
Appjudicator:

Enhancing Android Network Analysis through UI Monitoring

by

Joseph Petitti

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Computer Science

by

May 2021

APPROVED:

Professor Craig A. Shue, Major Thesis Advisor

Professor Robert J. Walls, Thesis Reader

Professor Craig E. Wills, Head of Department



Abstract

Smartphones are becoming increasingly important in all aspects of life, including corporate envi-
ronments, where “bring your own device” (BYOD) policies are gaining widespread acceptance. Mal-
ware already exists to take advantage of Android phones in BYOD settings, aiming to take control of
devices with access to privileged information by disguising itself as a benign app. Malware could be
easier to detect if network administrators had more insight into employee-owned smartphones. We
propose a system, called Appjudicator, to address this issue. It implements an accessibility service
to monitor user interactions with the user interface (UI) of other apps, so this context can be used in
malware detection. For example, if an app sends a new network request without any user interaction,
this flow could be the result of malware and should be investigated. Our app is a host-based software
defined networking (SDN) agent that works in conjunction with an SDN controller to monitor and
control the phone’s networking abilities based on the organization’s SDN rules and our UI context.
We build a proof of concept application and find that it can successfully combine network and UI
data while adding less than 14 milliseconds of total latency in 95% of flows.

i



Acknowledgments

I would like to express my gratitude to my advisor, Professor Craig Shue, for guiding me through my
graduate education with helpful advice and insightful feedback. Without his patience and wisdom this
thesis could not have happened. I would also like to thank Yu Liu for his technical help and support
throughout the project, along with Matt Puentes and Cole Granof for their advice and moral support.
I also wish to thank Beckley Schowalter for her help with writing and grammar. Additionally, I want
to express my appreciation to my thesis reader, Professor Robert Walls, for his helpful feedback on this
project. His questions and criticism, along with those from every member of the WPI Cake Lab, are
what turned this paper from a very rough summary to a polished final product.

ii



Contents

1 Introduction 1

2 Background and Related Work 3
2.1 UI Interaction and Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Android’s Accessibility Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Software-defined Networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 The Android Phone as an SDN Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Approach and Implementation 6
3.1 VPN Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1.1 Deconstructing Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1.2 Multithreading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.3 Permissions and Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Accessibility Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2.1 Accessibility Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.2 Asynchronous Event Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.3 Identifying UI Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.4 Permissions and Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Host-Based SDN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3.1 SDN Rule Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3.2 OpenFlow Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3.3 Associating Network Flows with Context . . . . . . . . . . . . . . . . . . . . . . . 11
3.3.4 Default-Allow Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Evaluation and Results 13
4.1 Differentiating User-generated Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2.1 Measuring Added Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2.2 Latency Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.3 Measuring Resource Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Discussion 17
5.1 Implications and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

iii



1 Introduction

Many employees are now using their own personal smartphones for work purposes, as working from
home becomes widespread and companies adopt “Bring Your Own Device” (BYOD) policies. Existing
corporate network administration tools have little insight into the connections made by employee-owned
smartphones. It is difficult for large organizations to maintain security across their networks with such
little knowledge about, and control over, these mobile devices. The fact that these devices enter and exit
the corporate network and connect to other networks, such as their cellular data provider’s, on a daily
basis complicates this issue.

Smartphones have a wide range of powerful networking and computational abilities, and are typically
privately owned by employees, which raises further concerns when integrating them into secure network
environments. For example, smartphones have been targeted by malware specifically designed to infiltrate
corporate networks [20], such as “Dresscode”, which disguises itself as a legitimate app in order to steal
data and add infected devices to a botnet [31]. The “xHelper” malware targets phones used for both
personal and professional purposes; can automatically download and install arbitrary software specified
by an attacker; and persists even after a factory reset [37]. A black market malware-as-a-service model
called “Black Rose Lucy” even offers control of infected Android devices to paying customers, potentially
giving any malicious actor an entry point to a secure network [38].

If mobile devices are to have access to sensitive corporate network infrastructure, either from home
or from work, administrators need new tools to monitor and control their network connections. These
tools could provide the information needed to monitor network activity for malware, provision network
resources based on which apps are being used, or debug complex distributed applications. However, if
the tools are not easy to deploy and manage, it will be difficult to convince end users to adopt them. For
example, similar solutions on Windows [3, 23] require administrator privileges or the ability to modify
the kernel. This is impractical for most users to do on a smartphone and exposes them to additional
security risks [10].

To solve these issues on Android devices, we propose a new app called Appjudicator that leverages
user interface (UI) interaction and software-defined networking (SDN) principles to determine whether
network flows are legitimately user-initiated. The app has two components: an accessibility service that
monitors UI interaction and a VPN service that intercepts network flows. We use these two sources of
information to correlate network flows with user interaction, and we provide this information to network
administrators by acting as a host-based SDN agent.

The UI monitoring component uses Android’s accessibility API to asynchronously record physical
hardware inputs, such as tapping or swiping the touch screen. This gives administrators the ability to
accurately distinguish between human-driven and automated network requests. Meanwhile, the VPN
service acts as an OpenFlow agent and rule cache, giving administrators fine-grained control over which
connections the device is allowed to make. Flows are augmented with context from the specific device
and application, and can be elevated to the organization’s SDN controller along with UI context data if
necessary.

Our application provides organizations with a new set of powerful, easy-to-use tools for monitoring
BYOD Android smartphones in a simple app package that is easy for users to install. It does not require
rooting, recompiling the kernel, or any other cumbersome processes. It can distinguish between user-
generated and automated network requests with a high degree of confidence using techniques that are
difficult for malware to evade. This makes users safer by detecting stealthy malware on their devices and
improves the organization’s network security.

The costs of our system include the resource overhead of running the app (CPU cycles, battery power,
etc.) and the expense of installing, running, and maintaining the controller server. We found these costs
to be a relatively small addition to existing resources. The app’s UI monitoring and VPN service also
add some latency to network requests performed on the phone. In our experiments, Appjudicator
added less than 14 milliseconds of total latency to 95% of packets processed by the app.

Using UI data to distinguish user-initiated behavior and using a smartphone as an SDN agent have
previously been studied, but Appjudicator combines these aspects in new and important ways. Android
host-based SDN agets have been investigated by Hanguard [5], and using UI interaction as context for
identifying malicious app behavior was examined in AppIntent [41], but our system combines these
approaches to form a novel solution for a distinct use case. One key difference is that AppIntent uses
machine learning to conduct static analysis of apps, while Appjudicator enables live monitoring and
response to malicious network flows in real time.

Kwon et al. have proposed a system that uses UI data to distinguish user-generated network

1



flows, and the combination of UI monitoring and SDN has been implemented on Microsoft Windows
by Harbinger [3]. We solve new challenges by implementing this strategy on the Android platform. For
example, since we are constrained by Android’s rigid permissions system, we do not have root access to
the device and cannot modify the kernel. These restrictions require novel techniques and systems.

This work focuses on implementing a proof of concept networking tool for Android. We explore the
following research question:

Can UI interaction and network activity successfully be used to predict and associate network
flows with user actions on Android devices with acceptable overhead?

We leave the potential applications of this data for network security to future work, instead examining
the effectiveness of our strategy for differentiating user-initiated flows and measuring the system’s CPU,
memory, and energy costs.

To investigate, we perform a study with several real apps to determine whether Appjudicator
can successfully detect user-initiated network requests. We found that even with a simple timing-based
strategy the app could successfully associate network flows with the UI interaction that initiated them.
We also measure the total added latency of the VPN and SDN agent, finding that our system adds less
than 14 milliseconds of total end-to-end latency to 95% of intercepted packets. On a standard 60 Hz
screen, this latency is imperceptible to users.

In summary, this paper makes the following contributions:

• We propose a novel system for associating network flows with user interface context on Android.
Unlike existing solutions, our application implements a host-based SDN agent and does not require
root access to the device.

• We design and implement a practical prototype of the system on Android, called Appjudicator,
which integrates with other SDN infrastructure using a subset of the OpenFlow protocol.

• We evaluate the performance and efficacy of Appjudicator on real and virtual Android devices
with real-world apps. The results show that this prototype has a low impact on CPU, memory,
and battery usage, and adds a minimal amount of total latency to network communications while
achieving its goal of differentiating user-initiated flows and associating flows with UI context.

2



2 Background and Related Work

Related work has been conducted in both of the main focus areas of this project: the use of UI interaction
data for security and the use of Android smartphones in software-defined networking (SDN). We now
review such work.

2.1 UI Interaction and Security

Figure 1: Android displays this warning
when enabling an accessibility service.

Previous work has investigated how user interactions with
the UI can be used to identify human-initiated behavior on
various platforms. Harbinger examines user interface activ-
ity on Windows to provide context for network requests to
previously unknown hosts in a default-deny environment [3].
This approach “hooks into” mouse and keyboard inputs us-
ing Microsoft’s UI Automation library [26], intercepting the
input before it is received by the intended application. Al-
though Harbinger’s operations are performed synchronously,
they still added only six milliseconds or less of latency to
96% of flows.1

Kwon et al. also used UI interaction data to distinguish
human-generated from automated network requests on Win-
dows [23]. They propose a host-based system for combating
botnets by leveraging UI interaction data. But their ap-
proach of labelling any flow initiated within one second of
an interaction with the flow’s process as “user generated” ig-
nores much of the context that can be gained from UI data.

Shirley and Evans attempt to infer a users’ intentions
from their actions and to define a language for writing ac-
cess control policies based on these intentions [33]. Their
approach collects UI interactions like mouse clicks and
keystrokes, along with the state of the user interface. Like
other previous work mentioned above, they focus on Win-
dows only, and use their program to limit malware file ac-
cess.

Cui et al. proposed a system called BINDER for Win-
dows that attempts to detect malicious network flows by as-
sociating user input events, to process start and finish events,
and network events [4]. Their system would only block flows
locally and was never implemented. In contrast, our system
integrates into an SDN environment and provides context to
network administrators.

2.2 Android’s Accessibility Service

Most previous work on Android has used the platform’s
AccessibilityService, a library that includes the ability to
respond to UI changes among other accessibility features [13].
Apps that implement this API can be notified asynchronously of UI state transitions in other all apps
on the phone.

These services break the operating system’s normally strong sandboxing principles by their ability
to read and interact with anything displayed on the screen [19, 6]. Real Android malware has taken
advantage of accessibility services to spy on users and take control of mobile devices [22]. For security
reasons, Android requires any accessibility service to be enabled manually by the user in the settings
app. The operating system displays a dialog box to warn the user of the potential security risks involved
with accessibility services when one is first enabled (see Figure 1). Still, some have argued that even this

1In contrast, the relevant Android library is asynchronous and event-driven [13]. Section 3.2 discusses the benefits and
challenges associated with this approach.

3



warning is not descriptive enough of the powerful and wide-reaching permissions given to accessibility
services [19].

Some prior work has been done on detecting malicious behavior using an accessibility service. AppIn-
tent [41], for example, uses this service to determine if an app is leaking private information by building
a graph of UI interactions that could lead to information leakage. However, AppIntent is only designed
to determine whether an app could leak private information through static analysis and does not work
in real time on a per-flow basis.

2.3 Software-defined Networking

Software-defined networking (SDN) has been studied as a tool for giving network administrators more
information about, and control over, intra-network traffic. In essence, SDN centralizes network intelli-
gence by separating the forwarding of packets (the data plane) from their routing (the control plane). In
this paradigm, network switches merely forward packets, while all control and logic is centralized with
an SDN controller server [21].

The most commonly used SDN protocol is OpenFlow, a standard maintained by the Open Networking
Foundation [8]. The OpenFlow protocol provides a standard way for SDN agents (usually network
switches) to cache packet-forwarding rules [30]. When a packet from a new flow arrives at the agent, it
looks up the most specific rule that applies to the packet, then performs the actions listed in the rule.
These actions can include changing fields in the packet’s header, forwarding it out a specific port, or
dropping the flow entirely. If the switch has no matching rule in its flow table—or if a rule specifically
requests it—the switch can forward the packet in question to the central controller server to ask what
to do with it.

SDN gives administrators more fine-grained control over packet routing rules, which enables more
sophisticated policy enforcement. It also provides insight into potential issues and congestion in the
network from one centralized control point, rather than from many switches and routers. The main
drawback of this approach is the high overhead that causes it to scale poorly [1].

Several techniques have been tried for distributing the load on the controller server [29, 7]. Some
authors have investigated using end nodes, instead of routers and switches, as SDN rule caches to alleviate
this problem [36, 3]. In this approach, each host caches rules from the SDN controller and makes routing
decisions about its own network flows. Appjudicator follows this strategy, implementing a host-based
SDN agent and extending the OpenFlow protocol with more context.

Taylor et al. explore the feasibility of separating the SDN controller from the local network entirely,
connecting instead to a cloud-based controller [35]. They achieved acceptable overhead for 90% of end
users by selecting low-latency public cloud locations.

Others have investigated the potential for improving SDN’s capabilities by adding context [40], an
approach which Appjudicator also attempts. SDN rules could be more powerful and granular with
more metadata, such as a network flow’s initiating application.

Qazi et al. attempt to classify traffic from Android phones using machine learning on an SDN
switch [32]. Their approach achieves 94% accuracy in the top 40 Android applications. By utilizing the
phone itself as an SDN agent, Appjudicator can identify a network flow’s originating application with
100% accuracy for all apps.

2.4 The Android Phone as an SDN Agent

Several previous applications have used an Android smartphone as an SDN agent and rule cache.
Hong et al. explore the tools available to organizations for managing BYOD Android devices and
propose a system for applying SDN policies to these phones [18]. They apply app-specific rules that are
aware of device context, such as GPS location, with low overhead. However, this work does not take
advantage of the many extra sources of context the mobile device can provide.

While Hong et al. [18] and Appjudicator are both aimed at corporate users, HanGuard investigates
the use of SDN principles to protect Internet of things (IoT) devices in home networks [5]. Their
application provides tools for users to easily define SDN rules for IoT apps, IoT devices, and users.

While each of these areas has been extensively researched alone, only Chuluundorj [3] and Kwon et al.
[23] have investigated how UI and network data can be combined for security purposes. However, both
of these applications were developed for the Windows platform—bringing the idea to Android involves a
new set of constraints and challenges. For example, our proposed solution can be installed as a normal
app, and does not require recompiling the kernel or rooting the phone. This means that we cannot

4



modify the operating system kernel as the Windows solutions do, and must abide by Android’s strict
permissions system.

5



3 Approach and Implementation

Appjudicator works by analyzing network flows with the added context of UI interaction data. It
uses this information as part of a host-based software-defined networking (SDN) agent to make decisions
about whether to allow or block individual flows. The app is composed of three primary components:
(1) a VPN service that captures and analyzes network flows from the device, (2) an accessibility service
that monitors user interactions with the UI, and (3) an SDN agent that implements a subset of the
OpenFlow 1.0 specification [30].

Figure 2: A screenshot of Appjudica-
tor’s user interface (vertical whitespace
truncated for brevity).

The app is implemented using Kotlin, an object-oriented
programming language that is interoperable with Java and
compiles to Java Virtual Machine bytecode. This is Google’s
preferred language for Android development, and makes
some tasks like null-checking and concurrency easier than
they would be in Java [24]. As a proof of concept, the app’s
user interface is minimal, simply providing a list of which
services are running and a method to toggle them (see Fig-
ure 2).

The VPN service implements Android’s VpnService

API [15], but connects to a packet-capturing class
running on the same phone rather than a remote
server. The UI-monitoring component implements Android’s
AccessibilityService API [13], and the SDN agent im-
plements a subset of the OpenFlow 1.0 switch standard [25].
Each of these components work together to correlate network
flows with a UI interaction (if any) that initiated them, and
to elevate suspicious flows to the SDN controller. We now describe each of these components and explain
how they work together.

3.1 VPN Service

The networking component of Appjudicator utilizes Android’s built-in API for redirecting network
traffic, the VpnService [15]. However, rather than connecting to a remote VPN server, we connect to
a simple server running locally on the device. We register a new VPN connection using this API and
prompt the user to connect to it. This routes all the device’s traffic through our service, which captures
and logs packets before forwarding them along to their destination.

Once activated, the VPN service runs in the background and receives packets from the operating
system through a ParcelFileDescriptor instance that can be used to read and write packets from the
network interface’s buffer [12]. Normally, a VPN service would forward packets through a tunnel to a
remote VPN server, but Appjudicator’s VPN server runs locally on the device. Packets are instead
passed to processes running on other threads that log the packets and forward them along to their
destination using Java sockets.

It is normally the app’s responsibility to encrypt data being transferred to the VPN gateway [12], but
this is unnecessary in Appjudicator because both client and server are running on the same device.
We benefit from the reduced computational resource consumption and energy use that result from not
having to encrypt and decrypt packets.

3.1.1 Deconstructing Flows

Captured packets are parsed, logged, and reconstructed by the VPN service using Pcap4J, a third-party
Java IP packet library [39]. Source and destination IP addresses are collected from the packet’s IP header,
along with source and destination ports from the TCP or UDP header. Appjudicator currently only
supports IPv4, so any intercepted IPv6 packets are simply dropped. Likewise, packets with unknown
transport-layer protocols (i.e., neither TCP nor UDP) are dropped. The network context provided by the
VPN service includes IP source and destination addresses, protocol, source and destination ports, payload
size, initiating application, and full packet payload, all of which can be used to enforce fine-grained SDN
rules.

Appjudicator associates an app with the flows it created. On Android API versions Q and later,
we can use the ConnectivityManager to query the operating system for which user ID owns a particular
flow. Because each app has a different user ID in Android, we can then use the packageManager to look

6



up the package name for that UID as long as we requested the QUERY ALL PACKAGES permission. See
Listing 1 for an example of how to do this in Kotlin.

Listing 1: Source code to obtain the package that created a given network flow.

@RequiresApi ( Build .VERSION CODES.Q)
fun connToPackage (

p ro to co l : Int , // either TCP (6) or UDP (17)

l o ca lAddre s s : InetSocketAddress ,
remoteAddress : InetSocketAddress ,
context : Context

) : String {
val cm = context . getSystemServ ice ( Context .CONNECTIVITY SERVICE)

as ConnectivityManager
val uid = cm. getConnectionOwnerUid (

protoco l ,
l oca lAddress ,
remoteAddress

)
i f ( uid == android . os . Process . INVALID UID) return "unknown"

return context . packageManager . getNameForUid ( uid ) ? : "unknown"

}

Packets are organized by flow, essentially a communication channel between one application and
another. A flow is defined as a sequence of packets with the same source IP address, source port,
destination IP address, destination port, and transport layer protocol (either TCP or UDP). Packets are
stored in queues by flow while awaiting a response from the SDN agent. These queues are stored in a
hash map, indexed by the concatenation of the flow’s addresses, ports, and protocol. When the SDN
agent reaches a decision, the VPN service looks up the flow and, based on the agent’s decision, it either
forwards all queued packets in order or drops them.

3.1.2 Multithreading

Network connections are performance-critical, so we need to ensure that the user experience is not blocked
waiting for Appjudicator to process network requests. The VPN service creates new IO threads using
Kotlin’s concurrency framework so that network processing can be performed off the main thread. This
allows the VPN service to have a minimal impact on performance and prevents the UI from blocking
while waiting for network operations.

3.1.3 Permissions and Security

For the VPN service to work, Appjudicator must request the INTERNET permission and declare a
service that requests the BIND VPN SERVICE permission in the Android manifest. It must also name a
route from which to capture traffic. We use 0.0.0.0/0 to capture all IPv4 traffic, but this could be
changed so the VPN is only used on traffic of a particular interface or subnet.

After the app is installed, the VPN service can be started or stopped directly from it. Appjudicator
provides simple buttons to do this, or it can be configured to connect to the VPN automatically on
startup. The service can also be stopped or disabled from Android’s Settings menu for security reasons.

There is one kind of traffic we never want to block: communications between the SDN agent and
controller. The SDN agent uses the VpnService.protect() method [15] on the socket channel to the
controller to make sure this traffic is not intercepted by the VPN.

3.2 Accessibility Service

Android’s AccessibilityService API assists individuals who need tools like screen readers and au-
tomated UI navigators. By registering an accessibility service with the operating system, we can be
notified of changes in the UI state of other applications. These changes are referred to as accessibility
events, and are asynchronously triggered by the Android operating system and delivered to the listening

7



accessibility service. By using this API, Appjudicator’s UI monitoring component can be informed of
almost every use interface interaction in any every app on the device.

Accessibility services can be very dangerous from a security perspective, so they must be registered
with the operating system and enabled manually. In Section 3.2.4 we provide more details on how to do
so programmatically.

3.2.1 Accessibility Events

An accessibility event represents a single state change in the user interface of an app, such as a button
being pressed, a view being swiped, or the focus changing [11]. An accessibility service can specify the
particular app packages and event types it wants to receive, but Appjudicator registers to receive all
event types from all packages. The accessibility event is fired by a view (the basic building block of
Android user interfaces) and passed to interested parties by the operating system [16].

The accessibility event object contains some context about the UI interaction, including the type
of UI element, the type of interaction (e.g., click, swipe, long press), and descriptive text of the ele-
ment [11]. Additional information about the UI element that initiated the event can be retrieved with
the AccessibilityEvent.getSource() method. This method allows the app to get information about
the layout hierarchy, providing context about the element’s enclosing views and child elements. Be-
cause this context information could potentially expose private user data, the service must declare the
canRetrieveWindowContent attribute in its configuration XML file. With this attribute set, Android
will warn the user that the application can retrieve the contents of the screen when it is enabled.

By default, the operating system only includes view objects it thinks are important to accessibility
with the accessibility event, but we can request information about all views instead by passing the
FLAG INCLUDE NOT IMPORTANT VIEWS flag to the accessibility service [11].

These accessibility events are triggered for almost every type of UI interaction, including clicks,
swipes, long presses, and even input from devices like virtual or physical keyboard.

However, events fired from apps that do not use Android’s UI libraries do not provide as much
context. For example, we cannot get layout hierarchy information from an app that renders its UI in
OpenGL or some other graphics platform [11].

3.2.2 Asynchronous Event Handling

When an accessibility event is generated, the Android operating system passes the generated object to
the accessibility service’s onAccessibilityEvent() callback asynchronously [13]. The event handler
does not block the user interface because it runs on a different thread, which helps achieve our goal
of adding minimal latency. However, this asynchronous processing also means an app may continue
generating accessibility events while an earlier event is still being processed, so we must make sure to
handle events efficiently.

There is theoretically a race condition if a packet in message2 is ready to be sent before the most
recent UI interaction is finished processing. In practice, however, queuing packets, performing a SDN
flow table lookup, and preparing a packet in message takes longer than the single hash map lookup and
linked list insertion the accessibility service performs.

3.2.3 Identifying UI Elements

Accessibility events do not provide a unique identifier for UI elements, so we implement a system inspired
by Fazzini et al. [9]. Android UI elements, called views, may have an ID, but these are not guaranteed
to be unique or even present on every view. Note that for the operating system to report view IDs in
accessibility nodes, we need to pass the FLAG REPORT VIEW IDS flag to the accessibility service. We use
the initiating element’s resource ID and resort to a selector based on the element’s position in the XML
UI tree if the ID is missing or non-unique. This allows us to precisely correlate a network flow with the
particular UI element that initiated it. These selectors should also be relatively stable across multiple
application launches, because they will not change as long as the app’s UI structure remains constant.
Developers rarely make large structural changes to app interfaces to follow common human-computer
interaction guidelines [27].

2A packet in message is how the app notifies the company’s SDN controller that it received a flow and would like
instructions on what to do with it. SDN is explained in more detail in Section 3.3.2.

8



3.2.4 Permissions and Security

Appjudicator declares a service that requests the BIND ACCESSIBILITY SERVICE permission in the
Android manifest file. This declaration tells Android which class represents the service and specifies
another XML configuration file. The file provides metadata about the service, such as listing which
types of accessibility events to subscribe to, and describes the service’s purpose to be shown to the user
when it is enabled.

For security reasons, an app cannot enable its own accessibility service [19]. To prevent malware from
taking advantage of the far-reaching permissions of accessibility services, a user must manually enable
the service in the system settings after being prompted with a dialogue box that explains some of the
risks involved (see Figure 1). Appjudicator can only point the user toward the Settings page; the rest
must be done manually. A user may have any number of accessibility services running at a time, but
they must be individually manually enabled and each display a persistent notification reminding the user
that the service is still running in the background.

3.3 Host-Based SDN

Appjudicator is designed to integrate with corporate SDN infrastructure, so it needs to be able to
communicate with an SDN controller server. The OpenFlow switch specification, the de facto standard
for software-defined networking, describes a protocol for switch-controller communication [30]. This spec-
ification is designed for large network switches connected to potentially dozens of hosts, so implementing
it on a smartphone in Kotlin requires some special considerations.3

Large portions of the OpenFlow switch specification simply do not apply to Appjudicator. For
example, the app has no concept of Ethernet frames and only one “physical port” in the sense that it is a
switch for only one host. Appjudicator does not support any optional features of the specification. It
can initiate a connection with an OpenFlow controller, report its supported features, process flow mod

messages, send packet in messages, and receive packet out messages. We provide more information on
the OpenFlow specification in Section 3.3.2.

3.3.1 SDN Rule Cache

Like any SDN agent, Appjudicator maintains a cache of rules to apply to network flows that pass
through it. Rules can match any combination of source or destination IP addresses, source or destination
ports, and protocol, or have wildcards for any of those fields. Each rule contains instructions on what
types of flows to match and a list of actions to perform on matched flows. We support only the minimum
allowed set of possible flow actions: forward and drop.

When a new connection is created, the VPN service notifies the SDN agent and queues all packets
from that flow until it gets a response from the SDN agent. The SDN agent looks up the flow in its flow
table. It finds the most specific matching rule (i.e., the matching rule that used the fewest wildcards)
and sends its actions back to the VPN service. If no matching rule is found in the flow table, the agent
elevates the flow to the controller along with UI context in a packet in message. Figure 3 illustrates
this process. Section 3.3.2 provides more information about packet in and packet out messages.

Appjudicator will continue forwarding, blocking, or elevating packets in other flows while waiting
for a response from the SDN controller. The controller makes a decision based on the network and UI
context and sends back a packet out response describing what to do with the flow.

3.3.2 OpenFlow Protocol

The OpenFlow Switch Specification describes a protocol for SDN agents to connect to a controller and
exchange messages [30]. Appjudicator implements the minimum subset of the OpenFlow Protocol
(OFP). All OpenFlow messages are sent over TCP in OpenFlow packets. These packets have a simple 8-
byte header that describes the OpenFlow version, the type of the message, the total length of the packet,
and the transaction ID (see Figure 4). Replies to an OpenFlow message have the same transaction ID
as the request.

When the app is launched, it opens a new TCP connection to a user-configurable IP address or host
name that runs the controller server. The controller and switch each send a hello message to initiate
the connection. The controller then queries the switch to see what capabilities and features it supports.
Appjudicator replies with a switch features message explaining that it has one physical port (the

3Sections 2.3 and 2.4 describe prior work in host-based SDN agents on Android and other platforms.

9



Figure 3: Flow chart of the steps used to decide whether to forward or drop a packet.

10



Figure 4: Fields of an OpenFlow packet header.

phone itself) and only supports two packet actions: forward and drop. At this point the connection is
fully established, and the controller and agent can both send messages back and forth. Figure 5 depicts
this process.

Figure 5: OpenFlow handshake diagram.

While the app is running, the controller can modify flow
rules on the switch by sending a flow mod message. These
instruct the switch to add or remove one or more flow rules,
and they are the primary way to enforce new policy decisions.

The final type of communication between the SDN agent
and controller is packet in/packet out messages. When
the SDN agent receives a packet that does not match any flow
rules, the agent must ask the controller what to do with the
packet. We construct a customized version of the standard
OFP packet in message to send to the controller, including
UI interaction metadata.4 Figure 6 shows the fields included
in these messages. The first eight bytes are the standard
OFP header. The “buffer ID” value will be included in the
corresponding response so the relevant packet can be identi-
fied. The “in port” field does not apply to host-based SDN
agents like Appjudicator. The reason field tells the controller
whether this packet in is being sent because of a flow table
miss or because an action explicitly requested sending the
packet to the controller.

Appjudicator has no concept of link layer protocols, so
the field for the Ethernet header is zeroed out. Following
this are the full contents of the IP packet in question. Up to
this point, the packet in follows the OpenFlow specification
exactly, but after the packet contents we fill the rest of the
space available (up to 1500 bytes) with UI context, including UI events from the same app that initiated
the connection, their types, sources, and UI hierarchy. IP packets sent to the controller are usually the
first packet of a flow,5 which are normally short, so there is often enough space to include the most
relevant UI events.

The controller responds with a standard packet out message, which tells the agent which actions to
take on the flow. Optionally, the agent can remember this response by adding a new flow table rule that
matches the same flow and applies the same actions, so the controller will not have to be queried again
in the future. This is not part of the OpenFlow specification, but is a feature of Appjudicator.

3.3.3 Associating Network Flows with Context

When the SDN agent intercepts a new flow to a previously unknown domain, it tries to associate it with
UI context. The app looks up any accessibility events from the past two seconds that originated from
the same app that owns the network connection (see Section 3.1.1). We found that a time interval of two

4Section 3.2 describes this metadata and how it is obtained.
5Such as a TCP SYN packet.

11



seconds is long enough to catch most user-initiated network requests without also associating unrelated
UI interactions.

If there is no likely initiator of the network flow within the two prior seconds, the flow is considered
non-user-initiated. The SDN agent includes information about these UI events with the packet (including
the event type and view hierarchy6) as it is elevated to the controller. This UI context should allow for
more powerful and fine-grained SDN rules.

Figure 6: Fields in Appjudicator’s custom packet in message.

3.3.4 Default-Allow Flows

Our system must account for non-user-initiated flows that occur as part of the normal operation of the
device. To do this, we profile the Android operating system and common applications in advance. While
running in calibration mode, Appjudicator adds the IP address and ports of all non-user-initiated
requests to a default-allow map. Then later, while operating normally, the app will not question flows
to these pairs of IP address and ports even if they are not user-initiated.

6Section 3.2.3 explains how we construct a view hierarchy in more detail.

12



4 Evaluation and Results

We seek to evaluate whether Appjudicator achieves its goal of distinguishing user-initiated network
flows using UI context and whether it does so with acceptable overhead. For this performance evaluation,
we perform a practical analysis and measure the app’s resource cost. Following are the procedures used
for each of these experiments and their results.

4.1 Differentiating User-generated Flows

The goal of this experiment is to determine whether Appjudicator can successfully distinguish between
network flows that were specifically initiated by a human user and flows generated automatically by an
app or the Android system. We attempt to justify the parameters used for defining a flow as “user
initiated.”

4.1.1 Experimental Setup

This test was performed on a virtual Google Pixel 4, with API level 30 (the newest available). We
perform actions on the phone to simulate real life use cases with Appjudicator, including browsing
the web in Chrome, exploring an app store (F-Droid), and playing a game with advertisements. We use
our app’s logging to record whether each flow is considered “user initiated,” along with the timing of UI
interactions and flow table lookups.

To evaluate the effectiveness of our UI element system for identifying UI elements (described in
Section 3.2.3), we record the proportion of accessibility events in our sampling period that came from
sources with a unique resource ID.

4.1.2 Results

Appjudicator was successful in identifying 100% of new flows that occurred within two seconds of a
UI interaction as user initiated. This raises the question of how effective this two-second cutoff is. Based
on our experience, two seconds seems to be generous enough to allow all flows associated with the UI
interaction to be triggered, without being so lenient that unrelated flows are also allowed.

Professional sources generally support this reasoning. Google’s developer blog recommends two sec-
onds of total page load time as “the threshold for ecommerce site ‘acceptability’” [28]. Search engine
optimization firm Semrush writes, “Serve your customers with the page load time they need, a good goal
being 1–2 seconds” [2].

Figure 7 illustrates this cutoff. It shows four typical page loads in Chrome, with each point in the
plot representing a new flow made by Chrome. The accessibility event that initiated the page load
(clicking on a link) occurs at time 0. The dashed gray line shows the two-second cutoff. All the flows
that occurred before this cutoff, within the green shaded area, are considered to be user initiated, while
flows that occurred after the cutoff are not. These flows are likely the result of asynchronous JavaScript
network calls initiated by the page, not directly by user action.

In our trial, we found that approximately 85% of accessibility events had a source element with a
unique resource ID. Even dynamically-generated UI elements often have resource IDs. For example, links
in webpages are given IDs generated by Chrome. This is good news for our system, because resource IDs
are the easiest and most effective way to uniquely identify UI elements from accessibility events. Still,
this figure may vary in apps in which developers do not give every element an ID.

4.2 Performance Evaluation

To fulfill its purpose as an always-enabled enterprise network security tool, Appjudicator has to be as
unobtrusive to end users as possible. This is especially important because the app performs some actions
on every network flow, so any latency added by it would be especially noticeable.

4.2.1 Measuring Added Latency

To measure the effect of Appjudicator on network communication speed, we measure the total addi-
tional latency added by the app. We measure added latency in all incoming and outgoing packets, but
focus on the first packet of each new flow in particular, because these require the most processing time.

For this test, we run the app in an Android virtual machine simulating a Google Pixel 4, on API
level 30. The controller server is a simple Python script that responds to every packet in message with

13



Figure 7: The delay between a click event and the new flows that it initiates. The dashed vertical line
shows the two-second cutoff: flows before this line (in the green area) are considered to be associated
with the click event.

a packet out message instructing the agent to forward the flow.7 This controller is run on a separate
machine on the same local network as the phone. The average round-trip ping time between the phone
and the controller server was 0.950 milliseconds.

In the test, the SDN agent starts with an empty table of flow rules, so it must send a packet in

to the controller for every new flow. After the agent gets a response from the controller, all subsequent
packets in the same flow follow the action specified by the response. Section 3.3.2 describes the OpenFlow
protocol in more detail.

We focus particularly on the added latency of the first packet in a new flow, because this is where the
system does the most processing. The start of a new flow requires an SDN flow table lookup and possibly
communication with the SDN controller. Creating a new TCP or UDP connection requires allocating
memory for queued packets and metadata, and then inserting this data in a lookup table. Subsequent
packets in the same flow will require less processing overhead.

We configure the app to log a timestamp when a packet is first intercepted by the VPN. Appjudica-
tor’s VPN service parses the packet and determines whether it is part of an existing connection or not,
and adds it to a queue. If it is the start of a new connection, the VPN service queries the SDN agent and
continues processing other packets while waiting for a response. The SDN agent performs a flow table
lookup, and sends a packet in to the SDN controller if it fails to find a matching rule. If this is the case,
it waits for a response from the controller, then performs a flow mod operation to cache the result as a
new rule. Finally the SDN agent instructs the VPN service to drop or forward the flow. In this test, all
flows are allowed, so the VPN service removes the packet from its queue and writes it to the correct net-
work interface file descriptor.8 After all of Appjudicator’s processing is finished, a second timestamp
is logged. The earlier timestamp is the time the packet would have been sent to the network without
our system’s interference, and the second timestamp is the time it actually was sent. The difference is
the total latency added by the app. We also log the overall round-trip time of each flow, from when
the first packet is sent to when its response is received, so we can compare this to the time added by
Appjudicator. All timestamps are created using Android’s SystemClock.elapsedRealtimeNanos()

method, which returns the number of nanoseconds since the system was booted [17].

7This test is designed to measure Appjudicator’s efficiency only. In a production environment, a more complex
controller server would likely add a non-negligible amount of delay while it processes a packet in.

8Figure 3 illustrates this process.

14



4.2.2 Latency Test Results

There were 1,162 packet timing traces logged during the sampling period, of which four were removed as
outliers, leaving 1,158 data points. The average added latency among all packets was 6.17 milliseconds,
with a standard deviation of 6.20 milliseconds.

During the sampling period, 212 timing traces were logged for the first packet of new flows, of which
one was removed as an outlier, leaving 212 data points. These packets had higher added latency than
others, and their added latency varied more. The average added latency among these packets was 12.12
milliseconds, with a standard deviation of 7.36 milliseconds. Figure 8 charts the full results of this test.

Figure 8: Total latency added by Appjudicator

Traces which recorded a total added latency greater than 150 milliseconds were considered outliers.
This is more than 12 times the new flow average latency, and over 24 times the average latency of all
packets. Because these outliers are so rare, making up less than 0.5% of all packets, they may have been
caused by poor network conditions.

In our sample, 95% of packets were processed with less than 14 milliseconds of total added delay. On
a 60 Hz display, one frame lasts 16 milliseconds, so any delay less than this is imperceptible to users. In
our sampling period, the latency added by our system was usually small compared to the total round-trip
time (RTT) of a new flow. Figure 9 compares the delay added by Appjudicator with the total RTT
of flows.

In measuring the timing of individual functions, we found that the initial VPN overhead (reading,
processing, and queuing packets) took an average of 44 microseconds. Looking up flows in the flow
table took an average of 53 microseconds with 10 initial rules, although this will increase as more flow
table entries are added. Accessibility event lookup took an average of 63 microseconds. By far the
biggest contributor to overall latency in our trial was sending packet in messages and waiting for a
response from the controller. The SDN agent waited 2963 microseconds on average for a packet out

message, which includes an average of 950 microseconds of network travel time between the phone and
the controller server.

4.2.3 Measuring Resource Overhead

Appjudicator has costs in both added latency and increased resource consumption. Running the VPN
service, accessibility service, and SDN agent in the background consumes additional processing cycles,
memory, and battery life. We measure the resource overhead with Android Studio’s Profiler [14].

This test was performed twice, first on an Android virtual machine simulating a Google Pixel 4, on
API level 30, and second on a physical Google Pixel 3, also on API level 30. We ran the app with the

15



Figure 9: The delay added by our system even for new flows is a relatively small piece of the total
network latency of these flows.

accessibility service, VPN service, and SDN agent all enabled while recording its CPU, memory, and
energy usage with Android Studio’s Profiler. Each test lasted 30 minutes, during which time we used
various other apps including Chrome, Termux, and F-Droid while Appjudicator ran in the background.

During the virtual trial, Appjudicator’s memory usage remained relatively constant. It peaked at
at 150.1 MB, with an average of 137.8 MB. Its processor usage also usually remained low, averaging
5% of the virtual machine’s CPU but occasionally spiking as high as 39%. The profiler categorized the
app’s energy usage as “light,” because it used only minor CPU resources and did not use any location
resources, wake locks, or alarms.

Results were similar in the physical trial. Appjudicator used less memory on the physical device,
peaking at 122.3 MB and averaging 85.4 MB. This may be because the Pixel 3 has less available RAM
than the Pixel 4. CPU usage was higher on the physical phone, averaging 17% and spiking as high as
55%. Again this may be because of hardware differences, as the Pixel 3 has an older, slower processor.
The app’s energy usage was again classified as “light” by the profiler during the physical trial.

Based on these results, we conclude that Appjudicator has a minor impact on CPU, memory, and
battery usage on modern hardware, and therefore could be used effectively as an always-on background
security application.

16



5 Discussion

Here we discuss the practical applications of our work, as well as its limitations, future work, and possible
improvements. We also use the results of our work to answer our original research question.

5.1 Implications and Applications

Appjudicator was designed for an enterprise BYOD setting, as a tool to give system administrators
more control over employee-owned smartphones. Our app would work with an OpenFlow SDN controller
to enforce company policy rules. With some modification, Appjudicator could also be used in other
applications. For example, our app could adapted for use by personal users in residential networks,
connected to a cloud-based SDN controller like the one proposed by Taylor et al. [35]

The use of Appjudicator in an enterprise network could raise some privacy concerns for end users.
Users may object to having logs of every UI interaction they make on their personal device sent to their
employer. The system could potentially expose private data to the SDN controller, [19] so administrators
will have to carefully consider how their policy rules impact user privacy. A potential solution to this
could be to define a set of general user intent profiles on the device, and only send the closest matching
profile to the server with a packet in rather than the entire UI interaction metadata.

5.2 Future Work

More work is needed to implement Appjudicator as a practical network security tool in an enterprise
setting. Our work’s biggest limitation is that it is only available for Android. Android is the leading
smartphone operating system, capturing over 71% of the global market share, [34] but implementing a
similar system on iOS (which makes up virtually all of the remaining market share) would make the
system accessible to all BYOD employees. This work would be necessary before a company could require
its employees to use Appjudicator—extra insight and control over only Android users would provide
little benefit.

Custom SDN controller software could also be written to take advantage of Appjudicator’s en-
hanced context information. Our app sends metadata about recent UI interactions along with each
packet in, so a custom controller could take advantage of this extra context in its decision-making pro-
cess. For example, a controller could have a more sophisticated algorithm for inferring user intent, and
use this to block non-user-initiated flows from mobile devices. A custom controller could also empower
system administrators to write fine-grained, context-aware SDN policies.

Further work could also be done to mitigate some of the limitations discussed in Section 5.3. Because
our work is a proof of concept, little development time was spent on optimization or graphical polish.
A more user-friendly UI and settings menu could be implemented for the app. Our latency test results
(described in Section 4.2.2) indicate that the app adds less than 10 milliseconds of total latency to 95%
of processed packets, but this could probably be reduced with further performance optimizations.

Some researchers have investigated SDN architectures that involve multiple distributed controller
servers. [7, 29] Appjudicator currently connects to only one statically-defined controller server, but
could be extended in future work to connect to several.

5.3 Limitations

For ease of development and testing, Appjudicator only supports IPv4, and can only handle UDP and
TCP as transport layer protocols. This is enough to power the vast majority of everyday networking
applications, but support could be added for IPv6 and other transport layer protocols.

Our strategy for defining user-generated flows can give a rough estimate of whether a user is in-
teracting with a particular app, but it is far from perfect. A flow from an application is considered
user-initiated if a user made any UI interaction with that app in the past two seconds, so malicious
network flows could be allowed if they happen to be sent within this time period. A malicious app with
knowledge of this system could also generate fake accessibility events to give the impression that a user
is interacting with an app. To mitigate this issue, future work could focus on improving how we define
a flow as user-initiated. For example, a system for detecting user intent similar to the one presented by
Shirley and Evans [33] could be added to Appjudicator. A system like this would make it easier to
detect whether whether the accessibility events we receive are legitimate.

17



5.4 Conclusion

In this thesis, we implemented a host-based SDN agent and UI monitoring system on Android. We
demonstrated that these systems can be combined to collect network data and UI context, and this
data can be used to successfully distinguish which flows on the device are legitimately user initiated.
Our experiments showed that the system can run in the background with minimal overhead to CPU,
memory, and battery usage, and adding an acceptably low amount of overall end-to-end latency to
network operations on the device. Finally, we discussed how the application can be used as a network
security tool in enterprise environments and what future work is required to turn our proof of concept
into a practical application.

18



References

[1] K. Benzekki, A. El Fergougui, and A. Elbelrhiti Elalaoui, “Software-defined networking (sdn): a
survey,” Security and Communication Networks, vol. 9, no. 18, pp. 5803–5833, 2016. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/sec.1737

[2] C. Bird, “What is a good page load time for SEO – how fast is
fast enough?” Dec. 2020. [Online]. Available: https://www.semrush.com/blog/
how-fast-is-fast-enough-page-load-time-and-your-bottom-line/

[3] Z. Chuluundorj, “Augmenting network flows with user interface context to inform access control
decisions,” Master’s thesis, Worcester Polytechnic Institute, Dec. 2019. [Online]. Available:
https://digitalcommons.wpi.edu/etd-theses/1331

[4] W. Cui, R. H. Katz, and W.-t. Tan, “Binder: An extrusion-based break-in detector for personal
computers,” in USENIX Annual Technical Conference, General Track, 2005, pp. 363–366.

[5] S. Demetriou, N. Zhang, Y. Lee, X. Wang, C. A. Gunter, X. Zhou, and M. Grace, “Hanguard:
Sdn-driven protection of smart home wifi devices from malicious mobile apps,” in Proceedings of the
10th ACM Conference on Security and Privacy in Wireless and Mobile Networks, 2017, pp. 122–133.

[6] W. Diao, Y. Zhang, L. Zhang, Z. Li, F. Xu, X. Pan, X. Liu, J. Weng, K. Zhang, and X. Wang,
“Kindness is a risky business: on the usage of the accessibility apis in android,” in 22nd International
Symposium on Research in Attacks, Intrusions and Defenses ({RAID} 2019), 2019, pp. 261–275.

[7] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella, “Towards an elastic distributed
sdn controller,” in Proceedings of the second ACM SIGCOMM workshop on Hot topics in software
defined networking, 2013, pp. 7–12.

[8] D. Erickson, “Open networking foundation formed to speed network innovation,” Mar. 2011.
[Online]. Available: https://web.archive.org/web/20140116023421/http://archive.openflow.org/
wp/2011/03/open-networking-foundation-formed-to-speed-network-innovation/

[9] M. Fazzini, E. N. D. A. Freitas, S. R. Choudhary, and A. Orso, “Barista: A technique for recording,
encoding, and running platform independent android tests,” in 2017 IEEE International Conference
on Software Testing, Verification and Validation (ICST), 2017, pp. 149–160.

[10] Google, “Security risks with modified (rooted) Android versions,” 2020. [Online]. Available:
https://support.google.com/accounts/answer/9211246?hl=en

[11] Google Developers, “Create your own accessibility service — Android developers,” Dec. 2019.
[Online]. Available: https://developer.android.com/guide/topics/ui/accessibility/service

[12] ——, “VPN — Android developers,” Dec. 2019. [Online]. Available: https://developer.android.
com/guide/topics/connectivity/vpn

[13] ——, “AccessibilityService — Android developers,” Sep. 2020. [Online]. Available: https:
//developer.android.com/reference/android/accessibilityservice/AccessibilityService

[14] ——, “Measure app performance with Android Profiler,” Oct. 2020. [Online]. Available:
https://developer.android.com/studio/profile/android-profiler

[15] ——, “VpnService — Android developers,” Aug. 2020. [Online]. Available: https://developer.
android.com/reference/kotlin/android/net/VpnService

[16] ——, “AccessibilityEvent — Android developer,” Feb. 2021. [Online]. Available: https:
//developer.android.com/reference/android/view/accessibility/AccessibilityEvent

[17] ——, “Systemclock,” Feb. 2021. [Online]. Available: https://developer.android.com/reference/
android/os/SystemClock

[18] S. Hong, R. Baykov, L. Xu, S. Nadimpalli, and G. Gu, “Towards sdn-defined programmable byod
(bring your own device) security,” in NDSS, Feb. 2016.

19

https://onlinelibrary.wiley.com/doi/abs/10.1002/sec.1737
https://www.semrush.com/blog/how-fast-is-fast-enough-page-load-time-and-your-bottom-line/
https://www.semrush.com/blog/how-fast-is-fast-enough-page-load-time-and-your-bottom-line/
https://digitalcommons.wpi.edu/etd-theses/1331
https://web.archive.org/web/20140116023421/http://archive.openflow.org/wp/2011/03/open-networking-foundation-formed-to-speed-network-innovation/
https://web.archive.org/web/20140116023421/http://archive.openflow.org/wp/2011/03/open-networking-foundation-formed-to-speed-network-innovation/
https://support.google.com/accounts/answer/9211246?hl=en
https://developer.android.com/guide/topics/ui/accessibility/service
https://developer.android.com/guide/topics/connectivity/vpn
https://developer.android.com/guide/topics/connectivity/vpn
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://developer.android.com/studio/profile/android-profiler
https://developer.android.com/reference/kotlin/android/net/VpnService
https://developer.android.com/reference/kotlin/android/net/VpnService
https://developer.android.com/reference/android/view/accessibility/AccessibilityEvent
https://developer.android.com/reference/android/view/accessibility/AccessibilityEvent
https://developer.android.com/reference/android/os/SystemClock
https://developer.android.com/reference/android/os/SystemClock


[19] A. Kalysch, D. Bove, and T. Müller, “How android’s ui security is undermined by accessibility,” in
Proceedings of the 2nd Reversing and Offensive-oriented Trends Symposium, 2018, pp. 1–10.

[20] M. Kan, “Android malware that can infiltrate corporate networks is spread-
ing,” 2016. [Online]. Available: https://www.computerworld.com/article/3126390/
android-malware-that-can-infiltrate-corporate-networks-is-spreading.html

[21] H. Kim and N. Feamster, “Improving network management with software defined networking,”
IEEE Communications Magazine, vol. 51, no. 2, pp. 114–119, 2013.

[22] J. Kraunelis, Y. Chen, Z. Ling, X. Fu, and W. Zhao, “On malware leveraging the android acces-
sibility framework,” in International Conference on Mobile and Ubiquitous Systems: Computing,
Networking, and Services. Springer, 2013, pp. 512–523.

[23] J. Kwon, J. Lee, and H. Lee, “Hidden bot detection by tracing non-human generated traffic at
the zombie host,” in International Conference on Information Security Practice and Experience.
Springer, 2011, pp. 343–361.

[24] F. Lardinois, “Kotlin is now google’s preferred language for android app
development,” May 2019. [Online]. Available: https://techcrunch.com/2019/05/07/
kotlin-is-now-googles-preferred-language-for-android-app-development/

[25] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner, “OpenFlow: enabling innovation in campus networks,” ACM SIGCOMM computer
communication review, vol. 38, no. 2, pp. 69–74, 2008.

[26] Microsoft, “UI automation - win32 apps — Microsoft docs,” May 2018. [Online]. Available:
https://docs.microsoft.com/en-us/windows/win32/winauto/entry-uiauto-win32

[27] D. Norman, The design of everyday things: Revised and expanded edition. Basic books, 2013.

[28] M. Ohye, “You and site performance, sitting in a tree...” May 2010. [Online]. Available:
https://developers.google.com/search/blog/2010/05/you-and-site-performance-sitting-in

[29] Y. E. Oktian, S. Lee, H. Lee, and J. Lam, “Distributed sdn controller system: A survey on design
choice,” computer networks, vol. 121, pp. 100–111, 2017.

[30] Open Networking Foundation, “Openflow switch specification,” Open Networking Foundation,
Tech. Rep., Dec. 2009. [Online]. Available: https://opennetworking.org/wp-content/uploads/2013/
04/openflow-spec-v1.0.0.pdf

[31] D. Palmer, “Over 400 instances of dresscode malware found on google play
store, say researchers,” Oct. 2016. [Online]. Available: https://www.zdnet.com/article/
over-400-instances-of-dresscode-malware-found-on-google-play-store-say-researchers/

[32] Z. A. Qazi, J. Lee, T. Jin, G. Bellala, M. Arndt, and G. Noubir, “Application-awareness in sdn,” in
Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM, 2013, pp. 487–488.

[33] J. Shirley and D. Evans, “The user is not the enemy: Fighting malware by tracking user intentions,”
in Proceedings of the 2008 New Security Paradigms Workshop, 2008, pp. 33–45.

[34] StatCounter, “Mobile operating system market share worldwide,” Mar. 2021. [Online]. Available:
https://gs.statcounter.com/os-market-share/mobile/worldwide/2021

[35] C. R. Taylor, T. Guo, C. A. Shue, and M. E. Najd, “On the feasibility of cloud-based sdn con-
trollers for residential networks,” in 2017 IEEE Conference on Network Function Virtualization and
Software Defined Networks (NFV-SDN). IEEE, 2017, pp. 1–6.

[36] C. R. Taylor, “Software-defined networking: Improving security for enterprise and home
networks,” Ph.D. dissertation, Worcester Polytechnic Institute, 2017. [Online]. Available:
https://digitalcommons.wpi.edu/etd-dissertations/161/

[37] J. Vijayan, “‘Unkillable’ Android malware app continues to infect devices
worldwide,” Apr. 2020. [Online]. Available: https://www.darkreading.com/mobile/
unkillable-android-malware-app-continues-to-infect-devices-worldwide/d/d-id/1337519

20

https://www.computerworld.com/article/3126390/android-malware-that-can-infiltrate-corporate-networks-is-spreading.html
https://www.computerworld.com/article/3126390/android-malware-that-can-infiltrate-corporate-networks-is-spreading.html
https://techcrunch.com/2019/05/07/kotlin-is-now-googles-preferred-language-for-android-app-development/
https://techcrunch.com/2019/05/07/kotlin-is-now-googles-preferred-language-for-android-app-development/
https://docs.microsoft.com/en-us/windows/win32/winauto/entry-uiauto-win32
https://developers.google.com/search/blog/2010/05/you-and-site-performance-sitting-in
https://opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.0.0.pdf
https://opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.0.0.pdf
https://www.zdnet.com/article/over-400-instances-of-dresscode-malware-found-on-google-play-store-say-researchers/
https://www.zdnet.com/article/over-400-instances-of-dresscode-malware-found-on-google-play-store-say-researchers/
https://gs.statcounter.com/os-market-share/mobile/worldwide/2021
https://digitalcommons.wpi.edu/etd-dissertations/161/
https://www.darkreading.com/mobile/unkillable-android-malware-app-continues-to-infect-devices-worldwide/d/d-id/1337519
https://www.darkreading.com/mobile/unkillable-android-malware-app-continues-to-infect-devices-worldwide/d/d-id/1337519


[38] W. Wong, “New malware-as-a-service threat targets Android phones,” Sep. 2018. [Online]. Available:
https://securityintelligence.com/news/new-malware-as-a-service-threat-targets-android-phones/

[39] K. Yamada, “Pcap4J: A Java library for capturing, crafting, and sending packets,” 2016. [Online].
Available: https://www.pcap4j.org/

[40] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck, “AppContext: Differentiating malicious
and benign mobile app behaviors using context,” in 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, vol. 1. IEEE, 2015, pp. 303–313.

[41] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang, “AppIntent: Analyzing sensitive data
transmission in Android for privacy leakage detection,” in Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security, 2013, pp. 1043–1054.

21

https://securityintelligence.com/news/new-malware-as-a-service-threat-targets-android-phones/
https://www.pcap4j.org/

	Introduction
	Background and Related Work
	UI Interaction and Security
	Android's Accessibility Service
	Software-defined Networking
	The Android Phone as an SDN Agent

	Approach and Implementation
	VPN Service
	Deconstructing Flows
	Multithreading
	Permissions and Security

	Accessibility Service
	Accessibility Events
	Asynchronous Event Handling
	Identifying UI Elements
	Permissions and Security

	Host-Based SDN
	SDN Rule Cache
	OpenFlow Protocol
	Associating Network Flows with Context
	Default-Allow Flows


	Evaluation and Results
	Differentiating User-generated Flows
	Experimental Setup
	Results

	Performance Evaluation
	Measuring Added Latency
	Latency Test Results
	Measuring Resource Overhead


	Discussion
	Implications and Applications
	Future Work
	Limitations
	Conclusion


