

Robolink: Modular Assistive Robot Arm

AUTHOR: Cassiopia Hudson, Gabriel Morell-Pacheco | ADVISOR: Taşkın Padır

ABSTRACT

The goal of this project is to utilize the igus® Robolink arm five degree of freedom modular robot arm, to complete useful tasks for persons with no or limited mobility. These tasks include driving the joystick of a wheelchair, flipping a light switch, and turning the pages of a book. This is done through designing and building a modular interface for mounting the Robolink arm onto an existing wheelchair project and implementing a universal control interface in the software for future expansion of tasks and control methods.

SPECIFICATIONS

- Complete tasks
 - Safely drive the wheelchair
 - Flip a standard height light switch
 - Turn the page of a book
- Design a modular addition to CPS
 - Easily mounted/removed with a useful workspace
 - Completely mobile system

END EFFECTOR DESIGN

- Passive end effector
 - Simple
 - Takes less space
- Designed to be versatile
- Able to manipulate joystick
- Modularly attaches to Robolink®

MOUNTING DESIGN

- Uses the original wheelchair mounting points for modularity
- Easily attachable and removable
- Constructed out of 80/20 aluminum for good strength-to-weight ratio

CODE DESIGN

POSITIONAL FEEDBACK

```
CommandMessage(

positions = [(-8,5,0,89,0),(-8,-1,0,85,0)],

method=None,

reset=True,

method_sub_map=METHOD_SUB_MAP_JOINTS,

control_mode=JOINT_VELOCITY,

DRO=['drive_stop','drive_fwd','drive_back'],

backsteps=[0,1,2]
```

RESULTS

- Able to drive wheelchair
- Large workspace
- Unable to flip light switch due to lack of force at end effector
- Desk area manipulation has potential

Science Foundation under Grant No. 1135854

maxon motor