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Abstract

Achieving robot autonomy is an extremely challenging task and it starts with de-

veloping algorithms that help the robot understand how humans perceive the en-

vironment around them. Once the robot understands how to make sense of its

environment, it is easy to make efficient decisions about safe movement. It is hard

for robots to perform tasks that come naturally to humans like understanding sign-

boards, classifying traffic lights, planning path around dynamic obstacles, etc. In

this work, we take up one such challenge of motion segmentation using Light De-

tection and Ranging (LiDAR) point clouds. Motion segmentation is the task of

classifying a point as either moving or static. As the ego-vehicle moves along the

road, it needs to detect moving cars with very high certainty as they are the areas of

interest which provide cues to the ego-vehicle to plan it’s motion. Motion segmen-

tation algorithms segregate moving cars from static cars to give more importance

to dynamic obstacles.

In contrast to the usual LiDAR scan representations like range images and regu-

lar grid, this work uses a modern representation of LiDAR scans using permutohedral

lattices. This representation gives ease of representing unstructured LiDAR points

in an efficient lattice structure. We propose a machine learning approach to per-

form motion segmentation. The network architecture takes in two sequential point

clouds and performs convolutions on them to estimate if 3D points from the first

point cloud are moving or static. Using two temporal point clouds help the network

in learning what features constitute motion. We have trained and tested our learn-

ing algorithm on the FlyingThings3D dataset and a modified KITTI dataset with

simulated motion.
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Chapter 1

Introduction

Robots have become an important part of today’s industry and economy. Robots

are being developed for a variety of applications like industrial robotics, autonomous

vehicles, indoor and outdoor security, cleaning, medical surgeries, exoskeletons, de-

fense, etc. A certain level of autonomy is advantageous in all kinds of robots.

Autonomy reduces the dependence of robots on humans for decision making. All

robots in lesser or higher proportions follow a sense-plan-act methodology. The

robots sense their environment with different kinds of sensors. Using the observa-

tions from the environment as prior, robots plan their future using a collection of

algorithms. These plans are brought to life using actuators like motors. If the sense

phase is not executed with high accuracy, all the decisions the robots take will be

flawed and the robot will be rendered unsafe for use. To explain with an example,

if an autonomous vehicle fails to sense a pedestrian standing in front of it, then the

trajectory that it will plan will be through the pedestrian. The action of following

this trajectory will result in an unfortunate accident.

This work focuses on improving the sense phase for a representative application

of autonomous vehicles. The application of the motion segmentation algorithm pro-
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posed in this work is not constrained to autonomous vehicles and can be translated

to indoor, aerial, and humanoid robots with minor changes. Autonomous vehicles

are an exciting application in robotics and currently, it is a multi-billion dollar indus-

try that is expected to grow exponentially in the coming years. Autonomous vehicles

usually use a sensor suite consisting of, but not limited to cameras, LiDARs(Light

Detection and Ranging), GPS(Global Positioning System), RADARs(Radio Detec-

tion and Ranging), IMUs(Inertial Measurement Unit), and encoders. New sensors

are coming into existence at a fast pace. The event camera is one such new promis-

ing sensor. These sensors help the system perceive the environment around the car.

The major tasks which consist of understanding the environment are foreground-

background detection, moving object segmentation and tracking, object trajectory

forecasting, optical/scene flow estimation, etc. These tasks indirectly help in devel-

oping robust planning algorithms for obstacle avoidance, motion planning, etc.

We focus on the Motion Segmentation part where the objective is to classify every

point of the LiDAR scan as moving/dynamic or non-moving/static. We use these

binary terms throughout this thesis. There have been some geometric algorithms

to solve this task in the past. However, since the advent of Artificial Intelligence,

many innovative solutions for the motion segmentation task based on deep learning

networks have come to light. Our method is also based on using convolutional neural

networks for performing this task. We propose the use of an hourglass-shaped neural

network which takes in two sequential point clouds and predicts point-wise binary

classification labels for the first point cloud.
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1.1 Motivation

The challenge of Motion Segmentation has been studied in depth for modalities like

cameras and RGB-D sensors. A lot of research papers have been published trying

to solve this challenge using the above sensors. The advantage of LiDAR over

these sensors is that it provides very accurate depth values for discrete points in its

360◦ range. Also, LiDARs can be used during night or in low light areas without

any modification. Despite these advantages, the research in the field of motion

segmentation using LiDAR points clouds is underexplored. This is perhaps because

the LiDAR sensors do not provide a rich variety of information like colors, texture,

etc. One has to find the correlation between the distance values of neighboring points

to arrive at any conclusion. It is extremely imperative to solve this challenge and

our method is one such effort in this direction. Solving this problem will introduce

us to a plethora of new research opportunities. The major areas that will benefit

from a solution to the motion segmentation problem are - building long term static

maps, motion prediction, accurate localization, tracking performance improvement,

obstacle avoidance, etc.

Another major motivation to solve this problem is to make autonomous robots

safer. When the system has better knowledge about the movement of all the traffic

participants in its scene, it will be better prepared to take critical decisions.

Hence we propose a machine learning architecture that takes in two sequential

3D point clouds and gives out moving/non-moving predictions for points in the

first point cloud. We have been careful about keeping this method computationally

economic.
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1.2 Background

Before going deep into the method, it is essential to understand the intricacies

of LiDAR sensor measurements and to give an intuition about how the motion

segmentation problem can be solved using this data.

1.2.1 Understanding LiDAR Data

LiDAR sensors are increasingly becoming common in the area of autonomous robots.

LiDARs are being used on self-driving cars, warehouse robots, aerial robots, security

robots, and they are also expected to arrive in mobile devices soon. This widespread

acceptance of this sensor has become possible due to the falling prices of this sensor

hardware.

LiDAR is an active remote sensor i.e it uses the light energy generated by its sys-

tem and provides measurements from the environment without actually coming in

contact with it. The LiDAR emits laser pulses and measures the time-of-flight(ToF)

of the pulse return. The distance of this particular point from the sensor is then

found by using the relation between the speed of light and the ToF. LiDAR sen-

sors come in a variety of configurations. LiDARs can record 2-dimensional or 3-

dimensional data. The 2D sensors record all their points on a single plane. The 3D

sensors come with multiple light emitters stacked in a single vertical line so that

points across multiple planes can be measured. The most common configurations

of the 3D sensor are 16-line, 32-line, 64-line, and 128-line. The typical horizontal

field of view of the sensor is 360◦ and the vertical field of view ranges from 30◦ to

120◦. A conventional LiDAR used on most autonomous robots is a spinning sensor.

The spinning helps it to map the whole 360◦ environment. The angle of rotation

allows the sensor to return a Cartesian coordinate frame style 3D coordinates. Most
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LiDAR models also return an intensity value along with the point coordinates. The

intensity value indicates the strength of the received light pulse. The returning

strength depends on the reflectivity of the material on which the light strikes. The

intensity values measured by the sensor are relative and largely depend on the wave-

length of the light used, incident angle, and the material on which the light strikes.

The intensity values are being used in object classification and aerial observation.

Every point detected by the LiDAR can be represented as

~p = (x, y, z, i)

where x, y, z are the Cartesian coordinates in the sensor frame of reference and

i is the intensity value. An image of a LiDAR scan taken from the neighborhoods

of Worcester Polytechnic Institute is shown in Figure.1.1

The typical wavelengths of the light emitted from commonly available LiDAR

sensors are 905nm and 1550nm. These wavelengths are chosen as they are in the

invisible range and are relatively safe to human eyes.

Figure 1.1: A LiDAR scan taken from WPI neighborhood [27]
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1.2.2 Understanding Motion Segmentation

The task of motion segmentation is simply to distinguish moving points from non-

moving points. Moving points belong to objects which are moving in the environ-

ment like moving trucks, moving pedestrians, etc. Non-moving points are the ones

that lie on static objects such as roads, walls, parked cars, etc. A few of the benefits

of solving this problem are -

• Improving localization estimates: If there are multiple moving points be-

tween two LiDAR scans, the traditional geometric algorithms offer diminishing

accuracy in registering two point clouds. Performing motion segmentation can

help in filtering out the moving points and execute the registration using the

static points. Prior work has shown that this helps in improving the localiza-

tion accuracy.

• Long term mapping: Self-driving cars update maps perpetually. The mo-

tion segmentation estimates will help the system understand which parts of

the scene are dynamic and it will avoid adding these parts in the static maps.

• Obstacle avoidance: A fast motion segmentation algorithm will help the car

detect accurate positions of dynamic obstacles in real-time. Knowing these

values will help in planning the motion of the car so as to avoid collisions with

these obstacles.

• Motion prediction: The predictions from the motion segmentation pipeline

can be processed to understand the direction of movement of a point and

predict its future.
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1.3 Problem Formulation

The problem tackled in this thesis is to predict moving/non-moving labels for every

certain point in the point cloud. The accuracy of LiDAR measurements is inversely

proportional to the distance from the sensor. Hence we deem a point to be certain

when its distance is within a threshold.

The approach we propose for doing motion segmentation is influenced by the

approach introduced by [15] for doing scene flow estimation. The scene flow esti-

mation is a regression task whereas motion segmentation is a classification task. So

we convert the network proposed in [15] to a binary classifier and train it on two

datasets using a variety of loss functions. The LiDAR scans are represented in a

modern representation called a permutohedral lattice [1]. The points from the un-

structured point cloud are first interpolated on this lattice. This lattice comprises

of many simplices. The interpolations are essential as convolutions can be easily

performed on discrete lattice vertices than on continuous points. The network has

an hour-glass structure with two encoding branches that take in two temporally

different point clouds. The network consists of majorly three types of convolutional

layers - DownBCL, UpBCL, and CorrBCL. These layers are inspired by the Bilateral

Convolutional Layers [18, 20]. The network first performs sparse convolutions on

the lattices of both point clouds separately. These results are then interpolated to a

coarser lattice and this process continues for a few DownBCL layers. The CorrBCL

layers perform convolutions on combined data from the two input branches. These

layers appear occasionally in between DownBCL layers. The UpBCL layers interpo-

late the points from a coarse to a finer lattice and again perform sparse convolutions.

This process continues for a few UpBCL layers.

The network is trained on two datasets -
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• FlyingThings3D [32]: This dataset consists of stereo images with random

objects moving in random trajectories. The camera also moves along random

trajectories. The motion segmentation labels for these images are obtained

from [42]. Point clouds are generated from the epipolar geometry of the

stereo images and the available labels are used as the ground truth.

• KITTI [14] with simulated motion: The KITTI dataset provides LiDAR

scans for all its sequences. We simulate motion by adding noise to a few

clustered points in these point clouds. The original LiDAR point clouds are

found to be significantly different from reconstructed point clouds. Successful

training on the original point clouds with simulated motion offers a lot of

challenges and benefits from using loss functions like Soft F1 loss [28], Focal

loss [23], and Binary Cross Entropy loss.

1.4 Contributions

• Formulated a novel motion segmentation learning algorithm to detect moving

points using point cloud data.

• Experimented with two approaches to train the network - training on recon-

structed point clouds and training on original LiDAR data.

• Trained and evaluated the network on two datasets - FlyingThings3D and

KITTI.

• Performed a variety of experiments and obtained remarkable performance of

the network by using loss functions like Soft F1 loss, Binary Cross Entropy

loss, and Focal loss.
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1.5 Outline Of This Thesis

This thesis is segmented into the following chapters -

• chapter 2 provides a detailed literature review about the research done on

the topic of motion segmentation using different sensor modalities.

• chapter 3 discusses the details of the methodology used for doing motion

segmentation.

• chapter 4 presents all the performed experiments and their results.

• chapter 5 concludes this work with highlights of all the achievements.

• chapter 6 discusses the future work.
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Chapter 2

Related Work

This section discusses the literature reviewed for approaching the problem of motion

segmentation. There has been extensive research in the field of motion segmenta-

tion using modalities like normal and RGB-D cameras. However, this field is still

underexplored with respect to the use of LiDAR or 3D point cloud data. This can

be attributed to the fact that cameras provide rich information about color and

texture and it has a high density of pixels. Whereas, LiDAR data only consists

of very accurate depth values and relatively sparse points. The journey behind

choosing the approach we have demonstrated in this thesis is influenced by research

articles listed in this section. This work has been influenced by motion segmenta-

tion approaches using cameras, optical flow, and scene flow estimation approaches

and geometric approaches for motion segmentation. Section 2.1 introduces some

articles which demonstrate the need for motion segmentation research. Section 2.2

introduces some approaches used to execute this task using different types of cam-

eras. The Section 2.3 gives information about how scene flow estimation and current

motion segmentation methods operate for point cloud data. Lastly, in Section 2.4,

information about a few datasets which have catalyzed the research in this field has
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been given.

2.1 Why is Motion Information Important?

Semantic Segmentation [5,6,30,47] is the process of classifying all the pixels(in im-

ages) or points(in LiDAR scans) in their respective classes. In many approaches,

semantic segmentation is used to extract information about moving objects. A ge-

ometric motion consistency check algorithm and semantic segmentation are used to

filter moving objects in [50] to improve localization estimates of a SLAM system.

The moving consistency check algorithm finds the distance of the matched feature

point to its epipolar line in the second image and compares it to a threshold to

classify the point as dynamic or static. The object which this feature point lies on is

totally classified as dynamic using the information from the semantic segmentation

task. A standalone semantic segmentation network is used in [2] to improve the lo-

calization estimates in a visual odometry pipeline. Another geometric approach [51]

proposes a grid-based motion clustering method to improve pose estimates in a

SLAM system. It works on the property of motion coherence constraints which

delineates that nearby pixels have similar motion. [7] uses semantic segmentation

for LiDAR point clouds to aid in mapping and localization. It generates consistent

maps of the environment and compares the current incoming scan from the LiDAR

with this map to check semantic consistency. If this consistency is not maintained

for some points, it is concluded that those points belong to a moving object. This

paper clearly indicates how important it is to detect and filter moving objects to

improve the mapping and localization accuracy. [22] is an approach to estimate the

LiDAR odometry using an end-to-end learning approach. The network used in this

approach has a pre-trained semantic segmentation branch which again gets trained
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with the whole network to predict the odometry. The semantic segmentation branch

gets trained in such a way so as to predict masks that have learned to compensate for

the dynamic objects. This branch helps in selecting points that belong to the static

environment. It is evident from this network how important it is to detect motion

in SLAM systems. [9] is another research where the author focuses on building

maps in the SLAM process. Object detection techniques and semantic information

are being used to enter objects into maps. Similarly, [16] summarizes the need for

distinguishing static parts from the dynamic parts of the environment. A dynamic

occupancy mapping method using two LiDARs is proposed. A phase-congruency

based method is employed to do motion segmentation and update the occupancy

grids. To generate long-term consistent maps, the moving objects should ideally

not be entered into the map. If a motion segmentation pipeline is used, it will

help in understanding what parts of the environment are dynamic and these parts

need not be added into the map. It is to be noted that semantic segmentation is a

computationally expensive task as the network has to predict point-wise labels for

multiple classes. Also, many geometric methods to estimate motion are threshold-

based methods. This constrains the ability of these methods to generalize well to

different kinds and magnitudes of motion. Hence a standalone motion segmentation

algorithm is necessary which overcomes all these challenges.

Visual place recognition is another potential task that could benefit from an ac-

curate motion segmentation pipeline. A detailed survey of the current place recog-

nition methods is given in [26]. It is clearly stated that changing appearances are

a significant factor in place recognition failures in these methods. Bag-of-Words ap-

proaches [13, 37] have gained significant popularity due to their robustness. These

methods generate a database of visual words to describe each image. Place recogni-

tion is performed by comparing these visual words for each pair of images and not
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the pixel-wise data. This makes the process computationally efficient while giving

good accuracy. Motion information can certainly find a place in these modules to

help segregate the visual words generated for static and moving obstacles of the

same semantic class.

The task of obstacle detection and avoidance is primary to all autonomous robots.

Static obstacles are relatively easy to detect with sensors like LiDAR. Dynamic

obstacles come with a challenge that they need to be tracked in every frame until

their threat reduces. This gives rise to two challenging research areas - moving

object detection and tracking [8, 46] and motion prediction [21, 36]. The motion

segmentation task is class agnostic and has the potential to aid in improving the

performance of these algorithms. Motion segmentation classifies the points into

static and dynamic classes. The dynamic points can be clustered to isolate individual

objects and they can be tracked using modern tracking techniques.

All the above use cases of motion segmentation were the motivation to take up

this daunting task. Improvements in this field will certainly open up possibilities of

improvement in the above use cases and this thesis is an effort in that direction.

2.2 Camera Data for Segmentation

The preference of methods to understand the motion of the most primitive element

of the scene largely depends on the sensor used. Considerable research has been

performed to extract motion information using cameras and RGB-D sensors. Most

early methods were geometry focused, but extensive research in deep learning has led

to obtaining groundbreaking results. The methods used in camera-based sensors are

an inspiration for motion segmentation using LiDAR point clouds. Many algorithms

will not be directly transferable, but many minuscule subtleties of these methods
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have influenced our work in the 3D point cloud domain.

An incredible geometric method is used in [34] to segment moving objects and

replace them with their background for generating static maps using an RGB-D

sensor. A Truncated Signed Distance Function is used for scan registration and for

generating a descriptor for each point in a voxelized space. An objective function

is formed to compare the descriptors of all the points. An increase in the distance

of these descriptors indicates movement. These points are replaced by previously

seen values at that position. A limitation of this method from its application in the

SLAM perspective is that scan registration has to be performed twice for accurate

localization. RGB-D camera is also used in [38] to reconstruct the background

structure with a lesser emphasis on the dynamic objects to build an accurate SLAM

system. It devises a mapping system that stores only temporally consistent parts of

the environment. This approach makes great use of the depth values provided by

the RGB-D camera. K-means clustering is used to cluster 3D points of the scene

into rigid bodies. Motion is estimated for every cluster rather than for each pixel to

reduce the computation drastically. An artificial image pair is generated by placing

a virtual camera at the previous camera pose in the static map generated until

now. This artificial image pair is compared with the current incoming image pair

to perform motion segmentation. Optical flow is used to aid motion segmentation

in [40]. This approach first computes the ego-motion of the camera and then finds

regions in the image that are inconsistent with the estimated motion. Optical flow

is then computed only for these inconsistent regions and this information is fused

with the camera motion-based flow to obtain the motion segmentation estimates. In

view of geometric methods, [49] proposes a very good approach of detecting moving

pixels in images. The strengths and weaknesses of the fundamental and homography

matrices as models for motion segmentation are discussed. The fusion of models has
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also been experimented with in this work. The research also introduces a dataset

KT3DMoSeg for encouraging research in the field of motion segmentation.

In the context of motion segmentation just for images, [10] is an extremely inter-

esting approach. This method undertakes the problem using an appearance network

and a motion network. The appearance network uses MaskRCNN to find an object-

ness score for each pixel, and the motion stream calculates the optical flow for each

pixel. Finally, the results are combined in a Region proposal Network to obtain

masks for just the pixels which are moving. This architecture provides excellent

results compared to previously existing baselines in camera-based methods. Optical

flow is a predominantly used technique to infer any motion cues in most motion

segmentation networks in cameras. [17] also uses an appearance stream along with

a motion stream to train an end-to-end network for foreground object detection.

The appearance stream consists of an object classification network which basically

predicts if a pixel is an object or not. The motion stream uses the optical flow infor-

mation and a fusion model is used to fuse outputs of the above two streams. Motion

segmentation challenge faces a problem of availability of large scale datasets, espe-

cially for autonomous vehicles. The KITTI object detection dataset was extended

by [39] by annotating the static and moving vehicles. Even this approach uses two

streams - appearance stream and motion stream. The appearance stream uses object

detection methods to find object boundaries. Two inputs to the motion stream are

compared - optical flow and temporal image frames. A major learning-based method

to achieve motion segmentation is [42]. This approach trains a convolutional neural

network with ground truth information about optical flow and motion segmentation

in camera images. A synthetic dataset [32] is used to train this network. This is

the same dataset that has been used in this thesis to perform motion segmentation

for 3D points. The motion segmentation labels for this 3D segmentation task are
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obtained from the project website of [42]. This dataset is also used in [48] to tackle

a problem of object discovery in videos. This problem is redefined as a foreground

motion clustering problem that is approached by performing motion segmentation.

The method wants to learn pixel trajectories. Since this is a temporal data, a re-

current neural network is used to learn the feature embeddings. Clustering is then

done to segment unseen objects in the videos.

3D reconstruction has also been a major research area in recent times. 3D re-

construction has gained popularity due to the task of building maps for autonomous

vehicles. When most papers emphasize on generating long-term static maps, [29]

emphasizes more on also reconstructing dynamic parts of the environment. The

approach relies on using stereo image pairs for 2D object detection, 3D object de-

tection, depth, and odometry estimation. All this data is used to segregate poten-

tially dynamic and static parts of the environment. However, the approach does

not differentiate between currently moving and static objects. It focuses more on

the foreground and background segregation which is essential for map building but

tends to be inconvenient for localization and motion planning tasks.

The datasets and approaches discussed in the above camera-based motion seg-

mentation review have helped us immensely in formulating and solving the problem

for LiDAR point clouds.

2.3 Point Cloud Data for Segmentation

Doing motion segmentation by only using 3D point clouds is a daunting task because

it only offers 3D distances of the points from the sensor and the distance correlations

are to be used to estimate motion cues. No color or texture information can be

used readily. These challenges make this task a very interesting one. Many papers
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mentioned below tackled the scene flow estimation problem for LiDAR point clouds.

Scene flow in 3D point clouds is analogous to optical flow in images. The scene flow

estimation problem also focuses on extracting motion cues from the environment.

Hence the challenge of motion segmentation can be tackled by employing methods

used for scene flow estimation.

An approach a bit similar to [10] is employed for LiDAR data in [12]. The

whole network consists of two branches where one branch segments two sequential

point clouds semantically and the second branch independently finds the scene flow.

Scene flow for LiDAR data is analogous to optical flow in images. It gives an

estimate of the 3D location of where every point will be in the next LiDAR scan.

The two results are combined using a Bayes filter. A major advantage here is that

the 360◦ field of view is used. The comparison of the final results is done with

self conducted experiments by the author. LiDAR data is absolutely necessary in

low light areas as the autonomous car cannot solely rely on camera data because

of its low illumination. The disadvantage of LiDAR is that it provides a sparse

data as compared to the cameras. [45] tries to solve this problem by predicting

dense flow values for LiDAR data using camera images while training. Camera

images are not required during inference. Since camera information is used while

training, only the front view of the LiDAR sensor agreeing with the camera field

of view is used. The input to the network is two sequential LiDAR scans and the

ground truth as the camera optical flow map. While this method works on the

sparse to dense mapping of scene flow, [35] focuses on using cameras along with the

LiDAR data to detect moving objects in low light. The authors introduce a new

dataset called ”Dark KITTI” to simulate low light conditions. The authors also

provide motion segmentation labels for numerous KITTI images. Multiple fusion

architectures are proposed to perform motion segmentation using LIDAR depth,
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scene flow, RGB images, and optical flow values as inputs. PointFlowNet [3] is a

multi-tasking architecture that predicts scene flow, detects objects, finds motions

of objects, and the ego vehicle - all in one network. This method voxelized the

whole environment. Each voxel has its feature vector and every object’s motion

is given by the median of the rotation and translation of all it’s scene flows. Due

to its multi-tasking nature, this method is computationally expensive and may not

perform in real-time. Another such multi-tasking network is [25]. This network

estimates semantic segmentation, scene flow estimation, and object classification

together. Multi-Layer Perceptrons are used extensively for feature generation from

an unstructured point cloud. An interesting idea that this network presents is that

the scene flow analysis, unlike any previous method, is not processed just from two

subsequent point clouds. Instead, a sequence of point clouds is used collectively to

predict the scene flow. This network also uses the FlyingThings3D [32] dataset for

initial training and then the KITTI scene flow dataset for fine-tuning.

A very popular method for scene flow estimation is provided by [24]. This

method proposes a network composed of three functional modules - set-conv lay-

ers, flow embedding layer, and set-upconv layers. The set-conv layers are meant

for the network to learn deep point cloud features. The flow embedding layer is

meant to learn geometric relations between two point clouds to infer motion. The

set-upconv layers upsample and propagate point features in a learnable way. [44]

is an interesting research in the field of scene flow analysis. The whole environ-

ment is voxelized and background is subtracted to keep the focus on objects in the

foreground. A two-step scene flow estimation is done. The first step involves using

the expectation-maximization algorithm to estimate scene flow and the second step

refines this flow using an Extended Kalman Filter.

There are a few geometric methods to do motion segmentation for point clouds
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as well. A geometric approach that performed very well for motion detection and

tracking [11] used the SHOT descriptors. SHOT descriptors are matched for each

LiDAR point and the points having descriptor distance less than a threshold are

deemed static. Euclidean clustering is done to find dynamic points having similar

motion and combine these points into one bounding box. A small limitation of this

method is that the SHOT descriptors can be unreliable in noisy and ambiguous

situations. [19] is also a geometric method which uses the properties of LiDAR data

like beam divergence and multiple echos to understand if objects around the car

are moving or not. This method classifies the motion into three classes - moving,

non-moving and unknown. Points are placed in the ”unknown” class when there is

insufficient information available for prediction. This method uses probabilistic and

evidential algorithms to perform motion segmentation. It is known that the LiDAR

beam undergoes an increase in the diameter with distance from the point of firing the

beam. A probabilistic approach for this problem checks inputs from two sequential

point clouds. The beam is classified into two parts - a red part which includes the

region around the original point from the first point cloud and a green part which

is the path of the beam from the LiDAR to the red region. The probability of the

corresponding point from the second point cloud to be static is high if this point

lies in the red region. The probability of the point in the second point cloud to be

dynamic will be high if it lies in the green region. If the point lies outside the beam,

then evidential algorithms come into play.

The approach which has influenced the work in this thesis the most is [15]. This

approach proposes a scene flow estimation network which takes in two sequential

point clouds and predicts the scene flow for every point in the first point cloud. This

method uses a very efficient representation of the point clouds called a permutohedral

lattice. This lattice represents any unstructured point cloud with ease. This method
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performs convolutions on these lattices using a set of Bilateral Convolutional Layers.

The network provided by this method is a regression network which predicts scene

flow vectors. We adopt this network and convert it to do a binary classification task

for motion segmentation.

2.4 Datasets

There are plenty of datasets available for motion segmentation using camera im-

ages [32, 33, 41, 43]. [31] is a great dataset for event-cameras where the camera is

moving as well as the objects in the scene. However, there is a dearth of datasets

for performing motion segmentation for point cloud data. Since the autonomous

vehicles will have to detect moving points from the observed point cloud while un-

dergoing motion, it is important to have a dataset with ground truth labels for

moving objects detected from a moving sensor.

Following are the datasets that were surveyed for doing motion segmentation in

point cloud data -

• FlyingThings3D [32]: This is a synthetic dataset of stereo images. This

dataset has random objects moving around in random trajectories and their

motion is recorded using a moving camera. The intrinsic and extrinsic param-

eters of the camera setup are available and this helps in reconstructing a 3D

point cloud from the stereo images. The motion segmentation labels for this

dataset are obtained from [42]. This dataset is one of the datasets used for

training our model.

• Semantic KITTI labels [4]: Results obtained on synthetic datasets are

not easily transferable to the original sensor dataset. This datasets provides

point-wise motion segmentation labels for KITTI Velodyne laser data [14].
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The major limitation of this dataset is that there are very few moving points

in this dataset. The number of labeled moving points is less than 1% in the

whole dataset. There is not enough positive data available for training.

• Velodyne KITTI dataset [14] : We explore augmentation opportunities for

the KITTI dataset. Since very few moving points are available in this dataset,

we add noise to certain points in the point cloud to simulate motion. Since

it is important to have a dataset with a large number of training samples, we

add generalized noise to the KITTI dataset and train and test on this modified

dataset.
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Chapter 3

Methodology

3.1 System Overview

Deep learning is used to tackle the motion segmentation challenge in this work. Re-

cent advances in deep learning architectures have helped to achieve state-of-the-art

results in many tasks for autonomous vehicles. Improvements in deep learning archi-

tectures have often led to extraordinary GPU requirements. While it is important

to achieve good results using deep learning, it is also important to have acceptable

inference times. If the algorithm cannot perform in real-time, more research has to

go into improving this latency. In this work, we have paid attention to both these

aspects. We stress on getting good results in acceptable run times. In this regard,

a major choice we had to make was the representation of LiDAR scans. Section

3.2 gives details about how the permutohedral lattice is an efficient representation

as compared to others. LiDAR point clouds are interpolated into a permutohedral

lattice and the model runs convolutions on the discrete vertices of this lattice. A

variety of loss functions are tried out - Binary Cross Entropy(BCE) loss, Focal loss,

and Soft F1 loss. The peculiarities of all the loss functions used in this work are
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mentioned in Section 3.4.

In deep learning, pre-processing the dataset is perhaps a more critical step than

performing convolutions. It is important to have a dataset that generalizes well for

the task. Hence section 3.5 and section 3.6 provide detailed information about how

the two datasets are processed for training. It is also important to choose a metric

for an informative evaluation of the performance of the model. We have chosen the

F1 score to evaluate our motion segmentation approach. It is a combination of the

precision and recall metrics of the network predictions and this makes us believe it

is a strong evaluation metric. We train our model on a GeForce RTX2080 11GB

GPU. It is to be noted that the training will have different memory requirements

for different training samples. So it is common to see GPU usage fluctuations while

training. This behavior can be attributed to the fact that each lattice generated for

a point cloud will be different in shape and will have different memory requirements

to run convolutions on it. Figure 3.1 gives an overview of the major processes

discussed in this chapter and the system flow.

Figure 3.1: Major processes for motion segmentation and system flow
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3.2 Point Cloud Representation

Numerous popular representations of point cloud data exist. Some of them are based

on the regular grid and a spherical image. Many point cloud processing networks

can only operate on a fixed number of input points. Unlike these networks, the

permutohedral lattice based network as introduced in [15] is not constrained by the

number of input points and is very flexible with respect to the size of the point cloud.

Unlike many conventional point cloud processing methods, the permutohedral lattice

does not process points in clusters. It also does not need prior filtering approaches

to reduce the point cloud size. Many applications filter the input point cloud by

using filters like Approximate Voxel Filter to reduce the size of the point cloud, in

turn reducing the computation. Permutohedral lattices can be used to represent the

point cloud as a whole.

Upon introduction, permutohedral lattices were predominantly used for high

dimensional Gaussian filtering [1, 20]. Bilateral filters and non-local means were

the major filters tested. [20] discussed a beautiful idea of the use of permutohedral

lattice as a representation of independent image features like color values. These

lattices can be used to represent a multi-dimensional feature space i.e its vertices

can be a representation of the 3D location of the point along with the point’s inten-

sity value. In fact, when compared [1] with Gaussian K-D tree and bilateral grid,

permutohedral lattice proved to be the fastest method for dimensionalities from 5

to 20, subject to the filter sizes. Because of the efficiency of this lattice in handling

high dimensions easily, it becomes an attractive choice for multi-dimensional convo-

lutions. Permutohedral lattices are also very accommodating towards sparse input

data. The LiDAR data is inherently sparse. The data structure generously allows a

cost-effective representation of sparse data. In the network layers, only the occupied
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vertices are chosen to scale down the lattices in the downsampling process.

Let us get started with understanding the permutohedral lattice data structure.

A permutohedral lattice in the d-dimensional space is actually the projection of a

scaled regular grid from the (d+1) dimension. The (d+1)Zd+1 scaled regular grid is

a grid in integer coordinate frame of d+1 dimensions. The vectors in this space need

d + 1 independent variables for their representation. This regular grid is projected

along its orthogonal vector ~1 = [1, 1, ...1], on the hyperplane which is defined by the

equation 3.1.

~x · ~1 = 0 (3.1)

This projection is the permutohedral lattice. The ~x is a vector on the hyperplane.

Since ~1 is a normal to this plane, the dot product of these two vectors is always zero.

This hyperplane is a subspace of Rd+1. This means that the hyperplane contains the

null space of Rd+1 and it follows the properties of closure under addition and closure

under scalar multiplication. The sum of any two vectors chosen from the hyperplane

should also lie on the hyperplane. Also, when a vector chosen from the hyperplane

is multiplied with a scalar from Rd+1, the result should lie on the hyperplane. This

hyperplane is embedded in the Rd+1 space. The lattice is spanned by the projections

of the standard basis of the (d+ 1)Zd+1 space onto the hyperplane.

The permutohedral lattice consists of uniform simplices with integer coordinates

for the vertices. All the vertices of this lattice have a consistent remainder when

divided by d + 1. This helps to shed light on another major property of the per-

mutohedral lattice - the coordinates of the lattice are such that the sum of all these

coordinates is always zero. A short example of a permutohedral lattice as explained

in [1] is given using Figure 3.2.

It can be seen in Figure 3.2 that a 2-dimensional permutohedral lattice is em-
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Figure 3.2: A 2-dimensional permutohedral lattice [1]

bedded in the 3-dimensional space. This hyperplane passes through the origin of

the 3-dimensional space. When we get the LiDAR point cloud in this 3-dimensional

space, which is normally the case, we can easily project every point onto this lattice

and find its enclosing simplex. This point is then interpolated to the vertices of

the simplex using barycentric interpolations. The interpolations will be explained

in detail in the section 3.3.

The major advantage of using the permutohedral lattice is its time complexity

and space complexity for filtering operations. The vertices of the enclosing simplex

of every point and its barycentric weights can be found in O(d2) time. For n points,

the time complexity becomes O(nd2). The space complexity for performing filtering

operations on the lattice is O(nd). Both the time complexity and space complexity

are relatively less for high d value when compared with other representations and

this makes the lattice more attractive.
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3.3 Convolutional Neural Network

This section gives critical information about the network we used for training and

evaluating the motion segmentation pipeline. This network is derived from the

network proposed in [15]. [15] proposes two networks for scene flow estimation - a

deep network and a shallow network. We modify the shallow network and present

competitive results for the motion segmentation task.

Motion segmentation is a task that benefits from temporal information. Hence

we input a sequence of two point clouds as input to the network. The network is built

in such a way that the output is the point-wise predictions for the points from the

first point cloud. The predictions are for binary labels- a point can be moving or non-

moving. Since we deal with point cloud data which is 3-dimensional, the network

and convolutions are different from the trivial image-based convolutions. Bilateral

Convolutional Layers [18,20] are the primitives of the network. The network follows

a Splat-Conv-Slice methodology using these layers. The following points give a basic

understanding of this three-step methodology.

• Splat: The Splat step refers to the interpolation of the incoming points on

the vertices of the permutohedral lattice. It is important to interpolate these

points in the continuous space onto a discrete space so that we can easily run

convolutions on this lattice. This step can be visualized in Figure 3.3a.

• Conv: This is the convolution step. In this step, a sparse convolution is

performed on the lattice points which are occupied. A hash map is maintained

to record the occupied positions of the sparse lattice. These occupied vertices

are then included in the scaled-down lattice in the encoding layers.

• Slice: This step is used to interpolate the signals from the lattice vertices back

27



(a) Splatting step (b) Slicing step

Figure 3.3: In (a), the red input point interpolates to the yellow vertices of the
enclosing simplex and in (b), interpolations are performed to get back the original
input point

to their original positions as in the input point cloud. This can be visualized

in Figure 3.3b.

The Splat, Conv, and Slice steps together can be easily visualized in Figure 3.4.

The trivial method is to compute all the steps of the Splat-Conv-Slice methodology

in each BCL layer. But a more efficient way is to device new layers which do only

part of the computation. The proposed network as implemented by [15] uses such

layers which are named - DownBCL and UpBCL. The DownBCL layers are for

downsampling the points and the UpBCL layers are for upsampling of the points.

The specialty of these layers is that the DownBCL layers only perform Splat and

Conv operations whereas the UpBCL layers only perform Conv and Slice operations.

The DownBCL layers are stacked and the occupied vertices in the lattice become the

input for the scaled-down lattice in the next layer. This process downsamples the

points and eventually helps in building a fine-to-coarse feature map. The UpBCL

layers use skip connections from the DownBCL layers to upsample the points and

finally interpolate them back to their original position as per the first point cloud.

This part-wise computation in separate layers helps in reducing the computation
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time and provides an opportunity to explore a much deeper network.

Figure 3.4: Splat-Conv-Slice steps for BCL layers using a permutohedral lattice [15]

The interpolations in the Splat and Slice step are done using Barycentric interpo-

lations. This method interpolates a continuous point to the vertices of its enclosing

simplex using weights and vice versa. These interpolation weights are the same for

the splatting and slicing operation for a point. As explained in [15], if i is a point

from the point cloud which needs to be interpolated, let D(i) be the vertices of the

simplex in which this point is projected in the permutohedral lattice. Also, for every

lattice vertex j, let V (j) be the set of input points that lie in the simplex with this

point as the vertex. If bij is the barycentric weight for splatting the input point to

the lattice vertex j, then the BCL operations for the point i can be represented as

given in equation 3.2.

v′i =
∑
j∈D(i)

bij · g(
∑
k∈V (j)

bkj · vk) (3.2)

In the above equation, v′i is the filtered signal value(position vector in the lattice

space) and g(·) represents the convolution. The weights for barycentric interpola-

tions are usually calculated using simple geometry. The idea of barycentric interpo-

lations can be understood as follows. If we consider a simplex as shown in Figure

3.5, a is the weight to interpolate the point to vertex A, b is the weight for inter-

polating the point to the vertex B and c is the weight to interpolate it to C. The
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weights are usually calculated using the ratio of areas of sub-simplex to the area of

the whole simplex.

Figure 3.5: Barycentric interpolation

The weights a, b, and c can be calculated as given in the following equations.

a = ar(∆OBC)/ar(∆ABC) (3.3)

b = ar(∆AOC)/ar(∆ABC) (3.4)

c = ar(∆AOB)/ar(∆ABC) (3.5)

Since the input point clouds are unstructured and sparse, it is helpful to nor-

malize the inputs to the lattice. A density normalization scheme based on the

barycentric weights is employed in the network while splatting. For a vertex of the

lattice, the normalization is done by dividing by the sum of weights for points inter-

polating to that vertex. The normalized signal uj will look as shown in the equation
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3.6.

uj =

∑
k∈V (j) bkj · vk∑
k∈V (j) bkj

(3.6)

Another important layer in this network is the CorrBCL layer. This layer is

perhaps the most crucial and unique layer of the network. The CorrBCL layer takes

full advantage of the flexibility of the permutohedral lattice to incorporate point

clouds of different sizes. The CorrBCL uses the barycentric interpolation scheme

to use just one permutohedral lattice to represent both the incoming point clouds.

The operations in the CorrBCL layer are executed using Patch correlation and

Displacement filtering.

Since we are dealing with two point clouds that differ spatially and temporally, it

is important to fuse information from both of them efficiently. The Patch correlation

method proves to be a great method in this regard. Considering a point from each

point cloud projected onto the common lattice, their corresponding neighbors are

found and concatenated. In simple terms, the patches for both points are concate-

nated. A convolution operation is run on such concatenations. Furthermore, points

in the first point cloud are offset to local neighborhood points and matched with

the signals from the second point cloud present there. An aggregating convolution

is used to fuse this information. This process is named Displacement filtering.

The network architecture is shown in Figure 3.6. The architecture uses three

CorrBCL layers. The output from each CorrBCL layer is concatenated with the

signals from the first point cloud to input into the next CorrBCL layer. The inputs

from the second point cloud are handled individually. A leaky ReLU activation is

used throughout the model except for the last two layers. The last layer is activated

using the sigmoid function to receive probabilities of predictions. While training, we

do not use the whole point cloud to build the lattice. We randomly choose points
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from the first and second point cloud and project them onto the lattice. We use the

Adam optimizer for Stochastic Gradient Descent.

3.4 Loss Functions

Supervised learning algorithms require a loss function for finding the error between

the prediction and the ground truth for every training sample. In simple words,

the loss function generates a heavy penalty if the prediction is very different as

compared to the ground truth. A large error indicates that the network has not

yet learned to understand the feature embeddings of the dataset. The error ideally

should reduce as the training progresses. There are many loss functions to choose

from and the choice of the loss function depends on a lot of parameters. The choice

of the loss will depend on factors like the task at hand(regression or classification),

the class imbalance in the dataset, the number of outliers in the dataset, the type

of learning algorithm chosen, etc. There is no single loss function that suits all

purposes. The same loss function may not even work well for the same operation

on different datasets. Here, we discuss three major loss functions which helped us

in training for motion segmentation. Since ours is a binary classification task, the

loss functions which we relied upon were binary cross entropy(BCE) loss, focal loss,

and soft F1 loss. We chose to experiment on these loss functions because these loss

functions are popular for binary classification. Also, the attractive feature of the

focal loss is that it offers hyperparameters that can be tuned. The soft F1 loss tries

to optimize the F1 score and that is a great advantage.
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Figure 3.6: Network architecture for motion segmentation. The values in brackets
are the number of output channels of the layers. Two values in the CorrBCL layers
correspond to Patch correlation and Displacement filtering.
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3.4.1 Binary Cross Entropy Loss

In the motion segmentation task, we want to predict if a point is moving or not.

Hence we just have two labels in the ground truth - moving, non-moving. The

sigmoid activation in the last layer of the network gives out the result in the range of

0 to 1. This output is the probability of a point to be moving. A probability tending

to 1 indicates that the network is confident that the point is moving. Whereas if

the probability tends to 0, the network is confident that the point is non-moving.

The binary cross entropy loss is a log loss that helps in calculating the confidence of

the network in predicting the motion state of every training sample. If the ground

truth and the prediction deviate by a large value, then the loss function should give

a large error and vice versa. The loss can be calculated as shown in equation 3.7.

Ebceloss =
−1

N

N∑
i=1

yi · log(p(yi)) + (1− yi) · log(1− p(yi)) (3.7)

In the equation 3.7, yi is the ground truth target value and p(yi) is the probability

predicted by the network. It can be easily noticed that when the target value is 1 i.e

the point is actually moving, BCE loss adds the log(p(yi)) term to the overall loss.

When the target value is 0 (non-moving point), the function adds log(1− p(yi)) to

the loss. So the loss of every training sample would be

Ebcelossi =

 log(p(yi)) , yi = 1

log(1− p(yi)) , yi = 0
(3.8)

The loss is averaged over all the points from the point cloud. The function

calculates the negative log loss because the log provides negative values when the

inputs are in the range 0 to 1. Also, another reason for choosing log values in this

loss function is that the loss increases exponentially when the predictions are near

34



0 and the target value is 1. Since the objective of the network is to reduce the loss,

this heavy loss will motivate the network to provide better predictions. This can

visually be understood from the log loss graph in Figure 3.7.

Figure 3.7: Log loss graph when the ground truth is 1

3.4.2 Focal Loss

Focal loss is a popular loss function used particularly with datasets that might have

unbalanced class sizes. This loss was introduced in [23] to perform dense object

detection. This loss builds upon the BCE loss. This loss gives more emphasis on the

hard training samples. It heavily penalizes the samples which are hard to classify(the

under-sampled class) than the easily classified training samples(the dominant class).

For example, if the network is supposed to do a foreground-background classification,

and if the background class occupies most of the scene, then background class will

dominate the training samples and it will be easy for the network to predict this

class correctly. However, it is important to classify the foreground with as much

precision as the background and the traditional BCE loss will not be a great help
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in this case. [23] used the focal loss for dense object detection. The objective of this

paper is to segregate the objects from the background. Since there is a serious class

imbalance problem, the BCE loss is reshaped to include a weighting factor. This

weighting factor is listed in equation 3.9

w = (1− pt)γ (3.9)

The pt variable in the equation 3.9 is defined as

pt = e−Ebceloss (3.10)

The focal loss in its raw form is modeled as

Efocal = w ∗ Ebceloss (3.11)

This loss is meant to give more importance to training samples which are hard

to classify. In our case, we are more worried about classifying the moving points

with certainty. If the moving points have the label 1 and the non-moving points

as 0, then the weight will have a large value when the moving point is wrongly

classified. The weight will be a relatively small value when a non-moving point

has been classified as a moving point. This means the loss increases by a large

amount when the moving points are classified wrong. Focal loss differentiates easily

between the hard and easy samples. Another factor α is usually added to balance

the two classes in terms of their quantity. The value of α can be set based on the

ratio of imbalance between the two classes or this parameter can be tuned using

cross-validation. The focal loss then becomes-
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Efocal = α ∗ w ∗ Ebceloss (3.12)

It can be visualized from Figure 3.8 that focal loss as given in equation 3.12 is

the same as the BCE loss when γ is 0. As γ increases, the value of the focal loss

reduces. It can be seen that the focal loss is very small compared to the BCE loss

when predictions are closer to 1. This is due to the weighting factor w.

Figure 3.8: Focal loss for different values of γ when the ground truth is 1

The α and γ are hyperparameters that need to be tuned. [23] has done a study

of different combinations of these values and found α = 0.25 and γ = 2 to give

the best results for their task. Due to time constraints, we have used these values

for our training. This does not mean that these values are best suited to our task.

Further analysis is required to choose the best values.

3.4.3 Soft F1 Loss

F1 score is a metric that is commonly used for evaluating the performance of the

network. We use this score as an evaluation metric. Section 3.7 gives a detailed
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overview of the F1 metric and the procedure to calculate this score. To summarize,

F1 score is the harmonic mean of the precision and recall measures of the model.

The Precision value for a class is the percentage of samples predicted correctly in

the total predictions for that class. Meanwhile, recall is the percentage of samples

predicted correctly in the total number of samples present in the class(ground truth).

Both these measures are equally important to understand the fitness of the model.

Hence we use the F1 score which is a combination of both these metrics.

However, it is not trivial to use F1 score into the loss function and the reason

for that is the F1 score is not differentiable. Since it is not differentiable, we cannot

backpropagate it and update the weights of the network after each batch. A method

to make this metric differentiable is introduced in [28]. This article proposes direct

embedding of the modified F1 score into the loss function. In most classifier net-

works, a threshold is set to classify a predicted probability from the network into a

class. In all the loss functions we have used, the threshold is set at 0.5. If the predic-

tion from the network is greater than 0.5, then it is considered to be predicting the

moving class which has the label 1. If the predictions are less than the threshold,

the network is considered to be predicting the non-moving class. While calculating

the F1-score, the predicted probabilities are rounded off to either class labels to

calculate the true positives, false positives, and the false negatives. To make the F1

score usable i.e to make it differentiable, we do not round off the predictions but use

them as they are. They are directly used as the continuous sum of likelihoods to

generate the loss. The following equations tell how the modified true positives, false

positives, false negatives, and true negatives are calculated. If y is the target vector

with ground truth values and y′ is the vector of predictions without the threshold

applied, then the True Positive(TP), False Positive(FP), False Negative(FN), and

True Negative(TN) values can be calculated as follows.
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TP =
n∑
i=1

(y′ ∗ y) (3.13)

FP =
n∑
i=1

(y′ ∗ (1− y)) (3.14)

FN =
n∑
i=1

((1− y′) ∗ y) (3.15)

TN =
n∑
i=1

((1− y′) ∗ (1− y)) (3.16)

Using the above equations, the modified F1 scores of both the binary classes will

be calculated as follows. Here we consider the two classes - moving and non-moving.

F1moving =
2 ∗ TP

(2 ∗ TP + FN + FP )
(3.17)

F1non−moving =
2 ∗ TN

(2 ∗ TN + FN + FP )
(3.18)

It is to be noted that, while programming these equations during training, often

a small number is added to the denominator so that in any case, the score values

do not become indeterminate. These are the modified F1 scores and we need to

maximize these scores. Since most of the optimization problems are minimization

problems, we will focus on minimizing the following quantities.

costmoving = 1− F1moving (3.19)

costnon−moving = 1− F1non−moving (3.20)
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Minimizing the above costs will naturally maximize the F1 scores. Now, to

build the loss function, we need to use both equation 3.19 and 3.24. This becomes

necessary because if we just use equation 3.19 as the loss function the network will

try to predict all the samples as 1 to minimize this loss. Hence the soft F1 loss

function is designed as the average of both the costs. This loss function balances

scores for both the classes.

Esoft−F1 =
costmoving + costnon−moving

2
(3.21)

3.5 FlyingThings3D Dataset Preparation

Dataset preparation is a critical and herculean task in machine learning. Data scien-

tists often spend most of their time in preparing, analyzing, and cleaning the data.

If the quality of the dataset is compromised, any number of efforts in developing

efficient machine learning algorithms will be futile.

FlyingThings3D [32] is a synthetic dataset prepared mainly for optical flow,

scene flow, and disparity estimation. It consists of a huge collection of stereo image

sequences. It provides more than 39000 image pairs, perhaps one of the largest

datasets for this purpose. The dataset contains stereo images recorded from a camera

moving randomly. The camera captures the scene with random objects moving in

random directions. The advantage of this dataset is that it is extremely general

i.e the objects in the frames do not belong to any particular category. Also, the

number of moving pixels in any frame is not constant. For every frame, the dataset

provides optical flow to the next frame, optical flow to the previous frame, disparity

values of the current frame, disparity change values to the next frame, disparity

change values to the previous frame, and motion boundaries. For our work, we use
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optical flow values, disparity values, and disparity change values. The following are

the steps that we follow to reshape the data to our needs.

• We need to convert all the pixels of the image into 3D points. This is done using

3D reconstruction. The camera parameters are obtained from the dataset and

the following equations are used to find the [X,Y,Z] 3D coordinates from the

[x,y,f] image coordinates. f is the focal length of the camera, B is the baseline,

and d denotes the disparity.

Z =
f ∗B
d

(3.22)

X =
x ∗ Z
f

(3.23)

Y =
y ∗ Z
f

(3.24)

• Once we have the point cloud from the first pair of left and right images, we use

the forward optical flow data and the disparity change values to reconstruct

the second point cloud from the first.

• We use the motion segmentation labels provided by [42] for the first point

cloud in every pair.

It is to be noted that even though we have correspondences between both the

point clouds as mentioned in the above process, we do not use this information.

While training, random points are chosen from the first point cloud and separately

from the second point cloud to form the lattices. Furthermore, only the points which

are within a threshold distance from the sensor are chosen. It is known that the
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uncertainty of depth measurements grow quadratically with the distance. Hence as

mentioned in [15], we choose the distance threshold to be 35m.

3.6 KITTI Dataset Preparation

We use the LiDAR dataset open-sourced by [14] for this task. Semantic labels for

this dataset are provided in [4]. From these labels, we understand that there are

extremely less number of moving points in this dataset. Hence, we modify this

dataset to simulate some motion into the dataset. The following are the steps that

we follow.

• We get the first 360◦ point cloud from the dataset. We use the ground truth

pose information to reconstruct the next 3D point cloud from the first.

• We reconstruct the second point cloud from the first to find correspondences

for simulating motion. The correspondence information is not used while

training. It is used just to generate the dataset.

• We add a random uniform noise in the range -0.2 to 0.2 to some points in the

first point cloud. We then add a fraction of this noise to the corresponding

points in the second point cloud. Basically, before adding the noise, we know

that the point was a static point. After adding the noise, the point is not

where it should have been for it to be static and hence we label this point as

moving.

• Adding noise to the point clouds is done in clusters. In the real world, there

are usually clusters of points that move together. For example, many points

lie on a car and these points move together. We add the same noise to 5

consecutive points.
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(a) MotionI class (b) MotionII class (c) MotionIII class

Figure 3.9: Demonstration of different motion content in point cloud samples. The
red points indicate motion and the green points indicate static points

• We make a generalized dataset in terms of the percentage of noise in the point

clouds. We randomly add noise to the point clouds such that some point

clouds have less than 30% moving points(named as the MotionI class), some

have 30-60% of the points moving(named as the MotionII class) and the rest

have 60-75% of the points moving(called the MotionIII class). These point

clouds are chosen at random for each percentage value. These classes can be

visualized in Figure 3.9.

We separate the generalized dataset into three sets. About 20% of data is stored

for testing, 20% is stored for validation, and the rest for training(only a fourth of

this data is used for training due to time constraints). Even in this dataset, we only

choose points that are closer than 35m from the sensor. Also, the advantage of the

KITTI dataset is that it is a real LiDAR dataset that has values in the 360◦ angular

range. The sparsity of the LiDAR is also well captured in this dataset.

3.7 Evaluation Criteria

It is important to choose evaluation metrics that give valuable information about

how the model has fared. F1 score is the major metric that we observe. We also
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report mean IoU values along with precision and recall to enable comparison of

our model performance with others. Many related works use only one of the above

metrics and hence we find it convenient to report all the values. The metrics are

calculated as discussed below.

3.7.1 F1 Score

F1 score is the harmonic mean of precision and recall measures. As the last layer of

our network is sigmoid activated, we get predictions in the range of 0 to 1. These

are the probability values of a sample belonging to the moving class in our case. For

evaluation, we need a threshold to round the probability values to integers. We use

the commonly accepted threshold of 0.5. Any prediction equal to and above 0.5 is

rounded to 1 (signifying the moving class) and any prediction below 0.5 is rounded

to 0 (the non-moving class).

Precision is the fraction of samples that are correctly predicted in the total

predictions for that class. It is calculated as follows.

Precision =
TP

TP + FP
(3.25)

This value is calculated for each class to get better information. Furthermore,

Recall is the fraction of correctly predicted samples from all the target samples for

that class. We also calculate recall values for each class.

Recall =
TP

TP + FN
(3.26)

The F1 score as mentioned before is the harmonic mean of the Precision and

Recall values.
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F1 = 2 ∗ Precision ∗Recall
Precision+Recall

(3.27)

F1 =
2 ∗ TP

2 ∗ TP + FN + FP
(3.28)

The mean of these metrics over the whole test data is calculated. In all the

results, we report the mean values in terms of percentage and not fraction for better

visualization.

3.7.2 Mean Intersection over Union (mIoU)

The idea of IoU comes from the set theory. It is also widely known as the Jaccard

index. Let us say we have two sets - Ŷ is the set of predictions interpolated to

integers and Y is the set of ground truth labels. The IoU can be found by

IoU =
|Ŷ ∩ Y |
|Ŷ ∪ Y |

(3.29)

This can be written in the form of TP, FP, TN, FN as

IoU =
TP

TP + FP + FN
(3.30)

The mean over the whole test data is calculated to find the mIoU. We report the

mIoU values as percentages instead of fraction to improve the ease of understanding.
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Chapter 4

Experiments and Results

This chapter discusses the results obtained on the FlyingThings3D dataset and the

modified KITTI dataset. Our experiments are focused on determining how different

loss functions, varying number of movements in the scene, and different datasets

affect the evaluation metrics and the computation time.

4.1 Evaluation on FlyingThings3D Dataset

FlyingThings3D dataset is a dataset with synthetic stereo images of random objects

moving around in random trajectories recorded from a moving camera. The motion

segmentation labels for this dataset are obtained from [42]. This dataset is extremely

popular in the image-based research domain. Due to the availability of stereo images,

it is possible to reconstruct the 3D scene, and hence its use in point cloud based

research has improved dramatically. FlyingThings3D dataset provides about 2250

sequences for training with about 22500 stereo image pairs. The test dataset is

secluded from the training data and it contains about 150 sequences. We keep 80%

of the training dataset for training and the rest 20% for validation. Since the dataset

is extremely large, we use only a fourth of this data for training and validation.
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4.1.1 Performance Metrics With Different Loss Functions

We have performed experiments to analyze the performance of the model with dif-

ferent loss functions. The loss functions used are binary cross entropy, focal loss,

and soft F1 loss. We train the dataset with these loss functions separately. The

evaluation metrics corresponding to weights from training with different loss func-

tions are reported in Table 4.1. These metrics are calculated on the test data with

50k certain points from each point cloud considered for evaluation. All the metrics

in the following tables are mean values over 2300 samples from the test dataset. It

is to be noted that the α and γ parameters used for the focal loss are 0.25 and 2

respectively. F1M is the F1 score for moving class, F1NM is the F1 score for non-

moving class, IoUM is the Intersection over Union for moving points, and IoUNM

is the Intersection over Union for non-moving points. Similarly PM and RM are

the mean precision and recall values for moving points and PNM and RNM are the

values for non-moving points.

Loss function F1M F1NM IoUM IoUNM

BCE loss 94.23 95.99 90.71 93.92
Focal loss 94.17 95.63 90.53 92.83

Soft F1 loss 91.80 94.20 86.77 90.39

Table 4.1: Comparison of mean evaluation metrics based on different loss functions:
FlyingThings3D dataset

F1 score is a measure which combines precision and recall values and it is im-

portant to maintain a balance between these measurements. It is not convenient for

one value to be extremely high and the other to be very low. Hence in the Table

4.2, we report the mean precision and recall values for all the loss functions.

We notice that all the dominating metrics from Table 4.1 and Table 4.2 are

obtained with the BCE loss function. Since this dataset has good contribution from
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Loss function PM PNM RM RNM

BCE loss 93.31 97.86 96.61 95.18
Focal loss 93.19 97.56 96.51 94.92

Soft F1 loss 89.96 97.42 95.82 92.59

Table 4.2: Mean precision and mean recall values for different losses: FlyingTh-
ings3D dataset

both the moving ad non-moving classes, a simple BCE loss is sufficient to get good

results.

4.1.2 Inference Time Study for Varying Point Cloud Sizes

Since the permutohedral lattice can store unstructured point clouds of varying sizes,

we can make use of different sizes of point clouds while inference depending on the

application. However, since the depth measurement error grows quadratically with

distance, we consider all the points on which inference is to be done to be closer

than 35m. In Table 4.3, we evaluate the inference time of the model for 30k, 40k,

and 50k points averaged over 1000 testing samples when using the weights obtained

by training the network on BCE loss.

Number of points Inference time(sec)

30000 0.0677
40000 0.0726
50000 0.0754

Table 4.3: Inference time for different sizes of point clouds: FlyingThings3D dataset

The inference times for the network with these weights are acceptable as the

LiDAR sensor provides scans at a rate of 10Hz and with these inference times, we

can match this rate. It can also be seen that the inference times for different point

cloud sizes are extremely close by. This is an advantage of using permutohedral

lattices.
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4.1.3 Comparison With Prior Work

We compare our method with the motion segmentation performed by [42] and [48].

Both of these approaches are camera based methods for the motion segmentation

task and evaluation on the FlyingThings3D dataset is available. We compare our

3D point cloud based method with these approaches due to under explored nature of

research in the domain of 3D point clouds. [48] uses the object segmentation labels

along with the labels provided by [42] for motion segmentation. Table 4.4 provide

the comparison with these methods.

Method mIoUM

MP-Net [42] 85.9
[48] 90.7

Ours(BCE loss) 90.71
Ours(Focal loss) 90.18

Ours(Soft F1 loss) 86.68

Table 4.4: Comparison with prior methods: FlyingThings3D dataset

It is to be noted that the other two methods mentioned above mostly target

towards foreground object segmentation using camera images. Given that the Fly-

ingThings3D dataset is particularly developed for scene flow estimations, many of

the objects in this dataset are moving. Also, the labels used in these methods are

also used by us as ground truth. Hence we can justify comparing our method with

theirs. This work on the FlyingThings3D dataset gives a proof of concept of the

usability of the proposed network and loss functions for the motion segmentation

task.

The property of this dataset that many foreground objects are moving is actually

a limitation when generalizing to the real world considerations. In real world, there

are multiple objects in the foreground which are not moving and sometimes very

few points in the scene are moving. Hence we need a variety of motion information
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in the scene. This problem is tackled in the KITTI dataset by modifying it.

4.2 Evaluation on KITTI Dataset

KITTI dataset [14] is an extremely popular dataset in the autonomous driving

industry. This dataset provides Velodyne LiDAR sensor data for all its sequences.

The KITTI dataset provides 11 sequences for training and validation. Each sequence

has a different number of point cloud scans i.e each sequence is of differing length.

As mentioned in Section 3.6, we add noise to the KITTI data to simulate motion.

Since we modify the dataset, we use the sequences ’00’, ’01’, ’02’, ’03’, ’04’, and ’06’

for training, ’05’, ’09’, ’10’ for validation and ’07’ and ’08’ for testing. Again due to

extensive training data and timings, we use a fourth of the training and validation

data. We use the complete testing data for checking the model performance.

As mentioned earlier, the dataset is generalized by adding different quantities

of noise in the dataset. Some pairs of LiDAR scans have less than 30% points

moving, some have 30-60% points moving and the rest have 60-75% moving points

across the 360◦ data range. The files chosen for adding these different noise levels

are randomly selected. Such a generalized dataset is made to simulate real-world

conditions. When the car moves in areas with less population, the moving points in

the scene will only correspond to a few pedestrians. If the car moves to a crowded

intersection, there will be pedestrians and other vehicles moving all around the ego-

vehicle. When the car moves to a highway, at times, it will be surrounded by large

trucks on all sides and most of the scene content will be composed of moving points.

These are the conditions that inspire the different noise quantities in the dataset.

This is a data recorded in the real world unlike the synthetically generated im-

ages in FlyingThings3D. This makes it an extremely challenging task to perform
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motion segmentation. We check how well the model trained on FlyingThings3D

dataset generalize on the KITTI dataset. The results are reported in Table 4.5.

Experiment F1M F1NM IoUM IoUNM

FT3D weights on KITTI 56.53 29.88 40.44 18.59

Table 4.5: Evaluating model trained on FlyingThings3D with BCE loss function on
the modified KITTI dataset. All values are mean values.

We also provide the precision and recall results for the above task. Looking at

these values helps to get an intuition about the explanation of the results provided

later.

Experiment PM PNM RM RNM

FT3D weights on KITTI 45.90 58.71 80.57 23.06

Table 4.6: Mean precision and mean recall values for the task of using BCE model
trained on FlyingThings3D for inference on the modified KITTI dataset.

The results of using trained weights from the FlyingThings3D BCE model on

the modified KITTI dataset are extremely poor. The poor results indicate that the

model trained on the synthetic camera data is not transferable to real-world LiDAR

data. This can possibly be due to the following reasons.

• In the FlyingThings3D dataset, many foreground objects undergo motion.

This will not be the case in the real world LiDAR data. In the real world,

many foreground objects will be static and a motion segmentation algorithm

should be capable of distinguishing them. This phenomenon is visible in the

results. The network is trying to predict almost all points as moving to be

safe. Due to this the F1M and IoUM are considerably higher than their non-

moving counterparts. In this regard, it would help if some scenes in the Fly-
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ingThings3D dataset do not have motion or have very little motion. Hence the

model trained on the synthetic data will not easily translate to the modified

KITTI data. However, this experiment has shown that the choice of network

is fairly good to understand motion.

• The density of the camera data is extremely high as compared to the LiDAR

data. Hence when using reconstructed camera data, there is a lot of informa-

tion available to the model. Every point will have a lot of neighbors around

it that have similar motion. The original LiDAR data is very sparse and the

neighboring information available to it is very less as compared to the camera

data. This is a negative factor for convolution operations, especially in the

CorrBCL layers.

• The synthetic camera images only provide the front view whereas the LiDAR

scans provide 360◦ view. Hence the diversity in the point movements is very

high in the LiDAR data as compared to the camera data. This can be a

challenge for the network trained only on the dense front view.

Hence we use the training data from the modified KITTI dataset to train the

model and obtain better scores. Table 4.7 shows the comparison between the per-

formance metrics of different loss functions on the modified KITTI dataset. Addi-

tionally, the precision and recall values for both the classes are tabulated in Table

4.8. The inference is performed on 30k certain points from each point cloud. Unlike

the dense FlyingThings3D dataset, it is not always possible to obtain 50k certain

points from the sparse KITTI dataset.

Training and testing on the modified KITTI dataset has revealed the strength

of different loss functions. The best performance metrics cannot be attributed to a

particular loss function in this case. Both BCE and soft F1 loss perform optimally
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Loss function F1M F1NM IoUM IoUNM

BCE loss 70.79 74.60 55.32 60.97
Focal loss 70.30 74.55 54.76 60.76

Soft F1 loss 69.54 76.83 53.73 63.34

Table 4.7: Comparison of evaluation metrics based of loss function for modified
KITTI dataset

Loss function PM PNM RM RNM

BCE loss 73.08 75.87 70.18 74.07
Focal loss 71.85 75.53 69.91 74.21

Soft F1 loss 74.13 73.77 65.78 80.42

Table 4.8: Mean precision and mean recall values for different losses: modified
KITTI dataset

with respect to certain metrics.

4.2.1 Analysis Of Metrics for Different Motion Content

To further analyze the results, an experiment was performed to check the mean and

standard deviation values for the F1M metric for different motion quantities. The

noise added to the point clouds were in three segments. Some point clouds have

noise(read motion) in less than 30% of the total certain points(class - MotionI),

some have motion in the range 30-60% of the total certain points(class - MotionII)

and the rest have motion in the range of 60-75%(class - MotionIII). The mean and

standard deviation of these three classes with 30k points being processed in each

point cloud is reported in Table 4.9.

It is clearly visible from Table 4.9 that it is relatively hard for the network to

classify points as moving when the motion content in the scene is little i.e for the

MotionI class. The network performs better in terms of the F1 score for point clouds

having many moving points. This is a challenge for this algorithm in the present

stage. This can be overcome by giving more emphasis on the training samples with
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Motion class STD F1M mean F1M

MotionI(BCE loss) 0.0611 62.31
MotionI(Focal loss) 0.0633 61.40

MotionI(Soft F1 loss) 0.0567 61.89
MotionII(BCE loss) 0.0403 72.35
MotionII(Focal loss) 0.0392 72.02

MotionII(Soft F1 loss) 0.0393 71.20
MotionIII(BCE loss) 0.0214 79.25
MotionIII(Focal loss) 0.0220 79.00

MotionIII(Soft F1 loss) 0.0234 76.65

Table 4.9: Mean and standard deviation of F1 scores for moving points with different
quantities of noise in the point clouds

little motion. Among the three losses discussed in this thesis, the focal loss is the

only loss that has parameters that can be tuned. The α and γ parameters in the

focal loss can be tuned to improve the detection of motion in point clouds with less

moving points. Experiments can be performed with higher values of α and different

values of γ to exercise more emphasis on the noise samples which are hard to classify.

This exercise is a part of future work.

4.2.2 Inference Time Study for Varying Point Cloud Sizes:

Modified KITTI

Since the KITTI dataset is sparse as compared to the dense FlyingThings3D dataset,

it is hard to obtain 50k certain points from each scan. Hence the inference time

is calculated for the processing of 10k, 20k and 30k points. Table 4.10 reports the

inference timings for different sizes of the point clouds averaged over the test dataset

for different losses. The parameters in the focal loss considered here are α = 0.25

and γ = 2.

It can be inferred from Table 4.10 that the inference times increase with the

increase in point cloud size for all the losses. However, it is a relief that the relation
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Number of points Inference time(sec)

10k(BCE loss) 0.1331
10k(Focal loss) 0.1404

10k(Soft F1 loss) 0.1413
20k(BCE loss) 0.1656
20k(Focal loss) 0.1755

20k(Soft F1 loss) 0.1630
30k(BCE loss) 0.1918
30k(Focal loss) 0.1877

30k(Soft F1 loss) 0.1838

Table 4.10: Inference time for different sizes of point clouds : modified KITTI
dataset

between the increase in point cloud size and the time is not directly proportional.

When the point cloud size is doubled or tripled, the time for inference does not

double and triple respectively. This favorable outcome can be attributed to the

memory-efficient permutohedral lattice and the computationally efficient DownBCL,

UpBCL, and CorrBCL layers.
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Chapter 5

Conclusion

In this work, we propose a learning-based method to segment 3D points as moving

or non-moving. We call this the task of motion segmentation. Motion segmentation

has previously been explored in depth using camera images. A lot of infrastructure

including networks and datasets exist for camera-based motion segmentation. This

work explores motion segmentation using 3D point cloud data.

A modern representation of LiDAR point clouds i.e permutohedral lattice is used

to store unstructured points clouds efficiently. The advantages of this representation

are demonstrated. This lattice efficiently handles the sparsity of point clouds. A

bilateral convolution layer based network is used to process two temporally differ-

ent point clouds together. The major advantage of this network when used along

with the permutohedral lattice is that convolutions can be performed on two tem-

porally and spatially different point clouds without actively compensating for the

ego-motion.

Two datasets - FlyingThings3D and KITTI are used to train the proposed motion

segmentation network. FlyingThings3D is a synthetic stereo image dataset. These

image pairs are used to 3D reconstruct point clouds. This reconstructed data is
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used along with the available motion segmentation labels to train the network.

The synthetic dataset is great as a proof of concept but it is a poor model

of the real-world environment. Hence a modified Velodyne KITTI dataset was

generated by adding noise to points to simulate motion. The dataset was generated

with different quantities of noise to generalize it to real-world conditions. Several

experiments were performed to explore the performance of different loss functions

in the network.

On the FlyingThings3D dataset, we obtained an IoU score for moving points that

is at par with the methods compared with. We obtained a mean IoU of 90.71 and

a mean F1 score of 94.23. The inference time for 50k points on this dataset allows

for performing at 10Hz frequency. On the modified KITTI dataset, we obtained a

mean F1 score of 70.79. The inference time for 30k points on the modified KITTI

dataset allows for about 5-6Hz frequency.

Most importantly, this work is an effort in a direction to make autonomous robots

safer. Increased safety will encourage the use of robots and make human lives easier.
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Chapter 6

Future Work

There is immense opportunity for future work in this domain. This work provides

a thesis to understanding the phenomenon of motion in the environment and de-

veloping preliminary algorithms to detect it. The following are some of the major

ideas that could follow this work.

• Improve the current metrics: There are many possibilities to improve the

current results. The first approach will be to conduct a study to vary the

parameters of the focal loss and check if any combination of α and γ improves

the results. The motivation is to improve the evaluation metrics for especially

the MotionI class.

• Dataset generation: This work was dependent on a synthetic and a real-

world modified dataset. A dataset with a significant amount of moving labels

is extremely important for improvements in this field of motion segmentation

for 3D point clouds. The initial approaches could be to record a LiDAR

dataset in crowded cities and on highways and use tools similar to the one

provided by [4] to label these point clouds. The labels will be moving point

and non-moving point.
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• Use of multiple point clouds: In this work, we have used a sequence of two

point clouds for motion segmentation. However, it seems likely that a sequence

of multiple points will help in detecting motion with higher accuracy. This

can also help to improve tracking results.

• Improving inference time: The algorithm proposed in this work, when used

with real-world LiDAR dataset runs at less than 10Hz frequency. For real-

time applications, multiple algorithms should run together at 10Hz(standard

frequency of LiDAR sensor). Hence further research should be conducted to

reduce the computations for motion segmentation.

• Test these results on applications: The next logical step is to check out

how the motion segmentation results can benefit other applications. For ex-

ample, this algorithm can be used in a state-of-the-art SLAM pipeline to

test/show that filtering dynamic obstacles can help in improving the local-

ization accuracy and also benefit the map building process. The motion seg-

mentation results can also be used to check model performances for object

tracking, future prediction, etc.
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