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Abstract

This report focuses on investigating the data related to the human walk cycle with various pertur-
bations. The biomechanics of muscle movement is discussed in the introduction. Then various muscle
models, such as the Hill’s muscle model, and spring model with a viscous contractile element are ex-
amined. This relates to the range of motion (ROM) of joints in relation to the force, angle and torque.
Then human gait is introduced as the normal walk cycle and all the phases and sub–phases of the gait
cycle are discussed. The data is given from subjects walking across force plate and the movement is
measured with a gonometer. The bulk of the report compares data sets using statistical and analytical
methods. In the gait data of 10 subjects, the ankle angle, center of pressure, and ground reaction force
is compared between 2◦ and 5◦ perturbations, with perturbations occurring at 3 different timepoints in
the gait. A perturbation is a deviation from the normal state of path caused by an outside influence of
the tilt of the platform. Two and 5◦ is the angle of the tilt of the force plate. It examines the reaction of
the ankle with respect to the change in the force plate via the perturbations that occurred at different
time points. Minimums, maximums, correlation coefficient, slope and two different statistical tests
were conducted. All the calculations were completed in MATLAB to understand patient variation and
the influence of a perturbation on gait.



Executive Summary

This report investigates the data related to the human walk cycle with different perturbations that
occur at three timepoints. The biomechanics of muscle movement is discussed in the intorduction. It
goes over the biology of the musculoskeletal system and the mechanics of muscle movement. Then
there are various muscle models, such as the Hill’s muscle model, which describes the relationship
between forces in the muscles. The spring model with a viscous contractile element explains the muscle
contraction using the parallel elements, series elements, and contractile elements. It continues with a
description of how stiffness is measured, including regular and rotational stiffness. Then, the data is
introduced with how the data was collected. Then human gait is described in detail as the normal
walk cycle and all the phases and sub–phases of the gait cycle. The stance phase has five sub–phases
and swing phase has 3 sub–phases. The data is given from subjects walking across force plate and the
movement is measured with a gonometer. The ankle angle, center of pressure, and a ground reaction
force is recorded. Each paramenter is defined in terms of gait. The graphs of the data are presented
with an initial analysis.

The bulk of the report compares data sets using statistical and analytical methods. In the gait
data of 10 subjects, the ankle angle, center of pressure, and ground reaction force is compared between
2◦ and 5◦ perturbations, with perturbations occurring at 3 different timepoints in the gait, which is
100 ms, 225 ms and 350 ms. First the minimums and maximums are calculated and compared across
the different perturbations. Then, the correlation coefficients are identified, along with a description
of measurements. Then the t–test and Passing–Bablok analysis follow. After checking, the data fails
to have a normal distribution, which results in no definite conclusions from the test. The data then
undergoes ankle angle maximums analysis, which gives vast insight into the actions of the perturbations
on the data. It examines the reaction of the ankle angle with respect to the change in the force plate
by the perturbations that occurred at different time points. Several subject’s data was displayed and
discussed. The center of pressure analysis was next, which showed the perturbations as oscillations.
These oscillations are fitted to a sine curve, and compared between the different perturbated data. The
least squares analysis was conducted and presented. The ankle angle data were fit to the curve for each
perturbation. The conclusion included the similar trend of the effect of the perturbations. With any
perturbation, the curves of the stance phase followed a distinct pattern. There were three segments that
showed the three main subphases of the stance. Then, the data with the perturbations that occurred
earlier in the stance phase were more distant from the nominal data and the data perturbations that
occurred further in the stance phase were able to return closer to the nominal data. This type of study
can help develop better prosthetics or create better shoe designs by accounting for the way the foot
reacts to random, uneven ground.
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Chapter 1

Background

1.1 Biology of Musculoskeletal System

The human musculoskeletal system is an organ system that gives humans the ability to move,
by using a combination of their muscular system and skeletal system. The musculoskeletal system
provides good support, stability, and movement of the body. It is made up of the bones, muscles,
cartilage, tendons, ligaments, joints, and other connective tissue that supports and binds tissues and
organs together. The musculoskeletal system’s primary functions include supporting the body, allowing
motion, and protecting vital organs [30]. Fig. 1.1 shows the back anatomy of the human body, with
the left side labeling the various muscles and the right labeling the various bones with relation to the
muscles. Fig. 1.2 similarly shows the muscles and the bones on the front of the human anatomy.

Figure 1.1: The layout of skeletal muscle on
the back side of the human body, along with
the bones [30].

Figure 1.2: The layout of skeletal muscle on
the front side of the human body, along with
the bones [30].

There are three types of muscles: skeletal, smooth, and cardiac (heart). The skeletal and smooth
muscles are part of the musculoskeletal system. The focus here is on the skeletal muscles, which are the
type that contract to move the various parts of the body. Skeletal muscles are bundles of contractile
fibers that are organized in a regular pattern, so that under a microscope they appear as stripes.
Skeletal muscles, which are responsible for posture and movement, are attached to bones and arranged
in opposing groups around joints. Muscles and bones work together to move the body. The muscles are
attached to bones by bands of tough connective tissue called tendons. Movement occurs when muscles
shorten or contract and pull rather than push on a bone. Muscles can only pull on a bone, not push.
The skeleton can be moved by the coordinated action of pairs of muscles. One muscle will move a bone

7



in one direction while the other will move the bone in the opposite direction [36]. For example, muscles
that bend the elbow (biceps) are countered by muscles that straighten it (triceps). These countering
movements are balanced. The balance makes movements smooth, which helps prevent damage to the
musculoskeletal system. Skeletal muscles are controlled by the brain and are considered voluntary
muscles because they operate with a person’s conscious control [36].

Skeletal muscle is organized into bundles of muscle cells or fibers that are held together by a sheath
of connective tissue. This enables the muscle cells to function together as a unit. Each muscle fiber is
a single cell with many nuclei. Each fiber is comprised of many smaller myofibrils arranged lengthwise.
The entire muscle, as well as the individual cells, are wrapped in collagen as shown in Fig. 1.3. Near
the end, collagen fibers of a tendon merges with the perimysium and endomysium of the muscle. The
collagen merges to form the tendons, which attach the muscle to the bone [39].

Figure 1.3: The organization of muscle. A progressive view of a whole muscle demonstrates the organi-
zation of the filaments that compose the muscle [30].

The functional unit that produces motion at a joint consists of two discrete units, the muscle belly
and the tendon that binds the muscle belly to the bone. The muscle belly consists of the muscle cells,
or fibers, that produce the contraction and the connective tissue encasing the muscle fibers. A skeletal
muscle fiber is a long cylindrical, multinucleated cell that is filled with smaller units of filaments. These
filamentous structures are roughly aligned parallel to the muscle fiber itself. The largest of the filaments
is the myofibril, which takes up almost the entire cross section of the muscle fiber. Myofibrils are long,
cylindrical strands of contractile proteins. Typically there are hundreds of these in one cross section of
a muscle fiber. Looking at one myofibril, it is divided into segments called sarcomeres. Each sarcomere
also contains filaments, known as myofilaments. These are the contractile units of a muscle. There are
two types of myofilaments within each sarcomere. The thicker myofilaments are composed of myosin
protein molecules, and the thinner myofilaments are composed of molecules of the protein actin. Sliding
of the actin myofilament on the myosin chain is the basic mechanism of muscle contraction [30].

A dark stripe called a Z–line marks the ends of one sarcomere and the beginning of the next.
Sarcomeres are composed of thick filaments and thin filaments. The thin filaments are attached at
one end to a Z–line and extend toward the center of the sarcomere. The thick filaments, by contrast,
lie at the center of the sarcomere and overlap the thin filaments. The thick and thin filaments slide
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with respect to one another, using ATP as a source of energy. As a result of the sliding, the Z discs
are pulled closer together. This is called the sliding filament mechanism. The contraction of a whole
muscle fiber results from the simultaneous contraction of all of its sarcomeres [30].

1.2 The Mechanics of Muscle Movement

The sarcomere contains the contractile proteins actin and myosin, which is the basic functional unit
of a muscle. Contraction of a whole muscle is the sum of singular contractions occurring within the
individual sarcomeres. The thinner actin chains are more abundant than the myosin myofilaments in
a sarcomere. The actin myofilaments are anchored at both ends of the sarcomere at the Z–line and
project into the interior of the sarcomere where they surround a thicker myosin myofilament [35].

Figure 1.4: Organization of actin and myosin within a muscle fiber. The arrangement of the actin and
myosin chains in two sacromeres within a fiber give the characteristic of skeletal muscle [30].

The arrangement of myosin myofilaments surrounded by actin myofilaments as they are repeated
throughout the sarcomere is shown in Fig. 1.4. The amount of these contractile elements within the
cells is strongly related to a muscle’s contractile force. Contraction results from the formation of cross–
bridges between the myosin and actin myofilaments, causing the actin chains to slide on the myosin
chain [3]. The connective tissue consists of the epimysium surrounding the whole belly, the perimysium
encasing smaller bundles of muscle fibers, and the endomysium that covers individual muscle fibers.

Fig. 1.5 gives a visual representation of how the muscles are composed. The outermost layer of
connective tissue that surrounds the entire muscle belly is known as the epimysium. The muscle belly
is divided into smaller bundles by more connective tissue known as perimysium. Finally, individual
fibers are surrounded by more connective tissue, called the endomysium. Thus the entire muscle belly
is contained in a large network of connective tissue that then is bound to the connective tissue tendons
at the end of the muscle. The amount of connective tissue vary widely from muscle to muscle. The
amount of connective tissue within an individual muscle influences the mechanical properties of that
muscle. It shows the varied mechanical responses of individual muscles. An essential function of muscle
is to produce joint movement. The passive range of motion (ROM) available at a joint depends on the
shape of the articular surfaces as well as on the surrounding soft tissues [30]. However, the joint’s active
ROM depends on a muscle’s ability to pull the limb through a joint’s available ROM. Under normal
conditions, active ROM is approximately equal to a joint’s passive ROM. There is a wide variation
in the amount of motion available at joints throughout the body. The knee joint is capable of flexing
through an arc of approximately 140◦, but the the thumb usually is capable of no more than about
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Figure 1.5: Organization of the connective tissue within muscle. The whole muscle belly is an organized
system of connective tissue [30].

90◦ of flexion. Joints that exhibit large ROMs require muscles capable of moving the joint through
the entire range. Thus muscles exhibit structural specifications that influence the magnitude of the
excursion that is produced by a contraction. The length of the fibers composing the muscle and the
length of the muscle’s moment arm are the main characteristics that determine the range of motion
[30].

Figure 1.6: The sliding filament model. The contraction of skeletal muscle results from the sliding of the
actin chains on the myosin chains. [30].

Fig. 1.6 shows that the tension of the contraction depends upon the number of cross–bridges formed
between the actin and myosin myofilaments. The number of cross–bridges formed depends not only on
the abundance of the actin and myosin molecules, but also on the frequency of the stimulus to form
cross–bridges. Each myosin molecule is shaped like a golf club, with the head of the golf club pointed
out from the surface of the thick filament as shown in Fig. 1.7. This structure will form the cross bridge
that binds to the thin filament.

The calcium ions (Ca++) flow into the sarcomere with its thick and thin filaments. This causes the
filaments to start sliding and thus the sarcomere to shorten. But very quickly, the Ca++ is actively
transported back into the sarcoplasmic reticulum and the sarcomere relaxes. Actin is the main protein
of the thin filament. A second protein, troponin, is found at intervals. When Ca++ binds to troponin,
this allows myosin heads to bind to the actin of the thin filament, creating cross bridges. The cross
bridges then pull on the thin filaments, causing the sarcomere to shorten. The cross bridges then release
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Figure 1.7: Muscle shortening corresponds to the sliding of actin filaments past myosin filaments.

the actin, with ATP used by each cross bridge in each cycle. When Ca++ is present, this cycling of
cross bridges continues and the filaments continue to slide with respect to one another. When Ca++

goes back into the sarcoplasmic reticulum, the contraction stops [3].

1.3 Hill’s Model

Muscle produces two kinds of force, active and passive, which sum to create a muscle’s total force.
A muscle’s contractile elements provide its active force through the actin and myosin mechanism. Non–
contractile elements contribute to its passive force. A muscle’s passive element has properties which
are elastic, but it can be modeled more simply as a spring. Because this spring–like element attaches
in series with the contractile element, the force that the contractile element produces is an active force.
This force is transmitted to the skeleton by a series elastic element. Muscles, however, have another
elastic element, as well, called a parallel elastic element that also contributes to its passive force [37].

Activated muscles produce more force when held isometrically, which is at a fixed length, than when
they shorten. When muscles shorten, they waste some of their active force in overcoming an inherent
resistance. This resistance is not from the series elastic element. The faster a muscle shortens the
less total force it produces. Assuming a constant active force, the faster shortening leads to a larger
resistive force. To account for the fact that muscle produces less force when it shortens, this viscous
element is proposed which lies in parallel with the contractile element. This component is called a
parallel elastic element [32].

The force–velocity relationship was first described by A. V. Hill (1938). Hill developed a rectangular
hyperbolic equation to describe the muscle force–velocity relationship. This relation that describes the
force–velocity behavior of muscles during shortening is the Hill’s equation. This is a state equation
applicable to skeletal muscle and is used to show tetanic contraction. It relates tension to velocity as
follows:

(P + a)v = b(P0 − P ), (1.1)

where a and b are constants derived experimentally (usually a = 0.25, b = 0.25), P is muscle force, P0

is maximum tetanic tension, and v is muscle velocity.
Another form of the Hill’s equation can be expressed as

(P + a)(v + b) = b(P0 + a), (1.2)
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where v is the speed of a muscle contraction under a load P , P0 is the maximum value of the isometric
force during tetanic stimulation of the entire muscle, and constants a and b are empirical values. The
constant a has the dimensionality of force and is equal to about 4x105 dynes/cm of a cross section of
various types of muscles, while the constant b has the dimensionality of velocity, expressed in cm/sec
or L0/sec, where L0 is the initial length of the muscle. The second constant differs for various muscles
[2].

If the contracting muscle has a length L at the moment t, then the velocity of its contraction ∂L
∂t

is
determined by the formula

∂L

∂t
=

(F1 − F )b

(F + a)
(1.3)

where F is the force that overcomes the muscle, F1 is the maximum force of the muscle at the length
at which the velocity of its contraction is measured, and a and b are constants.

Hill’s equation accurately describes the contraction of muscles in vertebrates and invertebrates,
although the correlation of the constants of the equation to the contractile, elastic, and viscous elements
in the muscle structure has not yet been established.

The Hill’s equation demonstrates that the relationship between P and v is hyperbolic. Therefore,
the higher the load applied to the muscle, the lower the contraction velocity. Similarly, the higher the
contraction velocity, the lower the tension in the muscle. This hyperbolic form has been found to fit
the empirical constant only during isotonic contractions near resting length. In an isotonic contraction,
tension remains unchanged and the muscle’s length changes. For example, an isotonic contraction is
lifting an object at a constant speed. There are two types of isotonic contractions: concentric and
eccentric. In a concentric contraction, the muscle tension rises to meet the resistance, then remains the
same as the muscle shortens. In eccentric, the muscle lengthens due to the resistance being greater than
the force the muscle is producing [4]. The muscle tension decreases as the shortening velocity increases.
This feature has two main causes. The major cause appears to be the loss of tension in the cross bridges
in the contractile element and then they reform in a shortened condition. The second cause appears to
be the fluid viscosity in both the contractile element and the connective tissue. Whichever the cause
of loss of tension, it is a viscous friction and can therefore be modeled as a fluid damper.

Muscle velocity affects force development in whole muscles. Force (P ) is greater during lengthening
than shortening contractions. The greater the shortening velocity (v), the smaller the force, which is
why humans cannot lift heavy objects quickly. In the shortening regime, mechanical power output is
maximum when P and v are around one–third their maximum values [32].

Muscle produces two kinds of force, active and passive, which sum to compose a muscle’s total force.
A muscle’s contractile elements provide its active force through the actin and myosin mechanism. Non–
contractile elements contribute to its passive force. A muscle’s passive element has properties which
are elastic, but it can be modeled more simply as a spring. Because this spring–like element attaches
in series with the contractile element, the force that the contractile element produces is an active force
transmitted to the skeleton via a series elastic element. Muscles, however, have another elastic element,
as well, called a parallel elastic element that also contributes to its passive force.

The three–element Hill’s muscle model is a representation of the muscle mechanical response. The
model is constituted by a contractile element (CE) and two non–linear spring elements, one in series
(SE) and another in parallel (PE). The active force of the contractile element comes from the force
generated by the actin and myosin cross–bridges at the sarcomere level. It is fully extensible when
inactive but capable of shortening when activated. The connective tissue that surround the contractile
element influences the muscle’s force–length curve. The PE represents the passive force of these con-
nective tissues and has a soft tissue mechanical behavior. The PE is responsible for the muscle passive
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behavior when it is stretched, even when the contractile element is not activated. The SE represents
the tendon and the elasticity of the myofilaments. It also provides an energy storing mechanism [32].

Figure 1.8: The Hill’s functional model of the muscle. The three element model with the parallel element,
contractile element, and series element [20].

In Fig. 1.8, the fundamental assumptions were that the resting length–tension relation is governed by
an elastic element in parallel with a contractile element. This means that active and passive tensions
add. The parallel elastic element is the passive property. Also, the active contractile element is
determined by active length–tension and velocity–tension relationships only. The series elastic element
becomes evident in quick–release experiment [20].

Resting length–tension relation is governed by an elastic element in parallel with a contractile
element. The active and passive tensions add together. The parallel elastic element is the passive
property. The active contractile element is determined by active length–tension and velocity–tension
relationships only. The net force–length characteristics of muscle is a combination of the force–length
characteristics of both active and passive elements. The forces in the contractile element, FCE, including
the series element, FSE, and the parallel element, FPE, satisfy the following equation

F = FPE + FSE, (1.4)

and
FCE = FSE. (1.5)

During the isometric contraction, the series elastic component is under tension and therefore it is
stretched a certain amount. Since the overall length of the muscle is kept constant, the stretching of
the series element can only occur if there is an equal shortening of the contractile element itself [32].
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1.4 Measuring Stiffness

Stiffness is the rigity of an object. It is the amount to which the body resists deformation in response
to an applied force. The complementary idea is flexibility. The relationship between the two concepts
is that the more flexibile an object is, the less stiff it is. The stiffness (k) of a body is a measurement
of the resistance of an elastic body to deformation. k is usually measured in Newtons per meter. The
equation for stiffness where a body has a single degree of freedom, such as stretching or compressing a
rod, is

k = F/λ (1.6)

where F is the force applied on the body in Newtons, λ is the displacement produced by the force
along the same degree of freedom in meters, and k is the stiffness coefficient measured in Newtons per
meter [15].

It is noted that for a body with multiple degrees of freedom, the equation above does not apply
since the applied force generates not only the deflection along its own direction, but also those along
other directions.

The body can also have rotational stiffness, K. The equation for rotational stiffness is

K = M/θ (1.7)

where M is the applied moment in Newton meters, and θ is the rotation in radians. The rotational
stiffness is measured in Newtons–meters per radian [15].
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Chapter 2

Data Introducion

2.1 The Origin of the Data

The data was gathered in a study by Gregg et al [16]. Thirteen able–bodied subjects between the ages
of 18 to 70 years were used for the study. The individuals were excluded if they had a body weight was
over 250 pounds, were pregnant, had a history of back and leg injury, had joint problems, or any other
illnesses that could interfere with the data. Subjects were provided a harness and handrails to protect
them from falls. The harness did not provide body–weight support, and the subjects were instructed
not to use the handrails unless they lost balance, which rarely occurred. Each subject was measured
with an electrogoniometer that measured the ankle angle. Data were recorded synchronously with a 1
kHz sampling rate. A force plate was mounted on top of the perturbation device as shown in Fig. 2.1
to measure the forces exerted by the stance foot, which is the foot that is in the stance phase of the
gait cycle [16].

Figure 2.1: Perturbation and force plate machine that was used to collect the data used in this study
[16].

As seen in Fig. 2.1, the perturbation device was placed within an elevated walkway to make an even
walking surface. Each trial consisted of the subject walking along the walkway, stepping on the force
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plate (in blue), and walking a few more steps on the walkway and then stopping.

Figure 2.2: Diagram of robotic force plate and the dorsiflexive stance of the foot with center of pressure
and ground reaction force [16].

Subjects were asked to walk at a comfortable speed, and a metronome was used to reduce step
period variability and encourage a walk between 85–90 steps per minute for consistency. The starting
location of each subject was adjusted such that, on average, the center of rotation of the ankle at heel
contact aligned with the rotational axis of the perturbation platform. Perturbations occurred in 50%
of the trials to make them unpredictable. The 2◦ perturbations consists of the force plate tilting 2◦

either in the plantarflexive position (down) or dorsiflexive position (up) at a specific time as shown in
Fig. 2.3. The 5◦ perturbations are the same except the force plate tilts at a 5◦ angle. For the 2◦ study,
perturbations were timed at different points after ipsilateral heel strike (100, 225, 350, or 475 ms with
equal probability) to elimiate bias. The 475 ms condition was excluded because the foot occasionally
lifted off the platform before the perturbation was completed. Each set of trials had a fixed number of
perturbations, where each time point was tested 10 times in a random order.

Figure 2.3: The foot in the neutral, plantarflexive and dorsiflexive positions [21].

Dorsiflexion and plantarflexion refers to extension or flexion of the foot at the ankle. These terms
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refer to flexion between the foot and the front of the leg. Dorsiflexion is where the toes are brought
closer to the shin, the turning of the foot or the toes upward. This decreases the angle between the
dorsum of the foot and the leg. For example, when walking on the heels the ankle is described as being
in a dorsiflexive position. Plantarflexion is the movement which decreases the angle between the sole
of the foot and the back of the leg. It is the pointing of the foot and toes. For example, standing on
the tiptoes can be described as plantarflexion.

The perturbation direction (dorsiflexion or plantarflexion) was chosen at random with equal prob-
ability to prevent anticipatory compensation from the subjects. There was a total of 400 perturbation
trials and approximately 400 unperturbed trials in the 2◦ study. This large number of trials is to
minimize inter–subject variability and allow a small number of subjects to be used. The experiment
was repeated with 5◦ perturbations. The 5◦ experiment had fewer subjects and invoked only the 100
ms perturbation condition. These experiments entailed 100 perturbed trials and approximately 100
unperturbed trials [16]. Data for both experiments are available from the Dryad Digital Repository
[17]. The data used contains only the stance phase. The measurements are in the sagittal plane with
respect to the ankle’s center of rotation. The sagittal plane is the plane that divides the body of a
bilaterally symmetrical animal into right and left sections.

The perturbations occurred once at the given time point (ms). For the plantarflexive perturbation,
the platform tilted down away from the test subject walking, and for the dorsiflexive perturbation, the
platform titled towards the subject, with respect to the pivot point in the middle of the platform.

2.2 Locomotion and Gait

Locomotion is defined as a progression of the body as a whole produced by movements of the body
segments. During normal walking, body weight is supported by one limb and this part of the walk
demonstrates several capabilities such as muscular coordination, balance, strength and joint kinematics.
Gait is the medical term to describe human locomotion, which is the way humans walk. Normal gait is
a series of rhythmic alternating movements created by alternating propulsion of the legs, which creates
forward movement. In total, it is the movement of the lower limbs, upper limbs with the trunk leading
to forward progression of the center of gravity [22]. To have gait, there needs to be the ability to
support upright position, the ability to maintain balance, and the ability to create a new step forward.
The forces for gait are muscular force, gravitational force, forces of momentum, and floor reaction force.
Fig. 2.4 shows the gait cycle color coded for the different phases.

The gait cycle begins when one foot contacts the ground and ends when that foot contacts the
ground again. Thus, each cycle begins at initial contact with a stance phase and proceeds through
a swing phase until the cycle ends with the limb’s next initial contact. Stance phase accounts for
approximately 60%, and swing phase for approximately 40%, of a single gait cycle. Each gait cycle
includes two periods when both feet are on the ground. The first period of double limb support begins
at initial contact, and lasts for the first 10 to 12 percent of the cycle. The second period of double
limb support occurs in the final 10 to 12 percent of stance phase. As the stance limb prepares to leave
the ground, the opposite limb contacts the ground and accepts the body’s weight. The two periods of
double limb support account for 20 to 24 percent of the gait cycle’s total duration [27].

The gait cycle starts with the stance phase. It is divided into 5 sub–phases shown in consecutive
order in Fig. 2.5, which include initial contact, loading response, mid–stance, terminal stance, and
pre–swing. Those subphases are characterized as heel strike to foot flat (0–10% of gait cycle), foot flat
through mid–stance (10–30% of gait cycle), mid–stance through heel off (30–50% of gait cycle), and
heel off to toe off (50–60% of the gait cycle).
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Figure 2.4: All the phases of the gait cycle [27].

Figure 2.5: The five sub–phases of the stance phase of the gait cycle [27].

The stance phase begins at the instance that one extremity contacts the ground and continues only
as long as some portion of the foot is in contact with the ground. It is initial contact, which is heel
strike to no contact, which is toe off. Stance phase begins at the instance that one foot contacts the
ground, which is the initial contact made by heel strike, and continues as long as some portion of the
foot is in contact with the ground. The phase ends when that foot lifts off the ground: toe off. The
stance phase is the weight bearing phase. Fig. 2.6 incorporates the percentages of the stance phase of
gait. It provides the stability of the gait, and it is necessary for an accurate swing phase to take place
[22]. Fig. 2.7 shows the full cycle of the gait as a graph.

At the initial contact of the stance phase which is heel stike, the stance phase begins with initial
contact and ends with the foot flat. The knee is extended and the ankle is neutral or slightly plan-
tarflexed. Normally, the heel contacts the ground first. This phase continues until the foot is flat on
the ground [22].

The loading response subphase, which is foot flat, occurs immediately following heel strike. It is the
point at which the foot fully contacts the floor. It corresponds to the gait cycle’s first period of double
limb support and ends with contralateral toe off, when the opposite foot leaves the ground. During
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Figure 2.6: The stance phase of the gait in percentages divided into three parts, the contact phase 27%,
midstance phase 40% and the propulsive phase 33% [27].

this, the knee flexes 15◦ while the ankle plantarflexes 15◦, as an energy–conserving mechanism [33].

Figure 2.7: Graph of the full gait cycle [27].

The next phase is the mid–stance phase. This phase represents 30% of the gait cycle, during which
the body passes directly over the supporting foot as the body comes forward. This is where the foot
supports the body weight of the human. The foot is flat on the floor in a stable position. The body is
carried forward over the stance foot with the hip extending and the foot gradually placed on the floor.
This phase begins with contralateral toe off and ends when the center of gravity is directly over the
reference foot. By mid–stance, the knee is extended and the ankle is neutral again. This phase ends
as the body weight passes forward eventually forcing the heel to rise [27].

The next sub–phase of the stance phase is the terminal stance, which is heel off. The terminal
stance follows the midstance at which time the heel rises until the other foot makes contact with the
floor. During this phase the body weight moves ahead of the forefoot. The heel is raised as the body
moves forward over the stance foot. The hip is in the full extension, internal rotation and adduction.
This corresponds to the knee extending [22].
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The last subphase is the pre–swing, which is toe off. It is the point following heel off where only
the toes of the supporting foot is in contact with the ground. It is the final double support stance
period which is defined from the time of the initial contact with the contralateral foot to the ipsilateral
toe–off. The double support is when the lower limb of one side of the body is beginning its stance
phase and the opposite side is ending its stance phase. During double support both the lower limbs are
in contact with the ground at the same time. However, this phase is absent in running [33]. Fig. 2.8
gives another visualization of how the ankle moves during all the subphases.

Figure 2.8: Visualization of the stance and swing phase and all of the subphases corresponding to each
pose [33].

The next phase of the gait cycle is the swing phase. It makes up 40% of the normal gait cycle. It
begins as soon as the big toe of the one foot leaves the ground (after toe–off) and finishes just prior
to heel strike or contact of the same foot. This phase includes initial swing, mid swing and terminal
swing as shown in Fig. 2.9.

Figure 2.9: The three sub–phases of the swing phase of the gait cycle [27].

The initial swing is the acceleration of the body. It is the initial third of the swing phase from
60–73% of the gait cycle. It begins once the toe leaves the ground and continues until mid swing, or
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the point at which the swinging extremity is directly under the body. Forward momentum is provided
by the ground reaction to the push–off action, which is when the heel is off the ground but the toes
are in strong contact with the ground. This phase continues until maximum knee flexion occurs. The
flexion of the knee is necessary for the swinging foot to clear the ground as it moves forward [27].

The mid–swing is the middle third of the swing phase from 73–87% of the gait cycle. It occurs
approximately when the extremity passed directly beneath the body, or from the end of acceleration
to the beginning of deceleration. Also, it can be defined from maximum knee flexion until the tibia is
in vertical position. It begins the maximum knee flexion when the swing foot is under the body until
the swing limb passes the stance limb and the tibia becomes in a vertical position [27].

The terminal swing sub–phase is the deceleration. The terminal swing is the final third of the
swing phase from 78–100% of the gait cycle. It occurs after mid swing when the limb is decelerating
in preparation for heel strike. It is defined from the time when the tibia is in vertical position to just
before initial contact. The momentum slows down as the limb moves into the stance phase again. The
knee is extending in preparation for the heel strike. The foot is in neutral position. As the heel touches
the ground, the foot moves into plantarflexion [33]. Fig. 2.10 gives a full representation of the walking
cycle with the percentages.

Figure 2.10: The diagram representing the gait cycle and the percentages of the phases and properties
of the gait [33].

The movement pattern that happens during walking results from the interaction between external
forces, such as joint reaction and ground reaction and the internal forces, such as the ones produced
by muscles and other soft tissue. The ground reaction is helpful to understand how the muscle activity
and timing contributes to stability and propulsion. The ground reaction force is equal in magnitude
and opposite in direction to the force that the body exerts on the supporting surface with the foot.
During the loading response, the ground reaction force produces a plantarflexion moment at the ankle
joint. During mid–stance, ground reaction force produces a dorsiflexor moment at the ankle joint, as
well as during the terminal stance and the pre–swing [33].

There are two variables which provide a basic description of the human gait: time and distance
variables. The factors that affect variables are age, gender, height, size, distribution of mass, joint
mobility, muscle strength, type of clothing and footwear, habit and psychological status. The stance
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time is the amount of time that elapses during the stance phase of one extremity in a gait cycle [22].
Single–support time is the amount of time that elapses during the period when only one extremity
is on the supporting surface in a gait cycle. Double–support time is the amount of time spent with
both feet on the ground during one gait cycle. The percent of time spent is increased in elderly people
and in those with balance disorders. The percentage of time spent decreases as the speed of walking
increases. Stride length is the linear distance from the heel strike of one lower limb to the next heel
strike of the same limb. Step length is the linear distance from the heel strike of one lower limb to the
next heel strike of the opposite limb. Stride duration refers to the amount of time taken to accomplish
one stride. Stride duration and gait cycle duration are synonymous. For a normal adult, one stride is
approximately 1 second. Step duration is measured in seconds per step. Walking velocity is the rate
of forward motion of the body. It is measured in meters/minute or cm/second [22].

Walking Velocity(meters/second) = Distance Walked(meters)/Time (sec) (2.1)

Free speed of gait refers to a person’s normal walking speed. Slow and fast speed of gait refers to
the speed slower or faster than the person’s normal walking speed. Vertical displacement of the gait is
a rhythmic up and down movement. The highest point is the midstance, and the lowest point is the
double support. The average displacement is about 5 cm. The path is an extremely smooth sinusoidal
curve. Lateral displacement is a rhythmic side to side movement. The lateral limit is mid stance. The
average displacement is 5 cm. Again the path is a smooth sinousoidal curve. Overall, displacement is
the sum of vertical and horizontal displacements [22].

2.3 Parameters

Movements of the ankle are important for normal coordinated gait. The angle of the ankle during
the walking cycle can be measured. Fig. 2.11 shows the angles (θ) of the joints. The absolute angle
is the orientation of a segment in space, which is the angle of inclination of a body segment. Segment
angles are referred to as absolute angles measured from the right horizontal placed at the distal end
of the segment. The segment angles include foot angle, shank angle, thigh angle and trunk angle.
The relative angle is the joint angle, which is the included angle between the longitudinal axes of
the two adjacent segments. The joint angles are ankle angle, knee angle, and hip angle [25]. In this
study, the movements of dorsiflexion and plantarflexion of the ankle were evaluated. Dorsiflexion and
plantarflexion refers to the ankle angle extesions mentioned in Section 2.1.

The relative angles can be determined from the absolute angles.

θankle = θshank + (180− θfoot) (2.2)

The most important mechanism to smooth the gait pathway is foot and ankle motion. At initial
contact, the ankle is elevated due to the heel lever arm but falls as the foot becomes plantar grade. At
heel rise, the ankle again is elevated, which continues through terminal stance and pre–swing. These
ankle motions, coordinated with the knee and controlled by muscle action, smooth the pathway of the
center of mass during stance phase. The controlled lever arm of the forefoot at pre–swing is particularly
helpful as it rounds out the sharp downward reversal of the center of mass. Thus it does not reduce a
peak displacement period of the center of mass but rather smooths the pathway. Foot and ankle motion
thus facilitate the path of the center of gravity, keeping it relatively horizontal throughout stance phase.

The center of pressure (COP) is the point of application of the ground reaction force vector. COP
is the point of location of the vertical ground reaction force vector. When both feet are in contact with
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Figure 2.11: The angle of the ankle with respect to the body [25].

the ground, the location of COP under each foot reflects the neural control of the ankle muscles. COP
moves to the anterior with the increased plantarflexion of the ankle. The ground reaction force vector
represents the sum of all forces acting between a physical object and its supporting surface. Analysis
of the center of pressure is common in studies on human postural control and gait. It is thought
that changes in motor control may be reflected in changes in the center of pressure. The effect of some
experimental condition on movement can be quantified by the changes in the center of pressure. During
human walking, the center of pressure is near the heel at the time of heel–strike and moves anteriorly
throughout the step, being located near the toes at toe–off [38].

COP measurements are gathered through the use of a force plate. A force plate collects data in
the anterior–posterior direction (x–axis, forward and backward), the medial–lateral direction (y–axis,
side–to–side) and the vertical direction (z–axis), as well as moments about all 3 axes. Together, these
can be used to calculate the position of the center of pressure relative to the origin of the force plate.
In this case, the COP data is in the x–axis and the z–axis. COP and Center of Gravity (COG) are
both related to balance in that they are dependent on the position of the body with respect to the
supporting surface. Center of gravity is subject to change based on posture. Center of pressure is the
location on the supporting surface where the resultant vertical force vector acts [38].

A shift of COP is an indirect measure of postural sway and thus a measure of a person’s ability to
maintain balance. All people would sway in the anterior–posterior direction (forward and backward)
and the medial–lateral direction (side–to–side) when they are simply standing still. This is a result
of small contractions of muscles in the body to maintain an upright position. An increase in sway is
not necessarily an indicator of poorer balance so much as it is an indicator of decreased neuromuscular
control, although the postural sway occurs prior to a fall.

Fig. 2.12 shows center of pressure patterns during a normal stride in the x–axis direction during
a normal stride. The upward projection of the COP is used as an estimate for the body center of
mass (COM). Another reason for obtaining COM is for evaluating the ankle postural stiffness. This
evaluation requires determining moment produced at the ankle for maintaining posture. The study
used the moving average of the COP as an estimate for COM [23].

Ground reaction force (GRF) data is obtained from a force plate, which is attached to the walking
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Figure 2.12: Center of pressure displacement in the x–axis with the variability of different test subjects
[5].

platform. The GRF is the force exerted by the ground on a body in contact with it. A person standing
motionless on the ground exerts a contact force on the ground, which is equal to the person’s weight,
and at the same time an equal and opposite ground reaction force is exerted by the ground on the
person. The GRF also has a component parallel to the ground, a motion that requires the exchange
of horizontal forces with the ground, when the person is walking. The component of the GRF parallel
to the surface is the frictional force. The ratio of the magnitude of the frictional force to the normal
force yields the coefficient of static friction. GRF is often observed in people’s gait [40].

2.4 Data

The following diagrams are the graphs of the current data that was introduced in Section 2.1.
There is a vast variety of data from the conducted experiment. It includes ankle angle, COP, GRF,
and platform angle data sets; each with no perturbations as well as perturbations at each level (100
ms, 225 ms 350 ms) in plantarflexive and dorsiflexive perturbations.

All the data in these following graphs are from the normalized ankle angle data averaged over all
trials for a single patient.

In Fig. 2.13, it is noticable how the ankle angle changes in the stance phase of the gait cycle. The
characteristics of an ankle are divided into two parts of the gait: the plantarflexion and the dorsiflexion.
Plantarflexion is when the ankle is “bent down” and dorsiflexion is when the ankle is “raised up”. The
ankle plantarflexes during the loading response. Then, it dorsiflexes gradually during mid stance.
Afterwards, it plantarflexes during terminal stance. At the end, it starts to slightly plantarflex, which
is when the ankle transitions into the swing phase. The negative values correspond to plantarflexion
while the postive values correspond to the dorsiflexion. The zero ankle position was assigned to the
postition at which the foot was perpendicular to the shank of the leg. It is visible that the ankle
changes direction at approximately 60 ms, and then again much more gradualy at 600 to 700 ms until
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Figure 2.13: The normalized ankle angle data for a single patient averaged over all trials at 2◦ and 5◦

with no perturbation.

800 ms.
The ankle angle in the stance phase has 3 sections in the graph. The loading response, which is

0–10% of the gait cycle and 0–16.66% of the stance phase, is the first section. It is the period from
initial contact until contralateral toe off. The mid–stance and terminal stance, which is from 10–50%
of the gait cycle and 16.66–66.66% of the stance phase, is the second section. It ends when the opposite
foot contacts the ground. The preswing, which is 50–60% of the gait cycle and 66.66–100% of the stance
phase, is the last section. Fig. 2.13 shows those three sections as the line segments of different slopes.
In Fig. 2.14, notice how as the stance phase proceeds the standard deviation grows, similar to the
standard deviation growth for 5◦ perturbations. In Fig. 2.15, both the plantarflexive and dorsiflexive
perturbations are shown. They are symmetric about the non–perturbated curve. They both show the
reaction of the perturbations but in different directions.

Fig. 2.16 is the ground reaction force in the x direction for one subject averaged over all the trials.
The blue curve is the 2◦ perturbation and the red curve is the 5◦ perturbation. Notice how there are
dips in the graph. Those signify stages of the gait cycle. The data starts with heel contact. The first
minimum is where the toes touch the platform and proceed to go into midstance. The maximum that
is in the data is the end of the midstance where the heel is off. The data end with toe off. These local
minima and maxima are specific subject to subject and importantly chance due to the perturbations.

Similarly, Fig. 2.17 shows the change in the curves. The first maximum is now the beginning of
midstance and the second maximum is the end of midstance and the start to heel off. The local
minimum is the transition of the midstance as the body travels over the foot. This is due to the GRF
in the z direction. The GRFx and GRFz graphs are different in that they represent different axes.
However, they both show the characteristic subphases of the gait.

From Fig. 2.13, Fig. 2.16, Fig. 2.17, the data for 2◦ non perturbated data has the same trend and
pattern as the 5◦ non perturbated data. This leads to comparison of the perturbations at various time
points of the data on a subject to subject basis.

In Fig. 2.18, notice how the angle is increased after the perturbations occurred compared to the rest
of the unifrom pattern. The ankle slightly dorsiflexes and then continues on it’s normal characteristic of
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Figure 2.14: The normalized average of the ankle angle with one and two standard deviations at 2◦ tilt
of the force plate.

Figure 2.15: The normalized average of the ankle angle with no perturbation and also plantarflexive and
dorsiflexive perturbation at 2◦ tilt of force plate and 100 ms perturbation.

the stance phase of gait. These small bumps are of importance in analysing the effect of perturbations
on the ankle movement.

Here, in Fig. 2.19, the curve of the angle of the ankle dips down after the three points of the
plantarflexive perturbation. This represents the plantarflexive direction of the perturbation. Each dip
is right after the occurence of the perturbation, and it is visible that the time point of the perturbation
changes the magnitute of the ankle angle at the maximum, which is the start of heel off in the gait.
This visually signals that the data should be explored further. Calculations will be done to compare
curves of the different perturbations.
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Figure 2.16: The average of ground reaction force in the x direction for all trials at 2◦ and 5◦ with no
perturbation of a single subject.

Figure 2.17: The average of ground reaction force in the z direction for all trials at 2◦ and 5◦ with no
perturbation of a single subject.

In Fig. 2.20, the angle of the ankle never recovers back to it’s orginal curve, but instead it follows
it’s pattern on an increased angle.
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Figure 2.18: The average of normalized ankle angle with dorsiflexive perturbations that occurred at 100
ms, 225 ms, and 350 ms at the 2◦ tilt of force plate.

Figure 2.19: The average of normalized ankle angle with plantarflexive perturbations that occurred at
100ms, 225ms, and 350ms at the 2◦ tilt of the force plate.
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Figure 2.20: The average of normalized ankle angle with dorsiflexive perturbation that occurred at 100
ms at the 5◦ tilt of force plate.
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Chapter 3

Analysis and Results

The goal of the study is to compare how the different perturbations affect the stance phase of the
gait cycle. The analysis begins with the ankle data. At the sagittal plane, each cycle was analyzed by
means of three peaks: foot flat (FF), midstance (M) and toe off (TO). The curves and analyzed peaks
are shown in Fig. 2.13. The maximum (max) and minimum (min) values for the ankle motion during
the gait cycle in the sagital plane for one foot were calculated.

The study completed by Moriguchi suggests that a single individual’s gait presents a regular pattern
of movements, with little variation between cycles when the velocity is constant, but that individuals
differ from each other [29]. Relatively low intra–individual variability was identified. However, the
higher inter–individual variability found suggests that the ankle movement pattern can vary greatly,
even among anthropometrically similar individuals. The analysis of our data will be done on a patient
by patient basis [28]. There will be some discrepancies bewteen the gait from subject to subject, and
will be analysed seperately. However, overall, the conclusion will cover all subjects.

3.1 Minimums and Maximums

Table 3.1 and Table 3.2 show minimums and the maximum of the 2◦ plantarflexive perturbation of
ankle angle data. The first minimum occurs at the point of the subphase called foot flat with respect
to the walk cylce. The maximum represents midstance of the walk. The second mimimum occurs at
toe off. These three subphases are crucial in the gait cycle. They explain the change in the slope of the
angle of the ankle. They correspond with the curve of the ankle angle in the graphs in the previous
section.

Similarly, Table 3.3 displays the minimums and the maximum for 5◦ plantarflexive perturbation
of the ankle angle data. These peaks are characteristics of each individual subect’s gait. The non–
perturbated minimum and the minimums at each of the perturbations (100 ms, 225 ms, and 350 ms)
can be compared to see any significance in the fluxuation of each subject’s gait cycle.

The maximums of the ankle angle data are compared between the non–perturbated data and the
perturbated data as well as the minimums. This can be referred back to stiffness. The maximum of the
ankle angle in the plantarflexive position is the global maximum number of ankle angle. The minimum
plantarflexion is the minimum value of the ankle angle data which is the global minimum of the ankle
angle.

The range of motion for the human ankle is therefore the sum of maximum and absolute value of the
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Table 3.1: The minimums and maximum of normalized ankle angle with plantarflexive perturbations at
2◦ tilt of the force plate.

Subject Perturbation Minimum 1 (time) Maximum (time) Minimum 2 (time)
Subject AB22 No Pert -0.1242 (54 ms) 0.3759 (601 ms) -0.2444 (829 ms)

100ms Pert -0.1233 (55 ms) 0.3812 (631 ms) -0.1962 (821 ms)
225ms Pert -0.1306 (55 ms) 0.3728 (601 ms) -0.2368 (831 ms)
350ms Pert -0.1252 (55 ms) 0.4095 (612 ms) -0.1835 (821 ms)

Subject AB32 No Pert -0.1314 (53 ms) 0.4050 (630 ms) -0.1743 (838 ms)
100ms Pert -0.1331 (52 ms) 0.3739 (622 ms) -0.1841 (824 ms)
225ms Pert -0.1312 (53 ms) 0.3597 (613 ms) -0.2036 (826 ms)
350ms Pert 0.1264 (52 ms) 0.3806 (619 ms) -0.2008 (822 ms)

Subject AB34 No Pert -0.1637 (57 ms) 0.3398 (641 ms) -0.1794 (814 ms)
100ms Pert -0.1628 (57 ms) 0.2963 (639 ms) -0.1942 (810 ms)
225ms Pert -0.1710 (58 ms) 0.3157 (635 ms) -0.1546 (792–793 ms)
350ms Pert -0.1678 (58 ms) 0.3504 (628 ms) -0.1921 (805 ms)

Subject AB43 No Pert -0.1449 (52 ms) 0.4519 (623 ms) -0.2467 (850 ms)
100ms Pert -0.1454 (51 ms) 0.4332 (625 ms) -0.2904 (850 ms)
225ms Pert -0.1426 (52 ms) 0.4261 (637 ms) -0.2932 (850 ms)
350ms Pert -0.1394 (52 ms) 0.4733 (624 ms) -0.3230 (850 ms)

Subject AB93 No Pert -0.0791 (59 ms) 0.1631 (581 ms) -0.3979 (840 ms)
100ms Pert -0.0767 (59 ms) 0.1299 (581 ms) -0.4031 (828 ms)
225ms Pert -0.0800 (59 ms) 0.1502 (581 ms) -0.4107 (828 ms)
350ms Pert -0.0819 (59 ms) .1932 (581 ms) -0.3908 (832 ms)

Subject AB117 No Pert -0.1573 (66 ms) 0.3325 ( 543 ms) -0.2730 (803 ms)
100ms Pert -0.1647 (65 ms) 0.3010 (540 ms) -0.3010 (796 ms)
225ms Pert -0.1676 (66 ms) 0.3016 (539 ms) -0.2739 (796 ms)
350ms Pert -0.1722 (67 ms) 0.3171 (561 ms) -0.2977 (801 ms)

Subject AB118 No Pert -0.1148 (52 ms) 0.3591 (591 ms) -0.0473 (799–800 ms)
100ms Pert -0.1162 (53 ms) 0.3059 (593 ms) -0.0465 (783–786 ms)
225ms Pert -0.1118 (52 ms) 0.3322 (582 ms) -0.0435 (791 ms)
350ms Pert -0.1177 (53 ms) 0.3585 (588 ms) -0.0433 (790 ms)

minimum. This is useful in designing prosthetics. By analyzing the human gait cycle with the emphasis
on the observations of how the ankle moves and the range of motion, it will contribute to making better
orthopaedic devices such as prosthetics. Some references to the review papers are “Powered Ankle-Foot
Prosthesis” [1] and “Kinematic and Dynamic Analysis of the Gait Cycle of Above-Knee Amputees”
[14].

3.2 Correlation Coefficient Analysis

Correlation between sets of data is a measure of how well they are related [31]. The Table 3.4
shows the correlation coefficients for the ankle angle data at 2◦ plantarflexive perturbations. The most
common measure of correlation is Pearson product–moment correlation coefficient, developed by Karl
Pearson or simply correlation coefficient. It is a measure of the linear correlation or dependence between
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Table 3.2: Continuation of the minimums and maximum of normalized ankle angle with plantarflexive
perturbations at 2◦ tilt of the force plate.

Subject Perturbation Minimum 1 (time) Maximum (time) Minimum 2 (time)
Subject AB121 No Pert -0.0961 (58 ms) 0.2860 (532 ms) -0.1664 (850 ms)

100ms Pert -0.0939 (58 ms) 0.2541 (500 ms) -0.1758 (833 ms)
225ms Pert -0.0999 (57 ms) 0.2658 (512 ms) -0.1951 (835 ms)
350ms Pert -0.0956 (58 ms) 0.2893 (550 ms) -0.1808 (834 ms)

Subject AB122 No Pert -0.2091 (54 ms) 0.3172 (499 ms) -0.3474 (790 ms)
100ms Pert -0.2071 (53 ms) 0.2745 (485 ms) -0.3919 (773 ms)
225ms Pert -0.2087 (55 ms) 0.2954 (486 ms) -0.4152 (778 ms)
350ms Pert -0.2024 (54 ms) 0.3330 (524 ms) -0.3874 (794 ms)

Subject AB126 No Pert -0.0965 (54 ms) 0.4057 (569 ms) -0.0869 (832–835 ms)
100ms Pert -0.0970 (54 ms) 0.3751 (567 ms) -0.1029 (824 ms)
225ms Pert -0.0937 (53 ms) 0.3925 (563 ms) -0.0891 (818–821 ms)
350ms Pert -0.0920 (53 ms) 0.4047 (551 ms) -0.0979 (823 ms)

Table 3.3: The minimums and maximum of normalized ankle angle with plantarflexive perturbations at
5◦ tilt of the force plate.

Subject Perturbation Minimum 1 (time) Maximum (time) Minimum 2 (time)
Subject AB53 No Pert -0.2010 (64 ms) 0.0352 (610 ms) -0.2066 (775 ms)

100ms Pert -0.2058 (64 ms) -0.0433 (602 ms) -0.2732 (759 ms)
Subject AB117 No Pert -0.2319 (71 ms) 0.1346 (571 ms) -0.1984 (836–839 ms)

100ms Pert -0.2335 (70 ms) 0.0470 (551 ms) -0.2550 (815 ms)
Subject AB118 No Pert -0.1678 (56 ms) 0.3319 (606 ms) -0.0859 (770–772 ms)

100ms Pert -0.1711 (57 ms) 0.2339 (612 ms) -0.1496 (764–765 ms)
Subject AB122 No Pert -0.2175 (59 ms) 0.3577 (563 ms) -0.2569 (777 ms)

100ms Pert -0.2239 (58 ms) 0.2674 (550 ms) -0.2866 (767 ms)
Subject AB135 No Pert -0.1087 (50 ms) 0.3467 (622 ms) -0.2509 (838 ms)

100ms Pert -0.1082 (50 ms) 0.2541 (616 ms) -0.2976 (822 ms)
Subject AB140 No Pert -0.1785 (64 ms) 0.2429 (543 ms) -0.4315 (778 ms)

100ms Pert -0.1740 (64 ms) 0.1477 (537 ms) -0.4420 (742 ms)
Subject AB141 No Pert -0.1107 (57 ms) 0.2426 (531 ms) -0.3391 (758 ms)

100ms Pert -0.1167 (57 ms) 0.1748 (529 ms) -0.3830 (744 ms)

two variables. It is widely used in the sciences as a measure of the degree of linear dependence between
two variables. In other words, a Pearson product–moment correlation attempts to draw a line of best
fit through the data of two variables, and correlation coefficient, R, indicates how far away all these
data points are to this line of best fit.

It ranges between +1 and 1 inclusively. A value of 0 indicates that there is no association between
the two variables. A value greater than 0 indicates a positive association, which means that as the
value of one variable increases, so does the value of the other variable. A value less than 0 indicates
a negative association. This means that as the value of one variable increases, the value of the other
variable decreases. Values between +1 and -1 indicate that there is variation around the line of best
fit. The closer the value of R is to 0, the greater the variation around the line of best fit.

Table 3.5 displays the correlation coefficients of the ankle angle data at 5◦ plantarflexive pertur-
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Table 3.4: The correlation coefficient of normalized ankle angle with plantarflexive perturbations at 2◦

perturbation.

Subject No Pert vs 100 ms Pert No Pert vs 225 ms Pert No Pert vs 350 ms Pert
Subject AB22 0.9426 0.9364 0.9229
Subject AB32 0.8824 0.8729 0.8687
Subject AB34 0.7758 0.7775 0.8384
Subject AB43 0.7535 0.7201 0.6892
Subject AB93 0.8751 0.8974 0.8890
Subject AB117 0.8543 0.8642 0.8518
Subject AB118 0.8075 0.8257 0.8136
Subject AB121 0.7735 0.7839 0.8178
Subject AB122 0.8782 0.8831 0.8769
Subject AB126 0.8708 0.8748 0.8617

bations. Statistically, the correlation coefficient of two variables in a data sample is their covariance
divided by the product of their individual standard deviations. It is a normalized measurement of how
the two are linearly related.

Formally, the sample correlation coefficient between two variables, x and y, is defined by the follow-
ing formula, where sx and sy are the sample standard deviations for x sample and y sample respectfully,
and sxy is the sample covariance between the two [42].

rxy =
sxy
sxsy

(3.1)

The covariance of two variables x and y in a data sample measures how the two are linearly related.
A positive covariance would indicate a positive linear relationship between the variables, and a negative
covariance would indicate the opposite. The sample covariance is defined in terms of the sample means
as

sxy =
1

n− 1

n∑
i=1

(xi − x̄)(yi − ȳ) (3.2)

where n is sample size, xi is a single value of x and yi is a single value of y. The x̄ is the mean of all x
samples and ȳ is the mean of all y samples. The mean is denoted by:

x̄ =

∑n
i=1(xi)

n
and ȳ =

∑n
i=1(yi)

n
(3.3)

The standard deviation of an observation variable is the square root of its variance. The variance
is a numerical measure of how the data values are dispersed around the mean. The sample variance is
defined as

s2x =
1

n− 1

n∑
i=1

(xi − x̄)2 (3.4)

where n is sample size. The standard deviation is just the square root of Equation (3.4).
The numbers in Table 3.4 and Table 3.5 are calculated using the matlab corrcoef(X,Y) function [12],

which is related to the covariance matrix cov(X) [13]. It takes in two column vectors of non perturbated
data and the perturbated data, and it then produces the correlation coefficient.
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Table 3.5: The correlation coefficient of normalized ankle angle with plantarflexive perturbations at 5◦

perturbation.

Subject No Pert vs 100 ms Pert
Subject AB53 0.6519
Subject AB117 0.8140
Subject AB118 0.9117
Subject AB122 0.8912
Subject AB135 0.8980
Subject AB140 0.7469
Subject AB141 0.9036

Since most of the correlation coefficients were approximately close to 1, we can conclude that the
variables that were compared are positively linearly related. This suggested a fairly strong relationship.
The non–perturbated and the perturbated data of the ankle angle follow the same trend. The graph
such as in Figure 2.19 of the previous section shows how both curves decrease, then increase and slightly
decrease at the end. The high R represents that even though the perturbations occurred, this does not
deter the subject from their normal gait pattern, the subjects were still able to follow the same pattern
and trend of their walk.

3.3 T–Test Analysis

A t–test is any statistical hypothesis test in which the test statistic follows a Student’s t distribution.
It can be used to determine if two sets of data are significantly different from each other. A paired
t–test is used to compare two population means where observations in one sample can be paired with
observations in the other sample. A paired t–test looks at the difference between paired values in two
samples, takes into account the variation of values within each sample, and produces a single number
known as a t–value. The equation of a t–test is:

t =
d̄√
s2

n

(3.5)

where d̄ is the mean difference between the two samples, s2 is the sample variance, n is the sample size,
and t is a paired sample t–test with n–1 degrees of freedom [31].

The assumptions for a paired t–test: Each of the two populations being compared should follow a
normal distribution with N ∼ (µ, σ), which means the mean is µ and standard deviation is σ. The two
populations being compared should have the same variance, σ2. The equation of a normal distribution
is Equation (3.7). If the sample sizes in the two groups being compared are equal, the t–test is highly
robust to the presence of unequal variances. The last assumption is that the data used to carry out
the test should be sampled independently from the two populations being compared.

The null hypothesis is that the pairwise difference between data vectors x and y has a mean equal
to zero. The MATLAB ttest(x,y) function [9] returns a test decision for the null hypothesis that the
data in x–y comes from a normal distribution with mean equal to zero and unknown variance, using
the paired–sample t–test.

We were running a paired t–test. This t–test compares one set of measurements with a second
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set from the same sample. The averaged ankle angle data with no perturbation is compared with the
averaged ankle angle data with each level or perturbation (100ms, 225ms, 350ms) for each subject at
both 2◦ and 5◦.

The non–perturbed data is compared with each of the perturbation data and extremely small t–
values are produced. We have to reject the null hypothesis, and thus, the results are statistically
significant. The ankle angle data set is checked to see if it satisfies a normal distribution. It already
has equal sample sizes in the two groups, and it is sampled independently.

The function kstest(X) in MatLab [8] is used to check the data of the ankle angle for the normal
distribution. This function returns a test decision for the null hypothesis that the data in vector X
comes from a standard normal distribution, against the alternative that it does not come from such a
distribution, using the one–sample Kolmogorov–Smirnov test. The result h is 1 if the test rejects the
null hypothesis at the 5% significance level, or 0 otherwise.

The general formula for the probality density function of the normal distribution with mean, µ, and
variance, σ2, is

f(x) =
1

σ
√

2π
e−(x−µ)2/(2σ2) (3.6)

The case where µ = 0 and σ = 1 is called the standard normal distribution [31]. The equation for the
standard normal distribution is

f(x) =
e−x

2/2

√
2π

(3.7)

The Kolmogorov–Smirnov Test is a goodness–of–fit test for any statistical distribution. The test
relies on the fact that the value of the sample cumulative density function is asymptotically normally
distributed. To apply the Kolmogorov–Smirnov test, the cumulative frequency (normalized by the
sample size) of the observations is calculated. Then the cumulative frequency for a true distribution
(most commonly, the normal distribution) is calculated. Then one would need to find the greatest dis-
crepancy between the observed and expected cumulative frequencies, which is called the “D–statistic”,
and then compare this against the critical D–statistic for that sample size. If the calculated D–statistic
is greater than the critical one, then reject the null hypothesis, which is the distribution of the expected
form [41]. The Kolmogorov–Smirnov test statistic:

Dn = supx[|Fn(x)− F0(x)|] (3.8)

is used for testing the null hypothesis that the cumulative distribution function F (x) equals some
hypothesized distribution function F0, that is, H0 : F (x) = F0(x), against all of the possible alternative
hypotheses HA : F (x) − F0(x). That is, Dn is the least upper bound of all pointwise differences
|Fn(x)− F0(x)|.

After running the kstest(X) on the ankle angle that that was averaged over all the trials for each
subject, the result was h = 1. Therefore, the data does not have a standard normal distribution,
and the t–test will not yield resonable results. Also the same conclusion happened when the vector of
minimums and the vector of maximums were checked for the normal distributions. Both data sets do
not have normal distributions.

To again check the normality of the data sets. The MATLAB function histfit is used [11].
histfit(data, nbins) plots a histogram using n bins and fits a normal density function. Figure 3.1
shows the histogram of the maximums that occurred at all trials for subject AB126 at 100 ms plan-
tarflexive perturbation. The maximums were grouped into 10 bins and put on a normal distribution.
However, the data does not reflect normality. The maximums are uneven and do not follow the red
normal curve.
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Figure 3.1: The normality test using a histogram of values in data to fit a normal density function for
Subject AB126 for 2◦ 100 ms plantarflexive perturbation.

3.4 Passing–Bablok Regression

Aditionally, Passing–Bablok Regression was used to give additional insight to the perturbated and
non–perturbated data. Passing and Bablok developed a regression method that allows comparing two
measurement methods, which overcomes the assumptions of the classical linear regression. Passing–
Bablok compares two analytical methods, a test method against a reference or comparative method,
to determine analytical accuracy [18].

The requirements of the test are that two methods are measured continuously, and any number of
replicates can be observed for each method, though all cases must have the same number of replicates.
The report shows the number of cases analyzed. Constant and proportional bias are shown after. When
two methods produce equivalent results, the constant bias will be zero and proportional bias will be
one. Confidence intervals show the range that likely contains the true constant and proportional bias.
The scatter plot shows the observations of reference method (X) plotted against the test method (Y).
After the scatter plot is a residual plot of the difference of test method from the fit. A CUSUM linearity
test determines if the residuals are randomly distributed around the fitted line. A significant p–value
indicates the method is non–linear.

Figure 3.2 shows the Passing–Bablok regression fit. The Passing–Bablok’s method for assessing
the equality of measurements uses two different analytical methods. The x–axis is the comparative
method (A), y–axis is the test method (B), and the line of equality (y=x) is the red dashed line.
Passing–Bablok compares the two methods. Both axes extend from 0 to the highest result. It is fitting
unbiased linear regression line to data in the method of comparing studies. It calculates the unbiased
slope and intercept, along with their confidence intervals. It does not matter which results are assigned
to “method A” and “method B”. However, “method A” results will be plotted on the x–axis by the
plot method. In the graph, the method B is the x–axis and method A is the y–axis. The circular dots
are the observations, the red line is the line of equality between methods, the blue solid line is the fitted
regression line, and the black dashed lines are the regression line confidence bands.
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Figure 3.2: PassingBablok regression fit for ankle angle averages of Subject AB22 at 2 degress for no
perturbation and 100 ms plantarflexive perturbation.

Figure 3.3 shows the Passing–Bablok ranked residual plot. A residual is the difference between the
observed y–value from scatter plot and the predicted y–value from regression equation line. It is the
vertical distance from the actual plotted point to the point on the regression line. It is also how far the
data falls from the regression line. Below is a residual plot of the difference of test methods from the
fit. The red straight line is the zero/fitted regression line. The circular dots are the residual of each
observation, which again is differences of the observed from the fitted line [18].

Figure 3.3: PassingBablok ranked residual plot for ankle angle averages of Subject AB22 for perturbated
and 100 ms plantarflexive perturbation.

Figure 3.4 shows the Passing–Bablok linearity of tests plot. A CUSUM plot and CUSUM linearity
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test can be shown to help judge the linearity of the method. A CUSUM linearity test determines if the
residuals are randomly distributed around the fitted line. A significant p–value indicates the method
is non–linear. The linearity plot visually shows the running total of the number of observations above
the fitted line, which are counted as +1 and below the fitted line, which are counted as -1. Ideally,
there should be roughly equal numbers of observations above and below the zero line, with the line
roughly about zero. If clusters of observations form on either side of the zero line the method may be
non–linear. The measurement number of observations are the Rank(xi, yi), where i is the index of each
pair of the two methods. It is also the number of points in each method. The CUMSUM shows where
each observation lies within the fitted line [18].

Figure 3.4: PassingBablok linearity test for ankle angle averages of Subject AB22 for no perturbation
and 100 ms plantarflexive perturbation.

However, with our data, the test for linearity has failed. The linear relationship between no pertur-
bation ankle angle data and perturbed ankle angle data is rejected. Non linear samples are not suitable
for concluding on method agreement. We cannot conclude anything else from this test.

3.5 Ankle Angle Maximums Analysis

After gathering the minimums amd maximums in the previous section, the maximums will be futher
analyzed. As mentioned before, the data starts at the point where the heel makes contact with the force
plate. The first minimum occurs at the begining of minstance, when the the toes touch the ground.
The maximum occurs after midstance is completed. It is at heel off stage of the gait cycle. The data
ends at toe off when the foot completely disconnects with the platform.

The first minimum is consistent throughout perturbated and non–perturbated data. The perturba-
tions that occur during the midstance subphase and are after the first minimum, therefore analyzing
the minimums will not give any information as to how the perturbations effect the walk cycle. This
leaves the maximums. Thus, the different perturbated maximums of each subject are analyzed.
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For subject AB126, the following ankle angle data produces the following maximums. No perturba-
tion maximum is at 0.4057 angle, 100 ms perturbation maximum is at 0.3751 angle, 225 ms perturbation
maximum is at 0.3925 angle and 350 ms perturbation maximum is at 0.4047 angle.

Figure 3.5 displays in a graph the maximums at no perturbation and then at each of the plan-
tarflexive perturbations at 2◦.

Figure 3.5: The maximums in order of occurence of Subject AB121 for no perturbation and the 2◦

plantarflexive perturbations at 100 ms, 225 ms, and 350 ms.

The order in Figure 3.5 is the the order in which the perturbations occurred. Order 1 corresponds to
non–perturbated maximum, order 2 is the maximum at 100 ms perturbation, order 3 is the maximum
at 225 ms perturbation, order 4 is the maximum at 350 ms perturbation. Notice how the maximums
change. The first maximum is the nominal maximum, which is used as a base line. There is a trend of
the maximums with the perturbations to approach the nominal maximum as the perturbations increase.

Figure 3.6 is a different way of looking at the comparison of the maximums at the different plan-
tarflexive perturbations.

The red dot is the nominal maximum (maximum at the non perturabtion walk). The black dot is
the maximum of the 100 ms plantarflexive perturbation at 2◦. The blue dot is the maximum of the
225 ms perturbation, and the blue dot is the maximum of the 350 ms perturbation. The different lines
represent the slopes between the non–perturbed maximum and each of the perturbations. Again, there
is a drastic change in the maximums between no perturbation and 100 ms perturbation. Then the
change in maximums decreases for 225 ms perturbation, and finally close to the nominal maximum for
the 350 ms perturbation.

This signifies that the earliest perturbation has a much greater affect on the maximums of the ankle
angle than the later occurring perturbations. Since the maximum is the beginning point of the heel off
subphase of the gait, we are comparing the ankle angle degree that occurs at heel off. This shows that
perturbations that occur early affect the magnitude of the ankle angle degree more. The perturbations
occur at equidistant time intervals. However, the change in ankle angle is not equal from perturbation
to perturbation.

Figure 3.7 shows the three slopes and how the magnitute of those slopes change. Notice that in
Figure 3.7 the values of the slopes between the perturbations are the red stars, and the blue lines signify
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Figure 3.6: The maximum of Subject AB121 for no perturbation compared against the 2◦ plantarflexive
perturbations maximums at 100 ms, 225 ms, and 350 ms.

Figure 3.7: The slopes of the maximums of Subject AB121 for no perturbation and 2◦ plantarflexive
perturbations at 100 ms, 225 ms, and 350 ms.

the increase from slope to slope. This shows that the slopes of the maximums have a steady increase.
The last slope is close to zero, which means that the difference between non–perturbed nominal data
and the data with the perturbation at 350 ms is practically zero. So if these maximums are very close
in value, it results in the fact that the 350 ms perturbation has little effect on the maximum, which
is the point at the end of midstance and beginning of heel off. The foot stabilizes quickly during the
later perturbation. Whereas, the the slope significantly changes on the earlier perturbations.

Running the same test for other subjects gives the following results. Each subject has its unique
pattern of recovery and should not be compared to other subjects, but rather the comparison goes
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within each subject’s different perturbations.

Figure 3.8: The maximums in order of occurence of Subject AB32 for no perturbation and the 2◦

plantarflexive perturbations at 100 ms, 225 ms, and 350 ms.

Figure 3.9: The maximum of Subject AB32 for no perturbation compared against the 2◦ plantarflexive
perturbations maximums at 100 ms, 225 ms, and 350 ms.

Figure 3.8 shows the maximums in order of occurence of Subject AB32. Figure 3.9 shows the
maximum of no perturbation compared to the maximums at the different perturbations of Subject
AB32. Figure 3.10 shows the slopes of the maximums of the subject AB32.

For subject AB32, in Fig. 3.8-3.10, there is an even change between the maximums of the ankle
angle. Due to each perturbation, the maximums adjust to follow the trend of the nominal gait, how-
ever it results in shifts of the perturbated curves. There is a decrease in the maximums that as the
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Figure 3.10: The slopes of the maximums of Subject AB32 for no perturbation and 2◦ plantarflexive
perturbations at 100 ms, 225 ms, and 350 ms.

perturbations increase the pattern shifts more and more, until the last 350 ms perturbation where it
aligns closer to the original curve.

Figure 3.11 shows the maximums in order of occurence of Subject AB117. Here, there is also the
significant change in the maximum for the earliest perturbation as well as the second. Then the 350
ms perturbation shows a closer value to the nominal maximum. This confirms that reaction of the
perturbations is more drastic when the perturbations occur early.

Figure 3.11: The maximums in order of occurence of Subject AB117 for no perturbation and the 2◦

plantarflexive perturbations at 100 ms, 225 ms, and 350 ms.

Figure 3.12 shows the maximum of no perturbation compared to the maximums at the different
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perturbations of Subject AB117. This had a good visual representation of how close the 100 ms and
225 ms maximums are and then how the 350 ms maximum is shifted up.

Figure 3.12: The maximum of Subject AB117 for no perturbation compared against the 2◦ plantarflexive
perturbations maximums at 100 ms, 225 ms, and 350 ms.

Figure 3.13 shows the slopes of the maximums of the subject AB117. Looking at the slopes of the
maximums, there is a gradual increase as the order increase, which means that the perturbations occur
later in the stance phase.

Figure 3.13: The slopes of the maximums of Subject AB117 for no perturbation and 2◦ plantarflexive
perturbations at 100 ms, 225 ms, and 350 ms.

For subject AB117, notice how the first two maximums which are the 100 ms and the 225 ms
perturbations are very similar in value, and then the 350 ms perturbation is closer to the nominal.
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Again this shows that the further the perubation happes in the stance phase the closer it it return to
the non–perturbed values of the walk.

Figure 3.14: The maximums in order of occurence of Subject AB43 for no perturbation and the 2◦

plantarflexive perturbations at 100 ms, 225 ms, and 350 ms.

Figure 3.14 shows the maximums in order of occurence of Subject AB43. Figure 3.15 shows the
maximum of no perturbation compared to the maximums at the different perturbations of Subject
AB43. For this subject the maximums followed slightly a different trend but overall agree with the
general idea. The maximum that occurred at the 225 ms perturbation is actually the smallest instead
of the 100 ms perturbation maximum. However, the 350 ms perturbation is still significantly closer to
the nominal maximum.

Figure 3.16 shows the slopes of the maximums of the subject AB43. This shows the characteristics
of the maximums and how they are behaving as the perturbations increase. For subject AB43, notice
how the maximums of ankle angle data gradually decrease and increase for the last one. For this, the
closest value of the maximum to the non–perturbed maximum is actually the one that occurs at the
100 ms perturbation. It then continues to decrease and move away from the pattern of trend until it
overshoots on the 350 ms perturbation and the slope of that pair of maximums is actually positive.

These several patients demostrate that the perturbaton that occurs at 225 ms is the least likely to
adjust to the pattern of no perturbation from looking at the maximums of the curves. These maximums
signify a distinct change in characteristic of gait where the mid–stance ends and heel–off begins.

3.6 COP Analysis

Another set of data that was gathered from the experiment was the center of pressure of the stance
foot, (COP). As mentioned in Section 2.3, COP is the point of application of the ground reaction
force vector. Also, it is the point of location of the vertical ground reaction force vector. Figure 3.17
shows the COP data of one of the subjects that walked across the force platform. Notice how after
each perturbation, the center of pressure of the foot fluctuates as the foot tries to regain normal gait.
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Figure 3.15: The maximum of Subject AB43 for no perturbation compared against the 2◦ plantarflexive
perturbations maximums at 100 ms, 225 ms, and 350 ms.

Figure 3.16: The slopes of the maximums of Subject AB43 for no perturbation and 2◦ plantarflexive
perturbations at 100 ms, 225 ms, and 350 ms.

The fluctuation occurs for approximately 150 ms after each of the perturbations. Then, the center of
pressure levels off and proceeds to exactly follow the center of pressure curve that was not perturbed.

During the stance phase, the center of pressure starts at the medial heel. As foot flat occurs and
the body progresses to single stance, the center of pressure typically moves laterally as it progresses
forward. Then after heel rise and the weight shifts, the center of pressure is in the forefoot progressing
to the medial side again [7]. The COP data ranges from 0–850 ms. However, there was vast oscillations
after 725 ms. This is due to the foot coming off the platform. The toes are losing contact and there is
no accurate center of pressure at that point. It was necessary to reduce our analysis to only 0–700 ms.
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Figure 3.17: Center of pressure averaged over trials for subject AB43 with various perturbations at 2◦

tilt of force plate.

In Figure 3.18, there are both types of perturbations. The changes in the gait due to the perturba-
tions are reflected in the change in center of pressure. During the walk, the center of pressure is near
the heel at the time of heelstrike and moves throughout the step. It is located near the toes at toe–off.
The force plate gathered data in the anterior–posterior direction (on the x–axis), which is forward and
backward motion. The COP measurement is distance from the ankle angle of rotation to the center of
pressure point on floor in the x direction. The ankle point of rotation has COP 0 because it is directly
above. The negative COP represents the distance between heel and the ankle point of rotation. Postive
COP is the measurement between the ankle center of rotation and toes.

Figure 3.18: Center of pressure averaged over trials for subject AB118 with plantarflexive and dorsiflexive
perturbations at 350 ms and 2◦
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The plantarflexive perturbation of the COP is the blue curve; it dips down and starts fluctuating
at 350 ms. Then it is able to match with the non–perturbed COP curve. Similarly, the dorsiflexive
perturbation of the COP is the green curve; it rises up and starts fluctuating also at 350 ms. It is able
to match with the non–perturbed COP curve as well.

Figure 3.19: Center of pressure averaged over trials for subject AB122 with various perturbations at 5◦

tilt of the force plate.

Figure 3.19 is showing center of pressure at 5◦ perturbations that occurred at the different time-
points. The change in the curve is more drastic due to the increase in force plate angle from 2◦ to 5◦.
This is expected since for the 5◦ perturbations, the force plate tilts more, resulting on more change in
the gait. This is reflected in a bigger dip in the COP curve. The center of pressure had to shift more
to accomodate for a sudden change in ground.

Figure 3.20 displays COP with both pantarflexive and dorsiflexive perturbations at 5◦ and 100
ms perturbation. This is a similar graph, however, notice how the plantarflexive and dorsiflexive
perturbations are symmetric about the nominal curve. The gait is affected similarly for both types
with the only difference being the direction of the dip in the graph.

The interesting aspect of these graphs is that the center of pressure is able to return to the exact
same pattern as the center of pressure that did not under go any perturbation. The oscillatory effect
only occurs locally within 150 ms of the occurring perturbation time. This means that, overall, the
perturbations have no effect on center of pressure. Whereas, for the ankle angle data, the angle shifts
its curve to account for the occurence of the perturbation. It still follows its normal trend but not
to the exact non–perturbated curve. In most cases, the ankle angle after perturbation is not able to
return to the non–perturbed pattern. This is especially evident in 350 ms perturbations and in 5◦ data.

COP is related to balance. It is dependent on the position of the body with respect to the supporting
surface. Center of pressure is the location on the supporting surface where the resultant vertical force
vector would act if it could be considered to have a single point of application. A shift of COP is an
indirect measure of postural sway and thus a measure of a persons ability to maintain balance.
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Figure 3.20: Center of pressure averaged over trials for subject AB118 with plantarflexive and dorsiflexive
perturbations at 100 ms and 5◦

3.7 COP Sine Fitting

On the graphs of the COP, such as in Figure 3.20, the oscillations that occur after the perturbations
follow a sinusoidal form. Fitting the oscillations produce the following equation, as shown in Figure 3.21:

f(x) = asin(bx+ c) + dx+ f (3.9)

where a is -0.004301, b is 0.09705, c is 6.132, d is 0.0002424 and f is -0.01318.
The black curve is the COP data at 100 ms plantarflexive perturbation at 5◦ from 100 ms to 225

ms, since the perturbation occurred at 100 ms point. The red curve is the sine fit to the perturbated
data. The method used to fit the data to the sine curve in Figure 3.21 is nonlinear least squares with
the LAR robust and the Levenberg–Marquardt algorithm. The starting point is at (a, b, c, d, f) =
(0.7606, 0.6114, 0.7901, 0.6797, 0.6551).

The goodness of fit for this sine curve fitting shows that SSE=9.273e-06, R–squared = 0.9995, and
RMSE = 0.000252. This means that the fit is very well done and Equation (3.9) with the given values
for the coefficients follows the perturbated COP data.

SSE is the Sum of Squares Due to Error. This statistic measures the total deviation of the response
values from the fit to the response values. It is also called the summed square of residuals.

SSE =
n∑
i=1

wi(yi − ŷi)2 (3.10)

A value closer to 0 indicates that the model has a smaller random error component, and that the fit
will be more useful for prediction.

The R–Squared statistic measures how successful the fit is in explaining the variation of the data.
Put another way, R–square is the square of the correlation between the response values and the predicted
response values. It is also called the square of the multiple correlation coefficient and the coefficient of
multiple determination [10].
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Figure 3.21: Sine fitting for center of pressure at 2◦ 100 ms plantarflexive perturbation for Subject AB
122.

R–square is defined as the ratio of the sum of squares of the regression (SSR) and the total sum of
squares (SST). SSR is defined as

SSR =
n∑
i=1

wi(ŷi − ȳ)2 (3.11)

with wi as the weighted variable and defined as

wi =
1

V ar(ei)
(3.12)

SST is also called the sum of squares about the mean, and is defined as

SST =
n∑
i=1

wi(yi − ȳ)2 (3.13)

where SST = SSR + SSE. Given these definitions, R–square is expressed as

R− squared =
SSR

SST
= 1− SSE

SST
(3.14)

R–square can take on any value between 0 and 1, with a value closer to 1 indicating that a greater
proportion of variance is accounted for by the model. An R–square value of 0.9995 means that the fit
explains 99.95% of the total variation in the data about the average [10].

3.8 Least Squares Analysis

After the ankle angle data was graphed in the time (ms) vs angle (θ) plots, it was logical to conduct
the least squares model fitting. The best fit in the least–squares sense minimizes the sum of squared
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residuals, a residual being the difference between an observed value and the fitted value provided by a
model. Method of Least Squares is a procedure to determine the best fit line to data; the proof uses
simple calculus and linear algebra. The basic problem is to find the best fit line [26]; for the example
derivation, we assume y as

y = ax2 + bx+ c (3.15)

for constants a, b, c, to be determined. The method easily generalizes to finding the best fit of the form

y = a1f1(x) + ..+ cKfK(x) (3.16)

It is not necessary for the function fk to be linear in x because all that is needed is that y is a linear
combination of these functions. The method of the least squares [26] is described below.

Given data (x1,y1), ..., (xi,yi), we can define the error as

E(a, b, c) =
N∑
i=1

(yi − (ax2i + bxi + c))2 (3.17)

with N being the number of data points. To avoid the problem with positive and negative residuals
cancelling each other when summed, the sum of squared residuals is used as above. This is just N
times the variance of the data set y1-(a x

2
1+b x1+c), ..., yi-(a x

2
i+b xi + c). The goal is to find values

of a, b and c that minimize the error. The solution ensures that the sum of the errors from the mean
function is as small as possible. This requires that the values of (a,b,c) satisfy

∂E

∂a
= 0,

∂E

∂b
= 0 and

∂E

∂c
= 0 (3.18)

We can find the least squares curve by taking the partial derivatives of the sum of squares function
with respect to the coefficients [26]. Differentiating E(a, b, c) yields

∂E

∂a
=

N∑
i=1

−2(yi − (ax2i + bxi + c))(x2i ) (3.19)

∂E

∂b
=

N∑
i=1

−2(yi − (ax2i + bxi + c))(xi) (3.20)

∂E

∂c
=

N∑
i=1

−2(yi − (ax2i + bxi + c)) (3.21)

A function has its minimum where the derivative is 0. After taking the derivative of E with respect to
a, and with respect to b and also with respect to c, we need to set those three partial derivatives to 0.
Setting ∂E

∂a
= ∂E

∂b
= ∂E

∂c
= 0, and then dividing by the common factor of -2 results in

0 =
N∑
i=1

(ax4i ) +
N∑
i=1

(bx3i ) +
N∑
i=1

(cx2i ) +
N∑
i=1

(yix
2
i ) (3.22)

0 =
N∑
i=1

(ax3i ) +
N∑
i=1

(bx2i ) +
N∑
i=1

(cxi) +
N∑
i=1

(yixi) (3.23)
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0 =
N∑
i=1

(ax2i ) +
N∑
i=1

(bxi) +
N∑
i=1

(c) +
N∑
i=1

(yi) (3.24)

These equations can be rewritten as

(
N∑
i=1

(x4i ))a+ (
N∑
i=1

(x3i ))b+ (
N∑
i=1

(x2i ))c =
N∑
i=1

(x2i yi) (3.25)

(
N∑
i=1

(x2i ))a+ (
N∑
i=1

(xi))b+ (
N∑
i=1

(xi))c =
N∑
i=1

(xiyi) (3.26)

(
N∑
i=1

(xi))a+ (
N∑
i=1

(1))b+ (
N∑
i=1

(1))c =
N∑
i=1

(yi) (3.27)

The values of a and b which minimize the error are obtained and they satisfy the following linear
system: ∑N

i=1(x
4
i )

∑N
i=1(x

3
i )

∑N
i=1(x

2
i )∑N

i=1(x
3
i )

∑N
i=1(x

2
i )

∑N
i=1(xi)∑N

i=1(x
2
i )

∑N
i=1(xi)

∑N
i=1(1)

ab
c

 =

∑N
i=1(yix

2
i )∑N

i=1(yixi)∑N
i=1(yi)

 (3.28)

Solve for a, b, and c to get the coefficient values for y = ax2 + bx+ c. This was done in MATLAB. The
data was fitted to the least squares method. The MATLAB code that was written is in Appendix A.

The following are Figures of ankle data with curve of fit using the described method above.

Figure 3.22: Curve fit using least squares method on the non perturbed ankle angle data of subject
AB43.

As you can see from Fig. 3.22, the red line which is the parabola line of fit follows the trend of
the data. This is the ankle angle with no perturbations. The MatLab code in Appendix A is used to
generate Fig. 3.22 for subject AB43. The equation for the curve fit is

yfit = −2.1053(106)x2 + 0.002596x− 0.377843 (3.29)

Fig. 3.23 presents the ankle angle data with the curve fit where the perturbation occurred at 100
ms at 2◦. The equation of this curve of fit is

yfit = −2.035043(106)x2 + 0.0025823x− 1.979445 (3.30)
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Figure 3.23: Curve fit for ankle data with 100 ms plantarflexive perturbation at 2◦ for subject AB43.

Fig. 3.24 shows the curve fit for ankle data with 225 ms perturbation at 2◦. The perturbation occurs
at 225 ms and the graph is from 275 ms to 750 ms to show the reaction after the occurrence of the
perturbation on the ankle. The equation of this curve of fit is

yfit = −2.4714438(106)x2 + 0.0030806x− 2.11393597 (3.31)

Figure 3.24: Curve fit for ankle data with 225 ms plantarflexive perturbation at 2◦ for subject AB43.

Fig. 3.25 shows the curve fit for ankle data with 350 ms perturbation at 2◦. The perturbation occurs
at 350 ms and the graph is from 400 ms to 750 ms to show the reaction after the occurence of the
perturbation on the ankle. The equation of this curve of fit is

yfit = −4.831067(106)x2 + 0.0059517x− 2.9446597 (3.32)

The the curve fit equations for subject AB43 are similar. There is an increase in slope and a decrease
in the y–intercept as the perturbation increases from non perturbation to 100 ms perturbation to 225 ms
perturbation to 350 ms perturbation. The value of a decrease overall as the time point of perturbations
increases. The value of b overall increases as the time point of perturbations increases, and the value
of c decreases as the perturbations move. c shows the biggest change in value, where as other variables
slightly changed in value.

As for patient to patient, the same trend follows but the initial non–perturbted curve is unique to
each patient. Then as each perturbation occurs for each patient, the values of a, b, and c behave very
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Figure 3.25: Curve fit for ankle data with 350 ms plantarflexive perturbation at 2◦ for subject AB43.

similarly, even though there is patient to patient variability. After looking at the curve fit equations
that were conducted on the data of different patients, there is a definite trend in how the curves change
due to the different perturbations.
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Chapter 4

Conclusion

4.1 Conclusion

This study used various methods to analyze and describe the data gathered from the stance phase
of the gait cycle. This gives more insight as to how the perturbations affect the walk cycle. Ankle
characteristics vary in terms of gait phase and perturbation changes. It can be mimicked with uneven
ground, surface with rocks on it or small potholes in the ground.

After calculating the minimums and maxmum for the ankle angle, the total range of motion is
calculated by taking the absolute values of the global minimum and maximum and adding the two
values. This is beneficial in using this ROM for biomechanical uses. Knowing how the foot reacts with
respect to the perturbations is important in several real life applicaitons. It helps to better understand
the stability in people’s gait. It can further expand research in biomathematics and coincide with
similar gait studies. The COP relates to the balance of the foot, which results in better stability. It is
dependent on the position of the body with respect to the supporting surface. The shifts of the COP
data indirectly portrays postural sway and thus a measure of a person’s ability to maintain balance.
And increase in the sway from the minimal sway that occurs from standing has some indication of
poorer balance as well as a decrease neuromuscular control.

This study is useful for designing better shoes. For example, Nike Air running shoes which have
substantial cushioning under the heel can be imporved to reduce injury even more. The center of pres-
sure can indicate changes to the design of the insole of the shoe. Looking at how typically perturbated
COP returns to its pattern of no perturbation can be significant for Nike. The article by Lohman
further discusses the effects of minimalist shoes on running gait in terms with a focus on center of
pressure and ground reaction force analysis [24]. Another application is orthopaedic devices. These
findings may be clinically applicable in the design and development of ankle prosthetic devices that
can naturally replicate human walking on uneven surface. By analysing the human gait cycle with
emphasis on the observations of how the ankle moves and the range of motion, it will contribute to
making better orthopaedic devices such as prosthetics. In addition to the articles mentioned in Section
3.1, the article “The Human Ankle During Walking: Implications for Design of Biomimetic Ankle
Prostheses” by Andrew Hansen [19] relates to the study of gait. It talks about using the ankle angle of
the foot along with the moment to examine the quasi-stiffness of the ankle to use in the design of ankle
prostheses. These articles depict only a portion of such vast research. Exploring the characterstics of
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gait will bring greater insight into providing solutions to better prosthetics.

4.2 Suggestions for Changes

After conducting this study, there are several points to consider. The subjects that were used had
different demographics that were not listed in the data. Also, measurement errors must always be taken
into account when different measurements are taken. It is human error and could have some impact
on the calculations.

A suggestion for further research would be to conduct or find a similar study with descriptions of
the subjects, such as testing all females and then all males, testing based on age brackets, and height
and weight categories. These more detailed results of each demographic may show more insight into
each group and the pattern on gait that it has. Also, studying posture in addition to the gait will will
aid in analyzing the balance of the subjects.

In addition, conducting this experient and analysing the data that includes running patients as
well as walking patients will allow to compare the two different gaits of walking and running. These
articles “Motor Patterns in Human Walking and Running” by Cappellini [6] and “Differences in Muscle
Function During Walking and Running at the Same Speed” by Sasaki [34] discuss the difference of the
gaits of walking and running. This will further allow better calculations for orthopaedic shoes and
devices.
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Appendix A

MATLAB Code

Least Squares code to determine coefficients a, b, c when the function is y = ax2 + bx+ c.

Main file

1

c l o s e a l l ; c l c ; c l e a r a l l ;
3

format long
5 cd . .

cd ’ 2 deg study ’
7

load AB43 Data . mat ;
9

A=Foot Shank Ang . HCref ;
11

xdata = [ 2 0 0 : 1 : 8 0 0 ] ;
13

L=length ( xdata ) ;
15

f o r i =1:850
17 AverageA ( i )=mean(A( i , : ) ) ;

StdDevA( i )=std (A( i , : ) ) ;
19 end

21 ydata=AverageA ( : , 2 0 0 : 8 0 0 ) ;

23 A = ze ro s (3 , 3 ) ;
R = ze ro s (3 , 1 ) ;

25

f o r j =1:3
27 A(1 , j )=2∗sum( xdata .ˆ(5− j ) ) ;

A(2 , j )=2∗sum( xdata .ˆ(4− j ) ) ;
29 A(3 , j )=2∗sum( xdata .ˆ(3− j ) ) ;

31 end

33 f o r i =1:3
R( i , 1 ) =2∗sum( ydata .∗ xdata .ˆ(3− i ) ) ;

35
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end
37

C=A\R;
39 time = [ 2 0 0 : 1 : 8 0 0 ] ;

41 f i g u r e (1 )
s c a t t e r ( time , ydata , ’b ’ , ’ ∗ ’ )

43 hold on
y f i t=C(1) ∗xdata .ˆ2+C(2) ∗xdata+C(3) ;

45

p lo t ( time , y f i t , ’−r ’ )
47

t i t l e ( ’ Curve Fit ’ )
49 x l a b e l ( ’Time (ms) ’ )

y l a b e l ( ’ Ankle Angle (\ theta ) ’ )
51 l egend ( ’ s c a t t e r o f data ’ , ’ l i n e o f f i t ’ )

53 s e t ( gcf , ’ Color ’ , ’ white ’ )
s e t (0 , ’ d e f a u l t a x e s f o n t s i z e ’ ,16)
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