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Abstract

In telecommunications, distributed cooperative communications refer to techniques

which allow different users in a wireless network to share or combine their informa-

tion in order to increase diversity gain or power gain. Unlike conventional point-

to-point communications maximizing the performance of the individual link, dis-

tributed cooperative communications enable multiple users to collaborate with each

other to achieve an overall improvement in performance, e.g., improved range and

data rates.

The first part of this dissertation focuses the problem of jointly decoding binary

messages from a single distant transmitter to a cooperative receive cluster. The

outage probability of distributed reception with binary hard decision exchanges is

compared with the outage probability of ideal receive beamforming with unquan-

tized observation exchanges. Low-dimensional analysis and numerical results show,

via two simple but surprisingly good approximations, that the outage probability

performance of distributed reception with hard decision exchanges is well-predicted

by the SNR of ideal receive beamforming after subtracting a hard decision penalty of

slightly less than 2 dB. These results, developed in non-asymptotic regimes, are con-

sistent with prior asymptotic results (for a large number of nodes and low per-node

SNR) on hard decisions in binary communication systems.

We next consider the problem of estimating and tracking channels in a dis-

tributed transmission system with multiple transmitters and multiple receivers. In

order to track and predict the effective channel between each transmit node and

each receive node to facilitate coherent transmission, a linear time-invariant state-

space model is developed and is shown to be observable but nonstabilizable. To



quantify the steady-state performance of a Kalman filter channel tracker, two meth-

ods are developed to efficiently compute the steady-state prediction covariance. An

asymptotic analysis is also presented for the homogenous oscillator case for systems

with a large number of transmit and receive nodes with closed-form results for all

of the elements in the asymptotic prediction covariance as a function of the carrier

frequency, oscillator parameters, and channel measurement period. Numeric results

confirm the analysis and demonstrate the effect of the oscillator parameters on the

ability of the distributed transmission system to achieve coherent transmission.

In recent years, the development of efficient radio frequency (RF) radiation wire-

less power transfer (WPT) systems has become an active research area, motivated by

the widespread use of low-power devices that can be charged wirelessly. In this dis-

sertation, we next consider a time division multiple access scenario where a wireless

access point transmits to a group of users which harvest the energy and then use this

energy to transmit back to the access point. Past approaches have found the optimal

time allocation to maximize sum throughput under the assumption that the users

must use all of their harvested power in each block of the “harvest-then-transmit”

protocol. This dissertation considers optimal time and energy allocation to max-

imize the sum throughput for the case when the nodes can save energy for later

blocks. To maximize the sum throughput over a finite horizon, the initial optimiza-

tion problem is separated into two sub-problems and finally can be formulated into

a standard box-constrained optimization problem, which can be solved efficiently.

A tight upper bound is derived by relaxing the energy harvesting causality.

A disadvantage of RF-radiation based WPT is that path loss effects can sig-

nificantly reduce the amount of power received by energy harvesting devices. To

overcome this problem, recent investigations have considered the use of distributed

transmit beamforming (DTB) in wireless communication systems where two or more



individual transmit nodes pool their antenna resources to emulate a virtual antenna

array. In order to take the advantages of the DTB in the WPT, in this dissertation,

we study the optimization of the feedback rate to maximize the energy efficiency

in the WPT system. Since periodic feedback improves the beamforming gain but

requires the receivers to expend energy, there is a fundamental tradeoff between the

feedback period and the efficiency of the WPT system. We develop a new model to

combine WPT and DTB and explicitly account for independent oscillator dynam-

ics and the cost of feedback energy from the receive nodes. We then formulate a

“Normalized Weighted Mean Energy Harvesting Rate” (NWMEHR) maximization

problem to select the feedback period to maximize the weighted averaged amount

of net energy harvested by the receive nodes per unit of time as a function of the

oscillator parameters. We develop an explicit method to numerically calculate the

globally optimal feedback period.
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Chapter 1

Introduction.

With the explosive growth in the use of Internet and wireless services, such as smart-

phones, HD video streaming and real-time gaming, etc., in recent years, the data

rate and quality of service requirements for the next generation of wireless devices

have an order of magnitude higher in order to meet the increasing demands of such a

large variety of high-data-rate multimedia services, for which the conventional point-

to-point communication can no longer meet. To overcome this situation, in wireless

communications, a break-through is the innovation of cooperative communication,

which allows different users or nodes in a wireless network to share resources to

create collaboration through distributed transmission/reception. It presents a new

communication paradigm promising significant improvement in system capacity and

reliability. Although wireless networks have existed for many years already, explicit

concern about their energy efficient operation has emerged only recently. Prolonging

the lifetime of battery powered devices in wireless networks is becoming a signifi-

cant problem due to the widespread use of those devices. Recently, wireless power

transfer (WPT) using radio frequency signals is attracting attention as a viable ap-

proach to the energy harvesting problem. A disadvantage of all WPT techniques

1



over longer ranges is that path loss effects can significantly reduce the amount of

power received by energy harvesting devices. To overcome this problem, recently,

researchers have considered the use of distributed transmit beamforming (DTB) in

wireless communication systems where two or more individual transmit nodes pool

their antenna resources to emulate a virtual antenna array, which naturally allows

for low-cost deployment of robust large-aperture arrays suitable for efficient wireless

communications and WPT.

1.1 Motivation.

In the last two decades, the advantages of multiple-input multiple-output (MIMO)

systems have been widely acknowledged, to the extent that certain transmit diversity

methods (i.e., Alamouti signaling) have been incorporated into wireless standards.

Although transmit diversity is clearly advantageous on a cellular base station, it

may not be practical for other scenarios. Specifically, transmit diversity generally

requires more than one antenna at the transmitter. However, in many applications,

such as sensor networks and ad-hoc networks, wireless devices are limited by size

or hardware complexity to one antenna [115]. To overcome these situations, coop-

erative communications have been proposed to exploit the spatial diversity gains

inherent in multiuser wireless systems without the need of multiple antennas at

each node [66,111,113,114,133]. The basic idea of cooperative communication is to

allow users to cooperate in transmitting and/or receiving at the physical layer in a

manner that forms a virtual multi-antenna system. Cooperative communication can

be applied in a wide variety of wireless networks including sensor networks, cellular

networks, and ad-hoc networks [111, 133].

Distributed reception is a technique where multiple receivers in a wireless net-

2



work combine their observations to increase diversity and power gain and, conse-

quently, improve the probability of successfully decoding noisy transmissions. In

1983, cooperative reception was the first time to be applied in the context of aper-

ture synthesis for radio astronomy, e.g., the Very Large Array [92], where each

antenna typically forwards observations over a high-speed optical backhaul network

to a processing center for subsequent alignment and combining.

Recently, the distributed reception has been considered for wireless networks

with limited backhaul capabilities. For example, soft handoff [93, 132], has been

successfully used in cellular systems since the 1990s. Recent information-theoretic

studies [5, 61, 108, 134] have shown that more sophisticated cooperative reception

techniques have significant potential to increase diversity, improve capacity, and

improve interference rejection, even with tight backhaul constraint.

Distributed transmit beamforming (DTB) is a form of cooperative communica-

tion in which two or more information sources simultaneously transmit a common

message and control the phase of their transmissions so that the signals construc-

tively combine at an intended destination. Ideal DTB with N antennas results in

an N2-fold gain in received power. Compared to single-antenna transmission, DTB

can therefore yield increased range (an N -fold increase for free space propagation),

increased rate (anN2-fold increase in a power-limited regime), or increased power ef-

ficiency (an N -fold decrease in the net transmitted power for a fixed desired received

power) [83]. Moreover, since more power is directed in the desired direction, less is

scattered in undesired directions, resulting in reduced interference and increased se-

curity [83]. In order to perform DTB using a network of cooperating single-antenna

sources, the sources must agree on a common message, transmit it at the “same

time”, synchronize their carrier frequencies, and control their carrier phases so that

their signals combine constructively at the destination. Hence, practical realization
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of this concept requires the development of implementable distributed techniques for

information sharing, timing synchronization, and carrier synchronization, which be-

comes especially complicated in a large-scale distributed Multi-Input Multi-Output

(MIMO) system.

Since coherent transmission techniques require channel state information at the

transmitters (CSIT), several techniques have been proposed to address this issue

for distributed MIMO systems, with the goal of providing CSIT either implicitly

or explicitly. These include receiver-coordinated explicit feedback [17, 18, 32, 33, 35,

50, 129], receiver-coordinated summarized feedback [86–88], master-slave synchro-

nization with retrodirective transmission [82], round-trip retrodirective transmission

[19,34,98], and two-way synchronization with retrodirective transmission [102,103].

Each of these techniques has advantages and disadvantages in particular applica-

tions, as discussed in the survey article [85].

Although wireless networks have existed for many years already, explicit con-

cern about their energy efficient operation has emerged only recently. With the

widespread use of battery powered devices in daily life, such as cell phones, laptops,

tablets, etc., prolonging the lifetime of those devices in wireless networks becomes a

significant problem [53]. Replacing or recharging batteries may be inconvenient (e.g.,

for a sensor network with massive distributed sensor nodes), dangerous (e.g., for de-

vices positioned in toxic environments), or even impossible (e.g., for the medical

sensors implanted inside human bodies) [136]. To overcome such situations, wire-

less power transfer (WPT), which generally refers to the transmissions of electrical

energy from a power source to one or more electrical loads without any intercon-

necting wires, has become an attractive approach with the potential of extending

the lifetime of these devices.

WPT technologies can be dated back to early 20th century. Nikola Tesla, a
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pioneering electronic engineer, invented the Tesla Coil aiming to produce radial

electromagnetic waves with about 8 Hz frequency transmitted between the earth

and its ionosphere, thereby transferring energy [81]. Nowadays, WPT is widely

used in daily life for charging mobile devices and have been proved useful in wireless

sensor networks, whose lifetime can be extended [48, 95, 97, 116]. For the time-

varying electromagnetic field, there are two main types of WPT technologies, the

near-field WPT and the far-field WPT [104]. The near-field WPT is non-radiative

and can transfer energy over a distance of less than one wavelength. Inductive

coupling (IC) is a popular near-field WPT technique, in which the transmitter and

receiver coils together form a transformer and power is transferred between the

coils by a magnetic field [110]. One significant drawback of the IC-based WPT

(IC-WPT) is its short transmission distance. Moreover, when the transmitter coil

and the receiver coil are not well aligned, the power transmission efficiency (PTE)

drops significantly. Despite these weaknesses, IC-WPT is often advantageous with

respect to its simple design and high safety, therefore has been broadly used in

many applications including the charging of toothbrush, laptops, mobile phones,

and medical implants [81]. Compared with the IC technique, the magnetic resonant

coupling (MRC) technique can transfer power to a longer distance. Furthermore,

since it is non-radiative, MRC does not require line of sight and has almost no harm

to human [142]. However, similar to the IC, the MRC technique is also sensitive

to misalignment. Moreover, it is difficult to adjust the resonance frequency when

charging multiple devices [78].

Radiative power transfer, or far-field WPT technique, uses the propagation of

electromagnetic waves in long distance. In particular, recently, the development of

efficient radio frequency (RF) radiation WPT systems has become an active research

area, motivated in part by the widespread use of low-power devices that can be
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charged wirelessly [30]. Different from IC-WPT and MRC-WPT, which operate in

the near-field, RF-WPT can be more efficient over longer range links and can be

suitable for powering a larger number of devices distributed in a wide area [74]. On

the other hand, since RF signals that carry energy can at the same time be used

as a vehicle for transporting information, RF-WPT can be used for simultaneous

wireless information and power transfer (SWIPT) [30].

A disadvantage of all WPT techniques over longer ranges is that path loss effects

can significantly reduce the amount of power received by energy harvesting devices.

To overcome this problem, recent investigations have considered the use of transmit

beamforming with RF-WPT, e.g., [143,144]. To achieve coherency in a narrowband

setting, the transmit array must have estimates of the channel phases to each re-

ceive node. This channel state information at the transmitter (CSIT) is typically

obtained via feedback from the receive nodes. Alternatively, in systems with channel

reciprocity, e.g., time-division duplexed (TDD) channels, CSIT can be obtained by

having the transmitter directly estimate the channel phases from periodic sounding

signals transmitted by the receive nodes. Irrespective of the method in which the

CSIT is obtained, the transmit array uses the CSIT to adjust the phases of the

passband transmissions so that the signals constructively combine at the intended

receiver and the efficiency of WPT is improved.

While transmit beamforming can be more efficient than omnidirectional radia-

tion, a limitation of these techniques is that they require the transmitter to have an

antenna array with elements spaced sufficiently far apart to provide a desired level

of directivity. The required antenna spacing of a conventional transmit beamformer

is typically a significant fraction of a carrier wavelength, e.g., half wavelength or

quarter wavelength antenna spacing, and hence the actual antenna separation may

be quite large at carrier frequencies of interest for WPT over distance. Moreover,
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to achieve significant power gains from the transmit beamformer, many antenna

elements may be necessary. Hence, a conventional transmit beamforming system

for WPT over distance may be quite large and costly and may also be difficult to

deploy in some WPT applications, e.g., wireless charging.

Recently, researchers have considered the use of distributed transmit beamform-

ing (DTB) in wireless communication systems where two or more individual trans-

mit nodes pool their antenna resources to emulate a virtual antenna array [83]. In

principle, the distributed array works in the same way as the conventional (central-

ized) array: the individual transmit nodes use the CSIT obtained either by feedback

(“feedback-based” DTB, e.g., [31,46,71,89,112,137]) or through channel reciprocity

(“reciprocity-based” DTB, e.g., [84, 103]) to form a beam by controlling the phase

of their passband transmissions so that the signals constructively combine at an in-

tended receive node. Unlike conventional transceivers, however, a distributed trans-

mit beamformer naturally allows for low-cost deployment of robust large-aperture

arrays suitable for efficient wireless communications and WPT.

Figure 1.1 shows an example wireless charging application of DTB for WPT.

The goal in this setting is for the receive nodes (the Nr = 4 cellphones shown on

the table in Figure 1) to charge wirelessly by receiving power from the transmit

nodes (the Nt = 5 white boxes mounted on the walls of the room in Figure 1.1.

Note that the transmit nodes are autonomous and are not connected to a central

controller. To facilitate efficient WPT, the receive nodes periodically estimate the

forward link channels and provide channel state feedback to the transmit nodes.

The transmit nodes use the CSIT to form beams toward the receive nodes and the

receive nodes use energy harvesting devices to collect the wireless energy and charge

their batteries.
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Figure 1.1: System model example with Nt = 5 transmit nodes and Nr = 4 receive
nodes.
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1.2 Dissertation Overview

The main body of this dissertation is organized into four chapters:

• Outage Probability Analysis of Distributed Reception with Hard Decision Ex-

changes (Chapter 2).

• Channel State Tracking for Large-Scale Distributed MIMO Communication Sys-

tems (Chapter 3).

• Throughput Maximization in Wireless Powered Communication Networks with

Energy Saving (Chapter 4).

• Optimal Wireless Power Transfer with Distributed Transmit Beamforming (Chap-

ter 5).

and is followed by a conclusion and a discussion of potential research below.

Chapter 2 considers the problem of jointly decoding binary messages from a single

distant transmitter to a cooperative receive cluster. The goal is to communicate

messages over the forward link from the distant transmitter to all of the receive

nodes. The receive nodes form a fully-connected network and can reliably exchange

information to jointly decode the messages from the distant transmitter. In this

chapter we analyze the outage probability of distributed reception with hard de-

cision exchanges in the case of a binary modulated forward link and independent

and identically distributed Rayleigh fading forward link channels. Unlike [21] where

locally unquantized information at each receive node is combined with the quan-

tized information from other receive nodes, we make the simplifying assumption

that all observations are either quantized (distributed reception with hard decision

exchanges) or unquantized (ideal receive beamforming). Low-dimensional analysis

and numerical results show, via two simple but surprisingly good approximations,

9



that the outage probability performance of distributed reception with hard decision

exchanges is well-predicted by the SNR of ideal receive beamforming after subtract-

ing a hard decision penalty of slightly less than 2 dB.

Chapter 3 considers the problem of estimating and tracking channels in a dis-

tributed transmission system with Nt transmit nodes and Nr receive nodes. The

transmit cluster is assumed to use coherent transmission techniques, e.g., distributed

beamforming [82], distributed nullforming [35], and/or distributed zero-forcing beam-

forming [148]. In this chapter, we focus on the receiver-coordinated explicit feedback

scenario in which the receive cluster measures the channels and provides explicit

feedback to the transmit cluster to facilitate coherent transmission. We consider a

scenario in which the effective channels are tracked by one or more Kalman filters.

Unlike the prior works focusing on tracking and correcting clock offsets between a

single pair of nodes, we generalizes this idea to tracking a matrix of clock offsets

corresponding to the collection of effective channels between all of the transmitters

and receivers. A system with unified tracking achieves optimal performance by ex-

ploiting the correlations across all of the effective channels is studied in this chapter.

As verified in the numerical results, unified tracking can significantly outperform ap-

proaches which separately track the phases of each oscillator.

Chapter 4 considers wireless power transfer (WPT) system called a “wireless pow-

ered communication network” (WPCN). A WPCN is a network in which wireless

devices are powered only by WPT [54]. The WPCN model considered in this chap-

ter is the same as in [54]. In [54], a block transmission model was considered where

it was assumed that users harvest energy during a downlink transmission the first

part of the block and then each user uses all of their harvested energy during an up-

link transmission later in that block. This chapter is a generalization of the system

considered in [54] where the users can save energy harvested in the current block for
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wireless information transmission (WIT) in later blocks. We consider the problem

of maximizing the sum throughput over a finite horizon with energy saving. The

analysis assumes an “oracle” provides knowledge of the channel states for all blocks

prior to the commencement of the first block. Hence, the results developed in this

chapter can be considered an upper bound for finite-horizon energy saving schemes

with causal channel knowledge.

Chapter 5 considers the performance of wireless power transfer (WPT) with dis-

tributed transmit beamforming (DTB) in a narrowband setting. One or more re-

ceive nodes, each equipped with energy harvesting and storage capabilities, provide

periodic channel state feedback to a cluster of transmit nodes, each with an indepen-

dent local oscillator, to facilitate beamforming and passband signal alignment for

efficient WPT. Without channel state feedback, the transmit cluster can not align

the passband signals at the receivers and the receivers can only harvest incoherent

power. Since feedback improves the beamforming gain but requires the receivers to

expend energy, there is a fundamental tradeoff between the feedback period and the

energy harvesting efficiency. In this chapter, we develop a new model to combine

WPT and DTB and explicitly account for independent oscillator dynamics and the

cost of feedback energy from the receive nodes. We then formulate a “Normalized

Weighted Mean Energy Harvesting Rate” (NWMEHR) maximization problem to

select the feedback period to maximize the weighted averaged amount of net en-

ergy harvested by the receive nodes per unit of time as a function of the oscillator

parameters. By maximizing the NWMEHR, the receive nodes maximize the net

weighted harvested energy after feedback. Since the NWMEHR objective function

is non-convex and implicit, we develop an explicit method to numerically calculate

the globally optimal feedback period.
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1.3 Dissertation Contributions

The main contributions of the dissertation are listed as follows:

Chapter 2:

• Analysis of the outage probability of distributed reception with hard decision

exchanges in the case of a binary modulated forward link and independent and

identically distributed Rayleigh fading forward link channels.

• Development of an approximated closed-form expression for the outage probability

of distributed reception with hard decision exchanges.

Chapter 3:

• Analysis of the stability and steady-state behavior of a Kalman filter tracker for

the effective channel states of an unsynchronized distributed MIMO communica-

tion system in the case where the magnitudes of the propagation channels are

separately tracked and are slowly-varying.

• Analysis of the steady-state prediction covariance of the Kalman filter tracker

• Establishment of the existence and uniqueness of a particular positive semidefinite

“strong” solution.

• Development of two methods to efficiently solve the resulting discrete-time alge-

braic Riccati equation (DARE) for this strong solution.

• Development of closed-form results for all of the elements in the asymptotic pre-

diction covariance as a function of the carrier frequency, oscillator parameters,

and channel measurement period.

Chapter 4:
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• Generalization of the system considered in [54] where the users can save energy

harvested in the current block for wireless information transmission (WIT) in

later blocks. We consider the problem of maximizing the sum throughput over a

finite horizon with energy saving.

• Development of an efficient numerical algorithm of solving the throughput maxi-

mization problem.

• An upper bound with low computational complexity is provided by relaxing the

energy harvesting causality, which give us a water-filling typed solution.

Chapter 5:

• Development of a new model to combine WPT and DTB and explicitly account

for independent oscillator dynamics and the cost of feedback energy from the

receive nodes.

• Formulation of a “Normalized Weighted Mean Energy Harvesting Rate” (NWMEHR)

maximization problem to select the feedback period to maximize the weighted av-

eraged amount of net energy harvested by the receive nodes per unit of time as a

function of the oscillator parameters. By maximizing the NWMEHR, the receive

nodes maximize the net weighted harvested energy after feedback.

• Development of an explicit method to numerically calculate the globally optimal

feedback period. Our method solves the problem in two steps: (i) bounding the

search region into a closed interval and (ii) applying the DIRECT algorithm [52]

on the bounded search region to find the globally optimal solution.
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Chapter 2

Outage Probability Analysis of

Distributed Reception with Hard

Decision Exchanges

This chapter considers the problem of jointly decoding binary messages from a single

distant transmitter to a cooperative receive cluster. The nodes in the receive cluster

exchange information to decode messages from the transmitter. The outage proba-

bility of distributed reception with binary hard decision exchanges is compared with

the outage probability of ideal receive beamforming with unquantized observation

exchanges. Low-dimensional analysis and numerical results show, via two simple

but surprisingly good approximations, that the outage probability performance of

distributed reception with hard decision exchanges is well-predicted by the SNR of

ideal receive beamforming after subtracting a hard decision penalty of slightly less

than 2 dB. These results, developed in non-asymptotic regimes, are consistent with

prior asymptotic results (for a large number of nodes and low per-node SNR) on

hard decisions in binary communication systems.
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2.1 Background

We consider the distributed reception scenario in Fig. 2.1 with a single distant

transmitter and a cluster of k receive nodes. The goal is to communicate messages

over the forward link from the distant transmitter to all of the receive nodes. The

receive nodes form a fully-connected network and can reliably exchange information

to jointly decode the messages from the distant transmitter, i.e., the receive cluster

can perform distributed reception.

distant
transmitter fully-connected

receive cluster

forward link

Figure 2.1: Distributed reception scenario.

Recent information theoretic studies [5,62,109,135] have shown that distributed

reception techniques have potential to increase diversity, improve capacity, and im-

prove interference rejection, even with tight network throughput constraints. Several

techniques have been proposed to achieve these gains including link-layer iterative

cooperation [146,147], distributed iterative receiver message-passing [26], and most-

reliable/least-reliable bit exchange iterative decoding [9, 69, 70, 94, 140, 141]. A lim-

itation of all of these techniques is that they are based on iterative transmissions

and decoding. As such, the backhaul requirements are variable and the decoding

latency can be significant if the number of iterations is large.

A non-iterative distributed reception technique was recently considered in [21] for

the case of a binary modulated forward link. Unlike the most-reliable/least-reliable

bit exchange techniques in which information is transmitted over the network based

on requests from other receivers, the approach in [21] is for some or all of the receive
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nodes to quantize each demodulated bit (prior to decoding) and then broadcast all of

these quantized values to the other receivers in the cluster. The locally unquantized

information at each receive node is then combined with the quantized information

from other receive nodes for subsequent decoding. Numerical results showed that

the outage probability penalty of exchanging binary hard decisions rather than un-

quantized observations (ideal receive beamforming) was less than 1.5 dB in the cases

considered.

In this chapter we analyze the outage probability of distributed reception with

hard decision exchanges in the case of a binary modulated forward link and indepen-

dent and identically distributed Rayleigh fading forward link channels. Unlike [21]

where locally unquantized information at each receive node is combined with the

quantized information from other receive nodes, we make the simplifying assumption

that all observations are either quantized (distributed reception with hard decision

exchanges) or unquantized (ideal receive beamforming). The performance of ideal

receiver beamforming depends only on the norm of the vector channel from the

transmitter to the receivers, with outage occurring when this norm falls below a

threshold corresponding to the particular coded modulation strategy used. While

a closed-form expression for the outage probability of distributed reception with

hard decision exchanges appears intractable, low-dimensional analysis and numer-

ical results lead to simple yet accurate approximations that depend only on the

norm of the vector channel. Thus, the performance of distributed reception with

hard decision exchanges tracks that of ideal receive beamforming, except for a hard

decision penalty. This penalty is slightly less than 2 dB in the cases considered, con-

sistent with prior results on the penalty of hard decisions in binary communication

systems [12, 22, 127].
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2.2 System Model

The forward link complex channel from the distant transmitter to receive node i is

denoted as gi for i = 1, . . . , k and the vector channel is denoted as g = [g1, . . . , gk]⊤.

Given a real-valued channel input
√EsX with E[X] = 0, var[X] = 1 and Es denoting

the energy per forward link symbol, the phase-corrected signal at the ith receive node

can be written as

Yi = hiX +Wi (2.1)

where hi :=
√

2|gi|2Es/N0, N0/2 is the additive white Gaussian noise power spectral

density, and Wi ∼ N (0, 1). The quantity h2
i corresponds to the signal-to-noise ratio

(SNR) of the forward link symbols at receive node i. For notational convenience,

we define the parameter α :=
√

2Es/N0 and note that hi = α|gi|. We also denote

the scaled channel magnitude vector h = [h1, . . . , hk]⊤.

We assume:

(1) The noise realizations are spatially and temporally independent and identically

distributed (i.i.d.)

(2) The forward link complex channel gi is constant within a symbol duration and

is spatially and temporally i.i.d.

(3) The magnitude of each complex channel |gi| follows the Rayleigh(σ) distribution

with σ2 = 0.5.

The receivers can reliably exchange information to jointly decodeX. We assume that

each receive node quantizes its observation by making a hard decision on the trans-

mitted symbol and then broadcasts this hard decision over the local area network

to the other receive nodes. Let Zi = Qi(Yi) where Qi(·) represents the quantizer

at receive node i and further denote the vector channel output Z = [Z1, . . . , Zk]⊤.
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Since communication among the receive nodes is reliable, all receive nodes know Z.

We consider the outage probability

pout = Prob(Ih(X;Z) < rout)

where rout is the outage rate and Ih(X;Z) is the mutual information of the channel

X → Z given the scaled channel magnitudes h. Our focus in this paper is on a set-

ting with equiprobable binary channel inputs X and two different receive strategies:

(i) ideal receive beamforming with Zi = Yi for all i = 1, . . . , k and (ii) distributed

reception with hard decision exchanges such that Zi = sign(Yi) for all i = 1, . . . , k.

Since ideal receive beamforming is optimal, it is of interest to quantify the perfor-

mance loss of distributed reception with hard decision exchanges with respect to

ideal receive beamforming.

2.3 Outage Probability Analysis

In this section, we analyze the outage probability of ideal receive beamforming

(distributed reception with unquantized observation exchanges) and distributed re-

ception with binary hard decision exchanges.

2.3.1 Preliminaries

We first state a well-known result that is used in the following sections. For |gi|

i.i.d. Rayleigh(σ) distributed with σ2 = 0.5, ‖g‖2 ∼ Γ(k, 1). Thus, ‖h‖2 ∼ Γ(k, α2).

If we define the k-dimensional quadrant

H(c) :=
{

h ∈ R
k : ‖h‖2 < c2 and hi ≥ 0 ∀i

}

(2.2)
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we can write the probability pk(α, c) := Prob(h ∈ H(c)) as

pk(α, c) = Prob(‖h‖2 < c2)

=
∫ c2

0
f‖h‖2(u)du

= F‖h‖2(c2)

= 1 −
k−1
∑

i=0

1

i!

(

c2

α2

)i

exp

[

− c2

α2

]

(2.3)

where f‖h‖2() and F‖h‖2() denote the probability density function (pdf) and cumu-

lative distribution function (cdf) of the Gamma-distributed random variable ‖h‖2,

respectively. As observed in the following section, the outage probability of ideal re-

ceive beamforming can be exactly expressed as pk(α, c) with an appropriately chosen

quadrant radius c.

2.3.2 Ideal Receive Beamforming

Given an unquantized observation vector Y = [Y1, . . . , Yk]⊤ with Yi defined in (2.1),

the ideal receive beamformer computes the scalar channel output

Z =
[

h1 . . . hk

]

Y = ‖h‖2X + W̃

where W̃ ∼ N (0, ‖h‖2). When X = ±1 equiprobably, the mutual information of

this channel is given as [45]

Ih(X;Z) =
1

2
J(‖h‖) +

1

2
J(−‖h‖) (2.4)

with

J(x) :=
∫ ∞

−∞

1√
2π
e

−(u−x)2

2 log2

(

2

1 + e−2ux

)

du.
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Note that (2.4) is exact but must be evaluated numerically. For 0 ≤ rout < 1,

B(rout) = {‖h‖ : Ih(X;Z) = rout} (2.5)

has a unique solution due to the strict monotonicity of Ih(X;Z) as a function of

‖h‖. The outage probability of the binary-input ideal receive beamforming channel

then follows from (2.3) as

pb→bf
out = pk(α,B(rout)) (2.6)

where α =
√

2Es/N0.

One difficulty with (2.6) is that B(rout) must be computed implicitly in (2.5).

An explicit upper bound on the mutual information (and hence a lower bound on

the outage probability) can be derived by relaxing the binary assumption on X and

allowing X to be a Gaussian random variable. The mutual information in this case

is

Ih(X;Z) = 0.5 log2

(

1 + ‖h‖2
)

.

Fixing the outage rate rout ≥ 0, the strict monotonicity of Ih(X;Z) implies that an

outage occurs if and only if ‖h‖ < A(rout) with

A(rout) =
√

22rout − 1. (2.7)

From (2.3), the outage probability of the Gaussian-input ideal receive beamforming

channel then follows as

pg→bf
out = pk(α,A(rout)) (2.8)

Note that A(rout) < B(rout), hence pg→bf
out < pb→bf

out . As shown in Section 3.6, however,
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pg→bf
out ≈ pb→bf

out for values of rout not too close to one. Hence, (2.8) can be considered

a convenient approximation for (2.6) in this regime.

2.3.3 Distributed Reception with Hard Decision Exchanges

This section analyzes the outage probability of distributed reception with binary

hard decision exchanges. Unlike ideal receive beamforming, the outage region

Hk(rout) of k-receiver distributed reception with hard decision exchanges for k ≥ 2

receive nodes is not a simple quadrant as defined in (2.2). Nevertheless, based on

low-dimensional analysis and numerical results with normalized channels, we ob-

serve that the dominant impact on performance is from the channel norm ‖h‖.

Thus, we propose two radii, C(rout) and D(rout), with B(rout) < C(rout) < D(rout),

such that the outage probability pb→hd
out ≈ pk(α,C(rout)) ≈ pk(α,D(rout)) with

pb→hd
out = Prob(Ih(X;Z) < rout). We then use the results in Section 2.3.1 to com-

pute approximations on the outage probability of distributed reception with hard

decision exchanges.

Two Receive Nodes

In the case with two receive nodes and binary channel inputs, we can write the

mutual information of the 2 × 4 discrete memoryless channel as

Ih(X;Z) = 1−q1q2 log2

[

p1p2

q1q2
+ 1

]

−p1q2 log2

[

q1p2

p1q2
+ 1

]

− q1p2 log2

[

p1q2

q1p2
+ 1

]

− p1p2 log2

[

q1q2

p1p2
+ 1

]
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where pi = Q(hi) and qi = 1 − pi for i = 1, 2. Denoting p = [p1, p2]
⊤ and given an

outage rate 0 < rout < 1, we have

Ih(X;Z) < rout ⇔ p ∈ P2(rout)

⇔ h ∈ H2(rout)

where P2(rout) ⊂ [0, 0.5]2 is the set of channel transition probabilities that result in

outage and H2(rout) ⊂ [0,∞)2 is the set of scaled channel magnitudes that result in

outage. The boundary of H2(rout) is plotted in Fig. 2.2 for the case rout = 0.5. Note

that H2(rout) is not a simple quadrant as defined in (2.2). The boundaries of two

quadrants H(C(rout)) and H(D(rout)) are also plotted in Fig. 2.2. The radii of the

inner and outer quadrants were selected to match the boundary of H2(rout) at the

points h = [0, C(rout)]
⊤ and h = D(rout)√

2
[1, 1]⊤, respectively. To compute C(rout),

one can perform the following steps:

1. Set p2 = 0.5 or, equivalently, h2 = 0.

2. Solve Ih(X;Z) = rout to determine p1 or h1 = Q−1(p1).

3. Compute C(rout) = Q−1(p1) = h1.

To compute D(rout), one can perform the following steps:

1. Set p1 = p2 = p or, equivalently, h1 = h2 = h.

2. Solve Ih(X;Z) = rout to determine p or h = Q−1(p).

3. Compute D(rout) =
√

2Q−1(p) =
√

2h.

From Fig. 2.2, it appears that H(C(rout)) ⊆ H2(rout) ⊆ H(D(rout)) in the two-

receiver case, hence it is tempting to claim that p2(α,C(rout)) and p2(α,D(rout))
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Figure 2.2: Outage regions and inner/outer quadrants for the two-receiver case with
rout = 0.5.
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could serve as lower and upper bounds, respectively, for the actual outage probability

pb→hd
out . A proof of this claim appears to be difficult, however, even for k = 2 receivers.

Hence, we only claim

pb→hd
out ≈ p2(α,C(rout)) ≈ p2(α,D(rout)) (2.9)

for k = 2 receivers with pb→hd
out = Prob(Ih(X;Z) < rout) and pk(α, c) defined in

(2.3).

k Receive Nodes

These approximations extend immediately to the general setting of k receive nodes.

We first specify two quadrants H(C(rout)) and H(D(rout)) with C(rout) computed

via the following steps:

1. Set p2 = · · · = pk = 0.5 or, equivalently, h2 = · · · = hk = 0.

2. Solve Ih(X;Z) = rout to determine p1 or h1 = Q−1(p1).

3. Compute C(rout) = Q−1(p1) = h1.

Observe that this approximation (which concentrates the available channel power

onto one receiver) is equivalent to ideal receive beamforming followed by a single

hard decision.

Similarly, D(rout) can be computed via the following steps:

1. Set p1 = · · · = pk = p or, equivalently, h1 = · · ·hk = h.

2. Solve Ih(X;Z) = rout to determine p or h = Q−1(p).

3. Compute D(rout) =
√
kQ−1(p) =

√
kh.
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This approximation amounts to setting the channel gains for all receivers to be

equal (and applying hard decisions at each receiver prior to information combining).

Intuitively, given a channel strength budget ‖h‖ for distributed reception with hard

decision exchanges, concentrating all of the channel strength onto one receiver should

provide better performance than dispersing it across all receivers evenly.

Based on the two-receiver results, we have

pb→hd
out ≈ pk(α,C(rout)) ≈ pk(α,D(rout)) (2.10)

for k receivers with pb→hd
out = Prob(Ih(X;Z) < rout) and pk(α, c) defined in (2.3).

To provide numerical evidence in support of the approximations, Fig. 2.3 shows

the empirical distributions of the mutual information for distributed reception with

hard decision exchanges for the case with i.i.d. Rayleigh channels normalized to

‖h‖ = C(rout) and ‖h‖ = D(rout) and rout = 0.5. For each k ∈ {2, 5, 10, 20},

5000 independent channel realizations were generated and the mutual information

of each normalized channel realization was computed. These results show that the

distribution of the mutual information of distributed reception with hard decision

exchanges with channels on the outer radius D(rout) tends to be quite close to the

actual outage rate rout = 0.5. Hence, at least in these examples, pk(α,D(rout)) is

likely to be a better approximation than pk(α,C(rout)). This is also corroborated

by the results in Section 3.6.

2.4 Numerical Results

This section provides numerical results to illustrate the effect of rout and k on the

radii of the outage regions and the outage probability of distributed reception.

Fig. 2.4 shows the four ‖h‖ radii developed in Section 2.3 as a function of rout
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Figure 2.3: Empirical distributions of Ih(X;Z) for distributed reception with hard
decision exchanges with normalized channels and outage rate rout = 0.5. The red
and green curves show Ih(X;Z) on the radii ‖h‖ = C(rout) and ‖h‖ = D(rout),
respectively. The blue line is the outage rate.
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for a k = 5 receiver system. The radius A(rout) was computed explicitly from (2.7)

and the remaining radii were computed using implicit function solvers via the pro-

cedures outlined in Section 2.3. These results show that the inner and outer radii

on the outage region of distributed reception with hard decision exchanges tend to

be close unless rout → 1. These results also show that the outage regions for ideal

beamforming with binary and Gaussian inputs tend to be close unless rout → 1.
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B(rout): radius of binary input ideal beamforming
A(rout): radius of Gaussian input ideal beamforming

Figure 2.4: Radii of outage quadrants as a function of rout for a k = 5 receiver
distributed reception system.

Note that an approximation for the performance gap in dB between ideal receive

beamforming and distributed reception with hard decision exchanges can be com-

puted by calculating β(rout) = 20 log10(D(rout)/B(rout)) Fig. 2.5 plots this gap for

k = 2, . . . , 20 and rout ∈ {0.1, 0.25, 0.5, 0.75, 0.9}. These results show that the perfor-

mance gap is always slightly less than 2 dB and appears to converge as k → ∞ to a
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value close to the classic hard decision penalty of 10 log10(π/2) ≈ 1.96 dB [12,22,127]

for the rout values tested.
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Figure 2.5: Approximate performance gap in dB between ideal receive beamforming
and distributed reception with hard decision exchanges versus k and rout.

Fig. 2.6 shows an outage probability simulation with outage probability plotted

versus Es/N0 for k = 1, 2, 5, 10 for a fixed outage rate rout = 0.5. The outage

probabilities were computed over 105 independent channel realizations with gi
i.i.d.∼

CN (0, 1). These results show that the outage probability of distributed reception

with hard decision exchanges is well-approximated by the analysis in Section2.3

and that the actual outage probability tends to be quite close to pk(α,D(rout))

corresponding to the outer integration region. The approximation resulting from

the inner integration region pk(α,C(rout)) tends to be somewhat loose, especially

for larger values of k. The gap between ideal receive beamforming and distributed

reception with hard decision exchanges is consistent with Fig. 2.5. Note that the
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results reported in [21] tend to be somewhat better than those shown in Fig. 2.6,

especially at smaller values of k, due to the fact that the distributed reception

technique in [21] combines locally unquantized information with the hard decisions

from other receive nodes.
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Figure 2.6: Outage probability versus Es/N0 and k for ideal receive beamforming
and distributed reception with hard decision exchanges with outage rate rout = 0.5.

While hard decisions exchanges add a severe nonlinearity to the receiver process-

ing, these numerical results show that the performance of distributed reception with

hard decision exchanges is still mainly determined by the channel norm ‖h‖. In fact,

in Fig. 2.6, the actual outage probability of distributed reception with hard decision

exchanges is almost indistinguishable from the approximation pk(α,D(rout)).
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2.5 Conclusions

The numerical results in this chapter indicate that the performance of distributed

reception with binary hard decision exchanges is mainly governed by the SNR ob-

tained by ideal receive beamforming (which is proportional to the square of the norm

of the vector channel to the receivers), except for a performance loss of a little less

than 2 dB. For a given vector channel norm ‖h‖, concentrating the channel strength

on one receiver gives an optimistic approximation for performance, while distribut-

ing the channel strength equally tends to give a slightly pessimistic approximation

which is often close to the actual outage probability performance.
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Chapter 3

Channel State Tracking for

Large-Scale Distributed MIMO

Communication Systems

This chapter considers the problem of estimating and tracking channels in a dis-

tributed transmission system with Nt transmit nodes and Nr receive nodes. Since

each node in the distributed transmission system has an independent local oscil-

lator, the effective channel between each transmit node and each receive node has

time-varying phase and frequency offsets which much be tracked and predicted to

facilitate coherent transmission. A linear time-invariant state-space model is devel-

oped and is shown to be observable but nonstabilizable. To quantify the steady-state

performance of a Kalman filter channel tracker, two methods are developed to effi-

ciently compute the steady-state prediction covariance. The first method requires

the solution of a 2(Nt+Nr −1)-dimensional discrete-time algebraic Riccati equation,

but allows for nonhomogenous oscillator parameters. The second method requires

the solution of four two-dimensional discrete-time algebraic Riccati equations but
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requires homogenous oscillator parameters for all nodes in the system. An asymp-

totic analysis is also presented for the homogenous oscillator case for systems with

a large number of transmit and receive nodes with closed-from results for all of the

elements in the asymptotic prediction covariance as a function of the carrier fre-

quency, oscillator parameters, and channel measurement period. Numeric results

confirm the analysis and demonstrate the effect of the oscillator parameters on the

ability of the distributed transmission system to achieve coherent transmission.

3.1 Background

We consider the distributed multi-input multi-output (MIMO) communication sce-

nario in Fig. 3.1 where a transmit cluster with Nt transmit nodes communicates

with a receive cluster with Nr receive nodes. The transmit cluster is assumed

to use coherent transmission techniques, e.g., distributed beamforming [82], dis-

tributed nullforming [35], and/or distributed zero-forcing beamforming [148]. It

is well known that coherent transmission techniques require channel state infor-

mation at the transmitters (CSIT). Several techniques have been proposed to ad-

dress this issue for distributed MIMO systems, with the goal of providing CSIT

either implicitly or explicitly. These include receiver-coordinated explicit feedback

[17,18,32,33,35,50,129], receiver-coordinated summarized feedback [86–88], master-

slave synchronization with retrodirective transmission [82], round-trip retrodirective

transmission [19,34,98], and two-way synchronization with retrodirective transmis-

sion [102, 103]. Each of these techniques has advantages and disadvantages in par-

ticular applications, as discussed in the survey article [85].

In this chapter, we focus on the receiver-coordinated explicit feedback scenario

in which the receive cluster measures the channels and provides explicit feedback to
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transmit
nodes

receive
nodes

g(n,m)(τ)

Figure 3.1: Distributed MIMO system model with Nt transmit nodes and Nr receive
nodes. Each node possesses a single antenna and an independent oscillator.

the transmit cluster to facilitate coherent transmission. This approach can be used

in time-division-duplex (TDD) and frequency-division-duplex (FDD) systems. We

assume no external source of synchronization in the system, hence the time-varying

phase and frequency offsets in each effective channel (which includes propagation

as well as oscillator offsets) must be tracked and predicted to facilitate coherent

transmission. We consider a scenario in which the effective channels are tracked by

one or more Kalman filters.

Kalman filters have been used extensively in clock tracking and synchronization,

e.g., [8,14,42,58] including global positioning systems (GPS) [23], the network time

protocol (NTP) [77], and the precision time protocol (PTP) [4]. The focus of this

prior work, however, is on tracking and correcting clock offsets between a single

pair of nodes (typically a master node such as a satellite and a slave node such as

a GPS receiver). The distributed MIMO setting of Fig. 3.1 generalizes this idea to

tracking a matrix of clock offsets corresponding to the collection of effective channels

between all of the transmitters and receivers. Since the dynamics of these channels
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are correlated, tracking channels individually is suboptimum.

A few recent papers have analyzed the performance of distributed beamforming

and distributed nullforming in the distributed MIMO setting [17, 18, 32, 33] and

have shown that the performance of these coherent transmission techniques can be

expressed as simple functions of the channel phase prediction variance [63]. The early

papers in this area made the simplifying assumption that each channel was tracked

individually or each receiver tracked only its own Nt channels. While the latter

approach is an improvement on tracking channels individually, it does not exploit

correlations across receivers. More recently, the idea of “unified” tracking has been

studied in which all of NtNr channels in the system are jointly tracked [33]. A system

with unified tracking achieves optimal performance by exploiting the correlations

across all of the effective channels. As verified in the numerical results of Section 3.6

and elaborated upon in Section 3.3.3, unified tracking can significantly outperform

approaches which separately track the phases of each oscillator.

This chapter is a formal analysis of the stability and steady-state behavior of

a Kalman filter tracker for the effective channel states of an unsynchronized dis-

tributed MIMO communication system in the case where the magnitudes of the

propagation channels |g(n,m)(τ)| are separately tracked and are slowly-varying. In

particular, although the state-space model for the effective channel states developed

in Section 3.2 is completely observable but not stabilizable, we show that the Kalman

filter is asymptotically stable subject to a properly chosen initial prediction covari-

ance. We then analyze the steady-state prediction covariance of the Kalman filter

tracker, establishing existence and uniqueness of a particular positive semidefinite

“strong” solution, and develop two methods to efficiently solve the resulting discrete-

time algebraic Riccati equation (DARE) for this strong solution. The first method

uses a similarity transformation to cast the system in a controllable staircase form

34



and reduces the original 2NtNr-dimensional DARE to a 2(Nt +Nr − 1)-dimensional

DARE. This method is also general in that it allows for nonhomogeneous oscilla-

tor and measurement noise parameters. The second method exploits the particular

structure of the state-space model and uses a similarity transform to cast the sys-

tem in a block diagonal form. When the oscillator parameters and measurement

noise variance are homogenous across all nodes in the system, this method reduces

to simply solving four 2-dimensional DAREs. This second method is particularly

useful for large-scale systems, e.g., distributed massive MIMO systems [47,67], since

the dimension of the DAREs is not a function of the transmit or receive cluster

sizes. To fully characterize the behavior of the prediction covariance for large sys-

tems, we present an asymptotic analysis for the case when Nt → ∞ and Nr = ηNt,

and develop closed-from results for all of the elements in the asymptotic prediction

covariance as a function of the carrier frequency, oscillator parameters, and channel

measurement period. Numeric results confirm the analysis and demonstrate the ef-

fect of the oscillator parameters on the ability of the distributed transmission system

to achieve coherent transmission.

3.2 System Model

Each node in the system shown in Fig. 3.1 is assumed to possess a single antenna.

The nodes in the system are not assumed to be synchronized. The nominal transmit

frequency in the forward link from the distributed transmit cluster to the receivers

is at ωc. All forward link channels are modeled as narrowband and linear. We

denote the channel from transmit node n to receive node m at carrier frequency ωc

as g(n,m)(τ) ∈ C for transmit node n = 1, . . . , Nt and receive node m = 1, . . . , Nr.

These propagation channels, in contrast to the time-varying “effective” channels
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described below, do not include the effect of carrier phase and/or frequency offsets

between transmit node n and receive node m.

Fig. 3.2 shows the effective narrowband channel model from transmit node n to

receive node m including the effects of propagation and carrier offset. Transmissions

n → m are conveyed on a carrier nominally at ωc generated at transmit node n,

incur a phase shift of ψ(n,m)(τ) = ∠g(n,m)(τ) over the wireless channel, and are then

downmixed by receive node m using its local carrier nominally at ωc. At time τ , the

effective narrowband channel from transmit node n to receive node m is modeled as

h(n,m)(τ) = g(n,m)(τ)e
j

(

φ
(n)
t (τ)−φ

(m)
r (τ)

)

= |g(n,m)(τ)|ejφ(n,m)(τ) (3.1)

where φ(n)

t (τ) and φ(m)
r (τ) are the local carrier phase offsets at transmit node n and

receive node m, respectively, at time τ with respect to an ideal carrier reference,

and

φ(n,m)(τ) := φ(n)

t (τ) + ψ(n,m)(τ) − φ(m)

r (τ)

is the pairwise phase offset after propagation between transmit node n and receive

node m at time τ .

local
carrier

LPF

transmit node n

local
carrier

receive node m

h(n,m)(τ)
g(n,m)(τ)

∼ ωc∼ ωc

1

Figure 3.2: Effective narrowband channel model including the effects of propagation,
transmit and receive gains, and carrier offset.

We consider an approach in which the effective channels are measured at the
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receive nodes and feedback is provided by the receive nodes to the transmit nodes

to facilitate coherent transmission. Note that there are two sources of independent

dynamics in each effective channel: (i) propagation dynamics and (ii) oscillator

dynamics. Since the oscillator dynamics do not affect the channel magnitudes, we

assume that the channel magnitudes |g(n,m)(τ)| are tracked separately using methods

as in [60] and are slowly-varying such that they are known perfectly. The problem of

estimating and tracking the effective channels h(n,m)(τ) then reduces to estimating

and tracking the pairwise phase offsets φ(n,m)(τ). The following sections provide an

overview of basic oscillator dynamics and then develop a unified dynamic model for

the phase and frequency offsets of the effective channels.

3.2.1 Oscillator Dynamics

Each local oscillator in the system has inherent frequency and phase offsets with

respect to some nominal reference and also behaves stochastically, causing phase

offset variations in each effective channel from transmit node n to receive node m

even when the propagation channels g(n,m) are otherwise time invariant. This section

describes a discrete-time dynamic model for the local oscillator dynamics at each

transmit and receive node.

Based on the two-state oscillator models in [40, 41], we define the discrete-time

state of the nth transmit node’s carrier as

x
(n)

t [k] :=









φ(n)

t [k]

φ̇(n)

t [k]









where φ(n)

t [k] = φ(n)

t (kT0) corresponds to the carrier phase offset in radians at trans-

mit node n with respect to an ideal carrier phase reference and where T0 > 0 is the
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state update period. The state update of the nth transmit node’s carrier follows

x
(n)

t [k + 1] = fx
(n)

t [k] + u
(n)

t [k] (3.2)

with

f :=









1 T0

0 1









. (3.3)

The local process noise vector u(n)

t [k]
i.i.d.∼ N

(

0,Q(n)

t

)

causes the carrier derived from

the local oscillator at transmit node n to deviate from an ideal affine phase trajectory.

The covariance of the discrete-time process noise is derived from a continuous-time

model in [40] and can be written as

Q
(n)

t = ω2
cT0









α(n)

t + β(n)

t
T 2

0

3
β(n)

t
T0

2

β(n)

t
T0

2
β(n)

t









(3.4)

where ωc is the nominal common carrier frequency in radians per second and α(n)

t

(units of seconds) and β(n)

t (units of Hertz) are the process noise parameters corre-

sponding to white frequency noise and random walk frequency noise, respectively.

The process noise parameters α(n)

t and β(n)

t can be estimated by fitting the theoret-

ical Allan variance σ2
y(τ) =

α
(n)
t

τ
+

β
(n)
t τ

3
to experimental measurements of the Allan

variance over a range of τ values. For example, a least squares fit to the Allan

variance specifications for a Rakon RPFO45 oven-controlled oscillator [105] yields

α(n)

t = 2.31×10−21 and β(n)

t = 6.80×10−23. Typical Allan variance values for various

types of oscillators are tabulated in [59].

The receive nodes in the system also have independent local oscillators used to

generate carriers for downmixing that are governed by the same dynamics as (3.2)

with state x(m)
r [k], process noise u(m)

r [k]
i.i.d.∼ N (0,Q(m)

r ), and process noise parameters
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α(m)
r and β(m)

r as in (3.4) for m = 1, . . . , Nr.

3.2.2 Pairwise Offset States and Observations

To facilitate coherent transmission, the receivers in the system periodically measure

the effective channels from the transmit cluster and feed back their measurements

to facilitate channel tracking at the transmitters as in [17, 18, 32, 33, 35]. Since the

receive nodes can only observe the relative phase and frequency of the transmit

nodes after propagation, we define the pairwise offset after propagation as

δ(n,m)[k] :=









φ(n,m)[k]

φ̇(n,m)[k]









= x
(n)

t [k] +









ψ(n,m)

0









− x(m)

r [k]

where ψ(n,m) is the propagation phase1. Note that δ(n,m)[k] is governed by the state

update

δ(n,m)[k + 1] = fδ(n,m)[k] + u
(n)

t [k] − u(m)

r [k]. (3.5)

We assume that observations are so short as to only provide useful phase estimates.

An observation of the n → m channel at receive node m is then modeled as

y(n,m)[k] = hδ(n,m)[k] + v(n,m)[k]

where

h :=
[

1 0

]

(3.6)

and v(n,m)[k]
i.i.d.∼ N (0, r) is scalar measurement noise with variance r assumed to be

spatially and temporally i.i.d., and independent of the process noise. The measure-

1For clarity of exposition and consistent with previous assumptions, the propagation phase is
assumed here to be slowly-varying with respect to the oscillator dynamics. If the propagation
phase ψ(n,m)[k] is not slowly varying, its dynamics can also be incorporated in the pairwise offset
state δ(n,m)[k].
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ment noise variance r depends on the several factors including the signal-to-noise

ratio of the channel and the duration of the measurement signal. Bounds on the

measurement noise variance for maximum likelihood phase estimators are given

in [106].

The use of a pairwise offset state is important in our tracking scenario since it

provides states which are physically meaningful as well as observable. It is straight-

forward to confirm the observability of [f ,h] as defined in (3.3) and (3.6) for any

T0 > 0. The following section develops a unified dynamic model comprising all of

the pairwise offset states in the system. We prove that this unified model is also

completely observable in Section 3.2.4.

3.2.3 Unified Dynamic Model

While it is possible to track each of the pairwise offset states δ(n,m)[k] in (3.5) in-

dividually, it is straightforward to see that the pairwise offset states do not have

independent dynamics. For example, δ(1,2)[k] and δ(1,3)[k] are correlated since they

share a common process noise term u
(1)

t [k]. This section develops a unified dy-

namic model for all of the pairwise offsets in the system to facilitate optimal unified

tracking. As shown in [33] in a zero-forcing distributed beamforming scenario, uni-

fied tracking can provide significant gains in the depth of the nulls with respect to

individual channel tracking.

We define the vector of unified pairwise offsets as

δ[k] :=

















δ(1)[k]

...

δ(Nr)[k]

















∈ R
2NtNr
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with

δ(m)[k] :=

















δ(1,m)[k]

...

δ(Nt,m)[k]

















∈ R
2Nt

From (3.5), the unified state dynamics follow as

δ[k + 1] =

















f

. . .

f

















δ[k]+

















u
(1)

t [k]−u(1)
r [k]

...

u
(Nt)

t [k]−u(Nr)
r [k]

















= Fδ[k] + Gu[k] (3.7)

with f defined in (3.3), the process noise vector

u[k] :=









































u
(1)

t [k]

...

u
(Nt)

t [k]

u(1)
r [k]

...

u(Nr)
r [k]









































∈ R
2(Nt+Nr)

with u[k]
i.i.d.∼ N (0,U), covariance matrix

U = E[u[k]u⊤[k]] = blockdiag(Q(1)

t , . . . ,Q
(Nt)

t ,Q(1)

r , . . . ,Q
(Nr)

r ) (3.8)
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, and

G :=

















I2Nt
J2Nt

...
. . .

I2Nt
J2Nt

















∈ R
2NtNr×2(Nt+Nr) (3.9)

where J2Nt
:= −[I2, . . . , I2]

⊤ ∈ R2Nt×2. The NtNr-dimensional vector observation

is then

y[k] =

















h

. . .

h

















δ[k] + v[k]

= Hδ[k] + v[k] (3.10)

with h defined in (3.6), H ∈ RNtNr×2NtNr , and

v[k] :=

















v(1,1)[k]

...

v(Nt,Nr)[k]

















∈ R
NtNr

denoting the i.i.d. measurement noise with v[k]
i.i.d.∼ N (0,R) and R = rINtNr

.

3.2.4 Model Properties

This section analyzes qualitative properties of the state variable realization (SVR)

specified in (3.7) and (3.10) as these properties are critical to the behavior and

performance of state tracking as well as the existence and uniqueness of steady-

state prediction covariances as analyzed in Section 3.4.

Two key properties in analyzing the behavior of the steady state Kalman Fil-
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ter are controllability and stabilizability. We first define the notion of complete

controllability below.

Definition 1. A discrete-time system is completely controllable if, given an arbitrary

destination point in the state space, there is an input sequence that will bring the

system from any initial state to this point in a finite number of steps [10].

The concept of stabilizability is closely related to controllability. Recall that an

unstable mode of a linear time-invariant discrete-time system is an eigenvector as-

sociated with an eigenvalue of the state transition matrix F with magnitude greater

than or equal to one. Stabilizability is defined below.

Definition 2. A system is stabilizable if all its unstable modes are controllable [7].

Since all modes of the SVR specified in (3.7) and (3.10) are unstable, such an

SVR is stabilizable if and only if it is completely controllable.

Denote U = E[u[k]u⊤[k]] and the Cholesky factorization of U as U 1/2 such that

U 1/2(U 1/2)⊤ = U . A common test for complete controllability [10] is to compute

the rank of the “controllability matrix” of the pair [F ,GU 1/2], i.e.,

C =
[

GU 1/2 FGU 1/2 · · · F 2NtNr−1GU 1/2

]

(3.11)

where C ∈ R2NtNr×(2NtNr(2(Nt+Nr)). The SVR specified in (3.7) and (3.10) is com-

pletely controllable if and only if rank(C) = 2NtNr.

It can be shown that the rank of GU 1/2 is 2(Nt + Nr − 1). Intuitively, this is a

consequence of the fact that, while the number of states in the unified dynamic model

grows according to the product NtNr, the number of independent oscillators grows

according to the sum Nt +Nr. In fact 2(NtNr −Nt −Nr + 1) state elements can be

determined from 2(Nt +Nr −1) state elements, to up to unknown, but deterministic,
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bias terms, representing differences of the channel phases ψ(n,m). This causes the

process noise Gu[k] to span only a subspace of the 2NtNr-dimensional state space.

Hence, rank(C) ≤ 2(Nt + Nr − 1) ≤ 2NtNr where the second inequality is strict

if Nt > 1 and Nr > 1. In other words, the SVR specified in (3.7) and (3.10) is

not stabilizable unless Nt = 1 or Nr = 1. As discussed in Section 3.3, this lack of

stabilizability results in additional conditions that must be satisfied for a Kalman

filter tracker to be asymptotically stable.

We now consider the observability of the SVR specified in (3.7) and (3.10).

Definition 3. A system is completely observable if its initial state can be fully and

uniquely recovered from a finite number of observations of its output (in the absence

of noise) and knowledge of its input [10].

A common test to check complete observability for linear time-invariant systems

is to compute the rank of the “observability matrix” of the pair [F ,H ], given as

O =

























H

HF

...

HF 2NtNr−1

























(3.12)

where O ∈ R(NtNr(2NtNr))×2NtNr . The system is completely observable if and only

if rank(O) = 2NtNr. The following lemma establishes that the SVR specified in

(3.7) and (3.10) is completely observable, an important property that will be used

in several later results.

Lemma 1. Given T0 > 0, [H ,F ] as specified in (3.7) and (3.10) is completely

observable.
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Proof. Observe that H = INrNt
⊗ h and F k = INrNt

⊗ f k with

f k =









1 kT0

0 1









.

Since hf k = [1, kT0], we can write

HF k = INrNt
⊗ hf k ∈ R

NtNr×2NtNr .

It is straightforward to see that the observability matrix in (3.12) has row rank

2NtNr for any T0 > 0 since the square matrix

O′ =









H

HF









∈ R
2NtNr×2NtNr

is full rank when T0 > 0. Hence [H ,F ] as specified in (3.7) and (3.10) is completely

observable.

A condition necessary for the Kalman Filter to converge to a well-defined steady-

state solution is that the SVR in (3.7) and (3.10) is detectable. We conclude this

section by defining detectability below.

Definition 4. A system is detectable if all its unstable modes are observable [7].

Since complete observability suffices for detectability, the SVR specified in (3.7)

and (3.10) is indeed detectable.

3.3 Optimal Channel Estimation and Tracking

It is straightforward to see that the dynamic model and observations specified in

(3.7) and (3.10) comprise a standard linear time-invariant (LTI) Gauss-Markov
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model with zero-mean temporally i.i.d. Gaussian mutually independent process and

measurement noises with process noise covariance Q and measurement noise co-

variance R. Further assuming an independent Gaussian initial state δ[0], it follows

that a standard Kalman filter [7] can be used to generate optimal (both minimum

variance and maximum likelihood) estimates and one-step predictions of the unified

pairwise offset state δ[k].

3.3.1 Asymptotic Stability of the Kalman Filter

We denote δ̂[k | ℓ] as the MMSE estimate of the state δ[k] given observations {y[0], . . . , y[ℓ]}

and δ̃[k | ℓ] = δ̂[k | ℓ] − δ[k] as the estimation error. As part of the Kalman filter

recursion, the (one-step) prediction covariance at time k, defined as

P [k] := E
{

δ̃[k | k − 1](δ̃[k | k − 1])⊤
}

∈ R
2NtNr×2NtNr

is updated via the Riccati difference equation

P [k + 1] = FP [k]F⊤ − FP [k]H⊤(HP [k]H⊤ + R)−1HP [k]F⊤ + Q (3.13)

given an initial prediction covariance P [0].

Although the system specified in (3.7) and (3.10) is not stabilizable, the following

theorem (adapted from [6, Theorem 4.1]) establishes conditions sufficient for the

Kalman filter to be asymptotically stable.

Theorem 2. If F , F−1, Q, and R−1 are all bounded, [HR−1/2,F ] is completely

observable, and

W [k] = F kP [0](F k)⊤ +
k
∑

ℓ=1

F k−ℓQ(F k−ℓ)⊤
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is nonsingular for some k where P [0] is the initial prediction covariance, then the

Kalman filter is asymptotically stable.

The boundedness conditions are satisfied for the system specified in (3.7) and

(3.10) under the usual assumptions that r > 0, T0 < ∞, and the oscillator param-

eters are finite. Lemma 1 establishes complete observability. The final condition,

W [k] is non-singular for some k, can be thought of as an interaction between the

initial prediction covariance P [0] and the controllability Gramian. The singularity

of the summation in the expression for W [k] represents a lack of reachability of

[F ,Q1/2]. Suppose W [k] is singular for all k and consider its nontrivial null space.

Then this null space represents a linear combination of states that are perfectly

known at k = 0, and are not affected by the process noise. Thus the Kalman filter

does not update these modes. Should they be on or outside the unit circle, then the

resulting filter cannot be stable. Observe that it is sufficient (but not necessary) to

select P [0] to be any positive definite matrix to satisfy the condition given in the

theorem for the system specified in (3.7) and (3.10).

The prediction covariance is particularly important for distributed coherent trans-

mission systems since the achievable performance of distributed beamforming and

nullforming is a direct function of the phase prediction variance [33,63]. The phase

prediction variances correspond to the (i, i)th elements of P [k] for odd values of i.

3.3.2 Unified Tracking Example

As an example of typical tracking behavior, we demonstrate a Kalman filter tracker

for the unified model specified in (3.7) and (3.10) for a system withNt = 20 transmit-

ters and Nr = 10 receivers. The state update interval was set to T0 = 0.250 seconds

and the carrier frequency was set to ωc = 2π · 900 · 106 radians/sec. All oscilla-

tors were assumed to have the same process noise parameters with α(n)

t = α(m)
r =
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2.31 × 10−21 seconds and β(n)

t = β(m)
r = 6.80 × 10−23 Hertz for all n and m ac-

cording to the Rakon RPFO45 oven-controlled oscillator parameters as discussed in

Section 3.2.1. The measurement noise variance was set to r = (2π · 10/360)2 rad2.

Figure 3.3 plots the (1,1) and (2,2) elements of the prediction covariance ma-

trix P [k], corresponding to the phase prediction variance and frequency prediction

variance, respectively, versus the experimentally determined prediction variances

obtained via Monte-Carlo simulation of the Kalman filter over 500 independent re-

alizations of the initial states, process noises, and measurement noises. This example

shows that the actual prediction variances of the Kalman filter agree with the corre-

sponding elements of the prediction covariance matrix P [k] and that the prediction

variances converge toward steady-state values. These values were obtained by solv-

ing a discrete-time algebraic Riccati equation. The following section formalizes the

existence of the steady-state prediction covariance in the unified dynamic model

and develops closed-form expressions for the asymptotic prediction covariance as

Nt → ∞ with Nr = ηNt.

3.3.3 Example Tracking and Feedback Implementation Strate-

gies

In the context of coherent distributed MIMO communication systems, the purpose

of channel tracking is to produce optimal channel predictions and to facilitate com-

putation of precoding vectors for coherent distributed communication techniques,

e.g., distributed beamforming and/or distributed nullforming. In the absence of

channel reciprocity, some form of feedback from the receive nodes to the transmit

nodes is required to facilitate coherent transmission. There are several ways in which

the tracking system and feedback can be implemented. This section discusses two

possible implementation strategies and their tradeoffs.
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Figure 3.3: Phase and frequency prediction variances for a Kalman filter tracker of
the unified state-space model with Nt = 20, Nr = 10, and T0 = 0.250.
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One possible implementation strategy is for the tracking and precoding vector

calculations to be performed by a designated master receive node and for this re-

ceive node to feed back one or more precoding vectors to the transmit nodes. By

exchanging messages among the receive nodes, the master receive node receives

channel measurements from the other receive nodes, forms a complete copy of the

observation vector y[k] containing all NtNr noisy channel phase measurements, gen-

erates channel predictions, computes the desired precoding vectors, and provides

these precoding vectors to the transmit nodes via the feedback channel.

A second possible implementation strategy is for the receivers to feed back their

observations and for one or more transmitters to perform the tracking. Since the ob-

servations at the receivers are broadcast back to the transmitters, each transmitter

in the system will receive a complete copy of the observation vector y[k] containing

all NtNr noisy channel phase measurements. Each transmitter can then track the

unified state δ[k], generate channel predictions, and compute precoding vectors in-

dividually without any additional information exchange between the transmitters.

Alternatively, to avoid redundant computation, a master transmitter could be se-

lected to perform the tracking and distribute precoding vector coefficients to the

slave transmitters.

The first strategy has lower feedback requirements but requires centralized pro-

cessing by a designated master receive node. The second strategy can be imple-

mented without any messaging among the receive nodes or among the transmit

nodes but has higher feedback requirements. While other implementation strategies

are also possible, the particular choice of implementation strategy depends on the

constraints and desired tradeoffs of the specific application. The analysis and numer-

ical results in this paper do not depended on the particular tracking and feedback

implementation strategy.
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3.3.4 A Remark on Phase Unwrapping

While we have assumed the observations in (3.10) to be unwrapped phase measure-

ments, it is usually the case in practical systems that only wrapped phase measure-

ments are available. Additional considerations are often necessary in this case to

avoid phase aliasing, incorrect phase unwrapping, and poor tracking performance.

The problem of tracking phases and frequencies in systems with wrapped phase

measurements is well-known and results in an integer ambiguity in the noisy phase

observations [10]. Several solutions have been proposed to work around this ambi-

guity, e.g., [55, 65, 118, 128]. In practice, the effect of wrapped phase measurements

is negligible if the standard deviation of the Kalman filter phase prediction error is

small with respect to π. Since this is typically not be the case during startup, one

possible solution is to obtain accurate phase and frequency estimates [106] prior to

tracking and to initialize the Kalman filter with predictions from these estimates.

During steady-state operation, this also sets an upper limit on the observation in-

terval T0 since the steady-state phase prediction variance is an increasing function

of T0.

3.4 Steady-State Prediction Covariance Analysis

In this section, we analyze the steady-state behavior of a Kalman filter tracker for

the unified state δ[k]. It is known that [H ,F ] completely observable is sufficient for

(3.13) to converge to a finite symmetric positive semidefinite steady-state covariance

as k → ∞ [10]. This steady-state covariance is not necessarily unique, however, and

may depend on the initial covariance P [0]. If, in addition, the system is such that

[F ,GU 1/2] is completely controllable, it is known that the steady-state prediction

covariance is unique and positive definite. As discussed in Section 3.2.4, the sys-
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tem specified in (3.7) and (3.10) does not satisfy this condition due to its lack of

stabilizability.

In this section, we analyze the steady-state prediction covariance of the system

specified in (3.7) and (3.10) assuming that the initial prediction covariance P [0] is

selected such that (3.13) converges to a strong solution. From [24], a real symmetric

positive semidefinite solution of the discrete-time algebraic Riccati equation (DARE)

P = FPF⊤ − FPH⊤(HPH⊤ + R)−1HPF⊤ + Q. (3.14)

is said to be a strong solution if the corresponding filter state transition matrix

E := F − FPH⊤(HPH + R)−1H (3.15)

has all of its eigenvalues inside or on the unit circle. Note that a strong solution is

not necessarily a stabilizing solution since a stabilizing solution requires all of the

eigenvalues of E to be strictly inside the unit circle. As shown in [24, Theorem 3.1],

detectability is sufficient to establish the existence and uniqueness of a strong solu-

tion. The following theorem [24, Theorem 4.3] further establishes that observability

along with an appropriately chosen initial prediction covariance P [0] is sufficient to

ensure that (3.13) converges to the unique strong solution of (3.14).

Theorem 3. Subject to [H ,F ] observable and (P [0] − P ) > 0 or P [0] = P , then

lim
k→∞

P [k] = P

where P [k] follows (3.13) with initial condition P [0] and where P is the unique

positive semidefinite strong solution of (3.14).

From a practical standpoint, we are interested characterizing the unique strong

52



solution to (3.14) since any other solution to (3.14) will result in a filter state tran-

sition matrix with poles outside of the unit circle. Hence, we will assume hereafter

that the initial prediction covariance is selected so that the conditions of Theorem 3

are satisfied. One difficulty in calculating the strong solution is that the strong solu-

tion P is not positive definite since the system specified in (3.7) and (3.10) has one

or more uncontrollable modes on the unit circle. This precludes direct calculation

with standard numerical solvers such as Matlab’s dare function. To overcome

this difficulty, the following section describes a procedure for computing the strong

solution to (3.14) for the system specified in (3.7) and (3.10) that has the additional

benefit of reducing the dimension of the associated discrete-time algebraic Riccati

equation.

3.4.1 Computing the Unique Strong Solution

Since [F ,GU 1/2] is not stabilizable, there exists T such that

A = TFT−1, B = TGU 1/2, C = HT −1 (3.16)

with

A =









A1 A2

0 A3









,B =









B1

0









,C =
[

C1 C2

]

(3.17)

such that [A1,B1] is completely controllable. Such a decomposition is known as a

Kalman decomposition [25, pp.159-163] and can also be used to separate observable

and unobservable states. For the system specified by (3.7) and (3.10), we have

A1 ∈ R2(Nt+Nr−1)×2(Nt+Nr−1). The following theorem establishes that the unique

strong solution to (3.14) can be found through solving a reduced dimensional DARE

for {A1,B1,C1,R}.
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Theorem 4. The unique strong solution to (3.14) is

P = T−1
Π̄T−⊤

with T defined in (3.16) and with positive semidefinite Π̄ ∈ R2NtNr×2NtNr defined as

Π̄ :=









Π 0

0 0









(3.18)

with Π ∈ R2(Nt+Nr−1)×2(Nt+Nr−1) the unique positive definite solution to

Π = A1

(

Π−ΠC⊤
1

(

C1ΠC⊤
1 +R

)−1
C1Π

)

A⊤
1 + B1B

⊤
1 . (3.19)

A proof of this theorem is provided in Appendix A.1. While this result was

developed here in the context of the unified dynamic model as specified in (3.7)

and (3.10), it is worth pointing out this result is general in that it only requires

[H ,F ] completely observable and the eigenvalues of F to be on or inside the unit

circle. One consequence of this result is that the resulting discrete-time algebraic

Riccati equation for Π is of dimension 2(Nt + Nr − 1) × 2(Nt + Nr − 1), which is

considerably smaller than the dimensions of P ∈ R2NtNr×2NtNr when Nt and/or Nr

is large. Nevertheless, it can still be computationally difficult to solve (3.14) for

large Nt and/or large Nr since the dimensions of the similarity transform in (3.16)

become large and the dimensions of the resulting reduced-dimensional DARE in

(3.19) still grow without bound as Nt → ∞ and/or Nr → ∞. In the particular case

when the oscillator parameters are identical for all of the nodes in the system, the

repetitive structure of the system matrices allows for an even more efficient solution

of (3.14), as discussed in the following section.
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3.4.2 Strong Solution with i.i.d. Process and Measurement

Noise

In this section we assume that the transmit and receive nodes have identical and

independent process noise statistics with Q
(n)

t = Q(m)
r = q ∈ R2×2. In this case, we

have E
[

u[k]u⊤[k]
]

= U = INt+Nr
⊗ q and process noise covariance can be written

as

Q = GE
[

u[k]u⊤[k]
]

G⊤

=

















































2q q · · ·
q 2q · · ·
...

...
. . .

q 0

0 q

. . .

· · ·

q 0

0 q

. . .

2q q · · ·
q 2q · · ·
...

...
. . .

· · ·

...
...

. . .

















































(3.20)

= INr
⊗ Q0 + 1Nr

1
⊤
Nr

⊗ Q1

= ΓNr
(Q0,Q1)
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with Q0 = 1Nt
1

⊤
Nt

⊗ q and Q1 = INt
⊗ q and where the final equality uses the

Γ-notation established as follows

Γn(A,B) := In ⊗ A + 1n1
⊤
n ⊗ B

=

























A + B B · · · B

B A + B

...
. . .

B A + B

























. (3.21)

If the measurement noise covariance also satisfies R = rINtNr
, it is straightfor-

ward to see that every matrix {F ,H ,R,Q} in the system as specified in (3.7) and

(3.10) can be written in this Γ-notation. The following Theorem establishes that,

when {F ,H ,R,Q} can be expressed in this form (subject to observability), (3.14)

can be efficiently solved by solving only two smaller DAREs.

Theorem 5. Given [H ,F ] is completely observable and

F = Γn(F0,F1) with F0 ∈ R
s×s and F1 ∈ R

s×s,

H = Γn(H0,H1) with H0 ∈ R
t×s and H1 ∈ R

t×s,

R = Γn(R0,R1) with R0 ∈ R
t×t and R1 ∈ R

t×t, and

Q = Γn(Q0,Q1) with Q0 ∈ R
s×s and Q1 ∈ R

s×s

then the unique strong solution to (3.14) is given as P = Γn(P0,P1) with P0 ∈ Rs×s

the unique strong solution of

P0 =F0

[

P0−P0H
⊤
0 (H0P0H

⊤
0 +R0)

−1H0P0

]

F⊤
0 + Q0
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and P̄ = P0 + nP1 ∈ Rs×s the unique strong solution of

P̄ = F̄
[

P̄ − P̄ H̄⊤(H̄P̄ H̄⊤ + R̄)−1H̄P̄
]

F̄⊤ + Q̄ (3.22)

with F̄ := F0 + nF1, H̄ := H0 + nH1, R̄ := R0 + nR1, and Q̄ := Q0 + nQ1.

A proof of Theorem 5 is provided in Appendix A.2. Observe that the system

specified in (3.7) and (3.10) satisfies the requirements of Theorem 5 with n = Nr.

The utility of this theorem is that the 2NtNr ×2NtNr DARE in (3.14) can be solved

by computing two smaller 2Nt × 2Nt DAREs, each of which is of lower dimension

than the method described in Section 3.4.1. While the dimension of these smaller

DAREs also grows without bound as Nt → ∞, it turns out that we can further

simplify the solution of (3.14) by observing that the system specified in (3.7) and

(3.10) has the additional structure

F0 = ΓNt
(f , 0)

H0 = ΓNt
(h, 0)

R0 = ΓNt
(r, 0)

Q0 = ΓNt
(0, q)

Q1 = ΓNt
(q, 0)

with f ∈ R2×2, h ∈ R1×2, r ∈ R, and q ∈ R2×2 all defined in Section 3.2.3. Hence,

Theorem 5 can be recursively applied in the context of the oscillator tracking problem

to say that P = ΓNr
(P0,P1) with

P0 = ΓNt
(p00,p01) (3.23)

P1 = ΓNt
(p10,p11) (3.24)
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where p00, p01, p10, and p11 are all 2 × 2 matrices. This result implies that, irre-

spective of the number of transmit and receive nodes, the 2NtNr ×2NtNr prediction

covariance in (3.14) can be efficiently computed for the unified oscillator tracking

problem by solving four 2 × 2 DAREs.

We can show that one of these 2 × 2 DAREs is trivial to solve in our unified

oscillator tracking scenario. Recursively applying Theorem 5, we can write

p00 = f

[

p00 − p00h
⊤
(

hp00h
⊤ + r

)−1
hp00

]

f⊤ + 0.

The unique solution to this DARE is p00 = 0, which implies that P0 = ΓNt
(0,p01) =

1Nt
1

⊤
Nt

⊗ p01. The remaining 2 × 2 constituent matrices p10, p01, and p11 can be

easily solved with numeric DARE solvers and then recombined to determine P0, P1,

and P .

3.5 Asymptotic Prediction Covariance Analysis

In this section, under the assumption that all nodes in the system have i.i.d. process

and measurement noises, we develop closed-form expressions for the 2×2 constituent

matrices p10, p01, and p11 defined in (3.23) and (3.24) in the asymptotic regime where

Nt → ∞ and Nr = ηNt. This analysis leads to simple expressions for the elements

in the steady-state prediction covariance matrix P that, as shown in Section 3.6,

can be good approximations of the actual steady-state prediction covariance even

for modest values of Nt and Nr.

In the system defined in (3.7) and (3.10), we have F1 = 0, H1 = 0, and R1 = 0.

We can define P̂ := N−1
r P̄ and Q̂ := N−1

r Q̄, and substitute n = Nr to rewrite
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(3.22) as

P̂ = F0

[

P̂ −P̂H⊤
0 (H0P̂H⊤

0 +N−1
r R0)

−1H0P̂
]

F⊤
0 +Q̂. (3.25)

As Nr → ∞, we have P̂ → P1 and Q̂ → Q1. Hence, (3.25) becomes

P1 = F0

[

P1 − P1H
⊤
0

(

H0P1H
⊤
0

)−1
H0P1

]

F⊤
0 + Q1.

Since Q1 = INt
⊗q, F0 = INt

⊗f , and H0 = INt
⊗h are all block diagonal matrices,

it is straightforward to see that the asymptotic value of P1 is also block diagonal.

In other words, P1 → INt
⊗ p10 and p11 → 0. Hence, to determine P1 for large Nr,

it is only necessary to solve the 2 × 2 DARE

p10 = f

[

p10 − p10h
⊤
(

hp10h
⊤
)−1

hp10

]

f⊤ + q. (3.26)

Now consider P0 = 1Nt
1

⊤
Nt

⊗ p01. Defining p̂01 = N−1
t p00 + p01, we have that

p̂01 = p01 since, as shown previously, p00 = 0 for any Nt and Nr. Theorem 5 implies

that p01 satisfies

p01 = f

[

p01 − p01h
⊤
(

hp01h
⊤ +N−1

r r
)−1

hp01

]

f⊤ + q

which, in the limit as Nr → ∞, is identical in form to (3.26). Hence, in the

asymptotic regime where Nt → ∞ and Nr = ηNt, we have p01 = p10 = p with

p satisfying the 2 × 2 DARE

p = f

[

p − ph⊤
(

hph⊤
)−1

hp

]

f⊤ + q. (3.27)

In other words, it is only necessary to solve a single 2×2 DARE to fully characterize
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the 2NtNr × 2NtNr asymptotic prediction covariance matrix P .

Summarizing these results, we have p00 = 0, p11 → 0, p01 → p, and p10 → p as

Nt → ∞ with Nr = ηNt. Hence,

P0 → ΓNt
(0,p) (3.28)

P1 → ΓNt
(p, 0) (3.29)

with p satisfying (3.27) and the asymptotic prediction covariance P = Γn(P0,P1)

taking the same form as (3.20) with q replaced by p.

To compute closed-form expressions for the elements of p, we denote

p =









p(1, 1) p(1, 2)

p(2, 1) p(2, 2)









and, from (3.4) under the assumption of identical process noise statistics at each

receive node, set

q = ω2
cT0









α + β
T 2

0

3
β T0

2

β T0

2
β









.

Some straightforward algebra on (3.27) yields

p(1, 2) = p(2, 1) = ω2
cT

2
0 β
(

γ +
1

2

)

with γ :=
√

1
12

+ α
T 2

0 β
. The remaining elements of p follow as

p(1, 1) = ω2
cT

3
0 β
(

γ +
1

2

)2

p(2, 2) = ω2
cT0β (γ + 1)
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Note that the asymptotic prediction covariance is not a function of η = Nr

Nt
or

the measurement noise variance r. The asymptotic prediction covariance is only a

function of the i.i.d. process noise parameters α and β as well as the carrier frequency

ωc and the update period T0. The parameter η only affects the rate at which the

elements of the prediction covariance matrix approach their asymptotic values, as

shown in Section 3.6.

3.6 Numerical Results

This section presents numerical results confirming the asymptotic analysis in Sec-

tion 3.5 and also demonstrating the advantages of unified tracking in a scenario

with simultaneous beamforming and nullforming. All of the results in this section

assume a measurement noise standard deviation of 10 degrees, corresponding to

r = (2π · 10/360)2 rad2. Since there are only 12 unique elements in the prediction

covariance matrix P irrespective of the number of transmit and receive nodes, Ta-

ble 3.1 lists the 12 relevant elements of P , their meanings, and their asymptotic

values.

Fig. 3.4 plots elements of the prediction covariance matrix P versus the number

of transmit nodes Nt with Nr = ηNt and η = 0.2. The simulation parameters are

otherwise identical to those in Section 3.3 (T0 = 0.250 seconds, ωc = 2π · 900 ·

106 radians/sec, α(n)

t = α(m)
r = 2.31 × 10−21 seconds, and β(n)

t = β(m)
r = 6.80 ×

10−23 Hertz for all n and m). These results confirm the asymptotic analysis in

Section 3.5 and show that asymptotic results can be accurate predictions of many

of the elements of the prediction covariance matrix even for small values of Nt and

Nr.

Fig. 3.5 repeats the results in Fig. 3.4 with η = 1. As predicted in Section 3.5,
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Table 3.1: Unique elements of the prediction covariance matrix P with n′ 6= n and
m′ 6= m.

P (i, j) Meaning and asymptotic value

P (1, 1) Phase var cov(φ(n,m), φ(n,m)) → 2p(1, 1)

P (1, 2) Phase/freq cov cov(φ(n,m)φ̇(n,m)) → 2p(1, 2)

P (2, 2) Frequency var cov(φ̇(n,m), φ̇(n,m)) → 2p(2, 2)

P (3, 1) Phase cov cov(φ(n,m), φ(n′,m)) → p(1, 1)

P (3, 2) Phase/freq cov cov(φ(n,m)φ̇(n′,m)) → p(1, 2)

P (4, 2) Frequency var cov(φ̇(n,m), φ̇(n′,m)) → p(2, 2)

P (2Nt + 1, 1) Phase cov cov(φ(n,m), φ(n,m′)) → p(1, 1)

P (2Nt + 1, 2) Phase/freq cov cov(φ(n,m)φ̇(n,m′)) → p(1, 2)

P (2Nt + 2, 2) Frequency var cov(φ̇(n,m), φ̇(n,m′)) → p(2, 2)

P (2Nt + 3, 1) Phase cov cov(φ(n,m), φ(n′,m′)) → 0

P (2Nt + 3, 2) Phase/freq cov cov(φ(n,m)φ̇(n′,m′)) → 0

P (2Nt + 4, 2) Frequency var cov(φ̇(n,m), φ̇(n′,m′)) → 0
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Figure 3.4: Relevant elements of the prediction covariance matrix versus the number
of transmit nodes Nt with Nr = ηNt and η = 0.2
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the asymptotic results are unaffected by η. The main difference in these results with

respect to those in Fig. 3.4 are that the elements of the prediction covariance matrix

converge more quickly to their asymptotic values since Nr is larger for each value of

Nt. Also note that the covariances P (2Nt + 1, 1), P (2Nt + 1, 2), and P (2Nt + 2, 2)

converge at the same rate as P (3, 1), P (3, 2), and P (4, 2) in this example. This is

a consequence of the fact that Nt = Nr in this system.

In both Fig. 3.4 and Fig. 3.5, observe that the steady-state phase prediction

variance P (1, 1) ≤ 0.06 rad2 in all of the cases considered. This corresponds to a

phase prediction standard deviation of less than 0.08·π, implying that the probability

of phase aliasing (cycle slips) from wrapped phase measurements during steady-state

operation of the Kalman filter is small in these examples.
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Figure 3.5: Relevant elements of the covariance matrix versus the number of transmit
nodes Nt with Nr = ηNt and η = 1

Fig. 3.6 plots the asymptotic phase standard deviation (in degrees) versus oscil-
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lator parameters α and β for T0 = 0.250 seconds and ωc = 2π · 900 · 106 radians/sec.

Specifically, this plot shows 360
2π

·
√

p(1, 1) over a range of typical oscillator param-

eters with “good XO” and “poor XO” oscillator parameters fitted to a table of

typical Allan variances from [59]. These results show that a system using the Rakon

oven-controlled oscillators with T0 = 0.250 seconds and ωc = 2π · 900 · 106 radi-

ans/sec will have an asymptotic phase prediction standard deviation of less than

10 degrees, which is more than adequate to achieve good coherent beamforming

gains but may be insufficient to achieve deep nulls [33]. The “poor XO” has an

asymptotic phase prediction standard deviation so large that coherent distributed

transmission is impossible. To achieve coherent transmission with the “poor XO”,

the carrier frequency ωc and/or the measurement interval T0 must be reduced.

1

5

10

30

60

90

oscillator alpha parameter (seconds)

os
ci

lla
to

r 
be

ta
 p

ar
am

et
er

 (
H

er
tz

)

Rakon RPF045

poor XO

good XO

10
−24

10
−23

10
−22

10
−21

10
−20

10
−19

10
−18

10
−17

10
−16

10
−27

10
−26

10
−25

10
−24

10
−23

10
−22

10
−21

10
−20

10
−19

10
−18

Figure 3.6: Asymptotic phase standard deviation (in degrees) versus oscillator pa-
rameters α and β for T0 = 0.250 seconds and ωc = 2π · 900 · 106 radians/sec.

To demonstrate the performance of unified tracking in a communications set-
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ting, we consider a scenario where the distributed transmit array forms forms nulls

toward Nr − 1 “protected” receivers and uses the remaining degrees of freedom to

form a beam and maximize the power at the remaining “intended” receiver. The

phase predictions from the Kalman filter are used in conjunction with the known

channel amplitudes to calculate a time-varying zero-forcing linear precoding vector

as described in [33]. All channels are assumed to have unit magnitude and the

transmit array is assumed to have a unit total power constraint.

Figure 3.7 shows the distributed beamforming and nullforming performance of

a system with Nt = 10 transmitters, Nr = 5 receivers, and a measurement interval

T0 = 250 ms. Results are shown for “individual tracking” in which each pairwise

channel is tracked in a separate two-state Kalman filter versus “unified tracking”

as described in Section 3.2.3. The results were averaged over 2000 realizations of

the random initial frequency offsets, clock process noises, and measurement noises.

Measurements occur at t = kT0 for k = 0, 1, . . . .

Subfigure (a) of Fig. 3.7 shows the beamforming performance. Due to the rela-

tively poor frequency estimates of the Kalman filters after the first measurement at

t = 0, the beam is effectively incoherent on 0 < t < 0.25. After the second measure-

ment at t = 0.25, the Kalman filter state estimates and the resulting beam power

improves and approaches the theoretical maximum 10 log10 (Nt(1 − (Nr − 1)/Nt) ≈

7.8 dB. As t increases in the beamforming interval 0.25 < t < 0.50, the channel

predictions become increasingly stale and the resulting beamforming performance

degrades slightly by the end of the beamforming interval. In this example, the beam-

forming performance approaches its steady-state behavior after only a few measure-

ment intervals and the performance of individual and unified channel tracking is

effectively identical.

Subfigures (b) and (c) of Fig. 3.7 show the nullforming performance with subfig-
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ure (b) showing the transient behavior on 0 < t < 3 and subfigure (c) showing the

steady-state behavior on 9 < t < 12. As with beamforming, the nulls are effectively

incoherent after one measurement on the interval 0 < t < 0.25. The null powers

improve with subsequent measurements and the effect of stale channel predictions is

more pronounced than with beamforming. Subfigure (c) shows that unified tracking

can provide a potentially significant advantage in nullforming gain with nulls 3-4 dB

deeper than with individual channel tracking in this example.
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Figure 3.7: Beamforming (subfigure (a)) and nullforming (subfigures (b) and (c))
performance for a distributed MIMO system with Nt = 10 transmitters and Nr = 5
receivers. Nulls are steered toward four receivers and a beam is steered toward the
fifth receiver.
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3.7 Conclusions

This chapter presented a formal analysis of the stability and steady-state behav-

ior of a Kalman filter tracker for the effective channel states in an unsynchronized

distributed MIMO system. While the state-space system was shown to be nonsta-

bilizable, the Kalman filter tracker was shown to be asymptotically stable subject

to a properly chosen initial prediction covariance. A unique “strong” solution to

the steady-state prediction covariance was also shown to exist and two methods

were developed to efficiently solve for this unique strong solution. An asymptotic

analysis was also presented for large networks with closed-from results for all of the

elements in the asymptotic prediction covariance matrix. Numeric results confirmed

the analysis and demonstrated the effect of the oscillator parameters on the ability

of the system to achieve coherent transmission.
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Chapter 4

Throughput Maximization in

Wireless Powered Communication

Networks with Energy Saving

This chapter considers a time division multiple access scenario where a wireless

access point transmits to a group of users which harvest the energy and then use this

energy to transmit back to the access point. Past approaches have found the optimal

time allocation to maximize sum throughput under the assumption that the users

must use all of their harvested power in each block of the “harvest-then-transmit”

protocol. This chapter considers optimal time and energy allocation to maximize

the sum throughput for the case when the nodes can save energy for later blocks.

To maximize the sum throughput over a finite horizon, the initial optimization

problem is separated into two sub-problems and finally can be formulated into a

standard box-constrained optimization problem, which can be solved efficiently. A

tight upper bound is derived by relaxing the energy harvesting causality. Simulation

results are also provided to demonstrate the “harvest-then-transmit” protocol with
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energy saving provides improved sum throughput increasing with the number of

transmission blocks.

4.1 Background

Prolonging the lifetime of battery powered devices in wireless networks is an impor-

tant problem [36]. Replacing or recharging batteries may be inconvenient (e.g., for a

sensor network with massive distributed sensor nodes), dangerous (e.g., for devices

positioned in toxic environments), or even impossible (e.g., for the medical sensors

implanted inside human bodies). To overcome such situations, energy harvesting

has become an attractive approach with the potential of extending the lifetime of

these devices. Energy harvesting nodes have the ability to recharge their batteries

from their surrounding environment by using solar, heat, vibration, or other energy

sources [99, 121].

Recently, wireless power transfer (WPT) using radio frequency signals is attract-

ing attention as a viable approach to the energy harvesting problem. One approach

to WPT is to harvest energy from ambient radio signals, e.g., TV broadcast sig-

nals [73]. Another approach to WPT is to use a dedicated power transmitter such as

in passive radio frequency identification (RFID) systems [38,119]. WPT systems can

simultaneously convey energy and information on the wireless signals [72, 130, 151]

and the inherent tradeoff between information rate and power transfer efficiency has

been recently characterized [44, 149]. For the energy harvesting case, maximizing a

time-average utility function over infinite time blocks (infinite horizon) is considered

in [39]. In [76], the authors consider the problem of maximizing the throughput of a

transmitter sending data over a time-varying channel within finite time blocks (finite

horizon) under a total energy constraint. In [131], an explicit threshold policy is
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derived for energy harvesting sensors to maximize the utility obtained over a finite

horizon.

In this paper, we consider WPT system called a “wireless powered communica-

tion network” (WPCN). A WPCN is a network in which wireless devices are powered

only by WPT [54]. The WPCN model considered in this paper is the same as in [54]

and is shown in Fig. 4.1, where one hybrid access point (H-AP) with an effectively

unlimited power supply coordinates the wireless energy/information transmissions

to/from a set of distributed users. Each user is equipped with an energy storage

device and thus can harvest and store the wireless energy broadcasted by the H-

AP in the downlink. The users transmit their independent information using their

individually harvested energy to the H-AP in the uplink. In [54], a block transmis-

sion model was considered where it was assumed that users harvest energy during a

downlink transmission the first part of the block and then each user uses all of their

harvested energy during an uplink transmission later in that block. In other words,

users do not save energy for later blocks.

hybrid access
point (H-AP)

energy tranfer

information transferU1

U2

U3

h1

g1

h2

g2
h3

g3

Figure 4.1: A wireless powered communication network (WPCN).
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4.2 System Model

The network adopts a harvest-then-transmit protocol as shown in Fig.2. In each

block, the first τ0T amount of time, with τ0 ∈ [0, 1], is assigned to the downlink for

the H-AP to broadcast wireless energy to all users, while the remaining time in the

same block is assigned to the uplink for transmitting their independent information

to the H-AP. We assume there are K users in total and the amount of time assigned

to user Ui is denoted by τiT , τi ∈ [0, 1], ∀i ∈ I, where I := {1, · · · , K} is the set of

the user indices. We have

K
∑

i=0

τi ≤ 1

since τi, ∀i ∈ Ī := {0} ∪ I, represent the allocated time portions in each block. To

simplify analysis, we assume normalized unit time T = 1.

downlink
energy transfer

uplink information transfer

block 1 block 2 block L

H-AP U1 U2 UK

τ0T τ1T τ2T τKT

Figure 4.2: Harvest-then-transmit protocol and block structure.

If PA denotes the transmit power at the H-AP, the amount of energy harvested

by each user in the downlink can be expressed as Ei = ζiPAhiτ0, ∀i ∈ I, where
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hi denotes the channel power gain of the ith downlink channel and ζi ∈ (0, 1) is

the energy harvesting efficiency at ith receiver. For convenience, it is assumed that

ζj = ζk = ζ, ∀j, k ∈ I for the remainder of this paper.

After the users replenish their energy during the downlink phase, in the sub-

sequent uplink phase they transmit independent information to the H-AP in their

allocated time slots. Instead of using all the energy harvested from the H-AP during

current block, we assume that each user can save their energy for future blocks. To

distinguish each block, we use superscript (ℓ) to denote the ℓth transmission block.

Thus, the energy harvested by user Ui in ℓth block can be written as

E
(ℓ)
i = ζPAh

(ℓ)
i τ

(ℓ)
0 = β

(ℓ)
i τ

(ℓ)
0 . (4.1)

.

If we use W
(ℓ)
i and F

(ℓ)
i to denote the energy available and consumed by user Ui

during the ℓth transmission block, respectively, and consider a finite horizon, say L

transmission blocks in total, then the following relation holds

W
(ℓ)
i =

ℓ
∑

j=1

E
(j)
i −

ℓ−1
∑

j=1

F
(j)
i , ∀i ∈ I, ∀ℓ ∈ J (4.2)

where J := {1, · · ·L} is the set of transmission block indices. Additionally, the

amount of energy consumed in each block can not exceed the current energy stored

for each user, i.e.,

F
(ℓ)
i ≤ W

(ℓ)
i , ∀i ∈ I, ∀ℓ ∈ J . (4.3)

This corresponds to an energy causality constraint.

To simplify our analysis, we introduce parameters α
(ℓ)
i ∈ [0, 1], i ∈ I, ℓ ∈ J ,
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where α
(ℓ)
i denotes the energy proportion consumed by ith user in ℓth block. Hence,

we can rewrite the energy relations given in (4.3) as

F
(ℓ)
i = α

(ℓ)
i W

(ℓ)
i , ∀i ∈ I, ∀ℓ ∈ J (4.4)

The achievable uplink throughput of ith user in bits/Hz during ℓth block can be

expressed as

R
(ℓ)
i = τ

(ℓ)
i log2



1 +
g

(ℓ)
i F

(ℓ)
i

Γσ2τ
(ℓ)
i





= τ
(ℓ)
i log2



1 + γ
(ℓ)
i

F
(ℓ)
i

τ
(ℓ)
i



 (4.5)

where σ2 is the variance of the received noise at the H-AP, Γ is the signal-to-noise

ratio gap from the additive white Gaussian noise channel capacity due to a practical

modulation and coding scheme used and g
(ℓ)
i represents the channel power gain of

the ith uplink channel during ℓth block. It is assumed that the channel reciprocity

holds for the downlink WET and uplink WIT, i.e., h
(ℓ)
i = g

(ℓ)
i , ∀i ∈ I, ∀ℓ ∈ J . Then,

the sum throughput of K users over L transmission blocks can be written as

R =
L
∑

ℓ=1

K
∑

i=1

R
(ℓ)
i . (4.6)

To facilitate the analysis, we define the time allocation vector for downlink WET

τ0, the time allocation vector for uplink WIT τ and the energy-consumed proportion
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vector α, respectively, as

τ0 :=
[

τ
(1)
0 · · · τ

(L)
0

]T

∈ R
L×1

τ :=
[

(τ (1))T · · · (τ (L))T

]T

∈ R
KL×1

α :=
[

(α(1))T · · · (α(L))T

]T

∈ R
KL×1

with

τ (ℓ) :=
[

τ
(ℓ)
1 · · · τ

(ℓ)
K

]T

∈ R
K×1, ∀ℓ ∈ J

α(ℓ) :=
[

α
(ℓ)
1 · · · α

(ℓ)
K

]T

∈ R
K×1, ∀ℓ ∈ J .

Then, the sum throughput over L transmission blocks in (4.6) can be expressed

as a function with respect to (τ0, τ ,α) and is denoted as R(τ0, τ ,α). Our goal is

to find the optimal time allocation vector of downlink WET τ0, the optimal time

allocation vector of uplink WIT τ and the energy-consumed proportion vector α

simultaneously to maximize the sum throughput over L transmission blocks in (4.6).

Mathematically, the sum throughput maximization problem is formulated as

Problem 1 (P1).

max
(τ0,τ ,α)

R(τ0, τ ,α)

s.t.
K
∑

i=0

τ
(ℓ)
i ≤ 1, ∀ℓ ∈ J

τ0 � 0

τ � 0

0 � α � 1.
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We notice that P1 is a non-convex optimization problem since it’s objective func-

tion contains non-convex terms. In the following section, we provide an algorithm

to solve P1 by separating it to two sub-problems.

4.3 Optimal Solutions of P1

In this section, we provide the method of finding the optimal solution of P1. In-

stead of solving P1 directly, we first change P1 to an equivalent problem P2, then

consider the problem P3 to find the optimal time allocation vectors of both down-

link WET and uplink WIT by fixing the energy-consumed proportion vector. After

solving the equations obtained from the KKT conditions of P3, we find a uniform

relation between the optimal time allocation of downlink WET and the time alloca-

tion of uplink WIT. Thus, P2 can be transformed into a standard box-constrained

optimization problem P4 by using this relation, which can be efficiently solved by

the trust-region-reflective algorithm [27,28].

First of all, it is straightforward to obtain the following lemma.

Proposition 1. The optimal time allocation (τ ⋆
0 , τ

⋆) of P1 must satisfy

K
∑

i=0

τ
(ℓ)⋆
i = 1, ∀ℓ ∈ J (4.7)

The proof of Proposition 1 can be found in Appendix B.1. From Proposition 1,

we can obtain the equivalent optimization problem of P1 with equality constraints

shown in (4.7), which is denoted as P2. Since P2 is also a non-convex problem, it

is not easy to solve P2 directly. To overcome this, we first consider the problem

of finding the optimal time allocation vectors of downlink and uplink (τ ⋆
0 , τ

⋆) to

maximize the sum throughput over L transmission blocks given a fixed energy-
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consumed proportion vector α. Mathematically, the optimization problem can be

formulated as

Problem 3 (P3).

max
(τ0,τ )

R(τ0, τ ,α)

s.t.
K
∑

i=0

τ
(ℓ)
i = 1, ∀ℓ ∈ J

τ0 � 0

τ � 0

where the parameters α in P3 is fixed.

Proposition 2. P3 is a convex optimization problem.

The proof of Proposition 2 can be found in Appendix B.2. We know that the

necessary Karush-Kuhn-Tucker (KKT) conditions of P3 are also sufficient and any

local maximum solution of P3 is also a global maximum solution [15]. According

to the harvested energy expression in (4.1) and the energy relations given in (4.2)

and (4.4), we can obtain the relation between the consumed energy vector Fi :=
[

F
(1)
i · · · F

(L)
i

]T

, ∀i ∈ I and the allocated time vector for downlink WET τ0 in

matrix form as Fi = Ψiτ0, ∀i ∈ I, where the jth row and kth element of Ψi ∈ R
L×L

is

Ψi(ℓ, j) =



















p
(ℓ)
i,jβ

(j)
i , 0 ≤ j ≤ ℓ

0 , ℓ < j ≤ L

(4.8)
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and

p
(ℓ)
i,j = α

(ℓ)
i

ℓ−1
∏

k=j

(1 − α
(k)
i ), ∀i ∈ I, ∀j ∈ Qℓ, ∀ℓ ∈ J (4.9)

where Qℓ := {1, · · · , ℓ} is the set of the transmission block indices smaller than

index ℓ. If we define parameters φ
(ℓ)
i,j := γ

(ℓ)
i β

(j)
i p

(ℓ)
i,j , ∀i ∈ I, ∀j ∈ Qℓ, ∀ℓ ∈ J , then we

obtain the concrete expression of the throughput of user Ui during ℓth transmission

block as

R
(ℓ)
i = τ

(ℓ)
i log2



1 +
ℓ
∑

j=1

φ
(ℓ)
i,j

τ
(j)
0

τ
(ℓ)
i



 , ∀i ∈ I, ∀ℓ ∈ J . (4.10)

If we plug (4.10) into the KKT conditions, then from the stationarity with respect

to τ0, we have

L
∑

ℓ=j

K
∑

i=1





φ
(ℓ)
i,j

1 + C
(ℓ)⋆
i



 = −
(

ν(j)⋆ + λ
(j)⋆
0

)

ln 2. (4.11)

Similarly, from the stationarity with respect to τ , it follows

f
(

C
(ℓ)⋆
i

)

= −
(

ν(ℓ)⋆ + λ
(ℓ)⋆
i

)

ln 2, ∀i ∈ I, ∀ℓ ∈ J (4.12)

where

C
(ℓ)⋆
i τ

(ℓ)⋆
i =

ℓ
∑

j=1

φ
(ℓ)
i,j τ

(j)⋆
0 , ∀i ∈ I, ∀ℓ ∈ J (4.13)

and

f(x) = ln(1 + x) − x

1 + x
.
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From the equations obtained from the KKT conditions, the optimal time allo-

cation vector of uplink WIT τ ⋆ can be uniquely determined by the optimal time

allocation vector of downlink WET τ ⋆
0 , which is summarized in Theorem 1:

Theorem 1. The optimal time allocation vector of downlink WET τ ⋆
0 and the op-

timal time allocation vector of uplink WIT τ ⋆ of P3 satisfy:

τ
(ℓ)⋆
i =

(

1 − τ
(ℓ)⋆
0

)

∑ℓ
j=1 φ

(ℓ)
i,j τ

(j)⋆
0

∑K
i=1

∑ℓ
j=1 φ

(ℓ)
i,j τ

(j)⋆
0

, ∀i ∈ I, ∀ℓ ∈ J . (4.14)

The relation in (4.14) mainly comes from (4.12) and (4.13) and also the unit

time block constraint. The details of the proof can be found in Appendix B.3. Since

for any energy-consumed proportion vector α, (4.14) always holds. This indicates

that we can first obtain a function of (τ0,α) by replacing τ in the objective function

R(τ0, τ ,α) of P2 by using the relations in (4.14). The new objective function, which

is denoted as G(τ0,α), can be expressed as

G(τ0,α)

=
L
∑

ℓ=1

(

1 − τ
(ℓ)
0

)

log2



1 +

∑K
i=1

∑ℓ
j=1 φ

(ℓ)
i,j τ

(j)
0

1 − τ
(ℓ)
0



 . (4.15)

Mathematically, the optimization problem can be formulated in P4.

Problem 4 (P4).

max
(τ0,α)

G(τ0,α)

s.t. 0 � τ0 � 1

0 � α � 1

If we concatenate the vector α to the vector τ0 to form a larger vector δ ∈
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R
(K+1)×L, i.e., δ =

[

τT
0 αT

]T

, then, P4 is equivalent to the problem of finding

the vector δ to maximize G(δ) subject to 0 � δ � 1. This problem is a standard

box-constrained optimization problem, which can be solved using the trust-region-

reflective algorithm [27,28].

4.4 Upper Bound

Although the algorithm in Section 4.3 gives us the optimal solution of P1, the

computational complexity is high when the number of users K or the number of

transmission blocks L grows. In this section, we provide an upper bound of the

optimal sum throughput in P1 by relaxing the energy harvesting causality, which

gives us a water-filling solution.

In P1, we assume that the energy causality condition holds, i.e., the amount of

energy consumed in each block can not exceed the current energy stored at each

user, which is shown in (4.3). Now we reconsider the optimization problem with

the constraint that the total consumed energy does not exceed the total harvested

energy at each user, i.e.,
∑L

j=1 F
(j)
i ≤ ∑L

j=1E
(j)
i , ∀i ∈ I. If we plug the relation

γ
(ℓ)
i F

(ℓ)
i =

∑ℓ
j=1 φ

(ℓ)
i,j τ

(j)
0 , ∀i ∈ I, ∀ℓ ∈ J into (4.15) and construct the consumed

energy vector F by replacing the element α
(ℓ)
i with F

(ℓ)
i in α, then, the new objective

function can be expressed as

T (τ0,F ) =
L
∑

ℓ=1

(

1 − τ
(ℓ)
0

)

log2



1 +

∑K
i=1 γ

(ℓ)
i F

(ℓ)
i

1 − τ
(ℓ)
0



 .

Thus, the corresponding optimization problem can be formulated as

79



Problem 5 (P5).

max
(τ0,F )

T (τ0,F )

s.t. 0 � τ0 � 1

0 � F

L
∑

ℓ=1

F
(ℓ)
i ≤

L
∑

ℓ=1

E
(ℓ)
i , ∀i ∈ I.

Observe that P5 relaxes (L − 1)K conditions in P1. Thus the maximum sum

throughput in P5 gives us an upper bound of that in P1. To solve P5, we can

first fix τ0 and find the optimal solution of F . If we define a new vector F̃ :=
[

F̃ (1) · · · F̃ (L)

]T

with F̃ (ℓ) =
∑K

i=1 γ
(ℓ)
i F

(ℓ)
i , ∀i ∈ I, ∀ℓ ∈ J , we can obtain the

optimal solution.

Theorem 2. The optimal solution of F̃ when fixing τ0 is

F̃ (ℓ) =





1 − τ
(ℓ)
0

π⋆
− (1 − τ

(ℓ)
0 )





+

, ∀ℓ ∈ J

where π⋆ ∈ R is selected to satisfy

L
∑

ℓ=1

F̃ (ℓ) =
L
∑

ℓ=1

K
∑

i=1

γ
(ℓ)
i E

(ℓ)
i .

The proof of Theorem 2 is mainly obtained by using KKT conditions. The details

of the proof can be found in Appendix B.4.

After solving F̃ , we notice that the problem of finding optimal τ0 is a stan-

dard box-constrained nonlinear programming problem like P4, which can be solved

efficiently using the trust-region-reflective algorithm [27,28].
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4.5 Numerical Results

In this section, we compare the maximum sum throughput using energy saving with

systems in which the users are assumed to use all their energy within current block.

We continue to use the simulation parameters in [54]. The bandwidth is assumed

to be 1MHz. Both the downlink and uplink channel power gains are modeled as

h
(ℓ)
i = g

(ℓ)
i = 10−3ρ

(ℓ)2
i D−θ

i , i = 1, · · · , K; ℓ = 1, · · · , L, where θ = 2 is the pathloss

exponent and ρ
(ℓ)
i represents the channel short-term fading of the ith channel within

the ℓth block. The short-term fading is assumed to be Rayleigh distributed, hence

ρ
(ℓ)2
i is an exponentially distributed random variable with unit mean. The K users

in the network are equally separated from the H-AP according to Di = DK

K
× i, i =

1, · · · , K, where DK = 10m. The AWGN at the H-AP receiver is assumed to have a

white power spectral density of -160dBm/Hz. For each user, the energy harvesting

efficiency for WET is assumed to be ζ = 0.5. We assume that an uncoded quadrature

amplitude modulation (QAM) is employed and thus Γ = 9.8dB.

Fig. 4.3 shows the normalized maximum sum throughput versus the number

of transmission blocks for different number of users. As shown in Fig. 4.3, the

normalized sum throughput increases when the number of transmission blocks grows.

The numbers in the figure shows the possible maximum percentage gain by using

energy saving, i.e., 15% for K = 3, 13% for K = 4 and 12% for K = 5. It is

observed that when number of users grows, the possible maximum percentage gain

will decrease. The black dashed curve shows the upper bound of the maximum sum

throughput. It is observed that the upper bound of the maximum sum throughput

will be close to the actual maximum sum throughput when K is large.
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4.6 Conclusions

In this chapter, we have studied the throughput maximization problem in WPCN

with a finite-horizon energy saving scheme. To obtain the optimal solution, the

initial optimization problem is separated into two sub-problems and finally is for-

mulated into a standard box-constrained optimization problem, which can be solved

efficiently by the trust-region-reflective algorithm. We have observed that the im-

provement of the sum throughput with long-term energy saving is not considerable

if considering the “oracle” and the computational complexity. This indicates that

the initial scheme without energy saving is a practical and favorable strategy in

WPCN [54].
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Chapter 5

Optimal Wireless Power Transfer

with Distributed Transmit

Beamforming

This chapter considers the performance of wireless power transfer (WPT) with dis-

tributed transmit beamforming (DTB) in a narrowband setting. One or more re-

ceive nodes, each equipped with energy harvesting and storage capabilities, provide

periodic channel state feedback to a cluster of transmit nodes, each with an indepen-

dent local oscillator, to facilitate beamforming and passband signal alignment for

efficient WPT. Without channel state feedback, the transmit cluster can not align

the passband signals at the receivers and the receivers can only harvest incoherent

power. Since feedback improves the beamforming gain but requires the receivers

to expend energy, there is a fundamental tradeoff between the feedback period and

the energy harvesting efficiency. This paper analyzes the optimal feedback period

to maximize the weighted mean energy harvesting rate as a function of the oscilla-

tor parameters. An optimization problem is formulated and an explicit method to
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numerically calculate the globally optimal feedback period is developed. Numerical

results are provided to confirm the analysis and demonstrate the sensitivity of the

weighted mean energy harvesting rate with respect to the feedback period and the

DTB system parameters.

5.1 Introduction

Since the invention of Tesla Coil in 1893 [125], there has been more than a century

of research on methods for wirelessly transferring power using radio waves [20]. In

recent years, the development of efficient radio frequency (RF) radiation wireless

power transfer (WPT) systems has become an active research area, motivated in

part by the widespread use of low-power devices that can be charged wirelessly [30].

An example of WPT using RF radiation is the Wireless Identification and Sensing

Platform (WISP) [107]. Other recent examples of WPT using RF radiation include

harvesting energy from terrestrial television signals [107], cellular base station signals

[100], and signals from Wi-Fi routers [124].

Besides RF radiation, there are typically two other types of WPT techniques:

inductive coupling (IC) in low-frequency bands and magnetic resonant coupling

(MRC) in high-frequency bands [138]. In inductive coupling, the transmitter and

receiver coils together form a transformer and power is transferred between the coils

by a magnetic field [110]. Inductive coupling is the most mature wireless power

technology and is essentially the only technology so far which is used in commer-

cial products such as charging of mobile phones, electric vehicles, and biomedical

prosthetic devices implanted in the human body [56,68,123,126]. MRC is a form of

inductive coupling in which power is transferred by magnetic fields between two reso-

nant circuits, one in the transmitter and one in the receiver [49,64]. Recently, MRC-
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based WPT (MRC-WPT) with multiple transmitters and/or multiple receivers has

been studied in the literature [51,79,145]. The WiTricity system is an example of a

standardized commercial MRC-WPT system.

A common feature of both IC-WPT and MRC-WPT is that they operate in the

near-field. As such, the power strength is attenuated according to the cube of the

reciprocal of the distance between the coils [1,90], i.e., power is attenuated at 60 dB

per decade. As a result, IC-WPT is typically used for short-range applications in

centimeters [57, 91] and MRC-WPT is typically used for mid-range applications up

to a couple of meters [49,64]. RF-WPT, on the other hand, operates in the far field.

While the amount of energy transfer for RF-WPT is typically smaller1 than in IC-

WPT and MRC-WPT, there are several potential advantages of RF-WPT. First,

the signal strength of far-field RF transmission over a free-space link is attenuated

according to the reciprocal of the distance between transmitter and receiver [74],

i.e., power is attenuated at 20 dB per decade. As such, RF-WPT can be be more

efficient than IC-WPT and MRC-WPT over longer range links and can be suitable

for powering a larger number of devices distributed in a wide area. Second, RF-WPT

does not require a large coil like IC-WPT and MRC-WPT. In fact, RF-WPT can use

antennas already present in a device for wireless communications. Such antennas

can also be used for power transfer or simultaneous wireless information and power

transfer (SWIPT) [30]. These characteristics can make RF-WPT appealing in low-

cost communication devices [80].

A disadvantage of all WPT techniques over longer ranges is that path loss effects

can significantly reduce the amount of power received by energy harvesting devices.

To overcome this problem, recent investigations have considered the use of transmit

beamforming with RF-WPT, e.g., [143,144]. To achieve coherency in a narrowband

1While RF-WPT is generally studied in the context of low-power applications, it has also been
considered in scenarios with more substantial power requirements, e.g., [150].
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setting, the transmit array must have estimates of the channel phases to each re-

ceive node. This channel state information at the transmitter (CSIT) is typically

obtained via feedback from the receive nodes. Alternatively, in systems with channel

reciprocity, e.g., time-division duplexed (TDD) channels, CSIT can be obtained by

having the transmitter directly estimate the channel phases from periodic sounding

signals transmitted by the receive nodes. Irrespective of the method in which the

CSIT is obtained, the transmit array uses the CSIT to adjust the phases of the

passband transmissions so that the signals constructively combine at the intended

receiver and the efficiency of WPT is improved.

Recently, researchers have considered the use of distributed transmit beamform-

ing (DTB) in wireless communication systems where two or more individual trans-

mit nodes pool their antenna resources to emulate a virtual antenna array [83]. In

principle, the distributed array works in the same way as the conventional (central-

ized) array: the individual transmit nodes use the CSIT obtained either by feedback

(“feedback-based” DTB, e.g., [31,46,71,89,112,137]) or through channel reciprocity

(“reciprocity-based” DTB, e.g., [84, 103]) to form a beam by controlling the phase

of their passband transmissions so that the signals constructively combine at an in-

tended receive node. Unlike conventional transceivers, however, a distributed trans-

mit beamformer naturally allows for low-cost deployment of robust large-aperture

arrays suitable for efficient wireless communications and WPT.

Another distinction between conventional transmit beamforming and DTB is

that each node in a distributed beamformer has an independent local oscillator. It

is generally assumed in these settings that there is no exogenous source of synchro-

nization of sufficient accuracy to facilitate DTB available to the transmit nodes.

Hence, the transmit nodes’ local oscillators experience stochastic dynamics and the

passband signals from each transmit node experience phase and frequency drift
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over time. The transmit nodes can correct for these effects using the CSIT obtained

through feedback from the receive nodes (or by exploiting channel reciprocity). Nev-

ertheless, even if the nodes obtain perfect CSIT, it is only a short matter of time

until the independent oscillators drift apart and coherence is lost. Periodic feedback

is required to maintain coherence.

In this chapter, we consider the use of DTB for WPT. While DTB has been

studied extensively in the context of wireless communications (including reports of

successful implementations, e.g., [13]), and also studied recently in the context of

SWIPT [37, 96], to the best of our knowledge there has been no study of DTB for

WPT accounting for (i) the cost of measuring and tracking CSIT and (ii) the effects

of time-varying imperfect CSIT caused by tracking errors and oscillator dynamics.

While [37, 96] both consider WPT in the context of DTB, these studies focus on

SWIPT optimization problems like optimal power splitting under the assumption of

perfect CSIT. In this paper, we study the fundamental tradeoff between the feedback

period and the efficiency of the WPT system as shown notionally in Figure 5.1. We

show that there exists optimal feedback period such that the receivers can maximize

their net mean energy harvesting rate after the cost of feedback and accounting for

losses due to errors in the channel state information. This paper is focused on the

question of how to find a globally optimal feedback period to maximize the mean

energy harvesting rate at the receivers. While the focus of this paper is on WPT, we

note that the techniques developed in this paper naturally extend to SWIPT since

DTB has been extensively studied in the wireless communications context.

The DTB WPT problem is different from the DTB communications problem

due to the fundamental tradeoff between the feedback period and the efficiency of

the WPT system as shown notionally in Figure 5.1. The main contributions of this

chapter are summarized as follows:
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Figure 5.1: Fundamental tradeoff between the feedback rate and the mean energy
harvesting rate of the WPT system. The net harvested energy accounts for the cost
of feedback.
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• We develop a new model for WPT with DTB, explicitly accounting for losses

caused by imperfect channel state information and independent oscillator dynam-

ics and also accounting for the cost of feedback energy from the receive nodes.

• We formulate a “Normalized Weighted Mean Energy Harvesting Rate” (NWMEHR)

maximization problem to select the feedback period to maximize the weighted av-

eraged amount of net energy harvested by the receive nodes per unit of time as a

function of the oscillator parameters. By maximizing the NWMEHR, the receive

nodes maximize the net weighted harvested energy after feedback.

• Since the NWMEHR objective function is non-convex and implicit (involving

the solution of a discrete-time algebraic Riccati equation), we develop an ex-

plicit method to numerically calculate the globally optimal feedback period. Our

method solves the problem in two steps: (i) bounding the search region into

a closed interval and (ii) applying the DIRECT algorithm [52] on the bounded

search region to find the globally optimal solution.

Our approach is distinguished from the prior work by the fact that we explicitly

consider the effect of time-varying errors in the channel state information caused

by tracking errors and independent local oscillators and also account for the cost of

feedback energy in the WPT setting. This reveals the fundamental tradeoff shown

in Fig. 5.1, the precise formulation of the NWMEHR optimization problem, and an

explicit method to optimize the net harvested energy as a function of the oscillator

parameters.
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5.2 System Model And Problem Formulation

In this section, we first introduce in Section 5.2.1 the system model and notation

for the relevant parameters in “feedback-based” DTB. We then formulate the mean

energy harvesting rate maximization problem in Section 5.2.3.

For conciseness, our presentation focuses on “feedback-based” DTB. We point

out, however, that the main concepts developed here also apply to “reciprocity-

based” DTB since obtaining CSIT via reciprocity requires the receive nodes to pe-

riodically expend energy for reverse link channel sounding. While the details of the

protocol and system parameters differ, both feedback-based DTB and reciprocity-

based DTB possess the same fundamental tradeoff between the feedback rate (re-

verse link channel sounding rate) and WPT efficiency.

5.2.1 System Model

We assume a system with Nt transmit nodes and Nr receive nodes. All forward

link channels are modeled as narrowband, linear, and time invariant (LTI). All

nodes are assumed to possess a single isotropic antenna2. Adopting the convention

that the transmit nodes are enumerated as i = 1, · · · , Nt and the receive nodes

are enumerated as j = 1, · · · , Nr, we denote the channel from transmit node i to

receive node j as gi,j ∈ C. To facilitate beamforming toward the receive nodes in

the forward link, we assume a “feedback-based” DTB protocol like [31,46,71,89,112,

137] where the transmit nodes obtain CSIT through periodic forward link channel

measurements and channel state feedback from the receive nodes on the reverse link.

This protocol and its relevant parameters are illustrated in Fig. 5.2.

2Our focus on single antennas is motivated by clarity of exposition. The techniques developed
in this paper can be extended to the case where nodes have more than one antenna at the expense
of some additional notational complexity.
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Figure 5.2: Distributed transmit beamforming periodic protocol with frame period
Tf .

As shown in Fig. 5.2, each frame of the feedback-based DTB protocol has a

duration of Tf and is composed of Nr slots. The jth slot has a duration of µjTf ,

where the factors {µj}Nr

j=1 are all in the range (0, 1) and their summation is normal-

ized to one, i.e.,
∑Nr

j=1 µj = 1. Each slot contains a channel measurement interval

followed immediately by a beamforming interval. During the channel measurement

interval, each transmit node separately broadcasts a pilot of length T0 (including

any necessary guard times) to the receive nodes. The channel measurement interval

length is then Tm = NtT0. All of the receive nodes use the pilots received during the

channel measurement intervals to update their channel estimates. No beamforming

or energy harvesting occurs during channel measurement intervals.

At the end of the channel measurement interval, a single receive node provides

channel state feedback to the transmit cluster. The receive node is assumed to

send L bits of information for each channel measurement and, hence, a receive node

provides NtL total bits of feedback in its slot. We assume the time required to

send this feedback is small so that the beamforming interval to the receive node

providing the feedback begins immediately after the measurement interval. During
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the beamforming interval of receive node j, receive node j harvests energy from the

(approximately) coherent signals from the transmit cluster while all other receive

nodes ℓ ∈ {1, . . . , Nr}\j harvest incoherent energy.

5.2.2 Harvested Energy Analysis

Receive nodes harvest approximately coherent energy during their beamforming

interval and also harvest incoherent energy during the beamforming intervals of

the other receive nodes. No energy is harvested during the channel measurement

periods. We denote the beamforming power at the jth receive node at time t as

J (j)(t) and note that J (j)(t) is a stochastic process since the channel estimates are

noisy and the independent clocks experience stochastic dynamics. We further denote

the ensemble averaged beamforming power as J
(j)

(t) = E[J (j)(t)]. The total average

energy harvested by the jth receive node during the kth frame period can be written

as

E(j)

b [k] = η









∫

t∈T (j)
b

[k]
J

(j)



t−
j−1
∑

s=1

µsTf



 dt+ P (j)

inc

Nr
∑

s=1
s 6=j

(µsTf − Tm)









(5.1)

where η ∈ (0, 1) is the harvesting efficiency, T (j)

b [k] is the beamforming interval in

the jth slot of the kth frame, and P (j)

inc is the incoherent beamforming power at the

jth receive node. Note that this latter term accounts for the fact that the jth receive

node harvests incoherent beamforming power in the non-jth beamforming slots. We

further define the steady-state average energy harvested by the jth receive node as

E
(j)

b = limk→∞E(j)

b [k].

During the beamforming interval in the jth slot, the transmitters attempt to

align their phases so that the signals arrive with a common phase and combine

coherently at the jth receive node. We denote the signal at the jth receive node
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from ith transmit node as

r(i,j)(t) =
√

P0|gi,j|ej(φ+φ̃(i,j)(t)) (5.2)

where P0 is the common per-node transmit power, φ is the nominal beamform-

ing phase and φ̃(i,j)(t) is the phase error of the transmission from the ith trans-

mit node to the jth receive node at prediction time t > 0 after the end of the

measurement interval. If perfect coherence is achieved, then φ̃(i,j)(t) = 0 and

J
(j)

(t) = E

{

∣

∣

∣

∑Nt
i=1 r

(i,j)(t)
∣

∣

∣

2
}

= P0

(

∑Nt
i=1 |gi,j|

)2
. In practice, however, the phase

errors will not be zero due to channel estimation errors and the effect of stochastic

clock drifts (as discussed in Section 5.3). In fact, when the phase errors become

large, the mean beamforming power is J
(j)

(t) = P0
∑Nt

i=1 |gi,j|2 = P (j)

inc, i.e., large

phase errors result in incoherent average power.

To quantify the effect of nonzero phase errors on the steady-state beamforming

power in the jth slot, we assume φ̃(i,j)(t) is a spatially independent and identically

distributed (i.i.d.) zero mean Gaussian random process with variance σ2
φ(µjTf , t)

parameterized by the frame period Tf and the prediction interval t (this assumption

will be justified in Section 5.3). With this assumption, the mean beamforming power

at prediction time t for the jth receive node can be calculated as

J
(j)

(Tf , t) = E







∣

∣

∣

∣

∣

Nt
∑

i=1

r(i,j)(t)

∣

∣

∣

∣

∣

2






= P (j)

inc

[

1 + (ρj − 1)e−σ2
φ

(µjTf ,t)
]

(5.3)

where ρj =

(

∑Nt
i=1

∣

∣

∣gi,j

∣

∣

∣

)2

∑Nt
i=1

∣

∣

∣gi,j

∣

∣

∣

2 . When σ2
φ(µjTf , t) is small, note that the mean beamform-

ing power J
(j)

(Tf , t) ≈ P (j)

incρj = P0

(

∑Nt
i=1 |gi,j|

)2
and the distributed array achieves
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approximately coherent power. Similarly, when σ2
φ(µjTf , t) is large, J

(j)
(Tf , t) ≈ P (j)

inc

and the distributed array achieves approximately incoherent power. We can combine

(5.3) with (5.1) to write

E
(j)

b = ηP (j)

inc

[

(ρj − 1)
∫ µjTf

Tm

e−σ2
φ

(µjTf ,t) dt+ (Tf −NrTm)

]

. (5.4)

where we use the fact that the steady-state beamforming power of each receive node

is periodic with period Tf .

5.2.3 NWMEHR Maximization Problem

We are interested in maximizing the steady-state weighted sum rate of the net energy

transferred to the receive nodes in the system. As a baseline, we can consider the

scenario where the receive nodes simply harvest incoherent transmissions with no

feedback. In this case, since the entire frame period is spent harvesting incoherent

power, the weighted sum rate of the net energy transferred to the receive nodes in

the system can be expressed as

C = η
Nr
∑

j=1

γjP
(j)

inc = η
Nr
∑

j=1

γjP0

Nt
∑

i=1

∣

∣

∣gi,j

∣

∣

∣

2
(5.5)

where γj is the energy harvesting weighting factor for receiver j. If the receive nodes

provide channel state feedback to improve coherence, the net amount of energy

harvested by the receive nodes in one frame is the amount of energy received via

beamforming (and incoherent harvesting) minus the amount of energy used by the

receiver for channel state feedback in that frame. We define the normalized weighted
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mean energy harvested rate (NWMEHR) as

NWMEHR =
1

CTf

Nr
∑

j=1

γj

(

E
(j)

b − E(j)

r

)

(5.6)

where E
(j)

b is from (5.1) and E(j)
r is the energy used by the jth receive node for channel

state feedback in one frame. Values of NWMEHR > 1 correspond to scenarios where

channel state feedback with DTB improves the efficiency of the WPT with respect

to simple incoherent energy harvesting.

Using the results from the previous section, we can rewrite (5.6) as

NWMEHR = 1 +
1

Tf





η

C

Nr
∑

j=1

γjP
(j)

inc(ρj − 1)
∫ µjTf

Tm

e−σ2
φ

(µj Tf ,t) dt−D



 (5.7)

with

D = NrTm +

∑Nr

j=1 γjE
(j)
r

C
. (5.8)

where D corresponds to the total energy loss in one frame due to the measurement

and the energy consumption for feedback.

The goal is to find the optimal frame period T ⋆
f (or, equivalently, optimal frame

rate 1/T ⋆
f ) to maximize the NWMEHR. Mathematically, we can formulate the prob-

lem as

Problem 6 (NWMEHR maximization problem).

maximize
Tf

NWMEHR

subject to Tf ∈
[

Tm

µmin
,∞

)

where µmin = min {µ1, · · · , µNr
}.
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In Section 5.4, we show that Problem 6 can sometimes be infeasible, i.e., there

may be no solution in the feasible region [Tm/µmin,∞) and, instead, the NWMEHR

is maximized when the frame period Tf = ∞. This situation indicates that optimal

strategy is for all the receive nodes to simply harvest incoherent power from the

transmit nodes without any feedback.

5.3 Forward Link Channel Tracking and Predic-

tion

The previous section established that the beamforming power (and resulting en-

ergy harvesting efficiency) is completely characterized by the variance σ2
φ(T, t) of

the phase error random process parameterized by the slot period T and the predic-

tion interval t. In this section, we connect these statistics to the properties of the

independent oscillators used by the transmit and receive nodes in the DTB system.

Figure 5.3 shows the effective narrowband channel model from transmit node

i to receive node j which includes the effects of propagation and carrier offset.

Transmission from transmit node i to receive node j are conveyed on a carrier with

nominal frequency ωF , incur a phase shift of ψ(i,j) = ∠gi,j over the wireless channel,

and are then downmixed by receive node j using its local carrier nominally at ωF .

At time t, the effective narrowband channel from transmit node i to receive node j

is modeled as

hi,j(t) = gi,je
j

(

φ
(i)
t (t)−φ

(j)
r (t)

)

= |gi,j|ejφ(i,j)(t) (5.9)

where φ(i)

t (t) and φ(j)
r (t) are the local carrier phase offsets at transmit node i and

receive node j, respectively, at time t with respect to an ideal carrier reference, and
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φ(i,j)(t) = φ(i)

t (t)−φ(j)
r (t)+ψ(i,j) is the pairwise phase offset after propagation between

transmit node i and receive node j at time t. In this paper, it is assumed that the

channel magnitudes |gi,j| for i = 1, · · · , Nt and j = 1, · · · , Nr are fixed (or slowly

varying) and perfectly known.

local
carrier

LPF

transmit node i

local
carrier

receive node j

hi,j(τ)
gi,j

∼ωF ∼ωF

1

Figure 5.3: Effective narrowband channel model including the effect of propagation,
transmit and receive gains, and carrier offset.

Each node in the system is assumed to have an independent local oscillator.

These local oscillators behave stochastically, causing phase offset variations in each

effective channel from each transmit node to the receive node. To characterize the

oscillator dynamics of each node in the system, we consider a two-state model [33,43]

and define the state of the ith transmit node’s carrier as x
(i)

t (t) := [φ(i)

t (t), ω(i)

t (t)]T,

where φ(i)

t (t) and ω(i)

t (t) correspond to the carrier phase and frequency offsets in

radians and radians per second at transmit node i ∈ {1, · · · , Nt} with respect to

some reference carrier3. From [43], the dynamics of the ith transmit node’s carrier

can be expressed as

d

dt
x

(i)

t =









0 1

0 0









x
(i)

t + u
(i)

t (t) (5.10)

where u
(i)

t (t) ∼ N (0, ωF · diag(α, β)) is the white Gaussian process noise vector

3Although the focus here is on a two-state model, the approach described here can also be
applied to higher order oscillator models, e.g., [117, 120], with some additional notational and
computational complexity.
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parameterized by the nominal forward link carrier frequency ωF and the white fre-

quency noise and random walk frequency noise oscillator stability parameters α

(units of seconds) and β (units of Hertz), respectively. We assume the process noise

parameters to be identical at all nodes in the system. The receive nodes in the sys-

tem also have independent local oscillators used to generate carriers for downmixing

that are governed by the same dynamics as (5.10) with state x(j)
r (t), process noise

u(j)
r (t) for j = 1, · · · , Nr. We further define the pairwise offset state between the ith

transmit node and the jth receive node after propagation as

δ(i,j)(t) = x
(i)

t (t) +









ψ(i,j)

0









− x(j)

r (t). (5.11)

For any sampling period T and sampling instances t = nT , standard methods

can be used to write the discrete-time pairwise offset state update

δ(i,j)[n+ 1] = F (T )δ(i,j)[n] + Gw(i,j)[n] (5.12)

where

F (T ) =









1 T

0 1









, G =









1 0 −1 0

0 1 0 −1









, and w(i,j)[n] =









u
(i)

t [n]

u(j)
r [n]









. (5.13)

The discrete-time process noise vectors u
(i)

t [n]
i.i.d.∼ N (0,C(T )) and u(j)

r [n]
i.i.d.∼

N (0,C(T )) with

C(T ) = ω2
F









αT + β T 3

3
β T 2

2

β T 2

2
βT









. (5.14)

Suppose the sampling period T = T and that forward link channel measurements
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occur at t = nT for n = 0, 1, . . . . During the measurement intervals, we assume the

pilot signals from each transmit node are short such that they only provide a useful

estimate of the pairwise phase offset. Specifically, for the ith transmit node’s pilot

at the jth receive node in slot s, we assume an observation of the form

y(i,j)[n] = hδ(i,j)[n] + v(i)[n] (5.15)

where h = [1, 0] and v(i)[k]
i.i.d.∼ N (0, R) is the measurement noise which is assumed

to be spatially and temporally i.i.d. These observations facilitate tracking and pre-

diction of the pairwise offset states at the receive nodes. We assume receive node j

implements a bank of Nt separate two-state Kalman filters to track and predict the

states δ(i,j)[n] for all i = 1, . . . , Nt. When receive node j provides feedback to the

transmit cluster after the nth measurement, it transmits the most recent Kalman fil-

ter estimates δ̂(i,j)[n |n] for all i = 1, . . . , Nt. The transmit nodes use these estimates

to generate predictions δ̂(i,j)[n + t |n] = F (t)δ̂(i,j)[n |n] for t > 0 in the subsequent

beamforming interval to receive node j. Note that t is a continuous parameter and

F (t) is defined for all t > 0.

It can be shown that the system described in (5.12) and (5.15) is completely ob-

servable and completely controllable, hence the Kalman filter steady-state prediction

covariance

P (T ) =









P1(T ) P2(T )

P2(T ) P3(T )









∈ R
2×2 (5.16)

is the unique positive definite solution of the discrete-time algebraic Riccati equation

100



(DARE) [11]

P (T )=F (T )

[

P (T )−P (T )hThP (T )

hP (T )hT+R

]

F T(T )+Q(T ) (5.17)

where

Q(t) = Gcov {w(i,j)[k]}GT =









At+ B
3
t3 B

2
t2

B
2
t2 Bt









=









Q1(t) Q2(t)

Q2(t) Q3(t)









(5.18)

with A = 2ω2
Fα and B = 2ω2

Fβ. Note that P (T ) ≻ 0 corresponds to the covari-

ance matrix of the steady-state Kalman filter predictions just prior to a measure-

ment/observation. The Kalman filter steady-state estimation covariance immedi-

ately after receiving an observation can be expressed as

S(T ) =









S1(T ) S2(T )

S2(T ) S3(T )









= P (T )−P (T )hThP (T )

hP (T )hT+R
. (5.19)

We denote Ŝ(T, t) = F (t)S(T )F T(t) and note that the (1,1) element of this matrix

can be written as

Ŝ1(T, t) = S1(T ) + 2tS2(T ) + t2S3(T ). (5.20)

Moreover, since the steady-state prediction covariance at any prediction time t > 0

after an observation, i.e., after the commencement of beamforming, can be written
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as P̂ (T, t) = Ŝ(T, t) + Q(t), we have

P̂1(T, t) = Ŝ1(T, t) +Q1(t)

= S1(T ) + 2tS2(T ) + t2S3(T ) + ω2
F t

(

α + β
t2

3

)

(5.21)

Note that P̂1(T, t) is the (1,1) element of the Kalman filter’s prediction covariance

at prediction time t > 0 after an observation. This quantity corresponds to the

steady-state phase prediction variance of the Kalman filter. Since this quantity fully

characterizes the steady-state expected beamforming gain of the transmit array, we

denote σ2
φ(T, t) = P̂1(T, t).

Recall that in Section 5.2, we obtain the expression of NWMEHR in terms of

σ2
φ(µjTf , t) for j = 1, · · · , Nr. In this section, we have shown that σ2

φ(µjTf , t) for

any j is an implicit function with respect to Tf . Therefore, combining these two

results, we finally obtain an implicit function of NWMEHR only in terms of the

frame period Tf . In the next section, we develop a numerical method to find the

optimal frame period to maximize the NWMEHR.

5.4 Analysis

This section analyzes Problem 1 and develops a method to numerically compute the

globally optimal frame period Tf to maximize the NWMEHR. An overview of the

modeling and optimization methodology is shown in Figure 5.4. We assume all of

the process and measurement noise parameters are known by the receive nodes. If

these parameters are unknown, covariance estimation techniques such as [75], can

be used to estimate these parameters as part of the Kalman filtering process. We

also assume the slot duration factors are given, perhaps determined by a separate
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process aware of the charging state of each receiver. Given a frame period Tf , the

NWMEHR can be calculated from (5.6). To find the globally optimum value of Tf ,

the main steps we will follow in this section are (i) bounding the feasible region and

(ii) applying the direct algorithm on the bounded region.

Dynamic Model

    (Section III)

DTB protocol

   (Section II)

NWMEHR Maximization

          (Section IV)

Step 1:

Bounding the 

Feasible Region

Step 2:

DIRECT Algorithm

on Bounded Region

NWMEHR

α

β

µ1

µNr

frame period Tf

Nt

Nr

σ
2 φ
(µ

1
T

f
,t

)

σ
2 φ
(µ

N
r
T

f
,t

)

µ1Tf

µNr
Tf

slot duration factors:
∑Nr

j=1 µj = 1
oscillator parameters

number of trasmitters/receivers

{γ1, · · · , γNr
}

weights

Figure 5.4: Overview of the NWMEHR maximization problem.

First, some basic properties of Problem 6 are summarized below:

(1) The objective function of Problem 6 is only a function of one variable: the frame

period Tf .

(2) The objective function of Problem 6 is nonlinear and non-convex.

(3) The objective function of Problem 6 is implicit since it requires solving the

DARE in (5.17), which, in general, has no closed-form explicit solution.

(4) Problem 6 has one simple linear inequality constraint and the feasible region of

Problem 6 is unbounded.

We will first address the problem of the unbounded feasible region in the following

section. In the process of bounding the feasible region, we can also check a necessary

condition for the existence of a finite solution to Problem 6.
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5.4.1 Bounding the Feasible Region

In this section, we develop an efficient method to bound the feasible region for

Problem 6 into a closed interval. To facilitate the analysis, the following lemma

describes some basic properties of the NWMEHR function defined in (5.7).

Lemma 1. The NWMEHR defined in (5.7) has the following properties:

lim
Tf →∞

NWMEHR = 1 from below, and

sup

Tf ∈
[

Tm
µmin

,∞
)

NWMEHR ∈ [1, 1 + (ρ− 1)µmax) ,

where

ρ =

∑Nr

j=1 γjP
(j)

incρj
∑Nr

j=1 γjP
(j)

inc

, and (5.22)

µmax = max{µ1, · · · , µNr
}. (5.23)

Proof. Please refer Appendix C.1.

To illustrate these properties, Figure 5.5 shows examples of the NWMEHR and

the NWMEHR with Er = 0 for systems with two different oscillator parameters from

Table 5.1 based on the “Rakon RPFO45” [2] and the “poor XO” [59], respectively.

For this example, we assume Nt = 15 transmit nodes and Nr = 2 receive nodes and

weights γ = {1, 1} and slot duration factors µ = {0.3, 0.7}. For both the poor XO

and the Rakon RPFO45, the NWMEHR with Er = 0 increases with the slot rate

as expected. The NWMEHR after accounting for the cost of feedback, however,

is monotonically decreasing for the system with the poor XO. In this case, since

NWMEHR < 1 for all Tf ∈ [Tm/µmin,∞), the NWMEHR is maximized when the

receive nodes provide no feedback (1/Tf = 0) and simply harvest incoherent power
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from the transmit nodes. For Rakon RPFO45, we observe the NWMEHR deceases

rapidly when 1/Tf is large and achieves its global maxima of NWMEHR ≈ 3.0 at

1/Tf ≈ 0.14 Hz. In this case, the receiver achieves the maximum energy harvesting

rate by providing periodic feedback to the transmit nodes. The zoomed inset in

Figure 5.5 also shows the NWMEHR converging to 1 from below as Tf → ∞ for

Rakon RPFO45.
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Figure 5.5: Two examples of the NWMEHR and the NWMEHR with Er = 0 versus
the frame rate 1/Tf .

Since we are interested in slot periods that result in energy harvesting rates that

exceed incoherent energy harvesting, we can define the set

XNWMEHR =

{

Tf ≥ Tm

µmin
: NWMEHR ≥ 1

}

. (5.24)

An important consequence of Lemma 1 is that XNWMEHR must be bounded or empty.
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Due to the implicit nature of the NWMEHR function, however, finding the exact

bounds on this set can be difficult. To facilitate analysis, we propose a function

Φ(Tf ) which is an upper bound for the NWMEHR for all Tf ≥ Tm/µmin. Hence, the

set XΦ = {Tf ≥ Tm/µmin : Φ(Tf ) ≥ 1} is a superset of XNWMEHR, i.e., XNWMEHR ⊆

XΦ. If XNWMEHR is nonempty, then it and XΦ must contain the value of Tf resulting

in the globally optimal NWMEHR, which is the solution of Problem 6. Conversely, if

XΦ is empty, then XNWMEHR is also empty and the optimal strategy is to set Tf = ∞

to simply harvest incoherent energy without feedback.

To develop the NWMEHR upper bound Φ(Tf ), we first provide the following

Lemma.

Lemma 2. For all T ≥ Tm and all t > 0, the (1, 1) element of the matrix Ŝ(T, t) =

F (t)S(T )F T(t) is lower bounded as

Ŝ1(T, t) ≥ Ŝ
(0)
1 (T, t) = t2

√

AB +
B2

12
T 2 (5.25)

where A = 2ω2
Fα and B = 2ω2

Fβ.

Proof. Please refer to Appendix C.2.

Recall that the mean beamforming power J(T, t) is related to Ŝ1(T, t) through

(5.21) and (5.3). By providing an explicit lower bound on Ŝ1(T, t) (which does

not require solving a DARE), we also have a lower bound on the phase variance

σ2
φ(T, t) = Ŝ1(T, t) + Q1(t), and hence an upper bound on J(T, t). From this re-

sult, we can obtain a simple closed-form and explicit upper bound Φ(Tf ) for the

NWMEHR for all Tf ≥ Tm/µmin. The result is summarized in Proposition 3.
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Proposition 3. Define

θ =

√

∫ ∞

0
e−2Q1(t) dt > 0 (5.26)

where Q1(t) is the (1, 1) element of the process noise covariance matrix Q(t). For

all Tf ≥ Tm/µmin, we have

Φ(Tf )=1+
1

Tf





θη

C

Nr
∑

j=1

γjP
(j)

inc(ρj − 1)Λ(µjTf)−D




≥ NWMEHR (5.27)

with

Λ(µjTf ) =
1

(

8
π
Ŝ

(0)
1 (µjTf , 1)

)
1
4

(5.28)

where D are defined in (5.8), respectively.

Proof. Please refer to Appendix C.3.

Note that Φ(Tf ) shares the property with the NWMEHR that limTf →∞ Φ(Tf ) =

1 from below. To see why this is the case in general, note that Λ(µjTf) is a mono-

tonically decreasing function with respect to Tf since Ŝ
(0)
1 (µjTf , 1) is monotonically

increasing and Φ(Tf ) is a linear combination of Λ(µjTf ) for j = 1, · · · , Nr. Since

β > 0 and D > 0, it follows that, for all Tf larger than a threshold Tub,

θη

C

Nr
∑

j=1

γjP
(j)

inc(ρj − 1)Λ(µjTf) < D.

Hence, as Tf → ∞, we have Φ(Tf ) → 1 from below.

This result implies that XΦ is either an empty set or a closed bounded interval
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[Tm/µmin, Tub], where Tub is the solution to

Nr
∑

j=1

γjP
(j)

inc(ρj − 1)Λ(µjTub) =
CD

θη
. (5.29)

Note that (5.29) is a one-dimensional equation with respect to Tub, which can be

solved easily using any root-finding algorithm like the Brent’s method [16]. If no

value of Tub > Tm/µmin is found, then the optimal strategy is to provide no feedback

and to simply harvest incoherent energy. In the following section, we assume Tub >

Tm/µmin such that XΦ = [Tm/µmin, Tub] 6= ∅ is a bounded interval and develop a

method to search the maximum NWMEHR over XΦ.

5.4.2 Maximizing the NWMEHR on the Bounded Search

Region

Based on the analysis in the prior section, we assume in this section that we have

a closed bounded nonempty interval XΦ = [Tm/µmin, Tub] for the feasible region

of Problem 1. This section describes a method for finding the value of Tf ∈ XΦ

that maximizes the NWMEHR. Since the NWMEHR is an implicit function of T

and requires solving a DARE, we rely on numerical methods to efficiently find the

optimal solutions.

As a technical detail, recall that XNWMEHR ⊆ XΦ. If both XNWMEHR and XΦ

are non-empty, then the procedure described below will find the globally optimal

value of Tf which maximizes the NWMEHR. It is possible, however, that XNWMEHR

is empty even when XΦ is nonempty. When this occurs, the procedure described

below will still return the value of Tf ∈ XΦ that maximizes the NWMEHR, but the

resulting NWMEHR will be less than one. If this occurs, we set Tf = ∞, which

corresponds to no feedback and only incoherent power is harvested, to maximize the
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NWMEHR.

There are several potential numerical methods that can be used to solve one-

dimensional optimization problems over closed bounded intervals. Most one-dimensional

search algorithms, such as line search, golden section search, or parabolic interpo-

lation (Brent’s method) [101], can only guarantee convergence to locally optimal

solutions. Hence, a prerequisite of applying those algorithms is to show that the

NWMEHR can not have more than one local maximum in XΦ. This is difficult to

show, however, since the objective function of Problem 6 is governed by the DARE

in (5.17), which, in general, has no closed-form and explicit expression.

Another approach to solving one-dimensional optimization problems like Prob-

lem 6 is to use the DIRECT algorithm [52]. The DIRECT optimization algorithm

solves a class of global optimization problems over closed bounded intervals. The

DIRECT algorithm is especially suitable for solving Problem 6 for the following

reasons:

(1) The DIRECT algorithm does not require the knowledge of the gradient of the

objective function. Since the objective function of Problem 6 is implicit (re-

quiring a solution of the DARE in (5.17)) and has no closed-form, it is not

straightforward to obtain the gradient of the objective function.

(2) Given a bounded domain, the DIRECT algorithm globally converges to the

maximal value of the objective function, even in the presence of local maxima.

Application of the DIRECT algorithm requires (i) a bounded search region and

(ii) the objective function is continuous or at least continuous in the neighborhood

of a global optimum [52]. In Section 5.4.1, we bounded the search region of the

optimal slot period by XΦ. The following proposition establishes that the NWMEHR

is a continuous function of Tf on the domain [Tm/µmin,∞) and thus, on XΦ ⊆
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[Tm/µmin,∞).

Proposition 4. The NWMEHR defined in (5.7) is a continuous function with re-

spect to the frame period Tf on the domain [Tm/µmin,∞).

Proof. Please refer to Appendix C.4.

In light of Proposition 4, we can apply the DIRECT algorithm straightforwardly

on the closed bounded domain XΦ. In each iteration, the DIRECT algorithm parti-

tions the search interval into finer sub-intervals by identifying the potentially opti-

mal intervals using a rate-of-change constant, which indicates how much emphasis

to place on global versus local search. Once the global part of the algorithm finds

the basin of convergence of the optimum, the local part of the algorithm quickly and

automatically exploits it [52]. Note that the complexity of the whole procedure is

dominated by step 2 since the time required to solve the one-dimensional equation in

step 1 is insignificant compared to the time required to solve the iterative DIRECT

algorithm in step 2. As mentioned in [52] with regards to the number of iterations

for DIRECT, “When a Lipschitz constant is not known, the algorithm stops after

a prespecified number of iterations”. Hence, in step 2, we use a fixed number of

iterations Ni to be the stopping criteria. In each iteration, the maximum number

of function evaluations is Nf . For each function evaluation, we need to solve Nd

2 × 2 DAREs. In general, there would be Nd = NtNr 2 × 2 DAREs to solve in our

system. When the oscillator parameters are identical at all of the transmit nodes,

it is actually only necessary to solve Nd = Nr 2 × 2 DAREs due to the common

parameters. Thus, in each function evaluation, we need to solve the DARE in (5.17)

Nr times by setting T = µjTf to obtain σ2
φ(µjTf , t) for j = 1, · · · , Nr. Each DARE

has the same complexity. Therefore, the complexity of the whole procedure scales as

NiNfNtNr or NiNfNr times of the complexity of solving a single 2 × 2 DARE when
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the transmit nodes have differing or identical oscillator parameters, respectively.

The following section presents numerical results based on the NWMEHR-maximizing

search strategies developed in this section. The results show that the optimal slot

period can be found successfully and efficiently using the proposed algorithms.

5.5 Numerical Results

This section provides numerical results to verify the optimization method described

in the previous section and demonstrate the potential of DTB for WPT with practi-

cal system parameters. We assume a feedback-based system with frequency division

duplexed (FDD) forward and reverse links on separate frequencies. Table 5.1 lists

the parameters of the oscillators and other general parameters for both forward and

reverse links, where OSS and OLS denote “oscillator short-term stability” and “os-

cillator long-term stability” parameters, respectively. The process noise parameters

p and q in Table 5.1 are chosen based on typical inexpensive crystal oscillator pa-

rameters [59] and Rakon RFPO45 oven-controlled oscillator datasheet [2]. Table 5.2

and Table 5.3 list the particular parameters for forward and reverse links, respec-

tively. To apply the DIRECT algorithm, we set the total number of iterations Ni

to be 1000 and the maximum number of function evaluations Nf to be 1000 in all

our simulations.

While our analysis is general with respect to the receive node energy consumption

model, we assume the model from [29] in the numerical results presented in this

section. Specifically, the feedback energy used by the jth receive node in a frame is

modeled as

E(j)

r =

[

ζ

µ
P (j)

t + Pc

]

Ton + PtrTtr (5.30)
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where µ is the drain efficiency of the RF amplifier, ζ is the Peak to Average Ratio, P (j)

t

is the power for feedback transmission, Pc and Ptr are the power consumptions of the

transmitter circuitry on active and transient mode, respectively, and Ton and Ttr are

the durations of the transmitter circuitry on active and transient mode, respectively.

To ensure that the transmit nodes can correctly decode the feedback from receive

node j, the transmit power P (j)

t for sending feedback is assumed to be fixed and larger

than a minimum decoding threshold P (j)

dec. Since the durations of the transmitter

circuitry on active and transient mode are much smaller than that of measurement,

i.e., Ton ≪ Tm and Ttr ≪ Tm, we are assuming the feedback to be instantaneous.

The power consumption of transmitter circuitry Pc is calculated according to [29],

which includes the power consumptions of the mixer, the frequency synthesizer, the

digital-to-analog converter and the filters. Figure 5.6 shows the geometry of the

network. Both the transmit and receive nodes are equidistantly placed on lines

with length 5 meters. Thus, the distance dij between the ith transmit node and jth

receive node can be calculated as dij = 10
√

1 + (i/(Nt + 1) − j/(Nr + 1))2 meters

for i = 1, · · · , Nt and j = 1, · · · , Nr. The weights are assumed to be unit for all

receive nodes, i.e., γj = 1 for j = 1, · · · , Nr.
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Table 5.1: General parameters.

Case Parameter Value Units Meaning

good XO α 2.48 × 10−24 sec OSS

β 7.44 × 10−27 Hertz OLS

poor XO α 6.34 × 10−18 sec OSS

β 2.57 × 10−23 Hertz OLS

Rakon α 2.31 × 10−21 sec OSS

RPFO45 β 6.80 × 10−23 Hertz OLS

ǫ 3 path loss exponent

η 0.70 energy harvesting effi-
ciency

Table 5.2: Parameters for forward link.

Parameter Value Units Meaning

ωF 2π × 109 rad/sec carrier frequency

T0 50 × 10−6 sec duration of measurement for single
transmitter

P0 1 Watts transmit power per node

L 32 number of bits per channel mea-
surement

Gt 6 dBi transmitter’s antenna gains

R 5 × 10−10 rad2 measurement noise
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Table 5.3: Parameters for reverse link.

Parameter Value Units Meaning

ωR 4.8π × 109 rad/sec carrier frequency

BR 10 × 106 Hertz reverse link bandwidth

RR 6 Mbps reverse link data rate

Gr 0 dBi receiver’s antenna gains

Pc 0.1 Watts circuitry power on active mode

Ptr 0.05 Watts circuitry power on transient mode

Ttr 5 × 10−6 sec duration on transient mode

ζ 10 dB Peak to Average Ratio

µ 0.35 drain efficiency of RF amplifier

10m

10m

10m

dij

10
Nt+1

10
Nr+1

ith transmit node

jth receive node

Figure 5.6: Geometry of the network.
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Using a link-budget analysis as in [137], we first calculate the minimum decoding

threshold. Assuming a thermal noise floor of −174 dBm, we can calculate the power

of the additive white Gaussian noise at each transmit node as −174 + 10 log10 BR =

−104 dBm. We assume the transmitters require 3dB SNR to decode the feedback.

Hence, the received signal power at each transmit node should be at least −104 +

3 = −101 dBm. The reverse link path loss from the jth receive node to the ith

transmit node can be calculated as 10 log10

(

4πdijωR

2πc

)ǫ
= 60.07 + 30 log10(dij) dB,

where c = 3×108 m/sec is the velocity of light. Thus, the minimum transmit power

for the jth receive node sending feedback to the ith transmit node should be −101 +

60.07 + 30 log10(dij) −Gr = −40.93 + 30 log10(dij) dBm or 8.07 × 10−8(dij)
3 Watts.

Thus, the minimum transmit power for the jth receive node sending feedback is

then P (j)

dec = 8.07 × 10−8(maxi{dij})3 Watts. Since dij ≤ 10
√

2 for all i and j,

we assume the transmit power for the jth receive node sending feedback is P (j)

t =

8.07×10−8 ·(10
√

2)3 = 2.28×10−4 Watts. The time to send feedback to one transmit

node is L
RR

= 5.33 ×10−6 sec. Hence, the total time to send feedback to all transmit

nodes, which is also the duration of the transmitter circuitry on active mode, is

Ton = Nt · 5.33 × 10−6 sec. Based on (5.30), The total energy for feedback from the

jth receive node to Nt transmit nodes is

E(j)

r =

(

ζ

µ
P (j)

t + Pc

)

Ton + PtrTtr = (Nt · 5.68 + 2.50) × 10−7 Joules.

To obtain the forward link path loss from the receive nodes to the ith transmit node,

we use the forward link carrier frequency ωF to calculate |gi,j|2 =
(

4πdijωF

2πc

)−ǫ ·10
Gt
10 =

5.42 × 10−5 (dij)
−3 for i = 1, · · · , Nt and j = 1, · · · , Nr.

Figure 5.7 and Figure 5.8 show the optimal frame rate (in Hertz) and the max-

imum NMEHR versus oscillator parameters α and β for small network (Nt = 15
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and Nr = 2), respectively. Figure 5.9 and Figure 5.10 show the optimal frame

rate (in Hertz) and the maximum NMEHR versus oscillator parameters α and β

for large network (Nt = 100 and Nr = 50), respectively. The slot duration factor

for each receive node is randomly selected from (0, 1) and normalized to make the

summation to be one. It is observed that the optimal frame rate increases when

either oscillator parameter α or oscillator parameter β increases. Since in order

to achieve the maximum NWMEHR, the system requires the channel information

more frequently to compensate for the bad channel estimation caused by the poor

oscillator parameters. In all four subplots, we also show dark blue regions in where

no feedback is needed. In these areas, the system has low-quality oscillators and

thus, the increment of the beamforming power by increasing the frame rate can not

compensate for the increment of the energy used for feedback.

Figure 5.11 and Figure 5.12 show the optimal frame rate and the maximum

WMEHR versus the numbers of transmit nodes Nt and receive nodes Nr for Rakon

RPFO45, respectively. Figure 5.13 and Figure 5.14 show the optimal frame rate and

the maximum WMEHR versus the numbers of transmit nodes Nt and receive nodes

Nr for good OX, respectively. The WMEHR denotes the weighted mean energy

harvested rate, i.e., WMEHR = C · NWMEHR. The slot duration factor for each

receive node is equal to be 1/Nr. It is observed that when Nr is fixed, the optimal

frame rate increases when Nt increases. This is caused by the fact that the energy

consumption for feedback increases linearly with respect to Nt and thus the receive

nodes have to provide more frequent feedback. It is also observed that when Nt is

fixed and small (Nt < 50), the optimal frame rate is insensitive to Nr and when Nt

is large (Nt > 100), the optimal frame rate decreases when Nr increases.
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Figure 5.7: Optimal frame rate (in Hertz) versus oscillator parameters α and β for
small network (Nt = 15 and Nr = 2). The shaded region corresponds to conditions
under which the optimal strategy is to set the optimal slot rate to zero and harvest
incoherent energy.
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Figure 5.8: Maximum NWMEHR versus oscillator parameters α and β for small
network (Nt = 15 and Nr = 2). The shaded region corresponds to conditions
under which the optimal strategy is to set the optimal slot rate to zero and harvest
incoherent energy.
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Figure 5.9: Optimal frame rate (in Hertz) versus oscillator parameters α and β for
large network (Nt = 100 and Nr = 50). The shaded region corresponds to conditions
under which the optimal strategy is to set the optimal slot rate to zero and harvest
incoherent energy.
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Figure 5.10: Maximum NWMEHR versus oscillator parameters α and β for large
network (Nt = 100 and Nr = 50). The shaded region corresponds to conditions
under which the optimal strategy is to set the optimal slot rate to zero and harvest
incoherent energy.
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Figure 5.11: Optimal frame rate (in Hertz) versus numbers of transmit nodes Nt

and receive nodes Nr for Rakon RPFO45.
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Figure 5.12: Maximum WMEHR (in milliWatts) versus numbers of transmit nodes
Nt and receive nodes Nr for Rakon RPFO45.
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Figure 5.13: Optimal frame rate (in Hertz) versus numbers of transmit nodes Nt

and receive nodes Nr for good XO.
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Figure 5.14: Maximum WMEHR (in milliWatts) versus numbers of transmit nodes
Nt and receive nodes Nr for good XO.
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5.6 Conclusions

This chapter considers the problem of improving the efficiency of wireless power

transfer over distance through distributed transmit beamforming. By using a dis-

tributed array, the system can achieve good directivity without the use of a large,

expensive conventional array. Our system model accounts for the energy of feedback

for feedback-based beamforming systems. An optimization problem is formulated

to find the optimal feedback period (or feedback rate) to maximize the net energy

harvesting rate when local oscillators of the transmit nodes and receive node expe-

rience stochastic dynamics. We provide a numerical method to solve the problem

by first bounding the search region according to an upper bound function of the

NWMEHR and then applying the DIRECT algorithm on that region. Numeri-

cal results verify the analysis and demonstrate the potential for using distributed

transmit beamforming in wireless power transfer systems.
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Chapter 6

Summary and Future Work

In this final chapter the main ideas of this dissertation are summarized and future

research directions are identified.

6.1 Summary

In this dissertation, we first discuss the distributed cooperative communication sys-

tems, especially the distributed reception and the DTB. In Chapter 2, a distributed

reception system with a single distant transmitter and a cluster of multiple receive

nodes is discussed. We analyze the outage probability of distributed reception with

hard decision exchanges in the case of a binary modulated forward link and inde-

pendent and identically distributed Rayleigh fading forward link channels. In Chap-

ter 3, we consider the problem of estimating and tracking channels in a distributed

MIMO system. To quantify the steady-state performance of a Kalman filter channel

tracker, two methods are developed to efficiently compute the steady-state predic-

tion covariance. We then discuss the application of the WPT due to the widely use

of battery powered devices in daily life. In Chapter 4, we consider the optimal time

and energy allocation to maximize the sum throughput for the case when the nodes
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can save energy for later blocks in a time division multiple access scenario where

a wireless access point transmits to a group of users which harvest the energy and

then use this energy to transmit back to the access point. In Chapter 5, we analyze

the optimal feedback period to maximize the weighted mean energy harvesting rate

as a function of the oscillator parameters for DTB WPT. We summarize our results

by chapter below.

Chapter 2 In this chapter, we considered the problem of jointly decoding bi-

nary messages from a single distant transmitter to a cooperative receive cluster,

where the nodes in the receive cluster exchange information to decode messages

from the transmitter. We compared the outage probability of distributed reception

with binary hard decision exchanges with the outage probability of ideal receive

beamforming with unquantized observation exchanges. Two simple but surprisingly

good approximations show that the outage probability performance of distributed

reception with hard decision exchanges is well-predicted by the SNR of ideal re-

ceive beamforming after subtracting a hard decision penalty of slightly less than

2 dB. These results, developed in non-asymptotic regimes, are consistent with prior

asymptotic results (for a large number of nodes and low per-node SNR) on hard

decisions in binary communication systems.

Chapter 3 This chapter considers the problem of estimating and tracking chan-

nels in a distributed transmission system with Nt transmit nodes and Nr receive

nodes. A linear time-invariant state-space model is developed and is shown to

be observable but nonstabilizable. To quantify the steady-state performance of a

Kalman filter channel tracker, two methods are developed to efficiently compute

the steady-state prediction covariance. The first method requires the solution of a

2(Nt +Nr − 1)-dimensional discrete-time algebraic Riccati equation, but allows for

nonhomogenous oscillator parameters. The second method requires the solution of
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four two-dimensional discrete-time algebraic Riccati equations but requires homoge-

nous oscillator parameters for all nodes in the system. An asymptotic analysis is

also presented for the homogenous oscillator case for systems with a large number

of transmit and receive nodes with closed-from results for all of the elements in the

asymptotic prediction covariance as a function of the carrier frequency, oscillator

parameters, and channel measurement period.

Chapter 4 In this chapter, we consider WPT system called a “wireless powered

communication network” (WPCN), where one hybrid access point (H-AP) with

an effectively unlimited power supply coordinates the wireless energy/information

transmissions to/from a set of distributed users. Each user is equipped with an

energy storage device and thus can harvest and store the wireless energy broadcasted

by the H-AP in the downlink. The users transmit their independent information

using their individually harvested energy to the H-AP in the uplink. The primary

contribution in this chapter is a generalization of the system considered in [54] where

the users can save energy harvested in the current block for wireless information

transmission (WIT) in later blocks. We consider the problem of maximizing the

sum throughput over a finite horizon with energy saving. To maximize the sum

throughput over a finite horizon, the initial optimization problem is separated into

two sub-problems and finally can be formulated into a standard box-constrained

optimization problem, which can be solved efficiently. A tight upper bound is derived

by relaxing the energy harvesting causality. Simulation results are also provided

to demonstrate the “harvest-then-transmit” protocol with energy saving provides

improved sum throughput increasing with the number of transmission blocks.

Chapter 5 This chapter considers the performance of wireless power transfer

(WPT) with distributed transmit beamforming (DTB) in a narrowband setting.One

or more receive nodes, each equipped with energy harvesting and storage capabil-
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ities, provide periodic channel state feedback to a cluster of transmit nodes, each

with an independent local oscillator, to facilitate beamforming and passband signal

alignment for efficient WPT. Since feedback improves the beamforming gain but

requires the receivers to expend energy, there is a fundamental tradeoff between

the feedback period and the energy harvesting efficiency. This chapter analyzes the

optimal feedback period to maximize the weighted mean energy harvesting rate as

a function of the oscillator parameters. An optimization problem is formulated and

an explicit method to numerically calculate the globally optimal feedback period is

developed.Numerical results verify the analysis and demonstrate the potential for

using distributed transmit beamforming in wireless power transfer systems.

6.2 Future Research Directions

Future investigations on distributed communication systems and wireless power

transfer could take several directions. The following is a list of possible research

topics that can be pursued as an extension of this dissertation:

• In Chapter 2, we conjecture that these approximations actually bound the perfor-

mance with hard decision exchanges, but are unable to provide a proof. Finding

a proof or counterexample is an important direction for future work. Another po-

tentially interesting extension of this work is to extend the analysis to higher-order

forward link constellations, e.g., QPSK, 8PSK and 16-QAM.

• In Chapter 5, our focus was on a time slotted DTB protocol where the transmit

array steers a beam toward one intended receive node at a time. While the

“unintended” receivers still harvest incoherent energy during this time, such an

approach may be suboptimal with respect to a DTB protocol where the transmit

phases are optimized for simultaneous semi-coherent beamforming to multiple

127



receivers over the full duration of each frame. We note that the NWMEHR

framework developed in this paper can be extended to this scenario by jointly

optimizing a Nt + 1 dimensional variable containing the transmit phases and

feedback rate. Since each transmit phase is naturally bounded on any interval of

length 2π, we can use a similar approach as in Section 5.4 to bound the feedback

period and hence bound the Nt + 1 dimensional optimization variable. Since the

new Nt + 1 variable is bounded and the objective function is continuous, we can

then apply the DIRECT algorithm to find the optimal solution.
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Appendix A

Proofs of Propositions in

Chapter 3

A.1 Proof of Theorem 4

We first establish the existence and uniqueness of a positive definite Π satisfying

(3.19) by showing that [A1,B1] is completely controllable and [C1,A1] is completely

observable. The former result follows directly from the construction of the control-

lable staircase form. The latter result is shown below.

From Lemma 1, we know [H ,F ] is completely observable. Moreover, since

complete observability is invariant to a similarity transform, [H ,F ] completely ob-

servable implies [C,A] is also completely observable. The Popov-Belevitch-Hautus

(PBH) test for observability [139] then implies that

rank

















λI − A

C

















= rank(A). (A.1)

To establish a contradiction, suppose [C1,A1] is not completely observable. The
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PBH test then implies that there exists a scalar λ and a nonzero vector z such that









λI − A1

C1









z = 0.

It follows that
















λI − A1 −A2

0 λI − A3

C1 C2

























z

0









= 0.

Thus

rank

















λI − A

C

















< rank(A)

which contradicts (A.1). Hence, [C1,A1] is completely observable and, in light

of the complete controllability of [A1,B1], there exists a unique positive definite

Π satisfying (3.19). Moreover, this unique positive definite Π satisfying (3.19) is

stabilizing for {A1,B1,C1,R} [24].

Observe that Π positive definite implies Π̄ as defined in (3.18) is positive semidef-

inite. We now show that Π̄ as defined in (3.18) satisfies the DARE for {A,B,C,R}.
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This can be seen by writing

A

(

Π̄ − Π̄C⊤
(

CΠ̄C⊤ + R
)−1

CΠ̄

)

A⊤ + BB⊤

= A









Π̄ −









ΠC⊤
1

0









(

C1ΠC⊤
1 +R

)−1
[

ΠC1 0

]









A⊤+BB⊤

= A









Π−ΠC⊤
1

(

C1ΠC⊤
1 +R

)−1
C1Π 0

0 0









A⊤+









B1B
⊤
1 0

0 0









=









A1

(

Π − ΠC⊤
1

(

C1ΠC⊤
1 +R

)−1
C1Π

)

A⊤
1 +B1B

⊤
1 0

0 0









=









Π 0

0 0









= Π̄.

Thus, by construction, Π̄ is a symmetric positive semidefinite matrix that satisfies

the DARE for {A,B,C,R}. Consequently, P = T−1
Π̄T−⊤ is a symmetric positive

semidefinite matrix that satisfies (3.14).

Finally, we will show that P = T−1
Π̄T−⊤ is a strong solution, and hence is the

unique strong solution to (3.14). The eigenvalues of E in (3.15) are invariant to

similarity transformation, hence we can write

TET −1 = TFT−1 − TFPH⊤(HPH + R)−1HT−1

= A − AΠ̄C⊤(CΠ̄C⊤ + R)−1C

=









A1 − A1ΠC⊤
1

(

C1ΠC⊤
1 + R

)−1
C1 X

0 A3









where X is inconsequential to the eigenvalues of E. Since Π is stabilizing for
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{A1,B1,C1,R}, the eigenvalues of A1 − A1ΠC⊤
1

(

C1ΠC⊤
1 + R

)−1
C1 must all

have magnitude in the open unit disk. The matrix A3 has eigenvalues all equal to

one. Hence max |λ(E)| = 1 and P = T−1
Π̄T−⊤ is the unique strong solution to

(3.14).

A.2 Proof of Theorem 5

Consider the matrix Γn(0, 1) = 1n1
⊤
n . This matrix has an eigenvalue at zero with

algebraic multiplicity n− 1 and an eigenvalue at n corresponding to the eigenvector

1n. Since Γn(0, 1) is real and symmetric, it is diagonalizable and there exists T such

that

T−1
Γn(0, 1)T = diag(0, · · · , 0, n). (A.2)

Now let Ts = T ⊗ Is and Tt = T ⊗ It. For general A and B, both t× s matrices,

we can write

T−1
s Γn(A,B)Tt = (T ⊗Is)

−1(In⊗A + 1n1
⊤
n ⊗B)(T ⊗It)

= (T−1 ⊗ A + T−1
1n1

⊤
n ⊗ B)(T ⊗ It)

= In ⊗ A + (T−1
1n1

⊤
nT ) ⊗ B

= In ⊗ A + (diag(0, · · · , 0, n)) ⊗ B

= blockdiag(A, · · · ,A,A + nB)

where the second to last equality used (A.2).

When t = s, the matrices A and B are square and

T−1
s Γn(A,B)Tt = blockdiag(A, · · · ,A,A + nB)
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is a similarity transformation. Now defining,

F̃ := T−1
s FTs = blockdiag(F0, · · · ,F0,F0 + nF1)

H̃ := T−1
t HTs = blockdiag(H0, · · · ,H0,H0 + nH1)

R̃ := T−1
t RTt = blockdiag(R0, · · · ,R0,R0 + nR1)

Q̃ := T−1
s QTs = blockdiag(Q0, · · · ,Q0,Q0 + nQ1)

P̃ := T−1
s PTs = blockdiag(P0, · · · ,P0,P0 + nP1)

we can apply this similarity transformation to rewrite (3.14) as

P̃ = F̃
[

P̃ − P̃ H̃⊤(H̃P̃ H̃⊤ + R̃)−1H̃P̃
]

F̃⊤ + Q̃. (A.3)

Since [H ,F ] is completely observable, it is also detectable. Moreover, since de-

tectability is invariant to a similarity transform, [H ,F ] detectable implies [H̃ , F̃ ]

is detectable. Hence there exists a unique strong solution P̃ to (A.3) as shown

in [24, Theorem 3.1].

Due to the block diagonal nature all of the matrices in (A.3), the transformed

system can be viewed as n uncoupled systems, each with s states. Observe that

n − 1 of these systems have identical dynamics. Hence, there are only two distinct

s× s DAREs to solve. The first DARE is given as

P0 = F0

[

P0−P0H
⊤
0 (H0P0H

⊤
0 +R0)

−1H0P0

]

F⊤
0 + Q0.

Denoting P̄ = P0 + nP1 and using similar notation for the other relevant matrices,
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the second DARE can be written as

P̄ = F̄
[

P̄ − P̄ H̄⊤(H̄P̄ H̄⊤ + R̄)−1H̄P̄
]

F̄⊤ + Q̄.

Finally, note that both P0 and P̄ must be strong since P̃ = blockdiag(P0, · · · ,P0, P̄ )

is strong if and only if P0 and P̄ are both strong.
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Appendix B

Proofs of Propositions in

Chapter 4

B.1 Proof of Proposition 1

Assume there exist optimal allocation τ ∗ such that

K
∑

i=0

τ
(ℓ0)∗
i < 1

where ℓ0 ∈ {1, · · · , L}. We can increase one τ
(ℓ0)∗
i to make the summation to be 1.

If we use (τ ∗
0 , τ

∗,α∗) and (τ̃ ∗
0 , τ̃

∗,α∗) to denote the optimal solutions of P1 and

the new solution respectively, we can obtain

R(τ ∗
0 , τ

∗,α∗) < R(τ̃ ∗
0 , τ̃

∗,α∗)

since R(τ0, τ ,α) is a monotonically increasing function with respect to τ
(ℓ)
i for all

indices i and ℓ, which is a contradiction to the optimality of the solutions (τ ∗
0 , τ

∗,α∗).

This completes the proof of Proposition 1.
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B.2 Proof of Proposition 2

First, we show that the objective function of P3 is a concave function with respect

to (τ0, τ ). Denote the Hessian of R
(ℓ)
i as

H(ℓ)
i =

[

d(i,ℓ)
m,n

]

, 0 ≤ m,n ≤ (K + 1)L

where d(i,ℓ)
m,n denotes the element of H(ℓ)

i at mth row and nth column. From (4.10),

we can obtain the diagonal element of H(ℓ)
i as

d(i,ℓ)
m,n =



















































− 1
ln 2

τ
(ℓ)
i

φ
(ℓ)2
i,j

(

τ
(ℓ)
i

+t
(ℓ)
i

)2 , m = n = O(0, j)

− 1
ln 2

t
(ℓ)
i

(

τ
(ℓ)
i

+t
(ℓ)
i

)2 , m = n = O(i, ℓ)

0, otherwise

(B.1)

The off-diagonal elements can be expressed as

d(i,ℓ)
m,n = d(i,ℓ)

n,m =



















































1
ln 2

t
(ℓ)
i

φ
(ℓ)
i,j

(

τ
(ℓ)
i

+t
(ℓ)
i

)2 , m = O(i, ℓ), n = O(0, j)

− 1
ln 2

τ
(ℓ)
i

φ
(ℓ)
i,j

φ
(ℓ)
i,k

(

τ
(ℓ)
i

+t
(ℓ)
i

)2 , m = O(0, j), n = O(0, k)

0, otherwise

(B.2)

for 1 ≤ j, k ≤ ℓ, ∀i ∈ I, ∀ℓ ∈ J , where t
(ℓ)
i :=

∑ℓ
j=1 φ

(ℓ)
i,j τ

(j)
0 and O(i, j) := (j −

1)(K + 1) + i + 1. Given an arbitrary real vector v = [v(1)T, · · · ,v(L)T]T, where

v(ℓ) = [v
(ℓ)
0 , v

(ℓ)
1 , · · · , v(ℓ)

K ]T, ∀ℓ ∈ J , it can be shown from (B.1) and (B.2) that

vTH(ℓ)
i v = − 1

ln 2

1
(

τ
(ℓ)
i + t

(ℓ)
i

)2
τ

(ℓ)
i





ℓ
∑

j=1

φ
(ℓ)
i,j τ

(ℓ)
i v

(j)
0 − t

(ℓ)
i v

(ℓ)
i





2

≤ 0
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It follows that H(ℓ)
i is a negative semidefinite matrix. Thus, R

(ℓ)
i is a concave function

with respect to (τ0, τ ). Further, R(τ0, τ ,α) is a concave function with respect to

(τ0, τ ) when α is fixed since it is a summation of such concave functions. From

P3, it is noticed that the functions of the inequality constraints are convex and the

functions of the equality constraints are affine. This implies that P3 is a standard

convex optimization problem, which completes the proof of Proposition 2.

B.3 Proofs of Theorem 1

From (4.13), we notice that τ
(ℓ)⋆
i = 0 implies

∑ℓ
j=1 φ

(ℓ)
i,j τ

(j)⋆
0 = 0. We define the

following set

X (ℓ) = {i ∈ I : τ
(ℓ)⋆
i 6= 0}, ∀ℓ ∈ J

From the complementary slackness property, we know

λ
(ℓ)⋆
i = 0, ∀i ∈ X (ℓ)

From (4.12), we notice that this implies

C
(ℓ)⋆
i = C

(ℓ)⋆
j , ∀i, j ∈ X (ℓ) (B.3)

From (B.3) and the relations
∑

i∈X (ℓ) τ
(ℓ)⋆
i = 1 − τ

(ℓ)⋆
0 , ∀ℓ ∈ J , it follows

τ
(ℓ)⋆
i =

(

1 − τ
(ℓ)⋆
0

)

∑ℓ
j=1 φ

(ℓ)
i,j τ

(j)⋆
0

∑

i∈X (ℓ)

∑ℓ
j=1 φ

(ℓ)
i,j τ

(j)⋆
0

, i ∈ X (ℓ), ∀ℓ ∈ J (B.4)
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We notice that the case τ
(ℓ)⋆
i = 0 can also be written as the form in (B.4). Hence,

after combining these two cases, we obtain uniform relations

τ
(ℓ)⋆
i =

(

1 − τ
(ℓ)⋆
0

)

∑ℓ
j=1 φ

(ℓ)
i,j τ

(j)⋆
0

∑K
i=1

∑ℓ
j=1 φ

(ℓ)
i,j τ

(j)⋆
0

, ∀i ∈ I, ∀ℓ ∈ J (B.5)

This completes the proof of Theorem 1.

B.4 Proof of Theorem 2

The Lagrange function of P5 is

L
(

τ0, F̃
)

=
L
∑

ℓ=1

(

1 − τ
(ℓ)
0

)

log2

(

1 +
F̃ (ℓ)

1 − τ
(ℓ)
0

)

− λ

(

L
∑

ℓ=1

F̃ (ℓ) −
L
∑

ℓ=1

K
∑

i=1

γ
(ℓ)
i E

(ℓ)
i

)

and differentiating with respect to F̃ (ℓ), we can obtain

1 − τ
(ℓ)
0

1 − τ
(ℓ)
0 + F̃ (ℓ)

= π

Since F̃ (ℓ) must be nonnegative, using KKT conditions, we can verify the optimal

solution of F̃ when fixing τ0 is

F̃ (ℓ) =





1 − τ
(ℓ)
0

π⋆
− (1 − τ

(ℓ)
0 )





+

, ∀ℓ ∈ J

where π⋆ ∈ R is selected to satisfy

L
∑

ℓ=1

F̃ (ℓ) =
L
∑

ℓ=1

K
∑

i=1

γ
(ℓ)
i E

(ℓ)
i .
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Here (x)+ denotes the positive part of x:

(x)+ =



















x if x ≥ 0

0 if x < 0

This completes the proof of Theorem 2.
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Appendix C

Proofs of Propositions in

Chapter 5

C.1 Proof of Lemma 1.

To show the NWMEHR converges to 1 from below when Tf →∞, we show
∫ T

Tm
e−σ2

φ
(T,t) dt →

0 when T → ∞. From (5.21), we have

∫ T

Tm

e−σ2
φ

(T,t) dt≤
√

∫ ∞

0
e−2Ŝ1(T,t) dt×

√

∫ ∞

0
e−2Q1(t) dt (C.1)

where the equality comes from the Cauchy-Schwarz inequality and results from the

nonnegativity of e−2Ŝ1(T,t) and e−2Q1(t) and [Tm, T ] ⊆ [0,∞). Since
√

∫∞
0 e−2Q1(t) dt is

bounded, thus, it suffices to show limT →∞
∫∞

0 e−2Ŝ1(T,t) dt = 0. According to (5.20),

it follows

lim
T →∞

∫ ∞

0
e−2Ŝ1(T,t) dt ≤ lim

T →∞

∫ 1

0
e−t2S3(T ) dt+ lim

T →∞

∫ ∞

1
e−t2S3(T ) dt (C.2)
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where the equality results from the nonnegativity of S1(T ), tS2(T ) for any T ∈

[Tm,∞) and t ≥ 0. For the first term of the right-hand side (RHS) of (C.2), it

follows

lim
T →∞

∫ 1

0
e−t2S3(T ) dt=

∫ 1

0
lim

T →∞
e−t2S3(T ) dt =0 (C.3)

from the Lebesgue’s dominated convergence theorem and limT →∞ S3(T ) = ∞ since

S3(T ) is the Kalman filter steady-state estimation variance of the frequency. For

the second term of the RHS of (C.2), it follows

lim
T →∞

∫ ∞

1
e−t2S3(T ) dt

(a)

≤ lim
T →∞

1

S3(T )
e−S3(T ) (b)

= 0 (C.4)

, where (a) results from e−t2S3(T ) ≤ e−tS3(T ) for all t ∈ [1,∞) with fixed T and (b)

comes from the fact limT →∞ S3(T ) = ∞.

If the NWMEHR attains its maximum at infinity, then we know

sup
Tf ∈[Tm/µmin,∞)

NWMEHR = 1 (C.5)

from prior analysis. Otherwise, the NWMEHR attains its maximum in the interval

(Tm/µmin,∞), which implies supTf ∈[Tm/µmin,∞) NWMEHR ≥ 1. Hence,

sup
Tf ∈[Tm/µmin,∞)

NWMEHR ≥ 1 (C.6)

. On the other hand, if we denote µmax = max{µ1, · · · , µNr
}, from (5.7), it follows

NWMEHR ≤ 1 +
η

C

Nr
∑

j=1

γjP
(j)

inc(ρj − 1)µmax = 1 + (ρ− 1)µmax (C.7)

, where ρ is defined in (5.22). This completes the proof of Lemma 1.
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C.2 Proof of Lemma 2

The proof mainly involves two steps. Step 1 shows Ŝ1(T, t) is a monotonically

increasing function of R ∈ (0,∞) for fixed T ≥ Tm and t > 0. Step 2 shows that

Ŝ1(T, t) → Ŝ
(0)
1 (T, t) = t2

√

AB + B2

12
T 2 when R → 0.

Step 1: From (5.20), it suffices to prove that each element of S(T ) is a mono-

tonically increasing function of R ∈ (0,∞) for fixed T ≥ Tm. If R > 0, then from

the DARE in (5.17), it follows

S1(T )R

R−S1(T )
=S1(T )+2TS2(T )+T 2S3(T )+Q1(T ) (C.8)

S2(T )R

R−S1(T )
=S2(T )+TS3(T )+Q2(T ) (C.9)

S2
2(T )

R−S1(T )
=Q3(T ) (C.10)

We then prove the monotonicity of S1(T ), S2(T ) and S3(T ) with respect to R over

(0,∞) one by one using contradictions. We first assume that S1(T ) will decrease

when R increases for some R > 0. From (C.10), we know that S2(T ) will increase.

From (C.8), it follows

S3(T ) =
1

T 2

(

S2
1(T )

R− S1(T )
−2TS2(T )−Q1(T )

)

. (C.11)

Hence, S3(T ) will decrease. From (C.8) and (C.9), we can obtain

S3(T )=
2TS2

2(T )+S2(T )Q1(T )−S1(T )Q2(T )

T (S1(T )−TS2(T ))
. (C.12)

It is noticed that the right-hand side (RHS) of (C.12) will increase, which implies

that S3(T ) will increase. This gives us a contradiction. Hence, we know S1(T ) is

a monotonically increasing function of R > 0. Next, we assume that S2(T ) will
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decrease at some point R > 0. From (C.10), we know that R− S1(T ) will decrease.

Then, from (C.11), it follows that S3(T ) will increase. However, the RHS of (C.12)

will decrease, which is a contradiction. Hence, S2(T ) is a monotonically increasing

function of R > 0. Finally, we assume S3(T ) will decrease at some point R > 0.

From (C.9) and (C.10), we have S1(T )
S2(T )

= T S3(T )+Q2(T )
Q3(T )

which implies that S1(T )
S2(T )

will

decrease. From (C.8) and (C.9), we have S1(T )
S2(T )

= 2T S2(T )
T S3(T )+Q2(T )

+ Q1(T )−Q2(T )T
T S3(T )+Q2(T )

+T.

Note that both the first term and the second term will increase and thus S1(T )
S2(T )

will

increase, which is a contradiction, thus, S3(T ) is a monotonically increasing function

of R.

Step 2: From the DARE in (5.17), we can obtain a polynomial of P1(T ) for

fixed T as

P 4
1 (T ) − (2U(T ) + V (T ))P 3

1 (T )

+ (U2(T ) − 2RU(T ) − 5RV (T ))P 2
1 (T )

+ (2RU2(T ) − 8R2V (T ))P1(T )

+ (R2U2(T ) − 4R3V (T )) = 0 (C.13)

where U(T ) = Q1(T ) − TQ2(T ) and V (T ) = T 2Q3(T ). Note that (C.13) is quartic

in P1(T ) for fixed T , it has four explicit solutions [3]. The largest real one is the

(1,1) element of P (T ), which is the unique solution of the DARE (5.17). To see

this, we first use P1(T ) to represent P2(T ) and P3(T ) as

P2(T )=
√

(P1(T ) +R)Q3(T ) (C.14)

P3(T )=
1

T





√

Q3(T )P1(T )
√

P1(T ) +R
−Q2(T )



+Q3(T ) (C.15)
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Hence, the determinant of P (T ) is

|P (T )|= P1(T )

T





√

Q3(T )P1(T )
√

P1(T )+R
−Q2(T )



−RQ3(T ). (C.16)

It is noticed that |P (T )| is a monotonically increasing function of P1(T ). Evidently,

P1(T ) should be real. If P1(T ) is not the largest one among all the real solutions of

(C.13) for fixed T ≥ Tm, we then know that P (T ) with P1(T ) to be the largest real

solution and P2(T ) and P3(T ) calculated by using (C.14) and (C.15), respectively, is

also a positive definite solution of the DARE (5.17), which is a contradiction of the

uniqueness of the solution. If R = 0, then from the DARE in (5.17), we can obtain

a quadratic equation of P1(T ). To distinguish the solution from that of R > 0, we

use P
(0)
1 (T ) to represent it. Among the two solutions of the quadratic equation,

we choose P
(0)
1 (T )=

(2U(T )+V (T ))+
√

4U(T )V (T )+V 2(T )

2
and discard the other one since we

need S
(0)
1 (T ) = P

(0)
1 (T ) − Q1(T ) > 0. Recall that P1(T ) is the largest real one of

the four solutions of the quartic equation (C.13) for fixed T ≥ Tm. If we allow R

goes to zero in (C.13), then P1(T ) → P
(0)
1 (T ). From (5.19), (C.14) and (C.15), it

follows S1(T ) → 0, S2(T ) → 0 and S3(T ) →
√

AB + B2

12
T 2 when R → 0. Therefore,

Ŝ1(T, t) → Ŝ
(0)
1 (T, t) = t2

√

AB + B2

12
T 2 according to (5.20).

Combining step 1 and step 2, it follows Ŝ1(T, t) ≥ Ŝ
(0)
1 (T, t) for any fixed

T ≥ Tm and t > 0. This completes the proof of Lemma 2.

C.3 Proof of Proposition 3

If we define θ =
√

∫∞
t=0e

−2Q1(t) dt and from (C.1), it follows

∫ T

Tm

e−σ2
φ

(T,t) dt ≤ θ

√

∫ ∞

0
e−2Ŝ

(0)
1 (T,t) dt (C.17)
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for all T ∈ [Tm,∞), where we use Ŝ1(T, t) ≥ Ŝ
(0)
1 (T, t) for any fixed T ≥ Tm and

t > 0 from Lemma 2. We then substitute the expression of Ŝ
(0)
1 (T, t) given in (5.25)

into (C.17), it follows

∫ T

Tm

e−σ2
φ

(T,t) dt ≤ θ
(

8
π
Ŝ

(0)
1 (T, 1)

)
1
4

= Λ(T ). (C.18)

After plugging (C.18) into (5.7), we can obtain the expression of Φ(Tf ) in (5.27).

C.4 Proof of Proposition 4

From (5.7), it suffices to show σ2
φ(µjTf , t) is a continuous function of Tf ∈ [Tm/µmin,∞)

for any j and t > 0. In fact, we can show σ2
φ(T, t) is a continuous function of T > 0

for any t > 0. From (5.20) and (5.21), it suffices to show each element of S(T ) is a

continuous function of T > 0. It then suffices to show that each element of P (T )

is a continuous function of T > 0 according to (5.19) since each element of S(T )

is a composition of continuous functions with respect to the elements of P (T ). We

give T a perturbation ∆T such that T + ∆T ∈ [Tm,∞) and denote P̃ (T ) to be a

symmetric solution of the following perturbed DARE:

P̃ (T ) = F (T+∆T )

[

P̃ (T )− P̃ (T )hThP̃ (T )

hP̃ (T )hT+R

]

F (T+∆T )T + Q(T+∆T ). (C.19)

From Theorem 3.1 in [122], we have ||P̃ (T )−P (T )||F = O(δF ,Q) for δF ,Q → 0, where

δF ,Q = (‖∆F ‖2
F + ‖∆Q‖2

F )1/2 with ∆F = F (T + ∆T ) − F (T ) and ∆Q = Q(T +

∆T ) −Q(T ). When ∆T → 0, it follows δF ,Q → 0 since each element of either F (T )

or Q(T ) is a continuous function with respect to T > 0. Therefore, lim∆T →0 ||P̃ (T )−

P (T )||F = 0, which implies that each element of P (T ) is a continuous function with

respect to T > 0. This completes the proof of Proposition 4.
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