns of your data.  

- classifier: The classifier you want to use for this job. 

UNIVARIATE_TRANSFORMATION and COLUMN_ENSEMBLE have access to 

univariate classifiers only whereas MULTIVARIATE_CLASSIFICATION has access to 

multivariate classifiers only. Here are the names of the available classifiers: 

- Univariate: 

- TSF_CLF: Time Series Forest 
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- KNN_CLF: K Nearest Neighbors 

- PF_CLF: Proximity Forest 

- RISE_CLF: Random Interval Spectral Forest 

- EE_CLF: Elastic Ensemble 

- BOSSE_CLF: Bag of Symbols SFA Ensemblee 

- TDE_CLF: Temporal Dictionary Ensemble 

- W_CLF: Word ExtrAction for time SEries cLassification 

- Multivariate: 

- MrSEQL: Mr-SEQL classifier 

- MUSE: Multivariate WEASEL+MUSE classifer 

Test Config File - 

This config file runs on a sample dataset included in the NAML repository. It should serve as a 

test to ensure that NAML has been installed correctly.  

{ 
 "filePath":"../scripts/data/2013e.csv", 
 "loggingEnabled": true, 
 "targetCol": "event", 
 "percentTrain":0.5, 
 "jobs": [ 
    {"method" : "MULTIVARIATE_CLASSIFICATION", 
      "classifier" : "MUSE", 
      "oversampling" : true 
    }, 
    {"method": "UNIVARIATE_TRANSFORMATION", 
      "classifier" : "TSF_CLF" 
    }, 
    {"method": "COLUMN_ENSEMBLE", 
      "ensembleInfo":[{ 
                         "classifier": "KNN_CLF", 
                         "columnNum":1 
                        }, 
                        { 
                         "classifier": "TSF_CLF", 
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                         "columnNum":0 
                        }] 
     } 
  ] 
} 
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Config File Used for Technical Evaluation - 

This is the config file used to run the “AXCPT AXCAXWR Dataset for Participant 209” 

experiment (the results of which are included in the technical evaluation section).  

{ 
    "filePath":"/home/ebuntel/NAML/NAML/scripts/data/allch_axcaxwr_09.csv", 
    "loggingEnabled": true, 
    "targetCol": "event", 
    "percentTrain":0.75, 
    "jobs": [ 
        {"method" : "MULTIVARIATE_CLASSIFICATION", 
            "classifier" : "MUSE" 
        }, 
        {"method" : "MULTIVARIATE_CLASSIFICATION", 
            "classifier" : "MUSE", 
            "oversampling" : true 
        }, 
        {"method" : "MULTIVARIATE_CLASSIFICATION", 
            "classifier" : "MrSEQL" 
        }, 
        {"method" : "MULTIVARIATE_CLASSIFICATION", 
            "classifier" : "MrSEQL", 
            "oversampling" : true 
        }, 
        {"method": "UNIVARIATE_TRANSFORMATION", 
            "classifier" : "TSF_CLF" 
        }, 
        {"method": "UNIVARIATE_TRANSFORMATION", 
            "classifier" : "TSF_CLF", 
            "oversampling" : true 
        }, 
        {"method": "UNIVARIATE_TRANSFORMATION", 
            "classifier" : "KNN_CLF" 
        }, 
        {"method": "UNIVARIATE_TRANSFORMATION", 
            "classifier" : "KNN_CLF", 
            "oversampling" : true 
        }, 
        {"method": "UNIVARIATE_TRANSFORMATION", 
            "classifier" : "RISE_CLF" 
        }, 
        {"method": "UNIVARIATE_TRANSFORMATION", 
            "classifier" : "RISE_CLF", 
            "oversampling" : true 
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        }, 
        {"method": "UNIVARIATE_TRANSFORMATION", 
            "classifier" : "W_CLF" 
        }, 
        {"method": "UNIVARIATE_TRANSFORMATION", 
            "classifier" : "W_CLF", 
            "oversampling" : true 
        }, 
        {"method": "UNIVARIATE_TRANSFORMATION", 
            "classifier" : "TDE_CLF", 
            "parameters" : ["max_ensemble_size", 90] 
        }, 
        {"method": "UNIVARIATE_TRANSFORMATION", 
            "classifier" : "TDE_CLF", 
            "parameters" : ["max_ensemble_size", 90], 
            "oversampling" : true 
        }, 
        {"method": "UNIVARIATE_TRANSFORMATION", 
            "classifier" : "BOSSE_CLF" 
        }, 
        {"method": "UNIVARIATE_TRANSFORMATION", 
            "classifier" : "BOSSE_CLF", 
            "oversampling" : true 
        }, 
        {"method": "UNIVARIATE_TRANSFORMATION", 
            "classifier" : "PF_CLF" 
        }, 
        {"method": "UNIVARIATE_TRANSFORMATION", 
            "classifier" : "PF_CLF", 
            "oversampling" : true 
        } 
     ] 
} 
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