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Abstract. In the present study a new method is proposed that allows the derivation of control
laws capable of enforcing the desirable dynamics on an invariant manifold in state space. The prob-
lem of interest naturally surfaces in broad classes of physical and chemical systems whose dynamic
behavior needs to be controlled and favorably shaped by external driving forces. In particular, the
formulation of the problem under consideration is mathematically realized through a system of first-
order quasi-linear singular invariance partial differential equations (PDEs), and a rather general set
of conditions is derived that ensures the existence and uniqueness of a solution. The solution to the
above system of singular PDEs is proven to be locally analytic, thus allowing the development of
a series solution method that is easily programmable with the aid of a symbolic software package.
Furthermore, through the solution to the above system of singular PDEs, an analytic manifold and
a nonlinear control law are computed that render the manifold invariant for the nonlinear dynamical
system considered. In particular, the restriction of the system dynamics on the invariant manifold
is shown to represent exactly the desirable target dynamics of the controlled system. Finally, an
illustrative case study of molecular dissociation is considered, and the proposed method is evaluated
through simulation studies.
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1. Introduction and examples. In recent years, the scientific community has
witnessed a resurgence of interest in the challenging problem of controlling the dynam-
ics of nonlinear physical/(bio)chemical systems and processes [1, 2, 3, 4]. Most of these
systems/processes exhibit nonlinear dynamic behavior which is typically modeled by
systems of nonlinear ordinary differential equations (ODEs) and/or partial differential
equations (PDEs) [2, 4, 5, 6]. In particular, it should be pointed out that the practical
need to address infinite-dimensional problems, where systems exhibit spatio-temporal
characteristics, precipitated a wave of considerable research directed towards the de-
velopment of computationally efficient dynamic model-reduction techniques [2, 7].
The main idea is the derivation of an accurate approximation of the original infinite-
dimensional system by a finite-dimensional one that is mathematically realized by a
finite number of ODEs [7]. Early attempts focused on the development of spatial dis-
cretization schemes by employing finite-difference or finite-element techniques [2, 7],
followed by more elaborate schemes that take into account the classification of PDE
systems into hyperbolic or parabolic ones on the basis of the eigenstructure of the spa-
tial differential operator [2, 7]. In particular, for hyperbolic convection-reaction sys-
tems that are not amenable to a form of modal decomposition, the method of charac-
teristics has been employed [8]. In the case of parabolic diffusion-reaction systems, the
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eigenspectrum of the spatial differential operator exhibits time-scale multiplicity and
can be partitioned into a finite-dimensional “slow” part and an infinite-dimensional
stable and “fast” complement. An immediate consequence is that the system dy-
namics is practically determined by only a finite number of “slow” eigenmodes [2, 9].
Computationally efficient modal decomposition techniques such as proper orthogonal
decomposition, Karhunen–Loève expansion methods, Galerkin methods, and other
sophisticated “hybrid” schemes have also appeared in the pertinent body of literature
[2, 10, 11, 12]. Note that the fundamental underlying idea in systems control is the
derivation of control laws that appropriately modify and favorably shape the system
dynamics, so that a set of prespecified performance objectives are met [6, 13]. One of
the most interesting approaches is conceptually aligned with the intuitively appealing
idea of the synthesis of control laws capable of rendering a certain manifold invariant
in state space, in the sense that the restriction of the system dynamics on the manifold
of interest represents the target (desired) dynamics of the controlled system [6, 14, 15].
As a result, the aforementioned performance objectives would be naturally realized
through the specific structure of the postulated target dynamics for the controlled
system. Even though the notion of invariant manifold successfully serves the purpose
of characterizing the dynamic behavior of complex systems through a dimensionality
reduction and multiple time-scale analysis, and thus becoming a powerful analytical
tool (a representative and certainly not exhaustive sample of recent important contri-
butions can be found in [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]),
the problem under consideration exhibits a fundamentally different conceptual struc-
ture: the invariant manifold of interest is explicitly assigned by the control law derived
to the system dynamics in such a manner that the controlled system dynamics (dy-
namics induced by the control law) represents exactly the desirable target dynamics
on the invariant manifold of interest. Therefore, within the proposed framework, the
invariant manifold becomes a control law synthesis tool [14, 15]. It should be men-
tioned that the problem under consideration has been thoroughly addressed for linear
systems [33]. In the case of nonlinear systems, however, notable existing approaches
in the literature that used rigorous analysis and resulted in theoretically sound results
either rely on a set of restrictive conditions or become applicable to special classes of
systems [14, 15, 34].

Drawing ample motivation from some preliminary and promising results obtained
for linear target dynamics of the controlled system [35], as well as the treatment of
the problem under consideration in the discrete-time domain [36], the present research
work offers a new approach and methodological perspective that enables the extension
of the above results to account for nonlinear target dynamics in the continuous-time
domain for the controlled system. The paper is organized as follows: Some necessary
mathematical preliminaries, as well as the formulation of the problem of interest,
are provided in section 2. The present study’s proposed approach and main results
derived are presented in section 3, followed by an illustrative case study considered in
section 4. Finally, a few concluding remarks are offered in section 5.

2. Mathematical preliminaries: Problem formulation. In the present
study nonlinear input-driven dynamical systems are considered:

ẋ =
dx(t)

dt
= f(x(t)) + g(x(t))u(t),(2.1)

where t is the time variable, x ∈ R
n is the vector of state variables, and u ∈ R is the

input variable. Without loss of generality, let the origin x0 = 0 be an equilibrium
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point of (2.1) that corresponds to u0 = 0: f(0) = 0. Indeed, it can be easily inferred
that if the reference equilibrium point P = (x0, u0) were not zero, then a simple
linear invertible coordinate transformation x̄ = x − x0, ū = u − u0 would map P
to the origin in the transformed coordinate system (x̄, ū). Note that the lumped-
parameter nonlinear dynamic model (2.1) (which serves as our point of departure)
could have been obtained via the employment of an appropriate spatial discretization
technique applied to the original distributed-parameter dynamic model or any of
the available proper orthogonal decomposition, Karhunen–Loève, Galerkin, or other
hybrid discretization methods [2, 7]. Indeed, for illustration purposes, let us consider
a quasi-linear parabolic diffusion-reaction system modeled by the PDE [2]

∂v

∂t
= A

∂v

∂z
+ B

∂2v

∂z2
+ b(z)u + f(v)(2.2)

subject to the mixed boundary conditions

C1v(a, t) + D1
∂v

∂z
(a, t) = R1,

C2v(b, t) + D2
∂v

∂z
(b, t) = R2

(2.3)

and the initial condition

v(z, 0) = v0(z),(2.4)

where v(z, t) ∈ R
n is the vector of the state variables, z ∈ Ω = [a, b] the spatial

coordinate, and Ω = [a, b] ⊂ R
n the spatial domain where the underlying system is

defined, and b(z) is a real analytic vector function that describes how the control action
u(t) is distributed over the domain Ω. A,B,C1, D1, C2, D2 are constant matrices,
R1, R2 are constant vectors of appropriate dimensions, and v0(z) represents the initial
condition which is considered to be known. It is also assumed that f(v) is a real
analytic vector function defined on R

n. Let H = L2(Ω) be the Hilbert space consisting
of all n-dimensional vector functions defined on Ω and endowed with the inner product
and norm [2]

(v1, v2) =

∫
Ω

(v1(z), v2(z))dz,

||v||2 = (v, v)1/2
(2.5)

for all v1, v2 ∈ H, where the symbol (·, ·) is used to denote the standard vector inner
product in R

n. If one defines the state function v̂ on H as

v̂(t) = v(·, t)(2.6)

for all v ∈ H, the spatial differential operator A : H1(Ω) → H−1(Ω) that acts upon
vector functions in H1(Ω) as follows:

Av̂ = A
∂v

∂z
+ B

∂2v

∂z2
(2.7)

with

v̂ ∈ D(A) =

⎧⎪⎨
⎪⎩v̂ ∈ L2(Ω) :

v̂,
dv̂

dz
are abs. continuous,

d2v̂

dz2
∈ L2(Ω),

and Civ(a) + Di
∂v
∂z (a) = Ri, i = 1, 2

⎫⎪⎬
⎪⎭,(2.8)
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and the input operator B : U → H−1(Ω) as

Bu = b(z)u,(2.9)

then the original PDE system (2.2) assumes the abstract evolution form

˙̂v =
dv̂

dt
= Av̂ + Bu + f(v̂) in H−1(Ω),

v̂(0) = v̂0 ∈ D(A),

(2.10)

where f(v̂(t)) = f(v(·, t)) and v̂0 = v0(z). It has been observed that for parabolic
PDE systems only a few slow dynamic eigenmodes associated with a finite-dimensional
part of the eigenspectrum of A suffice to adequately capture the system’s dominant
dynamics and therefore allow us to ignore the stable and fast infinite-dimensional
complement of A’s eigenspectrum [2]. A standard Galerkin projection of the original
PDE system (2.10) on a finite set of eigenfunctions {φi, i = 1, . . . , l} associated with
the spatial operator A that correspond to its slow eigenvalues,

v̂ =

l∑
i=1

ai(t)φi(z),(2.11)

results in a dynamical system with a state-space representation similar to (2.1). In-
deed, in this case the dynamics of the state vector x = [a1, . . . , al] can be put in the
form (see [2])

dx

dt
= f(x) + g(x)u.(2.12)

Remark 2.1. If the above partitioning scheme for the eigenspectrum of A can-
not be applied or the eigenfunctions {φi} of A cannot be calculated analytically, one
may use empirical eigenfunctions {φ̄i} [2, 11]. A standard Galerkin projection of the
original PDE system (2.10) on the aforementioned empirical eigenfunctions,

v̂ =

l∑
i=1

āi(t)φ̄i(z),(2.13)

results also in dynamics with the state-space representation [2]

dx

dt
= f(x) + g(x)u,(2.14)

where x is now the state vector x = [ā1, . . . , āl].
It should be pointed out that within the context of the present study, classes of

Hamiltonian systems that admit the state-space representation (2.1) (such as molec-
ular systems interacting with external electromagnetic fields and modeled in the clas-
sical regime) can also be considered. For example, let us for illustration purposes
consider a nonrotating chain molecule comprised of N + 1 atoms with a field-free
Hamiltonian function given by

H0(q, p) =
1

2
pTGp + V (q),(2.15)
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where q is the N -dimensional vector of the bond displacement coordinates, p is the
corresponding N -dimensional vector of conjugate momenta, G is the standard Wil-
son matrix whose elements are associated with the mass of the individual atoms in
the molecular chain [37], V is the total potential energy function describing the in-
teractions between the various atoms, and the superscript T is used to denote the
transpose of a matrix/vector. The interaction of the molecule with an external laser
field is classically described by the Hamiltonian function, assuming that polarization
occurs along the molecular chain,

HI(q) = −µ(q)ε(t),(2.16)

where ε(t) is the time-dependent external electric field of the laser and µ(q) the dipole
moment function. Therefore, the molecular system’s total Hamiltonian function is

H(q, p) = H0(q, p) + HI(q) =
1

2
pTGp + V (q) − µ(q)ε(t),(2.17)

and the corresponding canonical equations that govern the vibrational molecular mo-
tion are given by

q̇(t) =
dq

dt
= ∇pH = Gp(t),

ṗ(t) =
dp

dt
= −∇qH = −∇qV (q(t)) + ∇qµ(q(t))ε(t).

(2.18)

Denote by x = [q, p]T ∈ R
n the augmented n-dimensional state (n = 2N) of the

molecular motion and u = ε(t) the external laser field. The latter can be viewed
as the control/input variable that drives the above canonical equations and can be
manipulated according to a certain pattern (control law) in order to modify the system
dynamics and achieve dynamic molecular objectives such as dissociation or selective
excitation of certain bonds in the molecular chain [3]. Under the above notation, the
system of canonical equations (2.18) can be rewritten as an input-driven nonlinear
dynamical system that admits the standard state-space representation (2.1) with

f(x) =

[
Gp

−∇qV (q)

]
and g(x) =

[
0

∇qµ(q)

]
.

Viewing the nonlinear finite-dimensional input-driven dynamical system (2.1) as
our point of departure, it is assumed that f(x), g(x) are real analytic vector functions
defined on R

n. Moreover, let F be the Jacobian matrix of the vector function f(x)
evaluated at the origin,

F =
∂f

∂x
(0),

and let G be the n× 1 vector G = g(0). The following assumption is also made.

Assumption 2.1. The (n× n) matrix C defined via

C =
[
G | FG | . . . | Fn−1G

]
(2.19)

has rank n: rank(C) = n.
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The primary objective is as follows:
(i) Given a real analytic nonlinear vector function h : R

n → R
n with h(0) = 0

and target dynamics for the controlled system

ż =
dz

dt
= h(z),(2.20)

find an analytic invariant manifold z = S(x) with S : R
n → R

n being a real
analytic vector function such that S(0) = 0.

(ii) Derive a control law u = T (z) = T (S(x)), with T : R
n → R being a real ana-

lytic scalar function satisfying T (0) = 0, that renders the manifold invariant
for the augmented system

ẋ = f(x) + g(x)T (z),

ż = h(z),
(2.21)

such that the restriction of the system dynamics (2.21) on the manifold
z = S(x) is exactly the target dynamics (2.20).

Remark 2.2. At this point let us examine how the postulated nonlinear target
dynamics (2.20) emerges in a meaningful molecular dissociation problem. For sim-
plicity, let us consider a diatomic (N = 2) molecule in the presence of an external
laser field whose motion is described by the system of canonical equations (2.18). In
a similar spirit as in [3, 4], a physically meaningful choice for the target z-dynamics
(2.20) would be the antidamped oscillator subject to the same potential as the molecule
of interest,

q̇d =
dqd
dt

=
pd
m

,

ṗd =
dpd
dt

= − ∂V

∂qd
(qd) +

apd
m

,

(2.22)

where a > 0 is the antidamping constant. Under the above nonlinear target dynam-
ics (2.22) (which may be equivalently represented via the augmented z-state vector
z = [qd, pd]

T in the form (2.20)), the time derivative of the molecular energy func-
tion Ed along the trajectories of the target dynamics (2.22) can be readily calculated
and is given by

Ėd =
dEd

dt
=

ap2
d

m2
> 0.(2.23)

Note that the above monotonicity property of the dynamic profile of Ed is meaning-
fully correlated with the molecular dissociation objective and the breaking of the bond
between the atoms [3, 4].

Let us now assume that the requisite control law is given by u = T (z) = −Cz =
−CS(x), where C is a given constant vector and S(x) the unknown mapping that is
associated with the invariant manifold z = S(x). Then the aforementioned invariance
requirement can be mathematically translated into the system of first-order quasi-
linear PDEs [38, 39]

∂S

∂x
{f(x) − g(x)CS(x)} = h(S(x)),

S(0) = 0,

(2.24)
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where the vector function S ∈ R
n is the unknown solution of (2.24). Note that the

above first-order quasi-linear invariance PDEs (2.24) have a common principal part:
f(x) − g(x)CS(x). Furthermore, the equilibrium point x0 = 0 is a characteristic
point for the above system of PDEs (2.24), since the common principal part vanishes
at x0 = 0 where S(0) = 0, and therefore the system of PDEs (2.24) becomes a
singular one [40]. Note that in this case any attempt to mathematically characterize
the solution properties of the invariance singular PDEs (2.24) in a neighborhood of
the characteristic point x0 = 0 (and the present research study focuses on this case)
impinges on the fact that the existence and uniqueness conditions of the Cauchy–
Kovalevskaya theorem are not satisfied [40], and, as will be seen below, one inevitably
needs to rely on methods and results from singular PDE theory [41, 42].

Remark 2.3. The proposed method aims at deriving a nonlinear control law that
forces the molecular system of interest to follow the prescribed target dynamics (2.20)
on the appropriate manifold S(x). Furthermore, the choice of the eigenspectrum of
the characteristic Jacobian matrix A = ∂h

∂z (0) of the target dynamics (2.20) is critical,
since it captures the system’s desirable dynamic eigenmodes on the manifold. For
example, an elementary analysis shows that the antidamping constant a in Remark 2.1
needs to be positive for a meaningful molecular dissociation problem such as the one
considered.

Remark 2.4. Consider the augmented system dynamics

ẋ = f(x) − g(x)Cz,

ż = h(z),
(2.25)

which can be viewed as the product of a cascade connection between the autonomous
dynamics of the target system

ż = h(z),

u = −Cz
(2.26)

and the original system dynamics

ẋ = f(x) + g(x)u,(2.27)

being driven by the “output” u = −Cz of the target system (2.26). The augmented
system dynamics (2.25) can be mathematically characterized as a skew product system,
whose class frequently arises in the study of the dynamic behavior of systems driven by
the autonomous dynamics of an exogeneous system [43, 44]. Furthermore, within this
context, the graph of the function z = S(x) is a manifold which is rendered invariant
by construction (satisfying the system of singular quasi-linear invariance PDEs (2.24))
[38, 39].

3. Main results. The following proposition establishes the requisite set of con-
ditions for the existence and uniqueness of a locally analytic invertible solution of the
system of singular PDEs (2.24).

Proposition 3.1. Consider the system of first-order singular quasi-linear in-
variance PDEs (2.24). Furthermore, assume the following.

Assumption 3.1. The n×n matrix A = ∂h
∂z (0) has eigenvalues ki that satisfy the

condition

0 /∈ co{k1, k2, . . . , kn},(3.1)

where co stands for the convex hull of a set (Poincaré domain [45]).
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Assumption 3.2. The eigenspectra σ(A), σ(F ) of matrices A and F , respectively,
are disjoint: σ(A) ∩ σ(F ) = ∅.

Assumption 3.3. The eigenvalues ki of A are not related to the eigenvalues λj

of F through any equations of the type

n∑
i=1

miki = λj(3.2)

(j = 1, . . . , n), where all the mi are nonnegative integers that satisfy the condition

n∑
i=1

mi > 1.(3.3)

Assumption 3.4. The pair of matrices (C,A) is chosen such that the following
(n× n) matrix O defined via

O =

⎡
⎢⎢⎢⎢⎣

C

CA
...

CAn−1

⎤
⎥⎥⎥⎥⎦(3.4)

has rank n: rank(O) = n.
Then the system of first-order singular quasi-linear PDEs (2.24) with initial con-

dition S(0) = 0 admits a unique and locally analytic invertible solution w = S(x) in
a neighborhood of the equilibrium point x0 = 0.

Proof. Let us first denote

f(x) = Fx + f̄(x),

g(x) = G + ḡ(x),

h(z) = Az + h̄(z),

S(x) = Sx + S̄(x),

(3.5)

with ∂f̄
∂x (0) = ∂S̄

∂x (0) = ∂h̄
∂z (0) = ḡ(0) = 0.

Under the above notation, the system of invariance PDEs (2.24) becomes

{
S +

∂S̄

∂x

}
{(F −GCS)x−GCS̄ + f̄ − ḡCSx− ḡCS̄} = ASx + AS̄ + h̄(Sx + S̄).

(3.6)

From (3.6) it can be easily inferred that the unknown (n× n) matrix S has to satisfy
the quadratic matrix equation

SF −AS = SGCS(3.7)

and the unknown vector function S̄(x) the system of first-order quasi-linear singular
PDEs

∂S̄

∂x
{Ãx + Φ(x, S̄)} = F̃ S̄ + Ψ(x, S̄),(3.8)
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where

Ã = F −GCS,

F̃ = A + SGC,

Φ(x, S̄) = −GCS̄ + f̄ − ḡCSx− ḡCS̄,

Ψ(x, S̄) = −S f̄ + S ḡCSx + S ḡCS̄ + h̄(Sx + S̄).

(3.9)

In (3.9) note that

Φ(0, 0) = Ψ(0, 0) = 0(3.10)

and

∂Ψ

∂x
(0, 0) = 0.(3.11)

Let us now consider the standard Lyapunov matrix equation

FT − TA = GC.(3.12)

Under Assumptions 2.1, 3.2, and 3.4, one can prove that the above Lyapunov matrix
equation admits a unique and invertible solution T [13, 46]. Furthermore, one can
also show that the inverse matrix T−1 satisfies the quadratic matrix equation

T−1F −AT−1 = T−1GCT−1,(3.13)

which coincides with (3.7), and therefore

S = T−1.(3.14)

Moreover, using (3.7) one obtains

F −GCS = S−1AS = Ã,

A + SGC = SFS−1 = F̃ .
(3.15)

Note that from (3.15) it can be inferred that matrices Ã, F̃ are similar to A,F , respec-
tively, and therefore they have the same set of eigenvalues. At this point Lyapunov’s
auxiliary theorem is invoked in order to address the issue of the existence and unique-
ness of an analytic solution S̄ of the system of first-order quasi-linear singular PDEs
(3.8).

Theorem 3.2 (Lyapunov’s auxiliary theorem) (see [35, 42]). Consider the system
of first-order quasi-linear partial differential equations

∂w

∂x
φ(x,w) = ψ(x,w),

w(0) = 0,

(3.16)

with

φ(0, 0) = 0,

ψ(0, 0) = 0,

∂ψ

∂x
(0, 0) = 0,

(3.17)
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where w ∈ R
n is the unknown solution of (3.16) and φ(x,w) : R

n × R
n → R

n

and ψ(x,w) : R
n × R

n → R
n are analytic vector functions. It is assumed that the

eigenvalues ki (i = 1, . . . , n) of the n× n matrix ∂φ
∂x (0, 0) satisfy the condition

0 /∈ co{k1, k2, . . . , kn},(3.18)

where co stands for the convex hull of a set, and are not related to the eigenvalues λi

(i = 1, . . . , n) of the n× n matrix ∂ψ
∂w (0, 0) through any equation of the type

n∑
i=1

miki = λj(3.19)

(j = 1, . . . , n), where all the mi are nonnegative integers that satisfy the condition

n∑
i=1

mi > 1.(3.20)

Then the above system of first-order quasi-linear PDEs (3.16) admits a unique analytic
solution w = S(x) in a neighborhood of x0 = 0 with ∂w

∂x (0) = 0.
Under the assumptions of Proposition 3.1, one can conclude that Lyapunov’s

auxiliary theorem guarantees indeed the existence and uniqueness of an analytic solu-
tion S̄ of the system of first-order quasi-linear PDEs (3.8) in a neighborhood of x0 = 0.
Therefore, we may also easily conclude that the original first-order system of singular
quasi-linear invariance PDEs (2.24) admits a unique analytic solution w = S(x) in a
neighborhood of x0 = 0, and, since S is nonsingular, the solution w = S(x) of (2.24)
is also locally invertible around x0 = 0.

Remark 3.1. Let us now briefly comment on the set of conditions derived (Propo-
sition 3.1) for the existence and uniqueness of a locally analytic and invertible solu-
tion to the system of first-order quasi-linear invariance PDEs (2.24). Assumptions
3.2 and 3.3 and conditions (3.2)–(3.3), which are “nonresonance conditions” imposed
on the eigenvalues of the F and A matrices, are needed to prove the existence of a
unique formal power-series solution to the system of singular invariance PDEs (2.24)
[41, 42]. Assumption 3.1 is indispensable in the proof to show uniform convergence of
the above formal power series in a neighborhood of x0 = 0 and the solution’s analytic-
ity property [41, 42]. Assumptions 2.1 and 3.4 guarantee the invertibility of matrix S,
and thus the local invertibility property of the solution S(x) of the PDEs (2.24) (see
the proof of Proposition 3.1 and [13, 46]).

Remark 3.2. In the linear case where f(x) + g(x)u = Fx + Gu, h(z) = Az, the
system of invariance PDEs (2.24) assumes the form

∂S

∂x
{Fx−GCS} = AS.(3.21)

The solution is of the linear form S = Sx, where the constant matrix S has to satisfy
the matrix equation

SF −AS = SGCS.(3.22)

The above is exactly (3.7). Under the stated assumptions, and as it has been pre-
viously shown, (3.22) admits a unique invertible solution S [13, 46]. Note that the
above solution coincides with the one offered by linear analysis [47], and therefore the



SINGULAR CONTROL-INVARIANCE PDEs 741

proposed method may be viewed as its nonlinear analogue, since it naturally reproduces
the linear result as a special case.

Corollary 3.3. Under the assumptions of Proposition 3.1, let S(x) be the
unique analytic and locally invertible solution of the system of singular quasi-linear
invariance PDEs (2.24) in a neighborhood of x0 = 0. Then the graph of the mapping
z = S(x) is an analytic manifold which is rendered locally invariant by the feedback
control law u = −CS(x), and the restriction of the system dynamics (2.1) on this
manifold is exactly the prescribed target dynamics (2.20).

Proof. The restriction of the system dynamics (2.1) on the manifold z = S(x) is
given by

ż =
∂S

∂x
ẋ =

∂S

∂x
{f(x) − g(x)CS(x))} = h(S(x)) = h(z).(3.23)

Note that the aforementioned dynamics coincides with the nonlinear target dynamics
of the controlled system (2.20), thus completing the proof.

Remark 3.3. Note that it is always possible to select the eigenvalues of matrix A
(a design/adjustable parameter) so that (i) the resonance conditions (3.2)–(3.3) are
avoided, (ii) the eigenspectra of A and F are disjoint, and (iii) the pair of matrices
(C,A) satisfies the rank condition (3.4). Consequently, the assumptions of Proposi-
tion 3.1 and Corollary 3.3 are not restrictive.

3.1. Series solution of the system of singular quasi-linear invariance
PDEs. The development of a comprehensive and practical solution scheme for the
system of first-order singular invariance PDEs (2.24) is needed at the implementation
stage of the proposed method. It should be noted that the method of characteristics
cannot be applied to PDEs (2.24) due to the associated singularity at the origin and
the fact that the pertinent theory inevitably breaks down [40]. However, since the
real functions f(x), g(x), h(z), as well as the unknown solution S(x) of (2.24), are
all locally analytic around the origin, one can (i) expand f(x), g(x), h(z), S(x) in
multivariate Taylor series and (ii) equate the Taylor coefficients of the same order
for both sides of the invariance PDEs (2.24). This procedure leads to a set of linear
recursion formulas, through which one can calculate the Nth order Taylor coefficients
of the unknown solution S(x), given the Taylor coefficients of S(x) up to the order
N−1, that have already been calculated in previous recursive steps. For the derivation
of the aforementioned recursion formulas the following convenient tensorial notation
is adopted [35]:

(a) The entries of a constant matrix A are represented as aji , where the subscript i
refers to the corresponding row and the superscript j to the corresponding
column of the matrix.

(b) The partial derivatives of the µth component fµ(x) of the vector function
f(x) with respect to x evaluated at x = 0 are denoted as follows:

f i
µ =

∂fµ
∂xi

(0, 0),

f ij
µ =

∂2fµ
∂xi∂xj

(0, 0),

f ijk
µ =

∂3fµ
∂xi∂xj∂xk

(0, 0),

(3.24)

etc.
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(c) The standard summation convention is used where repeated upper and lower
tensorial indices are summed up.

In light of the above notation, one can represent the lth component Sl(x) of the
unknown solution S(x) as a Taylor series:

Sl(x) =
1

1!
Si1
l xi1 +

1

2!
Si1i2
l xi1xi2 + · · · + 1

N !
Si1i2...iN
l xi1xi2 . . . xiN + · · · .(3.25)

In a similar fashion the vector functions f(x), g(x), h(z) are expanded in Taylor series,
and these expansions are then inserted into the invariance PDEs (2.24). Equating the
Taylor coefficients of the same order for both sides of (2.24), the following recursive
relations are obtained.

First-order terms.

Sµ
l (f i1

µ − gµc
kSi1

k ) = aµl S
i1
µ(3.26)

with i1 = 1, . . . , n and l = 1, . . . , n. Note that the above set of linear algebraic
equations can be recast into the matrix equation (3.7), that is, also obtained from
linear analysis.

N th-order terms.

N−1∑
L=0

∑
(NL)

Sµi1...iL
l (f iL+1...iN

µ − πiL+1...iN
µ ) = aµl S

i1...iN
µ + ζi1...iNl (Si1...iN−1),(3.27)

where

πj1...jM
µ =

M−1∑
P=0

∑
(MP )

gj1...jPµ ckw
jP+1...jM
k(3.28)

(i1, . . . , iN = 1, . . . , n; l = 1, . . . , n) with ζi1...iNl (Si1...iN−1) being a function of Taylor
coefficients of the unknown solution S(x) calculated in the previous recursive steps.
Note that the second summation symbols in (3.27)–(3.28) suggest summing up the rel-
evant quantities over the

(
N
L

)
and

(
M
P

)
possible combinations of the indices (i1, . . . , iN )

and (j1, . . . , jM ), respectively. Furthermore, attention should be drawn to the fact
that (3.27)–(3.28) represent a set of linear algebraic equations with respect to the
unknown coefficients Si1...iN

µ , and that is precisely the reason that the proposed series
solution method for the system of invariance PDEs (2.24) becomes amenable to an
easy implementation by using a symbolic software package such as MAPLE. In par-
ticular, an efficient MAPLE code has been developed to automatically generate the
various coefficients of the Taylor series representation of the unknown solution S(x)
of the invariance PDEs (2.24).

Remark 3.4. It should be pointed out that occasionally the Taylor series solution
method for the invariance PDEs (2.24) exhibits slow convergence. In these cases,
significant improvement of the convergence properties of the PDE solution scheme
can be achieved if direct Newton-type methods as described in [48] are employed or
relaxation methods such as the ones reported in [17, 49].

4. Illustrative example. The problem of using laser pulses to modify the dy-
namics, and hence the properties, of molecular systems has attracted a lot of attention
in recent years, not only due to its theoretical significance but also its potential to rev-
olutionize the fields of nanotechnology, quantum computing, communications safety,
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materials processing, etc. [3, 50, 51, 52]. The study of the above problem poses a
great challenge in the classical regime and more profoundly in the quantum mechan-
ical regime when formulated as a control problem [3, 50, 51, 52]. Within a control
context, the laser field is viewed as the manipulated input variable through which
the desirable dynamics is assigned to the molecular system of interest in either an
open-loop or closed-loop fashion [3, 50, 51, 52]. Attention should be drawn to the
fact that even though the conceptual formulation and formal mathematical treatment
of the above problem as a typical control problem is feasible, its study requires the
in-depth resolution of an array of challenging issues associated with the actual im-
plementability and physical realizability of the proposed control algorithm/strategy
and the associated external laser field, as it interferes with the underlying laws of
nature that govern the interaction of matter with light (particularly from a quantum
mechanical point of view) [3, 50, 51, 52]. However, recent advances in optics, laser
chemistry, and spectroscopy allowed a great deal of progress to be made and a lot
of the aforementioned fundamental issues to be addressed in a comprehensive and
thorough manner (see [50, 51, 52], as well as references therein, for a representative
sample of research results obtained by pioneers in this field). In the context of the
present study, and in order to simply illustrate the proposed control method (which
is the focus of the paper), the dissociation problem of a diatomic molecule in the
presence of an external laser field is considered. In the classical regime, the diatomic
molecular system is often modeled as a rotationless oscillator with a Morse potential
energy function given by

V (q) = D[1 − exp(−βq)]2,(4.1)

where q is the displacement (spatial) coordinate in the standard two-body problem
formulation and D,β are positive constants [37]. In the absence of an external elec-
tromagmetic field, the Hamiltonian of the molecular system is given by

H0 =
p2

2m
+ V (q),(4.2)

where p is the conjugate momentum and m the molecular reduced mass. Whenever
the molecule is exposed to an external laser field, the interaction between the molecule
and the laser field is described by the Hamiltonian function

HI = −µ(q)ε(t),(4.3)

where ε(t) is the time-dependent control laser field polarized along the molecular axis,
and the dipole moment function µ(q) is given by

µ(q) = B(q + q0) exp[−γ(q + q0)
4],(4.4)

with B, γ, q0 being positive constants [3]. Let us now denote by H = H0 +HI the sys-
tem’s total Hamiltonian function. In the classical Hamiltonian formalism employed,
the following system of canonical equations can be obtained:

q̇ =
∂H

∂p
=

p

m
,

ṗ = −∂H

∂q
= −∂V

∂q
(q) +

∂µ

∂q
(q)ε(t).

(4.5)
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In the context of the present study, the primary control objective is to derive a control
law ε(t) (or the necessary profile of the external laser field) that will eventually cause
the bond of the diatomic molecule to break. In order to achieve the above molecular
dissociation objective one would preferably request a control field ε(t) that would
induce target dynamics exhibiting “antidamped” behavior, and thus leading to the
attainment of energy levels above the dissociation threshold. As mentioned earlier
(section 2), a physically meaningful choice for the target dynamics of the controlled
system is the antidamped oscillator subject to the same potential as the molecule
under consideration,

q̇d =
pd
m

,

ṗd = − ∂V

∂qd
(qd) +

apd
m

,
(4.6)

where a > 0 is the antidamping constant. Let us now denote x1 = q, x2 = p, u = ε,
z1 = qd, z2 = pd. Selecting C =

[
0 1

]
and using the model parameter values given

in [3, 37], all conditions of Proposition 3.1 and Corollary 3.3 are met, and therefore
the system of invariance PDEs

∂S1

∂x1
{f1(x1, x2) − g1(x1, x2)S2(x1, x2)} +

∂S1

∂x2
{f2(x1, x2) − g2(x1, x2)S2(x1, x2)}

= h1(S1(x1, x2), S2(x1, x2)),

∂S2

∂x1
{f1(x1, x2) − g1(x1, x2)S2(x1, x2)} +

∂S2

∂x2
{f2(x1, x2) − g2(x1, x2)S2(x1, x2)}

= h2(S1(x1, x2), S2(x1, x2)),

S1(0, 0) = 0,

S2(0, 0) = 0

(4.7)

admits a unique and locally analytic invertible solution: S1(x1, x2), S2(x1, x2). As
mentioned earlier, the above solution can be computed in a Taylor series form using a
MAPLE code, and the control law that enforces the nonlinear target dynamics (4.6)
on the invariant manifold z = [z1, z2] = S(x1, x2) = [S1(x1, x2), S2(x1, x2)] is

u(t) = −CS(x1(t), x2(t)) = −S2(x1(t), x2(t)).(4.8)

A third-order Taylor polynomial approximation of the actual solution of the system
of PDEs (4.7) is considered resulting from a third-order series truncation (N = 3) of
the Taylor series. The following expression for the control law is obtained:

u(t) = −S2(x1(t), x2(t)) = 0.00123x2(t) − 0.000195x2
1(t) + 0.0016x1(t)x2(t)

− 6 × 10−7x2
2(t) − 0.919x3

1(t) + 0.0011x2
1(t)x2(t)

− 0.0008x1(t)x
2
2(t) − 5 × 10−7x3

2(t).

(4.9)

Note that if the linear terms in the above expression (4.9) are singled out, the re-
sulting linear control law matches exactly the one offered by standard linear analysis
arguments [47]. When the control law (4.9) is applied to the system, the profile of
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Fig. 1. Molecular energy profile.

the molecular energy induced is as graphically depicted in Figure 1, suggesting that
the dissociation energy threshold is exceeded, the bond is broken, and the molecular
objective is met. The corresponding dynamic profile of the control field applied is
presented in Figure 2. Note that during the first stage, relatively mild amounts of
energy are being transferred to the molecular system, followed by a second and more
intense one, where the energy provision by the laser source suffices for the molecular
energy to exceed the dissociation threshold. Finally, it should be pointed out that
the academic example considered is meant to illustrate only the key features of the
proposed control methodology. Aspects pertaining to the actual implementability, as
well as physical realizability of the above control laser field in the lab, while quite
important [50, 51, 52], are not addressed in the context of the present study.

5. Concluding remarks. A new method that allows the derivation of control
laws capable of enforcing the desirable system dynamics on an invariant manifold
in state space was presented. The problem of interest was formulated and addressed
within the framework of singular PDE theory. It was proven that through the solution
of a system of first-order quasi-linear singular PDEs a locally analytic manifold can be
constructed and a nonlinear control law derived that renders the manifold invariant,
such that the restriction of the system dynamics on the invariant manifold represents
the desirable target dynamics of the controlled system.
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[4] S. Krempl, T. Eisenhammer, A. Hübler, G. Mayer-Kress, and P. W. Milonni, Optimal
stimulation of a conservative nonlinear oscillator: Classical and quantum-mechanical cal-
culations, Phys. Rev. Lett., 69 (1992), pp. 430–433.

[5] U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Differential Equations
and Differential-Algebraic Equations, SIAM, Philadelphia, PA, 1998.

[6] A. Isidori, Nonlinear Control Systems, Springer-Verlag, Berlin, 1999.
[7] K. W. Morton and D. F. Mayers, Numerical Solution of Partial Differential Equations,

Cambridge University Press, Cambridge, UK, 1994.
[8] E. M. Hanczyk and A. Palazoglou, Nonlinear control of a distributed parameter process:

The case of multiple characteristics, Ind. Engn. Chem. Res., 34 (1995), pp. 4406–4412.
[9] A. Armaou and P. D. Christofides, Nonlinear feedback control of parabolic PDE systems

with time-dependent spatial domains, J. Math. Anal. Appl., 239 (1999), pp. 124–157.
[10] S. Y. Shvartsman and I. G. Kevrekidis, Nonlinear model reduction for control of distributed

systems: A computer-assisted study, AIChE J., 44 (1998), pp. 1579–1595.



SINGULAR CONTROL-INVARIANCE PDEs 747

[11] S. Y. Shvartsman, C. Theodoropoulos, R. Rico-Martinez, I. G. Kevrekidis, E. S. Titi,

and T. J. Mountziaris, Order reduction for nonlinear dynamic models of distributed
reacting systems, J. Proc. Contr., 10 (2000), pp. 177–184.

[12] A. Theodoropoulou, R. A. Adomaitis, and E. R. Zafiriou, Model reduction for optimization
of rapid thermal chemical vapor deposition systems, IEEE Trans. Semic. Manuf., 11 (1998),
pp. 85–98.

[13] C. T. Chen, Linear System Theory and Design, Holt, Rinehart and Winston, New York, 1984.
[14] A. Astolfi and R. Ortega, Nonlinear and Adaptive Control, NCN4, Lecture Notes in Control

and Inform. Sci. 281, A. Zinober and D. Owens, eds., Springer, Berlin, 2001.
[15] A. Astolfi and R. Ortega, Immersion and invariance: A new tool for stabilization and adap-

tive control of nonlinear systems, IEEE Trans. Automat. Control, 48 (2003), pp. 590–606.
[16] S. M. Cox and A. J. Roberts, Initial conditions for models of dynamical systems, Physica D,

85 (1995), pp. 126–141.
[17] C. Foias, M. S. Jolly, I. G. Kevrekidis, G. R. Sell, and E. S. Titi, On the computation

of inertial manifolds, Phys. Lett. A, 131 (1988), pp. 433–436.
[18] C. Foias, G. R. Sell, and E. S. Titi, Exponential tracking and approximation of inertial man-

ifolds for dissipative equations, J. Dynam. Differential Equations, 1 (1989), pp. 199–244.
[19] A. N. Gorban, I. V. Karlin, V. B. Zmievskii, and S. V. Dymova, Reduced description in

the reaction kinetics, Physica A, 275 (2000), pp. 361–379.
[20] A. N. Gorban and I. V. Karlin, Macroscopic dynamics through coarse-graining: A solvable

example, Phys. Rev. E (3), 65 (2003), 026116.
[21] J. Guckenheimer and P. J. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifur-

cations of Vector Fields, Springer-Verlag, New York, 1983.
[22] H. G. Kaper and T. J. Kaper, Asymptotic analysis of two reduction methods for systems of

chemical reactions, Physica D, 165 (2002), pp. 66–93.
[23] A. Kumar, P. D. Christofides, and P. Daoutidis, Singular perturbation modeling of non-

linear processes with nonexplicit time-scale multiplicity, Chem. Engn. Sci., 53 (1998),
pp. 1491–1504.

[24] M. R. Roussel, Forced-convergence iterative schemes for the approximation of invariant man-
ifolds, J. Math. Chem., 21 (1997), pp. 385–393.

[25] M. R. Roussel and S. J. Fraser, Invariant manifold methods for metabolic model reduction,
Chaos, 11 (2001), pp. 196–206.

[26] A. N. Gorban and I. V. Karlin, Method of invariant manifold for chemical kinetics, Chem.
Engn. Sci., 58 (2003), pp. 4751–4768.

[27] N. Vora and P. Daoutidis, Nonlinear model reduction of chemical reaction systems, AIChE
J., 47 (2001), pp. 2320–2332.

[28] R. Serban, W. S. Koon, M. W. Lo, J. E. Marsden, L. R. Petzold, S. D. Ross, and R. S.

Wilson, Halo orbit mission correction maneuvers using optimal control, Automatica J.
IFAC, 38 (2002), pp. 571–583.

[29] C. K. R. T. Jones, T. J. Kaper, and N. Kopell, Tracking invariant manifolds up to expo-
nentially small errors, SIAM J. Math. Anal., 27 (1996), pp. 558–577.
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