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Abstract

Concrete is one of the most widely used materials in the world. It is

also one of the most versatile while complex materials which human have

used for construction. However, an important weakness of concrete (cement-

based composites) is its weak tensile properties. Therefore, over the past

thirty years many studies were focused to improve its tensile properties us-

ing a variety of physical and chemical methods. One of the most successful

attempts is to use polymer fibers in the structure of concrete to obtain a

composite with high tensile strength and ductility. However, a thorough un-

derstanding of the mechanical behavior of fiber reinforced concrete requires

the knowledge of fiber/matrix interfaces at the nanoscale. In this study, a

combination of atomistic simulations and experimental techniques has been

used to study the nanostructure of fiber/matrix interfaces. A new model

for calcium-silicate-hydrate (C-S-H)/fiber interfaces is also proposed based

on Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray spec-

troscopy (EDX) analyses. Finally, the adhesion energies between the C-S-

H gel and three different polymeric fibers (polyvinyl alcohol, nylon-6 and

polypropylene) were numerically studied at the atomistic level, since adhe-

sion plays a key role in the design of ductile fiber reinforced composites. The

mechanisms of adhesion as a function of the nanostructure of fiber/matrix

interfaces are further studied and discussed. It is observed that the func-

tional group in the structure of polymer macromolecule affects the adhesion

energy primarily by changing the C/S ratio of the C-S-H at the interface and

further by absorbing additional positive ions in the C-S-H structure. Then

the mechanical response of cement paste with added polymeric fibers were
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studied. A correlation between adhesion energies and the load-displacement

curve in split-cylinder test was found. Moreover, as there is a great interest

in cellulose-based cement composites, bamboo fibers is added to the cement

paste and the fiber/matrix interface and its effect on structure of C-S-H were

investigated.
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1. Chapter 1: Fiber/Matrix Interface Characterization by SEM

and EDX

1.1. Introduction

As the most used materials in the world, concrete possess excellent com-

pressive strength but weak tensile properties. The cement-based matrix of

the concrete has a complex structure that makes concrete a weak material in

terms of material properties such as tensile strength and toughness. There-

fore, over the past thirty years many studies were focused to improve the

tensile properties of concrete (cement-based composites) using a variety of

physical and chemical methods [1]-[4]. One of the most successful attempts is

to use polymeric materials in the structure of concrete to obtain a composite

with high tensile strength and ductility [5]-[8]. Improving the performance

of polymer fiber-reinforced cement composites can also increase the dura-

bility of concrete structures and decrease the production of carbon dioxide

[9; 10]. However, understanding the mechanical behavior of fiber-reinforced

concrete requires the thorough knowledge of the fiber/matrix interface struc-

ture. While, a large body of microscopic studies have been performed on the

interfaces present in fiber-reinforced cement based composites [8; 11; 12], the

nanostructure of interfaces between cement and polymer fiber has not been

thoroughly investigated. This understanding is needed to fully predict and

improve the mechanical properties of fiber-reinforced cement based compos-

ites since the fibers change the chemical reactions and chemical productions

of hydration reaction. This study presents a combined experimental and

numerical study on the nano-structural properties of polymer/cement inter-

faces. In this chapter, the experimental investigations on the interface struc-
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ture is presented using Scanning Electron Microscopy (SEM) and Energy

Dispersive X-ray Spectroscopy (EDX).
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1.2. SEM and EDX

In this chapter, three polymeric fibers were used to make fiber-reinforced

cement paste. Then the interface properties of the fiber and cement paste

were investigated. The first two polymer fibers: PVA and nylon-6 with the

IUPAC names of polyvinyl alcohol and poly (hexano-6-lactam), respectively,

have polar side chains with different polarities. The third polymer fiber

is polypropylene, which has a nonpolar side chain. The goal is to observe

how the polarity of the side chains affects the nanostructure of fiber/cement

interface.

1.2.1. Polymeric Fibers

In this study three different polymer fibers are considered based on the

polarities of their side chains. The same functional group usually under-

goes the same or similar chemical reaction(s) regardless of the size of its

molecule [28]. Nylon-6 has amide groups (see Fig. 1(a)), which have the

highest polarities among other functional groups. It has two different high

electronegative atoms in its structure: the oxygen, and the nitrogen atoms

in the amide group. Both oxygen and nitrogen contribute to hydrogen bond-

ing. Nitrogen atoms are hydrogen bond acceptors and/or donors and oxygen

atoms are hydrogen bond acceptor. PVA is one of the most common fibers

that have been used in fiber-reinforced cement composites. PVA is from the

alcohol group that has hydroxyl side chain (see Fig. 1(b)); On one hand

this functional group has less polarity than amide group, on the other hand,

the alcoholic functional group has just one oxygen atom that contributes

to hydrogen bonding. Oxygen atoms in hydroxyl group are hydrogen bond

acceptors and/or donors. The last polymer, polypropylene, is composed of
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alkanes (Fig. 1(c)). Alkanes have little intermolecular association because

the carbon-hydrogen bond is non-polar. Alkanes are essentially non-polar

molecules and insoluble in water. All of the fibers were provided by Forta

Corporation Company (Grove City, PA).

  CH2 CH 

OH 

c)  b)  

C 

O 

NH CH2 CH2 CH2 CH2 CH2 
  

CH2     CH2       CH2 

 

  

a)  

Vinyl-alcohol 
Molar Mass= 44 g/mole  

Molecular Formula : C2H6OH 
 
 

Propylene 
Molar Mass= 42 g/mole  

Molecular Formula : C3H6 
 

Hexano-6-lactam (Nylon-6) 
Molar Mass = 113 g/mole  

Molecular Formula : C6H11NO 

Amide Group 

Hydroxyl Group 

All C-C and C-H, σ bonds 
are none polar 

Figure 1: The monomer formula for three different polymers used as fibers in cement paste

are shown in this picture: a) monomer for nylon-6, b) monomer of PVA, and c) monomer

of polypropylene. It can be observed that nylon-6 has amid side chain on its monomer,

while PVA has hydroxyl groups. Polypropylene’s macromolecule is mainly non-polar.
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1.2.2. Fiber-reinforced Samples Preparation

The fiber-reinforced cement paste composites evaluated in this study are

prepared by mixing polymer fibers, water and cement powder to obtain mix-

tures with a specific concentration of fibers for a specific composition of

cement. The cement pastes ingredients are mixed with a blender. All sam-

ples have 1% volume of polymeric fibers. The following procedure is used for

the preparation of the cement pastes: first the weight percentage of cement,

fiber, and water are measured in different bowls; then the cement is mixed at

a medium speed for 15 s; water and fibers are added to the cement gradually

and they are mixed for 90 s. A spatula is used to scrape the wall and bottom

of the bowl; Another 90 s of mixing is done at medium speed. After the

mixing is complete, the fresh cement pastes are casted in plastic cylinders

with 5.1 cm in diameter and 10.2 cm in height, and sealed at 23 ± 1 ◦C for

curing at a curing room. At the age of 24 ± 1 hr, the cylinder samples are

demolded. Any excess of moisture on the surface is removed with a towel and

the specimens are sealed in plastic bags at 23 ± 1 ◦C until the age of testing.

To ensure desired compressive strength, the samples are tested after 28 days

and then are cut using a diamond cutter, and polished to be prepared for

the SEM/EDX analysis.

1.3. Results and Discussion

A typical SEM image of the polymer fiber, matrix and polymer/matrix

interfacial transition zones for all three types of polymer fibers are shown in

Fig. 2. The SEM images of the samples clearly show that there is a transition

zone between the polymer fibers and cement paste. These figures show that

the interfacial layer between fiber and matrix has a thickness of about 1-5
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µm around the fiber. Regions of fiber, cement matrix, unhydrated clinkers

and fiber/matrix interface are also indicated in the figure. The EDX results

and analysis for three different fiber/cement interfaces are shown in Fig. 3.

The X-ray mapping is used to investigate the distribution and density of

existing elements such as Si, and Ca in an area around each fiber. The X-

ray mapping of Si and Ca elements for nylon-6 and PVA fibers clearly show

the accumulation of calcium at fiber/matrix interface, which is represented

by a circle on the figures. However, this phenomenon is not observed in the

samples with nonpolar polypropylene fibers. Moreover, the EDX is performed

on ten spectra of the fiber/matrix interface and ten spectra of regular C-S-H

gel. The numerical EDX results show that the ratio of C/S in the interfacial

zone significantly changes for PVA and nylon-6 fibers, while it remains almost

constant for polypropylene fibers, shown in Fig. 4. The ratio of C/S in

the interfacial transition zone between PVA and nylon-6 fibers, and cement

increases in comparison to the regular C-S-H in fiber-reinforced composite

matrices. Furthermore, this ratio does not change for the polypropylene

fibers. This can be due to the polarity of different fibers caused by the

functional groups on their molecular structure.
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Nylon-6 fiber Polypropylene fiber 

Fiber/ Matrix Interface 

Figure 2: SEM images of fiber/matrix interface for the PVA (top), nylon-6 (bottom left),

and polypropylene (bottom right). Regions of fiber/matrix interface are indicated in the

image.

7



Si 

Ca 

Si 

Ca 

Si 

Ca 

Nylon-6  Polypropylene  PVA 

Figure 3: The EDX X-ray map results for three polymeric fibers in C-S-H matrix. The

green dots represent Calcium elements and the red dots represent Silicon elements. The

results shows that the Ca2+ ions are absorbed on the interface of nylon-6 and PVA fibers,

but the interface of polypropylene fiber has not significantly changed.
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Figure 4: A comparison of the EDX results between atomic percentage of Ca and Si

elements on samples of regular C-S-H gels and EDX results on samples of polymer/C-S-H

gel interfaces. Ten EDX spectra are used for each sample.
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2. Chapter 2: Molecular Modeling of Concrete

2.1. Introduction

The atomistic structure of the principal hydration product of Portland

cement, calcium silicate hydrate, C-S-H (C stands for CaO, S stands for SiO2

and H stands for H2O) is first modeled using Molecular Dynamics (MD)

and is verified by the available experimental data. In Portland cement, the

raw materials are limestone and clay. Hence, a typical composition of a

clinker is about 67 % CaO and 22 % SiO2 with mainly alite (C3S) and belite

(C2S) molecules. The products of hydration reaction of clinker are mainly

portlandite (CH) and C-S-H gel. The C-S-H gel makes up to 70 % of the final

volume and is responsible for the cohesion and strong mechanical properties

of cement pastes [13].

During the past decade the principal new data bearing on the structure

of polymer/cement interface have been on compositions, determined by X-

ray microanalysis, and on silicate anion structures [14; 15]. Emphasis is

placed on some recent models and their ability to account for these data.

There are also many experimental studies on C-S-H gel structure. In a study

by Uzun et al. (2011) [15], X-Ray diffraction (XRD) is used to investigate

the atomistic structure of C-S-H considering the coordinate number of Ca-

O. They believed that C-S-H is an evolution of tobermorite-like structure to

jennite-like structure. Allen et al. (2007)[16] measured the mean formula and

solid density of the nanoscale C-S-H gel particles by combining small angle

neutron and X-Ray scattering data ((CaO)1.7(SiO2)(H2O)1.8 and d=2.604

gr
cm3 ).

An understanding of the nature of chemical reactions occurring in C-
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S-H is also necessary in modeling the mechanical properties of concrete at

nanoscale. In order to understand the chemical reactions in C-S-H, many

researches have previously tried to characterize the structure of C-S-H gel at

the atomistic level [17]-[21]. In that regard, different strategies were utilized

to model the atomistic structure of C-S-H in order to understand its nanos-

tructure properties [22; 23]. Bauchy et al. (2014) constructed the tobermorite

crystalline structure, a more realistic C-S-H, and an artificial ideal glass [24].

They showed that while C-S-H retains some signatures of a tobermorite-like

layered structure, hydrated species are completely amorphous. Earlier, Pel-

lenq et al. (2009) [25] proposed a molecular model for C-S-H gel with the

stoichiometry of (CaO)1.65(SiO2)(H2O)1.73. In a more recent study, Qomi et

al. (2014) investigated the effect of C/S ratio on the molecular structure of

C-S-H using MD simulation technique [26].

In order to have a better understanding of C-S-H at nanoscale, H. F. W.

Taylors postulate is used to begin the atomistic modeling [18]. C-S-H gel is

mostly made of Tobermorite and Jennite [24]. Tobermorite has the chemical

formulation of Ca5Si6O16(OH)2.7H20 with a C/S ratio of 0.83 and density of

2.18 g
cm3 , while Jennite has the chemical formulation of Ca9(Si6O18)(OH)6.8H2O

with a C/S ratio of 1.5 and density of 2.27 g
cm3 . Moreover, the C/S ratio in

C-S-H varies from 0.7 to 2.3 and its density is about 2.6 g
cm3 [20]. Using

this information, a more realistic model for C-S-H will be proposed in this

chapter.

2.2. Basics of Molecular Modeling

In order to model in molecular level, the position of the atoms and the

rules about interaction between them need to be defined.

11



2.2.1. Forcefield and Simulation Parameters

The selection of a force field that results in an accurate model for the

potential energy hypersurface in which the nuclei moves, is an important

step in performing atomistic simulations. In general, the potential energy

consists of valence, cross-term, and non-bonded energies [29]:

Etotal = Evalence + Ecross−term + Enon−bonded (1)

In Eq. 1, a bond-stretching term, a bending energy term, and four body

terms, including a dihedral bond-torsion angle term and an inversion (out-of

plane interaction) term have contribution on the valence energy. The cross-

term enegy, Ecross-term, accounts for the energy induced by the changes in

the bond length and the bond angle with the surrounding atoms. Enon-

bonded, the non-bonded term, consists of intermolecular and intramolecular

interaction. The non-bonded terms include hydrogen bonds (H-bonds) and

van der Waals (vdW) interaction that are the induced dipole-dipole inter-

action (also known as London forces). Moreover, the Coulomb interaction

accounts for electrostatic interaction. These are summarized in Eq. 2-4.

Evalence = Estretching + Ebending + Edihedral−torsion + Einversion (2)

Ecross−term = Ebond−bond + Eangle−angle + Ebond−angle

+ Eendbond−torsion + Emiddlebond−torsion + Eangle−torsion + Eangle−angle−torsion

(3)

Enon−bonded = EvdW + Ecoulomb + EH−bond (4)
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The COMPASS (condensed-phase optimized molecular potentials for atom-

istic simulation studies [30]) force field is used for this calculation. It is a

powerful force field for atomistic simulation of condensed materials and one

of the first ab initio-based force fields that is parameterized and validated

with the experiment results [30]. Therefore, it is an accurate and reliable

force field for predicting mechanical, structural and thermodynamic proper-

ties of vast range of molecules and atoms [31]. It is well parameterized for

nonbonded interaction, which makes it a particularly good fit for long-chain

molecules like biomaterials or polymers and other systems where the vdW

interaction is the governing interaction [32]. Hence, molecular dynamic (MD)

simulations are utilized to understand the nanomechanical proprieties of the

interface. The unit cell of C-S-H gel and polymer are created and optimized

separately. The simulations are performed at room temperature. Hence, the

effects of ambient temperature on the structure of interfaces are not stud-

ied, since the experiments are done at room temperature after curing. On

the other hand, the process of cement hydration is exothermic- it generates

heat, but this is during the hydration process in the first 24 hours. Here, the

atomistic modeling is performed to simulate the C-S-H/polymer interaction

after hydration reaction. In this step, the temperature can be assumed to be

constant around room temperature (298 K).

2.3. Cement Paste in Atomic Scale

In this study, the structure of Jennite proposed by Hamid (1980) [17] is

used to initiate the basic molecular model of C-S-H. However, in our model,

it is assumed that the interlayer Ca2+ ions react with water and produce

hydroxyl ions. Hence, the structure that is proposed here is made of SiO2,

13



Ca2+ and Ca(OH)2 layers arranged as shown in Fig. 5. Afterwards, multiple

Si atoms are randomly omitted from, and multiple Ca2+ atoms are added

to the structure for the following reasons: 1) to be able to satisfy the C/S

ratio in the C-S-H structure at the interface with different polymer fibers,

2) to satisfy the overall charge balance in the system, and 3) to provide the

necessary defects in the structure of C-S-H. This approach can be applied

to construct different C-S-H models with different C/S ratios using the EDX

analysis results. The layered structure of the C-S-H surface is modeled and

the potential energy is optimized using the steepest descent approach followed

by the conjugate gradient method. The dimensions of the system are 40 Å×

40 Å× 45 Å. The charge distribution is calculated using the QEq method [33].

The non-bonded summations are calculated using Ewald for electrostatic

interaction with accuracy of 0.001 kcal
mol

. Based on each atoms charge with

the truncation of atoms further than cut-off distance of 15.5 Å, the charge

distribution for van der Waals interaction is computed (Fig. 6).

The thermodynamic properties of the C-S-H are then obtained to assess

the suitability of the force field to model the C-S-H gel. The density of C-S-

H from the molecular dynamics and experiments are estimated to be about

2.410 gr
cm3 and 2.64 gr

cm3 , respectively. The modulus of elasticity is estimated

to be 57.02 GPa, 24.52 GPa and 22.20 GPa in X, Y and Z directions (shown

in Fig. 6, respectively. Two different methods are used to calculate the elastic

moduli. In the first method, the structure is stretched in all three directions

and virial stresses are computed. The Youngs moduli is then computed as

the average of the three initial stress-strain slopes after relaxation. In the

second method, Young’s modulus are indirectly computed from molecular

14



SiO2 

Interlayer Calcium 

Intra-layer Calcium 

  

  

  

Figure 5: Schematic of the initial molecular model of C-S-H. Red and white spheres are

oxygen and hydrogen atoms of water molecules, respectively; the green spheres are calcium

ions; yellow and red sticks are silicon and oxygen atoms in silica tetrahedra.
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X 

Figure 6: The molecular model of C-S-H after optimization.
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dynamic simulation, for each direction, by the following equation:

U

A× L
=
E

2
(
L− L0

L0

) (5)

where L0 is the initial length of unit cell in desired direction. L is the final

length and U is the energy of the system after increasing the length. It is

observed that both methods result in almost the same value of 32.8 and 34.2

GPa for the suggested C-S-H model. The experimental values corresponding

to these properties depend on the volume fraction of the porosities and vary

from 30 GPa to 50 GPa [34; 35]. The Poissons ratio of C-S-H is also a

function of the volume fraction of porosities and changes from 0.15 to 0.3

[18; 36]. This property is estimated to be 0.29 from the molecular dynamics

simulations using the prescribed force field.
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3. Chapter 3: Polymeric Fiber Reinforced Concrete: Atomic Scale

Properties of Interface

3.1. Introduction

The adhesion energy between fiber and matrix plays a vital role in the

mechanical properties of composites [11]. Previously in this study, we have

performed SEM and EDX analysis techniques to create a new atomistic

model for C-S-H gel and its interface with polymeric materials. The pro-

posed model is studied and analyzed by the molecular dynamic simulation

using ab initio-based force fields. The resulting nanostructure of C-S-H using

the proposed model is validated by the available Nuclear Magnetic Resonance

(NMR) Spectroscopy data. In this chapter, the molecular adhesion mecha-

nisms between a layered structure of C-S-H gel and three different polymeric

fibers with a variety of polarities are investigated and the mechanisms of

adhesion are reported.

3.2. Molecular Modeling of Polymers

Monomers of the chosen polymers (vinyl alcohol, propylene, and hexano-

6-lactam) are constructed and the molecular structures are presented in Fig.

7. Chains of PVA, polypropylene and nylon-6 are then created by assem-

bling 100 monomer units of vinyl alcohol, propylene and hexano-6-lactam,

respectively [37].

The structure of the PVA, polypropylene and nylon-6 unit cells are pre-

sented in the Fig. 8. The number of monomers in the chain is obviously not

representative of the actual polymer chain as the real chain is composed of

more than 10,000 repeating units. However, this length is sufficient to model
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(c) Propylene (b) Vinyl-alcohol 

(a) Hexano-6-lactam 

Figure 7: Atomistic models of three different polymer atoms investigated in this study.

In this figure a, b, and c show the monomer of nylon-6, PVA, and polypropylene, re-

spectively. Gray, red, white, and blue spheres represent carbon, oxygen, hydrogen, and

nitrogen, respectively. The yellow atoms show where the monomer is connected to the

other monomers in the polymers chain. These locations will be replaced by hydrogen at

the beginning and at the end of each chain.
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the chain ends, close to the surface. Many monomers on the real chain do

not participate in the adhesion process since long-range non-bonded interac-

tions are negligible for these monomers. Chains of 300 monomers and 100

monomers are analyzed and the properties are found to be similar. Hence,

for modeling each polymer, 5 chains of 100 monomers are used to simulate

the material properties. Additionally, this length is higher than persistent

length of these systems. The persistence length of the polymers investigated

in this study is roughly around 5-12 nm. This parameter can be estimated

using the following equation:

P =
Bs

kB × T
(6)

where Bs=EI, with E being the Young’s Modulus of the polymer, and

I= r4

4
, r is the radius of molecule’s cross section and kB is the Boltzmann

constant. Hence, the persistent length parameter for PVA can be estimated

as 7.1 nm. The chain length in our models is around 20 nm, which is more

than the persistence length. Moreover, to be able to compute the adhesion

energy between C-S-H and the polymers, shorter chains in which the effect

of unfolding of chains, intramolecular interactions or self-adhesion can be

neglected, are preferable [38]. Five possible structures of each prescribed

polymer molecules with desired density of 1.2 g
cm3 at 298 K are created and

optimized. Each configuration is subjected to molecular dynamics simula-

tion to let the atoms relax down to the minimum energy in the structure

[39]. Initially, the canonical (NVT) dynamics is carried out for 60 ps by

1.0 fs time steps at 300 K, followed by the isothermal-isobaric (NPT) dy-

namics compressed at high pressure (5000 bar) for 120 ps at 300 K. Next,
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(a) Nylon-6 

(b) PVA (c) Polypropylene 

x 

Figure 8: Shows the bulk molecular of nylon-6, PVA and polypropylene models represen-

tations in atomistic simulation.
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Table 1: Density ( gr
cm3 ) values of PVA, polypropylene, nylon-6 obtained from the atomistic

simulations and available experimental data.

Material Simulation Experiment

PVA 1.13 1.10 [44]

Polypropylene 0.84 0.952 [45]

Nylon-6 1.10 1.13 [46]

NVT molecular dynamics are applied at 600 K and 300 K, successively, for

about 50 ps and 70 ps, respectively. Subsequently, 120 ps molecular dynam-

ics is performed in the NPT ensemble at 1 bar, and the resulting density is

compared to the experimental value. If the density is lower than the experi-

mental density, the first two steps are repeated. Finally, molecular dynamics

simulation is performed in NVT ensemble at 1 bar for 300 ps. The simula-

tion results of the density for each polymer are presented in Table 1. The

computed densities are close to available experimental data. Additionally, in

order to verify the structure of the polymers, the convergence of Root Mean

Square Deviations (RMSD)s is also checked.

Young’s modulus is a measure of the stiffness of an elastic material. Us-

ing molecular dynamics simulations, this parameter is found by equation 5

for each polymer. Young’s moduli of the PVA, polypropylene, and nylon-6

computed from the stiffness matrices, are presented in Table 2. The aver-

age Young’s moduli of polymers are in a good agreement with the respective

experimental measurements.

The glass transition temperature (Tg) is the reversible transition in amor-

phous materials from a hard and relatively brittle state into a molten or

22



Table 2: Youngs Moduli (GPa) of PVA, polypropylene, nylon-6 obtained from the atom-

istic simulations and available experimental data

Material Simulation Experiment

PVA 1.47 2-4 [47]

Polypropylene 2.42 1.1-1.5 [48]

Nylon-6 3.72 1.2-2.8 [49; 50]

rubber-like state. From a thermodynamic point of view, the glass transition

temperature appears as a change in the slope of the specific volume and

energy versus temperature [40]. The glass transition temperature (Tg) is

obtained from the change in the slope of specific energy-temperature curve

[39; 41]. To achieve this, the temperature of each system is increased to 600

K and slowly brought down to 200 K at the rate of 0.5 K/ps while the tem-

perature and pressure are controlled by the Nose thermostat and Berendsen

barostat, respectively. In random steps, the system is equilibrated with NPT

dynamics for 25 ps and the results are recorded to create the specific energy-

temperature curves. The variation of the specific energy with temperature

for nylon-6 is presented in the Fig. 9. As expected, linear variations are

observed on both sides of a critical temperature. This critical temperature

should correspond to the glass transition temperature.

The glass transition temperatures of nylon-6, PVA, and polypropylene are

computed and compared with the experimental results in Table 3. The small

difference between experimental and simulation result is due to the fact that

this value will strongly depend on the time scale at which the measurements

are performed.
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Figure 9: The variation of the specific energy as a function of temperature for nylon-6

is presented. The glass transition temperature is obtained from the change in the slope

of specific energy-temperature curve. To achieve this, the temperature of each system is

increased to 600 K and slowly brought down to 200 K at the rate of 0.5 K/ps while the

temperature and pressure are controlled by the Nose thermostat and Berendsen barostat,

respectively.
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Table 3: Glass transition temperatures (◦C) of PVA, polypropylene, nylon-6 obtained from

the atomistic simulations and available experimental data

Material Simulation Experiment

PVA 92.4 87 [51]

Polypropylene 16.7 20-25 [44]

Nylon-6 58.1 49 [44]

3.3. Atomic Interaction and Adhesion Energy

To measure the adhesion energies between the polymers and C-S-H gel,

models are constructed by placing polymer chains on the C-S-H surface mod-

els in a super-cell. When the polymer is placed on top of the layered struc-

ture, the polymer will be able to see both sides of the surface due to periodic

boundary conditions. Therefore, a large vacuum (50 Å) should be added

above the polymer so that it can interact only with one side of the surface.

Five different configurations of each chain of polymer are chosen as a con-

fined layer on top of the C-S-H gel. Then, the polymer layers are positioned

on the top of C-S-H layer and the whole system is optimized to compute the

minimum energy of the system. This is followed by the molecular dynamic

simulation of the system under NVT ensemble at the temperature of 298 K

for a period of 1 ps. The presence of Ca2+ ions makes the system positively

charged. Therefore, we have used the QEq method [33] to redistribute the

overall charge on the atoms in the current atomistic model. After energy

optimization of the cell, 120 ps of dynamic simulations with 1 fs time steps

are performed. This time period is enough for the systems to reach the con-

vergence and energy stability. In this dynamic simulation, the charge is set
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to zero to eliminate the effect of charges resulting from the Ca2+ ions. Fur-

thermore, in order to eliminate the effect of temperature on the adhesion, the

simulations are performed at room temperature. Polymers behave differently

under different solvation conditions, especially in terms of the ions present in

the system. However, the representative polymer systems studied here have

no explicit solvent.

3.3.1. Cement Paste in the Interface

The complex atomistic model of C-S-H gel can be verified by important

stoichiometric parameter such as C/S ratio, and the first and second order

thermodynamic quantities, such as density and Young’s modulus. All these

parameters were explored in the previous section and their agreement with

the experimental model were confirmed. Another important factor that needs

to be verified with available experimental data to make sure that the atom-

istic model is representative of the actual molecules is the Radial Distribution

function (RDF). In a solid, the radial distribution function has an infinite

number of sharp peaks whose separations and heights are characteristic of the

lattice structure. The radial distribution functions of O-H, O-Ca, O-O, Si-Si,

Ca-Ca, and Ca-Si pairs are shown in Fig. 10. These results match precisely

with the earlier NMR investigated RDF graphs of C-S-H by Lequeux (1999)

[42]. After verification of the model by the agreement between the presented

parameters in our model and experimental data, the adhesion energies be-

tween the C-S-H model and PVA, polypropylene, and nylon-6 polymer fiber

surface are investigated.
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Figure 10: Radial distribution function of Si-Si, Ca-Ca, Ca-Si pairs (top) and O-O, O-Ca,

O-H pairs (bottom) in C-S-H gel pairs in C-S-H gel.
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3.3.2. C-S-H/Polymer Interaction

The snapshots of the C-S-H/polymer model before and after the MD

simulation for nylon-6, PVA and polypropylene interfaces are shown in Figs.

11, 12 and 13, respectively. The binding energies between the C-S-H and

polymers and the concentration profiles of the specific atoms are calculated

after the MD simulations.

The interaction energy (EInteraction) between the polymer molecules and

the C-S-H surface is calculated by using the following equation:

EInteraction = (EC−S−H + Epolymer) − Etotal (7)

where EInteraction is the interaction energy of the system. Etotal is the

total energy of the C-S-H surface and the polymer molecules in equilibrium.

EC−S−H is the energy of the surface without the polymer, and Epolymer is

the energy of the polymer without the surface, both separated in vacuum

in equilibrium [43]. These calculations are all single point energies with no

constraints defined in the model.

To investigate the effect of polarity of fibers and C/S ratio, on the adhe-

sion energy of the fiber and cement, various atomistic simulation models are

performed. The results of the simulations for nylon-6, PVA and polypropy-

lene interfaces with C-S-H gel are presented in Figs. 11, 12 and 13, respec-

tively. The accumulation of Ca2+ ions at the interface of nylon-6 and PVA

can be observed in Fig. 11 and 12, respectively. In order to understand

the effect of C/S ratio at the interface of C-S-H on the adhesion energy, the

adhesion energy between C-S-H models with different C/S ratios with PVA

fibers are investigated, and the results are presented in Fig. 14. These results

clearly show that higher C/S ratios in C-S-H gel result in higher adhesion
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Figure 11: The nanostructure of nylon-6/C-S-H interface before, (right), and after simu-

lation (left).
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Figure 12: The nanostructure of PVA/C-S-H interface before, (right), and after simulation

(left).
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Figure 13: The nanostructure of polypropylene/C-S-H interface before, (right), and after

simulation (left).
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energies with PVA. This is mainly due to the existence of extra Ca2+ ions

that make the electrostatic bond with the hydroxyl group of the fibers. This

electrostatic bond is the origin of adhesion energy.
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Figure 14: Adhesion energies between PVA fiber and C-S-H gel as a function of interface

C/S ratio.

To understand the effect of polarity on the adhesion of matrix and fiber,

the adhesion energies between the polymers and C-S-H model, with different

C/S ratios of 0.87, 1.24, and 1.43 are computed and are presented in Fig.
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Figure 15: Adhesion energies between polymers with different polarities with C-S-H as a

function of interface C/S ratio.

15. The results show that the adhesion energy increases as the polarity of

the functional groups increases for each C/S ratio. The amide group is a

high polarity group having both oxygen and nitrogen sides in the functional

group that can make hydrogen bonds, and moreover interact with Ca2+.

The hydroxyl functional group has a moderate polarity with one side that

can interact with Ca2+ ion. Lastly, polypropylene does not have a polar

functional group.
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Table 4: The contribution of hydrogen bonding, electrostatic and van der Waals interaction

energies ( J
m2 ) to the total adhesion energy ( J

m2 ) between polymers and C-S-H gel.

Adhesion Energy Total Hydrogen Bond Van der Waals Electrostatic

PVA 89.91 0.58 18.34 71.00

Polypropylene 64.18 0.02 0.24 63.92

Nylon-6 95.48 3.24 13.87 78.38

As it is shown in EDX analysis, the C/S ratio in C-S-H gel increases for

polymer fiber reinforced concrete interfaces with polar fibers. The polarity

of polymer fibers enhances the absorption of water molecules and the posi-

tive ions, such as Ca2+ solved in it during hardening to the fiber molecules.

Hence, the more realistic adhesion energy for each type of fiber reinforced

concrete can be calculated using the actual C/S ratio in C-S-H gel. The

final interaction energies and the computed adhesion energies between PVA,

polypropylene, and nylon-6, and relevant C-S-H gel model are presented in

Table 4. Adhesion energy between PVA, polypropylene and nylon-6 and

C-S-H gel are computed as 89.91 kJ
m2 , 95.48 kJ

m2 , and 64.18 kJ
m2 , respectively.

The variation in the computed adhesion energies is due to the presence of

functional groups, and hence, different polarities of the polymer molecules.

We believe that the functional groups affect the adhesion energy primarily

by changing the C/S ratio of the C-S-H at the interface, and further by

absorbing additional positive ions in the C-S-H structure.

The contribution of hydrogen bonding, electrostatic and van der Waals

interaction energies to the total energy in the system are presented in Table

4. The results show that the adhesion energy between fibers and C-S-H gel

is mostly a result of electrostatic interaction, which is due to the presence
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of Ca2+ ions in C-S-H model. However, their strength increases with the

induced polarity of the polymers. Additionally, the origin of the differences

in the van der Waals bond strength is the permanent polarity of PVA and

nylon-6 molecules. The difference in the hydrogen bond strength between C-

S-H gel and fibers is that in the nylon-6 molecules both oxygen and nitrogen

atoms contribute to the hydrogen bonding, while in PVA molecules only one

oxygen atom contributes to the hydrogen bonding, while none of them exists

in the polypropylene molecule to add to the adhesion energy.
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4. Chapter 4: Cellulose as an Additive to Concrete

4.1. Introduction

Products made from renewable and sustainable resources that are biodegrad-

able, non-petroleum based, carbon neutral, and have low environmental, ani-

mal/human health and safety risks are increasingly demanded by consumers,

industry, and government. Wood, bamboo and cotton have been used by our

society as engineering materials for thousands of years and their use contin-

ues today as verified by the enormity of the world wide industries in forest

products, paper, textiles, etc. These natural materials are mainly made of cel-

lulose. Cellulose is the most abundant naturally occurring polymer, has been

the target of great interest in recent years. Cellulose-based biocomposites of-

fer the potential to replace petroleum-based plastics and composites.[52; 53]

Hence, investigating the properties of cellulose and its interaction with other

materials is an essential to improve the products which contain wood, bam-

boo or cotton.

These materials were used in the last decades to satisfy the demands

using their outstanding properties such as functionality, flexibility and high

mechanical strength/weight performance by exploiting hierarchical structure

design that spans nanoscale to macroscopic dimensions. However, more mul-

tiscale analysis needs to be performed for the advanced next generation mate-

rials with special applications. Cellulose nanoparticles is the base fundamen-

tal reinforcement unit that is used to strengthen all subsequent structures

within trees, plants, some marine creatures, and algae. Extracting cellu-

lose nano-particles allows us to fabricate high performance composites and

enhance the mechanical properties of materials such as concrete.
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4.2. Molecular Modeling of Cellulose

Molecular dynamics computer simulation has been shown to be an excel-

lent tool to contribute to a molecular-level under standing of crystalline cel-

lulose, its structure and its dynamics, as well as its interactions with solvents

and other biomolecules. [54]-[58] At present, there exist several force fields

that are being used in simulations of cellulose, such as GROMOS 45a4, [59]

CHARMM36,[60] PCFF,[61] and GLYCAM06,[62] to mention a few. These

are all atomistic force fields, meaning that all atoms, except for nonpolar

hydrogen atoms in the case of GROMOS, are represented explicitly by one

interaction site, making the simulations limited to fairly small systems and

short simulation times. In our study COMPASS forcefield is used to model

cellulose.

Cellulose is a linear chain of ringed glucose molecules and has a flat

ribbon-like conformation. The repeat unit (Fig. 16) is comprised of two

anhydroglucose rings ((C6H10O5)n; n = 10,000 to 15,000, where n is de-

pended on the cellulose source material) linked together through an oxygen

covalently bonded to the rings. Monomer of cellulose (glucose) is constructed

and the molecular structures are presented in Fig. 17.

The structure of natural wood is around 50 % made of cellulose. Wood

cellulose is mostly crystalline, however some part of it is amorphous. In this

study both crystalline and noncrystalline cellulose are modeled.

In order to model noncrystalline cellulose, chains of cellulose are then

created by assembling 100 monomer units of glucose [37]. The structure of

cellulose unit cell is presented in Fig. 18. The number of monomers in the

chain is obviously not representative of the actual polymer chain as the real
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Figure 16: The repeating unit of cellulose. It is made of two anhydroglucose rings linked

by an oxygen atom.

chain is composed of more than 10,000 repeating units. However, this length

is sufficient to model the chain ends, close to the surface. Many monomers

on the real chain do not participate in the adhesion process since long-range

non-bonded interactions are negligible for these monomers. Chains of 300

monomers and 100 monomers are analyzed and the properties are found to

be similar. Hence, for modeling, 10 chains of 100 monomers are used to

simulate the material properties. Additionally, this length is higher than

persistent length of these systems.

Five possible structures of cellulose molecules with desired density are

created and optimized. Each configuration is subjected to molecular dynam-

ics simulation to let the atoms relax down to the minimum energy in the

structure. This model was optimized using a smart algorithm which is a cas-

cade of steepest descent, adjusted basis set Newton-Raphson (ABNR), and

quasi-Newton method. Initially, the canonical (NVT) dynamics is carried out
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Figure 17: Atomistic models of three different polymer atoms investigated in this study.

Gray, red and white represent carbon, oxygen and hydrogen, respectively. The yellow

atoms shows where the monomer is connected to the other monomers in the polymers

chain. These locations will be replaced by hydrogen at the beginning and at the end of

each chain.
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Figure 18: The bulk molecular structure of cellulose model representation in atomistic

simulation.
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for 80 ps by 0.5 fs time steps at 300 K, followed by the isothermal-isobaric

(NPT) dynamics compressed at high pressure (5000 bar) for 120 ps at 300 K.

Next, NVT molecular dynamics are applied at 600 K and 300 K, successively,

for about 80 ps and 100 ps, respectively. Subsequently, 120 ps molecular dy-

namics is performed in the NPT ensemble at 1 bar, and the resulting density

is compared to the experimental value. If the density is lower than the exper-

imental density, the first two steps are repeated. Finally, molecular dynamics

simulation is performed in NVT ensemble at 1 bar for 300 ps.

In order to model the crystalline cellulose, first the unitcell structure is

modeled and shown in Fig. 19 and then the whole structure is made by

repeating the unitcell.

For both models, the density is found to be 1.6 g
cm3 at 298 K, the Young’s

modulus of the model is found to be 82 GPa and glass transition temperature

found is to be 468 K These numbers are close to the experimental data

presented in [63], [64] and [65], respectively.

4.3. SEM/EDX Analysis

In order to investigate the interaction between bamboo fibers and C-S-H,

first SEM and EDX analysis were used as it described in the first chapter.

A typical SEM image of a bamboo fiber is shown in Fig. 20.

Moreover, a typical SEM image of a bamboo fiber in the C-S-H matrix

is shown in Fig. 21. The image does not show a clear interfacial transition

zone between the fibers and cement paste.

The EDX mapping results and analysis for bamboo fiber/cement inter-

faces are shown in Fig. 22. The X-ray mapping is used to investigate the

distribution and density of existing elements such as Si, and Ca in an area
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Figure 19: The unitcell structure of modeled crystalline cellulose.
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100 μm 

Figure 20: SEM image of the bamboo fibers.
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100 μm  

Figure 21: Bamboo fiber in cement paste. There is not a clear interfacial transition zone.
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around each fiber. The X-ray mapping of Si and Ca elements for bamboo

fibers show a small accumulation of calcium at fiber/matrix interface, which

is represented by an ellipse on the figures. The numerical EDX results in Fig.

23 show that there us a little change in the ratio of C/S in the interfacial

zone. The ratio of C/S in the interfacial transition zone between bamboo

fibers and cement increases slightly in comparison to the regular C-S-H in

fiber-reinforced composite matrices. Molecular modeling is essential in order

to obtain a better understanding of the phenomenon.

Figure 22: The results of EDX mapping shows the distribution of Ca and Si atoms around

bamboo fiber. There is a slight increase in C/S ratio around bamboo fibers.

4.4. Atomic Interaction and Adhesion Energy

The snapshots of the C-S-H/cellulose model before and after the MD

simulation are shown in Figs. 24. The binding energies between the C-

S-H and cellulose and the concentration profiles of the specific atoms are

calculated after the MD simulations.
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Figure 23: A comparison of the EDX results between atomic percentage of Ca and Si

elements on samples of regular C-S-H gels and EDX results on samples of bamboo fiber/C-

S-H gel interfaces. Ten EDX spectra are used for each sample.
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Figure 24: The nanostructure of noncrystalline cellulose/C-S-H interface before, (right),

and after simulation (left).

The interaction energy (EInteraction) between the molecules and the C-

S-H surface is calculated by using the Equation 7. Now, EInteraction is the

interaction energy of the system. Etotal is the total energy of the C-S-H

surface and the cellulose molecules in equilibrium. EC−S−H is the energy

of the surface alone, and Epolymer is the energy of the cellulose without the

surface, both separated in vacuum in equilibrium [43]. These calculations

are all single point energies with no constraints defined in the model.

As it was mentioned before, most of the wood cellulose is crystalline.

Hence, cellulose with crystal structure is made and the interaction energy was

investigated. Since, there is a difference between different planes of cellulose,

there may be a difference in the interaction between different surfaces and C-

S-H structure. In this study we simulated the interaction between crystalline
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cellulose on [00-1] and [010] and C-S-H structure. The Figs. 25 and 26 show

the cellulose/C-S-H interface before and after MD simulations.

Figure 25: The nanostructure of crystalline [00-1] cellulose/C-S-H interface before, (right),

and after simulation (left).

Fig. 27 shows the possibility of forming hydrogen bond between and

inside the molecules of cellulose. These hydrogen bonds are responsible for

the high strength of cellulose. Since these hydrogen bonds are very strong

there is no polar group to contribute to the adhesion of cellulose with C-S-

H gel. Therefore the adhesion would be lower than that of the other three

polymers.

In the bamboo fiber-reinforced cement paste samples it was observed

that the samples are pretty dry which means bamboo fibers absorbed a lot

of water during hydration reaction. Moreover, it is known that water play

a very important role in the properties of biomaterials. Hence, water was
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Figure 26: The nanostructure of crystalline [010] cellulose/C-S-H interface before, (right),

and after simulation (left).

added to the structure of cellulose and adhesion energy was calculated again.

A summery of the simulations are presented in Table 5.

Table 5: The total adhesion energies ( J
m2 ) of amorphous and two crystalline structure of

cellulose with C-S-H gel.

Without Water With Water

Amorphous [00-1] [010] Amorphous [00-1] [010]

Adhesion 39.2 8.6 21.1 85.8 8.1 20.5
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Figure 27: The hydrogen bond formation in cellulose. Dot blue lines show the H-bond

between and in the molecules of cellulose.
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5. Chapter 5: Mechanical Testing

The tensile strength of concrete is a very important parameter in the

design of civil engineering structures. In order to determine the tensile

strength of concrete for existing structures, different experiments are essen-

tial. Compression tests are very common in order to investigate the com-

pressive strength of concrete and fiber-reinforced concrete samples. Because

of the complex nature of uniaxial tension tests, usually splitting tension tests

are carried out on cylindrical specimens or cores. In this study, split testing

setup was chosen because of the fiber-pullout effect on the polymeric fibers

which is affected by the adhesion energies.

5.1. Materials and Methods

Here, samples preparation and mechanical testing set-up will be explained.

5.1.1. Samples Preparation

In order to compare the mechanical properties of fiber-reinforce cement

paste and investigating the effect of different polymeric fibers in concrete

and their molecular level interaction, concrete samples were prepared. For

all the samples, first, 40 % mass percentage is water and the rest is cement.

For samples with polymeric fibers, 1 % volume percentage is added to the

mixtures. Nine samples of each control, cement/PVA, cement/Nylon and

Cement/Polypropylene batches are prepared. Three of each batch are tested

in third day, Three in the seventh day and Three in the twenty first day. The

fibers shape is identical. 3
4

in long and 175 µm thick polymeric fibers were

used.
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5.1.2. Split-cylinder Test

Split-cylinder test is the indirect way to determine tensile strength of the

concrete samples. This test was chosen in order to investigate the effect of

adhesion energy between fiber and cement paste. In this test, a standard

test cylinder (4 in long and 2 in diameter) was placed horizontally between

the loading surfaces of compression test machine. With this method, load is

applied uniformly along the length of the samples and cause a crack along

the diameter of the cylinder. The sample split into two parts due to the

Poisson’s effect. If an element on the diameter of the sample is assumed, in

addition to a pair of compression load, a pair of tension load is applied to

the element perpendicular to the loading direction.

Assuming an elastic behavior for the concrete, the tensile stress acting on

the vertical plane on the diameter of the cylinder can be calculated as:

σ =
2P

πDL
(8)

where P is the compression force, D is the diameter of the cylinder and L is

the length of cylinder.

5.2. Results and Discussion

A typical broken sample after split-cylinder test is shown in Fig. 28.

The long fibers can be observed in the image. From this image, three main

failure steps are implied: failure of concrete, fiber detachment or debonding

and fiber pull-out continuation. The first one occurs at the failure tensile

strength of concrete, the second one is when the stress in the sample exceed

the adhesion force per area between fibers and concrete and the third step

occurs due to the friction between fibers and concrete.
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Figure 28: A typical broken fiber-reinforce cement paste sample subjected to split-cylinder

test.
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Failure strength of fiber-reinforced cement paste can be obtained from

testing control samples. A typical load-displacement graph of a cement paste

sample with no additive and a sample with polymeric fiber is shown in Fig.

29. In the samples with fibers, the last step of failure strongly depends

on the roughness of the fibers in nano and micro scale. However, there is

a correlation between the second step of failure and the adhesion energies

found in the previous chapters. The force corresponds to this point is called

yielding load in this study.
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Figure 29: Typical failure of cement paste and fiber-reinforced cement paste.

Figs. 30-32 show the load-displacement behavior of tested samples in the
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third day. The circles on the graphs show the second step of failure. The

load corresponds to this part is higher for Cement/Nylon samples than for

Cement/PVA samples, and it is higher for Cement/PVA samples than for

Cement/Polypropylene samples.
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Figure 30: Load-displacement curve for cement paste with added Polypropylene fibers

cured for three days. The yielding load is around 4000 lb.

The following graphs show the tested samples for seventh and twenty-

eighth days. The same trend for the yielding stress can be observed in the

samples.

The yielding stress for samples with PVA and Polypropylene are pretty
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Figure 31: Load-displacement curve for cement paste with added PVA fibers cured for

three days. The yielding load is around 4200 lb.
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Figure 32: Load-displacement curve for cement paste with added Nylon fibers cured for

three days. The yielding load is around 5000 lb.
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Figure 33: Load-displacement curve for cement paste with added Polypropylene fibers

cured for seven days. The yielding load is around 3900 lb.
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Figure 34: Load-displacement curve for cement paste with added PVA fibers cured for

seven days. The yielding load is around 4200 lb.
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Figure 35: Load-displacement curve for cement paste with added Nylon fibers cured for

seven days. The yielding load is around 5800 lb.
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Figure 36: Load-displacement curve for cement paste with added Polypropylene fibers

cured for twenty eight days. The yielding load is around 3900 lb.

61



0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 0.05 0.1 0.15 0.2

L
o

a
d

 (
lb

) 

Displacement (in) 

Figure 37: Load-displacement curve for cement paste with added PVA fibers cured for

twenty eight days. The yielding load is around 4100 lb.
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Figure 38: Load-displacement curve for cement paste with added Nylon fibers cured for

twenty eight days. The yielding load is around 5000 lb.
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Figure 39: Summery of the split-cylinder test results.

close, however, the stress for samples with Nylon fibers is higher. To conclude

the graphs can be summerized in the graph below:
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6. Conclusion and Future works

Across the globe, polymer fibers are added to concrete to enhance the

tensile properties and ductility of concrete. While there is a large body of

data on this subject, the nanostructure and nanomechanical properties of the

polymer fiber/cement interface is still not completely known which is pivotal

in the design of robust polymer reinforced concrete. This study presents a

combined SEM/EDX analysis and atomistic simulation framework to investi-

gate the nanostructure of the cement/fiber interfaces, and the corresponding

mechanical properties. In this study, different polymer fibers are used based

on different polarity of their functional group. The electron microscopy re-

sults show that the ratio of C/S changes in the fiber/matrix interface for the

three types of polymer fibers studied. This is essentially due to the different

polarities of the polymer molecules. Using SEM/EDX analysis, it is shown

that the C/S ratios in PVA/C-S-H and nylon-6/C-S-H interfaces are higher

than that in polypropylene/C-S-H interface. This is mainly a result of high

polarity of hydroxyl and amide functional groups. In order to further in-

vestigate this hypothesis, using the proposed atomistic model, the adhesion

energies between different polymers and C-S-H are computed. It is observed

that the functional group affects the adhesion energy primarily by chang-

ing the C/S ratio of the C-S-H at the interface, and further, by absorbing

additional positive ions in the C-S-H structure.

In chapter 1, it is explained how SEM/EDX analysis can be used to

investigate the fiber/matrix interface in fiber-reinfoced concrete. The results

show that there is a change in C/S ratio in fiber/matrix interface rather than

the regular C-S-H.
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In chapter 2 and 3, basic principals of molecular modeling of polymers

and C-S-H were presented. The results of chapter 1 were used to change

the atomic structure of C-S-H in the interface and investigate the molecular

interaction between C-S-H and polymeric fibers.

In chapter 4, bamboo fibers were added to cement paste and their effect

on the interface and molecular structure of C-S-H were investigated. Both

SEM/EDX technique and Molecular modeling was used in this chapter.

In chapter 5, mechanical testing was performed on samples and a corre-

lation between adhesion energies and load-displacement curves were found.

The split-cylinder test was used to investigate the macroscopic behaviour

of samples and the results were compared to the molecular interaction be-

tween C-S-H and polymers. We believe that the adhesion energy between

fibers and cement paste can be correlated with the fiber detachment in load-

displacement curves.

The implications of these results are significant in further development of

robust fiber reinforced cement composites. Future work will focus on under-

standing the rate of migration of calcium atoms at the surface/interface, the

more investigation of the effect of adhesion energies on mechanical response

of fiber-reinforced cement composites.
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