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1.0 Introduction 
In 2012 there were approximately 268,000 deaths caused by fire related incidents worldwide (WHO, 
2012). Within the United States, there were 1,298,000 fires reported in 2014 (WHO, 2012). These fires 
caused 3,275 civilian deaths, 15,775 civilian injuries, and $11.6 billion in property damage (Hylton, 
2015). 	

According to the National Fire Protection Association (NFPA), fire is a chemical reaction caused by the 
rapid oxidation of a substance (NFPA, 2015). The base substance can vary from wood, plastic, or even 
metals. As the process begins, fire releases light and thermal energy creating what we know as fire 
(NFPA, 2015). In order for fire to occur, there needs to be three components present: a fuel source, heat, 
and oxygen. These three components are known as the Fire Triangle, shown in Figure 11. This is the basis 
for understanding how fire operates. 

Conventional means of fire suppression use an 
understanding of the composition of fire shown in the Fire 
Triangle to extinguish fire. The goal of fire suppression 
tactics is to try to eliminate one of the three sides of the 
triangle. The most common means of extinguishing fires 
begins with the use of water. This is due to waters 
abundance and ability to smother the fire and dissipate heat. 
Other forms of fire suppression include the use of foams, 
gels, and fire blankets. Fire suppressants all work to 
eliminate the threat of fire and prevent the fire from 
reigniting. 

The size of a fire can range from small residential fires to widespread forest fires. Any fire can quickly 
spread due to the introduction of more material to burn or a rush of oxygen. For example, forest fires can 
spread in dry environments where the vegetation is more susceptible to catching fire. 

Fires on remote platforms, for example on boats, are particularly problematic because the fires tend to be 
isolated, difficult to respond to quickly, and the location of the fire might preclude the occupants from 
safely evacuating the area. When a fire becomes too dangerous for the boat operators to control, fighting 
the fire requires outside support from fire departments. Similarly, to fighting a fire on land, boat fires are 
primarily fought by pumping water onto the fire. 

Firefighters are often the ones on the front line when dealing with fires, putting their lives at risk in order 
to save others. In 2013, 106 firefighters died while on duty in the United States (FEMA, 2015). 
Unfortunately, the protective gear that firefighters wear can be cumbersome, and can pose additional risk 
when fighting boat fires, due to the weight of equipment and risk of falling in the water. As a result, a 
better approach to assist in fire suppression should be developed that reduces or eliminates the need to put 
people in danger. 

A solution to eliminating the human factor in remote platform firefighting and to potentially improve 
response time would be to utilize drone technology. In 1955, fire departments started to use platforms 
																																																													
1 Image citation: Wikimedia, “Fire Triangle”, https://en.wikipedia.org/wiki/Fire_triangle 

Figure 1: Fire Triangle 
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such as planes and helicopters to suppress forest fires (Sargent, 2011). Firefighting planes carry a payload 
of some fire suppressant, and drop the payload on the fire. Drones, either fixed-wing or multi-rotor, have 
been used to aid in fire suppression by providing surveillance for the fires. This becomes a valuable 
resource when dealing with remote fires, for example, fires on boats. The next step would be to have the 
multi-rotor drone use a fire suppression system while also providing the quick response for surveillance. 

1.1 Project Statement 

The goal of the Fire Containment Drone (FCD) project is to develop a prototype drone system that is 
designed to specifically aid firefighters in containing and suppressing boat fires. 

To accomplish this goal, we investigated different fire suppression systems to determine what would be 
the best approach to combat boat fires. Subsequently, the system design adapted existing drone 
technology to aid in designing a better solution for further development. Additionally, there currently 
exist aerial systems that deploy fire retardants onto the fire that apply to this project. This project includes 
further research into finding ways to modify these systems to be the most effective in boat fire scenarios. 

1.2 Discussion 

A common strategy when fighting fires is to attack the base of the fire, meaning attacking the fire at the 
source. (Norman, 2012) Attacking a fire at the base is more effective but firefighters often cannot reach 
the base of the fire because of heat, size of the flame, and risk of death. Using the FCD, however, 
firefighters could fly the drone into high-risk situations that are typically too dangerous for firefighters. 

The primary scenario that this project will focus on is surface fires on boats. The reason for this direction 
is a boat deck fire will allow the FCD ample maneuverability room as compared to an enclosed 
environment. The target boat sizes will be 35-40ft boats. The scale of these boat fires is reasonable for the 
size limitations of drones compared to that of large forest fires. 

To slow the spread of the fire, there are requirements that the system needs to meet in order to 
successfully slow the fire. The first of these requirements is on the drone system. Since a harbor master or 
firefighter is supposed to deploy the system from the harbor, there needs to be a requirement on how far 
the drone can travel and how long it can stay in the air. When the FCD is in the air, there are also 
requirements as to how the drone needs to deliver the fire extinguishing agent. The fire can also present a 
problem when flying because of the turbulence that the heat creates. To make sure that these requirements 
are followed, there also needs to be an array of sensors to verify that the system is operating correctly. 

Another important requirement is having the ability to effectively suppress the fire on the boat. 
Considering that boats typically run on diesel fuels and contain electronic systems, the assumption can be 
made that the fires will be of Class A and B. As a result we will need to develop a suppression system that 
can effectively handle Class A and B fires. Fire Classes are explained in further detail in Section 2.1.2 
Fire Classifications.  

With a variety of fire suppressant options available, there will need to be research done on the most 
effective fire suppressant for boat fire scenarios. Choosing the suppressant will be the foundation of how 
we develop the system to deploy and apply it to a fire. There will have to be design considerations to 
fulfill the mechanical, electrical, and software design for the entirety of the drone system. The next 
sections will delve into the different design considerations that will go into the overall system. 
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The mechanical design of the drone system will have specific features to fulfill the requirements set above 
in the Project Statement. In order to deliver the extinguishing agent to the fire effectively, there will need 
to be a deployment system to launch the agent. To fulfill this requirement, there are a variety of pumps 
and application systems that can be adapted to our system.  

In addition to developing a method of deploying the agent, the mechanical system needs to apply the 
agent onto the fire. There are a variety of nozzle and spray systems in preexisting fire extinguishing 
systems that can be adapted to fit our system. Other considerations include incorporating the mobility of 
the drone to provide unique motion to the application of the agent in order to cover a larger area.  

In order to remain mobile, our system needs to have a method of containing the extinguishing agent. How 
to contain the agent will depend on the type of agent that is best fit for the project. With the variety of fire 
extinguishing agents including liquids, foams, powders, and gases, the container must be able to 
effectively hold the retardant. There will be different design considerations if the extinguishing agent 
needs to be pressurized or not.  

 Furthermore, the FCD will have several electrical requirements to satisfy the needs of the drone and the 
chosen fire extinguishing system. The whole system needs a portable power source, such as a large 
Lithium Polymer (LiPo) battery. The battery will need to sufficiently power all subsystems of the drone. 
There will be tradeoffs that will need to be considered, such as flight time provided by the battery versus 
the physical weight of the battery itself. With the limited payload of drones, the size of the battery will 
determine the operating ranges of the drone system. 

Considering the size of the battery that is intended to power the entire drone system, there will need to be 
an effective means of distributing power to the smaller subsystems. Assuming that the subsystems will 
require less voltage and amperage, there will need to be high efficiency DC/DC converters to power the 
subsystems. With the development of each subsystem, there will need to be electrical analysis of each 
system to determine the appropriate operating ranges. 

An important subsystem for the drone system will be the array of sensors. There will need to be a way to 
verify the ideal operation of the drone when in flight. Since the drone system is intended to combat fires, 
sensors to detect heat will be useful. One of the specific sensors that is needed is the camera. This is 
needed to provide a first-person view in the perspective of the mechanical system for the pilot. 

The control of the drone will also need to be considered in the design our system. There are a variety of 
flight controllers tailored to drone systems. The flight controller will need to provide the user with a 
variety of sensor data and flight log information. The flight controller will also need to allow for the 
incorporation of additional sensors and features as well as the ability to make modifications so that the 
flight controller can be tailored for the drone application.  

In addition to the control of the drone is the ability to allow user input. There will need to be a way to 
control the drone as well as a way to provide user input to control the different subsystems of the drone. 
The drone system will also need to transmit sensor data to the user at the ground station. 

To address this there are wireless transmission systems that can be adapted for the project. The purpose of 
these transmission systems is to provide an effective way to provide communication to and from the 
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drone system. When choosing these systems, considerations will include the range of transmission as well 
as the operating frequencies of each wireless transmission systems. 

With the variety of sensors and data collection, there will need to be a way to process all of the 
information. As a result, a micro-controller is necessary to handle all of the data as well as the software 
that runs on the controller. The controller will need to be able to process sensor data and provide the data 
to the user in a readable format. There will also need to be further conditioning of sensor data to perform 
additional tasks like provide warnings to the user. 

With the data processed from the proposed logic controller, there will need to be a way to provide user 
input as well as a way to display the data. A solution to this would be to develop a Graphical User 
Interface (GUI) that can contain different ways for the user to input commands and visual outputs for 
sensor data. This solution would be utilized at the ground station for the user. 

1.3 Summary 

For the remainder of the paper, we explore the science behind fire and effective methods to extinguish 
fires. The intent of this project is to use this research to adapt a multi-rotor platform to combat surface 
boat fires. We will delve into the design of the fire extinguishing system developed to address the goal of 
this project. 

Figure 2 below shows the proposed configuration for the project. The diagram is intended to give a high 
level view of all components of our system we plan to explore within the project.  

	
Figure 2: High Level System Block Diagram 
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2.0 Literature Review 

2.1 Background on Fire 

These following sections are written to provide a basic understanding of the dynamics and design 
challenges that arise when designing robotic systems and firefighting systems.  Topics covered will 
include the basic methods of fighting fires, current firefighting technologies, and of course the physics 
and dynamics of fire. 

Basics of Fire  

Fire is the release of energy at an extreme rate that produces light and heat (NFPA, 2015). To achieve 
combustion, three basic components are needed to start and sustain a fire: fuel, heat, and oxygen. The 
combination of all three of these composes is what is known as the Fire Triangle as shown in Figure 1 
above. If any one of these is removed or not present, then the triangle is broken and the fire is 
extinguished or simply not possible.  

Most methods of firefighting focus on denying one of these components to an existing fire, but other 
methods affect multiple sides of the Fire Triangle. For example, the intent of using a fire blanket is to 
smother the fire by removing the oxygen, but does nothing about the heat or the fuel for the fire. When 
firefighters use water, however, the water both smothers a fire and dissipates the heat from the fire.  

The fuel component of fire gives the fire energy, which is released and turned into light and heat. Fuel for 
a fire can range from clothing and chemicals, to building materials or even metals. Each fuel has different 
traits that affect the way the fire should be extinguished. For example, when extinguishing a campfire, all 
a firefighter needs is a bucket of water.  If firefighters tried the same tactic on a similarly sized grease fire, 
the water would cause the fire to explode and spread. (Rocky Mountain Fire Department) 

Since fire can behave differently based on fuel, fire is broken up into different classes, based on the fuel 
source. This is discussed in greater depth below in the FIRE CLASSIFICATIONS subsection. The fuel source 
of the fire plays an important role in how much heat is transferred by the fire to the surroundings. 

Heat is the transfer of thermal energy from one body to another. There are three different ways that heat is 
transferred: radiation, conduction, and convection. Radiation relates to the direct transfer of energy 
between surfaces through a vacuum. Energy is transferred through photons at a wavelength of 1 to 100µm 
(SFPE Handbook, 1-73). Conduction is the transfer of heat energy through a medium, which can be any 
liquid, gas, or solid (SFPE Handbook, 1-73). Convection is a combination of conduction and the natural, 
or forced, movement of the medium, usually air.  Since a fire causes energy to move through the air, the 
air must also move causing turbulence. In addition to the turbulence generated from fire, there is also the 
oxygen that fuels the fire that is continuously replaced due to moving air currents. 

The oxygen in the air provides an essential part of the chemical reaction that is fire. The chemical 
equation for each fire depends on the chemical composition of the fuel burning, but as stated before 
oxygen is usually not considered the limiting reactant. For example, 𝐶!𝐻! + 5𝑂!  → 3𝐶𝑂! + 4𝐻!𝑂 is the 
balanced chemical equation for a propane fire. Without the oxygen, the reaction cannot happen. There are 
other chemicals in air that need to be taken into consideration in the reaction, but since oxygen is the 
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element that perpetuates the fire, the nitrogen in the air is just carried through the equation (SFPE 
Handbook, 1-92).  

Fire Classifications  

Every fire can be categorized into one of five classes of fire, either Class, A, B, C, D, or K (NFPA, All 
About Fire).   Each of these is briefly described below. 

Class A  fuels are ordinary combustibles such as wood, cloth, and some plastics (NFPA, All About Fire). 
Most standard fire extinguishing methods will work on these fires since the fuel does not have 
high amounts of energy or explosive chemical reactions.  

Class B  fuels are comprised of flammable liquids such as: petroleum, grease, and alcohols (NFPA, All 
About Fire). Water may not extinguish Class B fires because the water is often not effective 
enough at cutting the fire off from the oxygen. Foams2 are usually used to extinguish Class B 
fires because of their increased effectiveness at eliminating the oxygen. 

Class C  fuels are the same as for Class A or B, except that it has an electrical component energizing the 
fire (NFPA, All About Fire). To combat Class C fires usually CO2 is used to displace the air 
from the environment to smother the fire. Additionally, by negating the source of electricity 
from the fire, a Class C fire will become a Class A or B fire, and can be handled accordingly. 

Class D  fuels are comprised of combustible metals, such as: magnesium, sodium, and lithium (NFPA, All 
About Fire). Traditional firefighting techniques such as using water and foam will not work 
because of the temperature. To extinguish Class D fires, a powder-based chemical must be used 
such as sodium chloride or other salts, as metal fires can burn so hot that water would break 
down into hydrogen and oxygen and fuel the fire further (NFPA, All About Fire). 

The last fire classification is Class K, which encompasses cooking media such as: vegetable or animal fats 
and oils (NFPA, All About Fire). Class K fires can be extinguished using similar methods to Class B fires, 
but with different chemicals for the foam. 

2.2 Fire Suppression Techniques and Agents 

There are many commonly used techniques used to suppress fires. These include carbon dioxide, water, 
foaming agents, surfactants, wet and dry chemical mixtures and additives such as FireIce (Conroy, 17-1). 
There are also some experimental methods, such as disrupting the flame with low frequency sound waves. 

Carbon Dioxide as a Fire Suppressant  

Carbon dioxide (CO2) has been in use for as a fire suppression system for at least a hundred years 
(Wysocki, 17-3-17-5). It can suppress fires in most flammable materials, except for those such as 
combustible metals that contain and produce their own oxygen for combustion. As a gas, CO2 can spread 
out and blanket a fire, separating it from the air to starve it of oxygen and extinguishing it. The density of 
CO2 is approximately one and a half times that of air, allowing it to push the air out of the way (Wysocki, 

																																																													
2	Foams	are	discussed	more	in	depth	in	Section	2.4.3	
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17-3-17-5). CO2 only has a small effect on the temperature of the burning material, except when applied 
through a fire extinguisher directly to the source of the fire (Wysocki, 17-3-17-5). 

Water as a Fire Suppressant 

According to National Fire Protection Association (NFPA) Fire Protection Handbook, water is the most 
widely used and most readily available fire extinguishing agent, as it is able to attack all three sides of the 
fire triangle, the fuel, the oxygen, and heat. Most cities and towns have some sort of fire hydrant system, 
allowing for easy access to a source of water for use in fighting fires. Unlike some gaseous agents, water 
can safely be applied to fires in occupied buildings, as water’s liquid form reduces the chance of 
asphyxiation of occupants. 

Water reduces heat of the fire, as it has a higher specific heat compared to other materials, allowing it to 
absorb an incredibly high amount of heat in an attempt to reduce the fire below water’s ignition 
temperature. The specific heat of a substance is defined as the energy required to raise the temperature a 
certain mass of the substance, usually measured in Joules per gram. Additionally, water also has an 
extremely high latent heat of evaporation, meaning it can absorb an extremely large amount of heat 
during evaporation. When working with a liquid fuel, adding water can dilute the fuel, spreading it out, 
and having less fuel at any part of the fire. Finally, as a liquid, water is denser than air, displacing the air 
from the fire, and starving it of oxygen. 

Man Made Chemical Extinguishing Agents 

There are two types of general chemical suppressants, dry and wet. Dry chemical agents are powders 
often consisting of sodium bicarbonate, potassium bicarbonate, or ammonium phosphate, as well as 
additional added particles to provide resistance to moisture, and allowing for proper flow from an 
extinguisher or other application method. The dry agents are typically used for Class B and C fires, 
however, ammonium phosphate based agents are sometimes also used for Class A fires. Dry agents 
primarily work by interfering with the reaction causing the combustion. The extinguishing effect of dry 
chemical suppressants does not last unless sources that could cause re-ignition such as extremely hot 
surfaces are removed from the area. (Lake, 17-17) 

Wet chemical agents usually consist of some sort of salt mixed with water. Common salts used include 
potassium carbonate, acetate, citrate or some combination of the three. The most common uses for wet 
chemical agents is for extinguishing fires in commercial kitchens. In the past dry chemicals have been 
used in kitchens. With many kitchens switching to using vegetable oil instead of animal fat, however, dry 
agents are no longer effective due to the lower ignition temperature of vegetable oil. This in turn causes 
the fire to reignite more easily, rendering the dry chemicals ineffective. Wet agents are primarily 
distributed via fixed distribution systems, however, they are occasionally also distributed via fire 
extinguishers to support the fixed systems. The primary downside of wet chemical agents is they are not 
usable in situations where there is energized electrical equipment. (Lake, 17-24) 

Fire Suppressant Foam 

Fire suppression foams are created using a concentrate mixed with water, and then aerated to create foam 
(Scheffey, 17-45). Foams are used to suppress liquid fuel vapors as well as cooling the surface of the 
liquid below its auto-ignition point. The auto-ignition point of a fuel is when the temperature at which a 
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fuel will spontaneously combust without any triggering mechanism such as a spark (Scheffey, 17-45). 
When spraying the foam, firefighters blanket the surface of the fire to smother the fuel source. According 
to the NFPA handbook, foam is the only permanent extinguishing agent used for spills or tanks of 
burning flammable or combustible liquids. (Scheffey, 17-45) 

There are a number of different types of common foams, including aqueous film-forming foams (AFFF), 
fluoroprotein (FP) foams, film-forming fluoroprotein (FFFP) foams, and protein (P) type foams. Varieties 
of these foam categories, including low-temperature agents, medium and high expansion agents, and 
alcohol-type agents are also available for firefighting. Low-temperature agents are used in extremely cold 
settings, while medium/high expansion agents are used when trying to control a fire by flooding the entire 
room that contains the fire. Alcohol-type (AR) agents are used for fires that involve fuels that are water 
soluble or similar. This includes common hydrocarbon fuels that have had an extremely small percentage 
of ethanol mixed into the solution. The AR type agent keeps the foam from decomposing when they are 
exposed to the substances that would break down most types of foam. (Scheffey, 17-46 - 17-47) 

Another subset of foaming agents is surfactant foams. Surfactant foams are commonly used as wetting 
agents, however they can also be used similarly to any of the other types of fire-fighting foams when 
formulated properly. A surfactant works by reducing the surface tension of the water, allowing it to 
spread out over the fire to choke out its oxygen access more easily. (Scheffey, 17-48) 

Halons  

Halons are a type of hydrocarbon where some of the hydrogen atoms are replaced by atoms that are part 
of the halogen family of atoms. These atoms include fluorine, chlorine, bromine, and iodine. This 
chemical replacement creates a gas that has ideal fire extinguishing properties, especially when used in 
total flooding systems. Traditionally the extinguishing agents need to break a side of the fire triangle, but 
Halons add a new way of extinguishing fires. Halons impede the chemical reaction needed to sustain fire, 
thus putting out the flame. The major problem with using Halon extinguishers is that they have been 
identified as the most potent of all ozone-depleting substances. (DiNenno and Taylor, 17-93) 

Fire Suppressant Gels 

FireIce is a potassium-based polymer that mixes with water to create a gel. FireIce is non-corrosive, and it 
has a freezing point of 27°F when mixed with water. FireIce has a Class A fire suppression approval from 
Underwriters Laboratories, a global safety standards organization. (Underwriters Laboratories, 2015) 

As a gel, FireIce sticks to most surfaces that it is applied to, allowing it to protect vertical surfaces 
because it does not fall to the ground after application. A gaseous or liquid chemical would have trouble 
protecting a vertical surface, due to the flow properties or dissipation of the liquid or gas. FireIce has been 
primarily used in wildfire suppression applications. According to a press release from GelTech Solutions, 
FireIce has been used on over 600 air tanker missions in North America this past wildfire season 
(GelTech Solutions, 2016). According to Gerry Kennedy, a representative for GelTech Solutions, FireIce 
works by reinforcing the water molecules, significantly increasing its fire resistant properties. In addition, 
according to Gerry Kennedy, FireIce is one of the only chemicals that is effective for extinguishing 
lithium battery fires, as other suppressants react badly with the burning lithium (Kennedy, 2015).  
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When mixed using salt water instead of pure water, however, the salt disrupts the polymer, causing the 
FireIce to degrade and become unusable. If FireIce were to be used in boat applications, it would need to 
be mixed ahead of time, and transported out to the fire as a premixed dissolution, rather than being mixed 
on scene.  

Experimental Methods  

In the effort to find new ways of extinguishing fire, several experimental methods have been developed 
and studied to see their benefits and practicality. One of the major advances of these experimental 
methods are a result from the Defense Advanced Research Projects Agency (DARPA) and their Instant 
Flame Suppression (IFS) program. The program was created in order to develop a system that would 
rapidly extinguish a fire. The applications for this program were directed at fires in enclosed spaces that 
are difficult to reach, such as large ships’ below deck rooms. The IFS program advanced research into 
two different methods of experimental fire suppression, acoustic waves and electrostatic and magnetic 
waves (DARPA, 2008). 

From DARPA’s report and experimentation, it was found that acoustic waves were able to put out small-
scale fires in isolated areas (DARPA, 2008). The system that they developed to perform the 
experimentation consisted of two large speakers on both either sides of the small-scale fire. The 
introduction to low frequency acoustic waves agitates the surrounding air around the fire, eliminating the 
fire’s source of oxygen. In 2014, engineering students Seth Robertson and Viet Tran at George Mason 
University managed to make a working fire suppression system using acoustics. Their prototype was 
significantly smaller than the DARPA version, portable, and able to extinguish small-scale, controlled 
flames (Brauer, 2015). 

Additional research has been made to assess acoustic waves as a fire suppressant in space and 
microgravity applications, as traditional fire suppressants create additional issues when used in space. 
Recent studies have indicated that sound waves are capable of extinguishing fires in microgravity more 
effectively than in regular gravity, although only small scale tests have been performed (Biesner, 2015).  

Research from all sources indicates that lower frequencies displace the flame further. The benefits of 
using acoustic fire suppression would be that it would work on multiple types of fires and would be able 
to continually suppress fire without running out of a fire suppression agent. Acoustic waves, however, do 
not remove heat effectively from the area so the chance of re-ignition is higher and there has not been a 
system developed for larger scale fires. 

The other experimental method that was developed by DARPA’s IFS program was applying electric 
fields to the source of the fire. From DARPA’s final report, the results indicated that by generating a large 
electric field around 35kV and directing it at a flame, the flame could be deflected at an angle determined 
by the application area and magnitude. The results from this report show that an electric field is able to 
affect a flame, although it is not a practical approach given the needed magnitude and limited effect on 
the flame.  

Many applications of electric fields, and even magnetic fields, were explored such as varying different 
levels of electric fields to affect flames through and around physical barriers as well as creating areas 
where fire could not spread. This experimental method, however, was inefficient compared to traditional 
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fire suppression techniques and has not been expanded to fires larger than small fires used in 
experimentation (DARPA, 2008). 

2.3 Boat Fires  

Fires that occur on vehicles can be extremely deadly to people because of the restrictions on egress. 
Specifically on boats, the restrictions on egress are even more severe. The water surrounding the boat may 
seem like it can be easily used to extinguish fires on boats; however, the challenge for passengers trying 
to suppress the fire is that they cannot access the water easily while remaining on the boat.  

Fires on boats start from a couple of main sources. These sources can be found in Table	1 below, with 
their frequency of occurrence (Leonard, 2015). 

Cause of Fire 
% Total  

Boat Fires 

AC and DC Wiring/Appliance Issues 55% 

Engine/Transmission Overheat 24% 

Fuel Leak 8% 

Miscellaneous 7% 

Unknown 5% 

Stove 1% 
Table 1: Causes of Boat Fires 

As seen in the above table the main cause of fires on boats is the electrical wiring. The electrical problems 
that cause these fires are the wires chafing which can spark starting the fire. Another source of the boat 
fires is the AC power that is run to the boat from shore. The AC power lines from the shore can be 
attached incorrectly or not fully attached, which can spark, increasing the risk for fire. (Englet, 2013)  

The main challenge from an electrical fire, or Class C fire, is the potential to reignite even after the fire 
has been extinguished. Re-ignition can be a result of improperly shutting off the electrical power source 
or heat from the previously burning material that has not reduced. (Englet, 2013) 

2.4 Need for FCD Support  

A multi-rotor drone could assist many ways in firefighting, specifically with boat fires. From first-hand 
accounts by Michael O’Brien, Deputy Chief of the Portsmouth Fire Department and Kelley Brown, a Fire 
Protection Engineering student with experience in the Coast Guard, we determined some concerns with 
boat fires that are encountered by responders. These problems included locating the boat on fire, 
responding quickly enough, providing life safety, and suppressing the fire while providing egress for the 
people on board.  

Current applications of drone technology in fire protection are predominantly for surveillance (Chu, 
2014). A drone could potentially help locate a boat fire with an array of specialized sensors and cameras. 
Additionally, by flying the drone at higher elevations the user’s line-of-sight is increased, and would 
therefore be able to detect the fire at a greater range. The use of a multi-rotor drone would also provide an 
additional scouting tool as it could be deployed in a different direction than the responders and expand the 
search area covered. Deploying multiple drones would increase the efficacy of the search. Once a multi-
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rotor drone has located the fire, the drone can lead responders to its location by use of an onboard beacon 
or GPS location. 

The use of a drone would help to further reduce response time, a crucial factor in firefighting, as well as 
the rescue of people on board the boat. As soon as the distress call from the boat is made, an already 
prepared drone could be deployed from shore or on a responding boat and sent to the distress location, or 
if no good location is given, then the drone can be deployed in the general direction. The drone can be 
deployed in advance of responders, which as previously discussed, would allow for a faster assessment of 
the area, and a wider area of coverage for surveillance.  

Life safety is the primary concern of first responders. In the situation of boat fires, one major concern is 
that passengers of the boat may need to jump overboard into the surrounding water to flee the fire of the 
boat. In doing so, the people now trade the danger of the fire for the danger of the water. The two major 
concerns of being in the water are drowning and hypothermia.  

A multi-rotor could aid responders in is the suppressing of the fire itself, and providing a path of egress 
for those trapped onboard by extinguishing parts of the fire. With the ability to find and get to the boat 
fire faster, the drone can engage the fire before it grows. The drone then could work to actively contain 
the fire from spreading and becoming more of a threat. Additionally, the FCD could assess the fire and 
identify if there is anybody onboard. If there are people onboard, the FCD can allocate its fire suppression 
payload to make sure a safe path of escape is available. 

2.5 Drone Technology and Applications 

A drone, often known as an Unmanned Aerial Vehicle (UAV), is described as an aircraft controlled 
without an onboard pilot. They may be either autonomously flown or remotely controlled.  

Drones have found useful applications in the military. The ability to fly an aircraft without a pilot has 
been able to improve efficiency and safety in such roles as surveillance and even precision strikes. US 
military drones are around the size of small planes and in some cases are even larger. In recent years, 
drone technology has expanded to private and public applications, focusing on smaller drones and other 
scenarios. Private and public research laboratories have contributed to this development. Furthermore, the 
recent miniaturization and cost reduction of electronics has also contributed to the size reduction of drone 
development (Floreano, 2015). 

There are two main categories of aerial drones: multi-rotor and fixed wing drones. Multi-rotor drones 
consist of several two or three blade propellers powered around the center of the drone. Multi-rotor 
drones have the capability to hover and have potential for precise operations and continued fixed area 
monitoring. Fixed wing drones are comprised of a rigid wing structure, which generates lift from the 
drone’s forward propulsion system, which is generally a propeller. Fixed wing drones are useful for 
covering large areas for surveying as well as transporting heavier payloads. Current small drones are 
being used for surveillance in government agency roles while hobbyists and photographers use them to 
capture pictures and videos from the sky. In firefighting applications, drones are used primarily for 
surveillance and monitoring of fires. 



Fire Containment Drone - 20 
	

Fixed Wing Drones 

Fixed wing drones are one of the main 
categories of drones. They operate similarly to a 
plane in which the aerodynamics of the wing 
generates upward thrust because of the forward 
propulsion. Control of a fixed wing drone relies 
on mechanisms in the wing. These mechanisms 
are ailerons, an elevator, and a rudder. The 
ailerons control the roll of the aircraft, the 
elevator controls the pitch of the aircraft, and the 
rudder controls the yaw of the aircraft. Roll is 
denoted as the rotation about the x-axis of the 
center of gravity (COG) of the multi-rotor drone. 
Pitch is the rotation about the y-axis of the COG of the multi-rotor drone. Yaw is the rotation about the z-
axis of the COG of the multi-rotor drone. All of this is illustrated in Figure 3. 

Fixed wing drones have been used for a number of applications, civilian, commercial, and military. Since 
fixed wing drones are of a simple design and do not require an onboard pilot, they are a relatively cheap 
option for several aerial applications. They have been used in surveying areas and mapping regions. In 
agriculture, they have been used to monitor and assess large crop fields.  

Multi-Rotor Drones 

The other main category of drones is multi-rotor drones. Multi-rotor drones are classified as rotorcrafts 
that operate on more than two rotors. They operate similarly to a helicopter in that they are able to fly due 
to the displacement of air created by the propellers placed on the drones. The multi-rotor flies upward 
against the force of gravity with the lift generated from the rotors. With the multi-rotors reliance on 
multiple propellers, there is a variety of design options based on its designated task. As a result, the 
characteristic of a multi-rotor design can be tailored specifically to a certain task. 

Movement of a multi-rotor is fundamentally different compared to a fixed-wing drone. As stated earlier, 
the multi-rotor drone relies on propellers to provide lift in order to become airborne. Once airborne, 
movement of the drone is done through the manipulation of the propellers. We classify the orientation of 
the multi-rotor using the terms roll, pitch, and yaw.  

To move the drone, an onboard computer drives the propellers independently to dictate the movement of 
the drone. In the case of a quadrotor drone, a multi-rotor drone that has four propellers has complimentary 
rotating propellers. More specifically, two propellers opposite of each other rotate counterclockwise while 
the others rotate clockwise. This provides symmetry in the design of the multi-rotor, which is essential for 
the stability of the multi-rotor. Power is distributed to the different rotors to rotate or translate the drone, 
allowing it the ability to move with little restriction. 

With the maneuverability of the multi-rotor drone also come the characteristics of its design. There is a 
multitude of different options when implementing a multi-rotor drone. The design process typically 
begins with the amount of rotors placed on the drone. The amount of rotors is typically in intervals of two 

Figure 3: Aircraft Axes of Rotation 
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with the exception of a tricopter, which has three rotors. The rationale for having an even number of 
rotors is to have symmetry on the body of the drone. The amount of rotors on a given drone dictates its 
capacity to carry and perform tasks. More rotors usually mean that the drone has a higher payload, or 
ability to lift more weight. There is also the added benefit of more stability with multi-rotor drones that 
have more rotors. 

How Fires Affect Drones 

The main ways that fire impacts the drone in this project is how air currents change as the fire changes 
and the heat that could cause damage to the drone. The air currents created affect the controls and safety 
of the multi-copter because most drone controls assume a stable environment. Based on the buoyancy of 
fluids, the hot air generated by the fire creates airflow up towards the drone, causing turbulence (SFPE 
Handbook, 1-13). Drones are traditionally lightweight and fragile, so turbulence can have a large impact 
on how well they can navigate. 

 The safety of the drone is affected by the pilot’s ability to navigate in the turbulent air currents caused by 
the fire, but the heat from the fire can also cause damage to the mechanical and electrical components if 
they are exposed to too much heat. Most drones have a frame and body made of plastic since it provides a 
strong enough base and is lightweight, however, plastic also has a much lower melting point than metal 
which can cause issues if the drone stays around the fire for too long. The electronics and controllers for 
the drone also have specific temperatures that they must be kept at to function correctly. 

Heat of Fire on the Drone 

An important characteristic to take into consideration when fighting a fire with a drone is the amount of 
heat that it is dissipating. The heat dissipated by the fire is influenced by many factors such as type of heat 
transfer, distance, and time. As previously discussed, the types of heat transfer are convection, 
conduction, and radiation.  

The total heat transfer onto the drone will be the sum of heat experienced by convection, conduction, and 
radiation. The drone will be flying around the fire so there will be no heat transfer via conduction as there 
will be no solid contacts made with objects producing heat. In an open-air environment, thermal radiation 
far outweighs that of convection especially when staying out of the region directly above the fire. 
Therefore, the primary heat transfer influencing the heat experienced by a multi-rotor drone is radiation.  

When considering the amount of heat transferred at a distance, it is important to note the type of material 
that is the fuel source for the fire as well as the material that the heat is being transferred onto. The 
material burning will influence thermal radiation because of two primary characteristics, its heat release 
value, and its radiant fraction. The heat release of an object is how much total heat the object gives off 
when burning. The radiant fraction is the efficiency of the dissipation of thermal radiation (SPFE 
Handbook 2002). For the material that is being radiated on, emissivity is a key characteristic to consider. 
Emissivity is a measure of the efficiency of the surface as a radiator (Drysdale, 1999). Essentially, the 
emissivity of the material dictates how much of the total radiation at that point is transferred to the object.  

Available Commercial Drones 

Many companies sell small drones that can carry a camera, or have an integrated camera. These drones, 
however, do not have significant carrying capacities. There are some companies who produce drones that 
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have a significantly larger carrying capacity, such as DJI Innovations, whose drones are intended for use 
in high-end photography and filmography. DJI’s signature drone series is their Phantom drones. In 
January 2014, the Branford, CT Fire Department used a phantom series drone flown by one of their 
volunteer firefighters to determine if a quarry fire was burning too close to the quarries explosives cache 
to safely send in firefighters. With the camera on the drone, the fire department was able to determine the 
fire was far enough away from the explosives, and sent in firefighters to put it out. The Phantom 2 drone, 
for example weighs 1kg, and only has a takeoff weight of 1.3kg, giving it a maximum payload of only 
300 grams.  

DJI has a series of drones known as the ‘Spreading Wings’ series that are their higher payload drones. 
The S800 has a takeoff weight of 6-8kg, and a total weight of 3.7kg. The S900 has a takeoff weight of 
4.7-8.2kg and a total weight of 3.3kg and costs about $1400. The S1000 can carry 6-11kg, and weighs 
4.2kg, costing about $1900. Finally, the S1000+ can also carry 6-11kg, and weighs 4.4kg, while costing 
about $2500. Going even bigger, SABRE, a company specializing in robotic surveying systems for use in 
inspection and surveillance, produces the HL48 Skyhorse, with a base weight of 6kg, and a takeoff weight 
of 10-20kg. The downside to the HL48 is its cost, running $15,000 for just the basic drone, without 
upgrades. High payload drones, though useful, are also extremely expensive. 

2.6 Summary 

This chapter has presented the foundation of knowledge needed to understand the different components 
that comprise this project. In order to develop a system to combat boat fires, it is important to understand 
what fire is and how to eliminate it. Within the chapter, we covered what are the different classes of fire 
as well as the variety of suppression techniques. We finish with discussing drone technology and its 
applications. Finally, we combined the fire dynamics with the drone dynamics to review how fire affects 
drones in flight. The intent of this research was to understand the capabilities and uses of drone 
technology so that we are better able to utilize a drone for our application.  
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3.0 System Requirements and Initial Design 

3.1 System Overview 

The purpose of the project is to develop a fire suppression system to be used on a multi-rotor drone. The 
drone needs to be capable of having a quick response time as well as being effective when attacking boat 
fires. To accomplish these goals we discuss what the intended project specifications are as well as the 
design we plan to use to accomplish these goals. 

The system will be comprised of three major components: 

• A multi-rotor drone  

• The deployment system for the extinguishing agent 

• A ground control 

To begin, we will first look at the S1000 drone which we had available to use from the RBE program. 
The S1000 has three major components: 

• The drone frame (electronics and motor systems) 

• The Pixhawk drone controller 

• The drone battery 

• The drone sensors  

§ Temperature  

§ Camera  

The Pixhawk controller is a prepackaged system that already controls the flight of the drone, with only 
minor configuration having been required to fly the S1000. 

The deployment system will be modular to allow for ease of detaching the system from the drone for 
maintenance or use in other applications. 

When referring to maintenance, the container will need to be refilled with FireIce. The system will need 
to allow an easy way to add more FireIce and pressurize the FireIce a desired pressure.  

The ground station will consist of the systems necessary to communicate with the drone, such as 
telemetry communication, video feedback from the camera, information readouts from sensors, and a 
Graphical User Interface (GUI).  

Since many of the specifications of the system are determined by what drone we use, we will now discuss 
the reasoning for selecting the DJI S1000 as our drone. 

Selection of Drone Platform 

The drone for the system needed to satisfy the following criteria: sufficient payload, travel speed, flight 
time, and cost. For our project we defined a sufficient payload to be roughly 10 lbs. This was to take into 
account the weight of the mechanical system for the project as well as the fire present. A sufficient travel 
speed was defined at a speed of roughly 30 mph. This was to have a faster response time when deploying 
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the system. A decent flight time was defined to be over 5 minutes. This flight time would allow sufficient 
time to deploy the system and apply the fire suppressant.	

Using the described criteria above, we compared different drone platforms. Through our research, we 
determined that a large-scale multi-rotor drone would be the most reasonable platform for our project. 
Large multi-rotor drones would be able to handle a higher payload, without sacrificing the 
maneuverability of flight.	

From the results of our research, we decided upon using the DJI S1000 Multirotor drone. We found this 
drone platform to be the most cost effective platform that satisfied all of our criteria. The S1000 is has a 
payload of roughly 11lb with a flight speed of roughly 40 mph. With a battery of 16,000 mAh, the drone 
is able to have a flight time of roughly 15 minutes. There were also further benefits of incorporating 
additional functionality and modifications to incorporate our fire suppression system.   

Selection of Fire Suppressant  

The decision matrix was used to select the fire suppressing system. The first step consisted of listing fire 
suppression techniques and agents and ranking their effectiveness from 1 (extremely poor) to 10 
(excellent) in four categories: Feasibility of Application, Longevity of Suppression, Weight, and Fire 
Containment. Feasibility of Application was defined as how possible the team would be able to easily 
adapt the fire suppression system onto a flying drone platform given the duration of the project and the 
resources available. Longevity of Suppression was defined as how long and continuously the fire 
suppression system could effectively suppress the fire. Weight of the fire suppression system dictates the 
functionality and feasibility of the drone’s design and performance. The Fire Containment category was 
defined as how effective the fire suppressant system was at keeping the fire from spreading. 

The top three techniques and agents were then moved to the second step involving a more in depth 
decision matrix, where each fire suppression technique and agent were compared directly to each other. 
The full decision matrix can be found in Appendix A.  

From the results of the decision matrix, the best fire suppressant agent to use for our project was FireIce. 
The most important qualifier for choosing FireIce was its ability to handle Class A, B, and C fires, the 
most common type of fires on boats. Though FireIce is not yet approved for Class C fires, the solution is 
electrically nonconductive. As a result deploying on a Class C fire will still prove to be effective. Since 
fires on boats may initially begin as Class C fires due to electrical issues, they will transition to Class A or 
B fires as the electrical component is removed. Additionally, most boats are required to be equipped with 
shunt circuits and other safety precautions that shut off the electrical source of the boat in the event of a 
malfunction. 

Other useful characteristics of FireIce include its ability to stick to surfaces, providing a protective layer. 
The viscosity of FireIce is helpful for preventing reignition of the fire as well as providing a path of 
egress when applied. There is also the benefit of having access to samples through the local distributor, 
which made it a low cost and feasible application to develop.  



Fire Containment Drone - 25 
	

System Configuration 

The system will consist of the deployment system attached to the S1000 drone. There will be a central 
switch that will provide the power to the motors and control systems. The control systems will contain the 
following: 

• Sensors 

• Deployment system 

• Video feed system 

• Flight Controller (Pixhawk) 

• Logic Controller (Arduino) 

After turning on the system, there will be a series of checks to determine that the individual systems are 
working properly. Most of these tests for the individual systems will happen automatically. In the 
instances of the video feed system the operator will check to determine that the transmitter is properly 
displaying the telemetry data from the Pixhawk on the LCD display at the ground station. The operator 
will also check that the remote controller is properly sending the control signals to the drone such that we 
are able to control the flight. 

When the different systems are checked then the drone will be able to be cleared for use. In the next 
sections we will discuss the drone operation during the different stages of the drone’s use. These stages 
will include the deployment of the system, and the execution of FireIce once the drone has arrived at the 
desired location. 

3.2 Operational Overview 

Deployment of Drone and System 

Considering the intent of the drone system, there 
will need to be specifications for proper 
utilization of the drone. These specifications will 
detail the proper operation of the drone. 
Specifically, there will need to be a detailed list 
of the different flight modes that come with the 
flight controller. The flight modes will describe 
how the drone is controlled by the user. The flight 
modes will also determine the different sensors 
and subsystems that are used when the drone is 
being operated. A diagram of the drone operation 
can be seen in Figure 4.  

Once the operator has determined that the drone 
is operational and ready to fly the operator will 
begin to use the remote control to take control of 
the drone by putting the drone into Navigation 

Figure 4: Drone Operation Flowchart 
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Mode. Once lift off is achieved then the operator can either choose a GPS point for the drone to navigate 
to and put the drone into Autonomous Navigation Mode, or manually navigate the drone. For manual 
operation the operator can control the Roll, Pitch, and Yaw of the drone during flight with the joysticks 
on the remote control. The operator can use the GPS tracking of the drone for navigation as well as the 
camera feed during the period of manual operation. The autonomous mode allows the operator to click a 
point on the GPS map on the navigation computer; the drone will then travel to the chosen location.  

For autonomous navigation, the drone will use an onboard GPS module to provide the current location of 
the drone. To remain out of danger from ground interference the drone will first fly to 20 meters 
vertically, above sea level to prevent collisions with other boats during navigation or flying into the sea. 
Then using an existing point-to-point navigation program the drone will travel to where the drone 
operator tells the drone to travel, the distance chosen should be about 20m to prevent issues with the 
drone overshooting the target and flying too close to the fire. 

Execution of Drone and System 

When the drone has reached the destination through either autonomous or manual control the drone can 
then be put into Extinguish Mode. While in Extinguish Mode the drone’s manual operation controls 
sensitivity will be reduced to better maintain accuracy while spraying FireIce. The primary operation of 
the drone will default to maintain position, using built-in programing of the flight controller. 

Two people will handle the control of the drone during Extinguish Mode: the Pilot and the Co-Pilot. The 
Pilot will be in control of the drone platform. The Pilot is to keep their eyes always on the drone for 
additional safety. The Co-Pilot will act as the second set of eyes for the Pilot. They will be in control of 
the remainder of the ground station, having access to the sensor readouts and deployment controls. 

During the flight of the drone, the temperature sensor reading will inform the operator of any 
temperatures dangerous to the drone. The sensor will read a warning when sensing 30°C and will issue a 
critical warning at 35°C. The temperature sensor will only relay information to the operator, not affect the 
drone control of the operator. Using the GUI, the user will be able to control the spray of the system. The 
nozzle will be controllable to provide additional suppressant coverage area. The nozzle will have a 
clockwise rotation (up towards the drone) and a counterclockwise rotation (down away from the drone). 
The operator can then choose where the nozzle is pointed and when the FireIce should be sprayed using 
the GUI further described in section 3.4.3 System Control Interface. 

Operating Range Based Off Heat Dissipation 

When controlling the drone there will need to be special attention given to how to safely operate the drone 
when near a fire. To determine a safe range of operation, there are many variables about the fire that will 
dictate where the drone can safely operate around the fire. In the next section we will discuss the 
calculations done to determine the appropriate operating ranges based on the types of fires we will be 
dealing with. 

Our drone has many systems that have to operate within a specific range of temperatures. Our electronics 
have the lowest maximum temperature failure rating at 40°C. The safe operation of the drone around the 
fire will depend on the heat dissipated from the fire to our drone.  
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The heat dissipated by the fire is influenced by many factors such as type of heat transfer, distance, and 
time. The types of heat transfer are convection, conduction, and thermal radiation. Convection is heat 
transferred through a medium such as the air. Conduction is heat transferred through solid contact. 
Thermal radiation is heat transferred from electromagnetic waves (Drysdale, 1999).  

For our application and types of heat transfer, only radiation will be a significant factor. Conduction will 
not be a factor, as the drone will not be making any solid contact with hot surfaces. Convection through 
the air will be negligible as the drone will operate in an open-air environment and will stay out of the zone 
directly above the fire where heat convection is most prominent. For our application, we will be 
considering the steady-state of heat transferred to our drone to determine what position we can hold until 
the drone is low on power and needs to returns home. Time will not be a factor, as the fire will be 
assumed to be fully developed during our operation. Therefore, the major contributing factors towards 
maintaining a safe operating temperature is the amount of heat radiation generated and our distance from 
the fire. Establishing a relationship between radiation and distance is crucial to the design of our drone 
system. 

In fire protection applications, determining the critical heat flux of a system is vital to accurately 
modeling the scenarios that would lead to system failures. Heat flux is the amount of thermal energy 
transferred through the area of a surface over time (SFPE Handbook 2002). Critical heat flux is the 
amount of heat flux required to cause a system to cease functioning properly. The relationship between 
heat flux and temperature is not a linear function. Certain materials and applications have found the 
equivalent critical heat flux and temperature for their systems. In power plants, the critical heat flux for 
their solid state electronics rated to fail at 65°C was 3kW/m2 (NUREG). Thermoplastic cables have a high 
critical heat flux at 6kW/m2 and an equivalent temperature of 205°C. Our system is rated to fail at 40°C, 
so a critical heat flux significantly less than 3kW/m2 will be used for our calculations. 

The material that is burning is crucial in determining the relationship of heat radiation over distance as 
different materials have different thermal and burning properties. The two significant properties of the 
burning material are heat release and radiant fraction. The heat release is the total amount of heat 
dissipated by the burning of the material. The radiant fraction is the efficiency of the dissipation of 
thermal radiation (SPFE Handbook, 2002). These values for certain materials have been gathered and 
tested experimentally and compiled in fire protection engineering references such as the Society of Fire 
Protection and Engineering Handbook. 

An important aspect of determining the thermal radiation on an object is emissivity. Emissivity is the 
fraction of how much radiation is absorbed by the object. A low emissivity indicates the object reflects a 
large amount of radiation. A high emissivity indicates the object absorbs most of the radiation. For our 
purposes for the drone, we will make a black body assumption, which indicates an emissivity of 1. This 
means we will assume that our drone absorbs all the thermal radiation directed at the drone. That 
assumption will provide our calculations some safety factor in determining a safe distance away from the 
fire. 

The model for determining the thermal radiation at a distance from the fire will be a point source radiation 
model. A point source model assumes the total thermal radiation dissipates from a center point of the fire. 
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The relationship between the mentioned factors can be shown mathematically for the equation of heat 
release: 

𝑄 =
𝑞" ∗ 4𝜋𝑟!

𝜆!
 

Equation 1: Heat Release 

Where q” is the critical heat flux, r is the radius from the center point of the fire, and is the radiant 
fraction. Solving for r, we obtain: 

𝑟 =
𝑄𝜆!

4𝜋 ∗ 𝑞"
 

Equation 2: Distance from Fire 

Using wood doused with gasoline as a comparable model for our material burning and a critical heat flux 
of 2kW/m2, a safe operating distance of 2.82m or 9.25ft was obtained. Using fiberglass, the safe operating 
distance was 1.43m or 4.70ft. Using acrylic, the safe operating distance was 4.38m or 14.20ft. These 
materials were chosen as comparable to boating materials that our application would aim to put out as 
well as materials that we could easily test for. The material properties were listed in the SFPE Handbook. 
From these calculations and modeling, we specified a safe operating distance of 10 to 15ft. 

3.3 Mechanical Design 

During the design process for our system, we examined many different ways of solving the problems 
from our system requirements. The sections below explain each portion of our design and other designs 
that we considered, as well as why we chose the design we did. There are four main mechanical aspects to 
the system, the container for the FireIce, the pressurizing system, the temperature shielding, and the 
spraying system. One of the requirements that we determined specifically for the mechanical system is 
that the FireIce must be at 100 psi to reach a reasonable distance when fighting the fire. Testing of parts 
of the system can be found Appendix D at the end of this report. 

Figure 5 shows a block diagram of the different components of the mechanical design. We will describe 
the requirements for each portion, detailing the research and different approaches for section. 

 
Figure 5: Mechanical Design Block Diagram 
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FireIce Container 

When first discussing our system specifications, we thought that a full gallon of extinguishing agent 
would be an adequate starting place; however, a gallon would weigh about 8.34 lbs., which would take up 
most of the 11 lbs. payload of the drone. With that in mind we decided that half a gallon of FireIce would 
adequately fit within the limitations of the drone platform for the sake of the project. To solve the 
problem of containing FireIce we explored three different ways to fulfill this requirement. 

COTS Container 

The Consumer off the Shelf (COTS) container that we look at was the 2 
Quart Natural Tank with Mounting Tabs as seen in Figure 7. The COTS 
container would give us a half-gallon of volume while remaining 
lightweight as a container since the container only weighs 0.631 lbs. 
empty. With a full container of FireIce the container would weigh about 
4.17 lbs. The COTS container comes with a large opening and with a cap 
to refill the system with FireIce; however, we would need to add our own 
connection to attach the COTS container to the rest of the system. This 
connector would be a barbed hose connector to a ⅜” NPT (National Pipe 
Thread) connector with a ⅜” NPT female locknut on the container side to 
secure the adapter. This attachment method is shown in Figure 6. 

PVC Container 

Another container design that we had considered was a PVC (Polyvinyl 
chloride) pipe based design, as seen in Figure . The design would use a 
piece of PVC pipe with 3.5” ID (Inner Diameter) (4” OD (Outer 
Diameter)) and a length of 6” with custom blocks as feet for support of the 
pipe made from blocks of ABS (Acrylonitrile butadiene styrene) plastic. 
These dimensions would give this container a volume of about 0.49 quarts. 
On either end of the pipe there would be a PVC pipe cap with a ⅜” 
transport tube adapter.  

Trapezoid Container   

The Trapezoid Container is a design that we developed ourselves using 
3/16” Acrylic sheets, a model of the design can be found in Figure . A 
design challenge that we predicted with most of the containers mentioned 
previously is that since most of them have flat bases, when drawing FireIce 
from the container not all of the liquid will drain without extra suction. 
When designing this container we kept that in mind so we slanted the sides 
of the container in the design. To further increase the efficiency of the 
container we added in a sloped plate to direct the FireIce towards the 
front and bottom of the container where the transport tube adapter is located. This design also 
incorporates the volume of extinguishing agent that we wanted to carry on the drone; the inner volume of 
the container is approximately equal to 2 quarts. To have about 2 quarts of extinguishing agent we created 

Figure 6: Tube Connector 

Figure 7: COTS Container 

Figure 8: PVC Container 

Figure 9: Trapezoid Container 
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the trapezoid to have bottom base of 100 mm, a top base of 140 mm, a height of 115 mm, and a length of 
170 mm. These dimensions do not account for the thickness reducing the volume when determining the 
volume, so when determining volume the thickness should be subtracted from the dimensions. The 
internal volume of the container is 1.95 quarts. Given these dimensions the weight of this container empty 
is 1.35 lbs. and when filled with FireIce the weight is 5.42 lbs.  

When determining how to design the container we were concerned that there might be problems with the 
structural integrity of the container when the drone is flying. To resolve that issue we researched molding 
Acrylic. The base and the walls can be heat molded to the trapezoidal shape and the top of the container 
will be attached to the walls with Epoxy. The top of the container will have a hinge that can be locked, to 
refill the container with extinguishing agent. To further secure this container to the drone we also added a 
sheet of ABS plastic that will be epoxied to the bottom of the container to attach the container to the 
drone. Since this container is tall we decided to also design a part that attaches the container to the top of 
the drone. This design is effective since the container uses the space available on the drone effectively, 
directs the FireIce into the tube adapter, fulfills our volume requirement, and is relatively lightweight. 

Pressurizing System 

The second main system of the drone is the system that generates the pressure to spray from the nozzle. 
One design for this system would be to pre-pressurize a container and have an ON/OFF nozzle to control 
the spray. Alternatively, we could have a design that could control the pressure by itself and we would not 
need to pre-pressurize the system. 

Motorized Pressurized System 

This design used a motor and a worm gear 
system to drive a plunger into a container to 
maintain the pressure in the container. A general 
system mock up can be found in Figure 8. Based 
on the equipment at the beginning of the section, 
the system needs to be able to output 100 psi of 
pressure. Since we did not want to have the 
motor continually be stalled, we decided that a worm drive gear system would work the best. Even with 
this worm gear, drive the torque requirement of the motor would be so high that the motor we would need 
would weigh more than acceptable for the system since weight was such a premium in our system.  

Spring Pressurized System 

The spring design was similar to the motorized pressurized 
system design except this system used springs to apply the 
force required. The general system mock up for this design 
can be found in Figure 9 One design flaw that we saw after 
designing this was that as the system sprayed FireIce the 
system would reduce the psi of the container since the 
springs would extend more and more. One way to 

Figure 8: Motorized System 

Figure 9: Spring System 
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overcome this problem was to overcompensate for the pressure at full capacity of the system so that the 
system would never be less than 100 psi. Even with the overcompensation fix, this design would not work 
best for our application because the system would need to be pre-charged. Furthermore, the system would 
be flying around with high-powered springs so if anything went wrong in the system they could damage 
the rest of the drone. The weight of the heavy springs and the container to hold the springs and FireIce 
would be higher than what would be acceptable for our system. 

Bladder Pressurized System 

For this design, we wanted to develop a system that 
could be easily pressurized with a lightweight 
mechanism that would not need to be carried by the 
drone. To accomplish this we developed a bladder that 
would be able to maintain pressure in the system after 
being pre-loaded before launch. The mock up for this 
system can be seen in Figure 10. This system is the 
lightest design that we developed; however, this system 
has the same issue that the spring system has, this system 
loses pressure as the volume of the system is sprayed. The bladder would be placed in the container and 
pressurized with an external pump. This would give the system the pressure this system needs and reduce 
the slosh in the container.  

Diaphragm Pump 

While researching methods of maintaining pressure 
in a closed system, we came across diaphragm 
pumps. While researching diaphragm pumps we saw 
some potential issues that could arise from by using 
a diaphragm pump: vibration, inconsistent flow, 
weight, and pressure. These were the four main 
concerns we had to make sure that any pump we 
looked at met. Since Figure 11 is just a mock up the 
tubing and locations of the FireIce container and the 
nozzle are not placed where they are on the complete system. We eventually found a pump sold by 
Estone. This pump had the specifications for what we needed: 1.4lbs, 12V, 60W, 5L/Min, and 115 psi 
max pressure. All of the physical specifications were within our requirements. This pump allowed us to 
remove the need for a pressurized container so we could use a much lighter weight container, saving 
weight and space on the drone. By using this pump, we also could eliminate the need for an electrically 
actuated valve, further simplifying our system. With this pump, we also can regulate the pressure 
outputted by controlling the current running to the pump.  

Temperature Shielding 

As discussed in the Basics of Fire section radiation and convection heat transfer play a large role in the 
temperature of the drone while the drone is flying around the fire. Since the drone will be flying relatively 
close to the fire we need to have some sort of protection for the frame of the drone as well as the 

Figure 11: Diaphragm Pump System 

Figure 10: Bladder System 
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electronics on the drone. Once we determined the safe distance based on radiation, we also assumed that 
the heat transfer from convection would be negligible because of the distance we would be at for 
radiation. The wind generated from the propellers also would further reduce the heat transfer from 
convection. Therefore, we focused our design on protecting the drone from radiation. 

Aluminum Foil 

A low cost and simple solution to add protection to the drone is to tape on aluminum foil to the bottom 
facing sides of the frame and arms of the drone. Mike Matros from FireIce first proposed this solution 
during one of our meetings (Matros, 2015). The aluminum foil solution is low cost, has a low emissivity 
of 0.04, and is lightweight. The issue arises when the Aluminum foil is attached to the drone. Because the 
foil is not adhesive and is thin, about 0.2mm, the Aluminum foil is extremely difficult to attach to our 
system. There is the possibility of creating mounting parts or adhesives. The issue with these solutions is 
that adding an attachment part adds weight and the adhesive solution might not secure all parts of the foil 
allowing some parts to get caught in the ambient wind or the wind generated by the propellers.  

Kapton Tape 

Once we started looking at high emissivity materials we found Kapton Tape. This is a type of material 
designed to reflect the radiation from the fire. The emissivity of the Kapton tape is 0.03, which is not too 
much of an increase from aluminum foil, but the main advantage is that the Kapton tape is comes with an 
adhesive backing and is easily attached to any part of the system. Since the Kapton tape is easy to attach 
and little chance of the tape coming off during a flight, Kapton Tape seems like a good choice to fulfill 
this requirement  

Spraying System 

Nozzles 

The nozzle for the deployment system is crucial for the 
application of the FireIce solution. The nozzle will dictate 
the area of coverage and impact that the extinguishing 
agent will have. For our purposes, we wanted to choose a 
nozzle that would best suit the application of the project.  

When choosing a nozzle we focused on three major 
parameters: spray angle, pressure of the system, and 
viscosity of the solution. Figure 12 shows a graphical 
representation of the spray angle. 

The spray angle is the angle at which the solution is 
sprayed. Larger angles mean that a larger area is covered 
when spraying while smaller angles are more condensed. 
Using Spraying Systems, a leading producer of nozzles, as a reference, we were able to gather the data 
necessary to choose the nozzle that would best fit our application. 

Spraying Systems has an expansive catalog detailing their different nozzle and spray systems. Within the 
catalog there is a technical reference section that details the operating points of different nozzle types. For 

Figure 12: Spray Coverage 
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this project, we looked into two different nozzle types: tapered flat spray nozzles, and full cone nozzles. 
These two nozzle types have different spray patterns that would work for the application of the FireIce 
solution. 

According to the technical reference section of their catalog, many of their nozzles are rated based on the 
spraying of water at 40 psi. The spray angle of a given nozzle is determined by the viscosity of the liquid 
being deployed, and the pressure in the tube leading up to the nozzle. Through analyzing the data 
presented by Spraying Systems, an increase in pressure would cause the spray angle of a given nozzle to 
increase. Inversely, increasing the viscosity of the liquid would decrease the spray angle of the nozzle. 

With our application, we will be spraying a solution slightly more viscous than water at a pressure of 100 
psi. With FireIce, we have control over the viscosity of the solution by changing the ratio of FireIce 
powder to water. For the project we plan to keep the solution slightly more viscous than water such that 
the solution does not compromise the pressurized system. With the solution being pressurized to 100 psi, 
the increase in spray angle was accounted for when determining the best-fit nozzle for the application. 

The next parameter we looked at was integrity of spray coverage. The concentration of coverage degrades 
the further a nozzle is used away from a target. As a result larger spray angles would have a poor effective 
area of coverage at large distances. In the case of the data presented by Spraying Systems, much of their 
data is only rated for distances of roughly 4 ft. With our project, we plan to deploy FireIce at distances 
between 10 and 15 ft depending on the size and severity of fire. With that, we would need a spray angle 
that is able to traverse this distance while keeping the integrity of the spray coverage high enough to 
impede the fire. 

Using these characteristics of nozzles, and the parameters for deploying the FireIce, we believe that using 
a flat spray nozzle at an angle of 15° or less would work the best. With further testing we will be able to 
determine the best-fit spray angle size for our application. With the knowledge gained from our research 
we were able to determine that having a spray angle fixed within this range would provide the best 
coverage and spray integrity for our applications. 

Nozzle Motion Control 

As discussed before the nozzle of the system will have a spray angle; however, to increase the area of 
coverage of the nozzle the system should also include a method of rotating the nozzle. In order to realize 
the motion needed for the additional coverage the nozzle will need to be contained in a housing so that the 
nozzle will be able to be rotated.  

This housing will be attached to the system plate, therefore the plate will cut off 180° of the effective 
spray area, then the rest of the system will likely be behind the housing cutting off another 90°. Leaving a 
needed rotation of 0° to 90°. Since this rotation should not be continuous, because of the hose attached to 
the nozzle, the most effective way to create the motion needed would be through a servomotor. The 
servomotor would also eliminate the need for a sensor to determine position. The exact position may not 
be known, but the general location will be and that will be enough for this application. 

In order to rotate the housing of the nozzle the servomotor will need to be able to output enough torque to 
rotate the housing and bend the tubing attached to the nozzle. When designing the spraying apparatus for 
the system we considered three different servomotors: the Vex 3-Wire Servo, a Micro Motor from Hitech, 
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and a High Powered Motor from Pololu. These three motors represent a good range of optimal 
size/weight, torque, and position precision. The Vex 3-Wire Servo has less than half the stall torque of the 
other two options and performance problems based on the group’s experience, but would have more 
precise position control. The Micro Servo has an adequate amount of torque, but is much smaller and uses 
plastic gears, which is concerning if the motor encounters any rotational resistance. The Pololu High 
Powered Servo has a good combination of durability with metal gears high torque with a reasonable size. 
Since the servo is going to be run off of 5 V, the power supplies will be discussed further in the next 
chapter, the numbers seen in Table 2 are approximated based on data sheets. 

Name Voltage Requirements 
(V) 

Stall Torque 
(Nm) Size (mm) 

Vex 3-Wire Servo 4.4 - 9.1 0.7344 23 x 14 x 25 

Micro Servo 4.8 - 6.0 1.471 22.6 x 11.4 x 23.9 

High Powered Servo 4.8 - 6.0 1.520 40.7 x 20.5 x 39.5 

Table 2: Servo Motors 

3.4 Electrical Design 

The electrical systems present in the project will need to be separated into two major categories: The 
drone system, and the ground station. The ground station is what the user will be directly using to control 
the drone. This will also include having the capability to see any transmitted data, either from the flight 
controller or sensors. 

The drone will house the deployment system for the FireIce; a live video feed camera, sensors, and radio 
systems for data transmission necessary for communication with the ground station. The drone also will 
have a system for power distribution to the different systems on board from the main battery. 

Figure 13 shows a block diagram of the components that make up the electrical design of the project. 
Below we detail the different components that comprise the electrical design.  
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Figure 13: Electrical System Block Diagram 

Drone Power Distribution 

On the multi-rotor drone there are a variety of different systems that require different operating voltages 
and amperage. With the drone we purchased a main battery with a capacity of 22.1V at 16000mAh to 
power the drone frame. A larger capacity battery would weigh more, reducing the amount of payload we 
could have present on the drone. On the drone there would need to be a way to power the different 
systems of the drone. Table 3 below shows the different systems present on the drone and their operating 
voltage and current levels. 
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System Voltage (V) Amperage (A) 

3DR-Camera 12±10% 0.05 

3DR-Transmitter 7-12 0.850 

3DR-Receiver 7-12 0.150 

Pixhawk 5 0.500 

Pressurizing System 12 2-5 

Arduino 5-12 0.05 

Servo for Nozzle System 12 5 

Multi-rotor Drone (S1000) 22.2 40 
Table 3: Power Requirements 

From our analysis of the different operating points of the different systems, we decided that we would 
need to have two voltage regulation stages: a 12V and 5V line. We felt this would work best with our 
system considering the multiple systems that need a 12V supply. The pressurizing system would have the 
most current draw when pressurizing and deploying the FireIce.  

For the 5V line, there will be another conversion stage that regulates the battery voltage to 5V at 3A. 
Considering the systems shown in Table 3, the voltage and amperage would be able to adequately provide 
enough power to the different systems. 

Data Transmission 

The drone system will require multiple means of communication links in order to send information down 
to the ground station. The need of multiple communication links stems from the different systems that 
will be present in the project. There will need to be a dedicated communication link for the operation of 
the drone. Other communication links will include the transmission of sensor data, and camera video feed. 
Separating each line of communication reduces the complexity of the system. 

There are a variety of operating frequencies used on the system for these communication links. These 
systems will include: the radio to control the drone frame, a radio set for transmitting the Pixhawk flight 
controller information, the transmitter for the video feed camera system, and a XBee link for user control 
and sensor data. Table 4 breaks down the operating frequencies of the mentioned systems. Figure 14 
below shows the communications architecture for the communication links present within the project. 
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Figure 14: Communications Architecture 

	

System Operating Frequency 

3DR-Camera 5.8GHz, 200mW 

Remote Controller 2.4GHz 

3DR Radio Set 915MHz 

XBee Transceiver 2.4GHz 

Table 4: System Operating Frequencies 

The camera system is necessary to get video feed from the drone. With the camera system we intend on 
using the camera for flight control as well aiming for the FireIce deployment system. The camera will 
have an On Screen Display (OSD) module that will overlay telemetry data from the Pixhawk. This gives 
the operator the added benefit of knowing the orientation of the drone as well as other data from the flight 
controller. This other data can include the position of the drone as well as the speed. 

To view the video stream at the ground station, the camera system has a dedicated transmitter and 
receiver that would be placed at the ground station. The operating frequency of the system is 5.8GHz. To 
interpret the video feed data, the receiver of the camera set has an Audio/Video (A/V) output that we plan 
on hooking up to a LCD monitor. 

The remote controller is what will be used to interface with the Pixhawk and drone frame to fly. The 
current controller operates at 2.4 GHz. With the receiver end of the radio attached to the drone, there are 
8-channels used to interface with the onboard systems. The first five channels are dedicated to the 
Pixhawk for proper control of the drone frame. The remaining three could be used as control signals for 
the other systems present on the drone frame. 

The other operating frequency of 915MHz is dedicated to the 3DR Radio Set. The 3DR Radio Set acts as 
a bidirectional data link between the ground station and the Pixhawk. Similar to the OSD of the camera 
system, the 3DR will transmit the data from the telemetry of the Pixhawk. Using this set up will allow us 
another means of getting flight data. The use of this communication approach comes with Mission 
Planner, a dedicated software for displaying the flight data The radio set will also allow us to control the 
drone via a laptop as the transceiver for the ground station is connected via USB. 
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Deployment System 

The deployment system will involve the operation of a few electro-mechanical systems such as a 
pressurizing system and a servo to control the direction of the nozzle. Both the pressurizing system and 
servo motor will need a 12V supply and between 1.5A to 5A to operate at minimum and maximum loads. 
To give these systems their needed power supply, a conversion stage will be implemented to drop down 
the supply of the main 22.2V battery of the drone into the specified operating range for the pressurizing 
system and servomotor. A relay will be used to control when the pressurizing system and servo motor is 
turned on. This relay could be controlled with a PWM driven signal from the radio receiver connected to 
the Pixhawk controller. The remote controller at the ground station could then have a dedicated switch to 
turn the PWM signal of the Pixhawk on and off. Alternatively, we could send the PWM signal from the 
Arduino. The user through the use of wireless communication and a GUI could send this signal. 

The servo motor will be used to drive the operation of the nozzle control system of the deployment 
system, which will control the angle of the spray of the fire suppressant. Attached to the nozzle container 
in parallel with the nozzle will be the 3DR camera. This camera will have a dedicated power supply from 
a battery providing the 11.1V and 50mA. The camera will have a dedicated transmitter to send the video 
feed to the ground station via a corresponding receiver. The video feedback will provide location of the 
fire and the direction of the fire suppressant spray. 

Sensor Integration 

A number of sensors and systems will be used to provide important data to the ground station vital to the 
safe and efficient operation of the drone. Some of this information is obtained from the Pixhawk and 
drone monitoring systems already in place while other 
sensors and systems are added peripherals. 

Flame Distance 

An important piece of information is to determine our 
distance we are operating from the flame when we are ready 
to deploy our fire suppressant. One way we could 
accomplish this requirement is to have an IR range finder 
sensor setup as an added peripheral oriented to find the 
straight-line distance from the drone to the fire. An issue 
with this setup is that fire can produce IR interference, 
which can potentially compromise the accuracy of the 
sensor data.  

Another way to determine our distance from the fire would be to know the height of the drone and the 
angle of the nozzle pointed at the fire. The height of the drone could be found using the altimeter in the 
Pixhawk or the GPS module of the Pixhawk, which will give us the distance of the drone normal to the 
ground. The angle of the nozzle could be found through using an angle sensor such as a potentiometer 
attached to the shaft of the nozzle-spraying container or by using the inputs of the servo used to control 
the nozzle’s aim. Applying geometry and the Law of Sines, the distance of our drone from the fire can be 
determined. In Figure 15, point A is the location of the fire, point B is the location of the drone, and point 

Figure 15: Law of Sines Triangle 
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C is the ground directly below the drone. The distance ‘a’ is retrieved by the altimeter or GPS module and 
the angle ‘B’ is retrieved from the angle sensor or the input of the servo. Utilizing the Law of Sines, the 
straight distance from the drone to the fire, ‘c’, is found by the equation: 

𝐶 =  
𝑎

𝑠𝑖𝑛(90 − 𝐵)
	

Equation 3: Distance to Drone 

The ground distance, ‘b’, is found by the equation: 

𝑏 =  𝑠𝑖𝑛(𝐵) ∗ 𝑐	

Equation 4: Ground Distance 

With this information, we can determine if we are in a position that is safe from overheating from the 
radiation of the fire as well as knowing if we are in range to spray the fire suppressant.  

Camera Parallax 

An issue that occurs when using a camera to direct the spray is Parallax would result from the offset 
angles between the camera and nozzle. Parallax is when the position of an object differs depending on 
where you try to observe the object. If two objects were directly in line with each other along with the 
spray system, the spray system would be blocked from affecting the further object. However, due to the 
camera being offset slightly from the nozzle, the camera could see the second object, as the line between 
the camera and the second object does not pass through the first object.  

In Figure 16, assume Viewpoint A is the nozzle, and 
Viewpoint B is the camera. When trying to spray the red block, 
you would not be able to see the block with the camera. When 
attempting to spray at the blue block, the camera would be able 
to see the block; however, the spray would not be directed at 
the blue block. This effect can be minimized by angling the 
two lines so that rather than crossing at an arbitrary point, they 
cross at a specified focal point. The focal point in this instance 
would be the desired optimal range. To calculate the angle to 
tilt each object for a given focal length, you use the following 
equation: 

𝜃 = 𝑐𝑜𝑠!!
𝑜𝑓𝑓𝑠𝑒𝑡 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑦𝑠𝑡𝑒𝑚𝑠

2 ∗ 𝑓𝑜𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ
 

Equation 5: Parallax Angle 

Were as the angle that each system needs to be tilted towards the centerline. A table of calculated angles 
at a variety of ranges can be found in Appendix B. If the distance between the two systems were to be 
specified at four inches and the desired focal length were ten feet, the angle of tilt for each system would 
be less than a degree. 

Figure 16: Parallax Example 
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Temperature Sensor Array 

As our drone and system will be operating near a fire, our system will need to know the heat directed at 
the drone to avoid experiencing temperatures greater than 40°C. To accomplish this requirement, a 
number of temperature sensors will be setup across the surface of the drone for full coverage of the 
systems. The sensors will send an analog voltage to the signal-processing unit, which will read the highest 
value, as that is the most important value. If the temperature is read as higher than 35°C then a warning 
will be broadcasted to the user at the ground station that the system is close to overheating. 

3.5 Software Architecture 

The software needs of the system can also be seen when examining the block diagram explored earlier in 
the block diagram in Figure	14. The places that would require software are the microprocessor, the flight 
controller, the remote controller, the camera receiver, the 3DR radio receiver, and the user input. Of these, 
off the shelf software can immediately be used for all of these sections other than the microprocessor and 
user input. 	

The software for the system needs to fulfill three major requirements. First, it needs to handle all of the in 
air control. Second, it needs to create a usable Graphical User Interface to allow a user on the ground to 
control the subsystem. Finally, it needs to manage the communication between these two systems. The air 
and ground systems will be shaped by what form of communication is implemented, so the first software 
feature investigated will be the communication structure. In addition to these functional requirements, the 
software must be implemented in a way that keeps the overall drone system as safe as possible. 

Data Transmission 

An integral portion of the project is how to control the spray system while the drone is flying. There were 
a number of different methods of communication considered for how to manage the data flow between 
the ground station and the drone. The main goals for communication were to find a reliable method of 
data transfer that is also safe in its implementation, and easily replicable onto additional platforms. The 
team investigated a number of different potential methods for communication between the ground 
platform and the drone in operation. The results of this investigation are detailed in the sections below. 

External Transceivers 

The first method considered was a pair of 2.4GHz transceivers with a range of approximately 100m. The 
smallest and most easily accessible option for these transceivers is a pair of XBee series two ZigBee mesh 
modules. This would allow for easy communication between the microcontroller running the spray 
system and a control laptop, however this would require mounting an additional transceiver on the drone 
to run the communication through. This option was initially disregarded as external transceivers were 
considered to add more bandwidth than is necessary to the system. External transceivers also require 
adding an additional data transmission frequency to the drone, causing additional data frequency 
interference to the area near the drone. The advantage of using this method for communication is external 
transceivers allows for a separate communication system from the drone remote, allowing a second 
person that was not the pilot to control the system. With external transceivers, the communication 
architecture would consist of a serial transmission line. The serial line consists of plain text 
communication between the connected modules. 
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ROS Communication 

Another method that we explored was to use the Pixhawk as a Robot Operating System (ROS) node, 
something that is theoretically possible to do by linking the Pixhawk to a Raspberry Pi control board, 
however, this method would have provided far more processing power than actually needed for this 
application. Additionally, causing the Pixhawk to publish ROS messages would require changes to the 
Pixhawk firmware, adding any potential disadvantages explored in the following Pixhawk Firmware 
subsection, without adding any additional benefits. 

Mavlink Interception 

The third method investigated was to intercept the messages used by the video on OSD in order to replace 
some of the unnecessary data in that system with the data to be used in controlling the drone. 
Communication between the Pixhawk and ground systems uses a format known as mavlink to store and 
transmit the data from the Pixhawk sensors to the ground controller. With this system, an Arduino would 
be inserted between the telemetry port and the OSD board. The Arduino would receive the telemetry data, 
break down the mavlink message, and build a new mavlink message in the same format, except inserting 
our data to transmit into the message. This new mavlink message would then be transmitted to the OSD 
board for display on our camera. 

Pixhawk Firmware 

The fourth method would be to use the ADCs on the Pixhawk to send the data to the Pixhawk, and then 
edit the firmware loaded onto the Pixhawk in order to put the data into the appropriate location in the 
mavlink message before the message is sent. With this, the physical setup would not need to be changed 
for different groups; the only difference would be what firmware was flashed onto the Pixhawk. One 
downside to re-flashing the firmware is the drone would need to be re-tuned each time the Pixhawk was 
re-flashed. Additionally, as this would be affecting the firmware, any accidental bugs in the code could 
cause the drone to malfunction while flying, causing potentially dangerous situations. With rigorous 
testing however, this safety concern could be mitigated. The largest downside of this method is that, 
because when all of the data from our system is combined with the Pixhawk data the control of our 
system would be bundled with the control of the drone. This would force the pilot to control both the 
spraying system and the drone; however, the co-pilot could still act as a spotter by using the camera feed. 
Another problem that this method has is that any slight bug in the code could cause the drone to crash 
since our code would be directly affecting the drone control code. 

System Control 

There were two distinct methods considered for how to control the spraying system. The first was to use a 
separate communication method from the drone itself, allowing the spray system to be controlled by a 
laptop attached to some form of transceiver. This first method is best implemented if the separate 
communication method is also being used as the downlink to receive data being sent by the subsystem. 
The second method to be considered was using the three extra channels of the drone controller to send 
PWM signals to an Arduino, which would process the incoming signals and convert them to the 
appropriate signals to send to the various parts of the system. The output of these channels would be used 
to control the rotation of the spray system, whether or not the valve at the nozzle was open, and whether 
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or not the pump is running. This version of control is best used when there are not additional lines of 
communication being added to the full system, and instead already existing, but unused lines need to be 
used. 

System Control Interface 

To fully control the system, some form of user interface was required. If the control were to be through 
the physical controller, this interface would simply be the buttons used on the radio controller. The user 
interface becomes much more involved if a secondary software method is implemented, as the control 
system would need to be run through a computer, necessitating the design and implementation of a 
Graphical User Interface (GUI) to handle the control of the subsystem. The GUI would require features to 
display the temperature sensor data, as well as buttons to control the rotation of the nozzle, and to toggle 
the spraying. This involves interfacing with the chosen method of communication, both receiving and 
transmitting. This GUI could also contain an emergency stop button, in order to disable all subsystem 
functionality immediately in case something goes wrong inadvertently during flight. 

Temperature Sensor Reading 

Any communication method chosen also required the ability to read from the chosen temperature 
measurement system. Without this ability, the drone operator would have no way to know if they are 
operating the drone in unsafe situations. Due to the cost of the full system including drone, safe operation 
must be the highest priority for the system. There are two potential methods for reading the temperature 
sensors. The first is to use some form of microprocessor such as an Arduino to read the data on one of its 
analog in ports. This method is best used when the system will already have a microprocessor for 
handling interaction anyways. The second method available is to read the temperature sensors using one 
of the Pixhawk’s available analog to digital converter (ADC) ports. ADCs are used to read an analog 
signal when the processor is always expecting to be handling digital data. The method of reading the 
temperature sensor should be chosen based on the other portions of the system, neither way has a distinct 
advantage over the other.  
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4.0 Final Design 

4.1 Mechanical Final Design 

Spraying System 
The nozzle system has five basic parts: Nozzle Adapter, Nozzle Housing, Camera Mounting Plate, Servo 
Motor, and System Attachment Plate. The 0° nozzle that we chose had a plastic casing surrounding the 
nozzle, which we removed to replace it with our 3D printed nozzle adapter that would allow us to mount 
the nozzle into the nozzle housing. The nozzle adapter, which was designed to form-fit to the indents on 
the nozzle, provides an easy way to mount the nozzle to the housing. The nozzle housing is a 3D printed 
part that’s purpose is to mount the nozzle to the axle that will rotate in order to give the nozzle the desired 
spraying motion. On the other end of the axle is the camera mounting plate. This plate allows the camera 
to remain in constant alignment with the nozzle. The servomotor, giving our system the spraying motion, 
will control the housing. The last part is the system attachment plate, which is where the whole 
mechanical system is mounted. This plate is the connector between each part of the mechanical system 
and the drone. In the following sections, each of the parts of the mechanical system will be discussed 
further, an exploded view of the Solidworks model of the system can be seen below in Figure 19.

 
    Figure 17: Full System Exploded View 

Nozzle Adapter 
The nozzle adapter, as seen in Figure 20, was designed to be form fitting to the 
nozzle on the inside and smooth on the outside in order to give an easily 
mountable surface. The final design was a part that would be assembled with a 
second one of the same part in order to form a complete seal around nozzle. 
Earlier iterations of the part were single pieces, however, the 3D printer 
material proved to be too rigid to allow the nozzle to fit in the part. A two- Figure 18: Nozzle Adapter 
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piece design allows for the part to form fit to the nozzle and provide a smooth surface to mount to the 
Nozzle Housing part.  

Nozzle Housing 
The Nozzle Housing final design has an off 
center nozzle placement, square hole, and 3D 
printed part. A picture of the final part can be 
seen in Figure 19. The hole where the Nozzle 
Adapter fits was originally in the center of the 
part to provide even movement of the nozzle 
through the rotation. After including the tubing 
in the design, the tubing interfered with the axle. 
The hole was then offset from the center to 
prevent the interference. 

Servo Motor 
We considered three different servomotors: the Vex 3-Wire, a Micro 
Motor from Hitech, and a High Powered Motor from Pololu. The vex 
motor has less than half the stall torque of the other two options and 
performance problems based on the group’s experience. The Micro 
Servo has a greater amount of torque than the vex motor, but is much 
smaller and uses plastic gears which is concerning if the motor 
encounters any rotational resistance. The Pololu High Powered Servo 
has the best combination of durability, uses metal gears, high torque 
and a reasonable size. Each servomotor has specifications at different 
voltages; however, the specifications are all around 5V. Because the 
specifications are not for exactly 5V the numbers in Table 5 are 
approximations. A picture of the Pololu High Powered Servo can be 
found in Figure 20. 

Name Voltage Requirements (V) Stall Torque (Nm) Size (mm) 

Vex 3-Wire Servo 4.4 - 9.1 0.7344 23 x 14 x 25 

Micro Servo 4.8 - 6.0 1.471 22.6 x 11.4 x 23.9 

Pololu High Powered Servo 4.8 - 6.0 1.520 40.7 x 20.5 x 39.5 
Table 5: Servomotor Selection 

Camera Mounting Plate 
The Camera Mounting Plate can be seen in Figure 21. The part is 3D printed and 
mounted to a vex gear to provide a stable mounting point onto the axle. The part 
also has a hole to fit a shaft collar to secure the axle to keep the whole assembly 
together. The 3DR Camera we are using has a mounting bracket that mounts to 
holes in the part; this provides the camera a steady way to mount to our system. 

Figure 19: Nozzle Housing 

Figure 20: High Powered Pololu 
Motor 

Figure 21: Camera 
Mounting Plate 
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Since the camera is securely mounted to the axle and the system, the camera can utilize the parallax 
calculations, explained in the Sensor Integration Section, to accurately show the image from the nozzle’s 
perspective.  

System Attachment Plate 
The system attachment plate is a simple design that is dictated by the placement of the other parts of the 
mechanical system. To consolidate space on the plate, the diaphragm pump was moved from under the 
plate to on top behind the battery. This allowed the FireIce tank to be mounted to the octocopter directly 
without endangering the center of gravity. The plate with the parts attached to it can be found in Figure 
22. 

 
Figure 22: System Attachment Plate 
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4.2 Electrical Final Design 
With the design of the system for the drone, the team worked to achieve the electrical design requirements 
specified in 3.3 Electrical Design. Specifically, we worked to address the following:  

● Power distribution for the system  
● Control for the wireless communication  
● Control for the pump, and temperature sensor integration  

The culmination of each of these systems was the construction of a PCB (Printed Circuit Board) to house 
each electrical component of the overall system. 

We also focused on the ground station of the system and how we planned to address ground to air 
communication. Most of the communication for the system would be dealt by the pre made 
communication systems for the FPV system and flight controller. 

Below we will discuss the different pieces of the electrical system. We will break it down with the 
different stages of the PCB and how they address the different design requirements of the system. We will 
also discuss how user data transmission is dealt within the system. 

PCB Design 
As stated above, a PCB was designed to house all stages for power distribution and computation for the 
overall system. We worked to include every stage of the system in one central location. The other main 
intent for the board was to have a rigid structure to house the electrical systems on the drone in flight. 

Overall PCB Design 
The PCB designed for the project is shown in Figure 23below. Below we describe each section of the 
PCB as well as each section’s operation.   

 
Figure 23: PCB Layout 
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PCB Power Distribution 
For the system, we needed to have a way to provide a 12V and a 5V line to power different portions of 
the system. Our solution to address this was to have two buck converter circuits on the PCB. The main 
22.1V battery powers both of the buck converters. 

 
Figure 24: Buck Converter Circuit 

The 12V buck converter was designed using the LM22678 step-down voltage regulator. This particular 
IC (Integrated Circuit) is able to regulate down a voltage upwards of 42V to a user defined voltage and 
amperage. Figure 24 shows the circuit used as the design for our application. 

The voltage output of the buck converter circuit is dictated by the voltage divider created by the feedback 
resistors R1 and R2. The data sheet provided an equation to determine the appropriate resistor values to 
achieve the desired output. The provided equation is shown below: 

𝑅!"! =
𝑉𝑜𝑢𝑡
1.285

− 1 ∗ 𝑅!"! 

Equation 6: Voltage Out from Buck Converter 

For R2 the recommend value was 1kΩ for the IC. With a desired value of 12V for Vout, we calculated the 
R1 to be roughly 120Ω. Using this value we were able to achieve a steady output of 12.2V. The 0.2V 
difference can be attributed to the imperfection in resistor values. 

The voltage input/output and the inductor dictate the current output. The data sheet provides the following 
equation to determine the output current: 

𝐼!"# = 𝐼!" −
𝑉!" − 𝑉!"#
2 ∙ 𝐿 ∙ 𝐹!"

∙
𝑉!"#
𝑉!"

 

Equation 7: Current Out from Buck Converter 

Where ICL is the current limit with a typical value of 7.1A and FSW is the switching frequency of the buck 
converter at 500kHz. Using an inductor of 6.8uH allowed us to have a current output max draw of 6.29A, 
adding an extra 1.29A to our needed amperage of at least 5A. 

Through testing the pump we determined that the max current draw with FireIce would be roughly 3.7A. 
The current output of the buck converter circuit proved to be more than sufficient to drive the pump under 
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our system requirements. The safety factor of the 12V supply system was calculated to be 1.7. Safety 
factor was calculated using the following approach: 

𝑆𝑎𝑓𝑒𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 =  
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐴𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 𝑆𝑡𝑟𝑒𝑠𝑠

𝑊𝑜𝑟𝑘𝑖𝑛𝑔 𝑆𝑡𝑟𝑒𝑠𝑠
 

𝑆𝑎𝑓𝑒𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 =  
6.29𝐴
3.7𝐴

= 1.7 

Equation 8: Factor of Satety for Buck Converter 

The 5V Buck Converter circuit was rated to regulate voltages up to 38V down 
to the desired 5V at 5A. The buck converter was purchased at Pololu. Figure 25 
shows the buck converter used.  

The 5V line on the PCB is used to power the Arduino Uno (microprocessor), 
an Xbee (wireless communication), and the Servo (nozzle painter control) of 
the system. Considering the potential to stall the servo, we chose the 5A 
voltage regulator circuit to provide sufficient amperage such that the rest of the 
system is not compromised. Overall, each of the voltage conversion stages 
provided sufficient power for each part of the circuit.  

PCB Pump Control Circuit 
To properly control the pump we utilized a control 
circuit using the IRF520 Power MOSFET (Metal 
Oxide Field Effect Transistor). The purpose of the 
circuit was to switch the power to the pump on and 
off via user input at the ground station. To do so the 
circuit takes in a control signal from an Arduino. 
Figure 26 shows schematic of the circuit.  

In Figure 26, the connection for the Arduino is 
shown as the trace going into the gate of the MOSFET 
from the set of header pins. The 
“12_ScrewMount_Pump” connector in parallel with the 1N4004GP diode shows where the pump is 
connected within the circuit. The 12V line from the buck converter is shown entering the cathode of the 
1N4004 diode. 

When the Arduino provides a positive logic signal, the MOSFET allows current to flow down across the 
Drain and Source of the MOSFET down to ground. As a result the pump is able to turn on and begin 
pumping the FireIce. When the signal from the Arduino is switched off, providing a logic low signal, the 
pump will also turn off. This circuit was ideal for our application as it provides the ability to wirelessly 
transmit a control signal from the ground station to turn on and off the pump. 

 

 

Figure 25: Pololu 5V Buck 
Converter 

Figure 26: Pump Control Circuit 
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PCB: Arduino and XBee Connection 
On the PCB, there was a need to house the Arduino and the Xbee. To do so the 
components were mounted directly to the board to provide rigidity and easy access. 

The Arduino Uno was mounted on the board with screws. Our rationale for mounting 
the Arduino in this manner was to have access to the different ports when mounted on 
the board.  

The XBee was connected using male headers on the PCB. With the male headers the 
Xbee has a rigid structure to connect to allowing it to be reliably mounted on the drone. 
The headers then break out to a series of female headers to provide users access to the 
different ports of the XBee. Figure 27 shows the XBee physical connection for the PCB 
and Figure 28 shows the schematic connection for the XBee. 

 
Figure 28: Schematic of XBee Breakout Connection 

PCB: Sensor Integration 
For the project temperature sensors are used to measure ambient temperature. We 
wanted to have a temperature reading to make sure the drone or the heat of the 
fire while in flight did not compromise our system. Our goal was to have 
temperature sensors distributed around the drone in order to get an average 
reading.	 

To accomplish our goal, we incorporated small cut out boards from the main PCB 
to be used to hold the temperature sensors. On each of the cut out boards were 
holes to fit zip ties through so that they can be mounted on the drone. Figure 29 
shows the design for sensor cut out board.  

The temperature sensors only used three connections for Ground, Signal (or data), 
and Power. To power and read in the temperature values we used a three-wire bus 
connector to a one by three male header to connect it directly to ports on the PCB. 

Figure 27: XBee 
Breakout Connection 

Figure 29: Temperature 
Sensor Board	
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Temperature Sensors Integration 
For the drone and its subsystems, it was necessary to have temperature sensors in place to make sure our 
drone was not subjected to dangerous levels of heat. The temperature sensors chosen were the DS18S20 
from Maxim Integrated. These temperature sensors accurately read temperatures from -55°C to 125°C 
with 0.5°C accuracy from -10°C to 85°C, adequately covering temperatures around our system failure 
temperature of 40°C.  

These temperature sensors 
operate on a one-wire 
interface. Three 
connections were needed 
for the operation of the 
sensors: a power supply, 
ground, and the one wire 
data line. All data to and 
from the temperature 
sensor was sent along that 
line. A single pull-up resistor of 4.7kΩ was required to integrate the temperature sensors with our signal 
processing microcontroller. The voltage required to power the temperature ranged from 3.3 to 5V. A 
schematic of the connection and layout can be seen in Figure 30.  

To have multiple DS18S20 connected to the microcontroller, they all had to be connected on the same 
data line, allowing only one port of the microprocessor to be occupied. By sending certain bytes to the 
sensors, we can activate the reading temperature and conversion functions of the DS18S20. The sensors 
will then in turn send bytes of data representing the temperature, which can then be converted into a 
decimal number of the temperature in degrees Celsius. 

When sending the temperature data, the sensor also sends a unique memory address corresponding to that 
specific sensor. To obtain the temperature information of each individual sensor, we must first obtain the 
specific memory addresses of each sensor.  By matching the memory address to the data being received, 
we can determine what temperature each sensor is outputting at that moment. This will allow us to know 
which area of our drone and onboard system is experiencing too much heat so we can act accordingly. 

4.3 Control System Final Design 
Initially, the team planned to edit the firmware on the Pixhawk to manage the air-ground communication 
of the system, with the extra channels on the control remote to actually control the subsystem. During 
development however, this was changed due to the drone safety protocols set in place by the two MQP 
teams using the drone. The safety protocols state that the attention of the person actively flying the drone 
must entirely be on the drone and not on any other systems. Because of this, the control of the subsystem 
needed to be separated from the control of the drone. To this end, the control method was shifted away 
from editing the firmware and using the extra channels on the control remote, to using a pair of XBees to 
maintain a separate dedicated transmission link to a ground station. This allows a separate person to 
control the subsystem, so the pilot does not need to worry about operating both the subsystem and the 
drone simultaneously. 

Figure 30: Temperature Sensor Connection	
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4.4 Software Final Design 
With the design of the system for the drone, the team worked to achieve the software design requirements 
specified in 3.5 Software Architecture. Specifically, we worked to address the following:  

● User interface for easy system control 
● Feedback from temperature sensors 
● Communication architecture between ground and aerial platforms 

In addressing these requirements, there were two pieces of software developed. One to be run on the in-
air Arduino and the second to realize the implementation of the GUI. The GUI code is to be run on a 
laptop being used by a firefighter as the ground station for the drone. The control code is to be run on the 
Arduino microprocessor attached to the subsystem. Below we discuss both the implementation of the GUI 
and the communication structure between the GUI and the subsystem in flight. 

The first piece of software is the GUI. This software is how the user interacts with the developed 
subsystem as a whole. Any commands for the subsystem are generated initially through the use of the 
GUI. The second piece of the software was the code running on the Arduino. This code handles all of the  

A set of software user and epic stories was 
created to describe the software needs of the 
system. There was one overall epic story that 
described the full system, and then it was 
broken down into the user stories. The epic 
story reads as follows: I am a firefighter 
tasked with fighting a fire on a boat. I want to 
use a drone to fly fire suppression chemicals 
up to the boat and tactically spray them onto 
the fire to ensure maximum preservation of 
life. The full list of user and epic stories are 
detailed in Appendix E. These stories detail 
what exactly the system needs to be able to do when a user is operating it.  

Figure 31contains an image of the GUI under its final configuration. The features that were considered a 
requirement for the GUI were to be able to press a button to spray the FireIce, to have a button to paint 
FireIce up, as well as a second button to paint down. These features were combined to have buttons to do 
each of these individually, as well as two buttons to paint and spray at the same time. Additionally, a stop 
button was implemented, in order to disable the spraying immediately. The final design included button 
was the emergency stop button, which disables the subsystem until both the GUI and subsystem are 
restarted. In addition to the buttons on the GUI, a readout was added to display the temperature sensor 
readouts. The readout both includes a sensor by sensor display of the values, as well as a light that is 
green under normal circumstances, but if any of the temperature sensors go above the set warning 
temperature, the light will change from green to red, until all temperature sensors read under the warning 
level again. The GUI was programmed using Python. To manage the GUI layout, and binding, a library 
called TKInter was used. TKInter is the most common library used to program user interfaces in Python, 
it allows for the creation and layout of objects in the interface by using root panes to create windows, 
frames to section the windows, and then buttons and labels to add functionality to said sections. The 

Figure 31: Ground Station GUI	
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generation of the GUI in the code occurs between lines 196 and 296 in the code in Appendix F. To 
connect the GUI to the XBees, a built-in serial library that is packaged with python, called pyserial, was 
used to transmit the data to the transmission and receive lines of the XBee via a USB cable. The library is 
imported on lines 9 and 10 of the GUI code, and then is actually initialized between lines 217 and 225. 
The general functional structure of the GUI is shown below in a use case diagram, depicted in Figure 34. 
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`  

  Figure 32 GUI Use Case Diagram 
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The numbered portions of the diagram each corresponds to a specific portion of the code. This 
correspondance is detailed in Table 8 below.  

Table 6 GUI Use Case Code Linking 

Diagram 
number 

1 2 3 4 5 6 7 8 9 

Code 
lines 

55-58 67-154 61-64 156-
158 

160-
163 

165-
167 

174-
176 

183-
194 

183-
194 

The sections are detailed as followed: 

1: This section of code explains what happens immediately when the stop button is pressed. The most 
important line of code here is the line self.ser.write(b'b'), which actually transmits the stop 
signal to the subsystem. 

2: This section of the code is the regularly called function which reads data from the temperature sensors 
and then updates the GUI to show the temperatures. The exact behavior of the code here is detailed in the 
comments related to this code section. 

3: This section of the code details exactly what happens upon the press of the emergency stop button. 
There are two important lines here, the first sets the local emergency stop flag to 1, preventing any further 
transmission, and the second transmits the E-Stop signal to the subsystem, disabling it as well. 

4: This section of code is the function that is bound to pressing the spray button. Simply put, this section 
sets the flag controlling whether or not the system sends the spray signal to true, as long as the emergency 
stop flag isn’t set to true. 

5: This section of code is the function that is bound to releasing the either the spray or rotation buttons. It 
simply resets the rotation and spray flags to zero so that neither transmits. 

6: This section of code is the function that is bound to pressing the rotate up button. It sets the rotation 
flag to 1 if the estop flag is not set. 

7: This section of code is the function that is bound to pressing the rotate down button. It sets the rotation 
flag to -1 if the estop flag is not set. 

8: This section of code is the regularly called function which checks if a spray signal should be 
transmitted, and then transmits it if appropriate. This function uses an if statement to check the value of 
the spray flag, and transmits the appropriate signal. The important portion of this segment is 
self.root.after(200, self.should_send_spray). This line configures a delayed 
function call to the same function, causing the function to be called repeatedly every .2 seconds. 

9 This section of code is the regularly called function which checks if a rotate signal should be 
transmitted, and then transmits it if appropriate. This function uses an if statement to check the values of 
the rotate flags, and transmits the appropriate signals. The important portion of this segment is 
self.root.after(200, self.should_send_spray). This line configures a delayed function call to the same 
function, causing the function to be called repeatedly every .2 seconds. 
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In addition to the GUI, software was also designed and written for the onboard Arduino microcontroller. 
The functionality of the in air controller is detailed in the use case diagram depicted in Figure 35 below. 

 
Figure 33 Drone Control Use Case Diagram 
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The use case diagram was again numbered for linking to specific portions of the code. These are detailed 
in Table 7 below. 

Table 7 Drone Use Case Code Linking 

Diagram 
number 

1 2 3 4 5 6 7 8 9 10 

Code 
Lines 

141-
208 

78 100 95 83-88 89-94 79-80 107-
109 

111-
114 

107-
110 

The sections are detailed as followed: 

1: This section of code is the final portion of the loop which transmits all of the temperature data, as well 
as the helper function that reads the temperature sensors, and properly formats each piece of temperature 
data for transmission. 

2: This section of code checks received data to see if it is the signal meant for spraying. It uses a simple if 
statement to compare the received character to the desired character’s decimal representation. 

3: This section of code checks received data to see if it is the signal that means the system should rotate 
down. It uses a simple if statement to compare the received character to the desired character’s decimal 
representation. 

4: This section of code checks received data to see if it is the signal that means the system should rotate 
up. It uses a simple if statement to compare the received character to the desired character’s decimal 
representation. 

5: This section of code checks received data to see if it is the signal that means the system should 
immediately stop spraying, and does so if appropriate. It uses a simple if statement to compare the 
received character to the desired character’s decimal representation. It then immediately resets all of the 
spray flags, as rotation can’t be stopped mid process, and as well as sends the signal to the pump to stop 
spraying immediately. 

6: This section of code checks received data to see if it is the signal that means the system should 
immediately E-Stop, and does so if appropriate. It uses a simple if statement to compare the received 
character to the desired character’s decimal representation. It then immediately resets all of the spray 
flags, as rotation can’t be stopped mid process, and as well as sends the signal to the pump to stop 
spraying immediately. In addition, it also sets the Estop flag to high, to disable the system. 

7: This section of code sets the time of last spray signal received, as well as setting the spray flag to high. 
It is called when the spray signal is transmitted. It first sets the spraying flag to high, and then stores the 
current time in milliseconds for comparison to control the system spray timeout. 

8: This section of code sprays if the flag is set, and the estop is not triggered, and the time of last signal 
was recent enough. It checks for the proper set of flags and timing and then transmits if they are all 
correct. 

9: This section of code stops the spraying if the last spray command was not recent enough. If the time 
was too long ago, the system transmits a stop command to the pump to cease spraying. 
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10: This section of code is called each time to check if the most recent spray command occurred recently 
enough to keep spraying. If the time was set recently enough, the system transmits the correct spray 
command to the system, rather than the stop command. 

The temperature sensors were read using a set of Arduino libraries provided by Dallas Temperature. 
These libraries read in the temperature sensors one at a time by memory address, returning the 
temperature in degrees celcius, or -127.00 if the sensor was read incorrectly. The transmission of this data 
is handled between lines 141 and 208 within the code. To transmit to the GUI, the temperature sensors 
were padded into a string with each temperature string being 7 characters long. This padding occurs 
between lines 192 and 201 within the Arduino code. For example, a set of 20 degree sensors would read 
as follows during transmission. 0020.000020.000020.000020.00 

As the final chosen method for communication was to use a pair of transceivers to communicate the data, 
a method for actually formatting the data between the two systems needed to be tetermine. As such, it was 
decided that when transmitting data from the system to the groundstation, it was to be transmitted as plain 
text. When the control commands were transmitted from the groundstation to the subsystem, a set of 
lowercase characters were used to represent the commands. During transmission, the messages are 
formatted and interpreted as decimal ASCII strings. The If a command is missed, than it will likely be 
retransmitted shortly due to repeated transmission. If a command were to be received in error, the system 
would treat it as any other command received. During testing of the xbees, there was no error in 
communication between the systems, however, this testing was never performed at what would be 
considered long range for the XBees. The XBees transmit the data using a standard serial data flow, with 
no additional protocols added by the team in addition to the Xbee default. These commands are detailed 
as follows. A is spray, and needs to be continually received to keep spraying with a three second timeout. 
B stops the spraying as soon as it is received. Next, a received W rotates the servo to the upper position 
and an S rotated it to the lower position. Finally, receiving an H immediately triggers the emergency stop 
for the system, disabling everything until the system is reset. This overall command structure is detailed 
in Figure 36 below. 

 
Figure 34 Command Link Structure 

Flame Distance Sensor Integration 
For efficiency, we want to be spraying our fire suppressant when we are in range of the fire for maximum 
effectiveness of our limited payload. For safety, we want to be operating at a position far enough away 
from fire where we can hold that position indefinitely. To acquire this data, the integration of a few 
sensors and systems is needed. As previously discussed in the Fire Heat Dissipation Section, the distance 
from the fire can be accomplished by knowing the height of the drone and the angle of which we are 
aimed at the fire. 
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To acquire the angle of our spraying appendage, we keep track of the position of the servo controlling the 
position of the appendage. The camera is also connected in parallel with the spraying appendage so that 
when the fire appears on our camera feed we know we are at the correct angle for determining the 
distance from the flame. The height of the drone is calculated and processed in the Pixhawk, our onboard 
flight controller for the drone. The Pixhawk uses a barometer and GPS signal to calculate the altitude of 
the drone relative to its takeoff position from the ground. This information, along with all pertinent data 
from the Pixhawk, is sent over telemetry to the ground station via mavlink messages. For our flame 
distance calculations, we will intercept a mavlink message containing the data of altitude and process it in 
real time with our onboard Arduino Uno microcontroller. The previous equation will then be applied 
using this altitude data from the Pixhawk and the position of the servo controlling the spraying 
appendage. 

 A mavlink message is a variable length series of encoded bytes relaying important data and commands to 
and from the flight controller to the ground control. A representation of the Mavlink message and the 
bytes that make up the message is shown in Figure 373 below 

 
Figure 37: Mavlink Message Diagram 

The order of bytes from Most Significant Byte (MSB) to Least Significant Byte (LSB) is as follows: 6 
header bytes, the variable length payload bytes, and a 2-byte checksum. The 6 header bytes contain in 
order: a constant first byte of HxFE, byte STX, denoting the start of the message and is also related to the 
max size of a payload. The second byte, LEN, denotes the size of the payload of the message. The third 
byte, SEQ, is the sequence number of the message. The fourth and fifth bytes are the system, SYS, and 
component ID, COMP, respectively, and the sixth byte, MSG, is the message header. The next several 
bytes are the variable length payload. The size and contents of this payload depends on the specific 
message, which is described by the message header. The last two bytes of a mavlink message are the 
checksum, CKA and CKB, which does error calculations and accuracy validation of the mavlink message 
itself. To obtain the altitude data from the Pixhawk, we must connect one of the telemetry ports of the 
Pixhawk to the serial read of the Arduino. Then as we start streaming in mavlink messages we must check 
their message ID to see if they are the right message containing the altitude data. When the correct 
message has been found, we must then splice the bytes containing the altitude data, convert the bits to the 
actual height, and then store the value. With this value being constantly stored and updated as well as the 
position of the servo, we can apply the appropriate formula and obtain the approximate position of our 
drone from the fire. 
																																																													
3 Image citation.  Qgroundcontrol, “Mavlink Packet” http://qgroundcontrol.org/_media/mavlink/mavlink-
packet.png?cache= 
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When implementing this feature, issues were encountered that kept mavlink messages from giving us the 
altitude of the drone. First, when utilizing Arduino mavlink libraries to aid in extracting the altitude data, 
the library would use up all of the RAM of the Arduino Uno creating a run time error. As the Arduino 
Uno has no feature for displaying how much RAM is being used, this was a difficult issue to identify. To 
cut down on the total amount of RAM the mavlink library was using, we changed the number of 
communication buffers used in the library from four to one. However, this still did not let us display the 
altitude properly. 

Furthermore, we attempted to implement our own algorithm for decoding the altitude through a mavlink 
message. The algorithm would detect the STX bit and if the message header byte, MSG, was the 
appropriate message containing altitude then the variable payload would be stored with the size of the 
stored array being determined by the LEN byte. We could then convert the bytes of data corresponding to 
the altitude in the payload to decimal integers to get our altitude in meters. However, we were never able 
to implement this algorithm as when completing initial testing the only message being received was the 
device’s heartbeat message. The heartbeat message is the message that determines whether the device is 
connected.  

When this algorithm did not work, we attempted to use the external GPS module for altitude detection. 
The GPS module uses NMEA 0183 protocol to send the GPS information. This information is stored in 
comma-separated values, called sentences, which include relevant GPS information such as longitude, 
latitude, and altitude. The plan was to intercept this information using the NMEA 0183 protocol for 
decoding the sentence containing altitude and then extract the altitude data, but due to time constraints, 
this could not be implemented. 
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5.0 Results 
All different systems of the drone system proved to be operational for the intended purpose of the project. 
Considering the project is meant to be a proof of concept, the team was able to address our goals of 
making a modular remote controlled fire containment system that was able to be placed on a drone.  

The full integration of the deployment system to the drone was never fully tested due to damages 
sustained by the drone. Previous test flights of the drone caused the drone to need repairs, leaving little 
time to test our deployment system. However, the team was able to fully assemble our system and attach 
the system to the drone. Once the system was fully assembled, it weighed a total of 4.25 lbs without any 
FireIce in the container. Even with 2 quarts of water, the total weight would only be about 8.25lbs, only 
75% of the maximum payload of the S1000. 

5.1 Deployment System 

Diaphragm Pump 

The diaphragm pump that we chose for the project worked better than expected. The basic specifications 
of the pump met our requirements, but we had to test how well the pump would work with the FireIce. As 
discussed in detail in Appendix D, the testing proved that the pump would be able to spray the FireIce 
19ft compared to the 12ft that we needed. 

The max current draw based on the specifications was 5A, but after testing the pump only drew at most 
3.8A, well below the max current draw. Since the pump was not drawing near the maximum power, the 
drone would be able to stay in the air longer.   

There was some concern that the vibrations from the pump would disrupt the drone while it was in the air. 
After testing the system, however, the vibration was so small that there is little chance that it affects the 
drone at all. 

Since the FireIce is a gel, FireIce has less leaking compared to the water that was used during testing. A 
feature that we did not try to implement, but ended up working in the system was a preload for the 
system. The pumps takes about 1s to load the system, but once tubes have been loaded, the FireIce stays 
in the tubes and will spray as soon as the pump is run. 

Nozzle Adapter 

Initially, the nozzle adapter was supposed to slide onto the nozzle to prevent leakage and pressure loss. 
This design, however, was abandoned when the 3D printing material proved too rigid to allow the nozzle 
to fit into the adapter without falling out. The complex ridges of the nozzle caused problems when trying 
to fit the nozzle into the adapter. This problem led to the two-piece design discussed in 4.0 Final Design. 
The two-piece design did not add any more leakage to the system once the adapter was fitted into the 
nozzle housing. The only issue with the two-piece design was that the pieces have to be glued together so 
the nozzle is not accessible without destroying the adapter. 

Nozzle Housing 

The nozzle housing had to be redesigned when the nozzle adapter was redesigned, but the redesign 
decreased leakage from the nozzle and mitigated the chances of the nozzle adapter falling out of the 
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nozzle housing. To reduce leakage, the nozzle housing was tightly fitted around the nozzle adapter so the 
walls of the housing kept the sides of the adapter together. The walls that held the nozzle adapter together 
were also tapered so that as the nozzle sprayed the reaction force would push the nozzle adapter into the 
housing. When the L-Brackets were redesigned and the gears removed we did not have time to redesign 
the housing to not require the gear, since the gear is one of the points that the axle mounts to. The axle has 
negligible slip on the housing when the axle is run through the whole housing since there are mounting 
points on both sides of the housing.  

L-Brackets 

The system that we designed for spraying FireIce went through many design iterations. The final design 
was more efficient than we expected, but the total rotation of the nozzle was smaller than we had initially 
anticipated. Rather than having a rotation of 0° to 90° the actual rotation was closer to 10° to 80° The 
decision to 3D print the brackets for the nozzle housing support was due to the weight and quality of the 
brackets made from the ABS Plastic. The placement of the holes was better from the 3D printed part. The 
whole placement was an issue with the hand-manufactured part because of human error and once the 
design was slightly reworked for 3D printing, the 3D printed version worked better. 

Part of the redesign of the L-Brackets was removing the mounting holes and gears from the brackets. The 
gears were initially included in case the servo motor was not able rotate the nozzle housing; however, 
once the system was tested with 1:1 gear ratio the servo was able to rotate the nozzle housing. Removing 
the gearing aspect of the L-Brackets decreased the weight and complexity of the part making the bracket 
more functional. 

FireIce Tubing 

The tubing that we used to run between the diaphragm pump, the tank, and the nozzle was Flexible PVC 
tubing. The tubing worked well for initial testing of the system and had no problems handling the 
pressures from the diaphragm pump. The tubing did restrict the motion of the nozzle housing more than 
expected down to 10° to 80°, as mentioned before. The tubing started to bulge slightly once FireIce was 
run through the tubing; however, the tubing did not leak or break during testing. 

After testing, the tubing was cut much shorter to allow for a more compact system and after many 
rotations of the nozzle housing the tube started hardening. The hardening of the tubing prevented the 
nozzle housing from rotating almost entirely. Overall, the tubing successfully fulfilled the requirements 
even with the drawbacks. 

5.2 PCB Design 

The PCB for the project proved to work as expected. The intent of the board was to fulfill the following 
criteria: 

● Provide a reliable 12V line for the Pump system 
● Provide a reliable 5V line for the Arduino, XBee, and Temperature Sensor Network 
● Contain a sturdy mount for the Arduino and XBee 
● Contain a switching circuit to turn on and off the Pump system 
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Considering that there had to be minor modifications to the PCB, the board overall was able to satisfy 
each of the above criteria. 

Each of the individual circuit sections of the PCB proved to work reliably. The 12V buck converter circuit 
successfully provided a steady 12.2V at 5A. This proved to be sufficient for the pump system even when 
pumping FireIce as it drew roughly 3.8A. The 5V Pololu Buck Converter also worked as intended, 
providing sufficient power to the Arduino, XBee, and temperature sensors. The MOSFET switching 
circuit was able to successfully switch on and off the pump system with a control signal from the 
Arduino.  

When developing the PCB there were many roadblocks. Many of the issues stemmed from the lack of 
experience in designing a PCB. There was significant research and work done learning the Ultiboard 
software to develop the PCB. There were some minor mistakes made when choosing through hole sizes 
for certain components as well as choosing the appropriate settings for solder masks on components. 
There were unforeseen roadblocks like the onboard connection of the 5V Buck converter. Since it was 
connected on the board using standard 0.1in header pins, the converter sat higher on the board then 
expected, compromising the rigidity of how it was mounted.  

There were also some issues with properly using the XBee.  The top pins on the XBee shields include a 
voltage regulator to step the input voltage down from the 5V in to the 3.3V used by the XBee while the 
pins on the bottom of the shield do not. As a result, if 5V is applied directly to the bottom of the shield, 
the voltage will damage both the shield and the XBee, requiring both to be replaced. We were initially 
unaware of this and burnt out two XBees in the process. As such, in a future redesign, in order to remove 
this danger, the PCB should include a linear voltage regulator between each of the breakout pins for the 
XBee and the ports where the shield plugs into the board. 

5.3 System GUI 

As a whole, the GUI functioned fully for all system testing. The largest problem still present in the code is 
it takes time to cycle through the code, and therefore occasionally takes additional time to respond to 
button presses. Other than this, the final GUI did not have any noticeable problems. As of now, all 
attempts to determine exactly what was causing this issue, as well as any attempts to fix the problem have 
been unsuccessful. To attempt to fix this problem, the transmission rate of the GUI was slowed down, as 
an attempt to reduce how often the GUI blocked, however this effort was unsuccessful. The likely next 
best method to attempt to repair this problem would be to rewrite the GUI to use multiple threads running 
in parallel for running the GUI and handling communication separately. 

While developing the GUI, the initial method of implementation was to use a program called Python GUI 
builder, or PyGuBu, which allows the user to drag and drop GUI features and generates the code to run 
the GUI. The code that was generated by PyGuBu worked to run the GUI, however, the GUI had a bug 
where closing the GUI did not stop the program. The code was then rewritten from scratch without 
PyGuBu, which resolved this problem. The final code for the GUI is detailed in Appendix F. The GUI is 
layed out in the form of a root window, which contains two frames, one for all of the buttons and 
temperature information, and one that just contains the alert light box for displaying the warning light. 
From there, an image is created for each of the picture based buttons, specifically the emergency stop, and 
the alert light. Then, seven buttons are placed in the main frame of the GUI, one for each button, and the 
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relevant functions were bound to them. The Estop button also had the Estop image attached to it. After the 
buttons were created in the main frame, a button was added to the alert frame. This button has no 
functions attached to it, but it does have the safe temperature image added to it initially. After all the 
buttons are created, a set of four labels are placed below the control buttons. These labels are used for the 
display of the temperature sensor data.  

 

The next problem the code encountered during development was the code written for the drone expects 
regularly received transmissions to continue spraying. With the onClick listeners that were initially 
used for implementation, the listener would transmit once when the button was pressed, rather than 
running continuously. This problem was fixed by creating a pair of triggers, one for when the mouse was 
pressed above the button, and one for when the mouse was released. The on-press trigger set a flag to on, 
and then the release trigger turned the flag off. A continuously running function watched this flag, and 
transmitted the required symbols via the XBee while the flag was on. The following code shows the 
binding of the on and off triggers to the button. 

 
self.spray_down_button = ttk.Button(self.mainframe, text="Spray and rotate down", 
command=self.on_spray_down_button_clicked, width=60)  # create button to spray and rotate down 
self.spray_down_button.grid(column=2, row=2) 
self.spray_down_button.bind('<ButtonPress-1>',self.spray_move_down)  # bind function to start spraying and move servo down 
self.spray_down_button.bind('<ButtonRelease-1>',self.stop_spraying)  # bind function to stop spraying 

This next section of code shows the functions that are bound to the button press and release. 

def spray_move_down(self, event): 
    if self.e_stop_flag == 0: 
        self.servoFlag = -1 
        self.spray_flag = 1 
def stop_spraying(self, event): 
    # print("stop called") 
    self.spray_flag = 0 
    self.servoFlag = 0 
     
Finally, the following section of code shows the function that checks these flags regularly and transmits 
as needed.  

def should_send_spray(self):  # A function which is called regularly in order to make 
sure that the servo receives 
    # its move commands and the pump regularly receives spray commands while one of 
the spray commands is held 
    if self.spray_flag == 1:  # if spray held, send spray command by serial 
        # print("here") 
        self.ser.write(b'a') 
 
    if self.servoFlag == 1: 
        self.ser.write(b'w') 
    elif self.servoFlag == -1: 
        self.ser.write(b's') 
 
    self.root.after(200, self.should_send_spray)  # this function again after 200 
milliseconds 

There are 6 total functions that are used in various combinations to handle the different modes of buttons. 
The after call in the should_send_spray function causes the function to be called every 200 milliseconds. 
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The button binding and the functions bound to the buttons control which flags are set to what values in 
order to send the correct signals to the Arduino.  

The next issue that came up was portability of the program. When initially written, the images used for 
the temperature warnings were referred to by their absolute path on the hard drive, rather than the path 
relative to the program. The other part affecting the portability was the path of the XBee when plugged 
into a computer. On a computer running Windows 10, the XBee’s path would appear as COM3, and on a 
computer running Mac OSX, the XBee would appear as /dev/cu.usbserial-A603UFHF. Initially, the 
XBee’s path was hard coded into the GUI code, however, this was later updated to use the absolute path 
of /dev/cu.usbserial-A603UFHF if that path appeared in the list of available communication ports, and to 
use the first available communication port if it appeared with a different name. The serial initialization is 
done using the following section of code: 

ports = list(serial.tools.list_ports.comports()) 
for p in ports: #loop through all ports looking for /dev/cu.usbserial-A603UFHF 
    if(p[0] == '/dev/cu.usbserial-A603UFHF'): 
        self.portflag = 1 
    print(p) 
if self.portflag == 0: 
    self.ser = serial.Serial(str(ports[0][0]), 9600)  # initialize the serial 
communication 
else: 
    self.ser = serial.Serial('/dev/cu.usbserial-A603UFHF', 9600)  # initialize the 
serial communication 
 

The code starts by finding a list of all of the COM ports visible on the system. Next the program loops 
through the list of ports and checks each item to see if it includes the true device path of /dev/cu.usbserial-
A603UFHF. If it finds the exact path, it sets a flag to 1, so that the program knows the absolute path has 
been found. Then, if the portflag was not set, it initializes the serial communication to the first 
communication device in the list of available devices. If it were set to 1, then the code initializes the 
communication using the true path that the code knows is available. 

5.4 Subsystem Control 

The code running on the Arduino receiving the control sent by the GUI, and interpreting that data into 
system commands worked without incident. All data received was processed and interpreted into controls. 
The spray timeout worked successfully, though needed to be set at three seconds, rather than the desired 
one second, due to an issue with transmission blocking between the XBees causing occasional one and a 
half to two second delays in transmission of only spray commands. The other commands appeared to 
process through to the Arduino as soon as they were sent. 

5.5 Sensor Array 

The temperature-sensing array worked well to provide accurate and reliable data in a timely manner. The 
DS18S20 temperature sensors used streamed data at a rate of one reading per second to the Arduino using 
a one-wire interface. This allowed us to simultaneously read the temperature of all of the sensors at the 
same time. By using the unique memory address of each sensor, we were able to tell which temperature 
sensors were experiencing changes. This would allow the user to know which areas were experiencing 
more heat and adjust accordingly. Additionally, code was implemented to signal a warning to the user if 
the temperature sensor read a temperature exceeding 35°C, as the electronics of our system will start 
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failing at 40°C. There was an issue where two of the temperature sensors stopped working properly for 
unknown reasons, but this issue was not replicated when replaced with new temperature sensors. 

For determining the distance from the fire, the sensor integration required for this task did not function 
correctly. The major issue encountered was extracting the altitude data from the Pixhawk. There were 
issues with using an Arduino Mavlink library on the Arduino Uno because of memory limitations. Using 
the library would use up all of the RAM memory on the Arduino Uno and cause a runtime error. This 
would prevent the needed data from streaming. Attempts to limit the memory requirements of the library 
by reducing the number of communication buffers were met with little success as the only message being 
properly received was the heartbeat message. This issue of memory limitation could be easily countered 
by using a microcontroller with greater RAM, such as an Arduino Mega, a Rasberry Pi, or another 
microcontroller with RAM greater than the Uno’s 2kB of RAM.  

Implementing the necessary decoding algorithm for mavlink messages was met with limited success as 
the mavlink messages being broadcasted weren’t fully being received over serial to the Arduino Uno. 
Again, only the heartbeat message was received. Further research into using mavlink communication 
could yield the reason as to why only the heartbeat message was received. From observation, it could be 
that a particular start data streaming message is meant to be sent to the Pixhawk to enable it to send the 
necessary mavlink messages over the telemetry port used by the Arduino.  

When mavlink communication did not work for us, we attempted to use the external GPS module 
provided with the Pixhawk to determine the altitude data.  The messages sent by the GPS module used the 
NMEA 0183 protocol. However, due to time constraints using the GPS module for extracting the altitude 
information was never implemented. Further research and testing with the GPS module could provide the 
needed altitude data. 

While we were able to keep track of our servo position necessary for determining our angle of the nozzle, 
without also knowing the height of the drone we were not able to calculate the distance from the fire. 
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6.0 Conclusions 
The goal of this project was to develop a prototype of a modular fire suppression system. Based on the 
tests that the team ran on the system with small-scale fires the system works as intended. As with any 
project, there were design choices that were change during implementation, but all of these changes lead 
to the final design that was able to extinguish a small fire and was able to attach to the drone. 

Mechanically, the system was assembled with the knowledge that this was an exploratory project so not 
every part was manufactured with small tolerances. When assembling the system every part was mounted, 
but not always where might be an optimal placement since this iteration of the project was intended as a 
proof of concept. 

Electrically, the PCB has all the needed components to run the system unless significantly different 
sensors or features are added. However, the PCB was not designed with space efficiency as apriority, 
rather the functionality was more important. Some of the circuitry of the PCB also had to be changed after 
the PCB was printed so if the board is going to be used again the board could be reprinted with these 
changes in mind. 

As for the software side of the project, the main goal was to support the electrical and mechanical aspects 
of the system and give the user a way to control our system. The software successfully implemented 
control of the mechanical system and reading of the sensors. As with almost all software there is much 
room for improvement, there are always new features that can be added to the system through software. 

As a group, we compiled different ideas on how to improve the project to make the capabilities of a 
firefighting drone more favorable. The recommendations can be separated into improving the already 
implemented system and future reach goals.  

The following is a table of the requirements we set forth at the beginning of the Requirements and Initial 
Design section: 

Requirement Result 

Drone System DJI S1000 chosen 

Effective fire extinguishing agent FireIce chosen, highly effective 
fighting fire and providing a path 
of egress 

Modular System System is complete detachable 

Sensor Signal Processing Arduino used and successfully 
implemented 

Easily add FireIce to container System container has cap for 
easy access to FireIce 

Ground Station for System 
communication 

Telemetry data transmission, 
video transmission, sensor read 
outs, and control of the system all 
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through the use of a GUI 

Video feed system Tested successfully, but never 
mounted onto the system 

Heat protection for the drone Research completed, but no heat 
shielding installed on drone 

Container for FireIce COTS container chosen holds 
2quarts of liquid 

Get the FireIce from the drone to 
the base of the fire 

Diaphragm pump to pressurize 
the system 

Nozzle needs to spray at least 
12ft 

0° pressure washing nozzle 
chosen, which sprays 19ft 
 

Painting motion for nozzle Nozzle housing designed and 
rotated by a high powered servo 
motor 

Power from battery needs to also 
provide 12V and 5V 

PCB designed that provides 12V 
and 5V 

Paralax solution Research complete, but since the 
camera was never implemented 
the angular solution was never 
implemented 

Temperature Sensing  Temperature sensor array created 
and tested successfully 

Table 8: Requirements and Results 
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7.0 Recommendations for Future Projects 

7.1 Mechanical 

1. Develop a complete and accurate model of the drone in Solidworks. We used an almost accurate 
model, however, the model does not include every part on the drone, and we did not entirely 
verify as accurate. The fire extinguishing system has a Solidworks model that is up to date with 
the current state of the system. The model that we used also was missing all of the mates with in 
the system. 

2. Adding temperature shielding to the drone in key areas would be necessary before any large scale 
testing. We mentioned this in the System requirements section of the paper, however, due to time 
restrictions we were never able to implement this on to the drone. 

3. The tubing on the drone is another area that could use further work. The tubing that we used was 
acceptable, but caused restrictions and required careful routing. Future teams should research a 
replacement for the tubing on the system. This would allow for more rotation and hopefully more 
efficient tubing paths. 

4. The FireIce container also has a couple of aspects that needs further design. First, to decrease the 
amount of FireIce left in the container after the nozzle cannot spray anymore, the container 
should be angled so that the FireIce is directed towards the tubes. Future teams could also 
redesign the general mounting of the tank so that the tank is balanced better with the rest of the 
drone to reduce the strain on the rear motors. 

5. The spraying system could also benefit from further design. To increase the efficiency even 
further, future teams could add another degree of rotation to allow for even more coverage from a 
stationary drone. The nozzle housing would be more consistent if there was some metal coating 
around the axle connection points to prevent the 3D printed plastic from deforming. 

6. The spray pattern of the nozzle would be another area that requires further testing. The team had 
discussed the idea of testing spray pattern to be able to determine the most effective nozzle not 
just in distance but also firefighting capability. Testing would be good for every part of the 
system so that there are numbers to back up the fact that the system works. 

7. Another long-term transition for the project would be to transition to a diesel powered drone of 
the same scale or larger. Diesel powered drones have a significantly higher flight time compared 
to that of battery powered drones. They are also able to handle heavier payloads, which in turn 
will allow the drone to contain more fire retardant. Companies like Top Flight already implement 
diesel-powered drones for agricultural spraying purposes. 

7.2 Electrical 

1. For the logic control of the system, it would be beneficial to transition away from the Arduino to 
a dedicated microprocessor chip. For the project, we ran into issues with the limitations of the 
Arduino, specifically memory. Having a dedicated microprocessor would allow us to run the 
different portions of the system more effectively. 
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2. The team discussed, but was not able to implement a thermal camera to the system to increase the 
fire locating power of the drone. This would allow the drone to rise to a high vantage point and 
locate fires, possibly even before first responders. 

3. Having a way to determine how full the tank is would be another great addition to the project. 
Developing a sensor system that could detect the current level of FireIce would be a great 
addition to the project. This would allow the user to better manage their suppressant and allocate 
it to accordingly. 

7.3 Software 

1. As the flame distance integration of the project was not completed, it is recommended to continue 
the process of determining the altitude data from the Pixhawk using Mavlink messages. 
Alternatively, developing an accurate flame distance sensor would accomplish this goal and have 
further applications in fire protection beyond this project. 

2. With the capabilities of the S1000 drone and the Pixhawk flight controller, integrating 
autonomous functionality would greatly enhance the capabilities of the project. Using the current 
system, we could use GPS localization to set waypoints to desired locations. This would be key 
for reaching a fire. 

3. Future reach goals of the project delve into recent advancements in drone technology. 
Incorporating swarm robotics, for instance, would be a unique approach to tackle large-scale 
fires. Considering that the amount of fire retardant that is able to be held by our current system is 
only sufficient for small scale fires, multiple drones could combat larger fires.  

4. Implementing a heads up display on the video feedback screen of the drone camera would be 
another great addition to this project. Potentially, the heads up display could accurately show 
where the spray would land on the screen by using information such as the drone’s height, 
velocity, and wind speed. 
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Appendix A 

Decision Making Process

 

 
 
The first phase of selection is the top portion of the decision matrix, with all considered fire suppression 
systems. The Bottom 4 rows contain the second phase ranked decision matrix of the top three choices 
selected from the first phase.  
  

Figure 38: Decision Matrix for Fire Suppression System Selection	
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Appendix B 
 

Distance to fire Angle to tilt camera 
and spray 

1 9.594068 

2 4.780192 

3 3.184739 

4 2.388015 

5 1.910213 

6 1.591754 

7 1.364314 

8 1.193748 

9 1.061094 

10 0.954974 

11 0.868151 

12 0.7958 

13 0.734581 

14 0.682109 

15 0.636633 

16 0.596842 

17 0.561732 

18 0.530524 

19 0.502601 

20 0.47747 

21 0.454733 

22 0.434063 

23 0.41519 

24 0.397891 

25 0.381975 

26 0.367283 

27 0.35368 

28 0.341048 

29 0.329288 

30 0.318312 

31 0.308043 

32 0.298417 

33 0.289374 

34 0.280863 

Table 9: Parallax Data
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Appendix C 

	

Figure 39: System Block Diagram 
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Appendix D 
To determine the best nozzle for our application we ran tests on 
many different nozzles until we found the one that met all our 
criteria. The first test determined the spray distance of each 
nozzle using water. As seen in Figure 40, we measured 2ft off 
the ground, held the nozzle parallel with the ground and pumped 
water through the nozzle, and recorded how far it went.  

We tested seven different nozzles: power washing nozzles of 0°, 15°, 25°, and 40°; a variable angle 
nozzle; and a nozzle for a fire extinguisher. The larger the angle on the power washing nozzles the less 
range the nozzles had, as seen in Table 10 at the end of this section. The best results were from the 0° and 
the second 15° nozzle for water with ranges of 12ft-15ft and 14ft-15ft respectively; the rest of the results 
can be seen in Table 10. 

The distance covered by the nozzle spray was a range due to inconsistencies when spraying. There were 
outside factors like wind that contributed to the varied results of the nozzle testing. The worst nozzles that 
we tested were the 25° and 40° nozzles. They both reached a much smaller range than the other nozzles 
and the spray pattern began to degrade, creating a mist, towards the end of the stream.  

For the next test, we ran the FireIce solution through our system. Because of the increased viscosity of 
FireIce, the distance of the spray increased compared to testing with water. The increase in distance can 
be attributed to an increase in the pressure in the tubing system. Using FireIce instead of water also 
helped the spray to stay consistent allowing us to take more accurate measurements.  

We also measured the amperage that the pump drew while pumping the FireIce. We deduced that the 
increase in viscosity would cause a significant increase in amperage draw. The amperage draw did 
increase, but it did not reach the max current draw for the pump. For this test we only tested the nozzles 
that met our minimum requirements of 12ft when spraying with water, which were the power washing 0°, 
15°, and the Fire Extinguisher nozzle.  

The 0° nozzle provided the farthest range with a distance of 19ft. The Fire Extinguisher nozzle decreases 
in the distance the nozzle can spray when FireIce was run through the nozzle. Since the Fire Extinguisher 
nozzle had a larger outlet hole the increase in viscosity caused more internal friction when spraying. 
However, the larger outlet hole did not allow the pressure to build up more than before.  

For the final design we decided to use the 0° nozzle because of its greater range compared to the other 
tested nozzles. The design of the nozzle also allowed us to remove the plastic casing and design our own 
housing for the nozzle to attach it to our system, this will be talked about further in the following section. 

 

 

 

 

 

Figure 35: Nozzle Testing 



Fire	Containment	Drone	-	74	
	

Nozzle Distance [Water] (ft) Distance [FireIce] (ft) Amperage (A) 
0° 12 - 15 19 3.6 

15° 13-14 13 3.7 
25° 4 N/A N/A 
40° 3 N/A N/A 

Open 
(Variable) 8.5 - 9 N/A N/A 

Closed 
(Variable) 8 - 9 N/A N/A 

15° 
(Fire Extinguisher) 14 - 15 10.5 2.8 

Table 10: Nozzle Testing 
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Appendix E 
Epic story 
I am a firefighter tasked with fighting a fire on a boat. I want to use a drone to fly fire suppression 
chemicals up to the boat and tactically spray them onto the fire to ensure maximum preservation of life. 
User stories. 
I am a firefighter who wants to manually fly the drone for optimum positioning. 
 
I am a firefighter who wants to give the drone a path to fly for specified positioning. 
 
I am a firefighter who wants the drone to hold its position exactly after I have maneuvered it into position. 
 
I am a firefighter who wants to know if the drone is getting too low on battery to be able to safely return 
and land. 
 
I am a firefighter who wants to know if the location of the drone is too close to the fire to be able to 
operate safely. 
 
I am a firefighter who wants to be able to spray the fire suppressant by pressing a button. 
 
I am a firefighter who wants to be able to rotate the nozzle to paint with the fire suppressant. 
 
I am a firefighter who wants to be able to rotate the nozzle while the fire suppressant is being sprayed. 
 
I am a firefighter who wants to be able to press a button to immediately stop spraying. 
 
I am a firefighter who wants to be able to press a button to fully disable the suppressant subsystem until 
the drone lands, in case of severe malfunction of the subsystem. 
 
I am a firefighter who wants the control of the drone to be as reliable as possible to prevent potential 
malfunctions. 
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Appendix F 
__author__ = 'David' 
import sys 
import os 
import serial 
import time 
import re 
from PIL import Image as im 
from PIL import ImageTk 
import serial 
import serial.tools.list_ports 
 
# import the proper version of tkinter, this will make sure that the correct version 
for python three is imported, 
# because terrible library naming 
try: 
    import tkinter as tk 
    from tkinter import messagebox 
    from tkinter import * 
    from tkinter import ttk 
except: 
    import Tkinter as tk 
    import tkMessageBox as messagebox 
    from Tkinter import * 
    from tkinter import ttk 
 
 
class MQPGui: 
    def on_up_button_clicked(self): # define callback for up button 
        if(self.e_stop_flag==0): 
            # self.servoFlag = 1 
            self.ser.write(b'w') 
 
 
    def on_down_button_clicked(self): # define callback for down button 
        if(self.e_stop_flag==0): 
            # self.servoFlag = -1 
            self.ser.write(b's') 
 
 
    def on_spray_up_button_clicked(self): # define callback for spray up button 
        if(self.e_stop_flag==0): 
            #self.servoFlag = 1 
            self.ser.write(b'w') 
 
 
    def on_spray_down_button_clicked(self):# define callback for spray down button 
        if(self.e_stop_flag==0): 
            #self.servoFlag = -1 
            self.ser.write(b's') 
 
 
    def on_spray_button_clicked(self): # define callback for spray button 
        if(self.e_stop_flag==0): 
            quack = 0 
 
    def on_stop_button_clicked(self): # define callback for stop button 
        self.spray_flag = 0 
        #self.alertButton.config(image=self.photo3) 
        self.ser.write(b'b') 
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    def on_e_stop_button_clicked(self): # define callback for emergency stop button 
        self.spray_flag = 0 
        self.e_stop_flag = 1 
        self.ser.write(b'h') 
 
 
    def update_temp_sensors(self): #create function for continual updating of 
temperature sensors 
        if(self.spray_flag == 1): #make sure this function doesn't interfere with 
spraying by sending a spray command if spray is currently toggled on. 
            #print("here") 
            self.ser.write(b'a') 
        temps = [] # set up array to read temperature sensor data into. 
        temps.append(0) 
        temps.append(0) 
        temps.append(0) 
        temps.append(0) 
        # read in the temperatures 
        tempsTemp = str(self.ser.readline()) #read in first set of temperature data in 
buffer. 
        #remove non-decimal values from the temperatures 
        non_decimal = re.compile(r'[^-\d.]+') #create a regular expression to filter 
non-decimal or negative signs out of the received string 
        tempsTemp = non_decimal.sub('',tempsTemp) #Apply regular expression to string 
        #split the temperature string into its four separate sensors. 
        temps[0]=tempsTemp[0:7] 
        temps[1]=tempsTemp[7:14] 
        temps[2]=tempsTemp[14:21] 
        temps[3]=tempsTemp[21:28] 
        if(len(temps[0])>=7 and len(temps[1])>=7 and len(temps[2])>=7 and 
len(temps[3])>=7): #check to see if all of the values are long enough to be properly 
read. 
            if temps[0][6] == "-": #if the last digit of the any temp sensors is a 
negative sign, a shift occurred, so the negative needs to get moved down 
                temps[1] = "-" + temps[1] 
                temps[0]= temps[0][0:6]+"0" 
 
            if temps[1][6] == "-": 
                temps[2] = "-" + temps[2] 
                temps[1]= temps[1][0:6]+"0" 
            if temps[2][6] == "-": 
                temps[3] = "-" + temps[3] 
                temps[2]= temps[2][0:6]+"0" 
            # Clear any leading zeros or zeros that were accidentally converted to 8s. 
            if temps[0][0] ==  "0" or temps[0][0] == "8": 
                if temps[0][1] == "0"or temps[0][0] == "8": 
                    temps[0] = temps[0][2:] 
                else: 
                    temps[0] = temps[0][1:] 
            if temps[1][0] ==  "0"or temps[1][0] == "8": 
                if temps[1][1] == "0"or temps[1][1] == "8": 
                    temps[1] = temps[1][2:] 
                else: 
                    temps[1] = temps[1][1:] 
            if temps[2][0] ==  "0"or temps[2][0] == "8": 
                if temps[2][1] == "0"or temps[2][1] == "8": 
                    temps[2] = temps[2][2:] 
                else: 
                    temps[2] = temps[2][1:] 
            if temps[3][0] ==  "0"or temps[3][0] == "8": 
                if temps[3][1] == "0"or temps[3][1] == "8": 
                    temps[3] = temps[3][2:] 
                else: 



Fire	Containment	Drone	-	78	
	

                    temps[3] = temps[3][1:] 
 
            #reapply regular expression to string to make sure nothing slipped by. 
            temps[0] = non_decimal.sub('', temps[0]) 
            temps[1] = non_decimal.sub('', temps[1]) 
            temps[2] = non_decimal.sub('', temps[2]) 
            temps[3] = non_decimal.sub('', temps[3]) 
 
 
 
            i = 0 
            self.lastAlertOnFlag = self.alertOnFlag 
            self.alertOnFlag = 0 #clear the status of the alerts 
            if(self.spray_flag == 1):# continue to make sure this function doesn't 
interfere with spraying by sending a spray command if spray is currently toggled on. 
                #print("here") 
                self.ser.write(b'a') 
 
            for e in temps: #for each of the four temperature options 
                if float(e) <= -127.0: #-127.0 is only received if there is an error 
reading the temp sensor 
                    self.tempSenseLabels[i].config(text = "Error reading temperature 
sensor " + str(i+1)) #i+1 is the number of the temp sensor being investigated. 
                    if self.lastAlertOnFlag == 1: 
                        self.alertOnFlag = 1 
                elif float(e) >= 35.0: #27 degrees is the level set for the warning 
                    self.tempSenseLabels[i].config(text = "Temperature Sensor " + 
str(i+1) + " reads " + str(e)) 
                    self.alertOnFlag = 1 #set the flag for warning to true 
                else: 
                    self.tempSenseLabels[i].config(text = "Temperature Sensor " + 
str(i+1) + " reads " + str(e)) 
 
                i +=1 
            if(self.spray_flag == 1):# continue to make sure this function doesn't 
interfere with spraying by sending a spray command if spray is currently toggled on. 
                #print("here") 
                self.ser.write(b'a') 
            if self.alertOnFlag==1: #if any of the sensors triggered an alert, set the 
alert image to red, otherwise set it to green 
                self.alertButton.config(image=self.photo2) 
            else: 
                self.alertButton.config(image=self.photo3) 
 
        self.root.after(405, self.update_temp_sensors)  # run this function again in 
405ms 
 
    def start_spraying(self, event): 
        if self.e_stop_flag == 0: 
            self.spray_flag = 1 
 
    def stop_spraying(self, event): 
        # print("stop called") 
        self.spray_flag = 0 
        self.servoFlag = 0 
 
    def move_up(self, event): 
        if self.e_stop_flag == 0: 
            self.servoFlag = 1 
 
    def spray_move_up(self, event): 
        if self.e_stop_flag == 0: 
            self.servoFlag = 1 
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            self.spray_flag = 1 
 
    def move_down(self, event): 
        if self.e_stop_flag == 0: 
            self.servoFlag = -1 
 
    def spray_move_down(self, event): 
        if self.e_stop_flag == 0: 
            self.servoFlag = -1 
            self.spray_flag = 1 
 
    def should_send_spray(self):  # A function which is called regularly in order to 
make sure that the servo receives 
        # its move commands and the pump regularly receives spray commands while one 
of the spray commands is held 
        if self.spray_flag == 1:  # if spray held, send spray command by serial 
            # print("here") 
            self.ser.write(b'a') 
 
        if self.servoFlag == 1: 
            self.ser.write(b'w') 
        elif self.servoFlag == -1: 
            self.ser.write(b's') 
 
        self.root.after(200, self.should_send_spray)  # this function again after 200 
milliseconds 
 
    def __init__(self): 
        self.root = tk.Tk()  # Initialize the window 
 
        self.spray_flag = 0  # make sure to not spray immediately 
        self.e_stop_flag = 0  # make sure that the E-Stop doesn't start enabled. 
 
        self.root.title("Fire Suppression Drone Spray Control Interface")  # Set the 
title of the window 
        self.mainframe = ttk.Frame(self.root, padding="3 3 12 12")  # set up the frame 
for the left column of buttons 
        self.mainframe.grid(column=0, row=0, sticky=(N, W, E, S)) 
        self.mainframe.columnconfigure(0, weight=1) 
        self.mainframe.rowconfigure(0, weight=1) 
 
        self.alertframe = ttk.Frame(self.root, padding="3 3 12 12")  # set up the 
frame for the temperature alert image 
        self.alertframe.grid(column=2, row=0, sticky=(N, W, E, S)) 
        self.alertframe.columnconfigure(0, weight=1) 
        self.alertframe.rowconfigure(0, weight=1) 
 
        self.alertOnFlag = 0  # set initial flags to 0 
        self.lastAlertOnFlag = 0 
        self.servoFlag = 0 
        self.portflag = 0 
        ports = list(serial.tools.list_ports.comports()) 
        for p in ports: #loop through all ports looking for /dev/cu.usbserial-A603UFHF 
            if(p[0] == '/dev/cu.usbserial-A603UFHF'): 
                self.portflag = 1 
            print(p) 
        if self.portflag == 0: 
            self.ser = serial.Serial(str(ports[0][0]), 9600)  # initialize the serial 
communication 
        else: 
            self.ser = serial.Serial('/dev/cu.usbserial-A603UFHF', 9600)  # initialize 
the serial communication 
        image = im.open("Emergency_Stop.png")  # load E-Stop button image 
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        photo = ImageTk.PhotoImage(image) 
        label = Label(image=photo) 
        label.image = photo 
 
        image2 = im.open("redbox.png")  # load image for temp-too-high warning 
        self.photo2 = ImageTk.PhotoImage(image2) 
        labelalert = Label(image=self.photo2) 
        labelalert.image = photo 
 
        image3 = im.open("greenbox.png")  # load image for temp in normal range 
        self.photo3 = ImageTk.PhotoImage(image3) 
        labelalert2 = Label(image=self.photo3) 
        labelalert2.image = photo 
 
        self.spray_button = ttk.Button(self.mainframe, text="Spray", 
command=self.on_spray_button_clicked, width=60) # create button for spraying 
        self.spray_button.grid(column=2, row=0) 
        self.spray_button.bind('<ButtonPress-1>',self.start_spraying)  # bind function 
to start spraying 
        self.spray_button.bind('<ButtonRelease-1>',self.stop_spraying)  # bind 
function to stop spraying 
 
        self.spray_up_button = ttk.Button(self.mainframe, text="Spray and rotate up", 
command=self.on_spray_up_button_clicked, width=60) # create button to spray and rotate 
up 
        self.spray_up_button.grid(column=2, row=1) 
        self.spray_up_button.bind('<ButtonPress-1>',self.spray_move_up)  # bind 
function to start spraying and move servo up 
        self.spray_up_button.bind('<ButtonRelease-1>',self.stop_spraying)  # bind 
function to stop spraying 
 
        self.spray_down_button = ttk.Button(self.mainframe, text="Spray and rotate 
down", command=self.on_spray_down_button_clicked, width=60)  # create button to spray 
and rotate down 
        self.spray_down_button.grid(column=2, row=2) 
        self.spray_down_button.bind('<ButtonPress-1>',self.spray_move_down)  # bind 
function to start spraying and move servo down 
        self.spray_down_button.bind('<ButtonRelease-1>',self.stop_spraying)  # bind 
function to stop spraying 
 
        self.down_button = ttk.Button(self.mainframe, text="rotate down", 
command=self.on_down_button_clicked, width=60)  # create button to rotate down 
        self.down_button.grid(column=2, row=4) 
        self.down_button.bind('<ButtonPress-1>',self.move_down) #bind function to move 
servo down 
 
        self.up_button = ttk.Button(self.mainframe, text="rotate up", 
command=self.on_up_button_clicked, width=60) #create button to rotate up 
        self.up_button.grid(column=2, row=3) 
        self.up_button.bind('<ButtonPress-1>',self.move_up)  # bind function to move 
servo up 
 
        self.stop_button = ttk.Button(self.mainframe, text="stop spraying", 
command=self.on_stop_button_clicked, width=60)  # create button and bind function to 
immediately stop spraying on press 
        self.stop_button.grid(column=2, row=5) 
 
        self.e_stop_button = ttk.Button(self.mainframe, 
command=self.on_e_stop_button_clicked, width=60, image=photo)  # create button and 
bind functionality to immediately disable full subsystem until restart of subsystem 
and GUI 
        self.e_stop_button.grid(column=2, row=6) 
 



Fire	Containment	Drone	-	81	
	

        self.alertButton = ttk.Button(self.alertframe, width=60, image=self.photo3)  # 
create image for temp level warning image 
        self.alertButton.grid(column=2, row=6) 
 
        # create the labels for displaying the temperature sensor data 
        self.tempSenseLabels = [] 
        self.tempSenseLabels.append(0) 
        self.tempSenseLabels.append(0) 
        self.tempSenseLabels.append(0) 
        self.tempSenseLabels.append(0) 
        self.tempSenseLabels[0] = ttk.Label(self.mainframe, text="temp sensor 1") 
        self.tempSenseLabels[0].grid(column=2, row=7) 
        self.tempSenseLabels[1] = ttk.Label(self.mainframe, text="temp sensor 2") 
        self.tempSenseLabels[1].grid(column=2, row=8) 
        self.tempSenseLabels[2] = ttk.Label(self.mainframe, text="temp sensor 3") 
        self.tempSenseLabels[2].grid(column=2, row=9) 
        self.tempSenseLabels[3] = ttk.Label(self.mainframe, text="temp sensor 4") 
        self.tempSenseLabels[3].grid(column=2, row=10) 
 
        # start polled functions 
        self.root.after(100, self.should_send_spray) 
        self.root.after(150, self.update_temp_sensors) 
 
# initialize gui 
gui = MQPGui() 
 
# repeatedly loop gui to allow functions from button presses to be called. 
gui.root.mainloop() 
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Appendix G 
#include	<OneWire.h>	
#include	<DallasTemperature.h>	
#include	<SoftwareSerial.h>	
#include	<Servo.h>	
	
	
	
#define	ONE_WIRE_BUS_PIN	12	
//#define	WARNING_TEMP	30.00	//at	25C	for	testing.	change	to	higher	temp	for	drone	implementation	
	
//int	readTime	=	250;	//in	ms	
unsigned	long	lastRead	=	0;	
	
//	Setup	a	oneWire	instance	to	communicate	with	any	OneWire	devices	
OneWire	oneWire(ONE_WIRE_BUS_PIN);	
	
//	Pass	our	oneWire	reference	to	Dallas	Temperature.	
DallasTemperature	sensors(&oneWire);	
	
	
//	Assign	the	addresses	of	temp	sensors.	
DeviceAddress	Probe01	=	{	0x10,	0x4B,	0xEE,	0x07,	0x03,	0x08,	0x00,	0x1A	};	
DeviceAddress	Probe02	=	{	0x10,	0x14,	0xF3,	0x07,	0x03,	0x08,	0x00,	0x80	};	
DeviceAddress	Probe03	=	{	0x10,	0x71,	0x05,	0x08,	0x03,	0x08,	0x00,	0x08	};	
DeviceAddress	Probe04	=	{	0x10,	0xDA,	0xE1,	0x07,	0x03,	0x08,	0x00,	0xF3	};	
/*	new	addresses,	to	test	which	to	replace	
	*		0x10,	0xC3,	0xEA,	0x07,	0x03,	0x08,	0x00,	0x4E	
	*		0x10,	0xB6,	0xD5,	0x07,	0x03,	0x08,	0x00,	0xD6	
	
	*/	
	
	
int	sprayPin	=	13;						//	LED	connected	to	digital	pin	13	
Servo	rotServo;	
//set	up	variables	for	state	tracing	
int	flag	=	0;	
int	servoFlag	=	0;	
int	lastServoFlag	=	0;	
unsigned	long	timeOfLastA	=	0;	
unsigned	long	timeOfLastServoSignal	=	0;	
int	eStopFlag	=	0;	
//set	up	software	serial	connection	
SoftwareSerial	mySerial(10,	11);	//	RX,	TX	
char	readChar	=	0;	
void	setup()	{	
		//	Initialize	the	Temperature	measurement	library	
		sensors.begin();	
	
		//	set	the	resolution	to	10	bit	(Can	be	9	to	12	bits	..	lower	is	faster)	
		sensors.setResolution(Probe01,	9);	
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		sensors.setResolution(Probe02,	9);	
		sensors.setResolution(Probe03,	9);	
		sensors.setResolution(Probe04,	9);	
	
		//Attach	the	servo	for	spray	direction	and	set	it	to	starting	position.	
		rotServo.attach(8);	
		rotServo.write(0);	
		pinMode(sprayPin,	OUTPUT);			//	sets	the	pin	as	output	
		//	Open	serial	communications	and	wait	for	port	to	open:	
		Serial.begin(9600);	
		while	(!Serial)	{	
	
		}	
	
	
		//	set	the	data	rate	for	the	SoftwareSerial	port	
		mySerial.begin(9600);	
}	
	
void	loop()	{	//	run	over	and	over	
		delay(10);	
	
		if	(eStopFlag	==	0)	{	
				//Serial.println("here");	
				if	(mySerial.available())	{	
						readChar	=	mySerial.read();	
						//Serial.println(readChar);	
						if	(readChar	==	97)	{	
								flag	=		1;	
								timeOfLastA	=	millis();	
								//Serial.println(readChar);	
						}	
						else	if	(readChar	==	98)	{	
								flag	=	0;	
								timeOfLastA	=	0;	
								analogWrite(sprayPin,	0);	
								//Serial.println(readChar);	
						}	
						else	if	(readChar	==	104)	{	
								eStopFlag	=	1;	
								flag	=	0;	
								//Serial.println("ESTOP");	
								analogWrite(sprayPin,	0);	
						}	
						else	if	(readChar	==	119)	{	
								servoFlag	=	1;	
									
								//Serial.println(readChar);	
						}	
						else	if	(readChar	==	115)	{	
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								servoFlag	=	-1;	
								//Serial.println(readChar);	
						}	
				}	
				if	(flag	==	1	&&	eStopFlag	==	0)	{	
						if	((millis()	-	timeOfLastA)	<	3000)	{	
								analogWrite(sprayPin,	225);		//	analogRead	values	go	from	0	to	1023,	analogWrite	values	from	0	to	255	
						}	
						else	{	
								flag	=	0;	
								analogWrite(sprayPin,	0);	
						}	
	
	
						//else	Serial.println(readChar);	
						//Serial.println(mySerial.read());	
				}	
				if	(servoFlag	==	1)	{	
						rotServo.write(10);	
						servoFlag	=	0;	
						lastServoFlag	=	1;	
				}	
				else	if	(servoFlag	==	-1)	{	
						rotServo.write(80);	
						servoFlag	=	0;	
				}	
				else	if	(servoFlag	!=	0)	{	
						//Serial.println(servoFlag);	
				}	
				if	(Serial.available())	{	
						mySerial.println(Serial.read());	
				}	
		}	
		/*Serial.print("LastRead	=	");	
		Serial.print(lastRead);	
		Serial.print("	millis	=	");	
		Serial.print(millis());	
		Serial.println();*/	
		if	(	(millis()	-	1000	>=	lastRead)	&&	millis()	>	1000)	{	
	
				//Serial.println("here");	
				//	Command	all	devices	on	bus	to	read	temperature	
				lastRead	=	millis();	
				sensors.requestTemperatures();	//bring	this	back	
	
				//mySerial.print("Probe	01	temperature	is:			");	
				//Serial.println("temp	sensors");	
				printTemperature(Probe01);	//bring	this	back	
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				//mySerial.print("Probe	02	temperature	is:			");	
				printTemperature(Probe02);//	bring	this	back	
					
	
				//mySerial.print("Probe	03	temperature	is:			");	
				printTemperature(Probe03);	//bring	this	back	
					
	
				//mySerial.print("Probe	04	temperature	is:			");	
				printTemperature(Probe04);	//bring	this	back	
				mySerial.println();	
				//mySerial.println();	
		}	
		delay(10);	
}	
void	printTemperature(DeviceAddress	deviceAddress)	
{	
		float	tempC	=	sensors.getTempC(deviceAddress);	
	
		//if	(tempC	==	-127.00)	
		//{	
		//mySerial.print("Error	getting	temperature		");	
		//}	
		//else	if	(tempC	>=		WARNING_TEMP)	
		//{	
		//mySerial.print("WARNING");	
		//mySerial.println();	
	
		//mySerial.print("C:	%f	F:	%F",	tempC,	DallasTemperature::toFahrenheit(tempC));	
		//mySerial.print("C:	");	
		//mySerial.print(tempC);	
		//mySerial.print("	F:	");	
		//mySerial.print(DallasTemperature::toFahrenheit(tempC));	
		//mySerial.print(printString);	
		//}	
		//else	{	
		//String	printString	=	
		//mySerial.print("C:	%f	F:	%F",	tempC,	DallasTemperature::toFahrenheit(tempC));	
		//mySerial.print("C:	");	
		if(tempC>=0){	
				mySerial.print("0");	
		}	
		if(tempC>100){	
				mySerial.print("0");	
					
		}	
		if(tempC>10){	
				mySerial.print("0");	
		}	
		mySerial.print(tempC);	//bring	this	back	
		//Serial.println(tempC);	
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		//mySerial.print("	F:	");	
		//mySerial.print(DallasTemperature::toFahrenheit(tempC));	
		//mySerial.print(printString);	
		//}	
}	
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