Exploring Longest Common Subsequences and the Chvátal-Sankoff Constants

Introduction

A subsequence of a string is obtained by removing zero or more characters from it while preserving order:

Finding the "Longest Common Subsequence" (LCS) of a set of sequences is a fundamental problem in computer science with numerous important applications.

In this project, we explore the LCS problem. In doing so, we

- Achieve world-record lower bounds on the Chvátal-

Sankoff constants

- Prove several new LCS properties
- Create an interactive tool illustrating our findings

Computing LCS

Given two strings of length m, n how do you compute LCS?

- Naive approach running time: $\mathcal{O}\left(2^{m} \cdot n\right)$
- Dynamic programming (DP) approach: 2D array stores results of partial input strings. Running time:
$\mathcal{O}(m \cdot n)$
The DP algorithm is taught in thousands of classes across the U.S. to illustrate the concept!

Dynamic programming LCS table for strings abaca and bacba

The Chvátal-Sankoff Constants

The Chvátal-Sankoff constant for two random binary strings (γ) describes the expected length of the LCS (\mathcal{L}) of the strings as their lengths (ℓ) tend towards infinity:

$$
\gamma=\lim _{\ell \rightarrow \infty} \frac{\mathbb{E}(\mathcal{L})}{\ell}
$$

Lower and upper bounds are known, but exact values are not!

World-Record Lower Bounds

New world-record lower bound (ours): $0.792052 \leq \gamma$
We additionally computed new best lower bounds for all but one of the general-case constants.

Our Method

- Improve on algorithms by Lueker and Kiwi and Soto (2, 3),
- Requires immense compute, memory use. Naive impl. stores >4 Terabytes every iteration for large values.
- Overcome through parallelization, use of LCS symmetries and recursive sub-chunking for sequential memory I / O.

BLISS Playground

BLISS Playground is a suite of interactive tools to aid in understanding and exploring the unique properties of the LCS problem, complete with fun puzzles!

LCS Edit Properties Explorer

LCS Matrix Builder

LCS Distribution Explorer

Conclusions \& Future Work

Key Takeaways

- Advanced understanding of LCS through new bounds and properties
- Created BLISS for education and exploration. Check it out! Future Work
- Improve general-case impl., further computation
- Computing upper bounds
- Advancements in Al-powered math may drive further discoveries. References

