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Abstract 

Electric Boat’s submarine modular structures may contain trusses designed using elastic 

analysis methods for dynamic underwater shock loading. Suitable member sizes are partly 

determined on buckling criteria usually intended for design of columns subject to static loads and 

may be overly conservative for dynamically loaded columns, which can translate into added 

module weight and cost. In an attempt to understand the degree of conservatism, tensile and 

compressive tests were performed to determine material properties for structural steel in column 

and truss configurations both statically and dynamically. Through analysis of results, it’s 

recommended that the members not be loaded beyond their static yield strength and that 

consideration be given to reducing column effective length factors. 

This project was sponsored and funded by Electric Boat, Groton, Connecticut.  The 

conclusions and recommendations made in this report are those of WPI and do not necessarily 

reflect the opinions of Electric Boat. 
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Background 

The following project, sponsored by Electric Boat (EB), was intended to better 

understand the behavior of columns and typical trusses members when subjected to static and 

dynamic loadings and to relate that behavior to the existing design methods for preventing 

column buckling in submarine modular structures.  While a traditional analysis on the trusses in 

modular structures (based on design assumptions) concludes that the members are optimally 

designed, design methods may have unnecessary conservatism, which would lead to over-

designed (costlier and heavier) members.   

 Certain large modular structures in a modern submarine are made of truss structures 

fabricated from square tubes.  These tubes are often welded together to form Pratt-type Trusses, 

which are then used as the standard truss configuration for the modules.  These modules must be 

designed to withstand rapidly-applied loadings due to underwater shock conditions. 

 Chapter H of the AISC Specifications (Chapter H, Steel Construction Manual, 2005) 

describes the design of members subjected to combined forces, in this case axial compression 

and dynamic bending.  The design for combined forces requires both the allowable and actual 

strengths (i.e., axial and flexural bending), which are input into specific empirical interaction 

equations (i.e., Equation H1 of the AISC Specification).  These equations are outlined and 

explained as follows: 
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In which: 

 =rP Required axial strength (actual stress in axial loading), 

 =cP  Critical axial strength (allowable stress in axial loading), 

 =rM  Required flexural strength (actual stress in flexural bending) and 

 =cM  Critical flexural strength (allowable stress in flexural bending). 

 

 A major component in the above equation is the critical axial strength (cP ) which relies 

heavily on the slenderness ratio (
r

KL
).  The slenderness ratio is the quotient of the length of the 

column (L) and its radius of gyration (r).  The K factor (K) is a constant that depends on the end 

conditions of the column and the shape in which it buckles.  Table C-C2.2 of the AISC 

Commentary on the Specification gives approximate values of the effective length factor (K) 

with respect to various end conditions.  This table provides values ranging from 0.5 representing 

a column with both ends fixed, to a value of 1.0 for a column with both ends pinned and free to 

rotate.  

 The assumption made in the EB design methodology for columns in modern submarine 

modules involves using the rather conservative estimate of 1.0 for the K factor, which assumes 

pin ended connections despite the fact that the ends are welded in the frame.  The question that 

needs to be asked is how conservative this assumption is and can the members be more optimally 

designed without compromising the strength of the submarine structure.  If a more realistic 

effective length (KL) of each column in the basic truss configuration could be determined, this 



would reduce the slenderness ratio and allow for the use of members with smaller cross-sectional 

areas while still providing the necessary strength for the same loading conditions.  Ultimately, 

relaxation of conservatism could save on materials and fabrication costs as well as decrease the 

overall weight of the structure.  

 The objective of this project is to perform a variety of experiments and compare the loads 

that precipitate actual failure with the design loadings using the AISC interaction equations.  The 

comparison will enable a direct association between the experimental and design strengths of the 

frame modules and show how conservative the current design method may be. 

   



Methodology 

 The following is a list of objectives that will be necessary for successful completion of 

this project: 

 

• Determine the loading needed to elastically and plastically deform steel columns and the 

provided truss configuration in quasi-static tests. 

• Determine the loading needed to elastically and plastically deform steel columns and the 

provided truss configuration in dynamic tests. 

• Analyze the results of the quasi-static and dynamic tests using the AISC interaction 

equations and determine an appropriate compressive load strength based on safety factors 

acquired from a literature review. 

 

These three objectives will be accomplished through the use of three specific tasks 

involving data collection and analysis.  These tasks will consist of: procuring and fabricating the 

test structures; testing columns and trusses subjected to quasi-static loading; and testing columns 

and trusses subjected to dynamic loading.  Each of these three tasks is explained in further detail 

below. 

Before any major testing began, an introductory meeting was held between the group and 

representatives from Electric Boat.  This initial meeting provided the group with the opportunity 

to learn about the basics of submarine construction and design in order to obtain a basic 

background of the field.  Specifics have also been detailed by EB regarding the primary goals of 

this project as well as the creation of a reasonable time frame in which to complete it.  Drawings, 

material specifications and welding fabrication specifications were provided by EB such that the 



test samples could be made in a manner that conformed to the manner actual submarine module 

trusses are built.  

Accomplishing the above project objectives may allow EB to make less conservative 

design decisions which could reduce the cost of the submarine structure without detracting from 

the structure’s strength and serviceability.  The Gantt chart in Figure 1 gives a visual 

representation of the schedule of the project. 

 

 

Figure 1: Gantt chart of Project Schedule. 

 
 

Procurement and Fabrication 

 The construction of the experimental sample trusses will be one of the most time-

consuming aspects of the entire project.  The group will use instructions provided by Electric 

Boat to determine how to design the symmetric and asymmetric truss models that will be utilized 

Background Research

Material Procurement

Truss Construction

Tensile Bar Tests

Column Static Tests

Truss Static Tests

Column Dynamic Tests

Truss Dynamic Tests

Data Analysis



in the testing procedures.  Both frame designs are based on the file, “Sk WPI 01 Rev B 11-19-

09.ppt” for all of the dimensions (see Figure 2 and Figure 3).  The specimen frames will 

represent a scaled version of a portion of the truss for a large modular structure of a modern 

submarine.  The specifications shown in the sketches provided by EB include material size and 

shape, truss configuration, and truss member lengths, based on EB design processes and the 

capabilities of the laboratory testing equipment at WPI. 

 

 

Figure 2: Symmetric truss configuration and dimensions for fabricated samples. 

 
 



 
Figure 3: Asymmetric truss configuration and dimensions for fabricated samples. 

 

Material for the first round of testing will be procured based on ASTM and Electric Boat 

specifications.  ASTM A500 steel will be used to construct the frames.  HSS 2” x 2” x 1/8” steel 

tubes will be purchased from Peterson Steel in Worcester, Massachusetts in 24-foot lengths.  The 

total procurement process will provide enough material to make 15 truss samples for testing.  

The steel will be cut into lengths in the WPI CEE machine shop as specified in the project 

description and roughly assembled to make sure that all members fit properly.  Diagonal 

members are especially important to consider, as the ends need to be cut perfectly in order for the 

truss to fit together correctly. 

Cut pieces of steel tubing will be welded based on the information provided in the file, 

“Sketch: WPI-01 Rev B.11-19-09” from Electric Boat (see Appendix A).  Due to the nature of 

the welding specifications, the steel members will be welded by Worcester County Welding of 

Worcester, Massachusetts.  The final products will be checked by Worcester County Welding 



through visual inspection for flaws or discrepancies, approval documentation will be obtained, 

and the trusses will be returned to WPI for testing. 

 

Tensile Bar Testing 

 Before the truss testing began, material properties for the steel columns needed to be 

obtained.  Some of the more important properties of interest when performing this test were the 

yielding stress, fracture stress and ultimate stress.  Sections of the HSS steel tubes used to 

fabricate the trusses were cut into steel “dog bone” shaped bars that were 15.5” long, 3/4” wide 

on the ends, 1/2” wide in the middle, and 1/8” in thickness as mandated by ASTM E8 

specifications (ASTM International, 2008).  The fabrication of the bars was outsourced to 

HydroCutter Co. of North Oxford, MA in order to reduce both heating and curving of the 

samples which is typical when using a standard milling machine to perform the same operation.  

These bars were sent out to be punched by the Mass Materials Research Company in order to 

create reference points with which to measure elongation following the testing.  The bars were 

subjected to tensile forces using the Tinius Olsen Testing Machine until they broke in half. 

 The Tinius Olsen Testing Machine (Tinius Olsen) will be used for all tensile bar testing 

and quasi-static testing of both the frames and columns.  It is a large hydraulically-driven tensile 

and compressive testing machine which can apply a compressive force on an object that sits 

between the main table and the head of the machine or apply a tensile force on an object that is 

held between the head of the machine and the upper stationary head.  The main table also has the 

ability to measure the force being applied by the head when under compression.  The machine is 

connected to a computer which measures and records the amount of force being applied to the 



object in the machine as well as the stress-strain curve.  The Tinius Olsen Testing Machine and 

attached computer module can be seen in Figure 4. 

 

 

Figure 4: Tinius Olsen Testing Machine workstation for tensile testing and quasi-static testing. 

 

A tensile extensometer was used in order to measure the tensile distance so that a stress-

strain curve of the elastic deformation during the testing process could be obtained.  Computer 

software and the punch marks made on the bars helped to determine the properties for the steel 

that were mentioned above, which will be important in future testing and analysis.  A detailed 

drawing of a tensile bar can be seen in Figure 5. 

 



 

Figure 5: Detailed model of a tensile bar. 

 

Quasi-Static Testing 

 The quasi-static testing process will be divided into two parts: axial compression of a 

single member (i.e., 24” in length from stock material) and compression along the top chord of a 

truss.  Both tests will be performed multiple times to obtain consistent loading and stress-strain 

data.  Important pieces of information that will need to be observed include the overall forces 

and deformation of the frame. 

For axial compression on a single column, the member will be placed vertically in the 

Tinius Olsen with the top end free to rotate and the bottom end held in place by a ½” thick sheet 

of plywood with a 2” x 2” square cut in the center to keep the column from sliding along the 

main table or kicking out during testing.  The quasi-static column test setup can be seen in Figure 

6. 

 



 

Figure 6: Setup for quasi-static loading on a column sample. 

 
 

For testing of the truss samples, two steel I-beams will be placed side-by-side on the main 

table of the Tinius Olsen.  Two steel half rounds with a 2” radius simulating roller supports will 

be placed 32” apart on opposite ends of the I-beams and the truss under load will sit atop them so 

it is elevated during testing to allow for deflection when forces are applied; both half rounds will 

run perpendicular to the length of the I-beams, will create point loads on the bottom chord of the 

truss, and will have negligible deflection. 

Loading situations will consist of both distributed (using solid steel stock across the top 

chord) and point loaded (using a roller) configurations, as well as “strain-gauged” and non-

“strain-gauged” samples.  Samples will be both symmetric and asymmetric.  Symmetric trusses 

will be tested for buckling stresses on the center column while asymmetric trusses will look more 

into the moment that is created about the center column due to central loading along the top 



chord and values of strain on the top chord on either side of the center column.  The quasi-static 

distributed and point load truss test setups can be seen in Figure 7 and Figure 8, respectively. 

 

 

Figure 7: Setup for quasi-static distributed loading on a truss sample. 

 



 
 

Figure 8: Setup for quasi-static point loading on a truss sample. 

 

Dynamic Testing 

 Like the quasi-static testing, the dynamic testing will be broken into two stages: axial 

impact of a single member 24” in length from stock material and a point-load impact along the 

top chord of a truss.  Both tests will be performed multiple times to obtain consistent impact 

data.  Important pieces of information that will need to be documented include initial height of 

the impact source from the test subject, acceleration, and deformation. 

 A drop tower with a maximum drop height from the subject of five feet will be used for 

all dynamic testing.  Compressive springs are also available to increase the drop velocity if 

necessary.  The mass of the drop can be adjusted with the addition or subtraction of steel plates 

to the impact head which is connected to the tower by the four vertical columns. The drop tower 

and attached computer module can be seen in Figure 9. 



 

 

Figure 9: Drop tower workstation for dynamic testing. 

 
 
 For axial impact on a single column, the member will be placed vertically in the drop 

tower with the top end free to rotate and the bottom end held in place by a ½” thick plate of steel 

with a 2” x 2” square cut in the center to keep the column from moving during testing.  The steel 

plate will be bolted to the bottom of the drop tower to hold the specimen in place.  Neoprene 

rubber pads will be placed on the top of the column to eliminate noise during impact.  The 

dynamic column test setup can be seen in Figure 10. 

 



 

Figure 10: Setup for dynamic loading on a column sample. 

 
 
 The drop tower has two parallel I-beams attached to the bottom of the device.  In order to 

test the frames dynamically, two-inch radius solid steel rollers will be placed on either I-beam to 

act as point loads along the bottom chord of the truss.  The truss will be situated on top of the 

two rollers, running perpendicular to the two I-beams.  Two 24” tall aluminum I-beams will be 

clamped vertically to each of the horizontal I-beams with a clearance of 2.5” between each pair.  

The I-beams will have tabs welded onto the end in order to allow clamping.  This setup will hold 

the sample straight up and prevent swaying of the truss.  Rubber padding will be added to the 

insides of each pair of vertical I-beams and on each roller support.  Tests will be performed both 

with and without padding. 

Impact experiments will consist of point loaded (using a roller) configurations, as well as 

“strain-gauged” and non-“strain-gauged” samples.  Samples will be symmetric only and will be 



tested for impact stresses on the center column.  In order to dampen the signal of the reading as 

well as extend the duration of impact for better graphical results, ½” rubber padding will be used 

in thicknesses of ½” and 1”.  Calibration tests will be performed for impacts with no rubber 

padding, ½” rubber padding, and 1” rubber padding to decide on appropriate dampening.  The 

dynamic truss test setup can be seen in Figure 11. 

 

 

Figure 11: Setup for dynamic loading on a truss sample. 

 

Instrumentation 

 Proper documentation of the tests is the most important part of performing the following 

experiments.  Throughout the entire testing procedure, the following instruments will be used to 

collect data for documentation: 

 

• High-speed video camera capable of capturing up to 4,500 picture frames per second. 



• 10,000-g piezoelectric shock accelerometer placed on the impact head. 

• Strain gauges attached to select columns and truss members which are wired to a 

computer module. 

• Digital photography of the failure patterns. 

 

The high-speed video camera to be used is a FASTCAM camera capable of capturing up 

to 4,500 frames per second with attached lighting that allows the user to capture the pattern in 

which the columns and frames fail with respect to the mass dropped at every instant of the test in 

very slow motion.  The camera will be used only for dynamic testing.  The setup of the high-

speed camera along with the lighting configuration can be seen in Figure 12. 

 

 

Figure 12: Setup of the high-speed video camera. 

 

The 10,000-g accelerometer will be placed on the impact head of the drop tower during 

dynamic tests in order to record the mass’s acceleration history with respect to time and to 



calculate the load applied to the columns and frames using energy.  An important note about 

accelerometers is that they measure acceleration in G’s (g-force or acceleration due to free fall). 

This is important because the measurement being made is instantaneous acceleration which does 

not rely on gravity alone, but results from other forces on the object such as stresses and strains 

in different directions (impact stress and strain in our case).  As the sensor is unable to record 

constant accelerations for times greater than its time constant, data can only be recorded from the 

time of contact to the time of rebound.  The data collected will then have the noise and frequency 

filtered using a MATLAB program employing an SAE type signal processing filter.  The setup 

for the shock accelerometer can be observed in Figure 13. 

 

 

Figure 13: 10,000-g piezoelectric shock accelerometer on impact head 

 
 

Lastly, for the purpose of collecting strain data on specific members of the trusses and the 

single columns being tested in order to calculate stress and make conclusions regarding the 

buckling behavior of the members, strain gauges were employed.  The strain gauges used were 

procured from Vishay Electric and have a resistance of 120 Ohms with leads attached to simplify 

the implementation.  These gauges were attached to the steel members using epoxy, allowed to 



dry overnight, and then soldered to wires which were connected to a National Instruments Signal 

Conditioner.  A setup of a strain gauge attached to a truss and the wiring configuration 

connecting the strain gauge to the signaling conditioner can be seen in Figure 14 and Figure 15, 

respectively. 

 

Figure 14: Strain gauge setup on a truss. 

 
 

 
 

Figure 15: Wiring of strain gauge to signaling conditioner. 

. 

 These devices were interfaced with the accelerometers using the software National 

Instruments LabView.  The interface was governed by the use of a LabView Virtual Instrument, 



and screenshots of the logical block diagram governing this Virtual Instrument can be observed 

in Figure 16.  This particular example consists of five inputs: four for the strain gauges and one 

for the accelerometer.  The four strain gauge values are multiplied by 1,000,000 to convert 

measurements in micro-strain.  Both strain and acceleration data is outputted to a waveform 

graph and are recorded to an Excel spreadsheet file for easy access after the test.  For dynamic 

tests, this data is filtered using MatLab. 

 

Figure 16: LabView block diagram for acceleration. 

    



Results 

Tensile Bar Testing 

Quasi-static tensile tests were carried out in accordance with ASTM Specification E8 

(ASTM International, 2008) in order to investigate the properties of the A500 steel used in the 

HSS members.  The five inch long grips were each placed into the tensile portion of the Tinius 

Olsen Testing Machine with the reduced area visible.  With an extensometer placed on the 

reduced section the samples were loaded until they began to yield.  The extensometer was then 

removed and specimen was loaded until it failed.  Minimum properties for this material as stated 

by ASTM for ASTM A500 Grade B steel are shown in Table 1. 

 
Table 1: Material properties for ASTM A500 Grade B steel. 

Material Properties for ASTM A500 Grade B Steel 

Ultimate Tensile Strength 58,000 psi 

Yield Strength 46,000 psi 

Minimum Elongation 23% 

 
 

Tensile Bar #1 Test 

The dimensions of the first sample’s reduced area were measured by caliper to be 0.506 

inches by 0.119 inches resulting in an area of 0.0602 square inches that was subjected to tensile 

forces in the test.  The sample was subjected to a load of 400 pounds per minute until failure. 

The material properties determined from the experiment are summarized in Table 2.  

  



 
Table 2: Material properties obtained in Tensile Test #1. 

Summary of Properties: Tensile Test #1 

Peak Load 3,961 pounds 

Ultimate Tensile Strength 65,797 psi 

Yield Strength 57,490 psi 

Elongation 32.1% 

 
 

The stress-strain curve for the portion of the test measured with the extensometer 

(measuring yielding in the elastic region alone) is given in  

Figure 17. 

 

 
 

Figure 17: Stress-strain curve for Tensile Test #1. 

 
 

The load-position curve for this test is given in  

Figure 18. 
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Figure 18: Load versus position graph for Tensile Test #1. 

 
 
 

The fracture pattern of tensile bar #1 as well as a close-up of the break can be seen in 

Figure 19 and Figure 20, respectively. 

 

 

Figure 19: Tensile bar #1 after testing. 
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Figure 20: Close-up of tensile bar #1 after testing. 

 

Tensile Bar #2 Test  

The dimensions of the first sample’s reduced area were measured by caliper to be 0.503 

inches by 0.115 inches resulting in an area of 0.0578 square inches that was subjected to tensile 

forces in the test.  The sample was subjected to a load of 400 pounds per minute until failure. 

The material properties determined from the experiment are summarized in Table 3.  

 
Table 3: Material properties obtained in Tensile Test #2. 

Summary of Properties: Tensile Test #2 

Peak Load 3,905 pounds 

Ultimate Tensile Strength 67,561 psi 

Yield Strength 58,010 psi 

Elongation 29.4% 

 
 

The stress-strain curve for the portion of the test measured with the extensometer 

(measuring yielding in the elastic region alone) is given in Figure 21. 

 



 

Figure 21: Stress-strain curve for Tensile Test #2. 

 
 

The load-position curve for this test is given in Figure 22.  

 

 

Figure 22: Load versus position graph for Tensile Test #2. 
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The fracture pattern of tensile bar #2 as well as a close-up of the break can be seen in 

Figure 23 and Figure 24, respectively. 

 

 

Figure 23: Tensile bar #2 after testing. 

 

 

Figure 24: Close-up of tensile bar #2 after testing. 

 

Tensile Bar #3 Test  

The dimensions of the first sample’s reduced area were measured by caliper to be 0.503 

inches by 0.115 inches resulting in an area of 0.0578 square inches that was subjected to tensile 



forces in the test.  The sample was subjected to a load of 400 pounds per minute until failure. 

The material properties determined from the experiment are summarized in Table 4.  

 
Table 4: Material properties obtained in Tensile Test #3. 

Summary of Properties: Tensile Test #3 

Peak Load 3,873 pounds 

Ultimate Tensile Strength 60,610 psi 

Yield Strength 53,600 psi 

Elongation 29.9% 

 
 

The stress-strain curve for the portion of the test measured with the extensometer 

(measuring yielding in the elastic region alone) is given in Figure 25. 

 

 

Figure 25: Stress-strain curve for Tensile Test #3. 

 

The load-position curve for this test is given in Figure 26. 
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Figure 26: Load versus position graph for Tensile Test #3. 

 

The fracture pattern of tensile bar #3 as well as a close-up of the break can be seen in 

Figure 27 and Figure 28, respectively. 

 

 

Figure 27: Tensile bar #3 after testing. 

 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Tensile Test #3: Load vs Position Curve

Position (inches)

Lo
a

d
 (

lb
f)



 

Figure 28: Close-up of tensile bar #3 after testing. 

 

Summary of Tensile Bar Results 

A summary of the testing results for all three tensile tests is presented below in Table 5. 

 

Table 5: Summary of Tensile Test results. 

 
Property Minimum by ASTM Spec Average Result 

Tensile Strength (psi) 58,000 64,656 

Yielding Strength (psi) 46,000 56,367 

Elongation (%) 23 30.5 

 
 

As shown in Table 5, the material is considerably stronger than the minimum allowable 

stresses specified by ASTM E8 Material Testing Specification.  The average yield strength in 

particular was over 56,000 psi as opposed to the minimum yield stress of 46,000 psi (i.e., more 

than 20 percent higher) shows that the tubes are made of adequate material. 

  



Quasi-Static Testing 

 
 Quasi-static testing was performed in order to obtain relevant information regarding yield 

stress and buckling points in trusses as well as to prepare for the initial condition of dynamic 

testing, which governs the design of submarines.  All quasi-static tests were performed in the 

Tinius Olsen Testing Machine.  Any changes to the typical test setup are documented in the 

respective sections below. 

Column Static Test 

 Quasi-static testing began with an axial compression test on a single 24-inch long column 

in order to determine the buckling load of a column and to ensure all necessary data could be 

obtained using the test setup before beginning the tests on the frames.  The AISC equations 

governing buckling stress are Equations E3-2 and E3-3 (Chapter E, Steel Construction Maunal, 

2005).  The slenderness ratio of a 24 inch long HSS 2 x 2 x 1/8 is 31.5, which puts it in the 

criteria of AISC Equation E3-2.  A summary of theoretical calculations is shown below in Table 

6, using the average yielding stress from the tensile bar tests (Fy=56,367 psi from Table 5). 

 

Table 6: Theoretical calculations of tested steel members. 

Property Calculated Value (AISC) 

Critical Buckling Stress (Fcr) 51,929.48 psi 

Nominal Strength (Pn) 43,620.76 lbs 

Factored Allowable Load (φcPn) 39,258.68 lbs 

 

The member was placed vertically with the top end free to rotate and the bottom end held 

place by a ½” thick sheet of plywood with a 2” x 2” square cut in the center to keep the column 

from sliding along the main table or kicking out during testing, these end conditions correspond 



to a theoretical K value of 0.7, but based on the EB design criteria a more conservative K value 

of 1.0 was used.  The sample was then loaded axially at a compression rate of 4,000 lbs per 

minute until the column buckled. Results of this test are given in Table 7. 

 

Table 7: Column static test data. 

Mechanical Property Test Result 

Peak Load (lbf) 51,233 

Compressive Strength (psi) 57,097 

Initial Length of Column (in) 24 

Final Length of Column (in) 23.75 

 

 The standard yielding stress for the material used in the columns (ASTM A500 Grade B) 

is 46,000 psi, and using a conservative effective length factor (K) of 1.0 and the AISC equations 

for column buckling (Equation E3-2), this yielding stress would provide a buckling load of 

36,138 lbs for a 24 inch column. Using the yield stress found in the tensile tests (Fy=56,367 psi) 

the buckling load would be calculated as 43,620.76 lbs for a 24 inch column. So using the 

theoretical yielding stress of 46,000 psi, this column turned out to take 15,095 more lbs (30% 

more weight). Using the experimental yielding stress of 56,367 psi, the column took 7,612 lbs 

more (15% more weight). The load versus position diagram for the test is presented in Figure 29.  

 



 

Figure 29: Load versus position graph for column static test. 

 

Figure 30 is a picture of the single column after the test showing the deformation in the 

column. 

 

 

Figure 30: Result from column static test. 
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 The deformation in the column was very pronounced along with reasonably well-defined 

inflection points a couple of inches from each end, which showed some promise with the end 

condition theory for buckling.  The loading was also reassuring because the compressive strength 

was only slightly below the ultimate failure strength for the material, thus the failure was due to 

mechanical failure in buckling rather than material failure.  Lastly, this test produced useful 

information for the quasi-static testing of the frames since it provided an available peak load that 

each column can withstand and displayed success in the test setup to obtain the necessary data in 

the static testing of the frames.  The actual buckling load taken by the column in this test was at 

least 15% greater than one would expect through theoretical calculations of buckling loads.  

  



Column Static Test (Longer) 

 A second column of 36” in length was subjected to axial compression in order to 

compare the behavior of it to the 24” column.  The AISC equations governing buckling stress are 

labeled by Equations E3-2 and E3-3 in the background.  The slenderness ratio of a 36 inch long 

HSS 2 x 2 x 1/8 is 47.31, which puts it in the criteria of AISC Equation E3-2.  A summary of 

theoretical calculations is shown below in Table 8, using the average yielding stress from the 

tensile bar tests (Fy=56,367 psi from Table 5). 

 

Table 8: Theoretical calculations of tested steel members (long). 

Property Calculated Value (AISC) 

Critical Buckling Stress (Fcr) 39.570 psi 

Nominal Strength (Pn) 33,239.1 lbs 

Factored Allowable Load (φcPn) 35,434.2 lbs 

 

The member was placed vertically with the top end free to rotate and the bottom end held 

in place by a ½” thick sheet of plywood with a 2” x 2” square cut in the center to keep the 

column from sliding along the main table or kicking out during testing.  The sample was then 

loaded axially at a compression rate of 2,000 lbs per minute until the column buckled. Results of 

this test are given in Table 9. 

 

Table 9: Column (Long) static test data. 

Mechanical Property Test Result 

Peak Load (lbf) 52,282 

Compressive Strength (psi) 58,266 



Initial Length of Column (in) 36 

Final Length of Column (in) 35.5 

 

 The standard minimum yield strength for the material used in the columns (ASTM A500 

Grade B Steel) is 46,000 psi along with an ultimate strength of 58,000 psi. The load versus 

position diagram for the test is presented in Figure 31.  

 

 

Figure 31: Load versus position graph for column (long) static test. 

 

Figure 32 is a picture of the longer member after the test showing the deformation in the 

column. 
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Figure 32: Result from column (long) static test. 

 
 
 The deformation experienced in the longer column was also very noticeable along with 

reasonably well-defined inflection points a couple of inches from each end, which showed some 

promise with the end condition theory for buckling.  The test reinforced the conclusions made 

during the first column test although a strange observation was made in that the load the column 

took before buckling is actually higher than that of the 24” column.  By increasing the length of 

the column, one can normally assume that the axial compressive load that the member can take 

before buckling should decrease.  Although no extensive research was performed on the 

reasoning, one factor that did change between both tests was the load rate (4,000 lb/min for the 

24” column, 2,000 lb/min for the 36” column).  This decrease in loading rate may have helped 

the column surpass the expected buckling strength. 

  



Truss #1 Static Test (Symmetric) 

The first frame was tested with the sample resting on roller supports on either end of the 

bottom chord centered underneath the outer vertical members.  The truss was oriented such that 

the two diagonal members ran from the bottom corners to the top center of the frame.  A steel I-

beam was placed on the top chord in order to distribute the applied force.  A 2”x2” piece of solid 

steel stock was then placed on top of the I-beam in order to aid in the distribution of the load.  

This set up and loading is summarized in Figure 33 along with number labels for each member. 

 

 

Figure 33: Truss setup for Static Test #1. 

 

The sample was loaded on the center of the 2”x2” steel stock at a compression rate of 

4,000 lbs per minute until the frame plastically deformed.  The load versus position diagram for 

the test is presented in Figure 34. 

 



 

Figure 34: Load versus position graph for static test of Truss #1. 

 

Figure 35 is a picture of part of the truss frame that was held up by a support roller after 

the test showing the local deformation that occurred. 

 

 

Figure 35: Result from Truss #1 static test. 
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 The first truss tested ended up failing at a much lower load than anticipated (i.e., the peak 

load was 42,611 pounds).  The group was expecting to see deformation in the overall truss but 

instead, local buckling occurred first.  The force applied to the truss was so large that the reactive 

point load forces experienced from the two roller supports locally deformed the specimen’s 

bottom chord on both ends.  The result was both unexpected and disconcerting, as a new setup 

had to be experimented with for future static truss tests.  Aside from the local collapse at the 

loading points, the members of the truss remained unbent after the test and the sample was 

reused for a second trial, although it is labeled as “Truss #2” in this paper. 

  



Truss #2 Static Test (Symmetric) 

The second frame was tested with the sample resting on roller supports on either end of 

the bottom chord directly underneath the outer vertical members.  The truss was oriented such 

that the two diagonal members ran from the top corners to the bottom center of the frame.  The 

local deformation issue was addressed by inserting a solid piece of steel stock (1.75”x1.75”x4”, 

henceforth known as a “plug”) into either end of the bottom chord directly over the roller 

supports.  By doing so, local deformation due to the reactive forces of the supports would be 

eliminated.  A steel I-beam was placed on the top chord in order to distribute the applied force.  

A 2”x2” piece of solid steel stock was then placed on top of the I-beam in order to aid in the 

distribution of weight.  This set up and loading is summarized in Figure 36 along with number 

labels for each member. 

 

 

Figure 36: Truss setup for Static Test #2. 

 
 



The sample was loaded on the center of the 2”x2” steel stock at a compression rate of 

4,000 lbs per minute until the frame plastically deformed.  The load versus position diagram for 

the test is presented in Figure 37. 

 

 

Figure 37: Load versus position graph for static test of Truss #2. 

 

Figure 38 is a picture of the top center of the truss frame showing the local deformation 

that occurred. 
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Figure 38: Result from Truss #2 static test. 

 
 

The truss was able to withstand much more static load with the plugs inserted inside the 

bottom chord.  However, whether it was from the large amount of pressure being exerted or the 

fact that the top chord was previously deformed from the first test, the distributed load along the 

sample began to locally deform the horizontal top chord in the center of the truss after a peak 

loading of 76,382 pounds.  Member buckling did not occur during this experiment which meant 

that the current setup of the test needed to be adjusted to take into account local deformation in 

the top chord. 

  



Truss #3 Static Test (Symmetric) 

The third frame was tested with the sample resting on roller supports on either end of the 

bottom chord directly underneath the outer vertical members.  The truss was oriented such that 

the two diagonal members ran from the bottom corners to the top center of the frame.  The local 

deformation issue was addressed by inserting three more plugs into either end of the top chord 

and one directly in the center of the member along with two in the bottom chord directly over the 

supports.  By doing so, local deformation due to the reactive forces of the supports as well as 

deformation from the force applied by the applied load would be severely limited.  A steel I-

beam was placed on the top chord in order to distribute the applied force.  A 2”x2” piece of solid 

steel stock was then placed on top of the I-beam in order to aid in the distribution of weight. This 

set up and loading is summarized in Figure 39 along with number labels for each member: 

 

 

Figure 39: Truss setup for Static Test #3. 

 



The sample was loaded on the center of the 2”x2” steel stock at a compression rate of 

4,000 lbs per minute until the frame plastically deformed.  Results of this test based on standard 

static truss analysis and further study of individual member forces are given in Table 10.  

 

Table 10: Truss #3 static test data. 

Member Resulting Force (Pounds) Type of Axial Force 

Peak Load (for frame) 151,617   

1 0 N/A 

2 47,380.31 Tension 

3 47,380.31 Tension 

4 0 N/A 

5 28,428.19 Compression 

6 37,904.25 Compression 

7 37,904.25 Compression 

 

The load versus position diagram for the test is presented in Figure 40. 

 



 

Figure 40: Load versus position graph for static test of Truss #3. 

 

 The third static truss test was the first of the truss tests to be labeled as a success.  One of 

the outer vertical members buckled under the force with a final deformed length of about 16”.  

Both diagonal members were also slightly deformed, though not enough to make proper 

calculations on the pieces.  All five plugs prevented local deformation; although slight dents 

were made into the steel, the plug prevented the cross-section from collapsing.  A final image of 

the third static truss was not available, as it was considered scrap following testing and it was 

torn apart to retrieve the metal plugs in the top and bottom chords 
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Truss #4 Static Test (Symmetric) 

The fourth frame was tested with the sample resting on roller supports on either end of 

the bottom chord directly underneath the outer vertical members.  The truss was oriented such 

that the two diagonal members ran from the top corners to the bottom center of the frame.  The 

local deformation issue was addressed by inserting plugs into the top and bottom chords, as 

described earlier.  The steel I-beam distributing the load on the top chord was replaced with a 

4”x4” piece of 1018-grade steel stock because the applied weight from previous tests began to 

deform the I-beam.  A 2”x2” piece of solid steel stock was then placed on top of the 4”x4” steel 

stock in order to aid in the distribution of weight. This set up and loading is summarized in 

Figure 41 along with number labels for each member. 

 

 

Figure 41: Truss setup for Static Test #4. 

 
 The sample was loaded on the center of the 2”x2” steel stock at a compression rate of 

4,000 lbs per minute until the frame plastically deformed.  Results of this test based on standard 

static truss analysis and further study of individual member forces are given in Table 11. 



  

Table 11: Truss #4 static test data. 

Member Resulting Force (Pounds) Type of Axial Force 

Peak Load (for frame) 106,549   

1 53,274.5 Compression 

2 33,296.56 Tension 

3 33,296.56 Tension 

4 19,977.94 Compression 

5 0 N/A 

6 53,274.5 Compression 

7 53.274.5 Compression 

 

The load versus position diagram for the test is presented in Figure 42. 

 

 

Figure 42: Load versus position graph for static test of Truss #4. 
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Figure 43 is a picture of the truss frame after the test showing the out-of-plane 

deformation that occurred. 

 

 

Figure 43: Result from Truss #4 static test. 

 
 
 The first run of the fourth static test ended up in a failure of the I-beam, which acted as 

the distribution beam.  The fact that the truss did not deform during this initial test allowed for 

the group to reconfigure the test setup while using the same truss. The I-beam was replaced with 

the 4”x4” 1018-grade steel bar of comparable length (as explained earlier) and the same truss 

was tested a second time with successful results.  Buckling occurred slightly in the center column 

while one of the outer vertical members experienced the most plastic deformation. 

  



Truss #5 Static Test (Symmetric) 

The fifth frame was tested with the sample resting on roller supports on either end of the 

bottom chord directly underneath the outer vertical members.  Two strain gauges were placed on 

opposite sides of the central vertical member to measure strain values and determine deformation 

locations.  The truss was oriented such that the two diagonal members ran from the top corners to 

the bottom center of the frame.  The local deformation issue was addressed by inserting one plug 

into the top chord in the center and two plugs in the bottom chord above each roller support.  A 

1” diameter roller was placed on the top chord approximately 2” from the center of the member 

such that it was lying down and running perpendicular to the top of the frame in order to simulate 

a moment. The sample was loaded on the roller at a compression rate of 4,000 lbs per minute 

until the force reached 30,000 lbf and strain values were obtained.  Deformation did not occur. 

The roller was then moved to the center of the truss where the loading was applied once 

again.  This set up and loading is summarized in Figure 44 along with number labels for each 

member: 

 

 

Figure 44: Truss setup for Static Test #5. 



 
 Figure 45 shows the placements of the strain gauges for the test. 
 

 
 

Figure 45: Strain gauge placement on Static Truss #6. 

 
The sample was loaded on the roller at a compression rate of 4,000 lbs per minute until 

the frame plastically deformed.  Results of this test based on standard static truss analysis and 

further study of individual member forces are given in Table 12. 

 

Table 12: Truss #5 static test data. 

Member Resulting Force (Pounds) Type of Axial Force 

Peak Load (for frame) 53,278   

1 53,278 Compression 

2 33,298.75 Tension 

3 33,298.75 Tension 

4 19,979.25 Compression 

5 0 N/A 



6 26,639 Compression 

7 26,639 Compression 

 
 

It is important to note that the center column (24 inches in length) is expected to buckle at 

43,620.76 lbs calculated previously in the Static Column section based on the AISC buckling 

equations and the average yielding stress of 56,367 psi found in the tensile tests. The load that 

the column withstood in this test as part of the truss system was 53,278 lbs before buckling. This 

is 18% higher than expected.  

The load versus position diagram for the test is presented in Figure 46. 

 

 

Figure 46: Load versus position graph for static test of Truss #5. 

 

Figure 47 is a picture of the truss frame after the test showing the deformation that 

occurred. 

 

0

10000

20000

30000

40000

50000

60000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Lo
a

d
 (

lb
f)

Position (in)

Truss #5 Static Test



 

Figure 47: Result from Truss #5 static test. 

 
 
 A graph of the strain gauge readings can be seen in Figure 48. 

 

 

Figure 48: Micro-strain versus time graph for static test of Truss #5. 

-1550

-1350

-1150

-950

-750

-550

-350

-150

50

0 50 100 150

M
ic

ro
-S

tr
a

in

Time (s)

Truss #5 Strain Graph

Strain-1

Strain-2



 This strain gauge data is correlated with the stresses of the member by use of Hooke’s 

Law to calculate the peak stress in each member face in Table 13 below as referenced in Figure 

45. 

 

Table 13: Peak stress on members based on strain gauge measurements. 

Strain Gauge Position Stress (psi) 

1 36,975 

2 28,275 

 

Every test up until this point had involved distributed loads so the group wanted to 

experiment with how the truss would act under a point load.  Not only would the setup provide 

information on static moments on the center column due to the 2” offset described earlier, but it 

also would set a benchmark to aim for when the dynamic point load tests began.  Overall, the test 

led to successful results with local deformation occurring in both the top chord and buckling in 

the center column.  The strain gauges appear to have worked very well and provided reasonable 

values given that some of the force is being supported by the two outer members (though very 

little) and through deflection of the top chord. 

  



Truss #6 Static Test (Symmetric) 

The sixth frame was tested with the sample resting on roller supports on either end of the 

bottom chord directly underneath the outer vertical members.  Four strain gauges were placed on 

the truss: two on opposite sides of the central vertical member and two on the top of either side 

of the top chord, all to measure strain values and determine deformation locations.  The truss was 

oriented such that the two diagonal members ran from the top corners to the bottom center of the 

frame.  The local deformation issue was addressed by inserting one plug into the top chord in the 

center and two plugs in the bottom chord above each roller support.  A 1” diameter roller was 

placed in the center of the top chord such that it was lying down and running perpendicular to the 

top of the frame. This set up and loading is summarized in Figure 49 along with number labels 

for each member: 

 

 

Figure 49: Truss setup for Static Test #6. 

 
 
  

Figure 50 shows the placements of the strain gauges for the test. 
 



 
 

Figure 50: Strain gauge placement on Static Truss #6. 

 
 

The sample was loaded on the roller at a compression rate of 4,000 lbs per minute until 

the center vertical member of the frame plastically deformed.  Results of this test based on 

standard static truss analysis and further study of individual member forces are given in Table 

14. 

  

Table 14: Truss #6 static test data. 

Member Resulting Force (Pounds) Type of Axial Force 

Peak Load (for frame) 57,126   

1 57,126 Compression 

2 35,703.75 Tension 

3 35,703.75 Tension 

4 21,422.25 Compression 

5 0 N/A 



6 28,563 Compression 

7 28,563 Compression 

 
 

The load versus position diagram for the test is presented in Figure 51. 

 

 

Figure 51: Load versus position graph for static test of Truss #6. 

 

Figure 52 is a picture of the truss frame after the test showing the deformation that 

occurred. 
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Figure 52: Result from Truss #6 static test. 

 
 
 Similar to the previous sample, the test was ultimately very successful with deformation 

occurring in both the top chord and the central column.  A graph of the strain gauge readings can 

be seen in Figure 53. 

 

 

Figure 53: Micro-strain versus time graph for static test of Truss #6. 
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 This strain gauge data is correlated with the stresses of the member by use of Hooke’s 

Law to calculate the peak stress in each member face in Table 15 below as referenced in Figure 

50. 

 
Table 15: Peak stress on members based on strain gauge measurements 

Strain Gauge Position Stress (psi) 

1 52,200 

2 118,900 

3 20,300 

4 21,025 

 
 

  The peak load for the center column of the overall truss was calculated to be 57,126 lbs 

shown in Table 14, which correlates to a peak stress of 75,166 psi.  For that column, strain 

gauges 1 and 2 were placed and upon failure, measured strains correlating to 50,750 and 116,000 

psi, respectively.  While the data from strain gauge 2 was considerably skewed due to failure of 

the strain gauge itself during testing, the jump in strain for the internal face of the member 

(internal meaning not on the plane of the truss sketch) displays important properties of the 

buckling behavior.  What this shows is that while theory would tell us that the load delivers 

75,166 psi to the center column itself, the column compressed on the face of strain gauge 2 

during buckling and compensated for the decreased stress on the surface of strain gauge 1.  

Strain gauge 1 displayed less stress than expected and went directly into tension, showing two 

things: one that the columns buckled out towards this surface, and two that the face of the 

column that buckles out does not receive as much of the buckling load as the compression face.  

The top chord displays expected results, as the top chord itself did not fail each half of the 

chord measured stresses of approximately 14,500 psi.  This shows that while the truss failed in 



the center column, the top chord still took on more than calculated, as the total stress in the chord 

turns out to be around 29,000 psi, this is extremely close to the value that you would expect in 

the top chord of 28,187 psi (based on the load of 21,422.25 lbs and the area of 0.76 square 

inches). 

 This correlates with the failure mode of the truss shown in Figure 52, because the center 

column is the column that buckled the most, and it buckled in two directions. This makes sense 

as it compressed the face with strain gauge 2 and put the side with strain gauge 1 into tension as 

it buckled.  

  



Truss #7 Static Test (Asymmetric) 

The seventh frame was tested with the sample resting on roller supports on either end of 

the bottom chord directly underneath the outer vertical members.  Two strain gauges were placed 

on the truss on opposite sides of the central vertical member to measure strain values and 

determine deformation locations.  The truss was oriented such that the two diagonal members ran 

from the top corners to the bottom center of the frame.  The local deformation issue was 

addressed by inserting one plug into the top chord in the center and two plugs in the bottom 

chord above each roller support.  A 1” diameter roller was placed above the middle vertical 

member along the top chord such that it was lying down and running perpendicular to the top of 

the frame. This set up and loading is summarized in Figure 54 along with number labels for each 

member: 

 

 

Figure 54: Truss setup for Static Test #7. 

 
 
  



Figure 55 shows the placements of the strain gauges for the test. 
 

 
 

Figure 55: Strain gauge placement on Static Truss #7. 

 
 

The sample was loaded on the roller at a compression rate of 4,000 lbs per minute until 

the middle vertical member of the frame plastically deformed.  Results of this test based on 

standard static truss analysis and further study of individual member forces are given in Table 

16. 

  

Table 16: Truss #7 static test data. 

Member Resulting Force (Pounds) Type of Axial Force 

Peak Load (for frame) 60,222   

1 60,222 Compression 

2 26,723.33 Tension 

3 22,769.82 Tension 

4 22,583.25 Compression 



5 0 N/A 

6 30,111 Compression 

7 30,111 Compression 

 
 

The load versus position diagram for the test is presented in Figure 56. 

 

 

Figure 56: Load versus position graph for static test of Truss #7. 

 

Figure 57 is a picture of the truss frame after the test showing the deformation that 

occurred. 

0

10000

20000

30000

40000

50000

60000

70000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Lo
a

d
 (

lb
f)

Position (in)

Truss #7 Static Test



 

Figure 57: Result from Truss #7 static test. 

 
 
 Similar to the previous sample, the test was ultimately very successful with deformation 

occurring in both the top chord and the central column.  A graph of the strain gauge readings can 

be seen in Figure 58. 

 

 

Figure 58: Micro-strain versus time graph for static test of Truss #7. 
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 This strain gauge data is correlated with the stresses of the member by use of Hooke’s 

Law to calculate the peak stress in each member face in Table 17 below. 

 
Table 17: Peak stress on members based on strain gauge measurements 

Strain Gauge Position Stress (psi) 

1 121,800 

2 118,900 

 
 

The asymmetric truss behaved as expected.  Like the previous test, the second strain 

gauge, which was measuring the side of the middle vertical column, failed near the end of the 

test due to bending past its capacity.  Both strain gauges read compression throughout the 

duration of the test, implying that the column bent diagonally outward away from the gauges.  

Strain gauge 1 read considerably more strain then in the previous test which leads to the 

assumption that the column was able to bend easier due to a smaller weld area from the 

diagonals where the middle column meets the two diagonal members and the bottom chord.  

Since the frame was loading directly over the middle column (even though it was asymmetric), 

the outer vertical members were hardly affected at all.  The two diagonal bent slightly during the 

testing process but appeared to return to their original shape once the load was taken off. 

  



Dynamic Testing 

Dynamic testing was performed in order to determine how steel members and trusses 

would react to impact loads and how they would differ from the information obtained from the 

quasi-static tests.  All tests were performed in a nine-foot drop tower of varying masses.  Any 

changes to the typical test setup were documented in the respective sections below. 

The conditions in which the following tests were designed were based on the quasi static 

calculations and test results from the preceding tests. For columns, the quasi-static result was a 

failure load of 51,233 lbs with a deflection of approximately 0.2 inches. Using the conservation 

of energy laws and a drop height of 5 feet after the column and size of the weights were taken 

into account, a weight of 170.8 pounds was estimated to be required in weight to reach the static 

failure load. The truss calculations were made using the same process except with a deflection of 

0.5 inches and an average failure load of 57,126 lbs based on quasi-static testing, which yielded 

required weight of 476.6 pounds.  

 

Column #1 Dynamic Test 

 Dynamic testing began with an axial impact test on a single 24 inch long column in order 

to determine the dynamic buckling load of a column due to impact forces and to ensure all 

necessary data could be obtained using the test setup before beginning the tests on the frames. 

The member was placed vertically with the top end free to rotate and the bottom end held in 

place by a ½” thick steel plate with a 2” x 2” square cut in the center to keep the column from 

sliding along the main table or kicking out during testing.  These end conditions are consistent 

with a K value of 0.7 but our calculations for required load are based on a more conservative 

estimate of 1.0, in order to compare the differences. The sample was then impacted by masses 

dropped from the tower.  Accelerometers were placed on the drop tower head to measure the 



deceleration at impact.  Data was unfiltered and no padding was used.  Results of this test are 

given in Table 18. Calculated values for kinetic energy and force on impact are based on 

Conservation of Energy, mass being dropped, drop height, and gravity. The force on impact 

provided is based on the measured acceleration at impact from the 10,000-G accelerometer. 

Calculations of strain energy are based on the provided force on impact from the accelerometer 

and a very low deflection on impact (~0.05 inches).  

 

Table 18: Column dynamic test #1 data. 

Mechanical Property Test Result 

Drop Height (in) 60 +/- 4 

Weight Dropped (lbs) 150 

Max Impact Acceleration for 10,000G (G’s) ≈675 

Max Impact Acceleration for 50,000G (G’s) ≈925 

Calculated Kinetic Energy (ft-lbf) 750 

Calculated Force on Impact (lbf) 45,000 

Force at Impact – 10,000G (lbf) 101,202.96 

Strain Energy (based on Impact Force) (ft-lbf) 292.6 

 

The graph displaying measurements taken from the 50,000G and 10,000G accelerometers 

for the test is presented in Figure 59. 

 



 

Figure 59: Acceleration versus time graph for column dynamic test #1. 

 

Figure 60 is a picture of column 1 after dynamic testing.  The image shows the column 

with a slight bend due to the impact load and shows a deflection of about ½”. 

 

 

Figure 60: Result from Column #1 dynamic test. 
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 For this test a mass of 150 lbs was dropped in accordance with the assumption that the 

mass required to buckle the column is only slightly higher at 170 lbs. However, when the column 

was dropped on it displayed little to no deflection at all, as the measured deflection was less than 

1/10 inch. While the instantaneous load on impact was extremely large at 101,202.96 lbs, the 

small deflection of the column caused the strain energy of the impact to be a mere 292.6 ft-lbs, 

considerably less than the calculated kinetic energy required of 750 ft-lbs. So while the load is 

very high on impact, the material properties minimize deflection and the energy provided is 

insufficient for buckling at this drop weight. In the next test the mass dropped will be brought up 

above the calculated mass required (170 lbs) to 180 lbs in order to observe any changes in the 

relationship between energy and dynamic buckling. 

 

 
  

  



Column #2 Dynamic Test 

 Dynamic Test #2 involved an axial impact test on a single 24 inch long column in order 

to determine the dynamic buckling load of a column due to impact forces and to ensure all 

necessary data could be obtained using the test setup before beginning the tests on the frames. 

The member was placed vertically with the top end free to rotate and the bottom end held in 

place by a ½” thick steel plate with a 2” x 2” square cut in the center to keep the column from 

sliding along the main table or kicking out during testing.  The sample was then impacted by 

masses dropped from the tower.  The amount of weight used in the tower was increased from the 

first two dynamic column tests.  Accelerometers were placed on the drop tower head to measure 

the deceleration at impact.  Results of this test are given in Table 19. 

 

Table 19: Column dynamic test #2 data 

Mechanical Property Test Result 

Drop Height (in) 60 +/- 4 

Weight Dropped (lbs) 180 

Max Impact Acceleration (G’s) ≈930 

Calculated Kinetic Energy (ft-lbf) 900 

Calculated Force on Impact (lbf) 54,000 

Force at Impact – 10G (lbf) 167,322.23 

Strain Energy (from Impact Force) (ft-lbf) 697.2 

 

The graph measuring the 10,000G accelerometer for the test is presented in Figure 61.  

 



 

Figure 61: Acceleration versus time graph for column dynamic test #2.  

 

Figure 62 is a picture of the single column after the test showing the deformation in the 

column.  The image shows the column with a slight bend due to the impact load and shows a 

deflection of about ¼”. 
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Figure 62: Result from Column #2 dynamic test. 

 
 
 In order to begin to gauge the difference in dynamic and static loadings, the weight 

dropped was slightly increased to 180 lbs, but the height of the drop remained the same at 60 

inches. This increase changed the strain energy of the drop considerably from 292.6 ft-lbs to 

697.2 ft-lbs. However, the kinetic energy for the drop is now 900 ft-lbs because of the increase in 

mass, so the mass is still insufficient for buckling but is closer than before. Further tests will be 

carried out with this mass in order to observe any variance in the energy and buckling.  

 

  



Column #3 Dynamic Test 

 Dynamic Test #3 involved an axial impact test on a single 24 inch long column in order 

to determine the dynamic buckling load of a column due to impact forces and to ensure all 

necessary data could be obtained using the test setup before beginning the tests on the frames. 

The member was placed vertically with the top end free to rotate and the bottom end held in 

place by a ½” thick steel plate with a 2” x 2” square cut in the center to keep the column from 

sliding along the main table or kicking out during testing.  The sample was then impacted by 

masses dropped from the tower.  Accelerometers were placed on the drop tower head to measure 

the deceleration at impact.  Results of this test are given in Table 20. 

 

Table 20: Column dynamic test #3 data 

Mechanical Property Test Result 

Drop Height (in) 60 +/- 4 

Weight Dropped (lbs) 180 

Max Impact Acceleration (G’s) ≈750 

Calculated Kinetic Energy (ft-lbf) 900 

Calculated Force on Impact (lbf) 45,000 

Force at Impact – 10G (lbf) 134,937.28 

Strain Energy (based on Impact Force) (ft-lbf) 562.23 

 

The graph measuring the 10,000G accelerometer for the test is presented in Figure 63.  

 



  

Figure 63: Acceleration versus time graph for column dynamic test #3.  

 

Figure 64 is a picture of the single column after the test showing the deformation in the 

column.  The image shows the column with a slight bend due to the impact load and shows a 

bow deflection of about ½”. 
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Figure 64: Result from Column #3 dynamic test. 

 
 
 For this test, identical testing parameters as column #2 were used, displayed a different 

acceleration. The impact acceleration of this test was 750 G’s as opposed to the 930 G’s of the 

previous test. This acceleration yielded an instantaneous load of 134,937 lbs which resulted in 

strain energy in the column of 562.23 ft-lbs, still much smaller than the required energy for 

buckling of 900 ft-lbs. However, similar to the second column, this test displayed very little 

deformation to the sample, although a small bend was noticed in the member, shown in Figure 

64 above.  

 One more test with the same mass was performed to verify the results of dynamic tests #2 

and #3 before moving on to a higher mass.  

  



Column #4 Dynamic Test 

 Dynamic Test #4 involved an axial impact test on a single 24 inch long column in order 

to determine the dynamic buckling load of a column due to impact forces and to ensure all 

necessary data could be obtained using the test setup before beginning the tests on the frames. 

The member was placed vertically with the top end free to rotate and the bottom end held in 

place by a ½” thick steel plate with a 2” x 2” square cut in the center to keep the column from 

sliding along the main table or kicking out during testing.  The sample was then impacted by 

masses dropped from the tower.  Accelerometers were placed on the drop tower head to measure 

the deceleration at impact.  Results of this test are given in Table 21. 

 

Table 21: Column dynamic test #4 data 

Mechanical Property Test Result 

Drop Height (in) 60 +/- 4 

Weight Dropped (lbs) 180 

Max Impact Acceleration (G’s) ≈430 

Calculated Kinetic Energy (ft-lbf) 900 

Calculated Force on Impact (lbf) 45,000 

Force at Impact – 10G (lbf) 77,364.04 

Strain Energy (ft-lbf) 322.4 

 

The graph measuring the 10,000G accelerometer for the test is presented in Figure 65.  

 



 

Figure 65: Acceleration versus time graph for column dynamic test #4.  

 

Figure 66 is a picture of the single column after the test showing the deformation in the 

column.  The image shows the column with a slight bend due to the impact load and shows a 

deflection of about ½”. 
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Figure 66: Result from Column #4 dynamic test. 

 
 
 Dynamic Column Test #4 yielded similar physical results to Tests #2 and #3 with an even 

lower force on impact and strain energy.  Ultimately, much more mass is needed to obtain useful 

results for the dynamic column test.  The group followed Test #4 with another test with 

substantially more weight added to the drop tower. 

  



Column #5 Dynamic Test 

 Dynamic Test #5 involved an axial impact test on a single 24 inch long column in order 

to determine the dynamic buckling load of a column due to impact forces and to ensure all 

necessary data could be obtained using the test setup before beginning the tests on the frames. 

The member was placed vertically with the top end free to rotate and the bottom end held in 

place by a ½” thick steel plate with a 2” x 2” square cut in the center to keep the column from 

sliding along the main table or kicking out during testing.  The sample was then impacted by 

masses dropped from the tower.  The weight was increased from 180 pounds to 281 pounds in 

hopes that the large difference would help deform the column on impact.  Accelerometers were 

placed on the drop tower head to measure the deceleration at impact.  For the calculation of 

strain energy the deflection was increased from 1/10 inch to 1/5 inch because of increased 

deflection noticed in the column after impact. Results of this test are given in Table 22. 

 

Table 22: Column dynamic test #5 data 

Mechanical Property Test Result 

Drop Height (in) 60 +/- 4 

Weight Dropped (lbs) 281 

Max Impact Acceleration (G’s) ≈250 

Calculated Kinetic Energy (ft-lbf) 1,405 

Calculated Force on Impact (lbf) 84,300 

Force at Impact – 10G (lbf) 70,217.36 

Strain Energy (ft-lbf) 583 

 

The graph measuring the 10,000G accelerometer for the test is presented in Figure 67.  



 

 

Figure 67: Acceleration versus time graph for column dynamic test #5.  

 

Figure 68 is a picture of the single column after the test showing the deformation in the 

column.  The image shows the column with a slight bend due to the impact load and shows a 

deflection of about ¼”. 
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Figure 68: Result from Column #5 dynamic test. 

 
 
 For this test the weight of the drop was increased to 281 lbs in order to observe the 

difference in acceleration and forces on impact. The acceleration on impact was decreased from 

previous drops to 250 G’s decreasing the force on impact of 70,217 lbf and corresponding strain 

energy of 583 ft-lbs. This instantaneous load corresponds with the calculated kinetic energy and 

force of 1,405 ft-lbs and 84,300 lbs respectively. This loading displayed considerably more 

deformation on the column then preceding tests, but still more weight is required for failure 

mode observations.  

 An important note to make at this point is that the buckling of the column does not seem 

to depend on the instantaneous load of the weight but on the kinetic energy coinciding with the 

quasi-static failure load. A further test bringing the strain energy closer to the kinetic energy 

required for buckling (853.88 ft-lbs) should be sufficient to see significant deformation in a 

column.  

  



Column Dynamic Test (Longer) 

 Dynamic Column Test (Long) involved an axial impact test on a single 36 inch long 

column in order to determine the dynamic buckling load of a column due to impact forces and to 

ensure all necessary data could be obtained using the test setup before beginning the tests on the 

frames. The extra length was used to compare the results to those of the 24” columns.  The 

member was placed vertically with the top end free to rotate and the bottom end held in place by 

a ½” thick steel plate with a 2” x 2” square cut in the center to keep the column from sliding 

along the main table or kicking out during testing.  The sample was then impacted by masses 

dropped from the tower weighing 747 pounds.  Accelerometers were placed on the drop tower 

head to measure the deceleration at impact.  Results of this test are given in Table 23. 

 

Table 23: Column dynamic test (long) data 

Mechanical Property Test Result 

Drop Height (in) 48 +/- 4 

Weight Dropped (lbs) 747 

Max Impact Acceleration (G’s) ≈90 

Calculated Kinetic Energy (ft-lbf) 2,988 

Calculated Force on Impact (lbf) 179,280 

Force at Impact – 10G (lbf) 67,230 

Strain Energy (ft-lbf) 1,680 

 

The graph measuring the 10,000G accelerometer for the test is presented in Figure 69.  

 



 

Figure 69: Acceleration versus time graph for column dynamic test (long).  

 

Figure 70 is a picture of the single column after the test showing the deformation in the 

column.  The image shows the column with a slight bend due to the impact load and shows a 

deflection of about ¾”. 

 

 

Figure 70: Result from Column (long) dynamic test. 
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 This test had a test maximum weight for the impact of 747 lbs in order to observe the 

difference in acceleration and forces on impact and to obtain a certain bend in the column.  The 

fact that the column was 50% long also helped in achieving this goal.  The acceleration on 

impact was decreased from previous drops to around 90 G’s, significantly decreasing the force 

on impact to around 67,000 lbf.  This instantaneous load corresponds with the calculated kinetic 

energy and force of 2,988 ft-lbf and 179,280 lbf respectively. The loading displayed even more 

deformation on the column then even the best previous column test, but that is to be expected 

with the extra length.  

 Obtaining all previous column impact information became vital before moving into the 

truss tests, as it helped determine how much load would be needed in order to create a bend in 

the vertical members.  Since the last successful 24” dynamic test took a load of 281 lbf and still 

bent, the next dynamic truss tests would begin at this point. 

  



Truss #1 Dynamic Test (Symmetric) 

The first frame was tested with the sample resting on roller supports on either end of the 

bottom chord directly underneath the outer vertical members.  The truss was oriented such that 

the two diagonal members ran from the top corners to the bottom center of the frame.  The local 

deformation issue was addressed by inserting a solid piece of steel stock (1.75”x1.75”x4”, 

henceforth known as a “plug”) into either end of the bottom chord directly over the roller 

supports.  By doing so, local deformation due to the reactive forces of the supports would be 

eliminated.  The truss was held in place by four vertical I-beams to restrict movement forward 

and back.  The drop tower contained 281 lbf of weight and was dropped at a height of 60”.  A 

cylindrical roller was also welded on the bottom of the falling mass to simulate a point load on 

the top of the frame.  This set up and loading is summarized in Figure 71 along with number 

labels for each member. 

 

 

Figure 71: Truss setup for Dynamic Test #1. 

 

 



Figure 72 is a picture of the top center of the truss frame showing the local deformation 

that occurred upon impact. 

 

 

Figure 72: Result from Truss #1 dynamic test. 

 
 

The weight applied to the truss at impact was by no means enough to even bend a single 

member.  The only result from the test came from a very small amount of local deformation at 

the area of impact due to the point load simulation created by the roller.  While this test was 

ultimately not successful, it provided insight into what could be done to fix the next dynamic 

truss test.  It was apparent that more weight would be needed and if possible, more height.  Also, 

the truss was not secured down to the ground so at impact, it bounced about a foot off of the 

rollers as a reaction to being hit by the falling mass.  Finally, the readings of acceleration were 

very noisy and needed to be filtered to obtain pertinent data.  All of these issues would be dealt 

with for “Truss #2 Dynamic Test”. 

  



Drop Tower Calibration 

 After various tests were performed using both columns and trusses, it became apparent 

that it was required to slow the frequency of the loading to bring the instantaneous loading of 

impact down to size in order to spread the impact pulsation.  This was first done using a 

symmetric truss with three different tests: the first with no padding at all, the second with half an 

inch of padding, and the third with one inch of padding. The drop head was lifted to less than 

twelve inches above the center of the truss and dropped in order to get an idea of how successful 

this would be.  

 The accelerometer was the primary tool for measurement of this test. The results of the 

test with no pads measured from the accelerometer are displayed in Figure 73 below. 

 

 

Figure 73: Acceleration vs Time graph for low height drop using no pads. 

 

 The next test utilized a half inch of padding and the results are displayed in Figure 74 

below. 
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Figure 74: Acceleration vs Time graph for low height drop with half inch of padding. 

 

 The last part of this testing utilized an inch of neoprene padding and the results are 

displayed in Figure 75 below: 

 

 

Figure 75: Acceleration vs Time graph for low height drop with one inch of padding. 
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 The major result of this test is that using the padding the time of impact increases from 

0.01 seconds with no padding up to almost 0.1 seconds using an inch of padding.  This change in 

load frequency corresponds to a decrease in acceleration on impact from 120 G’s down to 85-90 

G’s.  This decrease (based on the mass dropped, 695 lbs) yields an impact force of 62,550 lbf 

with an inch of padding as opposed to a force of 83,400 lbf when impacting the truss with no 

padding.  

  



Truss #2 Dynamic Test (Symmetric) 

The second frame was tested with the sample resting on roller supports on either end of 

the bottom chord directly underneath the outer vertical members.  The truss was oriented such 

that the two diagonal members ran from the top corners to the bottom center of the frame.  The 

local deformation issue was addressed by inserting a solid piece of steel stock (1.75”x1.75”x4”, 

henceforth known as a “plug”) into either end of the bottom chord directly over the roller 

supports.  By doing so, local deformation due to the reactive forces of the supports would be 

eliminated.  The truss was held in place by four vertical I-beams to restrict movement forward 

and back.  The drop tower contained 695 pounds of mass, which was a substantial increase from 

the previous test, and was dropped at a height of 60”.  A cylindrical roller was also welded on the 

bottom of the falling mass to simulate a point load on the top of the frame. 

Rubber matting was placed in all areas consisting of metal-to-metal contact including 

between the rollers and the frame as well as between the frame and the I-beams.  This would 

help reduce the noise that appeared in the acceleration plots.  The test was performed three times 

with three different types of padding between the frame and the drop tower head: ½” rubber, 1” 

rubber, and thin rubber matting.  The bottom chord of the frame was clamped down to the base 

of the drop tower in order to prevent any movement upon impact.  All acceleration plots were 

also filtered by importing the Microsoft Excel data collected during the tests into MATLAB and 

applying an SAE filter to smooth out the data and eliminate most of the noise.  This set up and 

loading is summarized in Figure 76 along with number labels for each member. 



 

Figure 76: Truss setup for dynamic test #2. 

 
 The strain gauges used to gather material data of each of the key members (mainly the 

top chord and the center column) were arranged as follows in  

Figure 77. 

 

 
 

Figure 77: Strain gauge assembly for dynamic frame test. 

  



 

 

 

The parameters for this test are summarized below in Table 24. 

 

Table 24: Testing Parameters for Dynamic Truss #2. 

Property Value 

Drop Height (inches) 50  

Mass Dropped (lbs) 695 

Kinetic Energy Calculated (ft-lbf) 2,895.9  

Force Calculated (lbf) 69,500 

 

 

The first part (A) of the test used 1/2” rubber as a medium between the drop head and the 

frame.  The acceleration data was collected in Excel through LabView and transferred to 

MATLAB for filtering.  The filtered data can be seen in Figure 78. 

 



 

Figure 78: Truss #2A Accelerometer Results. 

 
This graph displays a maximum acceleration of 85 G’s which corresponds to a force on 

impact of 59,075 lbf. 

The strain gauge readings for this test are presented in Figure 79 below: 

 

 

Figure 79: Truss #2A strain gauge results. 
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These strain readings are summarized below in Table 25 

 

Table 25: Summary of Strain Readings for Truss #2A 

Strain Gauge Maximum Strain Reading 

1 0.003 

2 0.007 

3 0.009 

4 0.01 

 

The second part (B) of the test used 1” rubber as a medium between the drop head and 

the frame.  The acceleration data was collected in Excel through LabView and transferred to 

MATLAB for filtering.  The filtered data can be seen in Figure 80. 

 

 

Figure 80: Truss #2B Accelerometer Readings. 
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This graph displays a maximum acceleration of 72 G’s which corresponds to a force on 

impact of 50,040 lbf. 

Corresponding strain gauge readings are displayed below in Figure 81. 

 

 

Figure 81: Truss #2B strain gauge results. 

 
 
 These strain readings are summarized below in Table 26. 

 

Table 26: Summary of Strain Readings for Truss #2B 

Strain Gauge Maximum Strain Reading 

1 0.002 

2 0.0052 

3 0.0065 

4 0.008 
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The third part (C) of the test used thin rubber matting (approximately 1/16”) as a medium 

between the drop head and the frame.  The acceleration data was collected in Excel through 

LabView and transferred to MATLAB for filtering.  The filtered data can be seen in Figure 82. 

 

 

 
 

Figure 82: Truss #2C Accelerometer Readings. 

 
 

This graph displays a maximum acceleration of 175 G’s which corresponds to a force on 

impact of 121,625 lbf. 

At this point the strain gauge readings displayed a lot of noise rather than clear curves, 

which could be either because of the very small amount of padding used or because the strain 

gauges failed during the test.  

 The drops described above finally bent the truss and manages to buckle the top of the 

center column. This failure can be observed in Figure 83 below. 
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Figure 83: Result of dynamic test #2. 

 
 
 With this test the weight was dropped three times on the same truss with different 

programming materials (the neoprene pads).  The first two used thick and stiff pads of different 

thickness and yielded impact forces of 59,075 lbf and 50,040 lbf respectively, while the last test 

was with a thin rubber mat and yielded 121,625 lbf.  The thicker pads managed to bring the force 

observed closer to the static load and managed to weaken the truss for failure in the third drop.  



Discussion 

 The purpose of this report was to observe through experimentation the internal structures 

of a submarine module and investigate any conservatism inherent in their design. At first a series 

of background investigations had been performed to gain familiarity with a submarine’s structure 

and the process by which it is designed and built. This background included documentation 

provided by Electric Boat and tours of Electric Boat’s facilities in Connecticut. After the 

background research was carried out, sample designs were provided by EB representing scaled 

Pratt-like trusses representative of a truss configuration in the modular structures on board the 

submarines along with material specifications for procurement and use of steel in the testing 

samples. 

 After the steel was procured and the trusses fabricated, the testing portion began. The first 

part of testing was to establish the properties of the materials used utilizing the ASTM E8 

standard for testing of metallic materials. The material used was ASTM A500 Grade B steel in 

the form of HSS shapes and the ASTM standard specifies that the yielding strength of the 

material must be at least 46,000 psi. The tensile tests we did and in accordance with ASTM E8 

provided an average yielding strength over three tensile samples of 56,367 psi—nearly 20% 

higher than the specified minimum. So automatically some question was placed on the 

conservatism of theoretical design in those members if the yield strength used in the design is 

already by itself 20% lower than is experimentally observed in the material.  

 The next step in the testing process was to get an idea as to the failure modes of the 

columns in the truss by themselves. At first a 24 inch column representative of the center column 

in the truss design was tested under quasi-static loading to observe its buckling behavior in 

comparison to what the AISC empirical data suggests. Based on a conservative effective length 

factor (K) estimate of K=1.0 (pin-ended columns free to rotate at both ends) and a yield strength 



of 46,000 psi (ASTM minimum), the calculated buckling load of a column like this would be 

36,138 lbs based on AISC equations. However, the static testing of a single column did not 

actually buckle until 51,233 lbs—a 29.5% increase! This loading is more consistent with an end 

condition of fixity, suggesting the real end conditions of the columns to be closer to 0.65-0.7 

rather than the 1.0 used.  

 After quasi-static loading, new columns were then placed under dynamic load using the 

drop tower, a specified drop mass, and accelerometers in order to measure acceleration on impact 

which was used to calculate the instantaneous load on impact. Using the quasi-static column 

buckling load of 51,233 lbs and the conservation of energy, it was calculated that a mass of 170.8 

lbs would be required at a height of 5 feet in order to achieve a kinetic energy of 853.88 ft-lbs 

required to buckle the column. However, with a mass of 180 lbs dropped from 5 feet, very little 

deformation was observed in the columns despite imposing an extremely large instantaneous 

load of between 70,000-167,000 lbs of force on the column at impact. After 3 columns at this 

drop height it was apparent that we lacked sufficient weight and height to attain the energy 

required to buckle these compact columns (as the strain energy observed with this weight was 

only seen to be between 322-562 ft-lbs using the 180 lb drop mass). Thus the mass dropped was 

increased to 281 lbs dropped from 5 feet, which still only yielded 583 ft-lbs—still not close 

enough to the required energy of 853.88 ft-lbs.  

 Through this it was observed that we did not have enough capacity of either height or 

weight to buckle these columns with their material properties and compactness. So the length of 

the column was increased to 36 inches in order to make the column more slender to observe the 

column’s buckling pattern in dynamic loading. This column in quasi-static loading was observed 

to handle a peak load of 52,282 lbs before buckling, which is extremely high once again 



considering it has an AISC calculated buckling load of 33,239 lbs. For the dynamic test the 

springs to the drop tower were removed to increase the allowable height and the mass was 

increased enormously to 747 lbs as opposed to the 281 lbs of the preceding drop. This test finally 

buckled the column considerably, deflecting it at impact almost ½ inch and producing a strain 

energy of 1,680 ft-lbs, considerably larger than the kinetic energy required of 837 ft-lbs. The 

strange part however was the fact that the kinetic energy for the drop was enormous at nearly 

3,000 ft-lbs, nearly twice the strain energy! 

 For the truss configuration a series of setups were utilized, but at the request of Electric 

Boat emphasis was placed on the centered point loading of the quasi-static truss tests 5 and 6. 

The buckling load from these tests however, did not differ that much from that of the column, 

with only a slight increase from a quasi-static column loading of 51,233 lbs to an average peak 

load in the trusses of 55,202 lbs. A major difference though was the fact that due to the welds in 

the truss and surrounding structure the ends stayed more in place with more fixity in the center 

column (the column that buckled in this loading) bringing the realistic end condition closer to 

that of fixity with 0.6 as the effective length factor (K) rather than the conservative estimate of 

1.0 (pin ended and free to rotate) used in the design which through the AISC buckling equations 

would yield a buckling force in the center column of 43,620 lbs for a 24 inch column.  

 When this truss setup was placed under dynamic loading it was initially under the final 

weight dropped on the 24 inch columns of 281 lbs dropped from 5 feet, which after the drop did 

absolutely nothing but dent the top chord of the truss slightly. It was at this point that it was 

decided to increase the mass to 695 lbs and remove the springs. The tests that followed also 

employed various thickness neoprene pads as programming mediums in order to lengthen the 

pulse of impact (stretch out the time of loading at impact).  



 The first of these tests was the test used to calibrate what the difference would be when 

using the pads as opposed to dropping directly onto steel. This test dropped the 695 lbs from less 

than a foot above a truss with no padding, half an inch of padding, and then an inch of padding. 

Accelerometer results displayed that with no padding at all (just steel on steel impact) the time of 

impact was only 1/100th of a second, but this loading frequency changed to nearly 1/10th of a 

second with an inch of padding, and this addition also lowered the peak acceleration from over 

120-G’s with no padding down to 90-G’s with an inch of padding. This would allow us to get a 

lower force on impact as the load is no longer instantaneous as before, bringing down the gap 

between quasi-static and dynamic buckling loads.  

 The last test using the symmetric trusses was similar to the calibration test just explained, 

but the height of the drop was increased to the maximum allowable height of 50 inches and the 

programming mediums were different thickness neoprene pads of one half an inch, one inch, and 

then a mere 1/16th inch rubber mat. The first two tests used the thick and stiff neoprene pads used 

before, and resulted in loadings at impact of 59,075 lbs and 50,075 lbs respectively; very close to 

the quasi-static loadings, but very little deformation was observed. However, the third test with 

the rubber matting (simply to dampen the noise from the steel on steel contact) produced an 

instantaneous loading of 121,625 lbs and a deformation of approximately 1/4th of an inch, 

resulting in a strain energy of 2,500 ft-lbs which finally buckled the weakened truss. 

 The final test to discuss is that of the asymmetric quasi-static truss test. Concern had risen 

regarding increased moments in the center column if the column was off center and the truss not 

symmetric. However, the asymmetric truss actually managed to take on a higher loading than 

that of the symmetric trusses and still managed to buckle almost entirely in the center column at 

60,222 lbs. Based on analysis of the truss using both classical methods as well as data from the 



strain gauges, the only difference made by this change was that the diagonals managed to take a 

heavier burden in the loading with one taking more than the other. The failure mode however, 

displayed an interesting level of torsion rather than simple deflection in a single plane, both 

buckling out towards the shorter diagonal as well as buckling out of the plane of the truss at the 

same time.  

  



Recommendations 

 In the beginning, the stated goal of this project was to identify and possibly quantify 

conservatism in the design of submarine modules (where trusses are employed) through 

analytical prediction and experimentation.  Current modules are designed to withstand dynamic 

loadings with elastic deformation analysis methods for computing stress and buckling.  The 

potential conservatisms inherent in these methods begins with the fact that elastic methods 

assume the deformation remains elastic, not plastic, and continue with the fact that traditional 

analysis methods are based on empirical data from static loadings.  Based on the AISC limiting 

values for slenderness from Chapter E of the Steel Construction Manual (Chapter E, Steel 

Construction Manual, 2005), the members used in the testing (both 24 inch and 36 inch) are not 

considered slender and should be analyzed using inelastic buckling methods.  Also, the modules 

in these submarine structures are not subjected to significant static loading, as the design 

methods are based on, but are intended to survive certain severe dynamic loading conditions.  

 In order to quantify the conservatism, various tests were run to observe the behavior of 

the truss members when subjected to static and dynamic loads until failure, with an emphasis 

placed on the dynamic loading.  In the dynamic tests in particular, it was observed that, despite 

an increasingly high load on the instant of impact, the columns and frames were not buckling.  

When the height of the drop was increased and the mass dropped was nearly doubled, the 

columns finally buckled and after repeated drops while dampening the pulse of the loading, so 

did the frames.  However, these drops that buckled the members dynamically also reflected 

lower instantaneous loads on impact than the samples that did not buckle.  This brings us to the 

ultimate conclusion drawn from the dynamic testing, that the buckling in a dynamic situation is 

almost entirely dependent on the strain energy.  



 This conclusion can be drawn based on the idea that as the column leaves its elastic 

region and begins to fail, there are no longer forces springing the column back to its original 

shape; the member deforms and permanently stays that way.  This means that the deformation 

increases and the load on impact decreases, resulting in the strain energy required for dynamic 

buckling being approximately the same as the kinetic energy required for static buckling.  As the 

theoretical energy required for buckling is calculated based on static loading, design of members 

for buckling would be the same for both static and dynamic.   

 While this is a valuable conclusion, it still does not pinpoint conservatism in the design; 

however, an examination of the static design and results can shed further light on this 

conservatism.  Observing the 36 inch column (as we received failure results both statically and 

dynamically to compare), the peak static load was 52,282 lbs which yields a critical buckling 

stress of 62,240.48 psi.  Using the AISC equation E3-2 for inelastic buckling design and back 

calculating using this load and the theoretical yielding stress of 46,000 psi, one gets an Euler 

buckling load of 172,910.72 psi, which (based on material and geometric properties of the 

column) would yield a K value of 0.86 rather than the K value of 1.0 used in the standard design 

for these stresses.  

 This leads to the main recommendation of all of these tests, which is to continue with 

static design of the members since in the worst case scenario, these members will buckle relying 

on strain energy and at failure, strain energy acts almost identically between static and dynamic 

loadings.  However, the static design of the members has conservative assumptions; the major 

one being that the K value of the truss is 1.0 rather than a value of between 0.8 and 0.9 realized 

in the tests carried out.  If one replaced the K value in the analysis of the single column buckling 

with 0.8 and the yielding stress in the design being the experimental yield stress of 56,367 psi, 



the estimated peak load for the 24 inch column would increase from 43,620.76 lbs to 

approximately 45,000 lbs.  

 Thus, it is recommended that consideration be given to changing the assumption to K=0.8 

and keeping the yielding stress at the ASTM specified 46,000 psi.  It is proposed that this would 

still result in a conservative design, but would save materials and money because this would 

allow for the radius of gyration in the slenderness ratio to decrease, which would in turn keep the 

truss members at a compact and conservative design while making the cross sectional area less 

and ultimately using less material.  Less material means less structural weight, easier 

manufacturability, and higher cost efficiency.  However, further changes beyond this point 

should be verified through additional research using more emphasis on dynamic situations and 

the impact of these changes for Electric Boat’s specific members.   



References 
 
 
American Institute of Steel Construction. "Chapter E: Design of Members for Compression." In 

Steel Construction Manual. 2005. 

 
American Institute of Steel Construction. "Chapter H: Design of Members for Combines Forces 

and Torsion." In Steel Construction Manual. AISC, 2005. 

 
ASTM Standard E8, 2008, "Standard Test Methods for Tension Testing of Metallic Materials", 

ASTM International, West Conshohocken, PA, 2008, DOI: 10.1520/E0008_E0008M-09, 
www.astm.org. 

  



Appendices 

Appendix A: Sketch: WPI-01 Rev B – WPI Senior Project Truss Test Specimen 

 

 



  

 



 



 



 



 



 



 
  



Appendix B: Weld Inspection Data Sheet 

 



 
  



Appendix C: Material Specifications 
 
 

 
  



 
 
 
 

 
  



 
 
 
 
 

 
  



 
 
 
 

 
  



Appendix D: Static Test Results 
 

 





 



 

  



 

  



 

  



 

  



 

  



 

  



Appendix E: Calculations 

 



 



 



 









 


