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ABSTRACT 

 
 

 The IMPAS family of proteases is not well characterized, but some members may be 

associated with neurodegenerative diseases, such as Alzheimer’s disease.  In this project, 

potential IMPAS substrates and pathways were investigated in vitro by transfecting plasmids 

encoding various IMPAS proteins and potential substrates into HEK293 cells and monitoring the 

cellular levels of predicted substrate proteins by Western blots.  The results show that ODZ4, 

Syntaxin 5A, and truncated ST14 (∆ST14) likely do not serve as substrates.  Protease hIMP1 was 

validated to cleave HCV core protein, as in a previous report.  A putative connection between 

IMPAS and the autophagy pathway was revealed. 
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BACKGROUND 
 

 

Alzheimer’s disease   

 Alzheimer’s disease (AD) is a neurodegenerative disorder primarily affecting older 

individuals worldwide.  AD gets its name from Alois Alzheimer, a German physician, who first 

described a condition he observed in 1906 in an early onset case, Auguste Deter, whom he 

treated for almost 5 years.  Auguste displayed progressive memory impairment, unpredictable 

behavior, various speech and motor issues, recognition problems, trouble processing questions, 

and even hallucinations. Postmortem examination of the brain showed some disturbing brain 

alterations: cerebral cortex atrophy, senile plaques in the cortex, and neurofibrillary 

abnormalities (Grigorenko & Rogaev, 2006). These physical and behavioral symptoms have 

become the hallmark signs of Alzheimer’s disease.  

 The common early symptoms of AD include a variety of mental complications such as 

confusion, short term memory disturbances, attention difficulty, language issues, and even 

personality changes. Although, there is a basic outline of the stages of disease progression 

individuals are effected in different ways.  The first stage, defined as mild, can last for 2-4 years, 

and can be stressing to the individual because in most cases the patient can perceive the mental 

changes at some level. In this stage, getting lost and losing things are a common occurrence; this, 

if they are still working, can begin to negatively affect job performance. Stage two represents the 

loss of individuality; although the patient can perform simple tasks alone, the drop into a more 

disabled life leads them to require much more care. This often results in depression, irritability, 

restlessness, and withdrawal.  At this point there may be loss of the ability to read, write, 

communicate, and they may become a danger to themselves when left alone. Stage three is the 

most severe, and is generally characterized by complete dependence. At this stage patients need 
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help with meals, and cannot recognize people they have known for their entire lives.  Even more 

severely they may lose control of bodily functions such as swallowing or bowel movements. 

Constant care is required due to the almost non-existent memory and complete physical 

dependence (Alzheimer’s Disease Research, 2012). This disease is highly debilitating to the 

patient, and proves to be a great challenge for their families. As of now there is no cure for AD, 

which only makes such a diagnosis harder to bear as a patient or a family member. 

 AD affected an estimated 5.4 million Americans in 2011, 5.2 million of which were over 

the age of 65 (Alzheimer’s Association, 2011). Thirteen percent of American’s over the age of 

65, approximately 1 in 8 people, have AD; and 43 percent, nearly half of people over the age of 

85.  AD remains the 6
th

 leading cause of death in American’s of all ages, and the 5
th

 leading 

cause of death in individuals over the age of 65 (Alzheimer’s Association, 2011). A startling fact 

to consider is that while the other major causes of death (stroke, heart disease, HIV/AIDS, 

prostate and breast cancer) have declined in the past 10 years, AD deaths increased (Alzheimer’s 

Association, 2011). This statistic is affected by the trend of longer lifetimes in modern countries; 

however, the ever rising numbers of affected individuals indicates that this debilitating disease, 

and others like it, should be more greatly researched to try to decrease the incidence. 

 Characteristic histopathological changes in the brain of AD patients are neurofibrillary 

tangles and amyloid senile plaques, much like those seen in the original patient. Neurofibrillary 

tangles (NFTs) are intracellular conglomerates of tau protein found in neurons.  They consist 

primarily of the abnormally phosphorylated microtubule associated protein tau.  This distorted 

structure eventually leads to a loss of cell shape and cell death. Senile plaques are an 

extracellular insoluble spherical structure with a dense central core made up of β-amyloids (Aβ-

peptides) which aggregate and are deposited in the brain, often adjacent to capillaries and larger 
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blood vessels (Cras et al., 1991; Grigorenko & Rogaev, 2006). Aβ peptides are a product of 

amyloidogenic proteolysis of the conjugated protein β-amyloid precursor protein (APP) 

(Grigorenko & Rogaev, 2006; Paolo & Kim, 2011). These Aβ peptides are neurotoxic, and result 

in the dementia and cognitive impairment associated with AD, even before the fibrils and 

plaques form (Grigorenko & Rogaev, 2006). The core of the plaque is surrounded by abnormal 

(dystrophic) neurites. Other than multiple forms of Aβ peptides, senile plaques also consist of 

glucosaminoglycan (GAG), heparan sulfate proteoglycan (HSPG), serum amyloid P (SAP), 

apolipoprotein E (ApoE), α2-macroglobin, α1-antichymotrysin, and other complement factors 

(Grigorenko & Rogaev, 2006). These other factors may also play a critical role in the formation 

of plaques and neurofibrillary tangles.   

 

Amyloid Precursor Protein 

 Amyloid precursor protein (APP), present on the surface of neurons and glial cells, can 

be inappropriately processed by beta and gamma secretase to produce the Aβ peptide that forms 

senile plaques. APP is a type I transmembrane protein, and functions as a receptor on the outer 

cell membrane (Grigorenko & Rogaev, 2006).  The APP gene maps to chromosome 21, and 

several families (Indiana, London, Swedish, Dutch) with early-onset AD show mutations in APP 

(Goate et al., 1991).  Early onset familial cases also map to the presenilin genes (gamma 

secretase) (see below) located on chromosome-14.  However, late-onset cases do not show a link 

to known gene mutations.  
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Presenilins 

 Presenilin proteins 1 and 2 (PSEN1/PS1, and PSEN2/PS2) are polytopic integral 

membrane proteins that span the membrane six to eight times.  They are involved in the 

processing of the APP protein and in the Notch-signaling pathway (Tomita et al., 2001; 

Grigorenko & Rogaev, 2006). Specifically, they alter the selectivity of cleavage by the γ-

secretase complex of type I transmembrane proteins, such as APP (Grigorenko et al, 2002; Xia & 

Wolfe, 2003). This APP cleavage is site-specific, and cuts within a single transmembrane 

domain (Moliaka et al., 2004).  Endoproteolysis occurs to these type I proteins, generating N- 

and C-terminal fragments (NTF and CTF) which form heterodimers which are incorporated into 

high molecular weight (HMW) protein complexes. These HMW complexes are tightly related to 

the functionality (Tomita et al., 2001).  

Mutations in the APP processing mechanisms result in an increased production of the 

senile plaque forming Aβ peptides (Grigorenko & Rogaev, 2006).  Both of the PSEN proteins 

contain a proline-alanine-leucine-proline (PALP) motif which is critical to the function.  The first 

proline is correlated with γ-secretase function and cell metabolism functions (Tomita et al., 

2001).  PSENs are highly conserved, and can be found in a wide variety of organisms including: 

protists, plants, invertebrates, and vertebrates. However, they are not found in bacteria or fungi 

(Tomita et al., 2001; Grigorenko & Rogaev, 2006). The highly conserved nature of these proteins 

indicates a level of high importance. The AD mutations in APP, PS1, and PS2 are primarily 

inherited in an autosomal dominant manner (Grigorenko & Rogaev, 2006), and are critical in 

early-onset AD. 
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IMPAS  

 The IMPAS (intra-membrane-aspartic-protease) proteins are a group of multi-pass trans-

membrane proteins, related in homology to the PSEN transmembrane domains (Xia & Wolfe, 

2003; Moliaka et al., 2004). More specifically, these proteins belong to the GXGD-type aspartyl 

protease family, in which asparate is included in the active site motif within the transmembrane 

domain-7 (Martin et al., 2009).  IMPAS proteins, when named using the IMPAS system (Table-

1) are ordered from the most to the least conserved in evolution; although the proteases are also 

known by other names. 

Table-1: Classification of Various IMPAS Proteins. 

Chromosome 20 12 15 19 17 

Location 20q11.21 12q24.31 15q21.2 19q13.3 17q21.31 

Protein Group Classification Parallels 

IMP IMP1 IMP2 IMP3 IMP4 IMP5 

SPP SPP SPPL3 SPPL2A SPPL2B SPPL2C 

PSH PSH3 PSH1 PSH5 PSH4 PSH2 

PSL PSL3 PSL4 PSL2 PSL1 PSL5 
 

The basic structure of different IMPAS proteins is shown in Figure-1.  Three general 

structures are shown, including IMP1, IMP2 (upper row), IMP3, IMP4, and IMP5 (middle and 

lower rows) and Presenilin (lower row, right).  The diagram especially shows the transmembrane 

regions and orientation within the membrane. The amino acid sequences of a few of the highly 

conserved regions are shown in Figure-2. The PAL motif in PS proteins is also conserved in the 

IMPAS proteins.  Two other highly conserved regions are the first (DxxV) and second (GxGD) 

aspartate domains present in all IMPs, also found in presenilins (Grigorenko et al, 2002). It has 

been found that the catalytic domain is embedded in the cell membrane oriented opposite of the 

presenilins and has the capability to cleave type II oriented transmembrane proteins (Friedmann 
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et al, 2004; Grigorenko & Rogaev, 2006). Members in this group of intramembrane-cleaving 

proteases are predicted to cut type II oriented substrates (Friedmann et al, 2004). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-1: Diagram of the Basic Structure of IMPAS Proteins.  

Several  topology models of SPP (IMP1), SPPL3 (IMP 2), SPPL2A 

(IMP3), SPPL2B (IMP4), SPPL2C (IMP5), Presenilin are shown. 

(Friedmann et al., 2004) 
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Figure-2:  Amino Acid Alignments of Three Main Conserved 

Regions in the IMPAS Proteins. (Gringorenko et al, 2002) 

 

 

 

 Impas-1 (IMP1), a bi-aspartic polytopic protease, is capable of cleaving transmembrane 

precursor proteins and signal peptide peptidases, and may have other functions that are still 

unknown. In experimental cell culture conditions, induced IMP1 was found to have the 

capability to cleave the PS1 protein. IMP1 was discovered to be responsible for liberating 

hydrophobic signal peptides from the N-terminus of secreted or transmembrane proteins during 

co-translocation into the endoplasmic reticulum (Martin et al., 2009).  IMP1 has also been found 

to be crucial in the generation of cell surface histocompatibility antigen-E epitopes, and the 

processing of hepatitis C virus polyproteins (Martin et al., 2009). However, the full role and 

substrates of endogenous IMP1 remain undetermined (Moliaka et al., 2004).   
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Ce-IMP-2 (a homolog of human IMP1) has been found to be critical to Caenorhabditis 

elegans development (Grigorenko et al., 2004). Inactivation of Ce-IMP2 results in embryonic 

lethality, and in molting defects arresting development in the larval stage. (Z-LL)2 –Ketone 

(Figure-3) is a IMP1-specific inhibitor, used to help identify the function of this interesting 

protein.  The highly conserved nature of IMP1 makes it of great interest because of its potential 

influences on neurodegeneration and normal development.  

 

 

 

 

 

 

 

 

 

 

Figure-3:  Structure of (Z-LL) 2-Ketone, An IMP1-Specific Inhibitor. 

 

  

Impas 2 (IMP2) is another of these presenilin-like proteases found in the endoplasmic 

reticulum. This locational similarity to IMP1 would imply that this protein may also have signal 

peptide removal functions as well (Martin et al., 2009).  IMP2, combined with the known Site-1 

protease (S1P) and site-2 protease (S2P), are required for the activation of membrane 

transcription factor ATF6 – a necessary mediator of the mammalian ER unfolded protein 

response (Kobialko, 2007).  In Danio rerio (zebrafish) when the IMP2 homolog was knocked 

down, the result was cell death, indicating it is critical for development (Nyborg et al., 2006). 

 Impas-3 (IMP3) and Impas-4 (IMP4) are other homologs in this protease family which 

are 50% identical and 70% homologous to each other (Behnke et al., 2011). However, IMP3 is 

expressed in all major adult human tissues, while IMP4 is detectable chiefly in the adrenal cortex 

and mammary gland (Behnke et al., 2011). After an initial cleavage of the Bri2 fragment by furin 
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and related proteases, IMP3 and IMP4 execute proteolysis on the N-terminal transmembrane 

fragment of Bri2 (Martin et al., 2008). These two proteases have also been studied in relation to 

TNFα and have been found to perform an active role in processing this cytokine in dendritic cell 

cultures to release a reverse signal component TNF-ICD (Friedmann et al., 2006). Murine IMP3 

has been found to contain a single tyrosine-based motif that mediates its transport to the 

lysosome; this motif is highly conserved as shown in a multispecies alignment (Behnke et al., 

2011).  IMP3 and IMP4 may play a critical role in the processing of transmembrane proteins and 

in signaling pathways involving the lysosome.  

 Impas-5 (IMP5) is the least conserved of the known proteases in this group, with no 

determined substrate or function. The substrate or substrates are most likely a type II oriented 

transmembrane protein.  IMP5 has also been found only in humans and at low expression 

(Grigorenko & Rogaev, 2006). More research needs to be done to determine the function of this 

most specific member of the IMP family of proteins.   

 

IMPAS Substrates 
 

HCV 

 Hepatitis C Virus (HCV) is a blood born pathogen causing Hepatitis C, a potentially 

chronic liver disease which can result in long term health complications and death (CDC, 2009). 

The HCV genome consists of a single-stranded, positive sense RNA molecule encoding a 

polyprotein in its only open reading frame (McLauchlan et al., 2002).  This protein is 

approximately 3000 amino acids long, which can be divided into two parts: The first is the N-

terminal third which makes up the core and two envelope proteins (E1 and E2). The remainder 

consists of the non-structural virion proteins (McLauchlan et al., 2002). Viral products are 
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produced during maturation through a series of cleaving events to the polyprotein (McLauchlin 

et al., 2002).  Hepatitis core protein, the substrate used in this project, is generated during 

maturation from the most N-terminal region and is 191 amino acids in length (McLaughlin et al., 

2002; Boulant et al., 2005).  It contains a 50 amino acid hydrophobic region, D2, which is 

responsible for core association with lipid droplets and also with the ER (Boulant et al., 2005).  

A 20 aa signal sequence targets the protein to the membrane of the endoplasmic reticulum (ER) 

and later serves as a signal to the downstream E1 protein (Boulant et al., 2005). A signal 

peptidase cleaves the signal sequence, leaving the Hepatitis core protein anchored in the ER 

membrane (McLaughlin et al., 2002).  IMP1 has been found to cleave the hepatitis core protein 

within the ER membrane allowing for release from the membrane and further trafficking 

(Okamoto et al., 2008).  However, if there is any mutation in the signaling sequence, then 

cleavage by IMP1 is eliminated and the HCV core protein remains stuck in the ER membrane 

(McLauchlin et al., 2002).  

 

ODZ4 

 ODZ4 is a type II transmembrane protein that is highly expressed in the brain and less in 

other tissues (Zhou et al., 2003).  It belongs to the teneurin/odd oz (TEN-M/ODZ) 

transmembrane protein receptor family which is highly conserved, and can be found in 

Caenorhabditis elegans (roundworms), Danio rerio (zebrafish), mice, and humans (Oohashi et 

al. 1999; Lossie et al., 2005). Four main ODZ4 homologs have been identified in mice and 

humans (ODZ1-4); it was found that these four types show separate but sometimes overlapping 

expression in the brain during development of mouse pups (Zhou et al., 2003). These distribution 

patterns may mean that these transmembrane proteins relate to neuronal connectivity 
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(Kenzelmann et al., 2007).  The ODZs may be a novel substrate for a transmembrane protease; 

extending the function from an extracellular adhesion molecule to also being a signaling 

molecule (Zhou et al., 2007). Multiple mutations in the ten-m/odz gene have been found to result 

in embryonic lethality in mice (Zhou et al., 2003).  Other popular models for studying this family 

of proteins are Caenorhabditis elegans and Drosophila melanogaster (fruit fly).  

 

Syntaxin 5A  

 Members of the syntaxin and synaptobrevin families form complexes, and promote 

vesicle docking and fusion (Dascher et al., 1994). Proteins in the syntaxin, synaptobrevin and 

SNAP-25 families all comprise a group called SNARE proteins which form a stable complexes 

that act as receptors (Xu et al., 2002). Syntaxins are made up of a cytoplasmic domain, a single 

hydrophobic membrane anchor, and an extracellular carboxy-terminal tail (Dascher et al., 1994). 

Syntaxin 5A (STX5A) is a component of the transportation mechanisms involved in transfer of 

material from the endoplasmic reticulum to the golgi body in mammalian cells (Dascher et al., 

1994). Experiments using nonviable STX5A without a transmembrane domain, or inhibition via 

antibodies, suggests that STX5A is required for the fusion of carrier vesicles at the cis-face of the 

Golgi body (Xu et al., 2002). It has also been shown that hypomorphic mutations in STX5A lead 

to sterility in male Drosophila melanogaster due to failure in cytokinesis as well as sperm 

maturation (Xu et al, 2002). After mitosis, STX5A has been found to be necessary to reassemble 

of the Golgi complex (Xu et al., 2002).  STX5A is a critical protein in the function of the Golgi 

body, and in turn many signaling pathways, mitosis, and reproduction.  
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ST-14 

 ST-14 encodes a large protein which functions as a type II transmembrane serine protease 

(Khang et al., 2005). It has been found co-localized in cell-to-cell contact sites in epithelium cells 

of the thymus with E-cadherin, and may have a role in cell adhesion (Khang et al., 2005).  

Knockout mouse pups lacking in this gene have severely abnormal skin development, and suffer 

fatal dehydration due to the malfunctioning epithelial barrier (Khang et al., 2005). ST-14 also 

plays a critical role in cell adhesion during pre-implantation development, as well as other stages 

of early development (Khang et al., 2005). There are two forms of this protein generally found 

within cells: the full length protein and the N-terminally truncated protein (referenced going 

forward as ∆ST-14). Experiments using in vivo cell labeling indicate that in cell culture the long 

form is quickly processed into the truncated form.  ∆ST-14 has been found in cell culture media 

and on the cell surface (Cho et al., 2001). It has been found that this protein may functions in cell 

migration, as well as cancer invasion and metastasis (Cho et al, 2001). This protein is a type II-

oriented protein which has critical roles in development; it is a potential substrate of one of the 

members of the IMPAS family of proteases.  

 

Autophagy 

 The field of autophagy, the mechanism relating to cells undergoing programed cell death 

during starvation, is a fast growing area of study, and there are many factors required that can 

still be explored.  Autophagy is a cell process using a cell’s lysosomal mechanisms to degrade its 

own components (Fader et al, 2009). In this process, autophagosomes are produced, which are 

vesicles that capture and deliver cytoplasmic material and bring them to the lysosome 

(Rabinowitz & White, 2010). The autophagosomes fuse with endosomes and/or lysosomes 
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forming amphisome and autolysosomes, respectively, as part of the maturation process and the 

autophagy pathway (Pankiv et al., 2007). Large cell structures including organelles and protein 

aggregates can be broken down by lysosomes when the cell reaches a state of macroautophagy- 

or a programmed cell death- resulting from a cellular stress.  In a state of starvation, 

macroautophagy is activated to provide necessary nutrients for survival (Rabinowitz & White, 

2010). Basal autophagy is a routine function in the cell which rids the cell of toxins and waste 

products (Rabinowitz & White, 2010). Bafilomycin A1 is an inhibitor of autophagy which 

changes the lysosomal pH and blocks the ability for the autophagosome and the lysosome to bind 

(Klionsky et al., 2009).   

The IMPAS proteases may play a role in the autophagy pathway by potentially activating 

components, releasing other signaling mechanisms, or cleaving protein compounds for 

degradation.  Accumulation of autophagosomes, required in the function of the pathway, can be 

measured using various techniques including electron microscopy image analysis with 

fluorescent GFP-LC3 markers or using LC3 lipidation screening via Western blotting (Klionsky 

et al., 2009), results of which can lead to the discovery of more potential autophagy related 

factors.  

 Light chain 3 (LC3), a human homolog of Atg8, is a ubiquitin-like protein used as an 

autophagic marker due to its fluctuation during the autophagy response (Pankiv et al., 2007). The 

role of LC3 in the autophagy process is shown in Figure-4, notice how it binds to the membrane 

and remains in that location. The blocking role of Bafilomycin A1 is also shown in the figure. 
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Figure-4: Diagram of the Role of LC3 Protein in Autophagy. 

 

There are three main forms of LC3, the first of which is pro-LC3, the unprocessed form, 

which is cleaved post-synthesis by Atg4B exposing the C-terminal end resulting in LC3-I.  The 

LC3-II form has phosphatidylethanolamine (PE) conjugated to the C-terminal end which is 

related with the formation of autophagosomal membranes (Pankiv et al., 2007). The lipidated 

LC3-II form remains on mature autophagosomes until after fusion with lysosomes and therefore 

makes LC3 a good marker for autophagy (Rabinowitiz & White, 2010). An important point is 

that the overall level of LC3 protein may not change, but the variance in levels between the two 

different LC3 forms can indicate what is being affected in the pathway (Klionsky et al., 2009). 

Western blotting is an easy way to monitor the changes between these two forms in the 

autophagy pathway; when there is autophagosome production, there is an increase in LC3-II 

formation which is observed as a second lower band in Western blot analysis. LC3-I runs at 

18kD during western blotting, while LC3-II run at 16kD. However, it was found to be 
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unsuccessful when using a Drosophila melanogaster model. Another concern is that LC3-I is 

more sensitive to freezing, thawing and degradation in SDS sample buffers; therefore, the 

samples should be processed as soon as possible (Klionsky et al, 2008).  
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PROJECT PURPOSE 
 

 The cellular functions of the IMPAS family of proteases are not well known, but some 

family members may be associated with neurodegenerative diseases, such as Alzheimer’s 

disease.  This project will investigate the potential substrates of some IMPAS family members in 

HEK293 cells transfected with plasmids encoding various IMPAS family members and plasmids 

encoding potential substrates. Western blots are then used to monitor the molecular weights of 

potential substrate proteins to determine whether cleavage was induced in cells over-expressing 

the IMPAS protein.  The project will focus on potential type II oriented transmembrane protein 

substrates for these proteases. And the potential effects on autophagy are also observed. 

Uncovering the function of the highly conserved and critical IMPAS proteases could promote 

discoveries the field of neurodegenerative diseases.  
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METHODS 

 
Plasmid Constructs Used 

 Several plasmids were used throughout this project (see Tables below) that encoded a 

variety of proteins of interest.  These plasmids were constructed by other personnel in our 

laboratory, except for HCV which was provided by the Dr. Matsuura’s lab. Plasmids containing 

IMP2 and IMP3 WT were provided by Applied BioSystems. The vector containing PS22 was 

provided by Mayo Clinic (USA).  

IMPAS Constructs 

Inserted 

Gene 
Plasmid Name Expressed Protein 

IMP1 WT pcDNA4 Myc HisB 
Intramembrane Protease 1 Wild-type 

IMP1 D219A pcDNA4 Myc HisB Intramembrane Protease 1 with mutation at 1st 

aspartic acid conserved region to an alanine.  

IMP1 D265A pcDNA4 Myc HisB Intramembrane Protease 1 with mutation at 2nd 

aspartic acid conserved region to an alanine.  

IMP1 P317A pcDNA4 Myc HisB Intramembrane Protease 1 mutation in conserved 

PALP region: 1st Proline to alanine 

IMP1 P317L pcDNA4 Myc HisB 

Intramembrane Protease 1 mutation in conserved 

PALP region: 1st Proline to leucine (a chemically 

similar amino acid) 

IMP1 A318D pcDNA4 Myc HisB Intramembrane Protease 1 mutation in conserved 

PALP region: alanine to aspartic acid  

IMP2 WT pCMV SPORT 6 Intramembrane Protease 2 Wild-type 

IMP3 WT pCMV SPORT 6 Intramembrane Protease 3 Wild-type 

IMP4 WT pcDNA4 Myc HisB Intramembrane Protease 4 Wild-type 

IMP4 D359A pcDNA4 Myc HisB Intramembrane Protease 4 with mutation at 1st 

aspartic acid conserved region to an alanine.  
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Substrate Constructs 

Inserted 

Gene Plasmid Name Expressed Protein 

Chromosomal 

Location 

HCV pcDNA3 Flag tag Hepatitis Core Virus  

STX 5A pcDNA3 Flag tag Syntaxin 5A 11q12.3 

ODZ4 pcDNA3 Flag tag odd Oz/ten-m homolog 4 11q14.1 

∆ST-14 pcDNA3 Flag tag 

suppression of tumorigenicity 14- 

processed/shortened form 11q24-q25 

 

 

 

 
Plasmid Cloning and Isolation 

 Plasmids were transformed into DH5α cells, a high efficiency competent cell line 

(Invitrogen).  2 µl of plasmid DNA (approximately 400-600 ng) was transformed into 30 µl of 

the cell mix using the provided Invitrogen protocol. The plasmid conferred ampicillin-resistance; 

therefore all selections were performed by plating onto ampicillin plates.  Selected colonies were 

cultured overnight in 4-5mL of LB broth with ampicillin at 37°C with shaking. The plasmids 

were isolated using QIAprep Spin Miniprep kits (QIAGEN) following their Plasmid DNA 

Purification Procedure with a few changes to increase the efficiency, including changes to 

introducing the DNA to the column and in eluting. Before spinning down the sample in both 

steps, the liquid was allowed to incubate in the column for approximately 5 minutes, after which 

it was centrifuged for 2 minutes at 800 rpm, then for 1 minute at 13,200 rpm. The elution step 

was modified to be performed twice, each time with half the listed elution volume. For the 

second elution, the column was rotated 180 degrees from its original orientation in the centrifuge 

to ensure a more even elution. The final plasmid DNA concentration was measured using a 

Nanodrop procedure.  After cleaning the machine’s stage and blanking it, 1 µl of the plasmid 



 23 

DNA sample was placed onto the stage.  A reading of the purity and concentration was then 

taken.  

 
Sequencing Reactions 

 Plasmids were sequenced to verify the gene inserts. All constructs were sequenced from a 

T7 primer is located upstream of the multiple cloning site containing the inserted DNA.  

Plasmids IMP1 and IMP1D265A were sequenced additionally with a BGH primer, and IMP2 

and IMP3 were also screened with M13 forward and M13 reverse primers. The reaction mixture 

contained 2 µl of the purified plasmid DNA template, 2 µl of 1 µM primer, 4 µl of DEPC-treated 

H2O, and 2 µl of BigDye. The mixture was then run in a thermal cycler with the following 

program: 28 cycles of 1 minute at 95°C, 1 minute at 55°C, 4.5 minutes at 60°C; followed by a 

4°C holding temperature. Samples were then brought to the Deep Sequencing Core at the UMass 

Medical School.  

 The obtained DNA sequences were then searched on NCBI to confirm the gene identity.  

The IMP1 and IMP1 D265A genes were identical except for an intended single nucleotide 

change which results in the protein structural change of D265A, the intended mutation at this 

second highly conserved aspartic acid site. Sequence analysis was done using the freeware 

program Chromas Version 2.33.  The other IMPAS mutation genes had been previously verified.  

 
Cell Culture 

 This project used human embryonic kidney cells (HEK293). These cells were obtained 

from ATCC, and grown on 10mm plates in DMEM High Glucose 1X media (Invitrogen) 

supplemented with 10% Fetal Bovine Serum, 1% Antibiotic-Antimycotic liquid (Invitrogen), and 

1% Nonessential amino acids (NEAA). The day before transfection, the cells were split onto 6-
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well plates in 3 mL of media. The cells were adherent and were detached using TrypLE Express 

(Life Technologies) through a 5 minute incubation period at 37°C. The cells were then plated at 

approximately 60-70% confluence and allowed to adhere and grow overnight (to approximately 

80% confluence).  

 
Transfections  

 All transfections were done using Lipofectamine 2000 (Invitrogen) following the 

provided protocol and recommendations. HEK293 cells were used for all experiments, and were 

cultured in 6-well plates to approximately 70-80% confluence at the time of transfection.  4 µg of 

plasmid DNA was used per well on a 6-well plate. Therefore, in dual transfections, 2 µg of each 

plasmid were transfected. 1.5 mL of media was removed from the plates before plasmid addition, 

therefore after plasmid addition there was a 2 mL total volume in the well.  Lipofectamine is 

incubated first in Opti-Mem Low Serum Media (Invitrogen) for 5 minutes. Before addition to the 

cells, plasmids were incubated for 20 minutes in 0.5 mL Opti-Mem Low Serum Media 

(Invitrogen) with Lipofectamine.  (Z-LL)2-ketone (CalBiochem), an IMP1 inhibitor, diluted in 

DMSO was added to a concentration of 40 µM. DMSO was also used as a control at the same 

concentration because it was used for dilution.  The transfected cells were allowed to grow 24 

hours before collection and cell lysing.   

 
Cell Lysates 

 Cell lysates were prepared in two different ways. The medium was first removed from 

the plate and the cells were detached using 5 mL of PBS buffer (Invitrogen) and collected into a 

15mL Falcon tube. The cells were spun down for 5 minutes at 12,000 rpm. The PBS was then 

removed without disturbing the pellet.  
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 For standard protein isolation, 200 µl of RIPA buffer (Thermo Scientific) was added, and 

the cells incubated on ice for 20-30 minutes and sonicated using the Sonifier 150 (Branson).  

 For membrane-specific protein isolation, the cells were resuspended in HEPES buffer 

(Invitrogen) and immediately flash frozen in dry ice. The samples at this point were stored 

overnight at -80°C. The following day, the cells were thawed slowly on ice for 1 hour. The 

samples were then mixed six times using a 22G syringe (Becton Dickinson) and centrifuged for 

1 minute at 1,000xg (4°C), the resulting pellet was the nuclear fraction. The supernatant and 

pellet were stored at -80°C. The supernatant was then centrifuged for 1 hour at 16,000xg (4°C), 

and the supernatant was then removed and stored at -80°C.  The pellet, containing the membrane 

fraction, was then resuspended in 100 µl of RIPA buffer (Thermo Scientific) and allowed to 

incubate on ice for 20-30 minutes and sonicated.  

 

Western Blots  

 Each protein lysate sample was measured via spectrophotometry to determine total 

protein concentration. 1.0 µl of protein lysate was placed in a cuvette with 999 µl of 

QuickStart™ Bradford Dye Reagent 1x (Bio-Rad). After blanking the spectrophotometer, a 

standard curve was produced using QuickStart™ Bovine Serum Albumin (BSA) Stand Set. All 

samples were then measured and then approximately 100 to 500ng protein of each sample was 

prepared for Western Blotting using Lane Marker Sample Buffer (Thermo Scientific).  The 

samples were boiled at 95°C for 5 minutes, and then allowed to cool for 5 minutes before being 

centrifuged for 1 minute at 13,200 rpm to remove insoluble debris. The samples, and the 

MagicMark XP Western Blot Protein Standard (Invitrogen), were then loaded onto the wells of a 

15% acrylamide gel, and run at 100 V for approximately 90 minutes until the sample dye 
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reached the bottom of the gel.  The gel was then set up for transfer onto a methanol-activated 

Immobilon Transfer Membrane (Millipore). Single membrane transfers were performed for 

approximately 2-3 hours at 35 volts, while double membrane transfers required 4 hours at 35 

volts.  

 The membranes were blocked using 0.5% Blotting-Grade Blocker (nonfat dry milk) 

(BioRad) dissolved in TBST (TBS buffer supplemented with 0.1% Tween). Membranes were 

then stained with primary antibodies:  Anti-flag antibodies (Sigma F1804) for screening of the 

substrates, or anti-LC3 antibodies (LC3B D11, XP Rabbit mAb (Cell Signaling) for autophagy 

studies. After washing thoroughly with TBST, the membranes were incubated with secondary 

antibodies:  anti-mouse antibodies for the anti-flag antibodies, and anti-rabbit for the anti-LC3 

antibodies. After a second wash cycle with TBST-Tween, the membranes were developed for 

imaging using SuperSignal West Dura Extended Duration Substrate kit (Thermo Scientific) 

following the standard protocol. Digital images were captured at various exposures using the 

VersaDoc Imaging System (BioRad).  The membrane was stripped of antibodies by incubating 

for 30 minutes in Restore™ Western Blot Stripping Buffer (Thermo Scientific), and the 

membranes were again blocked in milk and stained with appropriate antibodies, if desired.  

 Membranes were also stained for GAPDH which is used to normalize the quantity of 

protein loading. This is important if the results are quantitatively examined. The antibody used is 

anti-GAPDH (Ambion). The secondary antibody is anti-mouse. All procedures were done as 

previously mentioned.  
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RESULTS 
 

Substrates 

 In this project, the function of the IMPAS (IMP) family proteases was investigated to 

identify potential substrates.  First, various type II transmembrane proteins were investigated as 

potential substrates by overexpressing various IMPs in HEK293 cells along with potential 

substrates in co-transfection experiments, and using western blots to monitor potential substrate 

cleavage.  Figure-5 shows the plasmid constructs encoding three example substrates to be 

assayed.  The IMPAS protease and potential substrate were over-expressed in human embryonic 

kidney (HEK293) cells allowing for potential cleavage. The cells were then collected, lysed, and 

analyzed by Western blotting for substrate cleavage. The expected sizes of the uncleaved and 

cleaved substrate proteins are listed in Table 2. 

 

 

 

 

Figure-5: Example of Three Plasmid Constructs Encoding Potential 

Substrate Proteins.  The substrate genes are cloned into pcDNA3.1 HA 

vector including a flag tag (yellow Flag) and a transmembrane domain 

(TMD, blue). The TMD is the expected cleavage region by the IMPAS 

proteases 
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Table-2: Expected Substrate and LC3 Marker Protein Sizes, Uncleaved and Cleaved. 

 

Potential 

Substrate and 

LC3 Marker 

Proteins 

Predicted 

Molecular 

Weight 

Uncleaved 

Predicted 

Molecular 

Weight Cleaved 

in TMD 

Syntaxin 5A 35.09 kD 34.19 kD 

ODZ4 50.57 kD 42.63 kD 

∆ST-14 15.02 kD 12.85 kD 

LC3-I 18 kD N/A 

LC3-II 16 kD N/A 

HCV 25 kD 23 kD 
 

  

The genes encoded in each of the plasmid constructs were sequenced to confirm identity, and the 

sequences were all confirmed relative to the NCBI database. The D265A mutant of IMP1 

contains a single amino acid change, caused by a single base pair mutation, so the sequences 

were screened more closely, using a Chromas2 program (Figure-6). The correct IMP1 D265A 

mutation was confirmed (Figure 6B). 
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Figure-6: Sequencing Data for WT hIMP1 and hIMP1D265A. DNA 

sequence is color coded corresponding to the base pair. The triplet 

coding for the mutated amino acid region is labeled using a black bar 

lying above it, and the single letter code for the amino acid.   
 

  

 The expression of the IMP proteases in the HEK293 cells was confirmed by 

immunoblots. The plasmids containing the genes coding for IMP1, IMP4, and the mutants of 

each were transfected, and the myc-tagged proteins were identified by immunoblots (Figure-7). 

The vector (pcDNA4) was tested as a control as it does not express the myc tag. The expression 

of IMP1 and IMP4 was confirmed.  As expected, the negative control, vector pcDNA4 had no 

expression. IMP1, IMP4, and all of their variants show expression in the model HEK293system.  
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Figure-7: Verification of IMP1 and IMP4 Protease Expression in 

Transfected Hek293 cells. The proteins are visualized with anti-myc 

primary antibodies which bind to the myc-tag on the proteins which is 

encoded by the plasmid vector. The first lane shows the MagicMarkXP 

(Invitrogen) size marker. 

 

 

 Next, the Hepatitis C virus (HCV) core protein was tested as a potential substrate for 

protease hIMP1, based on preliminary data indicating it might act as a substrate (Okamoto et al, 

2008).  The data (Figure-8) show that vector by itself (left lane) does not affect the ability of 

endogenous IMP1 to process the HCV protein, leaving only the proteolytic product.  The 

addition of ectopically expressed wild-type hIMP1 (middle lane) still allows for the complete 

processing of the protein.  However, the addition of hIMP1 mutated within the second conserved 

aspartate region (D265A) (right lane) inhibits the ability of the endogenous IMP1 to process the 

HCV core protein, shown in the higher molecular weight unprocessed HCV protein band. 

Approximately 20% of the HCV core protein remained unprocessed when the mutant IMP1 

protein was expressed.  Thus, protease hIMP1 may indeed act to cleave HCV core protein. 

 

IM
P

1
 

W
T 

IM
P

4 

IM
P

1
 P

3
17

A
 

IM
P

1
D

2
1

9
A

 

p
cD

N
A

4
 

IM
P

1
 A

3
1

8D
 

IM
P

4
 D

2
6

5
A

 

40 

20 

30 

50 

IM
P

1
 P

3
17

L 



 31 

 

 

 

 

 

 

Figure-8: Cleavage of HCV Core Protein by hIMP1in HEK293 Cells. 

Mutant IMP1 (D265A) (right lane) inhibits the proteolytic activity of the 

HCV core protein substrate in the endogenous and ectopically expressed 

IMP1 leaving upper unprocessed form. The membrane is treated with 

anti-flag antibodies to visualize the flag-tagged HCV core protein. 

 
  

 Substrates for the members of the IMP family of proteins remains primarily 

undetermined, so other putative substrates were assayed, including type II transmembrane 

proteins that function in neuronal connectivity, signaling, or development. The IMP proteases, 

and the substrate of interest were overexpressed in HEK293 cells via co-transfections, and 

proteins were assayed to investigate potential cleavage. The Syntaxin 5A (STX5A) substrate 

protein ran at approximately 35 kD (Figure-9), the expected size without cleavage, regardless of 

which IMP protease was also expressed. The tested mutants containing a single amino acid 

change within the highly conserved second aspartic region also reveal no effect on the STX5A 

substrate. The sample containing both IMP1 and Z-LL2-ketone (IMP1 inhibitor) also showed no 
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change in protein size. Neither, IMP1, IMP2, IMP3, nor IMP4 were found to cleave Syntaxin 5A 

in the HEK293 model system.  

 
 

 

Figure-9: Syntaxin 5A is Not Cleaved by Proteases IMP1, IMP2, 

IMP3, or IMP4. The ladder used in each image is the Magic Mark XP 

Protein ladder (Invitrogen), and the sizes of those bands are indicated in 

the figure in red.  Z-LL2-k is the abbreviation used in the figure for the 

(Z-LL)2-ketone inhibitor, which in this case had no effect on cleavage of 

STX5.  
 

  

 ODZ4 is another type II transmembrane protein identified as a putative substrate for the 

IMP proteins. The cleavage capabilities were again tested using transfection and Western 

blotting (Figure-10). The bands for ODZ4 ran at a molecular weight just above 60 kD, which is 

an unexpected size, seeing as uncleaved ODZ4 is expected to be approximately 50 kD, and 

cleaved protein is supposed to run at 42 kD. Cleavage by these proteases certainly would not 

result in the protein becoming larger. The IMP mutants also revealed no change in protein size. 

The sample containing (z-LL)2-k (IMP1 inhibitor) also shows no protein size alteration.  

Therefore, ODZ4 does not appear to be a cleavage substrate of proteases IMP1, IMP2, IMP3, or 

IMP4.  

 

H
C

V
+

IM
P

1
 D

2
 

+
 I

M
P

4
 

+
 I

M
P

3
 

+
 I

M
P

2
 

+
 I

M
P

1
 D

2
6
5

A
 

+
 I

M
P

1
 W

T
 

+
 V

e
c
to

r 

+
 I

M
P

4
 D

3
5
9

A
 

40 

20 

30 

50 

+
 I
M

P
1
W

T
 +

 Z
-L

L
2
-k

 

+
 I

M
P

1
W

T
+

D
M

S
O

 

40 

20 

30 

50 

Anti-Flag 

Antibody 

STX5A STX5A 



 33 

 
 

 

 

Figure-10: ODZ4 is Not Cleaved by Proteases IMP1, IMP2, IMP3, 

or IMP4. The ladder used in each image is the Magic Mark XP Protein 

ladder (Invitrogen) and the sizes of those bands are indicated in the 

figure in red. Z-LL2-k is the abbreviation used in the figure for the (Z-

LL)2-ketone inhibitor.  
 

  

 Substrate ∆ST-14 was also screened for potential cleavage by IMP1 through transfection 

and Western blotting (Figure-11).  All of the bands ran at the same level on the gel which is 

expected if the substrate is not cleaved.  The bands ran just below the 20 kD band the appropriate 

size for the uncleaved protein.  The cleaved size is estimated to be much smaller (~12 kD). The 

right lane on the membrane contains the ∆ST-14, IMP1, and z-LL2-k (IMP1 inhibitor) and the 

bands runs in line with all the others. Thus, ∆ST-14 does not appear to be a cleavage substrate of 

IMP1.  
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Figure-11:  ∆ST-14 is Not a Cleavage Substrate of IMP1. The 

ladder used in each image is the Magic Mark XP Protein ladder 

(Invitrogen) and the sizes of those bands are indicated in the figure in 

red.  Z-LL2-k is the abbreviation used in the figure for the (Z-LL)2-

ketone inhibitor.  

 
 

 

 

 

Autophagy Tests 
 

 The effects of overexpression of the IMP1 protease on the autophagy pathway was also 

studied using transfection and Western blotting, using an endogenous LC3 protein (LC3-II is a 

known autophagy marker). The proportions of LC3-II, the processed form to the original LC3-I 

form, was used for comparison and is represented graphically along with each blot. First, the 

effects of the control vector, vector encoding IMP1, and vector encoding an IMP1 mutant (single 

base pair in the second conserved aspartic region-D265A) were transfected separately into 

HEK293 cells and investigated for autophagy levels (Figure-12). The lower 16 kD LC3-II band 

is of the expected size, and is increased with the addition of IMP1 WT to the cells [ratio ~3]. The 

control plasmid and D265A mutant have far lower LC3-II expression [ratio < 2].   
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Figure-12: Autophagy Analysis of hIMP1 in HEK293.  The over-

expression of wild-type hIMP shows upregulation of the autophagy 

marker LC3-II, while the D265A mutant shows no significant change.  

 

 Autophagy is increased when cells are starved. The effect of the vector, wild-type IMP1, 

and the D265A mutant, are examined for their effects on autophagy with natural upregulation of 

the pathway. The HEK293 model system was used in three conditions after transfection: one 

being a control complete media, a five hour starvation condition, and a five hour starvation 

period with Bafilomycin A1- an autophagy pathway inhibitor (Figure-13). The vector samples 

were used as controls. The samples overexpressing WT IMP1 represent the effect of IMP1 on the 

autophagy pathway in the HEK293 model system. The D265A mutant (single amino acid 

mutation in the second conserved aspartic region) represents an overexpressed mutated IMP1 

gene. The effects of autophagy by vector, wild-type IMP1, and IMP1 D265A mutant in complete 

media were confirmed in this second experiment, showing an increase in autophagy with the 

overexpression of wild-type IMP1.  It can be seen that the wild-type IMP1 bands show a 

predominant LC3-II (lower band) than the other two in each set. This is even more apparent in 

the LC3-II to LC3-I ratio represented in the graph. The mutant does show an increase though not 
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nearly as high as the wild-type.  Bafilomycin A1 shows a marked decrease in all LC3-II 

expression as it is inhibiting that pathway, indicating that the observed increased signals actually 

represent autophagy not inhibition.  At the bottom of the figure a stain for GAPDH reveals equal 

loading, and so the intensity of the bands can be compared.  

 

 

 

 

 

 

 

 

 

 

 

         
Figure-13: Starvation and Inhibited Autophagy Analysis in HEK293 

Cells. Sets are color coded to indicate the cell growth condition. Blue 

denotes control cells grown in complete media. Red indicates cells that 

were starved for 5 hours after transfection using Hank’s Balanced Salt 

Solution (HBSS).  Yellow represents cells treated with bafilomycin 

which are also starved for 5 hours in HBSS.  
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 A knock out mouse model lacking the IMP1 gene was also investigated.  Liver tissues of 

P0 pups were screened for autophagy via Western blotting using the anti-LC3 antibody (Figure 

14). Pups from the same litters were compared. The wild-type sample shows the predominant 

form of LC3 to be LC3-I, and limited to no lower band. The knockout pup sample has both 

bands; the protein concentration is dominated in the lower molecular weight LC3-II band – 

indicating increased autophagy when compared to the control wild-type pup. The ratio of LC3-II 

to LC3-I is represented graphically, to more clearly indicate the levels of autophagy in each 

sample. This increased autophagy is even more apparent in the graphic representation where the 

ratio for the knockout is over 1, and the wild-type has a ratio of 0.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-14: Screening of IMP1 Knockout P0 Pups for Autophagy. 

The IMP1 knockout pup is indicated by the (-/-) genotype and the red bar 

on the graph, which shows an increase in LC3-II relative to LC3-I.  
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DISCUSSION 
 
 

 All of the protease and potential substrate sequences cloned into the plasmid vectors were 

verified by sequence analysis. The other mutants were confirmed previous to this experiment. 

The model system used was HEK293 cells and the expression of the proteases in this cell line 

was confirmed by immunoblots using the myc-tag fused to the expressed proteins. Samples were 

prepared without boiling and stained for the myc-epitope tag (Figure 7). HCV core protein a 

published IMP1 substrate was confirmed and shows IMP1 is able to cleave in the model system 

(Figure 8). Both the vector and wild-type IMP1 do not inhibit cell from processing the HCV core 

protein. However, the D265A mutant, single point mutation in the highly conserved second 

aspartic acid region, of IMP1 inhibits HCV core protein cleavage by endogenous IMP1. 

Therefore, the HEK model system is effective for experiments with this family of proteases.  

 Based on the data presented in this project, Syntaxin 5A (STX5A), ODZ4, and ∆ST-14 

are not cleavage substrates of IMPAS. Both STX 5A and ∆ST-14 ran at the expected uncleaved 

molecular weights: 35kD and 15kD respectively (Figures 9 and 11). However, ODZ4 ran at just 

over 60 kD (Figure 10), approximately 10 kD higher than expected for the uncleaved protein. 

This indicates that there is some other cellular processing of this protein occurring in the model 

system. None of the considered substrates of IMPAS were actually cleaved and can be ruled out. 

However, pinpointing the exact substrates for the members of the IMPAS family of proteases 

will be critical in determining their function; it will also allow for more accurate research into the 

potential neurodegenerative diseases it may be related to. 

 The role of IMP1 in the autophagy pathway was investigated as another angle to 

narrowing down the function of this newly discovered family of proteases. In the HEK293 
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model, overexpression of wild-type IMP1 significantly increased autophagy (Figure 12). It is 

clear that with the addition of wild-type IMP1, the ratio of LC3-I to LC3-I is calculated to be at 

approximately three; whereas with the control vector and with the D265A mutant of IMP1 the 

ratio is well under two. This indicates that the functional IMP1 causes this increase. Starvation 

naturally induces the autophagy pathway, and the addition of wild-type IMP1 autophagy is still 

increased further (Figure 13). D265A mutant saw increase in autophagy when compared to the 

vector in both complete media and more noticeably when starved. The addition of Bafilomycin-

A1, an autophagy inhibitor, shows a marked decrease in autophagy in all samples (Figure 13). 

This indicates that the increase in the lower molecular weight LC3-II band is due to an increase 

in autophagy not do to inhibition in the pathway. In the HEK293 model system it is 

demonstrated that wild-type IMP1 increases autophagy; this means that the protease may be 

integral in some part of the pathway.  

 An IMP1 loss of function knockout (KO) mouse model was also tested, and liver tissue 

cells were screened for autophagy. The KO P0 pup shows much higher autophagy than its wild-

type litter mate (Figure 14). The ratios were dynamically different at approximately 1.1 and 0.2 

respectively. In this model system, the results reveal that without IMP1 expression the autophagy 

is increased, while the wild-type litter mate which expresses IMP1has limited autophagy. The 

complete lack of IMP1 also increases autophagy.  

 IMP1 is a protease that demonstrates a putative role in the autophagy pathway. The 

protein is most likely highly regulated due to the high levels of autophagy when it is 

overexpressed or when it is absent. The protease should also be studied in a variety of living 

tissues because of the differences shown between the model systems. HEK293 cells being kidney 

cells may have different outcomes than the liver tissues used in the KO mouse study. The 
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function of the IMP family of proteases, especially IMP1, in the autophagy pathway still requires 

more investigation.  

 In conclusion, the role and function of the IMP family of proteins still remain vastly 

unknown. Syntaxin 5A, ODZ4, and ∆ST-14 have been ruled out as potential substrates. 

However, a putative connection has been uncovered between IMP1 and autophagy.  Further 

investigation into the substrates and potential role in the autophagy pathway of IMPAS is still 

necessary.  
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