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Abstract: 
 

There has been of considerable interest in understanding how the genetic mutations could rewire 

the macromolecular interaction network mediated by proteins. Protein-ligand interactions, as one 

of the macromolecular interactions, can be associated with mutations at the ligand-binding sites 

(LBSs) to influencing protein structure stability, binding affinity with small molecules, hormone 

regulation, and drug resistance in people. Recent studies have shown that ligand binding residues 

have a significantly higher mutation rate than other parts of the protein in 16 types of cancers. Our 

study focuses on LBSs mutation in healthy populations and makes the most comprehensive human 

LBSs mutation map to date. By integrating BioLip and gnomAD data, we created a comprehensive 

LBSs-associated mutation map in eight populations and to help exploring the relationship between 

the variation profiles of different populations and the ligand-binding region corresponding to 

different types of ligands. Specifically, each LBSs was annotated and grouped into different 

categories based on the molecular structure and function similarity of the corresponding ligand, 

which allows looking for common ligand mutation patterns. In our work, we hypothesized that 

LBSs of proteins are enriched with the population-specific mutations, which means that the 

frequencies of these mutations are not evenly distributed in every population. Furthermore, we test 

if the specific categories of LBSs are not equally susceptible to variation across different healthy 

groups. We observed distinct mutation across different groups of ligands. As a case study, we 

determined 20 variants in 14 pharmacological genes from PharmGKB (https://www.pharmgkb.org/) 

VIPs  to study the deleterious, neutral, and beneficial effect on the LBSs of nicotine, phenytoin, and 

other drugs. Meanwhile, further study is needed to determine whether all the genetic variants in our 

map would damage the normal interaction and what the specific mechanism about on how they 

would damage 

https://www.pharmgkb.org/
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1. INTRODUCTION 

1.1 Genetic variation determines the functional diversity among the populations of healthy 

individuals 

Next-generation sequencing and RNA-Seq technology have revealed that complex genetic 

diseases commonly due to pathogenic variations at the genetic posttranscriptional, and epigenetic 

levels [1-6]. Single nucleotide variations (SNVs) occurring in coding, as well as non-coding areas 

in genomes, are the most well-document studied class of genetic change and disorders. Nucleotide 

substitutions that cause an amino acid change are non-synonymous variants. 

According to the National Cancer Institute-National Human Genome Research Institute catalog 

of published GWAS projects, there have already been publish 14876 SNVs collected [7]. At the 

same time, many genetic variation databases have been developed to collect almost all common 

and many rare variations in humans. Some well-established human genetic variation databases 

include 1000 Genomes [8], Database of short Genetic variations (dbSNP) [9]. Other databases such 

as HGMD [10], OMMIM [11] can provide us with genotype-phenotype information which can be 

used for functional annotation of mutations and their effects. 

The effect of SNVs on molecular function in humans can be benign (no influence or trivial) and 

impactful function (affect the protein function). The impactful effect, in turn, can be deleterious 

or beneficial effect [12]. Many recent studies of disease networks have linked nsSNVs with 

macromolecular interactomes [13-15]. Now there are many functional annotation tools for genetic 

variation and most of the tools can be applied to the annotation of SNVs, while some tools also 

cover indels [16-19]. For example, ANNOVAR [20] could be applied at the whole-genome level. 

Tools like PolyPhen [21] and SIFT [22] are also popular tools to predict the damaging effect of 
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missense mutation on protein function. 

Non-synonymous SNVs are abundant in the human genome, and the frequency distribution is 

different among the population group. Population-specific differences in genetic variation could 

contribute to some of the observed differences in susceptibility to common diseases, response to 

drug treatments, and immune response [23-24]. One field, Pharmacogenomics, seeks to relate 

genetic variability in drug response, and the range of study from candidate gene studies to 

variation across whole genomes of human populations containing individuals who exhibit a range 

of response to different drugs [25-26]. Another field genome-wide association studies (GWAS) used 

in genetics research to associate specific genetic variations with particular diseases. This method 

involves studying genomes from many different people and is used to predict the presence of a 

disease in different populations. 

1.2 Role of ligand binding in human function 

Molecular recognition plays a fundamental role in all biology processes [27]. Many proteins 

function through binding small ligands. A protein-ligand interaction, whether this ligand is a 

hormone, fatty acid, drug, or metabolite can be associated with a variety of biological functions 

such as lipid metabolism, inflammatory processes, and hormonal regulation or lead to catastrophic 

events, such as adverse drug reaction, allergy or poisoning. The majority of the drug targets are 

also proteins [28-29].  

The way of protein-ligand interaction is through LBSs, so the identification of specific LBS on 

proteins is often an important step toward understanding the function of protein molecules or the 

design of new therapeutic compounds to modulate the various functions in human [30]. Some point 

mutations at LBS may change the binding affinities of the ligands. Potential effects of genetic 
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variation on LBS included metabolizing certain food, susceptibility to the drug, Metabolic 

abnormalities, physiological differences, and other catastrophic functions [31-32]. 

1.3 Protein-ligand Interaction Study Progress 

In the last few decades, molecular recognition and protein-ligand interaction have been 

traditionally studied using biophysical methods [33-35]. With the development of genome 

sequencing technology, people found that molecular mechanisms driving many genetic diseases, 

so more and more people start to focus on genetic variant disease networks. However, we have 

yet to get any comparable in its scale insights to how genetic mutations regulate the interactions 

between macromolecules and small ligands compared with Protein-Protein interactions and 

Protein-RNA [36] interactions work because of the high-throughput experimental approaches. 

Besides, most of the ligand-related work's insight just focuses on diseased people. A recent 

analysis revealed that ligand and binding residues had a significantly higher mutation rate than 

other parts of the protein across 16 cancer types [37] and built mutLBSgeneDB [38] which included 

12000 mutations at 10000 LBSs in cancer and 744 drug-gene. Moreover, mutation-induced 

molecular modifications in protein-ligand interactions have been identified. Epidermal growth 

factor receptor mutation in glioblastoma increased ligand binding affinity for EGF [39] and 

mutation in neuraminidase 1 gene conferred high ligand binding affinity [40]. 

1.4 Genetic variation affects ligand function in the health population 

Although the relationship between genotype-phenotype among diseases is complex than what we 

thought previously because of gene pleiotropy, the mutation rewiring genetic effects may lead to 

disease phenotype still convincing. In this work, we focused on the genetic variation in the healthy 

population and to study whether common genetic variation will affect ligand function. The 
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genetic mutation also exists in healthy people, even if people don't have any disease, so we draw 

a connection between these genetic variations with ligand functions. Recent evidence suggests 

that many disease-associated residues on or near the protein-ligand interaction[41-42] because the 

region are required for the interactions with other proteins or small ligand, so we also 

comprehensive mapped and extracted the genetic variants across different populations on the 

protein ligand-binding region to build such mutation ligand map. We collected the variant data 

from gnomAD [43] which aggregate and harmonize both exome and genome sequencing data from 

large-scale sequencing projects. We combined the WGS and WES variant frequency of ligand 

binding genes within specific populations and performed the statistical analysis over the LBS 

variant frequency with outside LBS region frequency. To study what potential ligand function 

has been affected in different people by genetic variation, we mapped the phenotype important 

pharmacological gene haplotypes over the ligand-binding variants and analyze the case studies. 
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2. METHODS 

 
2.1 Problem Formulation 

 

Our study showed a big interest in how common variants affect normal protein-ligand interaction 

and the goal of this project is to catalog characterize the potential effects of disease and population-

specific genetic variations on protein-ligand interaction function. We created a comprehensive 

human LBS mutation map to figure out the patterns of protein mutations that happen in the ligand-

binding region. Specifically, we hypothesized that LBSs of proteins are enriched with the 

population-specific mutations including some disease-associated mutations. Besides, we expected 

that many mutations would occur on hormone receptors. Testing this hypothesis, we provided 

insights on whether any specific category of LBSs-fatty acid, hormone, drug, or metabolite is 

equally susceptible to mutations in healthy populations. 

 

To finish our goal, we applied the semi-manual similarity score comparison algorithm to classify 

the types of ligands and compared the distribution of different ligand type mutations pattern (site, 

result, and frequency of mutations) in the population. Finally, we found some important genes 

which involved important biological functions to explore the potential functional effect of the 

genetic variation on the protein-ligand interaction from previous research. 

 

2.2 Methodology Overview 

 

In our research, we developed a new computational approaches pipeline (Fig.1). First, we used the 

human ligand binding interaction data extracted from the BioLip [44]. Second, we combined the 

two versions (V2 and V3) of genetic variation data in gnomAD based on the variant frequency as 

our genetic variant data. Then, we annotated the type and function of each ligand involved based 
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on the result of their chemical structure cluster. Finally, only the gene with the variants that hit the 

ligand-binding region has been selected as the ligand gene to do further analysis. At the 

downstream stage, we used statistical analysis to calculate whether there is a significant difference 

between the mutations in the LBSs region and the mutations in other regions. Next, we generated 

population variation distribution and observed each specific ligand variation patterns. Finally, we 

selected some important pharmacological gene from PharmKGB as the case to study and discuss 

the effect of this mutation on drug-related functions. 

 

Throughout the whole research process, most of the coding work was finished in R. Some specific 

process like combined the WGS and WES variant frequency and classified the ligand type was 

performed in Python. In addition, we also use python API for bulk alignment in Emboss-NEEDLE 

in residues renumber. Besides, some public database like ChemSpider [45], DrugBank [46] was used 

to annotate the type and function of each ligand. 
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Figure 1. A pipeline of experiment methodology: The original ligand data set was obtained from 

BioLip, which contains 2000+ human proteins and 12000+ ligand binding pairs. All the misplaced 

LBSs were renumbered against the reference protein sequence. The genetic variant data was 

extracted from gnomAD after the combination of two version data. 

 

 

 

2.3 Data Collection and Analysis 

 

All ligand binding data were downloaded from BioLip, we used EMBOSS-NEEDLE to align the 

receptor protein sequence to target reference protein sequences and then extract the original residue 

position and renumber high-quality LBSs based on the alignment result (coverage rate >0.5). 

Redundant records removed by leaving the highest resolution, and only human protein receptors 

with ligands were selected. The annotated variants of the selected genes were imported from 

gnomAD included missense, frameshift, splice region, stop_gained, synonymous, and others. 

Ensembl canonical transcripts were chosen to represent the corresponding gene. Matching the 

binding data with variants, only the ligand receptors that are fully covered by the Ensembl 
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reference protein sequences are left for future analysis (1980 genes). The LBSs were renumbered 

to fit the ensemble reference protein sequences, then the variants that hit the ligand-binding region 

were filtered out (1727 genes), some genes with variants do not hit the ligand-binding region were 

eliminated. For each variation, we define the high frequency of the variant by at least one 

population frequency > 0.0001. 

 

2.4 Ligand Type Annotation 

 

We grouped and annotated BioLiP ligands into biologically 8 relevant groups (Table1) with the 

method development by Mona Singh group in Department of Biomedical Informatics, Harvard 

Medical School [47]. The ligands form co-complex structures with “ion” and “metal” in their full 

names are assigned to the ion group and with metal. To highlight domain positions comprise 

metabolically relevant, hormone-relevant, and/or potentially druggable binding pockets, we 

further categorized small molecules as follows. Any small molecule ligand with a Tanimoto 

coefficient> 0.85 (Open Babel Package, v2.4.1) [48-49] between its SMILES string (wwPDB’s 

Chemical Component Dictionary, v3.30) and the SMILES strings of endogenous human 

metabolites (Human Metabolome Database, v3.6) [50], drugs (DrugBank, v5.0.1) [46] and hormone 

(HormoneBase [51]) is respectively classified as a Metabolite, Druglike, and Hormone group. Other 

ligand has been grouped into Regular, Peptide, and Nucleic Acid group by BioLip. After grouped 

each ligand into different categories, we annotated each ligand by their chemical name and 

functions they involved by two public databased ChemSpider and DrugBank. In these groups, we 

are more concerned about the result of the variant pattern in Metal, Ions, Hormone, Drug, 

Metabolite, and Regular ligand group because ligand in those group usually involved in important 

human biological reactions compared with the Nucleic Acid and Peptide group.  
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Ligand Type Reference E.X 

Metal PDBx/mmCIF dictionary Fe 

Ions PDBx/mmCIF dictionary SCN 

Hormone like HMRdb R18 

Drug Like DrugBank TDZ 

Metabolite The Human Metabolome Database  TDR 

Peptide PDBx/mmCIF dictionary III 

Nucleic Acid PDBx/mmCIF dictionary Cl 

Regular PDBx/mmCIF dictionary TDU 

 

Table1: List of Ligand type group: the reference column is the source of the ligand molecular 

structure information we collected. The E.X column is the ligand id example in different ligand 

type group 

 

2.5 Mutation Mapping 

 

We used EMBOSS-NEEDLE to align the receptor sequence with the protein sequence of hg38 

(end-to-end, pairwise) and got renumber LBSs residues in BioLip by the result of sequence 

alignment. Then, we mapped the comprehensive corresponding variation sites in gnomAD with 

their variant protein position and extracted the variant sites at the ligand-receptor residues by 

combined those datasets, so we got all the mutation binding site location and their specific mutation 

information. Some LBSs residues with multiple non-synonymous variations, which is at high 

frequency in at least one population were defined as LBS Polymorphism after the repeated level 

caused by ligand chains were removed. 
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2.6 Pharmacological Gene Mutation Mapping 

 

After mutation mapping, we explored some drug mutations already been studied before as the case 

study. The study of Pharmacogenomics provides us the impact of the genetic variations in drug 

genes on the drug response. We found some important genes which involved in the 

Pharmacogenomics study (Pharmacological Gene) in our ligand data as a case study to explore the 

effect of the mutation on LBSs in different population. We extracted 68 important genes in 

PharmGKB [49] VIPs (Very Important Pharmacogenes) channel and used a similar mapping 

method to mapped back to our mutation ligand data. VIPs provides an overview of a significant 

gene in the metabolism of, or response to one or several important drugs to human-like some gene 

plays the role in the metabolism of many drugs like CYP2D6, or other variant contribute to severe 

drug response like HLA-B. The source of these 68 genes in VIPs channel was from several 

authority agencies like the US Food and Drug Administration (FDA) biomarker list, the Clinical 

Pharmacogenetic Implementation Consortium (CPIC), and others. Besides, the VIPs channel also 

provides us the background information of each gene include any disease association, as well as 

in-depth information on the gene's pharmacogenetics, included haplotype, each variant annotation, 

clinical annotation, and phenotype. We mapped these 68 genes to our mutation LBS data can get 

the several pharmacological gene mutations map in different populations. The final visualization 

mutation results are displayed with TBtools [53]
. Finally, we studied the effect of each haplotype 

mutation in a specific population from other public papers to help us predict the potential function 

and mechanism of the mutation to protein-ligand interaction. 
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2.7 Statistical Testing 

 

The nvSNV-driven effects on protein-ligand interactions followed by the statistical analysis of the 

co-localization results. All variant residues in this experiment filtered out into the variant within 

LBSs or outside the LBSs. To compare the frequency results of the variant in LBSs and explore 

whether it has a specific amino acid change in the ligand-binding region, we calculated the 

reference and their alternate amino acid frequency in the heatmap matrix. We explored whether 

the ligand region is filled with a large number of non-synonymous mutations, so the differences 

between the overall number of the synonymous variant in ligand gene directly comparing the 

number of non-synonymous variants and differences between the number of these two variants in 

LBS or non-LBS region were applied by one-way analysis of variance (ANOVA) or two-way 

ANOVA. P values of < 0.01 were considered significant. All the statistical analyses were carried 

out in R version 3.6.3 
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3. RESULTS 

 
Initially, we hypothesized that most of the mutations on the protein-ligand binding receptor are 

non-synonymous variants and a large percentage within these variants should be associated with 

hormone receptors based on the previous study that showed that the hormone receptor mutations 

might be the drivers behind the disease and adverse reactions. Specifically, a mutation of leucine 

to serine in residue 454 (L454S) of the thyroid hormone leads to severe resistance to thyroid 

hormone (RTH) [54]. But by mapping variant data in gnomAD into LBSs, the number of hormone 

mutation binding is much fewer than the metabolize and drug binding. 

 

3.1 Statistics on the data collected and integrated 

 

For the original genetic variation data set collected from gnomAD, most of the variants were 

encoded by their rsID. Besides, other important information like mutation position, variant type, 

amino acid change, and allele frequency in each population were also provided.  

After combined the two versions of genetic variation data and mapped to the receptor protein, we 

total got 1980 ligand-receptor genes which included 83653 variants. In these 1980 genes, 1727 

gene ligand-binding receptor was affected by the variation. The cases with multiple chains and one 

chain able to bind to multiple same ligands were also included. Within all variants in ligand binding 

region record, there are 1 start lost, 595 stop_gained, 10756 missense variants (non-synonymous) 

(Fig.2a), and 8098 synonymous. Among all these variants, the non-synonymous is what we were 

more concerned about. The overall number of the non-synonymous variants in the LBSs-

containing gene is significantly higher than the synonymous based on the p-value, but the overall 

frequency of the non-synonymous and synonymous variants in the LBS region don't have 

significant difference based on the one-way analysis of variance results (Fig.2c), showing that the 
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frequency of the synonymous variants is relatively higher than the non-synonymous. This result is 

in line with our expectations because our data comes from the healthy population rather than 

disease-associated people, so the non-synonymous mutation frequency did not show significance 

in overall mutations. 

 

 

 

(a)                                                                        (b) 

 

(c)                                                                       (d) 

 

Figure.2:  Variation frequency and distribution: (a) and (b) are the frequency of different types 

of mutations in LBSs. (c) is the one-way analysis of variance result about synonymous and non-

synonymous frequency in the ligand-binding region. (d) is the one-way analysis of variance result 

about overall synonymous and non-synonymous frequency 
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To test the hypothesis about whether any specific mutation is more easily appear on LBSs in 

healthy populations and help us to predict the protein change pattern, we calculated all the 

frequency of the amino acid changes in protein caused by these 10756 missense variants (Fig.3). 

We found that there are some specific higher frequency amino acid changes happened such as the 

reference amino acid Arg is more likely to become Trp, Gln, His and Cys compared to other amino 

acids.  

 

 

Fig.3: Missense reference and alternate: The darker the color in the heatmap, the higher the 

frequency of this amino acid change. 

 

We are still far away from complete understanding what the biological functions or diseases will 

be impacted by the LBS-associated variants due to the limited clinical genomics and protein-ligand 

interaction structural data. But these preliminary data can provide further directions for in-depth 

predicting potential mutation patterns in the binding regions by leveraging machine learning and 

GWAS technology in the future. 
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3.2 Ligand type-specific variation pattern 

 

After founding the mutation binding residues, we got the map of the overall population variation 

on the ligand-binding region (Fig.4). The figure result showed that Ashkenazi Jewish and 

European Finnish populations have a higher overlap of mutation patterns (similar site, result, and 

frequency of mutations) in the ligand-binding region, and the African and Latino have a similar 

mutation patterns in this region based on the hierarchical cluster analysis. But to our surprise, it 

showed that the variation of East Asians is quite different from that of other populations. This 

result is beyond our expectations because, in several other big human genome project cluster 

analysis experiments, the results often show that the mutation pattern in African populations is the 

most different from other populations and has a higher frequency. And according to records, some 

regional rare genetic diseases often appear in Africa, but the result in our study showed that the 

East Asian populations have some specific mutations in the ligand-binding region that influence 

the normal human protein functions. 
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Figure.4: Overall LBSs Variation Pattern: The abscissa represents the gene whose protein has 

LBSs, and the ordinate represents each population. The darker the color, the higher the frequency 

of the mutation. 

 

When we specifically focused on the mutations of different ligand-receptor types, the results are 

different. After got each type of ligand in different groups, we also calculated drug, metabolite 

ligand-target site variation frequency in different populations and drew their distribution map to 

validate our hypothesis (Fig.5). When we compared the variation pattern in each ligand type, some 

mutations are indeed specific in a certain population. For example, we found some mutations only 

exist in East Asian in the drug group which proves that the fact about genetic variation in the 

human can reflect different individual responses to the drug and other biological functions. On the 

other side, we also found that some of the variants exist in different populations and it has many 

overlapping parts in one column. It showed that such mutations are common mutations although 

the value of mutation frequency is different, so such result can help us to understand some common 
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genetic-related phenotype or diseases that are widespread in humans not in one specific population 

such as allergic reaction or drug resistance. Drug group (Fig.5.a) and Metabolites (Fig.5.c) groups 

result are of special interest because the impact of the mutation on these two groups can be directly 

related to different life styles, food preferences and drug susceptibilities. For example, mutations 

in the drug group have a higher chance to relate drug response or side effect, while mutations in 

the metabolite group may directly relate to consumption of different foods. In the drug group, we 

found that the Latino and Ashkenazi Jewish populations have similar mutation patterns in the 

mutation location and mutation result on LBSs. Finnish and European populations also have 

similar mutation patterns based on the clustering result. But in the metabolite group, Finnish has a 

big different mutation patterns from other European populations. Mutations in African occur on 

different LBSs compared with other populations which can prove that Africa has some area-related 

diseases caused by metabolism disease. The same conclusion in these two groups is the East Asian 

genetic variation pattern is the most different from other health populations. This result showed 

the same conclusion as the overall distribution result. It provides novel insight to the other biology 

or bioinformatic analysis in Asian population ligand-related research such as Evolutionary analysis, 

GWAS, or other studies. 
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                (a)Drug                                                                    (c) Metabolites 

 

 

(b)Regular                                                              (d) Ion 
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                                                          (e) Metal 

Figure5: Different Ligand Type Variant Pattern: (a) is the Drug LBSs map (b) is Regular LBSs 

map (c) is Metabolites LBSs map (d) is Ion LBSs map and (e) is Metal LBSs map. The abscissa 

represents the gene whose protein has LBSs, and the ordinate represents the population. The darker 

the color, the higher the frequency of the mutation. 

 

 

3.3 Passive Binding with Human Protein Case 

 

In our drug ligand group, one interesting drug case we found is Abacavir [55-57] which is a passive 

binding with human ligand case. Abacavir is a power nucleoside analog reverse transcriptase 

inhibitor used to treat HIV and AIDS. Chemically, it is a synthetic carbocyclic nucleoside and is 

the enantiomer with 1S, 4R absolute configuration on the cyclopentene ring. However, serious 

hypersensitivity reactions (HSR) have been associated with abacavir by the fact that 5% of 

individuals who receive abacavir develop an immune-mediated HSR. There is large evidence to 

show that people who carry the HLA-B*57:01 variant are at significantly increased risk of 

developing HSR in different populations and the HLA-B*57:01 allele frequency in worldwide 

populations is in Table2. One most potential mechanism is the abacavir itself may covalently bind 
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to the normal peptide ligand for HLA-B*57:01, making the immune system begins to mount a 

defense [58]. 

 

 
Population Allele 

count 

Allele 

Number 

Number of 

Homozygotes 

Allele Frequency 

South Asian 1405 27008 52 0.05202 

Ashkenazi Jewish 404 9006 17 0.04489 

European (non-Finnish) 4050 119512   82 0.03389 

Other 177 6484 1 0.02730 

European (Finnish) 238 24604 1 0.009673 

Latino/Admixed 

American 

276 28864 11 0.009562 

African/African-

American 

189 24262 3 0.007790 

        Ease Asian 58 18444 1 0.003145 

             

Table 2: List of HLA-B*5701 allele frequency in worldwide populations: the data collected 

from gnomAD 

 

 

3.4 Pharmacogenomic Analysis Information 

 

In total, we have got 20 pharmacological gene variants (Table3) on the ligand-binding region after 

we mapped the 68 important genes to our LBSs map. We drew the connection between these 

selected variants in different haplotypes and the function or phenotype of this mutation on protein-

ligand interaction. 
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     Gene Variant Haplotype Allele. count Population 

 
CYP2C9 

 

 
L361I      *55 2 

East.Asian 
European.non.Finnish 

CYP2C9 

 

rs578144976 

 

     *66 27 European.non.Finnish 

South.Asian 
 

CYP2C9 

 

rs762239445 

 

      *39 8 East.Asian 

European.non.Finnish. 
 

CYP2C9 

 

rs767576260 

 

      *43 14 European.non.Finnish. 

Latino 
East.Asian 
South.Asian 

 
CYP2C9 
 

rs776908257 

 
*67 12 Latino 

European.non.Finnish 

South.Asian 

 

CYP2A13 
 

R101Q 

 
*4 888 European.non.Finnish. 

 

CYP1A2 
 

rs72547517 

 
*8 12 African 

Latino 

East.Asian 
European.non.Finnish. 
South.Asian 

 
CYP2D6 
 

rs1406719554 

 
*123 1 African 

 

CYP2D6 
 

rs199535154 

 
*20 20 African 

East.Asian 
European.non.Finnish. 

 
CYP2D6 
 

rs532668079 

 
*75 4 African 

 

CYP2D6 
 

rs730882251 

 
*62 24 African, Latino 

Jewish 
European.non.Finnish. 

 
NAT2 rs56387565 

 
*12F 53 African 

Latino 

Other 

 
NAT2 rs72554615 

 

*6D 38 Amish 

European.Finnish. 
European.non.Finnish. 

 

CYP2A6 
 

rs143731390 

 
*24A 1238 African 

Latino, 

Jewish 
East.Asian 
European.Finnish. 

European.non.Finnish. 
Other 
South.Asian 

 

 
CYP2A6 

 

rs143731390 

 

*24B 1238 African 

Latino, 
Jewish 
East.Asian 
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European.Finnish. 
European.non.Finnish. 

Other 
South.Asian 
 

 
CYP2A6 
 

rs143731390 

 
*35A 1238 African 

Latino, 

Jewish 
East.Asian 
European.Finnish. 

European.non.Finnish. 
Other 
South.Asian 

 

 
CYP2A6 

 

rs143731390 

 

*35B 1238 African 

Latino, 
Jewish 
East.Asian 

European.Finnish. 
European.non.Finnish. 
Other 

South.Asian 
 

 

CYP2A6 
 

rs143731390 

 
*36 1238 African 

Latino, 
Jewish 

East.Asian 
European.Finnish. 
European.non.Finnish. 

Other 
South.Asian 
 

 
CYP2A6 

 

rs143731390 

 

*37 1238 African 

Latino, 
Jewish 
East.Asian 

European.Finnish. 
European.non.Finnish. 
Other 

South.Asian 
 

 

CYP2B6 rs139801276 

 
*35 284 African 

Latino 
East.Asian 

European.non.Finnish. 
Other 

 

CYP2B6 rs36079186 

 
*27 168 African 

Latino 
European.non.Finnish. 

Other 
South.Asian 

 

CYP2B6 rs36079186 

 
*35 168 African 

Latino 
European.non.Finnish. 

Other 
South.Asian 

 

CYP2B6 rs564083989 

 
*24 4 East.Asian 

Other 
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CYP2C19 rs41291556 

 
*8 225 African 

Latino 

Jewish 
European.Finnish. 
European.non.Finnish. 

Other 
South.Asian 

 

CYP2C19 rs56337013 

 
*5 1 East.Asian 

European.non.Finnish. 
South.Asian 

 
TPMT rs759836180 

 
*42   27 European.Finnish. 

European.non.Finnish. 

 

Table 3: List of Pharmacological Gene Variant haplotype information 

 

We also got the map of those pharmacological variations on the ligand-binding region. The result 

(Fig.6) by TBtools [53] suggested that even though such drug LBSs-associated variants have 

potentially different impacts across different population groups due to the higher frequencies of 

occurrence in East. Asian and African subpopulations. 
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Figure6: Pharmacological Variant Pattern Distribution: The abscissa represents the 

population. The ordinate represents got 20 pharmacological gene variants we selected. The value 

of the result is standardized and presented in the form of color shades in the figure 

 

Furthermore, we also explored whether these mutations work synergistically or antagonistically in 

our pharmacological gene group. In our pharmacogenomics analysis, although most of these 

medicinal ligand mutations are rare, we do not know the function, mechanism of these mutations 

on the role of the ligand, but few existing research has shown that nsSNV functions to the ligand-

binding interaction also present deleterious, beneficial and neutral effects which similar to study 

the nsSNV functions on protein-protein interaction. 

 

3.4.1 Deleterious Effect Case 

 

CYP2A6 (Fig.7), an enzyme responsible for the metabolism of a large number of xenobiotic 

compounds: many drugs metabolized by CYP-450 enzymes involve CYP2A6. The gene is highly 

polymorphic, with variations resulting in altered enzymatic activity. The novel CYP2A6*24 allele 
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had two non-synonymous variants on Va110 and Asn438 compared to the CYP2A6 wild type.  

Some study shows that the later one (N438Y) is happened on heme-binding amino acids and also 

adjacent to two heme-binding sites: Arg437 and Cys439, which alter the active site cavity and 

change binding affinity. Such mutation caused the nicotine metabolism to decrease and nicotine 

dependency disorder found in Black African descent [59]. 

 

 

Figure.7: CYP2A6 PDB Structure View (N438): pdb_id:3T3Q 

 

CYP2C9 (Fig.8), is a phase I drug-metabolizing cytochrome P450 (CYP450) enzyme isoform that 

plays a major role in the oxidation of both xenobiotics and endogenous compounds. The 

discovered binding pocket shows that it may simultaneously accommodate multiple ligands during 

its biological function and provides a foundation for understanding complex drug–drug interaction. 

CYP2C9*66 is one of the novels and rare haplotypes formed by some novel and rare variants 

which already found in three projects. Leu362Val is a specific variant in the south-Asian and the 

putative functional variants analyzed shows that even though the mutation Leu362Val present 

within CYP2C9*66 is predicted to be tolerated/benign, conversion from leucine to valine can 



 32 

affect assess of the drug to the heme group of active site result from Leu362 is present within the 

hydrophobic substrate-binding pocket of CYP2C9 [60]. 

 

 

 

Figure.8: CYP2C9 PDB Structure View (L362): pdb_id:1OG2 

 

 

 

3.4.2 Neutral Effect Case 

 

Still, CYP2C9 (Fig.9), the haplotype CYP2C9*43 in our data was described as “almost null 

catalytic activity” is not associated with expression of CYP2C9 was considered to be a 'tolerated' 

mutation. The novel coding variant (R124W) had almost null catalytic activity compared to wild-

type protein based on the in vitro catalytic activity analysis in the Han Chinese population [61]. 
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Figure.9:  CYP2C9 PDB Structure View(R124): pdb_id:1OG2 

 

3.4.3 Beneficial Effect Case 

 

Genetic variants of NAT2 (Fig.10) have primarily been associated with drug metabolism, 

response, and toxicity of multiple drugs, most notably, anti-infective agents. Non-synonymous 

variant rs56387565 in NAT2*12F haplotype causes the amino acid change Tyr208His in CoA 

binding. Most of the identified SNPs in NAT2 should be innocuous to the function of the NAT2 

enzyme but specifically, the Tyr208His would even enhance NAT2 affinity for CoA in Brazil 

population since it is possible that the positively charged side chain in His208 would better 

stabilize the negatively charged phosphate groups in that cofactor. This view was supported by the 

observation that His is also naturally found in the homologous position of the chicken NAT2 

sequence [62]. 
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Figure.10:  NAT2 PDB Structure View (Y208): pdb_id:2PFR 
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4. Discussion 

 

4.1 Overview of Results 

 
In this work, we studied the mutations occurring in the ligand binding sites LBSs of human proteins 

and built the most comprehensive human LBS mutation map. The construction of the first 

population-specific atlas of SNVs associated with ligand binding sites followed by the analysis of 

the functional impact of mutations between different race cohorts. Our analysis helps one to 

determine and characterize the patterns of protein mutations in the ligand-binding regions and 

explore the profile of different population variants associated with the ligand binding function. 

After we collected all the genetic variation information, we found that most variants in the ligand-

binding genes are the non-synonymous substitutions that alter the amino acid sequence of the 

protein that may or may not lead to phenotypic changes. Interestingly, we found no apparent 

difference between the frequencies of synonymous and non-synonymous substitutions located 

specifically in the ligand-binding sites, which was expected because our data were collected from 

the healthy population with no obvious disease conditions or abnormal phenotypes reported. We 

grouped and classified all the ligands in BioLip into eight different types, which leads to a 

surprising observation that the number of the metabolite binding sites were the group of LBSs 

most affected by mutations. 

 

The results of the LBSs genetic variation mapping and the cluster analysis show that the Ashkenazi 

Jewish and European Finnish population have a similar genetic variant pattern in the ligand-

binding region and both of their variant allele frequency is lower than the other six populations. 

The African and Latino have a similar variant pattern and their variant frequency is higher than 

the Ashkenazi Jewish and European Finnish. To our surprise, the East Asian people mutation 
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frequency in the LBSs region are highest among people and are the most different variant pattern 

with other populations based on the cluster analysis, so it shows that it must have some specific 

area or higher frequency ligand binding mutation-related behavior that needs us to explore in East 

Asian people. 

 

In the drug map analysis, we found that the European non. Finnish and European Finish 

populations have a close mutation pattern, so it suggested that all European population maintains 

a certain degree of similarity in the drug response or metabolism of drug function dominated by 

ligand mutations. In the metabolites group, South Asians start to have a similar variant pattern with 

the European group, and the African variant pattern has a somewhat greater difference with the 

European and Latino populations. The drug group and metabolite group maps both suggested that 

the East Asian population has the most distinct mutation ligand binding pattern compared with 

other population groups in the world. Therefore, one can conclude that East Asian is a unique and 

therefore very important population for a ligand-related study with its special variant pattern based 

on our map result. The above distribution and clustering results support our hypothesis that the 

ligand region in different populations will be affected by different mutations. Among them, the 

location and frequency of mutations in East Asians are quite different from those in other 

populations. 

  

In the pharmacogenomics analysis, we selected an important drug receptor to see if the population 

variants associated with this gene may have a functional effect on receptor binding based. We 

found 20 pharmacological gene variants in our map that were mainly distributed among East 

Asians and Africans. From this pool, four variants in three important genes CYP2A6, CYP2C9, 
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and NAT2 have proved that the different SNVs impact on protein-ligand interaction included 

deleterious, neutral, and beneficial from previous public paper in nicotine, phenytoin, and other 

drugs studies which similar to protein-protein interaction rewiring by non-synonymous variants[15]
. 

It has proved that those binding mutations will decrease the metabolism function of the drug or 

increase the risk of disease when treated with the drug. These results further suggest that SNPs 

could rewire protein-ligand interaction altering the function mediated by the interaction. 

 

4.2 Limitation of the Research and Future Work 

 
In our research, we collected the genetic variation data from gnomAD database. The main 

advantage of using this database, compared with other human genome projects like ExAC and the 

1000 genomes project, is it is one of the newest ones, with a larger scale and scope, and provides 

a richer interpretable set of genetic variations. The main limitation is that gnomAD database only 

has mutation information from 8 populations. Therefore, although our map has the largest number 

of mutations and annotation information, we do not have the most comprehensive population 

information enough.  If people want to focus on a certain country or even more small population 

ligand area mutation information, this result cannot show. Besides, there has not been a single 

large-scale study on the impact of specific mutations on macromolecules and how genetic 

mutations regulate the interaction. As a new database, most of the rare variants in gnomAD no one 

has studied before, so this study is lacking resource for studying the function of rare variants. For 

example, rs759836180 in TPMT in VIP group we don’t know what impact of this mutation and 

what function it has, so it’s very difficult for us to understand the function of every mutation in 

our ligand map.  
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As to the future direction, in spite of the current progress, as well as the significance of the results 

discussed above, the developed methodologies developed could be extended into several other 

directions. Since the work on predicting the functional effect of each mutation will be the direction 

of future study, we plan to integrate the obtained annotation with the previous GWAS analyses to 

provide a more detailed analysis of the functional impact of mutations. In our research, we have 

already evaluated the frequency of each amino acid change patterns in the ligand-binding region, 

so we think this is a useful resource to predict what possible mutation will happen in the future by 

applying the machine learning method. If it is successful, it will make a great contribution to the 

diagnosis of some human diseases or abnormal reactions caused by a mutation in LBS in the future. 

Besides, we found that the mutation will change the binding affinity and affect the normal response 

of humans, so how much does the mutation change the binding affinity of protein-ligand 

interaction is the future direction that we need to consider. Recently, supervised learning have been 

introduced that directly predict the binding affinity of protein-ligand interactions [63-64], while not 

studying mutations effects, our project lays a foundation to study the semi-supervised regression 

to estimate the change in the binding affinity between the mutant and wild-type LBS, and it will 

be the first semi-supervised regression method in the fields of systems biology and genetics. How 

to get and predict more specific function and mechanism especially about the rare SNPs rewire 

protein-ligand interaction altering the function, we need to combine more experiment study and 

computational methods. But based on the results we have obtained so far and the development of 

machine learning and computational data mining methods, we remain optimistic about getting 

more accurate and meaningful conclusions. 
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