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Abstract
This thesis aims to study criteria for diagonalizability over finite fields. First we review basic

and major results in linear algebra, including the Jordan Canonical Form, the
Cayley-Hamilton theorem, and the spectral theorem; the last of which is an important

criterion for for matrix diagonalizability over fields of characteristic 0, but fails in finite
fields. We then calculate the number of diagonalizable and non-diagonalizable 2× 2

matrices and 2× 2 symmetric matrices with repeated and distinct eigenvalues over finite
fields. Finally, we look at results by Brouwer, Gow, and Sheekey for enumerating symmetric

nilpotent matrices over finite fields.
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Summary
(1) In Chapter 1 we review basic linear algebra including eigenvectors and eigenval-

ues, diagonalizability, generalized eigenvectors and eigenspaces, and the Cayley-
Hamilton theorem (we provide an alternative proof in the appendix). We explore
the Jordan canonical form and the rational canonical form, and prove some necessary
and sufficient conditions for diagonalizability related to the minimal polynomial and
the JCF.

(2) In Chapter 2 we review inner products and inner product spaces, adjoints, and isome-
tries. We prove the spectral theorem, which tells us that symmetric, orthogonal, and
self-adjoint matrices are all diagonalizable over fields of characteristic zero. In par-
ticular, a nilpotent symmetric matrix in characteristic zero must be the zero matrix.
We will explain later why the spectral theorem does not hold over finite fields.

(3) In Chapter 3 we start with a review of group theory and the orbit-stabilizer theorem,
which we use to count 2 × 2 matrices over finite fields. We do this computation in
four cases deriving from the specification of a matrix as being diagonalizable or non-
diagonalizable, and having repeated or distinct eigenvalues. We see that the number of
diagonalizable matrices depends on q mod 4 . We then repeat the same enumeration
for 2 × 2 symmetric matrices. These counts turn out to be related to cyclotomic
numbers, which are the number of solutions to the equation x2 + 1 = y2 in Fq . We
conclude the chapter with some observations on 2× 2 symmetric nilpotent matrices.

(4) In Chapter 4 we review bilinear and quadratic forms, symmetric and alternating
forms, and isotropic vectors. We see that isotropic vectors explain why the spec-
tral theorem fails over finite fields, since it requires the absence of isotropic vectors,
and it is known as a consequence of the Chevalley-Warning Theorem that a quadratic
form in positive characteristic has an isotropic vector in dimension ≥ 3 . Finally, we
review the fitting decomposition of a matrix and give a theorem of Hall enumerat-
ing the nilpotent matrices in a vector space over a finite field. We then explore the
enumeration of symmetric nilpotent matrices using methods developed by Brouwer,
Gow, and Sheekey. They give an algorithm involving combinatorics on Young dia-
grams to evaluate the number of symmetric nilpotent matrices with a given Jordan
Canonical Form in any dimension and for any finite field.

(5) In Chapter 5 we state our conclusions and give several possible directions for future
research.



3

Acknowledgements
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1. STRUCTURE OF A LINEAR OPERATOR

In this chapter we prove two important theorems in linear algebra: the Jordan Canonical
Form Theorem and the Cayley-Hamilton Theorem. The Jordan Canonical Form gives a nec-
essary and sufficient condition for diagonalizability over algebraically closed fields, while the
Cayley-Hamilton theorem gives a result which holds for arbitrary fields. We also discuss the
Rational Canonical Form, which can tell us if a matrix is diagonalizable. Later in the thesis,
we will consider diagonalizability over finite fields.
The material presented here is standard, and proofs may be found in [Axl15] and [FIS97]. We
assume familiarity with linear algebra up to the definition of eigenvalues and eigenvectors.

1.1. Eigenvectors and eigenvalues.

Definition 1.1. Let M : V → V be a linear transformation. A non-zero vector v ∈ V is an
eigenvector of M if M(v) = λv for some scalar λ .

If λ is a scalar for which there exists a non-zero vector solution to the equation M(v) = λv
then λ is an eigenvalue of M . The set of all eigenvectors corresponding to λ is the
eigenspace associated to λ .

We will now give a characterisation of the values λ which are eigenvalues of a linear
operator T .

Proposition 1.1. Let V and W be vector spaces and let T : W → V be linear. If V is
finite-dimensional then

nullity(T ) + rank(T ) = dim(T ).

Proof. [FIS97]. �

Proposition 1.2. The scalar λ is an eigenvalue of T if and only if T − λI is non-invertible.

Proof. Suppose that T − λI is not invertible, then it is not a bijection V → V , and by 1.1
there exists a non-zero vector v such that (T −λI)v = 0 . But this is equivalent to Tv = λv ,
so v is an eigenvector of T with eigenvalue λ .

In the other direction, if λ is an eigenvalue, there exists v ∈ V such that Tv = λv .
Rearranging the equation shows that v ∈ N(T − λI) . �

Definition 1.2. Let V be a vector space and let T : V → V be linear. A subspace W of
V is called T-invariant if T (x) ∈ W for every x ∈ W , that is, T (W ) ⊆ W . If W is
T-invariant, we define the restriction of T on W to be the function TW : W → W defined by
TW (x) = T (x) for all x ∈ W .

Proposition 1.3. The set of all eigenvectors of T : V → V with eigenvalue λ form a T -
invariant subspace of V .

Proof. Recall that U is a subspace of V if and only if it is closed under vector addition and
scalar multiplication. Suppose that T (v1) = λv1 and that T (v2) = λv2 (for the same value
of λ!). Then

T (v1 + v2) = T (v1) + T (v2) = λv1 + λv2 = λ(v1 + v2) .
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Similarly,
T (αv1) = αT (v1) = αλv1 = λ(αv1) .

�

The next proof shows that the eigenspaces of T are disjoint.

Proposition 1.4. Suppose that λ1, . . . , λm are distinct eigenvalues of T with eigenvectors
v1, . . . , vm . Then {v1, . . . , vm} is a linearly independent set of vectors.

Proof. This is a proof by contradiction. Suppose the claim to be false, and let k be the small-
est integer such that {v1, . . . , vk} is linearly dependent. Then there exist scalars α1, . . . , αk−1
(not all zero) such that

(1) vk = α1v1 + α2v2 + . . .+ αk−1vk−1 .

Apply T to both sides of Equation 1, to get

λkvk = α1λ1v1 + α2λ2v2 + . . .+ αk−1λk−1vk−1 .

Multiply both sides of Equation 1 by λk to get

λkvk = α1λkv1 + α2λkv2 + . . .+ αk−1λkvk−1 ,

and subtract one from the other to get

0 = α1(λ1 − λk)v1 + α2(λ2 − λk)v2 + . . .+ αk−1(λk−1 − λk)vk−1 .
Since the λi are distinct, the coefficients on the right hand side are not identically zero, and
we have produced a linear dependence among the set {v1, . . . , vk−1} which contradicts the
choice of k . �

Corollary 1.1. Let T : V → V where dim(V ) = n . Then T has at most n distinct
eigenvalues.

Proof. By Proposition 1.4, eigenvectors with distinct eigenvalues are linearly independent,
and a linearly independent set has size at most dim(T ) . �

Corollary 1.1 is a statement about eigenvalues not eigenvectors. A moment’s consideration
of Proposition 1.3 shows that as soon as T has an eigenspace of dimension 2 , it is possible
for T to have many distinct eigenvectors.

Theorem 1.1. [Axl15] Suppose that V is a finite dimensional vector space over an alge-
braically closed field k and T : V → V is a linear transformation. Then T has an eigen-
vector.

Proof. Let n be the dimension of V and consider the set {v, T (v), T 2(v), . . . , T n(v)} which
contains n+ 1 vectors and so must be linearly dependent. Suppose that

α0v + α1T (v) + . . .+ αnT
n(v) = 0 ,

and set p(x) = αnx
n + αn−1x

n−1 + . . .+ α0 . Since k is algebraically closed,

p(x) = (x− γ0) (x− γ1) · · · (x− γn) ,
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for not necessarily distinct scalars γ0, . . . , γn . Then

p(T )v = (T − γ0I) (T − γ1I) · · · (T − γnI) v = 0 .

If all of the terms T − γkI were invertible, then the product would be invertible too. Hence
there exists a scalar γk for which N(T − γkI) is non-zero. By Proposition 1.2, the γk is an
eigenvalue of T . �

The algebraically closed condition in Theorem 1.1 is (really) necessary, as can be seen
already with the matrix (

0 1
−1 0

)
over any field which is not of characteristic 2 and which does not contain a square root of
−1 .

1.2. Upper Triangular Matrices and Invariant Subspaces.

Definition 1.3. A matrix M is upper triangular if all entries below the diagonal are zero.

Proposition 1.5. Let V be a finite dimensional vector space over an algebraically closed
field. Let T : V → V be a linear transformation. Let B = {v1, . . . , vn} be a basis for V .
The following are equivalent.

(1) Tvk ∈ 〈v1, . . . , vk〉 for 1 ≤ k ≤ n .
(2) 〈v1, . . . , vk〉 is T -invariant for 1 ≤ k ≤ n .
(3) The matrix of T with respect to B is upper triangular.

Proof. 1 implies 2: Immediate from the definition of a T -invariant subspace.
2 implies 3: This follows from a careful application of the rules for matrices. Recall that the
kth column of [T ]B is [Tvk]B , which is a column vector expressing vk as a linear combination
of vectors from B . Since vk ∈ 〈v1, . . . , vk〉 this column vector has non-zero entries only for
i ≤ k . These are the entries above the diagonal. Hence [T ]B is upper triangular as required.
3 implies 1: This follows directly from the assumption that T is upper-triangular. �

Definition 1.4. The configuration of subspaces considered in Proposition 1.5 is often called
a chain of invariant subspaces for T .

We will prove that any operator on a finite dimensional vector space admits a chain of
invariant subspaces. A one dimensional invariant subspace is an eigenvector, this will be the
base case for our induction. The inductive step will require the following construction.

Proposition 1.6. Suppose that U is a T -invariant subspace of V . Then T/U is a vector
space, on which T acts by

T (v + U) = T (v) + U .

The image of a T invariant subspace of V is a T -invariant subspace of V/U , and the
preimage of a T -invariant subspace of V/U is a T -invariant subspace of V .



8

Proof. The cosets of U in V form a vector space. It suffices to check that the action of T on
V/U is linear.

T (v1 + v2 + U) = T (v1 + v2) + U = T (v1) + T (v2) + U

= (T (v1) + U) + (T (v2) + U) = T (v1 + U) + T (v2 + U)

The proof for scalar multiplication is similar.
Suppose that W is a T -invariant subspace of V . By definition, W/U = {w+U | w ∈ W} .

Since W is T -invariant, T (w + U) = T (w) + U ∈ W/U and W/U is T -invariant. Sim-
ilarly, suppose that X is a T -invariant subspace of V/U . Define the preimage of X to be
X+ = {x ∈ V | x+ U ∈ X} . Then for any x, y ∈ X+ ,

(x+ U) + (y + U) = (x+ y) + U ,

so x+y ∈ X+ , and similarly for scalar multiplication, and closure under the action of T . �

Now we can prove our result.

Theorem 1.2 (Cauchy). Let V be a finite dimensional vector space over an algebraically
closed field, and T : V → V a linear transformation. There exists a chain U1 ≤ U2 ≤ · · · ≤ Un = V
of T -invariant subspaces of V . Equivalently, there exists a basis of V with respect to which
T is upper triangular.

Proof. The proof will be by induction on the dimension of V . The result holds trivially if
dim(V ) = 1 . Suppose that the desired result holds in dimension ≤ k , and let V be of
dimension k + 1 .

By hypothesis, T has an eigenvalue λ with corresponding eigenvector v , and U = 〈v〉
is a T -invariant subspace of V . The dimension of V/U is k , so by induction there exists a
basis B = {v1 + U, . . . , vk + U} of V/U with respect to which T is upper triangular. By
Proposition 1.5, T (vi + U) ∈ 〈v1 + U, . . . , vi + U〉 for any 1 ≤ i ≤ k .

Since U = 〈v〉 , it follows that T (v) ∈ 〈v〉 and T (vi) ∈ 〈v, v1, . . . , vi〉 for each 1 ≤ i ≤ k .
By Proposition 1.5, the matrix of T with respect to the ordered basis {v, v1, . . . , vk} is upper
triangular, as required. �

Proposition 1.7. Suppose T ∈ L(V ) and p(x) ∈ F[x] . Then N(p(T )) and R(p(T )) are
T -invariant.

Proof. Suppose v ∈ N(p(T )) . Then

(p(T ))(Tv) = T (p(T )v) = T (0) = 0

thus Tv ∈ N(p(T )) and hence N(p(T )) is T -invariant.
Now suppose v ∈ R(p(T )) . Let u ∈ V be such that p(T )u = v . Then

p(T )(Tu) = T (p(T )u) = Tv

thus Tv ∈ R(p(T )) and hence R(p(T )) is T -invariant. �
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1.3. diagonalization: a basis of eigenvectors.

So far, we have seen in Theorem 1.1 that a matrix defined over an algebraically closed
field has an eigenvector. Cauchy’s theorem on upper triangular matrices, Theorem 1.2, is
an inductive version of this: for any matrix M there exists a basis {v1, v2, . . . , vn} of the
underlying space and a sequence of subspaces Ui = {v1, . . . , vi} such that vi+1 + Ui is an
eigenvector of V/Ui .

A particularly nice special case of Cauchy’s theorem arises when every vi is itself an
eigenvector.

Proposition 1.8. The set B = {v1, . . . , vn} is a basis for V consisting of eigenvectors of M
if and only if [M ]B is a diagonal matrix.

Proof. Suppose that B is a basis of eigenvectors. By definition, the ith column of M is
[Mvi]B . By hypothesis, this vector is non-zero only in the ith entry, so [M ]B is diagonal.

In the other direction, if [M ]B is diagonal, then the standard basis vectors with respect to
B are eigenvectors of M . The result follows. �

Proposition 1.9. Suppose that M,N are square matrices and X is an invertible matrix such
that M = XNX−1 . Then for any positive integer n ,

Mn = XNnX−1 .

Proof. We will proceed by induction. The claim is trivial for n = 1 , let us verify it for n = 2:

M2 =
(
XNX−1

) (
XNX−1

)
= XN

(
X−1X

)
NX−1

= XN2X−1

Suppose that the induction hypothesis holds for n = k . Then

MkM =
(
XNkX−1

) (
XNX−1

)
= XNk+1X−1 .

�

In this thesis, we will prove several necessary and sufficient criteria for a matrix to be
diagonalizable. For now, we give only one.

Theorem 1.3. Suppose that M is an n × n matrix with n distinct eigenvalues. Then M is
diagonalizable.

Proof. By Proposition 1.4, the eigenvectors corresponding to distinct eigenvalues are linearly
independent, so there exists a basis of eigenvectors and Proposition 1.8 applies. �

Diagonalization is a useful property because diagonal matrices have several known prop-
erties which simplify computations involving them. For example, a power of a diagonal
matrix can be computed by raising its diagonal entries to that power, and the determinant of
a diagonal matrix is equal to the product of its diagonal entries.
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1.4. Generalised Eigenvectors and Generalised Eigenspaces.

Recall that v ∈ V is an eigenvector of T with eigenvalue λ if and only if (T − λI)v = 0 .
Here we will explore some obstructions to diagonalization.

Definition 1.5. A vector v ∈ V is a generalised eigenvector of T with eigenvalue λ if and
only if there exists a positive integer m such that

(T − λI)m v = 0 .

We call the least m which satisfies the above equation the height of the generalised eigen-
vector.

As an example, consider the matrix  λ 1 0
0 λ 1
0 0 λ


which has [1, 0, 0]> as an eigenvector, [0, 1, 0]> as a generalised eigenvector of height 2
and [0, 0, 1]> as a generalised eigenvector of height 3 . Expressions like this can always be
evaluated as polynomials in λ and the (finitely many) vectors (T − λI)mv of lower height
obtained from v .

We begin by showing that the generalised eigenvectors form a subspace of V . The result
as proved is a little non-constructive as there is not yet an explicit bound on the height: we
provide this in Proposition 1.11.

Proposition 1.10. Suppose that V has dimension n and let T : V → V be a linear operator.
The generalised eigenvectors with eigenvalue λ form a T -invariant subspace of V , denoted
Gλ .

Proof. Suppose that v1, v2 are generalised eigenvectors of T with eigenvalue λ . Say
(T − λI)m1v1 = (T − λI)m2v2 = 0 . Let m = max{m1,m2} , then

(T − λI)m(v1 + v2) = (T − λI)mv1 + (T − λI)mv2 = 0 ,

and
(T − λI)m1(αv1) = α0 = 0 .

So the generalised eigenvectors form a subspace Gλ of V , as required.
To see that Gλ is T -invariant, observe that T (T − λI)m = (T − λI)mT for any non-

negative integer m . Suppose that v ∈ Gλ and (T − λI)mv = 0 . Then

(T − λI)m (Tv) = T (T − λI)mv = T0 = 0

so Tv ∈ Gλ and so Gλ is T -invariant. �

Next, we begin to explore the structure of a Gλ .

Definition 1.6. Let v ∈ Gλ be a generalised eigenvector. The cycle of v is

〈(T − λI)mv | m ∈ N〉 .
We say that a cycle is maximal in Gλ if it is not contained in a larger cycle.
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Proposition 1.11. Suppose that v ∈ V is a generalised eigenvector of T with eigenvalue λ
and height m . Then the vectors (T −λI)jv for j = 0, 1, . . . ,m−1 are linearly independent.

Proof. We write M = (T−λI) for notational convenience. Suppose that there exists a linear
dependence between the vectors M jv , say

Mm−1v + αm−2M
m−2v + . . .+ α1Mv + α0v = 0 .

We multiply this equation by Mm−1 on both sides:

M2m−2v + αm−1M
2m−3 + . . .+ α1M

mv + α0M
m−1v = 0 ,

but Mm+kv = Mk (Mmv) = 0 , since v is a generalised eigenvector of height m . So this
equation is equivalent to α0T

m−1v = 0 , and we conclude that α0 = 0 .
Next, multiply the equation

Mm−1v + αm−2M
m−2v + . . .+ α1Mv = 0

by Mm−2 to show that α1 = 0 . Proceeding in this way, one finds that all coefficients are 0
and so the set

{Mm−1v,Mm−2v, . . . ,Mv, v}
is linearly independent, as required. �

We have shown that a generalised eigenvector of height m generates a cycle which is a sub-
space of dimension m contained in Gλ . One consequence of Proposition 1.11 is that when
dim(V ) = n , there can be no generalised eigenvectors of height greater than n . Note that
there may be multiple linearly independent generalised eigenvectors of the same height: this
happens already for eigenvectors, where there may be multiple linearly independent eigen-
vectors with the same eigenvalue.

Definition 1.7. A direct sum of a matrix A of size m × n and matrix B of size p × q is a
matrix of size (m+ p)× (n+ q):

A⊕B =

[
A 0
0 B

]
Proposition 1.12. Let T : V → V be a linear operator on a vector space of dimension n .
Then V = N(T − λI)n ⊕ R(T − λI)n .

Proof. The Rank-Nullity theorem shows that the dimensions of N(T −λI)n and R(T −λI)n

sum to n . Suppose that v ∈ N(T − λI)n ∩ R(T − λI)n . Then there exists u ∈ V such that
(T − λI)nu = v and (T − λI)2nu = 0 . Thus v is a generalised eigenvector of T of height
greater than n , which contradicts Proposition 1.11. �

Note that raising (T − λI) to a sufficiently high power is necessary in Proposition 1.12.
The range and nullspace of an arbitrary matrix are not disjoint.

Definition 1.8. An operator is called nilpotent if some power of it equals 0.



12

Example 1.1. The operator T ∈ L(F3) defined by

T (x1, x2, x3) = (x2, x3, 0)

is nilpotent because T 3 = 0 .

Proposition 1.13. Suppose T ∈ L(V ) is nilpotent. Then T dim(V ) = 0 .

Proof. Since T is nilpotent, G(0, T ) = V . Thus Proposition 1.12 implies that

N(T dim(V )) = V.

�

1.4.1. Distinct Generalised Eigenspaces are Disjoint. Let T : V → V be a linear operator
and write Gλ for the generalised eigenspace of T with eigenvalue λ . In this section, we
show that the generalised eigenspaces for distinct eigenvalues are disjoint. This is the heart
of the Cayley-Hamilton theorem.

First we need a result about systems of linear equations of a special form.

Proposition 1.14. The n× n Vandermonde matrix is
1 x1 x21 . . . xn−11

1 x2 x22 . . . xn−12
...

...
...

...
1 xn x2n . . . xn−1n

 ,

where x1, . . . , xn ∈ C . The Vandermonde matrix is invertible if and only if all of the xi are
distinct.

Proof. (Sketch.) Recall that the determinant of a matrix is a linear combination of terms
formed from taking a product of matrix entries, one from each row and column. The deter-
minant is 0 if and only if the matrix is not invertible.

Clearly, if xi = xj the Vandermonde matrix has a repeated row, and cannot be invertible.
Hence, (xi − xj) divides the determinant for any i < j . By inspection, the terms in the
determinant all have degree 1 + 2 + . . . + n − 1 =

(
n
2

)
. The polynomial

∏
i<j xi − xj is

also of degree
(
n
2

)
and divides the determinant. So these polynomials are equal. Hence the

determinant is non-zero if and only if the xi are all distinct. �

With the Vandermonde determinant in hand, we can prove the base case of our argument,
which is interesting in its own right. We show that (proper) eigenvectors with distinct eigen-
values are linearly independent.

Proposition 1.15. Suppose that v1, . . . , vk are eigenvectors of T with distinct eigenvalues
λ1, . . . , λt . Then v1, . . . , vk are linearly independent.

Proof. Suppose that there were a linear dependence between the vi :

α1v1 + α2v2 + . . .+ αkvk = 0 .

Multiplying both sides by T j we obtain

λj1α1v1 + λj2α2v2 + . . .+ λjkαkvk = 0 ,
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for any positive integer j . Taking the the first k of these equations we form a linear system
1 1 . . . 1
λ1 λ2 . . . λk

...
...

...
...

λk−11 λk−12 . . . λk−1k



α1v1
α2v2

...
αkvk

 = 0 .

The first term is the (transpose of the) Vandermonde matrix, which is invertible since the λi
are distinct. Hence the only solution of the linear system has αi = 0 for all 1 ≤ i ≤ k . �

Finally, we prove our main result.

Theorem 1.4. Suppose that v1, . . . , vk are generalised eigenvectors of a linear operator T
with distinct eigenvalues λ1, . . . , λk . Then v1, . . . , vk are linearly independent.

Proof. By definition, a generalised eigenvector of height 1 is an (ordinary) eigenvector. Write
ej for the height of vj , and observe that T ej−tvj is a generalised eigenvector of height t . In
particular, wj = T ej−1vj is an ordinary eigenvector, with eigenvalue λ .

Next, observe that (T − λiI)vj = (λj − λi)vj . Set M =
∏k

j=1(T − λj)ej−1 , then

Mvj =
∏
i 6=j

(λi − λj)ei−1wj ,

which is an eigenvector of T with eigenvalue λj . We write γj for the scalar such that
Mvj = γjwj .

Now, suppose that
α1v1 + α2v2 + . . .+ αkvk = 0

is a linear dependence between the generalised eigenvectors vi . Applying M to this equation,
we obtain

α1γ1w1 + α2γ2w2 + . . .+ αkγkwk = 0 ,
which is a linear equation between eigenvectors of T . By Proposition 1.15, the scalars αi are
all zero, so the generalised eigenvectors are linearly independent. �

An important corollary is that generalised eigenspaces are linearly independent. We make
this precise below.

Corollary 1.2. Let G1, . . . , Gk be generalised eigenspaces of T : V → V , and let vi ∈ Gi

for i = 1, . . . , k . If
α1v1 + . . .+ αkvk = 0

then α1 = α2 = . . . = αk = 0 .

Corollary 1.2 can be rearranged to show that no linear combination α1v1 + . . .+αk−1vk−1
belongs to Gk , which is a substantially stronger claim than that the generalised eigenspaces
intersect pairwise in {0} .
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1.5. The Cayley-Hamilton Theorem.

We complete the proof of the Cayley-Hamilton theorem, by showing that V is a direct sum
of the generalised eigenspaces.

Theorem 1.5 (Cayley Hamilton, I). Let T : V → V be a linear operator over an alge-
braically closed field, and G1, . . . , Gk the generalised eigenspaces of T . Then T = ⊕ki=1Gi .

Proof. We showed in Theorem 1.4 that the generalised eigenspaces are disjoint. It will suffice
to show that they span V . We will prove this by induction. The base case is dimV = 1 , in
which case the result holds trivially.

Suppose that the result holds for all vector spaces with dimV ≤ t and let V be a vector
space of dimension t + 1 . Since T is defined over an algebraically closed field, T has
an eigenvector, say Tv = λv . So the generalised eigenspace Gλ is nonempty, and T -
invariant by Proposition 1.10. Recall that Gλ = N(T − λI)t+1 by Proposition 1.11, and that
U = R(T −λI)t+1 is disjoint from Gλ by Proposition 1.12. In fact, V = Gλ⊕U where each
of these spaces is T -invariant. Hence any vector in V has a unique expression as v = w+u
where w ∈ Gλ and u ∈ U .

Now, T has dimension ≤ t so the inductive hypothesis applies. Say U = G2⊕G3⊕· · ·⊕Gk ,
where Gi is a generalised eigenspace with eigenvalue λi . We need to show that each gener-
alised eigenspace of U is also a generalised eigenspace of V . It will suffice to show that a
generalised eigenvector not contained in Gλ is contained in U . Suppose that w ∈ Gλ and
u ∈ U , such that w + u is a generalised eigenvector of V with eigenvalue µ , distinct from
λ (since otherwise w + u would be contained in Gλ , by definition). By Proposition 1.11,
(T − µI)t+1(w + u) = 0 . Hence (T − µI)t+1w = 0 , and w ∈ Gλ ∩ Gµ . But Theorem 1.4
forces w = 0 so the generalised eigenvector belongs to U , and by the induction hypothesis
is contained in one of the Gi . Hence, G is a direct sum of generalised eigenspaces. �

Recalling Cauchy’s theorem, any linear transformation over an algebraically closed field
may be written in upper triangular form with respect to a suitable basis. The eigenvalues of
such a linear transformation are the diagonal entries of the matrix, and the multiplicities of
these entries are the dimensions of the generalised eigenspaces. The standard definition of the
characteristic polynomial is as det(M − tI) , which is a polynomial in t . (It is not easily seen
from this definition that the characteristic polynomial is independent of the choice of basis,
but it is.) The polynomial vanishes if and only if the matrix fails to be invertible. Hence its
roots are the eigenvalues of M (as is easily seen by computing the characteristic polynomial
with respect to a Cauchy-basis).

Definition 1.9. Suppose T ∈ L(V ) . Let λ1, ..., λm denote the distinct eigenvalues of T ,
with corresponding algebraic multiplicities d1, ..., dm . The characteristic polynomial of T
is defined to be

m∏
i=1

(x− λi)di .

Now we can state the standard version of the Cayley-Hamilton theorem.
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Theorem 1.6 (Cayley-Hamilton, II). Let M be a matrix over an algebraically closed field,
and χM(t) the characteristic polynomial of M . Then χM(M) = 0 . That is, M satisfies its
own characteristic polynomial.

Proof. By the first version of the Cayley-Hamilton theorem, Theorem 1.5, we know that V is
a direct sum of generalised eigenspaces. Suppose that Gλ is a generalised eigenspace of M
with dimension d . By the definition of the characteristic polynomial, (x− λ)d is a divisor of
the characteristic polynomial of M . We will show that Gλ) is in the kernel of (M − λ)d .

By Definition 1.5, every vector v ∈ Gλ satisfies (M − λI)m for some m depending on
v . But vectors (M − λI)iv for 1 ≤ i ≤ m are linearly independent by Proposition 1.11,
so m ≤ d . In particular, (M − λI)d sends every vector in Gλ to 0 . This argument can be
applied to each generalised eigenspace in turn.

Since the first version of the Cayley-Hamilton theorem states that the generalised eigen-
vectors of M span V , this implies that V ∈ kerχ(M) , equivalently χ(M) = 0 . �

While logically equivalent to our statement, this one fundamentally obscures the main
application of the Cayley-Hamilton theorem: for any T ∈ Hom(V, V ) there exists a unique
decomposition of V into generalised eigenspaces, Gi . Each Gi is T -invariant, and the
decomposition V = ⊕ti=1Gi is a direct sum. Hence, with respect to a basis of generalised
eigenvectors, T can be expressed as a block-diagonal matrix,

M1 0 . . . 0
0 M2 . . . 0
...

...
...

0 0 . . . Mt


where Mi encodes the action of T on the generalised eigenspace Gi . Applying Cauchy’s
theorem to each Mi , these matrices are upper triangular with fixed diagonal λi .

Definition 1.10. Suppose T ∈ L(V ) . The minimal polynomial of T is defined to be the
unique monic polynomial p(x) of smallest degree such that p(T ) = 0 .

Proposition 1.16. Suppose T ∈ L(V ) . The characteristic polynomial and minimal polyno-
mial of T have the same zeros, which are precisely the eigenvalues of T .

Proof. Let q(x) and p(x) be the characteristic polynomial and minimal polynomial of T ,
respectively. Since p(x) divides q(x) there is a polynomial f(x) such that q(x) = p(x)f(x) .
If a scalar λ is a zero of p(x) , then

q(x) = p(x)f(x) = 0 · f(x) = 0

Thus λ is a zero of q(x) , and hence λ is an eigenvalue.
Conversely, suppose λ is an eigenvalue of T with corresponding eigenvector v . Then

0 = p(T )(v) = p(Tv) = p(λv) = p(λ)v

Since x 6= 0 , it follows that λ is a zero of p(t) . �

Yet another statement equivalent to the Cayley-Hamilton is that the minimal polynomial
of a matrix divides its characteristic polynomial. We provide a proof of this in the appendix.
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1.6. Jordan Canonical Form.

We conclude our analysis of a single operator T : V → V with an investigation of the
action of T on a single generalised eigenspace. In fact, Gλ decomposes into a direct sum of
chains: this is essentially the Jordan Canonical form.
The next theorem shows how we can select ordered bases whose union is an ordered basis
B from generalized eigenspaces of a linear operator T such that [T ]B is a block-diagonal
matrix 

A1 O ... O
O A2 ... O
...

...
...

O O ... Ak


called the Jordan Canonical Form, where each O is a zero matrix and the matrices Ai ,
called Jordan blocks, are of the form [λ] or

λ 1 0 ... 0 0
0 λ 1 ... 0 0
...

...
...

...
...

0 0 0 ... λ 1
0 0 0 ... 0 λ

 .
Theorem 1.7. Let Gλ be the generalised eigenspace of T with eigenvalue λ . There exist
generalised eigenvectors v1, . . . , vd ∈ Gλ and integers e1, . . . , ed such that each chain

Ci = 〈vi, (T − λI)vi, . . . , (T − λI)eivi〉
is a T -invariant subspace of Gλ , and Gλ = ⊕dj=1Cj .

Proof. This proof is by induction on the dimension of Gλ . The base case holds trivially when
Gλ has dimension 1: any non-zero vector is a basis, and there is no non-trivial condition to be
satisfied. Suppose that all generalised eigenspaces of dimension ≤ r can be expressed as a di-
rect sum of cyclic subspaces. For any v ∈ Gλ the cyclic subspace Cv = 〈(T −λI)tv | t ∈ N〉
is T -invariant (the argument is identical to the one given in Proposition 1.10).

We write M for the restriction of T − λI to Gλ . For a vector vi = vi,0 we write
M jvi,0 = vi,j . Recall that the height of vi,0 is the least j such that vi,j = 0 .

Now, suppose that Gλ has dimension r + 1 . Since Gλ contains an eigenvector, M is
neither injective nor surjective on Gλ . Hence the range of M is a proper subspace U of Gλ ,
of dimension ≤ k . Applying the inductive hypothesis to U , we obtain a basis

u1,0, . . . , u1,e1−1, u2,0, . . . , u2,e2−1, . . . , ud,0, . . . , ud,ed−1 ,

for U , where ei is the height of ui . Every vector u ∈ U is of the form Mv for some vector
v ∈ Gλ (not necessarily unique). For each 1 ≤ i ≤ d choose a vector vi ∈ Gλ such that
Mvi = ui,0 . In particular, vi,j+1 = ui,j for any non-negative integer j .

We will show that the vectors

v1,0, . . . , v1,e1 , v2,0, . . . , v2,e2 , . . . , vd,0, . . . , vd,ed
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are linearly independent. Suppose that

α1,0v1,0 + . . .+ α1,e1v1,e1 + . . .+ αd,edve,ed = 0 .

Applying M to both sides of this equation (noting carefully that Mvi,ei = 0) ,

α1,0u1,0 + . . .+ α1,e1−1u1,e1−1 + . . .+ αd,ed−1ud,ed−1 = 0 .

But the ui,j are linearly independent by the induction hypothesis, so αi,j = 0 for all
1 ≤ i ≤ d and 1 ≤ j ≤ ei − 1 . What remains is an equation

α1,e1v1,e1 + . . .+ α1,edvd,ed = 0 ,

or equivalently, since vi,ei = ui,ei−1 ,

α1,e1u1,e1−1 + . . .+ α1,edud,ed−1 = 0 ,

Again, by the inductive hypothesis these vectors are linearly independent and so all αi,j are
0 .

A careful inspect of the proof thus far shows that we have constructed a basis for a subspace
consisting of vectors which belong to R(M) , or have a non-zero image in R(M) . By the
Replacement theorem, we can extend the linearly independent set vi,j given above to a basis
of V . Any additional vectors satisfy xi /∈ R(N) and xi ∈ Null(N) . These are precisely the
eigenvectors which do not belong to any cycle of dimension greater than 1 . Hence a basis for
Gλ is given by

v1,0, . . . , v1,e1 , v2,0, . . . , v2,e2 , . . . , vd,0, . . . , vd,ed x1, . . . , x` .

This completes the proof. �

1.7. Rational Canonical Form.

Definition 1.11 ([DF04]). Let p(x) = xm + am−1x
m−1 + ... + a1x + a0 be any monic

polynomial in Fq[X] . The companion matrix of p(x) , denoted Cp(x) , is the m×m matrix
with 1’s down the first subdiagonal, −a0,−a1, ...,−am−1 down the last column, and zeros
everywhere else.

Example 1.2. The companion matrix of the polynomial p(x) = x3 + 4x2 − 3x+ 5 is

Cp(x) =

0 0 −5
1 0 3
0 1 −4


Definition 1.12 ([DF04]). A matrix is said to be in rational canonical form if it is the direct
sum of companion matrices for monic polynomials a1(x), ..., am(x) of degree at least one
which satisfy ai(x) | ai+1(x) for i = 1, ...,m − 1 . The polynomials ai(x) are called the
invariant factors of the matrix.
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Note that the RCF has the form
Ca1(x)

Ca2(x)
. . .
Cam(x)


Example 1.3. Consider the matrix

M =

3 0 1
0 2 7
0 0 3


This has characteristic and minimal polynomial (2− x)(3− x)2 = −x3 + 8x2 − 21x+ 18 ,
so the invariant factors consist only of the characteristic polynomial. This has companion

matrix

0 0 −18
1 0 21
0 1 −8

 which is the RCF for M .

1.8. Necessary and sufficient conditions for diagonalizability.

In this Chapter, we have reviewed the structure of a linear operator in detail. In the Cayley-
Hamilton theorem, we showed that a linear operator T on vector space V induces a decompo-
sition of V into a direct sum of generalised eigenspaces, while in the Jordan Canonical Form
theorem, we gave a description of the action of T on any generalised eigenspace. Together,
these results provide a complete understanding of a single linear operator. In this thesis, we
are interested in necessary and sufficient conditions for diagonalizability. We outline some of
these here.

Theorem 1.8. Suppose T ∈ L(V ) . Let λ1, ..., λk be the distinct eigenvalues of T . Then T
is diagonalizable if and only if the minimal polynomial of T is of the form

p(x) =
k∏
i=1

(x− λi)

Proof. Suppose T is diagonalizable, and hence let B = {v1, ..., vn} be an ordered basis for
V consisting of eigenvectors of T . Define

p(x) =
k∏
i=1

(x− λi)

Consider eigenvector vi ∈ B with corresponding eigenvalue λj . Then we have (T−λjI)(vi) = 0 .
Since (x − λj) divides p(x) , there is a polynomial f(x) for which p(x) = f(x)(x − λj) .
Thus

p(T )(vi) = f(T )(T − λjI)(vi) = 0

Then p(T ) = 0 , since its null space contains a basis for V . Furthermore, the factorization of
the minimal polynomial has at least as many linear factors as distinct eigenvalues (Proposition
1.16), and hence has degree at least k . Thus p(x) is the minimal polynomial.
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Conversely, suppose λ1, ..., λk are distinct scalars such that the minimal polynomial p(x)
factors as

p(x) =
k∏
i=1

(x− λi)

By Proposition 1.16, the λi s are eigenvalues of T . We apply induction on n = dim(V ) .
Clearly, T is diagonalizable when n = 1 . Now assume T is diagonalizable when
dim(V ) < n for some n > 1 . Let W = R(T − λkI) and U = N(T − λkI) . Obvi-
ously W 6= V , since vk is an eigenvalue of T . If W = {0} , then T = λkI is clearly
diagonalizable. So suppose 0 < dim(W ) < n . Then W is T -invariant, and for any x ∈ W ,(

k−1∏
i=1

(T − λiI)

)
(x) = 0.

It follows that the minimal polynomial of T |W divides
k−1∏
i=1

(x− λi) . Hence by the induction

hypothesis, T |W is diagonalizable. Furthermore, λk is not an eigenvalue of T |W (by Propo-
sition 1.16). Therefore W ∩ U = {0} . Now consider the disjoint bases B1 = {v1, .., vm}
for W and B2 = {w1, ..., wp} for U . By the rank-nullity theorem, m + p = n . We show
that B = B1 ∪B2 is linearly independent. Consider scalars a1, .., am and b1, ..., bp such that
x+ y = 0 for

x =
m∑
i=1

aivi ∈ W and y =

p∑
i=1

biwi ∈ U.

It follows that x = −y ∈ W ∩ U , thus x = 0 . Given that each basis is linearly independent,
each scalar ai and bi is 0, and we conclude that B is a linearly independent subset of V
consisting of n eigenvectors. Thus B is a basis for V consisting of eigenvectors of T , and
hence T is diagonalizable. �

Corollary 1.3. If the eigenvalues of T are distinct then T is diagonalizable.

Proof. Clearly, if the eigenvalues of T are distinct then each has algebraic multiplicity 1, and
the characteristic polynomial of T is of the form

p(x) =
k∏
i=1

(x− λi).

That is, the minimal polynomial is square-free. �

A matrix with non-trivial generalised eigenvectors is never diagonalizable, though it can
be difficult to decide whether a matrix has such a generalised eigenvector.

Theorem 1.9. [Art10] Let T be a linear operator on a finite-dimensional complex vector
space. The following conditions are equivalent:

(1) T is diagonalizable,
(2) every generalized eigenvector is an eigenvector,
(3) all of the blocks in the JFC of T are 1× 1 blocks.
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Proof. (1 =⇒ 2) Suppose that T is diagonalizable, say T with respect to basis B = (v1, .., vn)
is the diagonal matrix D with diagonal entries λ1, ..., λn . Let v be a generalized eigenvector
in V such that (T − λi)kv = 0 for some λi and some k > 0 . We write S = T − λiIn to
reduce to the case Skv = 0 . Let [v]B = (x1, ..., xn)t . The coordinates of Skv will be λki xi .
Since Skv = 0 , either λi = 0 or xi = 0 , and in either case λki xi = 0 . Thus Sv = 0 .
(2 =⇒ 3) We prove the contrapositive. Recall that the k × k Jordan block J0 operates on
the standard basis of Ck as

e1 → e2 → ...→ ek → 0.

If the JFC of T has a k × k Jordan block with k > 1 , then looking at the action of Jλ − λI ,
we see that there is a generalized eigenvector that is not an eigenvector.
Finally, it is clear that (3 =⇒ 1) . �

In the next chapter, we will focus on the theory of operators on an inner product space, with
the goal of showing that a symmetric matrix over a field of characteristic 0 is diagonalizable.
We will see in chapter 4 that this proof does not generalise to positive characteristic.
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2. INNER PRODUCT SPACES AND THE SPECTRAL THEOREM IN CHARACTERISTIC 0

In this chapter we introduce the spectral theorem, by which we know that symmetric ma-
trices are diagonalizable in characteristic 0. We will explore positive characteristic in future
chapters. Material in this chapter is drawn from [Rom08].

Definition 2.1. Let V be a vector space over R or C . A mapping 〈, 〉 : V ×V → F is called
an inner product if it has the following properties:

(1) Linearity in the first argument: 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉 and 〈αu, v〉 = α〈u, v〉 .
(2) Conjugate symmetry: 〈u, v〉 = 〈v, u〉 .
(3) Positive definiteness: 〈v, v〉 ≥ 0 for all v ∈ V and 〈v, v〉 = 0 only if v = 0 .

A vector space equipped with an inner product is called an inner product space (or a
metric vector space).

Example 2.1. Let V = Fn . For any A ∈ Mn(F) , the map 〈, 〉 : V × V → F defined as the
dot product

〈x, y〉 = xTy for x, y ∈ V
is an inner product.

We review some terminology relating to adjoints next.

2.1. Adjoints, Self-Adjoint Matrices.

Definition 2.2. Let T be a linear operator on an inner product space V over R or C . The
adjoint of T is the unique linear operator T ∗ on V defined by the condition

〈Tu, v〉 = 〈u, T ∗v〉
for all u, v ∈ V .
Furthermore, T is called normal if TT ∗ = T ∗T , and self-adjoint if T = T ∗ .

Proposition 2.1. The eigenvalues of a self-adjoint operator over R or C are real.

Proof. Let v ∈ V be an eigenvalue of T with eigenvalue λ . Then

λ〈v, v〉 = 〈Tv, v〉 = 〈v, Tv〉 = 〈v, λv〉 = λ∗〈v, v〉.
Since 〈v, v〉 6= 0 , it follows that λ = λ∗ . Hence λ is real. �

Proposition 2.2. A self-adjoint operator over R or C is diagonalizable.

Proof. Let T be a self-adjoint operator and v a generalized eigenvector of T . By the previous
proposition the corresponding eigenvalue is real. Then (T − λI) is also self-adjoint, since

(T − λI)∗ = T ∗ − λ∗I = T − λI.

Let k be the smallest integer for which (T − λI)kv = 0 . Then w = (T − λI)k−1v is an
eigenvector of T with corresponding eigenvalue λ . Now consider the inner product

〈w,w〉 = 〈(T − λI)k−1v, (T − λI)k−1v〉 = 〈v, (T − λI)2k−2v〉.
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If 2k−2 ≥ k then (T −λI)2k−2v = 0 , which would contradict the positive-definite property
of inner products. Hence 2k − 2 < k , so k = 1 . Then (T − λI)v = 0 and w = v . We
conclude that every generalized eigenvector is already an eigenvector. �

Definition 2.3. Let V be an inner product space.
• A vector x ∈ V is orthogonal to a vector y , denoted x ⊥ y , if 〈x, y〉 = 0 .
• A vector x ∈ V is orthogonal to a subset S ⊆ V , denoted x ⊥ S , if 〈x, s〉 = 0 for

all s ∈ S .

Definition 2.4. Let T be a linear operator on an inner product space V . If ‖Tv‖ = ‖v‖ for
all v ∈ V , T is called orthogonal if the underlying field is R and unitary if it is C .
Furthermore, a matrix M is called orthogonal if MTM = In and unitary if M∗M = In .

Definition 2.5. Let V and W be inner product spaces. A bijective linear operator T : V → W
is called an isometry if

〈Tu, Tv〉 = 〈u, v〉
for all u, v ∈ V .

The set of isometries of V onto V form a group, with function composition as its group
operation. Thus, if T and S are isometries of V onto V , then so is TS .

Proposition 2.3. Let T be a linear operator on an inner produce space V . The following
statements are equivalent.

(1) T is unitary or orthogonal.
(2) T is an isometry.
(3) TT ∗ = T ∗T = I .

Proof. (1 =⇒ 2) For any x ∈ V , we have

〈Tx, Tx〉 = ‖Tx‖2 = ‖x‖2 = 〈x, x〉
(2 =⇒ 3) For any x ∈ V , we have

〈x, x〉 = 〈Tx, Tx〉 = 〈x, T ∗Tx〉 = 0

Thus 〈x, (I − T ∗T )x〉 = 0 for all x ∈ V . This implies that I − T ∗T = T0 , and therefore
T ∗T = I . Since 〈x, T ∗Tx〉 = 〈TT ∗x, x〉 , applying similar steps gives us TT ∗ = I .
(3 =⇒ 1) For any x ∈ V , we have

‖x‖2 = 〈x, x〉 = 〈x, T ∗Tx〉 = 〈TT ∗x, x〉 = 〈Tx, Tx〉 = ‖Tx‖2.
�

Proposition 2.4. The matrix M ∈ Mn(R) is an isometry if and only if the columns of M
form an orthonormal basis of Rn .

Proof. By definition M is orthogonal if and only if MM> = In . But the (i, j) entry of
MM> is the inner product of the ith and j th columns of M . So the definition requires that
the columns form an orthonormal basis. �
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Proposition 2.5. Let V be a vector space over a field of characteristic 0. Then any symmetric
bilinear form on V is diagonalizable by an orthogonal matrix.

Proof. Since a symmetric matrix is diagonalizable, it is self-adjoint and so diagonalizable
by Proposition 2.2. In particular, there are no generalised eigenvectors, and each eigenspace
admits an orthonormal basis of eigenvectors. So it suffices to show that eigenvectors from
distinct eigenspaces are orthogonal. To see this, suppose that Mv = λv and that Mu = µu
where λ 6= µ and M is self-adjoint.

Then
λ〈v, u〉 = 〈Mv, u〉 = 〈v,Mu〉 = µ〈v, u〉 .

But λ 6= µ then forces 〈v, u〉 = 0 and eigenvectors from distinct eigenspaces are orthogonal.
As a result, M admits a basis of eigenvectors, and is diagonalized by an orthogonal matrix.

�

Theorem (The Spectral Theorem). Let T be a linear operator on an inner product space
V over R or C . The following are equivalent:

• T is normal.
• ‖Tv‖ = ‖T ∗v‖ for all v ∈ V .
• Every eigenvector of T is an eigenvector of T ∗ . Every generalised eigenvector of T

is an eigenvector, and eigenvectors with distinct eigenvalues are orthogonal.
• T is diagonalizable by an isometry.

Proof. (1 =⇒ 2) Suppose T is normal. Then

‖Tv‖2 = 〈Tv, Tv〉 = 〈v, T ∗Tv〉 = 〈v, TT ∗v〉 = 〈T ∗v, T ∗v〉 = ‖T ∗v‖2

T being normal gives us the third equality, and that T ∗∗ = T the fourth.
(2 =⇒ 3) Let v be an eigenvector of T with corresponding eigenvalue λ . Observing that
T − λI is normal if and only if T is, we have

0 = |(T − λI)v| = |(T − λI)∗v| = |(T ∗ − λ∗I)v| = 0

So v is an eigenvector of T with eigenvalue λ∗ .
Suppose that v is a generalised eigenvector of T with eigenvalue λ , so that (T−λI)kv = 0 ,

with k being the smallest integer for which this holds. Let S = (T − λI)(T ∗ − λ∗I) . Then
S∗ = (T ∗ − λ∗I)(T − λI)∗ = S , so S is self-adjoint. Since T is normal,

Skv = (T ∗ − λ∗I)k(T − λI)kv = 0,

for any integer k . Recall that by Proposition 2.2, self-adjoint operators over R or C are
diagonalizable. Thus S is diagonalizable and so N(S) = N(Sk) for all k ≥ 1 . Observe that

〈Sv, v〉 = 〈(T − λI)v, (T − λI)v〉,
which is nonzero unless k = 1 and v is an eigenvector of T . Thus Sv 6= 0 for k > 1 .

Similarly, Sdv = 0 if and only if (T − λI)dv = 0 . We consider the expression

〈Sk−1v, Sk−1v〉 = 〈v, S2k−2v〉.
By hypothesis, the left-hand side of the equation is nonzero, so 2k − 2 < k which forces
k = 1 . Hence every generalised eigenvector of T is an eigenvector of T . Since T admits
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a basis of generalized eigenvectors by the Cayley-Hamilton theorem, and every generalised
eigenvector is an eigenvector, T is diagonalizable.

Finally, let v1 and v2 be eigenvectors of T with distinct eigenvalues λ1 and lambda2 .
Then

λ1〈v1, v2〉 = 〈Tv1, v2〉 = 〈v1, T ∗v2〉 = λ2〈v1, v2〉.
Hence 〈v1, v2〉 = 0 .
(3 =⇒ 4) By the previous section, T admits an orthonormal basis of eigenvectors. We
assemble an orthonormal basis of eigenvectors of T by constructing an orthonormal basis
for each eigenspace using the Gram-Schmidt process. The union of these bases gives an
orthonormal basis for the space, with respect to which T is diagonal.
(4 =⇒ 1) Suppose T is diagonalizable by a matrix M having orthonormal columns. Hence
M∗M = In . So M∗TM is a diagonal matrix, and (M∗TM)∗ = M∗T ∗M is the adjoint of
T with respect to this basis. Then

(M∗TM)(M∗T ∗M) = M∗TT ∗M.

Since diagonal matrices commute, we also have

(M∗TM)(M∗T ∗M) = (M∗T ∗M)(M∗TM) = M∗T ∗TM.

Cancelling invertible matrices, we conclude that TT ∗ = T ∗T and so T is normal. �

The spectral theorem is a powerful result for giving conditions about diagonalizability. It
tells us that symmetric, orthogonal, and self-adjoint matrices are all diagonalizable when the
base field has characteristic 0 . Next we will investigate what happens over finite fields, in the
simplest nontrivial case of 2× 2 matrices.
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3. DIAGONALIZABILITY OF 2X2 MATRICES OVER A FINITE FIELD

3.1. General 2x2 Matrices.
In this section we explore the case of 2x2 matrices over finite fields to see how it differs from
the characteristic zero case. This will require more abstract algebra than previous chapters.
We classify four types of 2x2 matrices over a field Fq , and provide counts for each up to
change of basis. Our cases derive from the specification of a matrix as being diagonalizable
or non-diagonalizable, and having repeated or distinct eigenvalues. We use the following
notation:

Diagonalizable
Non-
diagonalizable

Repeated
eigenvalues

R-D R-ND

Non-
repeated
eigenvalues

NR-D NR-ND

It will be convenient to impose an ordering on the elements of Fp and to insist that the
eigenvalues of A are always listed in increasing order.

First, we introduce some concepts from group theory.

Definition 3.1. Let G be a group and X a finite set. Then a function φ : G×X → X is an
action (of G on X ) if and only if the following conditions are satisfied:

(1) φ(x, 1G) = x for all x ∈ X .
(2) φ(φ(x, g), h) = φ(x, gh) for all x ∈ X and all g, h ∈ G .

An action of G on a set X is essentially the same thing as a homomorphism from G into
the symmetric group on X . In these notes we will mostly be interested in the conjugation
action of the general linear group GL2(Fq) on the set of 2× 2 matrices over Fq .

Definition 3.2. Let φ : G×X → X be a group action. For any α ∈ X , we call

stabG(α) = {g ∈ G | g(α) = α}
the stabilizer of α in G . Similarly,

orbG(α) = {g(α) | g ∈ G}
the orbit of α under G .

The next result is one of the more useful theorems in finite group theory.

The Orbit-Stabilizer Theorem ([Gal86]). Let G be a finite permutation group acting on a
set S . Then, for any α ∈ S , |G| = |orbG(α)||stabG(α)| .

Before we begin our computations with matrices of the four cases, we recall some proper-
ties of the general linear group.

Definition 3.3. A matrix is invertible if all of its eigenvalues are non-zero. The product of
invertible matrices is invertible, so that the invertible n × n matrices over a field F form a
group. This is the general linear group of dimension n over F , normally denoted GLn(F) .
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Proposition 3.1. The group GL2(Fp) has size (p2 − 1)(p2 − p) .

Proof. Recall from elementary linear algebra that matrix is invertible if and only if the rows
of the matrix are linearly independent. Furthermore, two matrices are distinct if and only if
their rows are distinct (as an ordered set). Let us choose two linearly independent vectors
from a two-dimensional vector space over Zp in all possible ways.

The first row of the matrix can be any non-zero vector, so there are p2 − 1 choices. The
second row must not be a scalar multiple of the first row, so there are p2 − p choices for the
second row. Hence the size of GL2(Fp) is (p2 − 1)(p2 − p) . �

We will apply the Orbit-Stabilizer theorem to matrices from each of the four types in turn.
Before we begin, let us specify the group action.

Definition 3.4. The conjugation action of the general linear group GLn(Zp) on the set of
n× n matrices is given by

φ(M,A) = M−1AM ,

where M ∈ GLn(Zp) and A ∈Mn(Zp) .

It can be easily verified that the conjugation action is a group action, as follows:

φ(M,φ(N,A)) = φ(M,N−1AN) = M−1N−1ANM

= (MN)−1A(MN) = φ(MN,A).

The verification that the identity matrix acts trivially on all matrices M is routine, and so is
omitted. It is well known that conjugation by an invertible matrix corresponds to a change
of basis operation which preserves the eigenvalues and Jordan Canonical Form of a matrix.
Hence it is the natural equivalence operation to consider when representing a linear transfor-
mation by a matrix.

3.1.1. R-D Matrices.

Every R-D matrix is of the form[
a b
c d

] [
α 0
0 α

] [
a b
c d

]−1
where a, b, c, d, α, β ∈ Fq.

We will count the R-D matrices using the Orbit-Stabilizer theorem.

Proposition 3.2. The number of R-D matrices in M2(Fq) is q . (This includes the zero ma-
trix.)

Proof. Observe that since A is a scalar matrix, it commutes with all other matrices in the
general linear group: [

a b
c d

] [
α 0
0 α

]
=

[
α 0
0 α

] [
a b
c d

]
Hence, the stabilizer of A is all of GL2(q) and the orbit of A is just {A} . There are q R-D
matrices, one for each element of the field Fq . �
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3.1.2. NR-D Matrices.

Next, we consider the diagonalizable matrices with distinct eigenvalues. We will assume
an ordering on the field elements, so that all Jordan Canonical Forms are unique.

Every NR-D matrix is of the form[
a b
c d

] [
α 0
0 β

] [
a b
c d

]−1
where a, b, c, d, α, β ∈ Fq.

Proposition 3.3. The number of NR-D matrices is q2(q2−1)
2

.

Proof. Again, we compute the the size of the stabilizer of a matrix with distinct eigenval-
ues. To avoid working with matrix inverses, we observe that M−1AM = A if and only if
AM = MA , since the matrix M is assumed to be invertible. We will solve the system of
linear equations which come from this matrix equation.[

α 0
0 β

] [
a b
c d

]
=

[
a b
c d

] [
α 0
0 β

]
We can rewrite this matrix equation as a set of linear equations, obtained by setting the cor-
responding matrix entries equal:

αa− αa = 0

βb− αb = 0

αc− βc = 0

βd− βd = 0

Clearly the first and last of these equations are trivial. We are assuming that α 6= β , so since
we work over a field, we must have b = 0 and c = 0 . Hence the stabilizer of the matrix A
under the conjugation action is the group

GA = {M |MAM−1 = A} =

{[
a 0
0 d

] ∣∣∣∣ a, d 6= 0

}
which has size (p − 1)2 . Now we apply the Orbit-Stabilizer Theorem: the orbit of a NR-D
matrix must be of size

q(q − 1)2(q + 1)

(q − 1)2
= q2 + q .

Now, the number of diagonal matrices with non-repeated eigenvalues is
(
q
2

)
. So the total

number of NR-D matrices is
(q + 1)q2(q − 1)

2
=
q2(q2 − 1)

2
.

�
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3.1.3. R-ND Matrices.

Proposition 3.4. The number of R-ND matrices in M2(Fq) is q3 − q .

Proof. Let

M =

[
a b
c d

]
and A =

[
α 1
0 α

]
.

Every R-ND matrix is of the form[
a b
c d

] [
α 1
0 α

] [
a b
c d

]−1
where a, b, c, d, α,∈ Fq.

We want [
a b
c d

] [
α 1
0 α

]
=

[
α 1
0 α

] [
a b
c d

]
We can rewrite this matrix equation as a set of linear equations, obtained bysetting the corre-
sponding matrix entries equal:

aα = aα + c

a+ bα = bα + d

cα = cα

c+ dα = dα

Clearly we must have c = 0 and a = d . Thus if M commutes with A then M is of the form[
a b
0 a

]
, a 6= 0.

Hence the stabilizer under the conjugation group action is

GA = {M |MAM−1 = A} =

{[
a b
0 a

] ∣∣∣∣ a 6= 0

}
.

which has size q(q − 1) . Applying the Orbit-Stabilizer theorem, the orbit of a R-ND matrix
must be of size

|GL2(q)|
|GA|

=
q(q − 1)2(q + 1)

q(q − 1)
= (q − 1)(q + 1) = q2 − 1.

Hence there are precisely q2−1 matrices in M2(Fq) with the same JFC as A . With q choices
for α , there are q3 − q R-ND matrices in M2(Fq) . �

3.1.4. NR-ND Matrices.

For NR-ND matrices, we use the rational canonical form.

Proposition 3.5. The number of NR-ND matrices in M2(Fq) is q2(q − 1)2/2 .
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Proof. Recall that a matrix is diagonalizable if and only if its minimal polynomial can be
expressed as a product of linear factors. Thus an NR-ND matrix has an irreducible minimal
polynomial. Since the minimal and characteristic polynomials have the same zeroes, the
characteristic polynomial of an NR-ND matrix is also irreducible.
Say that x2 − βx + γ an irreducible quadratic. Observe that the matrix with characteristic
polynomial χ(A) = x2 − βx+ γ is

A =

[
0 −γ
1 β

]
.

We want [
a b
c d

] [
0 −γ
1 β

]
=

[
0 −γ
1 β

] [
a b
c d

]
Again, we rewrite this as a system of linear equations.

b = −cγ
d = a+ βc

−aγ + bβ = −dγ
−cγ + dβ = b+ βd

We see that an element of the stabilizer is of the form[
a −cγ
c a+ βc

]
This matrix is invertible with characteristic polynomial a2 + aβc + c2γ . This polynomial
has a root if and only if the discriminant (βc)2 − 4c2γ = c2(β2 − 4γ) is a square. Since we
assumed x2 − βx + γ is irreducible, there is no square root of β2 − 4γ in the field. So we
just need that a and c are non-zero. Thus stabilizer is

GA =

{[
a −cγ
c a+ βc

] ∣∣∣∣ a, c 6= 0

}
and has size |GA| = q2 − 1 .
Applying the Orbit-Stabilizer theorem, the orbit of a NR-ND matrix must be of size

|GL2(q)|
|GA|

=
(q2 − 1)(q2 − q)

q2 − 1
= q2 − q

So the number of matrices with an irreducible minimal polynomial is(
q

2

)
(q2 − q) =

q2(q − 1)2

2
.

�

We can now state the final counts for the four types of matrices.
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Proposition 3.6. The counts for the matrices in M2(Fq) are

R NR
D q q2(q2 − 1)/2

ND q3 − q q2(q − 1)2/2

We make some observations here: the number of matrices with a repeated eigenvalue is
q3 , almost all of these matrices fail to be diagonalizable. It is also interesting to note that
the total number of diagonalizable matrices among all 2 × 2 matrices is 1

2
q4 − 1

2
q2 + q for

any prime power q . In particular, as q → ∞ the probability that a randomly chosen 2 × 2
matrix is diagonalizable tends to 1

2
. In the next section we introduce some specialised results

on finite fields, before considering 2× 2 symmetric matrices in positive characteristic.

3.2. Cyclotomy.
Here we review some results on cyclotomic numbers. This algebra is needed to work through
our analysis of symmetric matrices.

Definition 3.5. Let R be a commutative ring. The set of formal symbols

R[x] = {anxn + an−1x
n−1 + ...+ a1x+ a0 | ai ∈ R, n is a nonnegative integer}

Is called the ring of polynomials over R in the indeterminate x.
Two elements

anx
n + an−1x

n−1 + ...+ a1x+ a0

and

bnx
n + bn−1x

n−1 + ...+ b1x+ b0

of R[x] are considered equal if and only if ai = bi for all nonnegative integers i . (Define
ai = 0 when i > n and bi = 0 when i > m .)

Definition 3.6. Recall the quadratic formula gives the roots of the polynomial p(x) = x2+rx+s
as

−r ±
√
r2 − 4s

2
.

The discriminant is the term beneath the radical.

The discriminant has the following properties:
(1) The discriminant is zero if and only if the roots of p(x) are equal.
(2) The polynomial splits into linear factors if and only if the discriminant is a square.
(3) The polynomial is irreducible if and only if the discriminant is not a square.

Definition 3.7. Let q be an odd prime power. The quadratic residues of Fq are the elements
of the unique subgroup of index 2 in F∗q . The quadratic non-residues are the unique coset of
the quadratic residues in F∗q .

Proposition 3.7. The quadratic equation x2 − bx + c is solvable in Fq if and only if the
discriminant b2 − 4c is a quadratic residue in Fq (i.e. has a square root).
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Proposition 3.8. There are (q−1)/2 elements in Fq that are quadratic residues and (q−1)/2
elements in Fq that are quadratic non-residues.

Proposition 3.9. If q ≡ 1 mod 4 then x is a QR if and only if −x is a QR. If q ≡ 3 mod 4
then x is a QR if and only if x is not a QR.

Proof. Let g be a generator of the multiplicative group of the finite field. Then g has order
q−1 , which is 2 mod 4 if q ≡ 3 mod 4 and 0 mod 4 otherwise. Clearly gk is a Quadratic
Residue if and only if k is even, and the QRs form a subgroup of F∗q .

Observe that
(
gk
)p−1/2

= 1 if k is even (by Lagrange’s theorem) and −1 if k is odd
(because there are at most p − 1/2 solutions to xp−1/2 − 1 in a field, but squaring must
produce 1 by Lagrange). So −1 is a quadratic residue precisely when q − 1/2 is even; that
is when q ≡ 1 mod 4 . Now the result follows from closure of the quadratic residues. �

Proposition 3.10. Suppose gcd(q, 2) = 1 . Then there are (q− 1)/2 values of b2− 4c which
are non-residues for each value of b . Thus there are q(q − 1)/2 irreducible quadratics over
Fq .

Let g be a generator for F∗q . The eth powers in Fq are the subgroup

Ce,0 = 〈ge〉 .
More generally, the cyclotomic classes of order e are the cosets of Ce,0 , given as Ce,t = gtCe,0 .

Definition 3.8. The cyclotomic numbers of order e are defined as follows.

(i, j)e = |{Ce,i + 1} ∩ Ce,j|

That is, (i, j)e is the number of solutions to the equation x2 + 1 = y2 where x ∈ Ce,i and
y ∈ Ce,j .

Proposition 3.11. The following identities hold.
(1) (i, j)e = (−i, j − i)e .
(2)

∑
j(i, j)e = q−1

e
− ni where n0 = 1 when q−1

e
is even and ne/2 = 1 when this

quantity is odd, with ni = 0 otherwise.
(3) (j, i)e = (i, j)e if q−1

e
is even, and (i+ e/2, j + e/2) if q−1

e
is odd.

Proof. Found in [Hal86]. �

From Proposition 3.11 we establish the cyclotomic numbers of order 2 .

Proposition 3.12. Suppose that q ≡ 3 mod 4 , say q = 4t+3 . Then the cyclotomic numbers
of order 2 are as follows.

(0, 0)2 = (1, 0)2 = (1, 1)2 = t, (0, 1)2 = t+ 1 .

If q ≡ 1 mod 4 and q = 4t+ 1 then

(0, 0)2 = t− 1, (1, 1)2 = (1, 0)2 = (0, 1)2 = t .
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Proof. Suppose that q = 4t+ 3 . Then q−1
e

is odd and by we have

(0, 0)2 + (0, 1)2 =
q − 1

e
− n0 =

4t+ 3− 1

2
− 0 = 2t+ 1

(1, 0)2 + (1, 1)2 =
q − 1

e
− n1 =

4t+ 3− 1

2
− 1 = 2t

(0, 0)2 = (1, 0)2 = (1, 1)2 = t, (0, 1)2 = t+ 1.

Now suppose q = 4t+ 1 . Then q−1
e

is even and by we have

(0, 0)2 + (0, 1)2 =
q − 1

e
− n0 =

4t+ 1− 1

2
− 1 = 2t− 1

(1, 0)2 + (1, 1)2 =
q − 1

e
− n1 =

4t+ 1− 1

2
− 0 = 2t

(0, 0)2 = t− 1, (1, 1)2 = (1, 0)2 = (0, 1)2 = t.

�

3.3. 2x2 Symmetric Matrices.
Here we consider matrices of the form

M =

[
a b
b d

]
over Fq , giving counts for diagonalizable and non-diagonalizable symmetric matrices with
non-repeated eigenvalues. There are q3 such matrices.
The characteristic polynomial of M is

χ(M) = λ2 − (a+ d)λ+ ad− b2.
By a little algebra, the discriminant of χ(M) is

∆(M) = (a+ d)2 − 4(ad− b2) = (a− d)2 + (2b)2.

The case where b = 0 is easy: there are q2 matrices in total, q of which have a repeated
eigenvalue.

Proposition 3.13. Suppose that b 6= 0 , that a − d 6= 0 and that ∆(M) 6= 0 . Under these
conditions, the number of diagonalizable matrices is as follows.

(1) If q ≡ 1 mod 4 , there are q(q − 1)(q − 3) matrices which satisfy the hypothe-
ses. Of these 1

2
q(q − 1)(q − 5) diagonalizable matrices, and 1

2
q(q − 1)(q − 1) non-

diagonalizable matrices.
(2) If q ≡ 3 mod 4 there are q(q − 1)2 matrices which satisfy the hypotheses. Of these

1
2
q(q − 1)(q − 3) diagonalizable matrices and 1

2
q(q − 1)(q + 1) non-diagonalizable

matrices.

Proof. By hypothesis a−d 6= 0 and b 6= 0 so there are at most q(q−1)2 matrices to consider.
Since b 6= 0 we can rewrite the discriminant as(

a− d
2b

)2

+ 1 = ∆(M)

(
1

2b

)2

.



33

If q ≡ 3 mod 4 , −1 is not a quadratic residue, the left hand side never vanishes and the
total number of matrices satisfying the conditions is q(q−1)2 . If q ≡ 1 mod 4 then −1 is a
quadratic residue, and has two square roots. Since a− d/2b assumes every non-zero value in
the field precisely q(q−1) times, there are 2q(q−1)(q−3) matrices satisfying the conditions.

In any case, (a− d/2b)2 assumes the value of every non-zero quadratic residue 2q(q − 1)
times. We care only about whether ∆(M) is a residue or a non-residue to determine whether
M is diagonalizable. Recalling the definition of the cyclotomic numbers, we see that the
number of matrices which are diagonalizable is

2q(q − 1)(0, 0)2.

For q ≡ 1 mod 4 this evaluates to

2q(q − 1)(t− 1) = 2q(q − 1)
(q − 5)

4
=

1

2
q(q − 1)(q − 5)

and for q ≡ 3 mod 4 this evaluates to

2q(q − 1)t = 2q(q − 1)
(q − 3)

4
=

1

2
q(q − 1)(q − 3).

The number of matrices which are not diagonalizable is

2q(q − 1)(0, 1)2.

For q ≡ 1 mod 4 this evaluates to

2q(q − 1)t = 2q(q − 1)
(q − 1)

4
=

1

2
q(q − 1)(q − 1)

and for q ≡ 3 mod 4 this evaluates to

2q(q − 1)(t+ 1) = 2q(q − 1)
(q + 1)

4
=

1

2
(q − 1)(q + 1).

�

Next we look at matrices with the conditions that a− d = 0 and b 6= 0 .

Proposition 3.14. The set of matrices of the form

M =

[
a b
b −a

]
with b 6= 0 decomposes as follows.

(1) If q ≡ 1 mod 4 there are 1
2
(q−1)(q−3) diagonalizable matrices and 1

2
(q−1)2+2(q−1)

non-diagonalizable matrices, of which 2(q − 1) have a repeated eigenvalue, all are
nilpotent.

(2) If q ≡ 3 mod 4 there are 1
2
(q−1)2 diagonalizable matrices and 1

2
(q−1)(q+1) non-

diagonalizable matrices. None have repeated eigenvalues and none are nilpotent.
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Proof. Since the trace of M is zero, the eigenvalues sum to 0 and the characteristic polyno-
mial of M is χ(M) = λ2 − (a2 + b2) . M is nilpotent if χ(M) = λ2 . This is true when
b2 = −a2 . For a fixed b 6= 0 , there are two solution to this equation and hence 2(q − 1)
nilpotent matrices when q ≡ 1 mod 4 , and none when q ≡ 3 mod 4 .
If (a2 + b2) is a nonzero square then χ(M) splits as (λ+

√
a2 + b2)(λ−

√
a2 + b2) , and the

matrix is diagonalizable with distinct eigenvalues. If a = 0 this always occurs, giving q − 1
matrices. Otherwise, we wish to solve the equation a2 + b2 = c2 in the field, which we can
rewrite as (

a

b

)2

+ 1 =

(
c

b

)2

.

As a and b take the values of the non-zero field elements, each quadratic residue occurs on
the left side 2(q− 1) times. This equation has 2(q− 1)(0, 0)2 solutions. Thus the number of
diagonalizable matrices of the given form is

2(q − 1)(0, 0)2 + (q − 1).

This evaluates as 1
2
(q − 1)(q − 3) if q ≡ 1 mod 4 and as 1

2
(q − 1)2 if q ≡ 3 mod 4 .

Finally, if a2 + b2 is a non-square, the matrix will not be diagonalizable over the base field.
The number of matrices in this case will be 2(q − 1)(0, 1)2 . This is (q − 1)2/2 if q ≡ 1
mod 4 and (q − 1)(q + 1)/2 if q ≡ 3 mod 4 . To summarise: the total count for q ≡ 1
mod 4 is:

• 1
2
(q − 1)(q − 3) diagonalizable matrices, all with distinct eigenvalues.

• 1
2
(q− 1)2 + 2(q− 1) non-diagonalizable matrices, of which 2(q− 1) have a repeated

root, all of which are nilpotent.
It can easily be verified that these figures sum to q(q − 1) , as required.

The total count for q ≡ 3 mod 4 is:
• 1

2
(q − 1)2 diagonalizable matrices, all with distinct eigenvalues.

• 1
2
(q − 1)(q + 1) non-diagonalizable matrices, all with distinct eigenvalues.

Again, the total count of matrices here is q(q − 1) . This completes the proof. �

We now characterise the cases where the discriminant is zero.

Proposition 3.15. Suppose that M is symmetric with b 6= 0 and a − d 6= 0 (that is: M is
not diagonal, and the trace is non-zero), and that ∆(M) = 0 . If q ≡ 1 mod 4 then there
are 2q(q − 1) such matrices with a repeated eigenvalue. If q ≡ 3 mod 4 there are no such
matrices with ∆(M) = 0 .

Proof. The discriminant vanishes precisely when (a − d)2 = −(2b)2 . By Proposition 3.9
there are no non-trivial solutions when q ≡ 3 mod 4 .

When q ≡ 1 mod 4 there are solutions. There are q choices for a , leaving q− 1 choices
for d to ensure that the trace does not vanish. For each choice of a and d , there are two
solutions to (a − d)2 = −(2b)2 , given by ±2εb where ε2 = −1 . Hence there are 2q(q − 1)
matrices satisfying the conditions of the proposition. �
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We provide an example to demonstrate the computation of symmetric nilpotent matrices
over a finite field, since this phenomenon does not arise in characteristic 0 .

Example 3.1. It seems more convenient to fix the off diagonal elements in this computation:
suppose that M is a matrix with diagonal entries a and d and off diagonal entry b ≡ 7
mod 17 . A matrix with repeated eigenvalues necessarily has (a − d)2 = −(14)2 , that is:
(a − d)2 ≡ 8 mod 14 . So (a − d) ≡ ±5 mod 17 . In particular, every matrix with a
repeated eigenvalue and off diagonal entry 7 is of the form(

a 7
7 a+ 5

)
,

(
a 7
7 a− 5

)
.

There are 2q matrices with a repeated eigenvalue with off diagonal entries equal to b . The
matrices come in pairs (as displayed) with the same eigenvalues. Now, since the eigenvalues
are equal and their sum is the trace of the matrix, we have that 2a + 5 = 2λ . Hence
λ = a+ 9 · 5 ≡ a+ 11 mod 17 . So for a = 6 , we obtain a symmetric nilpotent matrix.

Now we summarise the results of our computations in two theorems.

Theorem 3.1. If q ≡ 1 mod 4 , the number of symmetric diagonalizable 2× 2 matrices is
1

2
q(q − 1)(q − 5) + q2 +

1

2
(q − 1)(q − 3) =

1

2

(
q3 − 3q2 + q + 3

)
The number of symmetric non-diagonalizable 2× 2 matrices is

1

2
q(q − 1)(q − 1) +

1

2
(q − 1)(q − 1) + 2(q − 1) + 2q(q − 1) =

1

2

(
q3 + 3q2 − q − 3

)
.

Of these matrices, 2q2 − q have a repeated eigenvalue. Of these matrices, the q scalar
matrices are diagonalizable, and the remainder have a non-trivial Jordan block. Of those
having a non-trivial Jordan block, 2q are nilpotent.

Theorem 3.2. If q ≡ 3 mod 4 , the number of symmetric diagonalizable 2× 2 matrices is
1

2
q(q − 1)(q − 3) + q2 +

1

2
(q − 1)2 =

1

2

(
q3 − q2 + q + 1

)
The number of symmetric non-diagonalizable 2× 2 matrices is

1

2
q(q − 1)(q + 1) +

1

2
(q − 1)(q + 1) =

1

2

(
q3 + q2 − q − 1

)
.

The q scalar matrices are the only ones having a repeated eigenvalue.

To summarise, our counts for q ≡ 1 mod 4 are

R NR
D q 1

2
(q3 + 3q2 − q + 3)

ND 2q2 − 2q 1
2
(q3 − q2 − 5q − 3)

and our counts for q ≡ 3 mod 4 are

R NR
D q 1

2
(q3 − q2 − q + 1)

ND 0 1
2
(q3 + q2 − q − 1)
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We conclude this chapter with some further observations on the structure of a 2×2 symmetric
nilpotent matrix.

Proposition 3.16. Suppose that M is a nilpotent matrix of the form(
x 1
1 y

)
Then x+ y = 0 and xy = 1 .

Proof. A non-zero nilpotent matrix has characteristic polynomial λ2 . So the trace and deter-
minant of M must be zero. Hence x+ y = 0 and xy − 1 = 0 . The result follows. �

Eliminating y in the above Proposition, we find that the matrix M can be written as fol-
lows: (

x 1
1 −x

)
It is now clear that the determinant vanishes if and only if x2 = −1 and hence we have
proved the following result.

Proposition 3.17. There exists a nilpotent symmetric matrix over a field F if and only if −1
is a square in F .

Furthermore, every nilpotent 2× 2 matrix is of the form

λ

(
x 1
1 −x

)
where x is a square root of −1 . In fact there is close connection between the failure of a
matrix to be diagonalizable and the existence of nilpotent matrices of a particular form. We
will investigate these issues further in the next chapter.
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4. NILPOTENT SELF-ADJOINT MATRICES IN POSITIVE CHARACTERISTIC

Recall that the Jordan Canonical Form gives a basis with respect to which a given linear
transformation can be written in near diagonal form. We can be a little more precise about
the structure of this form.

Proposition 4.1. Any matrix can be written as a sum

M = S +N

where S is diagonalizable, N is nilpotent and the matrices S and N have common gener-
alised eigenspaces.

Proof. By the Jordan Canonical form theorem, there exists a basis such that M has non-zero
entries only on and directly above the diagonal. Furthermore, the entries above the diagonal
are 0 or 1 , and an entry is 1 only if the entries below and to the right are equal.

Let S be the matrix containing the diagonal entries of M (with respect to the Jordan basis)
and N the matrix containing the enties above the diagonal. Then S is diagonalizable (even
diagonal!) and N is strictly upper triangular, and hence nilpotent. To show that S and N
commute, it is enough to verify this for a single generalised eigenspace: but here S restricts
to a scalar matrix, so the result is immediate. �

We have shown that every matrix is the sum of a diagonalizable and of a nilpotent matrix.
Suppose that there existed a nilpotent symmetric matrix of dimension d over the field k .
Clearly such a matrix is not diagonalizable. Conversely if every symmetric matrix of dimen-
sion d over k is diagonalizable, then there are no symmetric nilpotent matrices. We conclude
the following.

Proposition 4.2. The following are equivalent:
• There exists a nilpotent symmetric matrix in Md(k) .
• There exists a symmetric matrix in Md(k) which is not diagonalizable.

This motivates an exploration of nilpotent symmetric matrices.

4.1. Bilinear and Quadratic Forms.

Definition 4.1. Let V be a vector space over F . A mapping 〈, 〉 : V × V → F is called a
bilinear form if for any x, y, z ∈ V and α, β ∈ F ,

〈αx+ βy, z〉 = α〈x, z〉+ β〈y, z〉
and

〈z, αx+ βy〉 = α〈z, x〉+ β〈z, y〉
We denote the set of bilinear forms on V by B(V ) .
Furthermore, a bilinear form is said to be

(1) symmetric if 〈x, y〉 = 〈y, x〉
(2) skew-symmetric if 〈x, y〉 = −〈y, x〉
(3) alternating if 〈x, x〉 = 0
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for all x, y ∈ V .

Definition 4.2. A bilinear form 〈, 〉 on a finite-dimensional vector space V is called diago-
nalizable if there is an ordered basis B for V such that MB is a diagonal matrix.

Proposition 4.3. Every diagonalizable bilinear form on a finite-dimensional vector space V
is symmetric.

Proof. Suppose 〈, 〉 is a diagonalizable bilinear form. Then there exists an ordered basis B
such that MB is a diagonal matrix. Trivially, MB is a symmetric matrix, and hence, by the
previous proposition, 〈, 〉 is symmetric. �

To prove the converse, which holds only in fields not of characteristic 2, we use the fol-
lowing lemma.

Lemma 4.1. Let V be a vector space over a field not of characteristic 2. Then no nonzero
symmetric bilinear form on V is alternating.

Proof. Suppose 〈, 〉 is a nonzero symmetric bilinear for on V . It suffices to show there exists
a vector x ∈ V such that 〈x, x〉 6= 0 . Since 〈, 〉 is nonzero, there are vectors u, v ∈ V
such that 〈u, v〉 6= 0 . If 〈u, u〉 6= 0 or 〈v, v〉 6= 0 , the result is immediate. Otherwise, set
x = u+ v . Then

〈x, x〉 = 〈u, u〉+ 〈u, v〉+ 〈v, u〉+ 〈v, v〉 = 2〈u, v〉 6= 0

since we assumed 〈u, v〉 6= 0 . �

Example 4.1. Let V = Rn . For x = (a1, a2, .., an) and y = (b1, b2, .., bn) in V , the dot
product, the map 〈, 〉 : V × V → R defined by

〈x, y〉 =
n∑
i=1

aibi

is a symmetric bilinear form.

The next proposition tells us we really need only consider symmetric and alternating forms.
Here we note that we do not consider fields of characteristic 2: this will be a recurring theme.

Proposition 4.4. Let V be a vector space over a field F . If char(F) 6= 2 , then a bilinear
form on V is alternating if and only if it is skew-symmetric.

Proof. First, suppose 〈, 〉 is an alternating inner product. Then

0 = 〈x+ y, x+ y〉 = 〈x+ y〉+ 〈x+ y〉
and so

〈x, y〉 = −〈y, x〉
which shows that 〈, 〉 is skew-symmetric.
Now suppose 〈, 〉 is skew-symmetric. Then

〈x, x〉 = −〈x, x〉 =⇒ 2〈x, x〉 = 0 =⇒ 〈x, x〉 = 0

and hence 〈, 〉 is alternating. �
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An inner product space with a symmetric or an alternating form is called an orthogonal
geometry or a symplectic geometry, respectively.
Like linear transformations, bilinear forms can be represented as matrices.

Definition 4.3. Let V be an inner product with an ordered basis B = {b1, ..., bn} . A bilinear
form is completely determined by the matrix MB ∈Mn×n(F) defined by

(MB)ij = 〈bi, bj〉.
This is called the matrix of the form with respect to B . Moreover, any A ∈ Mn(F) is the
matrix of some bilinear form on V .

Example 4.2. The Minkowski space M4 is the four-dimensional real orthogonal geometry
R4 with inner product defined by

〈e1, e1〉 = 〈e2, e2〉 = 〈e3, e3〉 = 1

〈e4, e4〉 = −1

〈ei, ej〉 = 0 for i 6= j

where e1, ..., e4 is the standard basis for R4 .
The matrix of the form with respect to the standard basis is

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .
Intuitively, symmetric forms have symmetric matrices and vice-versa.

Proposition 4.5. Let V be a finite-dimensional vector space, and let B be an ordered basis
for V . A bilinear form 〈, 〉 on V is symmetric if and only if its matrix with respect to B is
symmetric.

Proof. Let B = {v1, .., vn} . First assume the form is symmetric. Then for 1 ≤ i, j ≤ n ,

(MB)ij = 〈vi, vj〉 = 〈vj, vi〉 = (MB)ij

and hence MB is symmetric.
Conversely, suppose MB is symmetric. Let 〈, 〉′ : V × V → F be the mapping defined

by 〈x, y〉′ = 〈y, x〉 for all x, y ∈ V . Observe that 〈, 〉′ is a bilinear form, and let M ′
B be its

matrix with respect to B . Then for 1 ≤ i, j ≤ n ,

(M ′
B)ij = 〈vi, vj〉′ = 〈vj, vi〉 = (MB)ji = (MB)ij

and hence M ′
B = MB . Since there is a one-to-one correspondence between bilinear forms

and their matrices, we have 〈, 〉′ = 〈, 〉 . Hence 〈y, x〉 = 〈x, y〉′ = 〈x, y〉 for all x, y ∈ V , and
therefore 〈, 〉 is symmetric. �

Definition 4.4. Two matrices A,B ∈ Mn(F) are said to be congruent if there exists an
invertible matrix P for which

A = P TBP.
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Observe that congruence is an equivalence relation.

Proposition 4.6. Two matrices A and B represent the same bilinear form on a vector space
V if and only if they are congruent.

Proof. Congruence is an equivalence relation, so if two matrices represent the same bilinear
form on V , they must be congruent. Conversely, if Q = [M ]B represents a bilinear form on
V and R = P TQP where P is invertible, then there is an ordered basis C for V for which

P = [M ]BC

and so

Q = ([M ]BC)T [M ]B[M ]BC

Thus, Q = [M ]C represents the same form with respect to C . �

Symmetric bilinear forms are associated with functions called quadratic forms.

Definition 4.5. Let V be a vector space over F . A map Q : V → F is called a quadratic
form if there exists a symmetric bilinear form 〈, 〉Q on V such that

Q(v) = 〈v, v〉Q for all v ∈ V.

If F is not of characteristic 2, there is a one-to-one correspondence between symmetric
bilinear forms and quadratic forms.

4.2. Isotropic Vectors.
Isotropic vectors are important to understand why the spectral theorem fails over fields of
positive characteristic.

Definition 4.6. Let V be an inner product space.
• A nonzero x ∈ V is isotropic if 〈x, x〉 = 0 .
• V is isotropic if it contains at least one isotropic vector.
• A subspace U of V is isotropic if all vectors in U are pairwise orthogonal (including
〈x, x〉 = 0).

Definition 4.7. Let V be an inner product space. A vector v ∈ V is called degenerate if
v ⊥ V . We call the set of all degenerate vectors the radical of V , denoted rad(V ) . Thus,
rad(V ) = V ⊥ .
We call V nonsingular if rad(V ) = {0} and singular otherwise.

Proposition 4.7. If V is nonsingular and T is an isometry of V , then detT = ±1 . If
detT = 1 , we call T a rotation. If detT = −1 , we call T a reflection. The rotations form
an invariant subgroup of the isometry group of V whose index is at most 2.

Proof. The last part follows from the fact that the map T 7→ detT is a homomorphism of the
isometry group of V , whose kernel are the rotations and whose image is ±1 . �

Proposition 4.8. [Rom08] Let V be a vector space with a bilinear form. The following are
equivalent:
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(1) Orthogonality is a symmetric relation on V , that is,

x ⊥ y ⇐⇒ y ⊥ x.

(2) The form on V is symmetric or alternate.

Proof. It is clear that orthogonality is symmetric if the form is symmetric or alternate (for the
latter case, recall that we have shown that alternate forms are also skew-symmetric).
Now assume that orthogonality is symmetric. Let x ./ y mean that 〈x, y〉 = 〈y, x〉 and let
x ./ V mean that 〈x, v〉 = 〈v, x〉 for all v ∈ V . If x ./ V for all x ∈ V , then we are done.
So assume x 6./ V . We wish to show that

x 6./ V =⇒ x is isotropic and (x ./ y =⇒ x ⊥ y)(2)

Note that if the second conclusion holds, then since x ./ x it follows that x is isotropic. So
suppose x ./ y . Since x 6./ V , there exists z ∈ V such that 〈x, z〉 6= 〈z, x〉 . Thus x ⊥ y if
and only if

〈x, y〉(〈x, z〉 − 〈z, x〉) = 0.

This can be rewritten as

〈x, y〉(〈x, z〉 − 〈z, x〉) = 〈x, y〉〈x, z〉 − 〈x, y〉〈z, x〉
= 〈y, x〉〈x, z〉 − 〈x, y〉〈z, x〉
= 〈x, 〈y, x〉z − y〈z, x〉〉.

Reversing the arguments in the last expression gives us

〈〈y, x〉z − y〈z, x〉, x〉 = 〈y, x〉〈z, x〉 − 〈y, x〉〈z, x〉 = 0.

By our assumption that orthogonality is symmetric, the last expression is 0 and we have
proven (2).
Let us assume the form on V is not symmetric and show this implies all vectors in V are
isotropic (and hence the form on V is alternate). By our assumption, there exist u, v ∈ V
such that u 6./ v , and so u 6./ V and v 6./ V . Hence u and v are isotropic and for all y ∈ V ,

y ./ u =⇒ y ⊥ u

y ./ v =⇒ y ⊥ v

Since every w ∈ V for which w 6./ V is isotropic, let w ./ V . Then w ./ u and w ./ v and
hence w ⊥ u and w ⊥ v . Now write

w = (w − u) + u

where (w − u) ⊥ u , since u is isotropic. Since the sum of two orthogonal isotropic vectors
is isotropic, it follows that w is isotropic if w − u is isotropic. But

〈w + u, v〉 = 〈u, v〉 6= 〈v, u〉 = 〈v, w + u〉
and so (w + u) 6./ V , which implies that w + u is isotropic. Thus w is isotropic and so all
vectors in V are isotropic. �
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We now note that the absence of isotropic vectors is a crucial part of the spectral theorem.
The spectral theorem requires the result that a self-adjoint operator over R or C is diago-
nalizable (Proposition 2.2), which uses the positive-definite property of inner products, and
hence the absence of isotropic vectors. It is known as a consequence of the following two
theorems that a quadratic form in positive characteristic has an isotropic vector in dim ≥ 3 ,
thus the spectral theorem fails over fields of positive characteristic.

Theorem 4.1. (Chevalley-Warning) Let fi(x1, x2, ..., xn), i = 1, 2, ..., r be a polynomial over
Fq . If n >

∑r
i=1 deg(fi) , then the number of solutions to f1 = f2 = ... = fr = 0 is divisible

by q .

This immediately leads to Chevalley’s theorem, since q is at least 2.

Theorem 4.2. (Chevalley) If the system of equations f1 = f2 = ... = fr = 0 has the trivial
solution, i.e. the polynomials have no constant terms, then the system also has a non-trivial
solution.

4.3. Counting Nilpotent Matrices.

In this section we give a theorem of Hall on the total number of nilpotent matrices in
dimension d over a finite field. Afterwards, we will discuss the enumeration of symmetric
nilpotent matrices, which is more involved (similar to the enumeration we carried out in
Chapter 3). The material in this section is due to Brouwer, Gow and Sheekey, [SGB14].

Definition 4.8. Let V be a finite-dimensional vector space and let M be a linear transfor-
mation on V . The Fitting decomposition of M is the unique decomposition V = U ⊕W as
unique sum of M -invariant subspaces U and W , such that M |U is nilpotent and M |W is
invertible.

Again, we can use the Jordan Canonical Form to prove that the Fitting decomposition of a
matrix exists and is unique: the nilpotent portion of M is the generalised eigenspace at the
eigenvalue 0 (which is an invariant subspace of M ) and the invertible portion is the direct
sum of all other generalised eigenspaces.

For a subspace S will use N (S) to denote the number of nilpotent operators on S , and
I(S) to denote the number of invertible operators on S . Since these only depend on the
dimension k of S , we may write N (S) = N (k) and I(S) = I(k) . Furthermore, note that
I(n) = |GLn(q)| .

Definition 4.9. Treating q as a variable, define [n] = qn − 1 for any integer n . In analogy
to the usual factorial, define the q -factorial to be

[n]! = [n] · [n− 1] · · · [1] =
n∏
i=1

(qi − 1) .

The Gaussian binomial coefficient is[
n
k

]
=

[n]!

[k]![n− k]!
.
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Just as binomial coefficients count subsets of an n set and factorials count the elements of
a symmetric group, their q analogues arise with respect to counting substructures and sym-
metries of vector spaces. In fact, the Gaussian binomial coefficients count k -dimensional
subspaces of an n dimensional space and the formula for the order of GLn(q) may be ex-
pressed as q(

n
2)[n]! .

Theorem 4.3. [SGB14] The number of nilpotent matrices in an n-dimensional vector space
over Fq is qn(n−1) .

Proof. For an n-dimensional vector space V over Fq , there are qn
2 matrices which each

have a unique fitting decomposition. This yields the equality

qn
2

=
∑

V=U⊕W

N (U)I(W ).

The number of ways to write as the direct sum of an m-space and an (n−m)-space is

I(n)

I(m)I(n−m)
=

|GLn(q)|
|GLm(q)||GLn−m(q)|

= qm(n−m)

[
n
m

]
q

Thus we obtain

qn
2

=
I(n)

I(m)I(n−m)

n∑
m=0

N (m)I(n−m)

= I(n)
n∑

m=0

N (m)

I(m)

We proceed by induction on n .
• n = 0: By definition I(0) = N (0) = 1 .
• n = 1: I(1) = q − 1 , N (1) = 1 and we have

q = (q − 1)

(
1

1
+

1

q − 1

)
.

• n = 2: I(2) = |GL2(q)| = (q2 − 1)(q2 − q) . We solve for N (2):

q4 = (q2 − 1)(q2 − q)
(

1

1
+

1

q − 1
+

N (2)

(q2 − 1)(q2 − q)

)
= (q2 − 1)(q2 − q) + (q + 1)(q2 − q) +N (2)

Thus

N (2) = q4 − (q2 + q)(q2 − q) = q4 − (q4 − q2) = q2.

Now assume that N (n) = qn(n−1) . Then

qn
2

= |GLn(q)|
n∑

m=0

qm(m−1)

|GLm(q)|

=
n−1∏
i=0

(qn − qi)
n∑

m=0

qm(m−1)∏m−1
j=0 (qm − qj)
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The induction step is

q(n+1)2 = |GLn+1(q)|
[( n∑

m=0

qm(m−1)

|GLm(q)|

)
+
N (n+ 1)

|GLn+1(q)|

]

=
n∏
i=0

(qn+1 − qi)
n∑

m=0

qm(m−1)∏m−1
j=0 (qm − qj)

+N (n+ 1)

= (qn+1 − 1)
n∏

m=1

q(qn − qm−1)
n∑

m=0

qm(m−1)∏m−1
j=0 (qm − qj)

+N (n+ 1)

= qn(qn+1 − 1)
n−1∏
m=0

(qn − qm)
n∑

m=0

qm(m−1)∏m−1
j=0 (qm − qj)

+N (n+ 1)

= qn(qn+1 − 1)|GLn(q)|
n∑

m=0

qm(m−1)

|GLm(q)|
+N (n+ 1)

= qn(qn+1 − 1)qn
2

+N (n+ 1)

Hence

N (n+ 1) = qn
2+2n+1 − (qn+1 − 1)qn

2+n

= qn
2+2n+1 − qn2+2n+1 + qn

2+n

= q(n+1)n

So N (n+ 1) = q(n+1)((n+1)−1) by induction. �

4.4. Symmetric Nilpotent matrices. In this section, we give an outline of a method used
by Brouwer, Gow and Sheekey to count symmetric nilpotent matrices with a given Jordan
Canonical Form. We begin by describing a bijection between JCFs and integer partitions.

Definition 4.10. A partition of n is an unordered sequence of positive integers (a1, . . . , at)
such that a1 + a2 + . . .+ at = n .

There is a bijection between JCFs of nilpotent matrices and partitions, given by the sizes
of the Jordan blocks. To be completely explicit we give this bijection for the 4× 4 matrices.
Each 4× 4 nilpotent is conjugate to one of the following matrices:

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 ,


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 ,


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


We associate to each of these matrices a partition of 4 , in which the parts are the nilpotency
classes of the blocks along the diagonal. Thus the displayed matrices correspond to the
partitions

1+1+1+1, 2+1+1, 2+2, 3+1 4



45

respectively. In general there is a bijection between conjugacy classes of nilpotent matrices
in Mn(k) and partitions of n , where the parts are the heights of the generalised eigenvectors
of the corresponding matrix. A standard result in enumerative combinatorics shows that the
number of partitions of n grows proportionally to e

√
2n , which is faster than any polynomial

function but slower than exponential.
Next, we must determine the size of each conjugacy class of nilpotent matrices in M4(q) .

This is, as usual, an application of the Orbit-Stabilizer Theorem.

Example 4.3. We count the number of matrices in M4(q) with JCF

J =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 .
We use the Orbit-Stabilizer Theorem to compute this.

|Orbit||stabilizer| = |GL4(q)|

The size of the stabilizer is the number of invertible matrices M =


a b c d
e f g h
i j k l
m n o p

 which

commute with J . Observe that
a b c d
e f g h
i j k l
m n o p




0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 =


0 a 0 c
0 e 0 g
0 i 0 k
0 m 0 o




0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0



a b c d
e f g h
i j k l
m n o p

 =


e f g h
0 0 0 0
m n o p
0 0 0 0

 .
These MJ = JM if and only if

0 a 0 c
0 e 0 g
0 i 0 k
0 m 0 o

 =


e f g h
0 0 0 0
m n o p
0 0 0 0


i.e.,

e = 0 a = f g = 0 c = h

m = 0 n = i o = 0 k = p.
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Thus M has the form 
a b c d
0 a 0 c
i j k l
0 i 0 k

 .
M is invertible if and only if

0 6= det(M) = a

∣∣∣∣∣∣
a 0 c
j k l
i 0 k

∣∣∣∣∣∣+ i

∣∣∣∣∣∣
b c d
a 0 c
i 0 k

∣∣∣∣∣∣
= ak

∣∣∣∣a c
i k

∣∣∣∣− ci ∣∣∣∣a c
i k

∣∣∣∣
= ak(ak − ci)− ci(ak − ci)
= (ak − ci)2.

0 6= (ak − ci)2 if and only if 0 6= ak − ci = det

[
a i
c k

]
. |GL2(q)| counts the possibilities

for a, i, c, k . With four other free variables, the total count is

q4|GL2(q)| = q4(q2 − 1)(q2 − q).
Thus the orbit is
(q4 − 1)(q4 − q)(q4 − q2)(q4 − q3)

q4(q2 − 1)(q2 − q)
=
q6(q4 − 1)(q3 − 1)(q2 − 1)(q − 1)

q5(q2 − 1)(q − 1)
= q(q4 − 1)(q3 − 1).

Hence the number of matrices in M4(q) with JCF J is q(q4 − 1)(q3 − 1) .

In fact, this computation is generalised by Brouwer Gow and Sheekey to give a formula
for the number of matrices commuting with an arbitrary nilpotent matrix. This makes use of
the following object.

Definition 4.11. The Young diagram Yλ of a partition λ is the shape obtained by placing
left-adjusted squares of length λ1, .., λm below each other.

Example 4.4. If λ = (5, 4, 2, 2) , then

Yλ = .

Proposition 4.9. Suppose that N is a nilpotent matrix in Jordan Canonical Form with Jordan
blocks ordered by size. Suppose further that blocks Ci, . . . , Cj all have size c . These blocks
contribute to the number of matrices commuting with N as follows:

(1) A power of q . The exponent of q in this contribution is
(
j
2

)
−
(
i−1
2

)
.

(2) A part coprime to q : [j − i+ 1]!
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(3) After computing contributions from the cells of each size, multiply by qA , where A
is as follows: for each square in the Young diagram, add the number of cells in the
column immediately to the left.

To illustrate this proposition, we re-compute the number of matrices commuting with the
example prior: there are two Jordan blocks of size 2 , so the computation involves a 2 × 2
square. So j = 2 , and (i− 1) = 0 and A = 2 + 2 = 4 . We obtain the quantity

q1−0[2][1] · q4 = q5(q2 − 1)(q − 1)

just as in the direct computation.
We provide another example demonstrating this type of computation on a more complex
matrix.

Example 4.5. Suppose that N = ⊕6
i=1Ai is a nilpotent matrix in Jordan Canonical Form

with Jordan blocks

A1 =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , A2 = A3 =

0 1 0
0 0 1
0 0 0

 , and A4 = A5 = A6 =

[
0 1
0 0

]
.

The Young diagram of N is

1

2

3

4

5

6

.

The number of commuting matrices contributed by each of the Jordan blocks is

A1

}
q(

1
2)−(0

1)[1− 1 + 1]! = [1]!

A2

A3

}
q(

3
2)−(1

2)[3− 2 + 1]! = q3[2]!

A4

A5

A6

 q(
6
2)−(3

2)[6− 4 + 1]! = q15[3]!
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Finally, we find qA :

A = 36 +18+3= 57

6 6 3

6 6

6 6

6

6

6

Thus the number of matrices commuting with N is

q57[1]!q3[2]!q15[3]! = q75(q3 − 1)(q2 − 1)2(q − 1)3.

Definition 4.12. Nonzero even dimension n nondegenerate symmetric bilinear forms over
fields of odd characteristic have two types. Let M be the matrix of such a form. We call the
form hyperbolic precisely when (−1)n/2 det(M) is a square. The standard form is hyperbolic
when q ≡ 1 mod 4 , and also when 4|n , and elliptic otherwise.

Next, Brouwer Gow and Sheekey compute the number of forms of elliptic and hyperbolic
type that exist over a finite field.

Theorem 4.4. The number of non-degenerate elliptic forms over F4
q is

Fe =
1

2
q4(q3 − 1)(q2 − 1)(q − 1)

and the number of non-degenerate hyperbolic quadratic forms over F4
q is

Fh =
1

2
q4(q3 − 1)(q2 + 1)(q − 1) .

The next step is perhaps the most conceptually difficult in this entire process: we count the
number of forms for which a given nilpotent transformation will be nilpotent.

The following formula is given by Brouwer, Gow and Sheekey: suppose that N is in
Jordan Canonical Form, and that N contains ci blocks of size i for each 1 ≤ i ≤ k . Then
the blocks of size i contribute to the total as follows:

(1) If ci is even, then ci = 2t and the contribution to the sum is qt(t+1)[1][3] · · · [2t− 1] ,
where the product is all odd terms up to 2t − 1 . If ci is odd write ci = 2t + 1 , the
contribution is qt(t+1)[1][3] · · · [2t+ 1] , where all the terms in the product are odd.

(2) Secondly, for each terminal block in a row of length i in the Young diagram, one
multiplies by a factor of q for each block strictly to the left, and at the same level or
below the terminal block.

Thus in our example, the Young diagram is a 2 × 2 square, so c2 = 2 and all other ci
are zero. The contribution from the two blocks of size 2 is q2[1] = q2(q − 1) . Since there
are two blocks to the left of the upper right block, and one to the left of the lower right, we
multiply by a factor of q3 : so there are q5(q − 1) forms for which the Jordan form matrix is
self adjoint.
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Theorem 4.5 ([SGB14]). Let V be n dimensional over Fq , let Fe be the number of non-
degenerate elliptic forms and Fh be the number of non-degenerate hyperbolic forms on V .

Let N be a nilpotent linear transformation in Jordan Canonical Form, and let ccl(N) be
the size of the conjugacy class of N . Let Fe(N) be the number of non-degenerate elliptic
forms for which N is self-adjoint, and define Fh(N) similarly. Then the number of symmetric
conjugates of N is

ccl(N)
Fe(N)

Fe
if In is elliptic and

ccl(N)
Fh(N)

Fh
if In is hyperbolic.

In the result, ccl(N) is computed from Proposition 4.9 (recalling that we seek the size
of an orbit, and this result gives the size of the stabilizer in GLn(q)). The quantity Fe is
computed in Theorem 4.4 and the quantity Fe(N) is described directly before the Theorem.
All may be computed directly from the Young diagram associated with N .

The logic behind Theorem 4.5 is rather straightforward. First: a symmetric matrix is just
a matrix self-adjoint with respect to the standard bilinear form. To count the number of
matrices in a Jordan class which are self-adjoint to a particular bilinear form, it is enough
to multiply the total number of matrices with that Jordan Canonical Form by the average
number of forms for which the matrix is selfadjoint. These other quantities can be computed
using sophisticated but standard methods for working with classical groups. Let us illustrate
this theorem with the example we have been working with.

• For the given matrix N we computed that

|ccl(N)| = q(q4 − 1)(q3 − 1) .

• Since 4 is doubly even, I4 is a hyperbolic form. The total number of hyperbolic
forms on a four dimensional vector space is

Fh =
1

2
q4(q3 − 1)(q − 1)(q2 + 1) .

• The number of forms with respect to which N is self adjoint is

Fh(N) = q5(q − 1) .

Plugging these values into the formula, we find that N has 2q2(q2 − 1) symmetric conju-
gates. Since the dimension is n ≡ 0 mod 4 this result is independent of q . Over the field of
order 3 we did a brute force computation of the number of symmetric matrices conjugate to
N . As predicted by the formula we obtained 144 = 2 · 32 · (32 − 1) .
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5. CONCLUSION

In this thesis, we set out to understand the relationship between symmetric and diago-
nalizable matrices. In Chapter 1 we explored Canonical Forms for matrices. Up to details
involving computational representations of the underlying field, computation of these Canon-
ical forms gives an effective method of deciding diagonalizability of a matrix. These methods
typically have computational complexity at least cubic in the order of the matrix.

In Chapter 2 we saw that symmetric matrices are self-adjoint with respect to the standard
form. Over a field of characteristic 0 a self-adjoint matrix is diagonalizable. In particular, a
nilpotent symmetric matrix in characteristic zero must be the zero matrix.

In Chapter 3 we explored in detail the case of 2 × 2 matrices over a finite field of odd
characteristic. We saw that the number of diagonalizable matrices depends on q mod 4 , and
that the number of symmetric matrices which fail to be diagonalizable is related to solutions
of the equation x2 + 1 = y2 in the field. In particular, the number of 2 × 2 symmetric
nilpotents in characteristic p is 1 if p ≡ 3 mod 4 and 2p− 1 is p ≡ 1 mod 4 .

Finally in Chapter 4 we explore the enumeration of symmetric nilpotent matrices using
methods developed by Brouwer Gow and Sheekey. They give an algorithm involving com-
binatorics on Young diagram to evaluate the number of symmetric nilpotent matrices with a
given Jordan Canonical Form in any dimension and for any finite field.

As we conclude this project we are left with several ideas for future research.
(1) Can the methods of Brouwer-Gow-Sheekey be extended to compute the number of

symmetric non-diagonalizable matrices over a finite field? Does this proportion tend
to 1/2 as q →∞ for every n?

(2) Our original motivation was to find sufficient criteria for diagonalizability over a finite
field which would be visible to the naked eye. (To be more precise: computable in
linear time in the number of matrix entries, like the symmetric condition.) Does such
a criterion exist?

(3) From the theory of the Jordan Canonical Form, any matrix can be written uniquely as
the sum of a diagonalizable matrix and a nilpotent matrix. As proved in Chapter 4 ,
the number of n× n nilpotent matrices over a finite field of order q is qn(n−1) while
the number of symmetric matrices is qn(n+1) . We have seen that in characteristic
0, these sets intersect trivially, while in positive characteristic they seem to intersect
as two random sets would. Are there other large subspaces of matrices which are
all diagonalizable? Equivalently: are there large subspaces of matrices in positive
characteristic which are disjoint from the non-zero nilpotent matrices?



51

6. APPENDIX: ALTERNATE PROOF OF CAYLEY-HAMILTON

The material in this section is drawn from [Axl15] and [FIS97].
Throughout, we assume:

• F is an algebraically closed field.
• V is a finite-dimensional nonzero vector space over F .
• L(V ) denotes the set of linear operators on V .

Remark: for n = dim(V ) , we can identify L(V ) with Mn(F) up to choice of basis. In
particular, since the identity matrix In is unique, for any T ∈ L(V ) we can define T 0 = In .

Proposition 6.1. Suppose T ∈ L(V ) . Then for every nonnegative integer k ,

N(T k) ⊆ N(T k+1)

Proof. If k = 0 , then {0} = N(T 0) ⊆ N(T 1) is immediate. Now suppose v ∈ N(T k) .
Then T k+1v = T (T kv) = T (0) = 0 , hence v ∈ N(T k+1) . �

Proposition 6.2. Suppose T ∈ L(V ) . Let n = dim(V ) . Then for every positive integer k ,

N(T n) = N(T n+k)

Proof. By Proposition 2.1, clearly N(T n) ⊆ N(T n+k) . Conversely, suppose that v ∈ N(T n+k)
but v /∈ N(T n) . Let j+1 be the smallest integer such that T j+1v = 0 . Then T n(T j−nv) 6= 0
but T n+1(T j−nv) = 0 , contradicting Proposition 2.1. �

Lemma 6.1. Suppose U1, ..., Um are subspaces of V . Then
k∑
i=1

Ui is a direct sum if and only

if

dim

(
k∑
i=1

Ui

)
=

k∑
i=1

dim(Ui)

Example 6.1. Consider T ∈ L(F4) defined by

T (x1, x2, x3, x4) = (0, 2x1, x2, 4x3).

Then N(T 4) = {(x1, x2, x3, x4) ∈ F4} and R(T 4) = {(0, 0, 0, 0)} , satisfying N(T 4)⊕R(T 4) = F4 .

Corollary 6.1.

(a) each G(λj, T ) is T-invariant

(b) each (T − λjI) |G(λj ,T ) is nilpotent

Proof. Let n = dim(V ) . Recall that G(λj, T ) = N(T − λjI)n for each j (Proposition 2.4).
By Proposition 2.7, with p(x) = (x− λj)n , we get (a). (b) follows from definitions. �

Proposition 6.3. Suppose T ∈ L(V ) . Let λ1, ..., λm be distinct eigenvalues of T . Then

V =
m⊕
j=1

G(λj, T ).
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Proof. Let n = dim(V ) . We use induction on n . For our base case, note that the result holds
if n = 1 . Now for our induction hypothesis assume that n > 1 and the result holds for all
vector spaces of smaller dimension. Since our vector space is over an algebraically closed
field, T has an eigenvalue; thus m ≥ 1 . Let

U = R(T − λ1I)n.

Applying Proposition 1.12 to (T − λ1I) shows that

V = G(λ1, T )⊕ U(3)

Using Proposition 1.7, with p(x) = (x− λ1)n , U is T -invariant. Because G(λ1, T ) 6= {0} ,
dim(U) < n . Thus we can apply our induction hypothesis to T |U . No generalized eigen-
vectors of T |U corresponding λ1 are in U , because they are all in G(λ1, T ) . Thus each

eigenvalue of T |U is in {λ1, ..., λm} . By the induction hypothesis, U =
m⊕
j=2

G(λj, T |U) .

Thus it suffices to prove that G(λk, T |U) = G(λk, T ) for k = 2, ...,m .
Fixing k ∈ {2, ...,m} , the inclusion G(λk, T |U) ⊆ G(λk, T ) is clear. To prove the

other direction, suppose v ∈ G(λk, T ) . For v1 ∈ G(λ1, T ) and u ∈ U , we can write

v = v1 + u using equation (3). By our induction hypothesis, u =
m∑
j=2

vj where each

vj ∈ G(λj, T |U) ⊆ G(λj, T ) . Thus v =
m∑
j=1

vj . This equation, in combination with

Proposition 1.4, implies that each vj equals 0 unless j = k . Thus v1 = 0 and v = u ∈ U ,
hence we can conclude that v ∈ G(λk, T |U) . �

Definition 6.1. Suppose T ∈ L(V ) and let λ be an eigenvalue of T . We call d = dim(G(λ, T ))
the algebraic multiplicity of λ .

Theorem (Cayley-Hamilton #1). Suppose T ∈ L(V ) . Let q(x) denote the characteristic
polynomial of T . Then q(T ) = 0 .

Proof. Let λ1, ..., λm be the distinct eigenvalues of T , and d1, ..., dm the dimensions of the
corresponding generalized eigenspaces G(λ1, T ), ..., G(λm, T ) . For each j ∈ {1, ...,m} ,
corollary 6.1 states that (T − λjI) |G(λj ,T ) is nilpotent. Thus by Proposition 1.13,

(T − λjI)dj |G(λj ,T )= 0(4)

By Proposition 6.3, V can be decomposed as a direct sum of generalized eigenspaces, hence

for every v ∈ V there exist unique vectors vi ∈ G(λi, T ) such that v =
m∑
i=1

vi . Then to prove

that q(T ) = 0 , it suffices to prove q(T ) |G(λj ,T )= 0 for each j . We have

q(T ) =
m∏
j=1

(T − λjI)dj .

Restricting both sides of the equation to G(λj, T ) and applying (4) proves our result.

q(T ) |G(λj ,T )=
m∏
j=1

(T − λjI)dj |G(λj ,T )= 0
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�

This definition lets us give an equivalent formulation of the Cayley-Hamilton theorem.

Theorem (Cayley-Hamilton #2). Suppose T ∈ L(V ) . Let q(x) and p(x) denote the char-
acteristic polynomial and minimal polynomial of T , respectively. Then p(x) divides q(x) .

Proof. We prove this equivalent to Cayley-Hamilton #1.
(#1 =⇒ #2) Suppose that q(T ) = 0 . Using the division algorithm for polynomials, there

exist s(x), r(x) ∈ F[x] such that

q(x) = p(x)s(x) + r(x)

and deg(r(x)) < deg(p(x)) . Then

0 = q(T ) = p(T )s(T ) + r(T ) = r(T )

This equation implies r(x) = 0 ; otherwise, r(x) divided by its highest-degree coefficient
would be a monic polynomial of smaller degree than p(x) that when applied to T gives 0, a
contradiction. Thus p(x) divides q(x) .

(#2 =⇒ #1) Suppose that q(x) is a polynomial multiple of the minimal polynomial. Then
there exists s(x) ∈ F[x] such that q(x) = p(x)s(x) . Thus

q(T ) = p(T )s(T ) = 0

�
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