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ABSTRACT 

 

 
 

 Although mutations in BRCA1 and 2 genes have previously been linked to breast 

cancer, mutations in genes encoding other proteins in the BRCA DNA repair pathway 

could also lead to this disease.  This MQP used a candidate gene screening approach to 

identify potential genetic changes in proteins previously shown to interact with BRCA1 

and/or BRCA2 in repair pathways.  PCR amplicons were analyzed by high resolution 

melting analysis (HRMA) as a preliminary screen for mutations in six candidate genes 

(Mre11, Rad50, MCPH1, NBS1, DSS1, and BCCIP) amplified from non-

BRCA1/BRCA2 breast cancer patient samples from BRCA-independent high-risk 

families.  Mutations in MCPH1 were further analyzed by DNA sequencing, which 

showed frameshift/nonsense mutations, missense mutations, silent substitutions, and 

intronic variants in 29 patients, 10 of which contained more than one mutation.  

Mutations in exon-2 of DSS1 include protein truncating and missense mutations in highly 

conserved domains.    
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BACKGROUND 

 

Breast Cancer Description 

Breast cancer is a malignancy that develops in tissues of the breast, usually in the 

ducts and lobules.  It occurs in a greater percentage in females, and rarely in males 

(National Cancer Institute, 2007).  Some of the first physically identifiable symptoms of 

breast cancer include a lump or swelling, skin dimpling, nipple pain, discharge, or 

retraction, redness, or scaliness of the nipple or breast skin (American Association for 

Cancer Research, 2007).   

Mammography is an effective and widely used diagnostic tool to detect changes 

in breast tissue that may indicate cancer. Other diagnostic methods used are digital 

mammography, magnetic resonance imaging, positron emission tomography, Sestamibi 

scintimammography, and ductal lavage (National Cancer Institute, 2007).  Family history 

of breast cancer is the greatest predictor of risk for developing the disease.  Other factors 

include age, previous history of breast cancer, history of chest radiation therapy before 

age 30, and existence of having dense breast tissue, particularly in older individuals. 

Women with a history of early onset of menses or late age menopause, women who have 

never had children or who have children after age 30, women who are obese after 

menopause, or who use menopausal hormone therapy with estrogen plus progestin are 

also considered to have increased risk for breast cancer (American Association for 

Cancer Research, 2007; National Cancer Institute, 2007).   
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Breast Cancer Prevalence 

 Breast cancer is the second leading cause of cancer deaths in American women 

(Friedenson, 2005).   In 1997, breast cancer claimed the lives of approximately 44,910 

Americans, with 43,900 women and 290 men losing their lives to the disease. 

Approximately two million women living in the U.S. have been diagnosed with breast 

cancer.  The National Cancer Institute (2007) predicts that in the United States in 2007, 

there will be 178,480 newly diagnosed cases of breast cancer in females, and 2,030 new 

cases in males. Over 40, 000 people will die from breast cancer in 2007 (40,460 females 

and 450 males) (National Cancer Institute, 2007). Mortality rates have, however, 

decreased an estimated two percent per year in the past decade, with greater decreases 

seen among young women (American Association for Cancer Research, 2007), possibly 

due to mammography screening, early diagnosis, and  improved management (adjuvant 

tamoxifen therapy) and treatment of women with breast cancer (Hermon and Beral, 

1996). 

 

Risk Reduction Options in Familial Breast Cancer 

Familial breast cancer is characterized by early onset diagnosis, an increased risk 

of bilateral breast cancer, an increasing risk with increasing numbers of affected family 

members, and increased risk for ovarian cancer. Women who have BRCA1 and BRCA2 

gene mutations face this increased risk for breast and ovarian cancer.  BRCA1 and 

BRCA2 account for almost 80% of hereditary breast cancer, and 5 to 6% of all breast 

cancers (Greene, 1997).  At least eight candidate breast cancer susceptibility genes have 

currently been identified (Greene, 1997) (discussed later). In a study conducted by the 
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Breast Cancer Linkage Consortium, 52% of families with breast cancer demonstrated 

linkage to BRCA1, while 32% were linked to BRCA2, suggesting that 16% of breast 

cancer families were linked to other predisposing genes (Ford et al., 1998). BRCA1 was 

linked to 81% of breast-ovarian cancer families, while 14% were linked to BRCA2. 

Linkage to BRCA2 was identified in76% of families with male and female breast cancer 

(Ford et al., 1998).  The cumulative risk of breast cancer was 27% by age 50 years, which 

increased to 84% by age 70 years. Ovarian cancer risks were much smaller, at 0.4% until 

age 50 years, but rose to 27% by age 70 years (Ford et al., 1998).   

 Some risk-reduction options are made available, as part of genetic counseling for 

women who are BRCA1 or BRCA2 mutation carriers. Options offered include increased 

surveillance, chemoprevention with tamoxifen, prophylactic oophorectomy (removal of 

the ovaries), and prophylactic mastectomy (Uyei et al., 2006). 

          Uyei et al. (2006) reported a retrospective analysis of 554 women with BRCA1 and 

BRCA2 gene mutations who were treated at The University of Texas M. D. Anderson 

Cancer Center.  Results obtained for data collected between 2000 and 2006 demonstrated 

that women who had BRCA mutations, along with a history of breast cancer or ductal 

carcinoma in situ, or a history of having had previous breast biopsies, were more likely to 

select prophylactic surgery. Women with a family history of ovarian cancer opted for 

prophylactic oophorectomy, while an individual’s personal history of ovarian cancer or 

advanced breast cancer was more likely associated with a choice for surveillance only. 

Breast cancer survivors with a history of treatment with total mastectomy chose 

prophylactic mastectomy more often than breast cancer survivors with a history of 

treatment with breast-conserving surgery or women with no history of breast cancer 
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(Uyei et al., 2006).  Hartmann et al. (2001) reported that bilateral prophylactic 

mastectomy decreased the risk of breast cancer in women with BRCA1 and BRCA2 

mutations by approximately 90%.  

Researchers at Lombardi Comprehensive Cancer Center in Washington, DC 

reported that BRCA1 and BRCA2 carriers are recommended to undergo prophylactic 

bilateral salpingo-oophorectomy (removal of an ovary with a fallopian tube) by age 35-40 

years or when childbearing is complete, in an effort to significantly reduce the risk of 

ovarian cancer (Nusbaum and Isaacs, 2007). This prophylactic surgery has been shown to 

also reduce the risk of breast cancer when performed in premenopausal mutation carriers. 

Finch et al. (2006) studied the incidence of ovarian, fallopian tube, and primary 

peritoneal cancer in a large cohort of women with BRCA1 or BRCA2 mutations. 

Prophylactic oophorectomy
 
reduced the risk of ovarian

 
and fallopian tube cancer in the 

BRCA1 and BRCA2 carriers by approximately 80%, although there was a post-

oophorectomy residual risk of approximately 4% to develop peritoneal cancer (Finch et 

al. 2006).  BRCA1 and BRCA2 carriers are also offered the option of increased 

surveillance, with or without chemoprevention, or prophylactic surgery as part of a breast 

cancer management protocol.  Bilateral prophylactic oophorectomy is more commonly 

chosen than bilateral prophylactic mastectomy in BRCA1/2 mutation carriers who are 

unaffected (Freibel et al., 2007), as many women feel that bilateral prophylactic 

mastectomy is too aggressive with increase risk for side effects (Uyei et al., 2006).   

BRCA carrier status, to date, is not used as an independent factor to determine 

prognosis for systemic treatment options (Nusbaum and Isaacs, 2007). Recently, 

researchers have investigated the use PARP-1 [poly(ADP-ribose) polymerase-1] 
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inhibitors as a chemotherapeutic treatment for BRCA1/2 cancers. DeSoto and Deng 

(2006) suggested that BRCA breast cancer cells were resistant to PARP-1 inhibitors 

when used alone in the treatment. PARP-1 inhibitors did offer promise in the prevention 

of BRCA related breast cancers, and may be successful when used in combination with 

other chemotherapeutic agents in the treatment of BRCA related breast cancer (DeSoto 

and Deng, 2006). 

  

Genetic Causes of Breast Cancer 

BRCA1 and BRCA2  

Approximately 5-10% of all breast cancer results from the inheritance of highly 

penetrant mutations in two susceptibility genes, BRCA1 (OMIM, 113705; GenBank, 

U14680.1; Hall et al., 1990) and BRCA2 (OMIM, 600185; GenBank, U43746.1; 

Wooster et al., 1994) which is consistent with an autosomal dominant transmission (Ford 

et al., 1998; Pohlreich et al., 2005).  These genes were first identified in 1994 (Miki et al., 

1994; Wooster et al., 1994; Breast and Ovarian Cancer, 2007), and are associated with 

both breast and ovarian cancers (Troudi et al., 2007).  Mutations in these two genes 

account for 60% of all known mutation site-specific female breast cancers (Ford et al., 

1998).   BRCA1 is found on the long arm of chromosome 17, mapped specifically to 

chromosome 17q21 (Hall et al., 1990).  The BRCA1 gene contains 24 exons, and 

encodes a protein of approximately 220 kDa (1863 amino acids) (Cipollini et al., 2004). 

     BRCA2 is located on the long arm of chromosome 13. BRCA2 is also a large gene, 

containing 27 exons that encode a protein of 380 kDa (3418 amino acids).  Both BRCA1 

and BRCA2 have an unusually large exon 11. The translational start site for both genes is 

http://www.pubmedcentral.nih.gov/redirect3.cgi?&&auth=0eI74mol0c7p2gbXfeCuPnkXNI7x5KcpXRl49KAAF&reftype=extlink-entrez-nucleotide&artid=1242140&iid=122700&jid=6&FROM=Article%7CBody&TO=Entrez%7CTerm%7CNucleotide&article-id=1242140&journal-id=6&rendering-type=normal&&http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=nucleotide&dopt=GenBank&list_uids=555931
http://www.pubmedcentral.nih.gov/redirect3.cgi?&&auth=09CDUt6eQwExdr-pzdu6aXrfvSiLOJRP1PvflpANZ&reftype=extlink-entrez-nucleotide&artid=1242140&iid=122700&jid=6&FROM=Article%7CBody&TO=Entrez%7CTerm%7CNucleotide&article-id=1242140&journal-id=6&rendering-type=normal&&http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=nucleotide&dopt=GenBank&list_uids=1161383
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in exon 2.  Both proteins are predominately nuclear, where phosphorylated versions of 

both proteins are also located (Cipollini et al., 2004).   While similar in some respects, 

many differences exist between the two genes, which are not homologous. BRCA1 has 

two protein motifs, while BRCA2 has BRC repeats and no relation to BRCA1 (Cipollini 

et al., 2004) and is not highly conserved evolutionarily (Szabo et al., 1996). 

BRCA1 and BRCA2 function as tumor suppressors, and are critical to the cellular 

control of homologous recombination and double-strand break repair when DNAs are 

damaged (Liu and West, 2002; Ford et al., 1994; Friedenson, 2005). Individuals with 

mutations in these genes possess an increased lifetime risk for developing breast or 

ovarian cancer.  The cumulative risk of for developing breast cancer is approximately 

28% by age 50 years, and 84% by age 70 years, with ovarian cancer risks determined to 

be  0.4% by age 50 years and 27% by age 70 years (Ford et al., 1994). The lifetime risk 

for developing breast cancer is similar in both BRCA1 and BRCA2 carriers, with a 

possible lower risk in BRCA2 carriers <50 years of age (Ford et al., 1994).  

Both BRCA1 and BRCA2, when functioning normally, play an active role in the 

restoration of double-stranded breaks in DNA caused by radiation, which can occur 

through exposure to DNA damaging agents(ionizing radiation) or through errors in 

normal cellular replication (such as DNA synthesis, chromosomal segregation, metabolic 

generation of oxygen radicals).  Inactivating mutations occurring in BRCA1 or BRCA2 

hinder the repair of DNA damage through homologous recombination. The accumulation 

of mutations due to impaired DNA repair promotes the growth of cancer (Breast and 

ovarian cancer, 2007).  Researchers have reported that BRCA1 mutations also confer 

modest risks for uterine, cervical, early-onset prostate and pancreatic cancers. BRCA2 
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mutations show a similar increased risk for prostatic, pancreatic, gallbladder, bile duct, 

stomach cancers and melanoma (Easton et al., 1995; Friedenson, 2005). 

Approximately 2000 distinct sequence variants in BRCA1 and BRCA2 have 

already been recorded (Breast Cancer Mutation Database, 2007).  Both BRCA1 and 

BRCA2 genes have variants that are uniformly distributed along the entire coding 

regions. Mutations have also been identified in intronic sequences flanking each exon in 

both genes, some of which lead to altered splicing.   

Breast cancer develops in a multistep process and is influenced by two types of 

genes, oncogenes and suppressor genes (Osborne et al., 2004).  Oncogenes refer to genes 

that, when activated, can contribute to
 
the development of cancer.  Oncogenes produce 

alterations that cause gain-of-function effects (Osborne et al., 2004).  Tumor suppressor 

genes function in slowing down cell growth, DNA repair, and apoptosis (American 

Cancer Society, 2005). These genes refer to group of genes whose loss of function
 

promotes malignancy. Germline mutations in breast cancer occur in tumor suppressor 

genes. Tumor suppressor genes can also contain sporadic acquired somatic mutations. 

The tumor typically contains a mutation in one allele
 
and a deletion of the remaining 

allele. In 1971, Alfred Knudson proposed this "two-hit" hypothesis (in reference to 

retinoblastoma) which stated that both gene alleles must
 
be missing to unmask the 

malignant phenotype. The activation of an oncogene and the mutation of a tumor 

suppressor
 
gene can produce changes that contribute to the

 
malignancy. The effects of 

these alterations are complex
 
due to the high number of changes in a typical case of 

breast
 
cancer and the interactions of the biological pathways involved (Osborne et al., 

2004). 
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Cancer risks increase from missing BRCA1 or BRCA2 protein sequences or non-

functional proteins, most likely caused by frameshift, nonsense, and splice site mutations 

(Cipollini et al. 2004).  Figure 1 shows how BRCA1and BRCA2 act as tumor suppressor 

genes (deduced from an analysis of tumor specimen DNAs) (copied from Cipollini et al. 

2004).  An initial mutation in one allele (white circle in the figure) leads to a diminished 

capacity for DNA repair.  Eventually, the second non-mutated allele is entirely deleted 

(figure right side). 

 

 

 

Figure 1.  Proposed Mechanism for Loss of Allele Function for BRCA1 and BRCA2 Tumor 

Suppressor Genes.  Initially one allele suffers a germline susceptibility point mutation or small deletion 

(white circle), which leads to a diminished capacity for repairing DNA.  Eventually the second unmutated 

allele is deleted entirely, as found in tumor specimens (Copied from Cipollini et al. 2004). 

    

   

The Role of Founder Mutations 

The proportional contribution of BRCA1 and BRCA2 mutations has been shown 

to differ in different populations around the world (Szabo and King, 1997).  Vogel et al. 

(2007) described eight different BRCA mutations and three variants within a small 

sample in a Hispanic population.  One of three mutations in the BRCA1 and BRCA2 

genes was found in 2.0%-2.5% of Ashkenazi Jewish women (Struewing et al., 1997). 
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Studies have suggested that each founding mutation put these women at a high risk of 

invasive breast cancer, which continues throughout life (Struewing et al., 1997; Warner 

et al., 1999).  In addition, an estimated 12% of the total number of breast cancers in the 

Ashkenazi Jewish population is caused by mutations in the BRCA1 or BRCA2 gene 

(Warner et al., 1999).  Peto et al. (1999) reported that the mutation BRCA1-185delAG 

has been identified in 20% of Ashkenazi Jewish women with early onset breast cancer, 

while the mutation BRCA2- 6174delT is found in 8% of the Ashkenazi cases diagnosed 

in women over 42 years of age. The authors speculated that, among Ashkenazi Jews, 

BRCA1 mutations play a significant role in the risk for early-onset breast cancer, while 

BRCA2 mutations affect the later onset of the disease.  Ganguly et al. (1997) found that 

that lower prevalence of mutations in both BRCA1 and BRCA2 genes was observed from 

data collected from clinical families. Higher prevalence was found in linkage data 

obtained from high-risk families collected in a research setting (Ganguly et al. 1997).  

 In Britain, BRCA1 mutation carriers were found in 3.1% of breast cancer 

patients, and BRCA2 mutations in 3.0% of breast cancer patients under the age of 50 

(Peto et al., 1999).  For patients 50 years of age or older, the prevalence was 0.49% and 

0.84%, respectively.  Similarly, researchers in Australia found that an estimated 3.8% of 

women before age 40 in that country carried a germline mutation in BRCA1 (Southey et 

al., 1999). They reported seven rare BRCA variants, but argued that these did not have a 

significant effect on the risk of breast cancer in the population studied.   

In a recent study of 204 breast cancer patients in northern India, researchers found 

a lower proportion of BRCA1 and BRCA2 mutations than seen in other populations, 

although the proportion was still elevated for breast cancer patients versus the general 
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population (Saxena et al., 2006).  Interestingly, 9 distinct BRCA1 and 9 distinct BRCA2 

sequence variants were identified.   4 of the 9 BRCA1 mutations were unique to the 

Indian population, accounting for 44% of the BRCA1 mutations found.  Of the 9 BRCA2 

mutations, 7 mutations (78%) were unique to the Indian population, accounting for 78% 

of the BRCA2 mutations.  In this group of patients studied from Northern India, these 

unique mutations were distributed throughout the BRCA1 and BRCA2 gene exons 

(Saxena et al., 2006). 

Szabo and King (1997) analyzed the results of previous studies conducted by 

researchers in seventeen countries, including Italy, Finland, Norway, Iceland, Israel, 

Russia, Japan, Canada, Britain, and the United States.  They explained that great 

variability was noted among populations for proportions of high-risk families with 

BRCA1 mutations.  Russia displayed the largest proportion of BRCA1 mutations, 

occurring in 79% of families with breast or ovarian cancer.  Affected families had one of 

two common alleles. The most common allele in Russia was BRCA1-5382insC, which is 

also the most common allele found among the Europeans studied.  The second most 

common allele in Russia was BRCA1-4153delA (Szabo and King, 1997). This allele has 

also been identified in affected families in Latvia (Csokay et al., 1999), Poland (Gorski et 

al., 2000; Gorski et al., 2004), and Lithuania (Gronwald et al., 2005).  Israel 

demonstrated the next highest proportion of BRCA1 mutations in inherited breast and 

ovarian cancer, occurring in 47% of high-risk families (Szabo and King, 1997).  BRCA1 

mutations were observed in 29% of Italian high-risk families, and in 20-25% of high-risk 

families in Britain, France, Scandinavia, and Hungary.  Less than 20% of high-risk 

families in Holland, Belgium, Germany, Norway, and Japan had BRCA1 mutations.  
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Significantly fewer cases of BRCA2 mutations were noted for all countries except 

Iceland, where a single BRCA2 mutation, specifically the 999del5 mutation, was 

responsible for all the inherited breast and ovarian cancer in that country.   

BRCA2 mutations are also more common than BRCA1 mutations in familial 

male breast cancer, occurring in about 19% of familial male breast cancer in the United 

States (Szabo and King, 1999).   Overall, the authors proposed that “BRCA1 and BRCA2 

have each undergone multiple mutations; the resultant alleles have migrated with the 

peoples in which they occur; and disease-associated mutations have persisted, no doubt 

because of late onset of disease and, hence, little or no deleterious impact of mutant 

alleles on genetic fitness” (Szabo and King, 1997). 

 

 Non-BRCA Genes Associated with Breast Cancer 

 Recent studies suggest that the proportion of familial breast
 
cancer cases due to 

the BRCA1 and BRCA2 mutations may
 
be smaller than initially believed (Kainu, et al., 

2000).  Mutations in BRCA1 and BRCA2 account for only about 60% of mutation site-

specific female breast cancers (Ford et al., 1998), so additional susceptibility genes likely 

exist (Walsh and King, 2007).  But to date, gene identification efforts using linkage 

analysis have not been successful at identifying non-BRCA genes, likely because that 

approach identifies individual genes, each of which confers only a moderate risk 

(Antoniou and Easton, 2006).   

Kainu et al. (2000) used mathematical models to look for early somatic genetic 

deletions
 
in tumor tissues, and then applied targeted linkage analysis. The authors used 

comparative
 
genomic hybridization to investigate 61 breast tumors from

 
37 breast cancer 
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families, none of whom had BRCA1 or BRCA2 mutations.
  
Mathematical models 

predicted a loss of chromosome arm 13q as one of the first genetic events in these 

familial cancers. This was demonstrated in a study of a Swedish family with five breast 

cancer cases, where all patients evidenced clear 13q deletions at 13q21-q22 (Kainu, et al., 

2000).  A subsequent study by Thompson et al., (2002) found no linkage to a 

susceptibility locus at chromosome 13q21 and concluded that, if it did exist, its 

contribution would be minimal in breast cancer families of European origin.  

There exist multiple biologic functions for BRCA1 and BRCA2 proteins, 

including “participating within a pathway that mediates error-free repair of DNA double 

stranded breaks by homologous recombination (Friedenson, 2005).”  BRCA1 and 

BRCA2 gene products are placed within a biochemical sequence, which includes the 

MRE11, Rad50 and NBS1 complex (MRN complex), ATM, CHEK2, BRCA1, BRCA2, 

and Fanconi anemia proteins, often referred to as the BRCA pathway (Figure-2, 

Friedenson, 2007).  A breakdown in the critical protein function anywhere within this 

DNA repair BRCA pathway may introduce mutations by repair of double strand breaks 

by lower fidelity, error prone methods.  Because some cancers are mediated by these 

errors, this results in an increased risk for development of those cancers (Friedenson, 

2005).  More recently, Friedenson (2007) proposed that inactivation of any component 

within the BRCA pathway would increase the risks for not only breast and ovarian 

cancers, but also for lymphomas and leukemias. Where BRCA pathway mutations do not 

exist, the functional encoded proteins provide protection from both breast and ovarian 

cancer.   
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Figure 2. Schematic Diagram of the 

BRCA Pathway for DNA Repair.  Note 

that BRCA1 and BRCA2 are only a part of 

this key DNA repair pathway, which if any 

key protein is rendered non-functional by 

mutation, DNA mutations subsequently 

increase. Thus this model predicts non-

BRCA mutations should also correlate 

with breast cancer.   (Figure from 

Friedenson, 2007) 

 

 

 

 

Gene mutations cause inactivation of BRCA1, BRCA2, and other critical proteins 

within this "BRCA pathway" that inactivate this error-free repair process (Friedenson 

2007).  Liu and West (2002) described the pathway, which illustrates how, even though 

BRCA1 and BRCA2 proteins interact together, only a minority of the BRCA1 protein is 

actually found in association with BRCA2 at a given time.  Recent identification of more 

proteins that associate with either BRCA1 or BRCA2 further emphasizes that BRCA1 

and BRCA2 each participate in different protein complexes, and these each have distinct 

functions in DNA double strand breakage repair (See Figure 3 and Table I below). 
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Figure 3.  Interactions of BRCA1 and BRCA2 With Other Proteins, or Protein Complexes. These 

proteins were identified by two-hybrid screens, co-immunoprecipitation analyses, and co-fractionation 

studies.  In general, the protein–protein associations of BRCA1 have been shown to be distinct from those 

exhibited by BRCA2.  (Copied from Liu and West, 2002)   
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Biological Functions BRCA-1-Interacting Proteins 

DDR and repair MSH2, MSH6, MLH1, ATM, BLM and the RAD50-

MRE11-NBS1, DNA replication factor C, RAD51, 

Fanconi anemia proteins, PCNA, H2AX, c-Abl, MDC1 

Tumor suppressors ATM, ATR, p53, BRCA2, RB, BARD1, BACH1 

Oncogenes c-Myc, casein kinase II, E2F1, E2F4, STK15, AKT 

Transcription RNA polymerase II holoenzyme (RNA helicase A, 

RPB2, RPB10α), CBP/p300, HDC and CtIP, estrogen 

receptor α, androgen receptor, ZBRK1, ATF1, STAT1, 

Smad3, BRCT-repeat inhibitor of hTERT expression 

(BRIT1) 

Cell cycle related Ayclin A, Cyclin D1, Cyclin D1, CDC2, Cdk2, Ckd4, 

γ-tublin, p21, p27 

Stress response, apoptosis MEKK3, IFI16, X-linked inhibitor of apoptosis protein 

(XIAP) 

Others BAP1, BIP1, BRAP2, importin α 

 

Table 1.  A list of BRCA1 Interacting Proteins.  (Copied from Deng, 2006). 

     

CHEK2 (OMIM 604373) (shown as purple in Figure-2, but not shown in Figure-3 

or in Table-I) is a key checkpoint kinase of the BRCA pathway that serves as a tumor 

suppressor in response to DNA double-strand breakage.  The CHEK2*1100delC 

mutation most likely accounts for familial risk of breast cancer in some non-BRCA1 and 

non-BRCA2 patients, causing DNA damage and activation of cell-cycle checkpoints that 

block cell proliferation and DNA repair.  The impaired function of these checkpoints 

results in instability in the genome and a subsequent increased risk for cancer (Weischer 

et al., 2007).  Investigators in Denmark reported the results of a 34 yearlong study of a 

large sample in the Danish population (Weischer et al., 2007).  The authors concluded 

that CHEK2*1100delC heterozygosity was associated with a three-fold risk of breast 

cancer in the Danish women studied.  Conversely, researchers investigating a small 

sample of hereditary breast and ovarian cancer families from the Slovak Republic did not 
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detect any 1100delC variant of the CHEK2 gene (Cierniková et al., 2005).  Instead, the 

investigators found a spectrum of eight mutations, one novel BRCA1 deletion, and one 

recurrent BRCA2 mutation. 

Other candidate genes have been found to act directly in double strand DNA 

break repair.  Walsh, et al. (2006) studied 300 US families with 4 or more cases of breast 

or ovarian cancer who tested negative (wild type) for BRCA1 and BRCA2 mutations. 

Patients were screened for genomic rearrangements in BRCA1 and BRCA2, and 

germline mutations in CHEK2, TP53, and PTEN.  Based on their findings, these 

researchers estimated that, in a similar cancer population, one might expect that 

approximately 12% would demonstrate a large genomic deletion or duplication in either 

BRCA1 or BRCA2, and that 5% would carry a mutation in CHEK2 or TP53.  Recently, 

several mutations in genes in the BRCA-related pathways (Chek2, ATM, PALB2, 

BRIP1) were shown to be associated with familial breast cancer (Walsh and King, 2007).   

Besides BRCA1 and BRCA 2, other genetic syndromes are associated with 

autosomal dominant inheritance of breast cancer risk. These include Li–Fraumeni 

syndrome (a genetic disorder that causes breast cancer), as well as bone cancer 

(osteosarcoma), muscle and soft tissue cancers, brain tumors, leukemias, and cancer of 

the adrenal glands.  These are caused by germline mutations in another key tumor 

suppressor gene, p53, found in over 50% of families, with a reported penetrance of at 

least 50% by age 50 years.  Germline mutations in hCHK2 and TP53 genes have also 

been associated with the Li-Fraumeni syndrome and related breast cancer (Cipollini et al., 

2004; Li-Fraumeni Syndrome, 2007).  Cowden syndrome is caused by PTEN germline 

mutations that promote an increased risk for not only developing breast cancer, but also 
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thyroid and endometrial cancer (lining of the uterus).  In addition, patients with Cowden 

syndrome are at risk for developing noncancerous breast and thyroid diseases, as well as 

growths on the skin and mucous membranes called hamartomas (Cipollini et al., 2004; 

Cowden Syndrome, 2007). 

Approximately 1% of the general population may be heterozygote carriers of an 

ATM gene mutation responsible for ataxia telangiectasia, a genetic autosomal recessive 

disorder, with known risks for developing breast cancer (Cipollini et al., 2004). Another 

identified autosomal recessive disorder, Peutz–Jeghers syndrome is characterized by 

early onset of symptoms, which include hamartomatous polyps in the gastrointestinal 

tract (Peutz-Jeghers Syndrome, 2007).  Patients with Peutz–Jeghers syndrome face 

lifetime risks for cancers of the gastrointestinal tract, pancreas, cervix, breast, and ovaries 

(Cipollini et al., 2004; Peutz–Jeghers syndrome, 2007).  Approximately half of the 

patients with Peutz–Jeghers syndrome have mutations in STK11, which place them at 

very high risk of developing breast cancer (Cipollini et al., 2004).  

 A recent study in Montreal found a high penetrance of PALB2 mutations in 

probands (initial subjects tested) tested in 68 BRCA1/BRCA2-negative breast cancer 

families of Ashkenazi Jewish, French Canadian, or mixed ethnic descent (Tischkowitz et 

al., 2007).  Seal et al. (2006) looked at truncating mutations in the Fanconi anemia J gene 

BRIP1 in BRCA1/BRCA2 mutation-negative families. The authors reported that these 

BRIP1 mutations could pose a risk as low-penetrance breast cancer susceptibility alleles. 

However, other investigators were unable to substantiate an increase in risk of familial 

breast cancer from BRIP1 variants (Lewis et al., 2005; Frank et al., 2007).  Researchers 

in Finland analyzed the Mre11 complex, composed of RAD50, NBS1 and MRE11 and 
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found that RAD50 and NBS1 haplo-insufficiency affected genomic integrity and 

increased susceptibility to breast cancer (Heikkinen et al., 2006).  The MRN complex is 

comprised of MRE11, RAD50, and NBS1, which is the product of Nijmegan breakage 

symdrome (Robert et al., 2006). Persons with Nijmegan breakage syndrome (NBS) are 

susceptible to immunodeficiency and increased risk of malignancies (Tauchi et al., 2002). 

The NBS1 gene product, nibrin, along with the rest of the MRN complex, is responsible 

for detecting, signaling and repairing double strand breaks in DNA, and acts as a sensor 

to recruit ATM to repair broken DNA molecules (Robert et al., 2006).   

Li et al. (2006) recently investigated the protein DSS1 and described it as an 

evolutionarily conserved acidic protein that binds to BRCA2.  The authors explained that 

DSS1 depletion causes hypersensitivity to DNA damage, similar to that seen with 

BRCA2. They found that the presence of DSS1 was essential to the stability of the 

BRCA2 protein in mammalian cells. Deletion, suppression, or mutation of DSS1 is 

speculated to promote human breast and ovarian cancer, as well as sporadic and familiar 

breast cancer where BRCA1 and BRCA2 mutations are not present (Li et al. 2006).   Lu 

et al. (2007) recently reported the results of their study, which showed that BCCIP 

regulates homologous recombination and suppresses spontaneous DNA damage. They 

proposed that BCCIP fragments that interact with BRCA2, or with the protein interacting 

p21, inhibit DNA double-stranded break repair through homologous recombination. 

When breaks in DNA structure occur, responses at the cellular level set off 

numerous checkpoint and repair proteins. These responses synchronize a complex 

signaling cascade that detects the DNA damage, with subsequent checkpoint activation, 

DNA repair, cell cycle arrest and/or apoptosis (Chaplet et al. 2006).  Lin et al. (2005) 
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studied the function of BRIT1 in DNA damage checkpoints. BRIT1 is identical to the 

MCPH1 gene. Mutations in this gene are also found in patients with primary 

microcephaly. BRIT1 is required for the expression of both BRCA1 and the checkpoint 

kinase. Chk1 and phosphorylation of Nbs1 are dependant on BRIT1/MCPH1. The 

authors speculated that since BRIT1/MCPH1 regulates Nbs1, BRCA1, and Chk1, defects 

in BRIT1 will likely cause checkpoint defects.  Rai et al. (2006) proposed that BRIT1 

levels contribute to tumor progression by increasing the instability of the gene and 

promoting metastasis. The authors emphasized that previous studies had shown that 

BRIT1 expression was inversely correlated with the likelihood of breast cancer 

metastasis and with the duration of relapse-free survival. The authors found decreases in 

BRIT1 in the breast and ovarian cancer specimens studied. 

     The action of BRIT1 in signaling DNA damage is organized in a hierarchical 

fashion as seen in Figure 4.  The model proposed by Chaplet et al. (2006) suggests that 

BRIT1 involvement begins early in the recruitment, and subsequent triggering of DNA 

damage induces early mediators in the repair pathway. 
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Figure 4.   A Model of BRIT1 Functions in DNA Damage Response, Genomic Integrity, and Tumor 

Suppression.  BRIT1 is an early regulator of the DNA damage response in both ATM and ATR pathways, 

and is required for the expression of BRCA1 and Chk1. BRIT1 also functions as an adaptor downstream of 

Chk1 in the ATR pathway, and is essential for maintenance of genomic integrity and tumor suppression.” 

(Copied from Chaplet et al., 2006) 

 

Chaplet et al. (2006) contend that BRIT1 may also be necessary to preserve an 

intact chromatin structure, which is also essential to the DNA damage checkpoint and 

repair machinery. BRIT1 depletion eliminates the DNA damage checkpoint and repair 

response, causing both centrosomal defects as well as chromosomal aberrations. Human 

carcinomas have been shown to have aberrantly reduced expression of BRIT, suggesting 

that BRIT1 plays a role in the development and progression of cancer, further supporting 

the role of BRIT1 as a tumor suppressor (Chaplet et al., 2006). 

Although biochemical analyses have shown that multiple proteins participate in 

the BRCA pathway for the repair of double stranded DNA breaks, and a loss of their 
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function should hypothetically correlate with an increased risk of breast or ovarian 

cancer, to date, gene identification efforts using linkage analysis have not been successful 

at identifying non-BRCA genes. This is likely because that approach identifies individual 

genes, each of which confers only a moderate risk (Antoniou and Easton, 2006).  Perhaps 

a direct candidate gene sequencing effort which targets known BRCA pathway-

associated genes will succeed. 
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PROJECT PURPOSE 

 

 The overall objective of this project was to identify mutations within novel BRCA 

pathway-associated genes that might contribute to the onset of breast cancer.  The lab’s 

main hypothesis is that the genetic loss of any gene related to DNA repair, and in 

particular those genes known to participate in the BRCA-associated DNA repair pathway, 

can lead to a loss of DNA repair, and the formation of cancer.  This MQP study used a 

candidate gene screening approach to identify novel susceptibility genes by directly 

sequencing the coding regions of genes previously shown to interact with BRCA1 and/or 

BRCA2 in the BRCA DNA repair pathway (Liu and West, 2002).  PCR amplicons for 

genes Mre11, Rad50, NBS1, DSS1, BCCIP, and MCPH1 were amplified from patient 

DNAs from high-risk non-BRCA1/BRCA2 families.  The amplicons were then analyzed 

by High Resolution Melting Analysis (HRMA) to identify potential variants.  Variants 

for MCPH1 were further analyzed by DNA sequencing.  
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METHODS 

 

Tissue Source 

     Germline DNA samples from blood were obtained from 288 subjects with a history of 

breast cancer.  All subjects were patients from high-risk non-BRCA1/BRCA2 families, 

obtained from various collaborating centers in Europe and the United States.   

 

DNA For PCR Optimization 

 Human placental DNA (Clontech) was used for PCR optimization. 

 

PCR 

 Mutation analysis was performed on specific candidate genes known to 

participate in the BRCA pathway for DNA repair using traditional PCR (not real time 

PCR) followed by DNA sequencing.   

 

PCR Primer Pair Optimizations  

PCR primer pairs were designed using bioinformatics tools for specific gene 

exons for the following genes:  MCPH1, NBS1, DSS1, and BCCIP.  Bioinformatics tools 

included online applications such as Primer3 Input v. 0.4.0., UCSC’s ePCR and BLAT, 

and NCBI’s GenBank.  NCBI’s GenBank was accessed in order to obtain cDNA 

information for the novel susceptibility genes.   

Primer-3 was used to pick the primer pairs, which were then analyzed to confirm 

that each forward primer melting temperature was similar to the reverse primer melting 
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temperature, resulting in a more stringent annealing temperature range for the PCR 

product.  By analyzing the Primer3 output, primer conditions could be created to avoid 

primer dimer formation and check for stem-loop structures.  The primer pairs were also 

designed to include a length of approximately 50 nucleotides on either end of the exon to 

ensure that the entire coding region would be included.  These conditions were necessary 

for designing primer pairs for mutation screening of all coding sequences and intron and 

exon boundaries.  PCR product size was limited to less than 500 bp for optimal HRMA 

sensitivity. For large exons, overlapping PCR products were amplified to fit these 

conditions.  UCSC’s ePCR and BLAT applications determined each primer pair derived 

from unique sequence within the human genome to produce a single PCR product.  

 The new primers were obtained from Integrated DNA Technologies.  

Optimization of PCR conditions was performed using human placental DNA provided by 

Clontech for each primer pair, and also for existing primer pairs for MRE11 and RAD50.  

Optimization was defined as the specific conditions producing the maximum amplicon 

band intensity without non-specific band amplification.  Ideal PCR conditions were 

determined using a gradient cycler sampling 10 Tm (annealing temperatures) per primer 

pair.  Each reaction contained 20 ng of human placental DNA, PCR master mix (1X 

Buffer, 1mM MgCl2, 200 μM dNTPs, 0.5 U Qiagen Hotstar Taq Polymerase), and 

individual primer pairs (250 uM each) in 96-well Bio-Rad polypropylene Multiplate 

format.  The PCR machine used was a Peltier Thermal Cycler DNAEngine Tetrad2 

created by MJ Research.  PCR amplification used the general protocol, shown in Table-

II, and any change from the general protocol is given in the figure legends.   
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Table-II:  General PCR Conditions Used for Gene Amplification 

Step Temperature Time Purpose 

1 95ºC 15 Min Initial denaturation and activation of enzyme 

2 95ºC 30 Sec Denaturation 

3 50-72ºC 30 Sec Temperature gradient annealing 

4 72ºC 30 Sec Amplification 

5  2 Hrs Repeat steps 2-4, 39 more times 

6 72ºC 5 Min Elongation 

7 25ºC ∞ Incubation 

  

 

PCR of Candidate Genes 

Optimized PCR conditions for each gene were then implemented on germline 

DNA from patient blood samples.  PCR was performed on white 384-well Bio-Rad 

Microseal Polypropylene Microplates, each reaction containing 10 ng of non-BRCA1/2 

high risk patient DNA.  High-throughput liquid handling robotics were used for sample 

transfer (BIOMEK). White PCR plates were necessary for fluorescence analysis to 

prevent fluorescence bleed from well to well.  The brand of PCR machines used for PCR 

of the candidate genes included Hybaid Satellite 384 Thermal Cyclers and Thermo 

Hybaid Multiblock System Software which was programmed for optimal annealing 

temperatures.  The resulting amplicons were then analyzed by using High Resolution 

Melting Analysis (HRMA) on the Light Scanner (see below).   

 



 30 

DNA Amplicon Melting Curve Analysis 

 As a pre-screen to determine potential sequence mutations, analysis of melting 

curves from individual amplicons was performed using IdahoTech Light Scanner Hi-Res 

Melting technology and software.  Visibly altered melting curves for patient samples 

versus non-patient DNA indicated possible sequence variants or heteroduplexes that have 

different melting temperatures than the normal (wild type or WT) melting temperatures.  

A heteroduplex is made up of a mismatched, unstable pair of nucleotides (Figure-5).  If a 

dye is used to stain the DNA, its fluoresence decreases for heteroduplexes relative to 

homoduplexes since less is intercalated. 

 

 

 
Figure 5.  dsDNA Saturated with LCGreen 

Dye.  LG Green Dye enables fluorescence of 

dsDNA to be monitored during high resolution 

melting analysis of PCR products (Copied from 

Idaho Technology Inc., 2007) 

 

 

 

 

Both homoduplexes and heteroduplexes are amplified by PCR during the reaction 

(Figure-6).  The melting temperature of a heteroduplex’s dsDNA is lower than the 

melting temperature of a homoduplex, due to the base mismatches.  LC green dye was 

used to saturate dsDNA, and its fluorescence decreases for a heteroduplex.  This 

technique enabled the fluorescence of dsDNA to be monitored over a temperature range 

of 45° C to 98° C (Figure-7), and this high resolution melting analysis of PCR products 
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depicted the various melting curves and peaks which were individually analyzed for 

possible variants.  

 

 

Figure 6.  Theory For DNA Melting 

Analysis. During the reannealing step 

of PCR amplification, heteroduplexes 

and homoduplexes of both wildtype 

and mutant DNA become amplified.  

(Copied from Cellular and Molecular 

Biology - DNA Analysis, ncvs.org 

2005) 

 

 

 

 

 

 

 

 

Figure 7.  Example of the 

LightScanner Software Used for 

the Identification of Mutations and 

Polymorphisms.  Software detects 

the decrease in fluorescence 

associated with heteroduplex 

formation between mismatched 

nucleotides through fluorescence 

technology. (Mayo Clinic, 2007, 

Example of BX-1-2-3_Mre11-6) 
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DNA Sequence Analysis 

 PCR amplicons identified from the melting curve analyses as potentially 

containing mutations were subsequently verified by DNA sequencing.  The amplicons of 

potential variants were collected and transferred to a 96-well plate, on which the 

ExoSAP-IT protocol was performed to remove excess nucleotides and primers prior to 

robotic sequencing.  5 µL of molecular grade water and 2 µL of ExoSAP-IT were added 

to each reaction amplicon.  The samples were then placed on the PCR machine for PCR 

clean up.  The steps in the ExoSAP-IT protocol are as follows: 

1.  Incubate at 37° C for 20 minutes. 

2.  Incubate at 85° C for 20 minutes. 

3.  Incubate at 25° C forever. 

5 µL of the reaction from the original plate was then transferred to a new 96 well plate.  

Either the forward or reverse primer was then added to the corresponding amplicons and 

then placed on the PCR machine for a 5 minute 95° C denature period.  The plate was 

removed and the samples were transferred to a clear 96 well plate required for 

sequencing.  The plate was sent to the Mayo Sequencing Core to be processed. 

The ExoSAP-IT reagent, obtained from the USB Corporation, provided a one step 

PCR clean up that removes excess primers and dNTPs, in preparation for robotic 

sequencing.  The plates were then sent to the core sequencing center at the Mayo Clinic 

where sequence results were obtained.  These results were analyzed for specific 

mutations, including insertions, deletions, or frameshifts.  The samples with mutations 

were traced back to the initial DNA sample, so that the mutation could be identified along 

with the individual’s family pedigree.  Sequencing software used to detect these genetic 
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mutations included Applied Biosystems’ Sequence Scanner v1.0 and Gene Codes’ 

Sequencher 4.8.   NCBI’s dbSNP was accessed to compare mutations found within the 

novel susceptibility genes with those defined in the database as part of the HapMap 

project.  

 

Data Analysis 

 In order to determine if the identified mutations were disease specific mutations, a 

comprehensive analysis was conducted on the conserved domains among various species.  

These conserved domains have remained unchanged throughout evolution which 

suggests a vital role in gene functionality.  The genetic sequences obtained from the 

NCBI (National Center for Biotechnology Information) database along with the online 

bioinformatics tool ClustalW2 were used to align the different species’ MCPH1 protein 

sequences. A percentage of cross species conservation was calculated for each identified 

mutation. 

 

Data Collection 

 A detailed list of the genetic mutations identified within the MCPH1 gene was 

recorded to illustrate the family history, cross species conservation, type of mutation, 

amino acid change, nucleotide change, location of the mutation, minor allele frequency 

(MAF), observation frequency, and genotype of each sample analyzed.  
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RESULTS 

 
 

The purpose of this project was to identify mutations in novel BRCA pathway-

associated genes that could contribute to the onset of breast cancer.  The assumption was 

that the genetic loss of any gene related to this important DNA repair pathway could 

potentially lead to cancer, so breast cancer patients not showing the traditional BRCA1 or 

2 mutations might show mutations in BRACA-related genes.  Six BRCA-pathway genes 

were identified as candidates: Mre11, Rad50, NBS1, DSS1, BCCIP, and MCPH1.  

Mutations in these candidate genes were initially identified using High Resolution 

Melting Analysis (HRMA) (LightScanner analysis) of PCR amplicons of individual 

exons amplified from the DNA of non-BRCA1/BRCA2 breast cancer patient samples.  

Positives for MCPH1 were further analyzed by DNA sequencing.   

 

Primer Optimization on Human Placental DNA 

The project was initiated by designing PCR primers for each exon of the six 

candidate genes, then optimizing the PCR conditions for each primer pair using 

commercially obtained human DNA.  The optimum conditions determined for each 

primer pair are shown in Table-III below.  Figures 8-13 show example PCR gels for the 

optimization of the primers for MCPH1.  Tables IV and V show a typical 96-well format 

for the PCR reactions with a primer annealing temperature gradient established across the 

plate. 
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Table-III:  Optimized PCR Conditions for Each Candidate Gene Tested. 

Gene Candidate PCR Condition Changed From the General Protocol in Table-I 

MCPH1 

   Exon-1 

   Exon-2 

   Exon-3 

   Exon-4 

   Exon-5 

   Exon-6 

   Exon-7 

   Exon-8a 

   Exon-8b 

   Exon-8c 

   Exon-8d 

   Exon-8e 

   Exon-8f 

   Exon-8g 

   Exon-8h 

   Exon-9 

   Exon-10 

   Exon-11 

   Exon-12 

   Exon-13 

   Exon-14a 

   Exon-14b 

 

 

Strongest amplification at 66ºC 

Strongest amplification between 51-63ºC (55ºC) 

Strongest amplification between 52-63ºC (56ºC) 

Strongest amplification between 56-63ºC (59ºC) 

Strongest amplification between 56-66ºC (61ºC) 

Strongest amplification between 54-66ºC (59ºC) 

Strongest amplification between 54-66ºC (59ºC) 

Strongest amplification at 63ºC (63ºC) 

Strongest amplification between 52-66ºC (58ºC) 

Strongest amplification between 52-66ºC (56ºC) 

Strongest amplification between 59-69ºC (64ºC) 

Strongest amplification between 56-63ºC (59ºC) 

Strongest amplification between 54-66ºC (59ºC) 

Strongest amplification between 56-66ºC (61ºC) 

Strongest amplification between 60-63ºC (63ºC) 

Strongest amplification between 54-66ºC (63ºC) 

Strongest amplification between 51-63ºC (55ºC) 

Strongest amplification between 56-63ºC (63ºC) 

Strongest amplification between 56-63ºC (59ºC) 

Strongest amplification between 63-69ºC (66ºC) 

Strongest amplification between 59-66ºC (63ºC) 

Strongest amplification between 56-66ºC (61ºC) 

  

DSS1 

     Exon-1 

     Exon-2 

     Exon-3 

 

 

Strongest amplification between 63-69ºC (65 ºC) 

Strongest amplification at 63ºC (63 ºC) 

Strongest amplification between 59-66ºC (65 ºC) 

NBS1 

     Exon-1 

     Exon-2 

     Exon-3 

 

 

In progress. 

In progress. 

In progress. 

 

MRE11 

   Exon-1 

 

 

In progress. 
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   Exon-2 

   Exon-3 

   Exon-4 

   Exon-5 

   Exon-6 

   Exon-7 

   Exon-8 

   Exon-9 

   Exon-10 

   Exon-11 

   Exon-12 

   Exon-13 

   Exon-14 

   Exon-15 

   Exon-16 

   Exon-17 

   Exon-18 

   Exon-19 

   Exon-20 

 

Strongest amplification between 59-66ºC (63ºC) 

Strongest amplification between 54-59ºC (56ºC) 

Strongest amplification between 54-63ºC (58ºC) 

Strongest amplification between 54-63ºC (58ºC) 

Strongest amplification between 56-66ºC (61ºC) 

Strongest amplification between 50-52ºC (51ºC) 

Strongest amplification between 54-63ºC (58ºC) 

Failed, redesign primers 

Strongest amplification between 51-56ºC (53ºC) 

Strongest amplification between 54-63ºC (58ºC) 

Strongest amplification between 56-63ºC (59ºC) 

Strongest amplification between 59-66ºC (63ºC) 

Strongest amplification between 51-63ºC (57ºC) 

Strongest amplification between 56-59ºC (58ºC) 

Strongest amplification between 52-63ºC (56ºC) 

Strongest amplification between 54-59ºC (56ºC) 

Strongest amplification between 52-59ºC (56ºC) 

Strongest amplification between 52-59ºC (56ºC) 

Strongest amplification between 54-63ºC (59ºC) 

 

RAD50 

   Exon-1 

   Exon-2 

   Exon-3 

   Exon-4 

   Exon-5 

   Exon-6&7 

   Exon-8 

   Exon-9 

   Exon-10 

   Exon-11 

   Exon-12 

   Exon-13 

   Exon-14 

   Exon-15 

   Exon-16 

   Exon-17 

   Exon-18&19 

   Exon-20 

   Exon-21 

   Exon-22 

   Exon-23 

   Exon-24 

   Exon-25 

 

 

(Using working stock primers previously designed) 

Strongest amplification between 63-69ºC (66ºC) 

Failed, redesign primers 

Strongest amplification between 52-56ºC (54ºC at 50 cycles) 

Strongest amplification between 52-56ºC (54ºC) 

Failed, redesign primers 

Failed, redesign primers  

Failed, redesign primers; rerun - strongest 56-59ºC 

Failed, redesign primers; rerun - redesign 

Strongest amplification between 54-59ºC (56ºC) 

Strongest amplification between 51-59ºC (54ºC) 

Failed, redesign primers; rerun – strongest 54ºC 

Failed, redesign primers; rerun – strongest 54-56ºC 

Failed, redesign primers; rerun – strongest 52-56ºC 

Strongest amplification 52-56ºC; rerun- strongest 51-54ºC (52ºC) 

Strongest amplification between 51-56ºC (54ºC) 

Failed, redesign primers; rerun – strongest 63ºC 

Failed, redesign primers; rerun – strongest 56-63ºC 

Failed, redesign primers; rerun – strongest 54-59ºC 

Strongest amplification 56-59ºC (58ºC with 3 μL BX-1 DNA) 

Strongest amplification 56-59ºC (58ºC with 3 μL BX-1 DNA) 

Strongest amplification between 52-66ºC (56ºC) 

Strongest amplification between 52-59ºC (56ºC) 

Failed, redesign primers; rerun- 59-63ºC (weak); rerun - 56ºC 

(strong) (60ºC) 
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BCCIP 

   Exon-1 

   Exon-2 

   Exon-3 

   Exon-4 

   Exon-5 

   Exon-6 

 

 

 

Strongest amplification at 59ºC 

Strongest amplification between 51-59ºC 

Strongest amplification between 54-59ºC 

Strongest amplification between 56-63ºC 

Strongest amplification between 63-66ºC 

Strongest amplification between 59-66ºC 

 

 

 

 

Table-IV:  Diagram of the 96-well Coordinates and Annealing Temperature 

Gradient Used for Primer Optimization Tests. 

 

 

This table shows the 96-well format used for primer optimization.  A temperature 

gradient ranging from 50-72°C (blue color) was distributed across the 96-well plate (50-

70°C for 10 samples of each primer pair).   

Temperature Gradient (°C) 50 50.6 51.9 53.5 56 59.2 62.9 66 68.5 70.2 71.5 72

1 2 3 4 5 6 7 8 9 10 11 12

A  A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 N/A N/A

B  B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 N/A N/A

C  C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 N/A N/A

D  D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 N/A N/A

E  E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 N/A N/A

F  F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 N/A N/A

G  G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 N/A N/A

H  H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 N/A N/A
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           Table-V:  Diagram of the Electrophoresis Lane Loadings. 

 
 The DNA marker and the PCR products were loaded into an agarose gel in 

the order listed in this table, and electrophoresis was performed.  The most 

optimum primer annealing temperatures were determined by analyzing the 

intensity of the amplicon bands present in the gel.  The marker was loaded 

into the bottom-most  and top-most wells.  Row A from the 96-well plate 

was loaded into every other well on the gel.  Row B was then loaded next 

to the A wells.  The same process was followed for rows C-H.    

 

 

 

 

A/B C/D E/F G/H 

marker marker marker marker 

blank blank blank blank 

blank blank blank blank 

blank blank blank blank 

blank blank blank blank 

B10 D10 F10 H10 

A10 C10 E10 G10 

B9 D9 F9 H9 

A9 C9 E9 G9 

B8 D8 F8 H8 

A8 C8 E8 G8 

B7 D7 F7 H7 

A7 C7 E7 G7 

B6 D6 F6 H6 

A6 C6 E6 G6 

B5 D5 F5 H5 

A5 C5 E5 G5 

B4 D4 F4 H4 

A4 C4 E4 G4 

B3 D3 F3 H3 

A3 C3 E3 G3 

B2 D2 F2 H2 

A2 C2 E2 G2 

B1 D1 F1 H1 

A1 C1 E1 G1 

marker marker marker marker 
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Figure 8.  Example of PCR Primer Optimization for  MCPH1 Using Human Placental 

DNA.  Figure shows a variety of PCR signals.  Primers 1 and 2 (first column), 3 and 4 (second 

column), and 5 and 6 (third column) show strong amplification, while primers 7 and 8a (right 

side) show weak amplification.   

 

 
Figure 9.  Example Assignment of Band Intensities.  This figure shows the same gel in Figure 

8 but with a list of temperatures tested and an assignment of band intensities. Each band was 

assigned an intensity value for that amplicon ranging from – to +++, with +++ being the 

strongest.   The temperature gradient ran from 50-70°C.  
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Figure 10.  PCR Band Intensities for MCPH1 Exons 8b-9.  Exons 8h and 9 

displayed very weak bands, indicating that the primers may need to be redesigned.  

After running the PCR gradient on those two exons a second time, stronger bands 

appeared on the gel that were later optimized. 
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Figure 11.  PCR Band Intensities for MCPH1 Exons 10-

14b.  The same method was used to determine the optimal 

primer annealing temperatures for exons 10-14b.  None of 

these primers failed. 
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                          Figure 12.  PCR Band Intensities for BCCIP Exons 1-6. 
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Figure 13.  PCR Band Intensities for Mre11 Exons 10-17.  None of the primers for 

these exons failed in this gel. 
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PCR Amplification of Candidate Genes from Patient DNA 

Following primer pair optimization, the optimized PCR conditions were then 

applied to each of the six candidate genes from two hundred eighty-eight samples of 

germline DNA obtained from various collaborating centers in Europe and the U.S.  Each 

patient had an extensive family history of breast cancer, but none had a BRCA1 or 2 

mutation.   

We began by individually amplifying each exon in the six target genes.  Exons 

larger than 500 bp were split into multiple amplicons for analyses.  Table-VI shows a 

summary of the number of amplicons successfully obtained for the six candidate genes.  

All 14 exons were successfully obtained for MCPH1, all 3 exons for DSS1, 19 of 20 

exons for Mre11, 23 of 25 exons for Rad50, all 16-17 exons for NBS1, and all 7 exons 

for BCCIP were obtained. 

 

Table-VI:  Number of PCR Amplicons Obtained for Each Candidate Gene  

and Number of Amplicons Analyzed by HRMA. 

 

 
 

 

In this Table, column-1 shows the gene analyzed; column-2 shows the total known 

number of exons for that gene; column-3 shows the number of amplicons analyzed for 
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that gene, and column-4 shows the number of amplicons analyzed by High Resolution 

Melting Analysis (HRMA) for that gene. 

 

High Resolution Melting Analysis (HRMA) and Variant Sequencing 

 PCR amplicons for MCPH1, DSS1, Mre11, and Rad50 were analyzed by High 

Resolution Melting Analysis (HRMA) as a preliminary screen to identify potential 

sequence variants.  In this technique, heteroduplexes form during PCR between one DNA 

strand from the WT DNA and the other strand from a patient’s variant gene.  Mismatched 

duplexes intercalate less fluorescent dye than pure duplex DNA, so a decreasing 

fluorescent signal indicates the presence of potential sequence variants, which can 

subsequently be further analyzed by DNA sequencing.  HRMA Lightscanner Software 

was used to determine whether melting curves varied from the wild type curves to 

determine which of the 288 patient samples most likely contained mutations.  

 Table-VI (in the previous subsection) shows a summary of the number of 

amplicons analyzed by HRMA.  All 14 exons were analyzed for MCPH1, all 3 exons for 

DSS1, 10 of 20 exons for MRE11, 13 of 25 exons for RAD50, and none for NBS1 or 

BCCIP at this time.  LightScanner software was used to display the HRMA data.  Any 

curves that visually differed from the normal (wild type) curve indicated a potential 

sequence variant for that patient sample.  Potential variants were then analyzed by 

sequencing.    

 Of the four genes analyzed by PCR/HRMA to date, one MCPH1, was chosen for 

sequence analysis.  A preliminary analysis of DSS1 gene is shown in the Appendix, and 

is nearly completed.  DNAs were prepared for sequencing by using an ExoSAP IT 
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protocol to remove excess primers and nucleotides from the PCR reactions.  The final 

product samples were then placed on a sequencing plate and sent to the Mayo Clinic 

sequencing core to be sequenced.  The sequenced products were analyzed using 

Sequencher software, which assisted in identifying the location of a possible mutation 

within each amplicon.   

Figure 14 shows the HRMA LightScanner output for MCPH1 Exon-6 for Patient H1.  

The melting curve for exon-6 of patient H1 differs from the wild-type curve, indicating a 

possible sequence variant.  Figure 15 shows the Sequencher output for MCPH1 Exon-6 for 

patient E4 and H1, both showing sequence variants relative to WT DNA.   Figures 16-21 show 

examples of other sequence variants identified.
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Figure 14.  HRMA LightScanner Output for MCPH1 Exon-6 for Patient H1 (BR-32-515-

d05-3184).  The light colored double-peak curve for the patient DNA (lower right panel) differs 

from the darker colored single peak for WT DNA indicating a potential sequence variant. 

 

Figure 15.  Sequencher Output for MCPH1 Exon-6 for Two Patients E4 (BR-32-127-d00-

2063) and H1 (BR-32-515-d05-3184).  The upper sequence file for patient E4 (BR-32-127-d00-

2063) shows a homozygous S 171 R (TT) mutation relative to WT DNA (GG).  Note:  the WT 

sequence is not shown in this figure.  The lower sequence displays a heterozygous 581 G>T 

mutation (GT). 
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Figure 16.  HRMA LightScanner Output for MCPH1 Exon-7 for Patients K3 (FCP-119) 

and P5 (COH-2394-469-1).  This LightScanner output shows a double peak curve that is the 

wild type curve and a multiple peak curve that corresponds to the frameshift mutation (K3). 

 

 

Figure 17.  Sequencher Output for MCPH1 Exon-7 for Two Patients E22 (COH-1228-863-

1) and K3 (FCP-119).  This figure shows a frameshift mutation (Exon 7 c. 649 -7 ins T, IVS 6 -7 

ins T) in the second sequence file relative to the WT sequence (top sequence). 
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Figure 18.  HRMA LightScanner Output for MCPH1 Exon-8F for Patients J23 (FCP-10) 

and P5 (COH-2394-469-1).  This HRMA shows a pink curve wild type (P5) and an orange curve 

(J23) that corresponds to the frameshift mutation. 

 
 

Figure 19.  Sequencher Output for MCPH1 Exon-8F for Two Patients J23 (FCP-10) and 

A17.  The first sequence file is an example of a frameshift mutation.  In this sequence, there is an 

apparent shoulder on the peaks, which is an indication of a frameshift mutation (1464 Δ del A, fs 

(468) codon 466 stop 499).  In this specific example, a stop codon is formed at codon 499 in exon 

8f of the MCPH1 gene. 
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Figure 20.  LightScanner Output for MCPH1 Exon-8F for Patients P5 (COH-2394-469-1), 

G14 (COH-883-856-1), and J23 (FCP-10).  The pink curve (P5) is the wild type curve.  The 

orange and dark blue curves (G14 and J23) are heterozygous mutations.  The orange curve is also 

a frameshift mutation. 

 

 

 

 
Figure 21.  Sequencher Output for MCPH1 Exon-8F for Patients J23 (FCP-10), A17, and 

G14 (COH-883-856-1).  This is another example of a frameshift mutation (1496 C>T, F 476 F).  

The first sequence shows a mutation of C>T at position 85 in the frameshift/mutant sequence.  

The mutation is homozygous.  The second sequence displays the WT sequence, while the third 

sequence shows an individual that is heterozygous for the SNP. 
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  In order to determine how a particular amino acid would be altered by the 

nucleotide mutation, the location of the nucleotide within the correct reading frame of the 

coding sequence was identified.  Altered codons will change the resultant protein 

sequence, except for silent mutations where the protein is not altered or physically 

changed.  However, silent mutations may have some function in alternative splicing. 

 Once the locations of the amino acid changes had been recorded, the dbSNP 

NCBI database was accessed to determine the frequency of the SNPs previously 

identified in other population studies.  Since the 288 patient samples consisted of 

individuals from European countries, the Minor Allele Frequencies (MAFs) were 

calculated from the data available on European populations.  Novel SNPs, previously 

unidentified, were not recorded in the dbSNP database.  Frameshift mutations were also 

not available in the dbSNP database, because frameshifts alter the sequence of multiple 

nucleotides (rather than a single nucleotide).  The sequence data analysis summary for 

MCPH1 is shown in Table-VII below. 
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Table-VII:  Summary of the Sequence Analysis Mutation Screening for MCPH1. 

Coordinates exon nt change Genotype aa change dbSNP MAF Obs freq in X sequences 

(mutants/#samples 

sequenced) 

Cross species 

conservation 

I.Frameshifts/nonsense         

BX-1-2-3 J23 8f 1464 Δ del A   fs (468) codon 

466 stop 499 

  1 out of 23  

BX-1-2-3 J23 8f 1464 Δ del A; 

1496 C>T 

CT fs (468) codon 

466 stop 499; 

F 476 F 

rs2920676 0.0085 2 out of 23 2/8 del, 2/8 c, 4/8 nc 

BX-1-2-3 K3 7 c. 649 -7 ins 

T 

 IVS 6 -7 ins T   1 out of 16  

BX-1-2-3 C5 13-1 2375 ins C  (769) fs 772 

Stop 777 

  3 out of 48  

BX-1-2-3 E7 13-1 2375 ins C  (769) fs 772 

Stop 777 

  3 out of 48  

BX-1-2-3 K16 13-1 2375 ins C  (769) fs 772 

Stop 777 

  3 out of 48  

BX-1-2-3 J23 13-1 2375 Δ del C  (769) fs 

771Stop778 

  1 out of 48  

BX-1-2-3 G4 13-1 del 244  fs 818 Stop 

844 

  2 out of 48  

BX-1-2-3 D5 13-1 2283del238 

(ex.13 del) 

 fs 818 Stop 

844 

  2 out of 48  

II. Missense subst.         

BX-1-2-3 H1 3 237 C>A CA Q 57 K No  7 out of 24 100% c 

BX-1-2-3 M15 3 244 C>A CA T 59 N No  1 out of 24 100% c 

BX-1-2-3 O20 3 250 A>G AG D 61 G No  1 out of 24 7/8 c, 1/8 nc 

BX-1-2-3 I21 5 430 C>A CA P 121 Q No  14 out of 24 100% c 

BX-1-2-3 O21 6 581 G>T TT S 171 R rs2442513 0.25 30 out of 31 3/8 c, 3/8 sc, 2/8 nc 

BX-1-2-3 H1 6 581 G>T GT S 171 R rs2442513 0.25 1 out of 31 3/8 c, 3/8 sc, 2/8 nc 

BX-1-2-3 G14 8b 931 C>A CA P 288 H rs35590577 ??? 1 out of 15 1/8 del, 1/8 nc, 6/8 c 

BX-1-2-3 G14 8b 979 G>T GT R 304 I rs2083914 0.182 10 out of 15 5/8 c, 3/8 nc 

BX-1-2-3 L5 8b 1008 G>C CC D 314 H rs930557 0.207 5 out of 15 1/8 del, 5/8 c, 2/8 nc 

BX-1-2-3 O11 8b 1008 G>C GC D 314 H rs930557 0.207 9 out of 15 1/8 del, 5/8 c, 2/8 nc 

BX-1-2-3 I15 8d-1 1243 A>G GG D 392 G rs2515569 1 46 out of 46 2/8 del, 1/8 c, 5/8 nc 

(3G, 1R, 1Q) 

BX-1-2-3 M4 13-1 2350 C>T CT A 761 V rs1057090 0.481 23 out of 48 5/8 c (4V,1M), 2/8 nc, 

1/8 sc 

BX-1-2-3 G9 13-1 2350 C>T TT A 761 V rs1057090 0.481 9 out of 48 5/8 c (4V,1M), 2/8 nc, 

1/8 sc 

BX-1-2-3 M4 13-1 2476 C>A CA A 806 A rs2912016 0.43 21 out of 48 5/8 c, 2/8 sc, 1/8 nc 

BX-1-2-3 G9 13-1 2476 C>A AA A 806 A rs2912016 0.43 5 out of 48 5/8 c, 2/8 sc, 1/8 nc 

BX-1-2-3 H3 13-1 2287 G>A AA C 740 Y No  1 out of 48 7/8 c, 1/8 nc 

BX-1-2-3 B21 14 2540 C>T TT P 828 S No  6 out of 47 8/8 nc (4S, 2F, 1D, 1M 

whch is sc to S) 

BX-1-2-3 M8 14 2540 C>T TC P 828 S No  26 out of 47 8/8 nc (4S, 2F, 1D, 1M 

whch is sc to S) 

BX-1-2-3 D3 14 2562 C>A CA L 832 I No  47 out of 47? 6/8 c (5L, 1I), 2/8 sc 

III. Silent substitutions         

BX-1-2-3 A22 3 296 G>T TT V 76 V rs2305022 0.202 19 out of 24 100% c 

BX-1-2-3 D23 3 296 G>T GT V 76 V rs2305022 0.202 4 out of 24 100% c 

BX-1-2-3 I1 6 545 A>T TA S 159 S rs41313948 N/A 2 out of 31 100% c 

BX-1-2-3 I15 8d-1 1280 T>A TA A 404 A No  out of 46 2/8 del, 4/8 c, 2/8 sc 

BX-1-2-3 M4 8d-1 1280 T>A TT? A 404 A No  out of 46 2/8 del, 4/8 c, 2/8 sc 

BX-1-2-3 G14 8f 1496 C>T CT F 476 F rs2920676 0.0085 2 out of 23 2/8 del, 2/8 c, 4/8 nc 

BX-1-2-3 A21 8h 1850 G>A GA T 594 T rs2584 0.36 5 out of 8 2/8 del, 3/8 c, 3/8 nc 

BX-1-2-3 M20 8h 1850 G>A GA T 594 T rs2584 0.36 8 out of 21 2/8 del, 3/8 c, 3/8 nc 

BX-1-2-3 O20 8h 1850 G>A AA T 594 T rs2584 0.36 3 out of 21 2/8 del, 3/8 c, 3/8 nc 

BX-1-2-3 M4 13-1 2294 C>T CT S 742 S rs2912010 0.475 22 out of 48 2/8 c, 4/8 sc, 2/8 nc 

BX-1-2-3 G9 13-1 2294 C>T TT S 742 S rs2912010 0.475 9 out of 48 2/8 c, 4/8 sc, 2/8 nc 

BX-1-2-3 M4 13-1 2476 C>A CA A 806 A rs2912016 0.43 21 out of 48 5/8 c, 2/8 sc, 1/8 nc 

BX-1-2-3 G9 13-1 2476 C>A AA A 806 A rs2912016 0.43 5 out of 48 5/8 c, 2/8 sc, 1/8 nc 

BX-1-2-3 P7 13-1 2411 G>A GA L 781 L No  1 out of 48 100% c 

IV. Intronic variants         

BX-1-2-3 H3 I-9 2003+9 G>A AG ….. No  1 out of 47  

BX-1-2-3 F17 I-9 2003+69 

A>G 

AG ….. No  1 out of 47  

BX-1-2-3 M20 I-10F 2041+15 

T>A 

TA ….. No  1 out of 45  

BX-1-2-3 D3 I-14 2576+8 C>A CA ….. No  47 out of 47?  

 

Table-VII:  Summary of the Sequence Analysis Mutation Screening for Gene MCPH1. The columns 

in this table indicate the exon number for MCPH1, the observed nucleotide number change, the genotype 

for the mutation, the amino acid change designation, whether the mutation has been identified in the dbSNP 

database, the minor allele frequency (MAF), the observation frequency of the corresponding mutant, and 

the cross species conservation of the mutant amino acid.   
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 The project to date has found MCPH1 mutations in 29 of the 288 patient samples 

tested, 10 of which demonstrated more than one mutation.  Nine likely deleterious, 

frameshift/nonsense mutations, nineteen missense mutations, fourteen silent substitutions, 

and three intronic variants were found in the MCPH1 amplicons.  The mutations that are 

most likely disease-associated are the missense and frameshift mutations.  Frameshifts, 

missense mutations, and silent substitutions within amplicon 13-1 (exon 13) occurred 

most often within each of the three categories.  Six of the nine frameshifts, five of the 

nineteen missense mutations, and five of the fourteen silent substitutions occurred in 

amplicon 13-1 (exon13).   

 

 A cross species alignment was also performed for MCPH1 (Figure 22) for nine 

different species to determine the degree of conservation.  The more highly conserved the 

sequence domain, the more likely that domain is required for function, thus if a mutation 

occurs in a conserved domain it likely is deleterious.   The amino acids highlighted in red 

indicate the locations where mutations were observed in patient samples in the present 

study.  The cross species conservation for each of these mutations is also listed in the 

rightmost column of Table-VII.  We conclude from the amino acid alignments that 

several domains in MCPH1 are highly conserved and are likely required for function, and 

that 14 patient mutations were identified in these potential functional domains. 
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Figure 22.  Amino Acid Alignment for Nine Biological Species of MCPH1.  This analysis was 

performed to determine conserved domains to determine which patient mutations likely disrupt functional 

domains.  The alignment was performed using Clustal 2.0.8 software.  The species name is listed on the left 

side of the figure, and the corresponding amino acid sequence is given for each species. The letters in red 

indicate the amino acid mutations found in patient samples. 
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Pedigrees of Families with MCPH1 Mutations 

 

Figures-23, 24, 25, and 26 show the family pedigrees of patient samples found to 

have a serious frameshift mutation in the MCPH1 gene.  The males are indicated as 

squares, while the females are represented as circles. Patients with breast cancer are 

highlighted in black. The age of cancer diagnosis (in years) is indicated within the 

symbol and, in some cases, both ages are given for bilateral breast cancer. Other cancers 

noted were bladder (Bl), colon (Col), liver (Li), ovarian (Ov), pancreatic (Panc), prostate 

(Pr), sarcoma (Sarc), thyroid (Thy), and uterine (Ut).  The lines through symbols indicate 

deceased family members.   

 

  

 

 
 

 

Figure 23.  Pedigree of a 

Female Patient Identified with 

Breast Cancer at 41 Years of 

Age with an MCPH1 

Frameshift Mutation. 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 24.  Pedigree of a Female 

Patient Identified With Breast 

Cancer at 40 Years of Age With an 

MCPH1 Frameshift Mutation. 
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Figure 25.  Pedigree of female patient 

identified with bilateral breast cancer 

first at age 51 then again at 55 years with 

an MCPH1 Frameshift Mutation. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 26.  Pedigree of A 

Female Patient Identified 

With Breast Cancer at Age 

51 with an MCPH1 

Frameshift Mutation. 

 

 

 

 

 

 

 

From these pedigrees it can be concluded that deleterious MCPH1 frameshift mutations 

occur in families with inherited early onset cancers.  In three of the four pedigrees shown, 

one or more of the patient’s family members died of early onset breast cancer.  Further 

studies may eventually show how widespread these MCPH1 mutations are.  Since these 

patients are from non-BRCA families, it can be inferred that frameshift mutations within 

the MCPH1 gene may have a significant effect on the onset of breast cancer.  
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DISCUSSION 

 
 

The data obtained from this project used a candidate gene screening approach to 

identify potential genetic changes in proteins previously shown to interact with BRCA1 

and/or BRCA2 in cellular pathways.  The coding sequences of 6 candidate genes 

MRE11, RAD50, MCPH1, NBS1, DSS1, and BCCIP were amplified by PCR from 288 

non-BRCA1/BRCA2 breast cancer patient DNA samples.  The amplicons were initially 

screened for mutations by High Resolution Melting Analysis (HRMA), and selected 

positives were further analyzed by sequence analysis.  Most of the data obtained so far is 

from gene MCPH1, which to date shows frameshift/nonsense mutations, missense 

mutations, silent substitutions, and intronic variants in 29 patients of the 288 patients 

analyzed so far.  Ten patient samples demonstrated more than one mutation in MCPH1.  

For gene DSS1 (see Appendix), all exons for that gene were obtained by PCR, analyzed 

by HRMA, and sequenced, but only exon 2 has been analyzed to date.  Within that 

amplicon, seven frameshift mutations and one SNP were found.  Thus in this study to 

date, putative breast cancer-associated mutations have been identified in candidate genes 

known to interact with BRCA1 and/or BRCA2 in the double-stranded DNA break repair 

pathway.  Importantly, the identified mutations include protein truncating and missense 

mutations in highly conserved domains.    

The data from this project support the findings of Friedenson (2005) who 

previously speculated that a breakdown in the DNA repair BRCA pathway may increase 

the risk for development of breast cancer, and who also proposed that inactivation of any 

component within the BRCA pathway may also increase the risks for ovarian cancers, 
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lymphomas, and leukemias (Friedenson 2007).  In addition, Chaplet et al. (2006) 

suggested that MCPH1 (also known as BRIT1) plays a role as a tumor suppressor.  

Depletion of BRIT1 (MCPH1) eliminates the DNA damage checkpoint and repair 

response, increasing the risk for the development and progression of cancer (Chaplet et 

al., 2006).  The majority of mutations that we found in MCPH1 were missense mutations 

in conserved domains, so these could disrupt function.  In addition, the nine frameshift 

mutations observed in MCPH1 are probably serious mutations that most likely could 

cause disease in those patients.  So perhaps a proportion of the cancer observed in non-

BRCA1/BRCA2 families can be explained by these observed mutations in the MCPH1 

gene.   

 Problems encountered while working on this project included difficulty 

amplifying certain exons by PCR, which led to a redesign and reoptimization of primers 

in many instances.  In addition, the HRMA assay used as a pre-screening method to 

identify potential mutations was not very efficient or consistent at detecting the mutations 

later identified by sequencing.  It was also somewhat difficult to manage the large 

amounts of data generated in this project, especially when analyzing so many patient 

samples.   

 In the future, database software programs may be useful for organizing the data.  

In addition, MCPH1 mutation segregation studies and penetrance estimation studies 

could be done to determine disease-risk.  Additional studies could also be completed on 

other candidate genes to continue to identify genes that contribute to an unexplained 

familial risk for breast cancer. 
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Appendix 

 

 

Sequence Analysis of DSS1 

 For gene DSS1, all exons for that gene were obtained by PCR, analyzed by 

HRMA, and sequenced, but only the data for exon-2 has been analyzed to date.  Within 

exon-2 (Table-VIII, upper half), seven frameshift mutations and one SNP were found in 8 

patient samples.  

 

Table-VIII.  Sequence Analysis of DSS1. 

DSS1 Mutation Screening on BX-1-2-3 

coord Seq_folder

sequencher 

project exon seq file nt nt change

genoty

pe aa change dbSNP?

Obs freq 

in X 

sequences 

(mutants/#

samples 

sequence

d)

BX-1-2-3 M20 111307_be_2 2 2 fs until nt 90 FRAMESHIFT FRAMESHIFT  2 out of 11

BX-1-2-3 I4 111307_be_2 2 2 fs until nt 90 FRAMESHIFT FRAMESHIFT  2 out of 11

BX-1-2-3 C2 111307_be_2 2 2 fs until nt 156 FRAMESHIFT FRAMESHIFT 1 out of 11

BX-1-2-3 G4 111307_be_2 2 2 fs until nt 160 FRAMESHIFT FRAMESHIFT 1 out of 11

BX-1-2-3 K16 111307_be_2 2 2 fs until nt 158 FRAMESHIFT FRAMESHIFT 1 out of 11

BX-1-2-3 J5 111307_be_2 2 2 fs until nt 114 FRAMESHIFT FRAMESHIFT 1 out of 11

BX-1-2-3 L5 111307_be_2 2 2 fs until nt 104 FRAMESHIFT FRAMESHIFT 1 out of 11

BX-1-2-3 I4 111307_be_2 2 2 232 284 C>T CT F 52 F no 1 out of 11  

This table contains the sequence analysis performed to date for DSS1.  The data for exon-2 are 

shown in this table.   Identification of the variants is currently in progress.  Frameshift mutations 

have been positively identified within exon-2 for seven patient samples, and one patient sample 

displayed a SNP within the same amplicon. 

 

 The DSS1 data obtained to date support Li et al.’s (2006) suggestion that DSS1 

depletion causes hypersensitivity to DNA damage, similar to that shown with BRCA2 

mutations.  These authors found DSS1 to be essential to the stability of the BRCA2 

protein in mammalian cells, and suggested that its deletion, suppression, or mutation, 
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would promote human breast and ovarian cancer, as well as sporadic and familiar breast 

cancer where BRCA1 and BRCA2 mutations are absent (Li et al. 2006).    

 

 

 


